xref: /linux/mm/filemap.c (revision de2fe5e07d58424bc286fff3fd3c1b0bf933cd58)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/config.h>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <linux/compiler.h>
16 #include <linux/fs.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/cpuset.h>
33 #include "filemap.h"
34 #include "internal.h"
35 
36 /*
37  * FIXME: remove all knowledge of the buffer layer from the core VM
38  */
39 #include <linux/buffer_head.h> /* for generic_osync_inode */
40 
41 #include <asm/uaccess.h>
42 #include <asm/mman.h>
43 
44 static ssize_t
45 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
46 	loff_t offset, unsigned long nr_segs);
47 
48 /*
49  * Shared mappings implemented 30.11.1994. It's not fully working yet,
50  * though.
51  *
52  * Shared mappings now work. 15.8.1995  Bruno.
53  *
54  * finished 'unifying' the page and buffer cache and SMP-threaded the
55  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
56  *
57  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
58  */
59 
60 /*
61  * Lock ordering:
62  *
63  *  ->i_mmap_lock		(vmtruncate)
64  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
65  *      ->swap_lock		(exclusive_swap_page, others)
66  *        ->mapping->tree_lock
67  *
68  *  ->i_mutex
69  *    ->i_mmap_lock		(truncate->unmap_mapping_range)
70  *
71  *  ->mmap_sem
72  *    ->i_mmap_lock
73  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
74  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
75  *
76  *  ->mmap_sem
77  *    ->lock_page		(access_process_vm)
78  *
79  *  ->mmap_sem
80  *    ->i_mutex			(msync)
81  *
82  *  ->i_mutex
83  *    ->i_alloc_sem             (various)
84  *
85  *  ->inode_lock
86  *    ->sb_lock			(fs/fs-writeback.c)
87  *    ->mapping->tree_lock	(__sync_single_inode)
88  *
89  *  ->i_mmap_lock
90  *    ->anon_vma.lock		(vma_adjust)
91  *
92  *  ->anon_vma.lock
93  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
94  *
95  *  ->page_table_lock or pte_lock
96  *    ->swap_lock		(try_to_unmap_one)
97  *    ->private_lock		(try_to_unmap_one)
98  *    ->tree_lock		(try_to_unmap_one)
99  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
100  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
101  *    ->private_lock		(page_remove_rmap->set_page_dirty)
102  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
103  *    ->inode_lock		(page_remove_rmap->set_page_dirty)
104  *    ->inode_lock		(zap_pte_range->set_page_dirty)
105  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
106  *
107  *  ->task->proc_lock
108  *    ->dcache_lock		(proc_pid_lookup)
109  */
110 
111 /*
112  * Remove a page from the page cache and free it. Caller has to make
113  * sure the page is locked and that nobody else uses it - or that usage
114  * is safe.  The caller must hold a write_lock on the mapping's tree_lock.
115  */
116 void __remove_from_page_cache(struct page *page)
117 {
118 	struct address_space *mapping = page->mapping;
119 
120 	radix_tree_delete(&mapping->page_tree, page->index);
121 	page->mapping = NULL;
122 	mapping->nrpages--;
123 	pagecache_acct(-1);
124 }
125 
126 void remove_from_page_cache(struct page *page)
127 {
128 	struct address_space *mapping = page->mapping;
129 
130 	BUG_ON(!PageLocked(page));
131 
132 	write_lock_irq(&mapping->tree_lock);
133 	__remove_from_page_cache(page);
134 	write_unlock_irq(&mapping->tree_lock);
135 }
136 
137 static int sync_page(void *word)
138 {
139 	struct address_space *mapping;
140 	struct page *page;
141 
142 	page = container_of((unsigned long *)word, struct page, flags);
143 
144 	/*
145 	 * page_mapping() is being called without PG_locked held.
146 	 * Some knowledge of the state and use of the page is used to
147 	 * reduce the requirements down to a memory barrier.
148 	 * The danger here is of a stale page_mapping() return value
149 	 * indicating a struct address_space different from the one it's
150 	 * associated with when it is associated with one.
151 	 * After smp_mb(), it's either the correct page_mapping() for
152 	 * the page, or an old page_mapping() and the page's own
153 	 * page_mapping() has gone NULL.
154 	 * The ->sync_page() address_space operation must tolerate
155 	 * page_mapping() going NULL. By an amazing coincidence,
156 	 * this comes about because none of the users of the page
157 	 * in the ->sync_page() methods make essential use of the
158 	 * page_mapping(), merely passing the page down to the backing
159 	 * device's unplug functions when it's non-NULL, which in turn
160 	 * ignore it for all cases but swap, where only page_private(page) is
161 	 * of interest. When page_mapping() does go NULL, the entire
162 	 * call stack gracefully ignores the page and returns.
163 	 * -- wli
164 	 */
165 	smp_mb();
166 	mapping = page_mapping(page);
167 	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
168 		mapping->a_ops->sync_page(page);
169 	io_schedule();
170 	return 0;
171 }
172 
173 /**
174  * filemap_fdatawrite_range - start writeback against all of a mapping's
175  * dirty pages that lie within the byte offsets <start, end>
176  * @mapping:	address space structure to write
177  * @start:	offset in bytes where the range starts
178  * @end:	offset in bytes where the range ends (inclusive)
179  * @sync_mode:	enable synchronous operation
180  *
181  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
182  * opposed to a regular memory * cleansing writeback.  The difference between
183  * these two operations is that if a dirty page/buffer is encountered, it must
184  * be waited upon, and not just skipped over.
185  */
186 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
187 				loff_t end, int sync_mode)
188 {
189 	int ret;
190 	struct writeback_control wbc = {
191 		.sync_mode = sync_mode,
192 		.nr_to_write = mapping->nrpages * 2,
193 		.start = start,
194 		.end = end,
195 	};
196 
197 	if (!mapping_cap_writeback_dirty(mapping))
198 		return 0;
199 
200 	ret = do_writepages(mapping, &wbc);
201 	return ret;
202 }
203 
204 static inline int __filemap_fdatawrite(struct address_space *mapping,
205 	int sync_mode)
206 {
207 	return __filemap_fdatawrite_range(mapping, 0, 0, sync_mode);
208 }
209 
210 int filemap_fdatawrite(struct address_space *mapping)
211 {
212 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
213 }
214 EXPORT_SYMBOL(filemap_fdatawrite);
215 
216 static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
217 				loff_t end)
218 {
219 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
220 }
221 
222 /*
223  * This is a mostly non-blocking flush.  Not suitable for data-integrity
224  * purposes - I/O may not be started against all dirty pages.
225  */
226 int filemap_flush(struct address_space *mapping)
227 {
228 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
229 }
230 EXPORT_SYMBOL(filemap_flush);
231 
232 /*
233  * Wait for writeback to complete against pages indexed by start->end
234  * inclusive
235  */
236 int wait_on_page_writeback_range(struct address_space *mapping,
237 				pgoff_t start, pgoff_t end)
238 {
239 	struct pagevec pvec;
240 	int nr_pages;
241 	int ret = 0;
242 	pgoff_t index;
243 
244 	if (end < start)
245 		return 0;
246 
247 	pagevec_init(&pvec, 0);
248 	index = start;
249 	while ((index <= end) &&
250 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
251 			PAGECACHE_TAG_WRITEBACK,
252 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
253 		unsigned i;
254 
255 		for (i = 0; i < nr_pages; i++) {
256 			struct page *page = pvec.pages[i];
257 
258 			/* until radix tree lookup accepts end_index */
259 			if (page->index > end)
260 				continue;
261 
262 			wait_on_page_writeback(page);
263 			if (PageError(page))
264 				ret = -EIO;
265 		}
266 		pagevec_release(&pvec);
267 		cond_resched();
268 	}
269 
270 	/* Check for outstanding write errors */
271 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
272 		ret = -ENOSPC;
273 	if (test_and_clear_bit(AS_EIO, &mapping->flags))
274 		ret = -EIO;
275 
276 	return ret;
277 }
278 
279 /*
280  * Write and wait upon all the pages in the passed range.  This is a "data
281  * integrity" operation.  It waits upon in-flight writeout before starting and
282  * waiting upon new writeout.  If there was an IO error, return it.
283  *
284  * We need to re-take i_mutex during the generic_osync_inode list walk because
285  * it is otherwise livelockable.
286  */
287 int sync_page_range(struct inode *inode, struct address_space *mapping,
288 			loff_t pos, loff_t count)
289 {
290 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
291 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
292 	int ret;
293 
294 	if (!mapping_cap_writeback_dirty(mapping) || !count)
295 		return 0;
296 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
297 	if (ret == 0) {
298 		mutex_lock(&inode->i_mutex);
299 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
300 		mutex_unlock(&inode->i_mutex);
301 	}
302 	if (ret == 0)
303 		ret = wait_on_page_writeback_range(mapping, start, end);
304 	return ret;
305 }
306 EXPORT_SYMBOL(sync_page_range);
307 
308 /*
309  * Note: Holding i_mutex across sync_page_range_nolock is not a good idea
310  * as it forces O_SYNC writers to different parts of the same file
311  * to be serialised right until io completion.
312  */
313 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
314 			   loff_t pos, loff_t count)
315 {
316 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
317 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
318 	int ret;
319 
320 	if (!mapping_cap_writeback_dirty(mapping) || !count)
321 		return 0;
322 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
323 	if (ret == 0)
324 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
325 	if (ret == 0)
326 		ret = wait_on_page_writeback_range(mapping, start, end);
327 	return ret;
328 }
329 EXPORT_SYMBOL(sync_page_range_nolock);
330 
331 /**
332  * filemap_fdatawait - walk the list of under-writeback pages of the given
333  *     address space and wait for all of them.
334  *
335  * @mapping: address space structure to wait for
336  */
337 int filemap_fdatawait(struct address_space *mapping)
338 {
339 	loff_t i_size = i_size_read(mapping->host);
340 
341 	if (i_size == 0)
342 		return 0;
343 
344 	return wait_on_page_writeback_range(mapping, 0,
345 				(i_size - 1) >> PAGE_CACHE_SHIFT);
346 }
347 EXPORT_SYMBOL(filemap_fdatawait);
348 
349 int filemap_write_and_wait(struct address_space *mapping)
350 {
351 	int err = 0;
352 
353 	if (mapping->nrpages) {
354 		err = filemap_fdatawrite(mapping);
355 		/*
356 		 * Even if the above returned error, the pages may be
357 		 * written partially (e.g. -ENOSPC), so we wait for it.
358 		 * But the -EIO is special case, it may indicate the worst
359 		 * thing (e.g. bug) happened, so we avoid waiting for it.
360 		 */
361 		if (err != -EIO) {
362 			int err2 = filemap_fdatawait(mapping);
363 			if (!err)
364 				err = err2;
365 		}
366 	}
367 	return err;
368 }
369 EXPORT_SYMBOL(filemap_write_and_wait);
370 
371 /*
372  * Write out and wait upon file offsets lstart->lend, inclusive.
373  *
374  * Note that `lend' is inclusive (describes the last byte to be written) so
375  * that this function can be used to write to the very end-of-file (end = -1).
376  */
377 int filemap_write_and_wait_range(struct address_space *mapping,
378 				 loff_t lstart, loff_t lend)
379 {
380 	int err = 0;
381 
382 	if (mapping->nrpages) {
383 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
384 						 WB_SYNC_ALL);
385 		/* See comment of filemap_write_and_wait() */
386 		if (err != -EIO) {
387 			int err2 = wait_on_page_writeback_range(mapping,
388 						lstart >> PAGE_CACHE_SHIFT,
389 						lend >> PAGE_CACHE_SHIFT);
390 			if (!err)
391 				err = err2;
392 		}
393 	}
394 	return err;
395 }
396 
397 /*
398  * This function is used to add newly allocated pagecache pages:
399  * the page is new, so we can just run SetPageLocked() against it.
400  * The other page state flags were set by rmqueue().
401  *
402  * This function does not add the page to the LRU.  The caller must do that.
403  */
404 int add_to_page_cache(struct page *page, struct address_space *mapping,
405 		pgoff_t offset, gfp_t gfp_mask)
406 {
407 	int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
408 
409 	if (error == 0) {
410 		write_lock_irq(&mapping->tree_lock);
411 		error = radix_tree_insert(&mapping->page_tree, offset, page);
412 		if (!error) {
413 			page_cache_get(page);
414 			SetPageLocked(page);
415 			page->mapping = mapping;
416 			page->index = offset;
417 			mapping->nrpages++;
418 			pagecache_acct(1);
419 		}
420 		write_unlock_irq(&mapping->tree_lock);
421 		radix_tree_preload_end();
422 	}
423 	return error;
424 }
425 
426 EXPORT_SYMBOL(add_to_page_cache);
427 
428 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
429 				pgoff_t offset, gfp_t gfp_mask)
430 {
431 	int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
432 	if (ret == 0)
433 		lru_cache_add(page);
434 	return ret;
435 }
436 
437 #ifdef CONFIG_NUMA
438 struct page *page_cache_alloc(struct address_space *x)
439 {
440 	if (cpuset_do_page_mem_spread()) {
441 		int n = cpuset_mem_spread_node();
442 		return alloc_pages_node(n, mapping_gfp_mask(x), 0);
443 	}
444 	return alloc_pages(mapping_gfp_mask(x), 0);
445 }
446 EXPORT_SYMBOL(page_cache_alloc);
447 
448 struct page *page_cache_alloc_cold(struct address_space *x)
449 {
450 	if (cpuset_do_page_mem_spread()) {
451 		int n = cpuset_mem_spread_node();
452 		return alloc_pages_node(n, mapping_gfp_mask(x)|__GFP_COLD, 0);
453 	}
454 	return alloc_pages(mapping_gfp_mask(x)|__GFP_COLD, 0);
455 }
456 EXPORT_SYMBOL(page_cache_alloc_cold);
457 #endif
458 
459 /*
460  * In order to wait for pages to become available there must be
461  * waitqueues associated with pages. By using a hash table of
462  * waitqueues where the bucket discipline is to maintain all
463  * waiters on the same queue and wake all when any of the pages
464  * become available, and for the woken contexts to check to be
465  * sure the appropriate page became available, this saves space
466  * at a cost of "thundering herd" phenomena during rare hash
467  * collisions.
468  */
469 static wait_queue_head_t *page_waitqueue(struct page *page)
470 {
471 	const struct zone *zone = page_zone(page);
472 
473 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
474 }
475 
476 static inline void wake_up_page(struct page *page, int bit)
477 {
478 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
479 }
480 
481 void fastcall wait_on_page_bit(struct page *page, int bit_nr)
482 {
483 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
484 
485 	if (test_bit(bit_nr, &page->flags))
486 		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
487 							TASK_UNINTERRUPTIBLE);
488 }
489 EXPORT_SYMBOL(wait_on_page_bit);
490 
491 /**
492  * unlock_page() - unlock a locked page
493  *
494  * @page: the page
495  *
496  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
497  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
498  * mechananism between PageLocked pages and PageWriteback pages is shared.
499  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
500  *
501  * The first mb is necessary to safely close the critical section opened by the
502  * TestSetPageLocked(), the second mb is necessary to enforce ordering between
503  * the clear_bit and the read of the waitqueue (to avoid SMP races with a
504  * parallel wait_on_page_locked()).
505  */
506 void fastcall unlock_page(struct page *page)
507 {
508 	smp_mb__before_clear_bit();
509 	if (!TestClearPageLocked(page))
510 		BUG();
511 	smp_mb__after_clear_bit();
512 	wake_up_page(page, PG_locked);
513 }
514 EXPORT_SYMBOL(unlock_page);
515 
516 /*
517  * End writeback against a page.
518  */
519 void end_page_writeback(struct page *page)
520 {
521 	if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
522 		if (!test_clear_page_writeback(page))
523 			BUG();
524 	}
525 	smp_mb__after_clear_bit();
526 	wake_up_page(page, PG_writeback);
527 }
528 EXPORT_SYMBOL(end_page_writeback);
529 
530 /*
531  * Get a lock on the page, assuming we need to sleep to get it.
532  *
533  * Ugly: running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
534  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
535  * chances are that on the second loop, the block layer's plug list is empty,
536  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
537  */
538 void fastcall __lock_page(struct page *page)
539 {
540 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
541 
542 	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
543 							TASK_UNINTERRUPTIBLE);
544 }
545 EXPORT_SYMBOL(__lock_page);
546 
547 /*
548  * a rather lightweight function, finding and getting a reference to a
549  * hashed page atomically.
550  */
551 struct page * find_get_page(struct address_space *mapping, unsigned long offset)
552 {
553 	struct page *page;
554 
555 	read_lock_irq(&mapping->tree_lock);
556 	page = radix_tree_lookup(&mapping->page_tree, offset);
557 	if (page)
558 		page_cache_get(page);
559 	read_unlock_irq(&mapping->tree_lock);
560 	return page;
561 }
562 
563 EXPORT_SYMBOL(find_get_page);
564 
565 /*
566  * Same as above, but trylock it instead of incrementing the count.
567  */
568 struct page *find_trylock_page(struct address_space *mapping, unsigned long offset)
569 {
570 	struct page *page;
571 
572 	read_lock_irq(&mapping->tree_lock);
573 	page = radix_tree_lookup(&mapping->page_tree, offset);
574 	if (page && TestSetPageLocked(page))
575 		page = NULL;
576 	read_unlock_irq(&mapping->tree_lock);
577 	return page;
578 }
579 
580 EXPORT_SYMBOL(find_trylock_page);
581 
582 /**
583  * find_lock_page - locate, pin and lock a pagecache page
584  *
585  * @mapping: the address_space to search
586  * @offset: the page index
587  *
588  * Locates the desired pagecache page, locks it, increments its reference
589  * count and returns its address.
590  *
591  * Returns zero if the page was not present. find_lock_page() may sleep.
592  */
593 struct page *find_lock_page(struct address_space *mapping,
594 				unsigned long offset)
595 {
596 	struct page *page;
597 
598 	read_lock_irq(&mapping->tree_lock);
599 repeat:
600 	page = radix_tree_lookup(&mapping->page_tree, offset);
601 	if (page) {
602 		page_cache_get(page);
603 		if (TestSetPageLocked(page)) {
604 			read_unlock_irq(&mapping->tree_lock);
605 			__lock_page(page);
606 			read_lock_irq(&mapping->tree_lock);
607 
608 			/* Has the page been truncated while we slept? */
609 			if (unlikely(page->mapping != mapping ||
610 				     page->index != offset)) {
611 				unlock_page(page);
612 				page_cache_release(page);
613 				goto repeat;
614 			}
615 		}
616 	}
617 	read_unlock_irq(&mapping->tree_lock);
618 	return page;
619 }
620 
621 EXPORT_SYMBOL(find_lock_page);
622 
623 /**
624  * find_or_create_page - locate or add a pagecache page
625  *
626  * @mapping: the page's address_space
627  * @index: the page's index into the mapping
628  * @gfp_mask: page allocation mode
629  *
630  * Locates a page in the pagecache.  If the page is not present, a new page
631  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
632  * LRU list.  The returned page is locked and has its reference count
633  * incremented.
634  *
635  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
636  * allocation!
637  *
638  * find_or_create_page() returns the desired page's address, or zero on
639  * memory exhaustion.
640  */
641 struct page *find_or_create_page(struct address_space *mapping,
642 		unsigned long index, gfp_t gfp_mask)
643 {
644 	struct page *page, *cached_page = NULL;
645 	int err;
646 repeat:
647 	page = find_lock_page(mapping, index);
648 	if (!page) {
649 		if (!cached_page) {
650 			cached_page = alloc_page(gfp_mask);
651 			if (!cached_page)
652 				return NULL;
653 		}
654 		err = add_to_page_cache_lru(cached_page, mapping,
655 					index, gfp_mask);
656 		if (!err) {
657 			page = cached_page;
658 			cached_page = NULL;
659 		} else if (err == -EEXIST)
660 			goto repeat;
661 	}
662 	if (cached_page)
663 		page_cache_release(cached_page);
664 	return page;
665 }
666 
667 EXPORT_SYMBOL(find_or_create_page);
668 
669 /**
670  * find_get_pages - gang pagecache lookup
671  * @mapping:	The address_space to search
672  * @start:	The starting page index
673  * @nr_pages:	The maximum number of pages
674  * @pages:	Where the resulting pages are placed
675  *
676  * find_get_pages() will search for and return a group of up to
677  * @nr_pages pages in the mapping.  The pages are placed at @pages.
678  * find_get_pages() takes a reference against the returned pages.
679  *
680  * The search returns a group of mapping-contiguous pages with ascending
681  * indexes.  There may be holes in the indices due to not-present pages.
682  *
683  * find_get_pages() returns the number of pages which were found.
684  */
685 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
686 			    unsigned int nr_pages, struct page **pages)
687 {
688 	unsigned int i;
689 	unsigned int ret;
690 
691 	read_lock_irq(&mapping->tree_lock);
692 	ret = radix_tree_gang_lookup(&mapping->page_tree,
693 				(void **)pages, start, nr_pages);
694 	for (i = 0; i < ret; i++)
695 		page_cache_get(pages[i]);
696 	read_unlock_irq(&mapping->tree_lock);
697 	return ret;
698 }
699 
700 /*
701  * Like find_get_pages, except we only return pages which are tagged with
702  * `tag'.   We update *index to index the next page for the traversal.
703  */
704 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
705 			int tag, unsigned int nr_pages, struct page **pages)
706 {
707 	unsigned int i;
708 	unsigned int ret;
709 
710 	read_lock_irq(&mapping->tree_lock);
711 	ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
712 				(void **)pages, *index, nr_pages, tag);
713 	for (i = 0; i < ret; i++)
714 		page_cache_get(pages[i]);
715 	if (ret)
716 		*index = pages[ret - 1]->index + 1;
717 	read_unlock_irq(&mapping->tree_lock);
718 	return ret;
719 }
720 
721 /*
722  * Same as grab_cache_page, but do not wait if the page is unavailable.
723  * This is intended for speculative data generators, where the data can
724  * be regenerated if the page couldn't be grabbed.  This routine should
725  * be safe to call while holding the lock for another page.
726  *
727  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
728  * and deadlock against the caller's locked page.
729  */
730 struct page *
731 grab_cache_page_nowait(struct address_space *mapping, unsigned long index)
732 {
733 	struct page *page = find_get_page(mapping, index);
734 	gfp_t gfp_mask;
735 
736 	if (page) {
737 		if (!TestSetPageLocked(page))
738 			return page;
739 		page_cache_release(page);
740 		return NULL;
741 	}
742 	gfp_mask = mapping_gfp_mask(mapping) & ~__GFP_FS;
743 	page = alloc_pages(gfp_mask, 0);
744 	if (page && add_to_page_cache_lru(page, mapping, index, gfp_mask)) {
745 		page_cache_release(page);
746 		page = NULL;
747 	}
748 	return page;
749 }
750 
751 EXPORT_SYMBOL(grab_cache_page_nowait);
752 
753 /*
754  * This is a generic file read routine, and uses the
755  * mapping->a_ops->readpage() function for the actual low-level
756  * stuff.
757  *
758  * This is really ugly. But the goto's actually try to clarify some
759  * of the logic when it comes to error handling etc.
760  *
761  * Note the struct file* is only passed for the use of readpage.  It may be
762  * NULL.
763  */
764 void do_generic_mapping_read(struct address_space *mapping,
765 			     struct file_ra_state *_ra,
766 			     struct file *filp,
767 			     loff_t *ppos,
768 			     read_descriptor_t *desc,
769 			     read_actor_t actor)
770 {
771 	struct inode *inode = mapping->host;
772 	unsigned long index;
773 	unsigned long end_index;
774 	unsigned long offset;
775 	unsigned long last_index;
776 	unsigned long next_index;
777 	unsigned long prev_index;
778 	loff_t isize;
779 	struct page *cached_page;
780 	int error;
781 	struct file_ra_state ra = *_ra;
782 
783 	cached_page = NULL;
784 	index = *ppos >> PAGE_CACHE_SHIFT;
785 	next_index = index;
786 	prev_index = ra.prev_page;
787 	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
788 	offset = *ppos & ~PAGE_CACHE_MASK;
789 
790 	isize = i_size_read(inode);
791 	if (!isize)
792 		goto out;
793 
794 	end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
795 	for (;;) {
796 		struct page *page;
797 		unsigned long nr, ret;
798 
799 		/* nr is the maximum number of bytes to copy from this page */
800 		nr = PAGE_CACHE_SIZE;
801 		if (index >= end_index) {
802 			if (index > end_index)
803 				goto out;
804 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
805 			if (nr <= offset) {
806 				goto out;
807 			}
808 		}
809 		nr = nr - offset;
810 
811 		cond_resched();
812 		if (index == next_index)
813 			next_index = page_cache_readahead(mapping, &ra, filp,
814 					index, last_index - index);
815 
816 find_page:
817 		page = find_get_page(mapping, index);
818 		if (unlikely(page == NULL)) {
819 			handle_ra_miss(mapping, &ra, index);
820 			goto no_cached_page;
821 		}
822 		if (!PageUptodate(page))
823 			goto page_not_up_to_date;
824 page_ok:
825 
826 		/* If users can be writing to this page using arbitrary
827 		 * virtual addresses, take care about potential aliasing
828 		 * before reading the page on the kernel side.
829 		 */
830 		if (mapping_writably_mapped(mapping))
831 			flush_dcache_page(page);
832 
833 		/*
834 		 * When (part of) the same page is read multiple times
835 		 * in succession, only mark it as accessed the first time.
836 		 */
837 		if (prev_index != index)
838 			mark_page_accessed(page);
839 		prev_index = index;
840 
841 		/*
842 		 * Ok, we have the page, and it's up-to-date, so
843 		 * now we can copy it to user space...
844 		 *
845 		 * The actor routine returns how many bytes were actually used..
846 		 * NOTE! This may not be the same as how much of a user buffer
847 		 * we filled up (we may be padding etc), so we can only update
848 		 * "pos" here (the actor routine has to update the user buffer
849 		 * pointers and the remaining count).
850 		 */
851 		ret = actor(desc, page, offset, nr);
852 		offset += ret;
853 		index += offset >> PAGE_CACHE_SHIFT;
854 		offset &= ~PAGE_CACHE_MASK;
855 
856 		page_cache_release(page);
857 		if (ret == nr && desc->count)
858 			continue;
859 		goto out;
860 
861 page_not_up_to_date:
862 		/* Get exclusive access to the page ... */
863 		lock_page(page);
864 
865 		/* Did it get unhashed before we got the lock? */
866 		if (!page->mapping) {
867 			unlock_page(page);
868 			page_cache_release(page);
869 			continue;
870 		}
871 
872 		/* Did somebody else fill it already? */
873 		if (PageUptodate(page)) {
874 			unlock_page(page);
875 			goto page_ok;
876 		}
877 
878 readpage:
879 		/* Start the actual read. The read will unlock the page. */
880 		error = mapping->a_ops->readpage(filp, page);
881 
882 		if (unlikely(error)) {
883 			if (error == AOP_TRUNCATED_PAGE) {
884 				page_cache_release(page);
885 				goto find_page;
886 			}
887 			goto readpage_error;
888 		}
889 
890 		if (!PageUptodate(page)) {
891 			lock_page(page);
892 			if (!PageUptodate(page)) {
893 				if (page->mapping == NULL) {
894 					/*
895 					 * invalidate_inode_pages got it
896 					 */
897 					unlock_page(page);
898 					page_cache_release(page);
899 					goto find_page;
900 				}
901 				unlock_page(page);
902 				error = -EIO;
903 				goto readpage_error;
904 			}
905 			unlock_page(page);
906 		}
907 
908 		/*
909 		 * i_size must be checked after we have done ->readpage.
910 		 *
911 		 * Checking i_size after the readpage allows us to calculate
912 		 * the correct value for "nr", which means the zero-filled
913 		 * part of the page is not copied back to userspace (unless
914 		 * another truncate extends the file - this is desired though).
915 		 */
916 		isize = i_size_read(inode);
917 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
918 		if (unlikely(!isize || index > end_index)) {
919 			page_cache_release(page);
920 			goto out;
921 		}
922 
923 		/* nr is the maximum number of bytes to copy from this page */
924 		nr = PAGE_CACHE_SIZE;
925 		if (index == end_index) {
926 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
927 			if (nr <= offset) {
928 				page_cache_release(page);
929 				goto out;
930 			}
931 		}
932 		nr = nr - offset;
933 		goto page_ok;
934 
935 readpage_error:
936 		/* UHHUH! A synchronous read error occurred. Report it */
937 		desc->error = error;
938 		page_cache_release(page);
939 		goto out;
940 
941 no_cached_page:
942 		/*
943 		 * Ok, it wasn't cached, so we need to create a new
944 		 * page..
945 		 */
946 		if (!cached_page) {
947 			cached_page = page_cache_alloc_cold(mapping);
948 			if (!cached_page) {
949 				desc->error = -ENOMEM;
950 				goto out;
951 			}
952 		}
953 		error = add_to_page_cache_lru(cached_page, mapping,
954 						index, GFP_KERNEL);
955 		if (error) {
956 			if (error == -EEXIST)
957 				goto find_page;
958 			desc->error = error;
959 			goto out;
960 		}
961 		page = cached_page;
962 		cached_page = NULL;
963 		goto readpage;
964 	}
965 
966 out:
967 	*_ra = ra;
968 
969 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
970 	if (cached_page)
971 		page_cache_release(cached_page);
972 	if (filp)
973 		file_accessed(filp);
974 }
975 
976 EXPORT_SYMBOL(do_generic_mapping_read);
977 
978 int file_read_actor(read_descriptor_t *desc, struct page *page,
979 			unsigned long offset, unsigned long size)
980 {
981 	char *kaddr;
982 	unsigned long left, count = desc->count;
983 
984 	if (size > count)
985 		size = count;
986 
987 	/*
988 	 * Faults on the destination of a read are common, so do it before
989 	 * taking the kmap.
990 	 */
991 	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
992 		kaddr = kmap_atomic(page, KM_USER0);
993 		left = __copy_to_user_inatomic(desc->arg.buf,
994 						kaddr + offset, size);
995 		kunmap_atomic(kaddr, KM_USER0);
996 		if (left == 0)
997 			goto success;
998 	}
999 
1000 	/* Do it the slow way */
1001 	kaddr = kmap(page);
1002 	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1003 	kunmap(page);
1004 
1005 	if (left) {
1006 		size -= left;
1007 		desc->error = -EFAULT;
1008 	}
1009 success:
1010 	desc->count = count - size;
1011 	desc->written += size;
1012 	desc->arg.buf += size;
1013 	return size;
1014 }
1015 
1016 /*
1017  * This is the "read()" routine for all filesystems
1018  * that can use the page cache directly.
1019  */
1020 ssize_t
1021 __generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1022 		unsigned long nr_segs, loff_t *ppos)
1023 {
1024 	struct file *filp = iocb->ki_filp;
1025 	ssize_t retval;
1026 	unsigned long seg;
1027 	size_t count;
1028 
1029 	count = 0;
1030 	for (seg = 0; seg < nr_segs; seg++) {
1031 		const struct iovec *iv = &iov[seg];
1032 
1033 		/*
1034 		 * If any segment has a negative length, or the cumulative
1035 		 * length ever wraps negative then return -EINVAL.
1036 		 */
1037 		count += iv->iov_len;
1038 		if (unlikely((ssize_t)(count|iv->iov_len) < 0))
1039 			return -EINVAL;
1040 		if (access_ok(VERIFY_WRITE, iv->iov_base, iv->iov_len))
1041 			continue;
1042 		if (seg == 0)
1043 			return -EFAULT;
1044 		nr_segs = seg;
1045 		count -= iv->iov_len;	/* This segment is no good */
1046 		break;
1047 	}
1048 
1049 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1050 	if (filp->f_flags & O_DIRECT) {
1051 		loff_t pos = *ppos, size;
1052 		struct address_space *mapping;
1053 		struct inode *inode;
1054 
1055 		mapping = filp->f_mapping;
1056 		inode = mapping->host;
1057 		retval = 0;
1058 		if (!count)
1059 			goto out; /* skip atime */
1060 		size = i_size_read(inode);
1061 		if (pos < size) {
1062 			retval = generic_file_direct_IO(READ, iocb,
1063 						iov, pos, nr_segs);
1064 			if (retval > 0 && !is_sync_kiocb(iocb))
1065 				retval = -EIOCBQUEUED;
1066 			if (retval > 0)
1067 				*ppos = pos + retval;
1068 		}
1069 		file_accessed(filp);
1070 		goto out;
1071 	}
1072 
1073 	retval = 0;
1074 	if (count) {
1075 		for (seg = 0; seg < nr_segs; seg++) {
1076 			read_descriptor_t desc;
1077 
1078 			desc.written = 0;
1079 			desc.arg.buf = iov[seg].iov_base;
1080 			desc.count = iov[seg].iov_len;
1081 			if (desc.count == 0)
1082 				continue;
1083 			desc.error = 0;
1084 			do_generic_file_read(filp,ppos,&desc,file_read_actor);
1085 			retval += desc.written;
1086 			if (desc.error) {
1087 				retval = retval ?: desc.error;
1088 				break;
1089 			}
1090 		}
1091 	}
1092 out:
1093 	return retval;
1094 }
1095 
1096 EXPORT_SYMBOL(__generic_file_aio_read);
1097 
1098 ssize_t
1099 generic_file_aio_read(struct kiocb *iocb, char __user *buf, size_t count, loff_t pos)
1100 {
1101 	struct iovec local_iov = { .iov_base = buf, .iov_len = count };
1102 
1103 	BUG_ON(iocb->ki_pos != pos);
1104 	return __generic_file_aio_read(iocb, &local_iov, 1, &iocb->ki_pos);
1105 }
1106 
1107 EXPORT_SYMBOL(generic_file_aio_read);
1108 
1109 ssize_t
1110 generic_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1111 {
1112 	struct iovec local_iov = { .iov_base = buf, .iov_len = count };
1113 	struct kiocb kiocb;
1114 	ssize_t ret;
1115 
1116 	init_sync_kiocb(&kiocb, filp);
1117 	ret = __generic_file_aio_read(&kiocb, &local_iov, 1, ppos);
1118 	if (-EIOCBQUEUED == ret)
1119 		ret = wait_on_sync_kiocb(&kiocb);
1120 	return ret;
1121 }
1122 
1123 EXPORT_SYMBOL(generic_file_read);
1124 
1125 int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size)
1126 {
1127 	ssize_t written;
1128 	unsigned long count = desc->count;
1129 	struct file *file = desc->arg.data;
1130 
1131 	if (size > count)
1132 		size = count;
1133 
1134 	written = file->f_op->sendpage(file, page, offset,
1135 				       size, &file->f_pos, size<count);
1136 	if (written < 0) {
1137 		desc->error = written;
1138 		written = 0;
1139 	}
1140 	desc->count = count - written;
1141 	desc->written += written;
1142 	return written;
1143 }
1144 
1145 ssize_t generic_file_sendfile(struct file *in_file, loff_t *ppos,
1146 			 size_t count, read_actor_t actor, void *target)
1147 {
1148 	read_descriptor_t desc;
1149 
1150 	if (!count)
1151 		return 0;
1152 
1153 	desc.written = 0;
1154 	desc.count = count;
1155 	desc.arg.data = target;
1156 	desc.error = 0;
1157 
1158 	do_generic_file_read(in_file, ppos, &desc, actor);
1159 	if (desc.written)
1160 		return desc.written;
1161 	return desc.error;
1162 }
1163 
1164 EXPORT_SYMBOL(generic_file_sendfile);
1165 
1166 static ssize_t
1167 do_readahead(struct address_space *mapping, struct file *filp,
1168 	     unsigned long index, unsigned long nr)
1169 {
1170 	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1171 		return -EINVAL;
1172 
1173 	force_page_cache_readahead(mapping, filp, index,
1174 					max_sane_readahead(nr));
1175 	return 0;
1176 }
1177 
1178 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1179 {
1180 	ssize_t ret;
1181 	struct file *file;
1182 
1183 	ret = -EBADF;
1184 	file = fget(fd);
1185 	if (file) {
1186 		if (file->f_mode & FMODE_READ) {
1187 			struct address_space *mapping = file->f_mapping;
1188 			unsigned long start = offset >> PAGE_CACHE_SHIFT;
1189 			unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1190 			unsigned long len = end - start + 1;
1191 			ret = do_readahead(mapping, file, start, len);
1192 		}
1193 		fput(file);
1194 	}
1195 	return ret;
1196 }
1197 
1198 #ifdef CONFIG_MMU
1199 /*
1200  * This adds the requested page to the page cache if it isn't already there,
1201  * and schedules an I/O to read in its contents from disk.
1202  */
1203 static int FASTCALL(page_cache_read(struct file * file, unsigned long offset));
1204 static int fastcall page_cache_read(struct file * file, unsigned long offset)
1205 {
1206 	struct address_space *mapping = file->f_mapping;
1207 	struct page *page;
1208 	int ret;
1209 
1210 	do {
1211 		page = page_cache_alloc_cold(mapping);
1212 		if (!page)
1213 			return -ENOMEM;
1214 
1215 		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1216 		if (ret == 0)
1217 			ret = mapping->a_ops->readpage(file, page);
1218 		else if (ret == -EEXIST)
1219 			ret = 0; /* losing race to add is OK */
1220 
1221 		page_cache_release(page);
1222 
1223 	} while (ret == AOP_TRUNCATED_PAGE);
1224 
1225 	return ret;
1226 }
1227 
1228 #define MMAP_LOTSAMISS  (100)
1229 
1230 /*
1231  * filemap_nopage() is invoked via the vma operations vector for a
1232  * mapped memory region to read in file data during a page fault.
1233  *
1234  * The goto's are kind of ugly, but this streamlines the normal case of having
1235  * it in the page cache, and handles the special cases reasonably without
1236  * having a lot of duplicated code.
1237  */
1238 struct page *filemap_nopage(struct vm_area_struct *area,
1239 				unsigned long address, int *type)
1240 {
1241 	int error;
1242 	struct file *file = area->vm_file;
1243 	struct address_space *mapping = file->f_mapping;
1244 	struct file_ra_state *ra = &file->f_ra;
1245 	struct inode *inode = mapping->host;
1246 	struct page *page;
1247 	unsigned long size, pgoff;
1248 	int did_readaround = 0, majmin = VM_FAULT_MINOR;
1249 
1250 	pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff;
1251 
1252 retry_all:
1253 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1254 	if (pgoff >= size)
1255 		goto outside_data_content;
1256 
1257 	/* If we don't want any read-ahead, don't bother */
1258 	if (VM_RandomReadHint(area))
1259 		goto no_cached_page;
1260 
1261 	/*
1262 	 * The readahead code wants to be told about each and every page
1263 	 * so it can build and shrink its windows appropriately
1264 	 *
1265 	 * For sequential accesses, we use the generic readahead logic.
1266 	 */
1267 	if (VM_SequentialReadHint(area))
1268 		page_cache_readahead(mapping, ra, file, pgoff, 1);
1269 
1270 	/*
1271 	 * Do we have something in the page cache already?
1272 	 */
1273 retry_find:
1274 	page = find_get_page(mapping, pgoff);
1275 	if (!page) {
1276 		unsigned long ra_pages;
1277 
1278 		if (VM_SequentialReadHint(area)) {
1279 			handle_ra_miss(mapping, ra, pgoff);
1280 			goto no_cached_page;
1281 		}
1282 		ra->mmap_miss++;
1283 
1284 		/*
1285 		 * Do we miss much more than hit in this file? If so,
1286 		 * stop bothering with read-ahead. It will only hurt.
1287 		 */
1288 		if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS)
1289 			goto no_cached_page;
1290 
1291 		/*
1292 		 * To keep the pgmajfault counter straight, we need to
1293 		 * check did_readaround, as this is an inner loop.
1294 		 */
1295 		if (!did_readaround) {
1296 			majmin = VM_FAULT_MAJOR;
1297 			inc_page_state(pgmajfault);
1298 		}
1299 		did_readaround = 1;
1300 		ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1301 		if (ra_pages) {
1302 			pgoff_t start = 0;
1303 
1304 			if (pgoff > ra_pages / 2)
1305 				start = pgoff - ra_pages / 2;
1306 			do_page_cache_readahead(mapping, file, start, ra_pages);
1307 		}
1308 		page = find_get_page(mapping, pgoff);
1309 		if (!page)
1310 			goto no_cached_page;
1311 	}
1312 
1313 	if (!did_readaround)
1314 		ra->mmap_hit++;
1315 
1316 	/*
1317 	 * Ok, found a page in the page cache, now we need to check
1318 	 * that it's up-to-date.
1319 	 */
1320 	if (!PageUptodate(page))
1321 		goto page_not_uptodate;
1322 
1323 success:
1324 	/*
1325 	 * Found the page and have a reference on it.
1326 	 */
1327 	mark_page_accessed(page);
1328 	if (type)
1329 		*type = majmin;
1330 	return page;
1331 
1332 outside_data_content:
1333 	/*
1334 	 * An external ptracer can access pages that normally aren't
1335 	 * accessible..
1336 	 */
1337 	if (area->vm_mm == current->mm)
1338 		return NULL;
1339 	/* Fall through to the non-read-ahead case */
1340 no_cached_page:
1341 	/*
1342 	 * We're only likely to ever get here if MADV_RANDOM is in
1343 	 * effect.
1344 	 */
1345 	error = page_cache_read(file, pgoff);
1346 	grab_swap_token();
1347 
1348 	/*
1349 	 * The page we want has now been added to the page cache.
1350 	 * In the unlikely event that someone removed it in the
1351 	 * meantime, we'll just come back here and read it again.
1352 	 */
1353 	if (error >= 0)
1354 		goto retry_find;
1355 
1356 	/*
1357 	 * An error return from page_cache_read can result if the
1358 	 * system is low on memory, or a problem occurs while trying
1359 	 * to schedule I/O.
1360 	 */
1361 	if (error == -ENOMEM)
1362 		return NOPAGE_OOM;
1363 	return NULL;
1364 
1365 page_not_uptodate:
1366 	if (!did_readaround) {
1367 		majmin = VM_FAULT_MAJOR;
1368 		inc_page_state(pgmajfault);
1369 	}
1370 	lock_page(page);
1371 
1372 	/* Did it get unhashed while we waited for it? */
1373 	if (!page->mapping) {
1374 		unlock_page(page);
1375 		page_cache_release(page);
1376 		goto retry_all;
1377 	}
1378 
1379 	/* Did somebody else get it up-to-date? */
1380 	if (PageUptodate(page)) {
1381 		unlock_page(page);
1382 		goto success;
1383 	}
1384 
1385 	error = mapping->a_ops->readpage(file, page);
1386 	if (!error) {
1387 		wait_on_page_locked(page);
1388 		if (PageUptodate(page))
1389 			goto success;
1390 	} else if (error == AOP_TRUNCATED_PAGE) {
1391 		page_cache_release(page);
1392 		goto retry_find;
1393 	}
1394 
1395 	/*
1396 	 * Umm, take care of errors if the page isn't up-to-date.
1397 	 * Try to re-read it _once_. We do this synchronously,
1398 	 * because there really aren't any performance issues here
1399 	 * and we need to check for errors.
1400 	 */
1401 	lock_page(page);
1402 
1403 	/* Somebody truncated the page on us? */
1404 	if (!page->mapping) {
1405 		unlock_page(page);
1406 		page_cache_release(page);
1407 		goto retry_all;
1408 	}
1409 
1410 	/* Somebody else successfully read it in? */
1411 	if (PageUptodate(page)) {
1412 		unlock_page(page);
1413 		goto success;
1414 	}
1415 	ClearPageError(page);
1416 	error = mapping->a_ops->readpage(file, page);
1417 	if (!error) {
1418 		wait_on_page_locked(page);
1419 		if (PageUptodate(page))
1420 			goto success;
1421 	} else if (error == AOP_TRUNCATED_PAGE) {
1422 		page_cache_release(page);
1423 		goto retry_find;
1424 	}
1425 
1426 	/*
1427 	 * Things didn't work out. Return zero to tell the
1428 	 * mm layer so, possibly freeing the page cache page first.
1429 	 */
1430 	page_cache_release(page);
1431 	return NULL;
1432 }
1433 
1434 EXPORT_SYMBOL(filemap_nopage);
1435 
1436 static struct page * filemap_getpage(struct file *file, unsigned long pgoff,
1437 					int nonblock)
1438 {
1439 	struct address_space *mapping = file->f_mapping;
1440 	struct page *page;
1441 	int error;
1442 
1443 	/*
1444 	 * Do we have something in the page cache already?
1445 	 */
1446 retry_find:
1447 	page = find_get_page(mapping, pgoff);
1448 	if (!page) {
1449 		if (nonblock)
1450 			return NULL;
1451 		goto no_cached_page;
1452 	}
1453 
1454 	/*
1455 	 * Ok, found a page in the page cache, now we need to check
1456 	 * that it's up-to-date.
1457 	 */
1458 	if (!PageUptodate(page)) {
1459 		if (nonblock) {
1460 			page_cache_release(page);
1461 			return NULL;
1462 		}
1463 		goto page_not_uptodate;
1464 	}
1465 
1466 success:
1467 	/*
1468 	 * Found the page and have a reference on it.
1469 	 */
1470 	mark_page_accessed(page);
1471 	return page;
1472 
1473 no_cached_page:
1474 	error = page_cache_read(file, pgoff);
1475 
1476 	/*
1477 	 * The page we want has now been added to the page cache.
1478 	 * In the unlikely event that someone removed it in the
1479 	 * meantime, we'll just come back here and read it again.
1480 	 */
1481 	if (error >= 0)
1482 		goto retry_find;
1483 
1484 	/*
1485 	 * An error return from page_cache_read can result if the
1486 	 * system is low on memory, or a problem occurs while trying
1487 	 * to schedule I/O.
1488 	 */
1489 	return NULL;
1490 
1491 page_not_uptodate:
1492 	lock_page(page);
1493 
1494 	/* Did it get unhashed while we waited for it? */
1495 	if (!page->mapping) {
1496 		unlock_page(page);
1497 		goto err;
1498 	}
1499 
1500 	/* Did somebody else get it up-to-date? */
1501 	if (PageUptodate(page)) {
1502 		unlock_page(page);
1503 		goto success;
1504 	}
1505 
1506 	error = mapping->a_ops->readpage(file, page);
1507 	if (!error) {
1508 		wait_on_page_locked(page);
1509 		if (PageUptodate(page))
1510 			goto success;
1511 	} else if (error == AOP_TRUNCATED_PAGE) {
1512 		page_cache_release(page);
1513 		goto retry_find;
1514 	}
1515 
1516 	/*
1517 	 * Umm, take care of errors if the page isn't up-to-date.
1518 	 * Try to re-read it _once_. We do this synchronously,
1519 	 * because there really aren't any performance issues here
1520 	 * and we need to check for errors.
1521 	 */
1522 	lock_page(page);
1523 
1524 	/* Somebody truncated the page on us? */
1525 	if (!page->mapping) {
1526 		unlock_page(page);
1527 		goto err;
1528 	}
1529 	/* Somebody else successfully read it in? */
1530 	if (PageUptodate(page)) {
1531 		unlock_page(page);
1532 		goto success;
1533 	}
1534 
1535 	ClearPageError(page);
1536 	error = mapping->a_ops->readpage(file, page);
1537 	if (!error) {
1538 		wait_on_page_locked(page);
1539 		if (PageUptodate(page))
1540 			goto success;
1541 	} else if (error == AOP_TRUNCATED_PAGE) {
1542 		page_cache_release(page);
1543 		goto retry_find;
1544 	}
1545 
1546 	/*
1547 	 * Things didn't work out. Return zero to tell the
1548 	 * mm layer so, possibly freeing the page cache page first.
1549 	 */
1550 err:
1551 	page_cache_release(page);
1552 
1553 	return NULL;
1554 }
1555 
1556 int filemap_populate(struct vm_area_struct *vma, unsigned long addr,
1557 		unsigned long len, pgprot_t prot, unsigned long pgoff,
1558 		int nonblock)
1559 {
1560 	struct file *file = vma->vm_file;
1561 	struct address_space *mapping = file->f_mapping;
1562 	struct inode *inode = mapping->host;
1563 	unsigned long size;
1564 	struct mm_struct *mm = vma->vm_mm;
1565 	struct page *page;
1566 	int err;
1567 
1568 	if (!nonblock)
1569 		force_page_cache_readahead(mapping, vma->vm_file,
1570 					pgoff, len >> PAGE_CACHE_SHIFT);
1571 
1572 repeat:
1573 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1574 	if (pgoff + (len >> PAGE_CACHE_SHIFT) > size)
1575 		return -EINVAL;
1576 
1577 	page = filemap_getpage(file, pgoff, nonblock);
1578 
1579 	/* XXX: This is wrong, a filesystem I/O error may have happened. Fix that as
1580 	 * done in shmem_populate calling shmem_getpage */
1581 	if (!page && !nonblock)
1582 		return -ENOMEM;
1583 
1584 	if (page) {
1585 		err = install_page(mm, vma, addr, page, prot);
1586 		if (err) {
1587 			page_cache_release(page);
1588 			return err;
1589 		}
1590 	} else if (vma->vm_flags & VM_NONLINEAR) {
1591 		/* No page was found just because we can't read it in now (being
1592 		 * here implies nonblock != 0), but the page may exist, so set
1593 		 * the PTE to fault it in later. */
1594 		err = install_file_pte(mm, vma, addr, pgoff, prot);
1595 		if (err)
1596 			return err;
1597 	}
1598 
1599 	len -= PAGE_SIZE;
1600 	addr += PAGE_SIZE;
1601 	pgoff++;
1602 	if (len)
1603 		goto repeat;
1604 
1605 	return 0;
1606 }
1607 EXPORT_SYMBOL(filemap_populate);
1608 
1609 struct vm_operations_struct generic_file_vm_ops = {
1610 	.nopage		= filemap_nopage,
1611 	.populate	= filemap_populate,
1612 };
1613 
1614 /* This is used for a general mmap of a disk file */
1615 
1616 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1617 {
1618 	struct address_space *mapping = file->f_mapping;
1619 
1620 	if (!mapping->a_ops->readpage)
1621 		return -ENOEXEC;
1622 	file_accessed(file);
1623 	vma->vm_ops = &generic_file_vm_ops;
1624 	return 0;
1625 }
1626 
1627 /*
1628  * This is for filesystems which do not implement ->writepage.
1629  */
1630 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1631 {
1632 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1633 		return -EINVAL;
1634 	return generic_file_mmap(file, vma);
1635 }
1636 #else
1637 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1638 {
1639 	return -ENOSYS;
1640 }
1641 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1642 {
1643 	return -ENOSYS;
1644 }
1645 #endif /* CONFIG_MMU */
1646 
1647 EXPORT_SYMBOL(generic_file_mmap);
1648 EXPORT_SYMBOL(generic_file_readonly_mmap);
1649 
1650 static inline struct page *__read_cache_page(struct address_space *mapping,
1651 				unsigned long index,
1652 				int (*filler)(void *,struct page*),
1653 				void *data)
1654 {
1655 	struct page *page, *cached_page = NULL;
1656 	int err;
1657 repeat:
1658 	page = find_get_page(mapping, index);
1659 	if (!page) {
1660 		if (!cached_page) {
1661 			cached_page = page_cache_alloc_cold(mapping);
1662 			if (!cached_page)
1663 				return ERR_PTR(-ENOMEM);
1664 		}
1665 		err = add_to_page_cache_lru(cached_page, mapping,
1666 					index, GFP_KERNEL);
1667 		if (err == -EEXIST)
1668 			goto repeat;
1669 		if (err < 0) {
1670 			/* Presumably ENOMEM for radix tree node */
1671 			page_cache_release(cached_page);
1672 			return ERR_PTR(err);
1673 		}
1674 		page = cached_page;
1675 		cached_page = NULL;
1676 		err = filler(data, page);
1677 		if (err < 0) {
1678 			page_cache_release(page);
1679 			page = ERR_PTR(err);
1680 		}
1681 	}
1682 	if (cached_page)
1683 		page_cache_release(cached_page);
1684 	return page;
1685 }
1686 
1687 /*
1688  * Read into the page cache. If a page already exists,
1689  * and PageUptodate() is not set, try to fill the page.
1690  */
1691 struct page *read_cache_page(struct address_space *mapping,
1692 				unsigned long index,
1693 				int (*filler)(void *,struct page*),
1694 				void *data)
1695 {
1696 	struct page *page;
1697 	int err;
1698 
1699 retry:
1700 	page = __read_cache_page(mapping, index, filler, data);
1701 	if (IS_ERR(page))
1702 		goto out;
1703 	mark_page_accessed(page);
1704 	if (PageUptodate(page))
1705 		goto out;
1706 
1707 	lock_page(page);
1708 	if (!page->mapping) {
1709 		unlock_page(page);
1710 		page_cache_release(page);
1711 		goto retry;
1712 	}
1713 	if (PageUptodate(page)) {
1714 		unlock_page(page);
1715 		goto out;
1716 	}
1717 	err = filler(data, page);
1718 	if (err < 0) {
1719 		page_cache_release(page);
1720 		page = ERR_PTR(err);
1721 	}
1722  out:
1723 	return page;
1724 }
1725 
1726 EXPORT_SYMBOL(read_cache_page);
1727 
1728 /*
1729  * If the page was newly created, increment its refcount and add it to the
1730  * caller's lru-buffering pagevec.  This function is specifically for
1731  * generic_file_write().
1732  */
1733 static inline struct page *
1734 __grab_cache_page(struct address_space *mapping, unsigned long index,
1735 			struct page **cached_page, struct pagevec *lru_pvec)
1736 {
1737 	int err;
1738 	struct page *page;
1739 repeat:
1740 	page = find_lock_page(mapping, index);
1741 	if (!page) {
1742 		if (!*cached_page) {
1743 			*cached_page = page_cache_alloc(mapping);
1744 			if (!*cached_page)
1745 				return NULL;
1746 		}
1747 		err = add_to_page_cache(*cached_page, mapping,
1748 					index, GFP_KERNEL);
1749 		if (err == -EEXIST)
1750 			goto repeat;
1751 		if (err == 0) {
1752 			page = *cached_page;
1753 			page_cache_get(page);
1754 			if (!pagevec_add(lru_pvec, page))
1755 				__pagevec_lru_add(lru_pvec);
1756 			*cached_page = NULL;
1757 		}
1758 	}
1759 	return page;
1760 }
1761 
1762 /*
1763  * The logic we want is
1764  *
1765  *	if suid or (sgid and xgrp)
1766  *		remove privs
1767  */
1768 int remove_suid(struct dentry *dentry)
1769 {
1770 	mode_t mode = dentry->d_inode->i_mode;
1771 	int kill = 0;
1772 	int result = 0;
1773 
1774 	/* suid always must be killed */
1775 	if (unlikely(mode & S_ISUID))
1776 		kill = ATTR_KILL_SUID;
1777 
1778 	/*
1779 	 * sgid without any exec bits is just a mandatory locking mark; leave
1780 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1781 	 */
1782 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1783 		kill |= ATTR_KILL_SGID;
1784 
1785 	if (unlikely(kill && !capable(CAP_FSETID))) {
1786 		struct iattr newattrs;
1787 
1788 		newattrs.ia_valid = ATTR_FORCE | kill;
1789 		result = notify_change(dentry, &newattrs);
1790 	}
1791 	return result;
1792 }
1793 EXPORT_SYMBOL(remove_suid);
1794 
1795 size_t
1796 __filemap_copy_from_user_iovec(char *vaddr,
1797 			const struct iovec *iov, size_t base, size_t bytes)
1798 {
1799 	size_t copied = 0, left = 0;
1800 
1801 	while (bytes) {
1802 		char __user *buf = iov->iov_base + base;
1803 		int copy = min(bytes, iov->iov_len - base);
1804 
1805 		base = 0;
1806 		left = __copy_from_user_inatomic(vaddr, buf, copy);
1807 		copied += copy;
1808 		bytes -= copy;
1809 		vaddr += copy;
1810 		iov++;
1811 
1812 		if (unlikely(left)) {
1813 			/* zero the rest of the target like __copy_from_user */
1814 			if (bytes)
1815 				memset(vaddr, 0, bytes);
1816 			break;
1817 		}
1818 	}
1819 	return copied - left;
1820 }
1821 
1822 /*
1823  * Performs necessary checks before doing a write
1824  *
1825  * Can adjust writing position aor amount of bytes to write.
1826  * Returns appropriate error code that caller should return or
1827  * zero in case that write should be allowed.
1828  */
1829 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1830 {
1831 	struct inode *inode = file->f_mapping->host;
1832 	unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1833 
1834         if (unlikely(*pos < 0))
1835                 return -EINVAL;
1836 
1837 	if (!isblk) {
1838 		/* FIXME: this is for backwards compatibility with 2.4 */
1839 		if (file->f_flags & O_APPEND)
1840                         *pos = i_size_read(inode);
1841 
1842 		if (limit != RLIM_INFINITY) {
1843 			if (*pos >= limit) {
1844 				send_sig(SIGXFSZ, current, 0);
1845 				return -EFBIG;
1846 			}
1847 			if (*count > limit - (typeof(limit))*pos) {
1848 				*count = limit - (typeof(limit))*pos;
1849 			}
1850 		}
1851 	}
1852 
1853 	/*
1854 	 * LFS rule
1855 	 */
1856 	if (unlikely(*pos + *count > MAX_NON_LFS &&
1857 				!(file->f_flags & O_LARGEFILE))) {
1858 		if (*pos >= MAX_NON_LFS) {
1859 			send_sig(SIGXFSZ, current, 0);
1860 			return -EFBIG;
1861 		}
1862 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1863 			*count = MAX_NON_LFS - (unsigned long)*pos;
1864 		}
1865 	}
1866 
1867 	/*
1868 	 * Are we about to exceed the fs block limit ?
1869 	 *
1870 	 * If we have written data it becomes a short write.  If we have
1871 	 * exceeded without writing data we send a signal and return EFBIG.
1872 	 * Linus frestrict idea will clean these up nicely..
1873 	 */
1874 	if (likely(!isblk)) {
1875 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1876 			if (*count || *pos > inode->i_sb->s_maxbytes) {
1877 				send_sig(SIGXFSZ, current, 0);
1878 				return -EFBIG;
1879 			}
1880 			/* zero-length writes at ->s_maxbytes are OK */
1881 		}
1882 
1883 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1884 			*count = inode->i_sb->s_maxbytes - *pos;
1885 	} else {
1886 		loff_t isize;
1887 		if (bdev_read_only(I_BDEV(inode)))
1888 			return -EPERM;
1889 		isize = i_size_read(inode);
1890 		if (*pos >= isize) {
1891 			if (*count || *pos > isize)
1892 				return -ENOSPC;
1893 		}
1894 
1895 		if (*pos + *count > isize)
1896 			*count = isize - *pos;
1897 	}
1898 	return 0;
1899 }
1900 EXPORT_SYMBOL(generic_write_checks);
1901 
1902 ssize_t
1903 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1904 		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
1905 		size_t count, size_t ocount)
1906 {
1907 	struct file	*file = iocb->ki_filp;
1908 	struct address_space *mapping = file->f_mapping;
1909 	struct inode	*inode = mapping->host;
1910 	ssize_t		written;
1911 
1912 	if (count != ocount)
1913 		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
1914 
1915 	written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
1916 	if (written > 0) {
1917 		loff_t end = pos + written;
1918 		if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
1919 			i_size_write(inode,  end);
1920 			mark_inode_dirty(inode);
1921 		}
1922 		*ppos = end;
1923 	}
1924 
1925 	/*
1926 	 * Sync the fs metadata but not the minor inode changes and
1927 	 * of course not the data as we did direct DMA for the IO.
1928 	 * i_mutex is held, which protects generic_osync_inode() from
1929 	 * livelocking.
1930 	 */
1931 	if (written >= 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
1932 		int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
1933 		if (err < 0)
1934 			written = err;
1935 	}
1936 	if (written == count && !is_sync_kiocb(iocb))
1937 		written = -EIOCBQUEUED;
1938 	return written;
1939 }
1940 EXPORT_SYMBOL(generic_file_direct_write);
1941 
1942 ssize_t
1943 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
1944 		unsigned long nr_segs, loff_t pos, loff_t *ppos,
1945 		size_t count, ssize_t written)
1946 {
1947 	struct file *file = iocb->ki_filp;
1948 	struct address_space * mapping = file->f_mapping;
1949 	struct address_space_operations *a_ops = mapping->a_ops;
1950 	struct inode 	*inode = mapping->host;
1951 	long		status = 0;
1952 	struct page	*page;
1953 	struct page	*cached_page = NULL;
1954 	size_t		bytes;
1955 	struct pagevec	lru_pvec;
1956 	const struct iovec *cur_iov = iov; /* current iovec */
1957 	size_t		iov_base = 0;	   /* offset in the current iovec */
1958 	char __user	*buf;
1959 
1960 	pagevec_init(&lru_pvec, 0);
1961 
1962 	/*
1963 	 * handle partial DIO write.  Adjust cur_iov if needed.
1964 	 */
1965 	if (likely(nr_segs == 1))
1966 		buf = iov->iov_base + written;
1967 	else {
1968 		filemap_set_next_iovec(&cur_iov, &iov_base, written);
1969 		buf = cur_iov->iov_base + iov_base;
1970 	}
1971 
1972 	do {
1973 		unsigned long index;
1974 		unsigned long offset;
1975 		unsigned long maxlen;
1976 		size_t copied;
1977 
1978 		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1979 		index = pos >> PAGE_CACHE_SHIFT;
1980 		bytes = PAGE_CACHE_SIZE - offset;
1981 		if (bytes > count)
1982 			bytes = count;
1983 
1984 		/*
1985 		 * Bring in the user page that we will copy from _first_.
1986 		 * Otherwise there's a nasty deadlock on copying from the
1987 		 * same page as we're writing to, without it being marked
1988 		 * up-to-date.
1989 		 */
1990 		maxlen = cur_iov->iov_len - iov_base;
1991 		if (maxlen > bytes)
1992 			maxlen = bytes;
1993 		fault_in_pages_readable(buf, maxlen);
1994 
1995 		page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec);
1996 		if (!page) {
1997 			status = -ENOMEM;
1998 			break;
1999 		}
2000 
2001 		status = a_ops->prepare_write(file, page, offset, offset+bytes);
2002 		if (unlikely(status)) {
2003 			loff_t isize = i_size_read(inode);
2004 
2005 			if (status != AOP_TRUNCATED_PAGE)
2006 				unlock_page(page);
2007 			page_cache_release(page);
2008 			if (status == AOP_TRUNCATED_PAGE)
2009 				continue;
2010 			/*
2011 			 * prepare_write() may have instantiated a few blocks
2012 			 * outside i_size.  Trim these off again.
2013 			 */
2014 			if (pos + bytes > isize)
2015 				vmtruncate(inode, isize);
2016 			break;
2017 		}
2018 		if (likely(nr_segs == 1))
2019 			copied = filemap_copy_from_user(page, offset,
2020 							buf, bytes);
2021 		else
2022 			copied = filemap_copy_from_user_iovec(page, offset,
2023 						cur_iov, iov_base, bytes);
2024 		flush_dcache_page(page);
2025 		status = a_ops->commit_write(file, page, offset, offset+bytes);
2026 		if (status == AOP_TRUNCATED_PAGE) {
2027 			page_cache_release(page);
2028 			continue;
2029 		}
2030 		if (likely(copied > 0)) {
2031 			if (!status)
2032 				status = copied;
2033 
2034 			if (status >= 0) {
2035 				written += status;
2036 				count -= status;
2037 				pos += status;
2038 				buf += status;
2039 				if (unlikely(nr_segs > 1)) {
2040 					filemap_set_next_iovec(&cur_iov,
2041 							&iov_base, status);
2042 					if (count)
2043 						buf = cur_iov->iov_base +
2044 							iov_base;
2045 				} else {
2046 					iov_base += status;
2047 				}
2048 			}
2049 		}
2050 		if (unlikely(copied != bytes))
2051 			if (status >= 0)
2052 				status = -EFAULT;
2053 		unlock_page(page);
2054 		mark_page_accessed(page);
2055 		page_cache_release(page);
2056 		if (status < 0)
2057 			break;
2058 		balance_dirty_pages_ratelimited(mapping);
2059 		cond_resched();
2060 	} while (count);
2061 	*ppos = pos;
2062 
2063 	if (cached_page)
2064 		page_cache_release(cached_page);
2065 
2066 	/*
2067 	 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
2068 	 */
2069 	if (likely(status >= 0)) {
2070 		if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2071 			if (!a_ops->writepage || !is_sync_kiocb(iocb))
2072 				status = generic_osync_inode(inode, mapping,
2073 						OSYNC_METADATA|OSYNC_DATA);
2074 		}
2075   	}
2076 
2077 	/*
2078 	 * If we get here for O_DIRECT writes then we must have fallen through
2079 	 * to buffered writes (block instantiation inside i_size).  So we sync
2080 	 * the file data here, to try to honour O_DIRECT expectations.
2081 	 */
2082 	if (unlikely(file->f_flags & O_DIRECT) && written)
2083 		status = filemap_write_and_wait(mapping);
2084 
2085 	pagevec_lru_add(&lru_pvec);
2086 	return written ? written : status;
2087 }
2088 EXPORT_SYMBOL(generic_file_buffered_write);
2089 
2090 static ssize_t
2091 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2092 				unsigned long nr_segs, loff_t *ppos)
2093 {
2094 	struct file *file = iocb->ki_filp;
2095 	struct address_space * mapping = file->f_mapping;
2096 	size_t ocount;		/* original count */
2097 	size_t count;		/* after file limit checks */
2098 	struct inode 	*inode = mapping->host;
2099 	unsigned long	seg;
2100 	loff_t		pos;
2101 	ssize_t		written;
2102 	ssize_t		err;
2103 
2104 	ocount = 0;
2105 	for (seg = 0; seg < nr_segs; seg++) {
2106 		const struct iovec *iv = &iov[seg];
2107 
2108 		/*
2109 		 * If any segment has a negative length, or the cumulative
2110 		 * length ever wraps negative then return -EINVAL.
2111 		 */
2112 		ocount += iv->iov_len;
2113 		if (unlikely((ssize_t)(ocount|iv->iov_len) < 0))
2114 			return -EINVAL;
2115 		if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len))
2116 			continue;
2117 		if (seg == 0)
2118 			return -EFAULT;
2119 		nr_segs = seg;
2120 		ocount -= iv->iov_len;	/* This segment is no good */
2121 		break;
2122 	}
2123 
2124 	count = ocount;
2125 	pos = *ppos;
2126 
2127 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2128 
2129 	/* We can write back this queue in page reclaim */
2130 	current->backing_dev_info = mapping->backing_dev_info;
2131 	written = 0;
2132 
2133 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2134 	if (err)
2135 		goto out;
2136 
2137 	if (count == 0)
2138 		goto out;
2139 
2140 	err = remove_suid(file->f_dentry);
2141 	if (err)
2142 		goto out;
2143 
2144 	file_update_time(file);
2145 
2146 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2147 	if (unlikely(file->f_flags & O_DIRECT)) {
2148 		written = generic_file_direct_write(iocb, iov,
2149 				&nr_segs, pos, ppos, count, ocount);
2150 		if (written < 0 || written == count)
2151 			goto out;
2152 		/*
2153 		 * direct-io write to a hole: fall through to buffered I/O
2154 		 * for completing the rest of the request.
2155 		 */
2156 		pos += written;
2157 		count -= written;
2158 	}
2159 
2160 	written = generic_file_buffered_write(iocb, iov, nr_segs,
2161 			pos, ppos, count, written);
2162 out:
2163 	current->backing_dev_info = NULL;
2164 	return written ? written : err;
2165 }
2166 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2167 
2168 ssize_t
2169 generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2170 				unsigned long nr_segs, loff_t *ppos)
2171 {
2172 	struct file *file = iocb->ki_filp;
2173 	struct address_space *mapping = file->f_mapping;
2174 	struct inode *inode = mapping->host;
2175 	ssize_t ret;
2176 	loff_t pos = *ppos;
2177 
2178 	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, ppos);
2179 
2180 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2181 		int err;
2182 
2183 		err = sync_page_range_nolock(inode, mapping, pos, ret);
2184 		if (err < 0)
2185 			ret = err;
2186 	}
2187 	return ret;
2188 }
2189 
2190 static ssize_t
2191 __generic_file_write_nolock(struct file *file, const struct iovec *iov,
2192 				unsigned long nr_segs, loff_t *ppos)
2193 {
2194 	struct kiocb kiocb;
2195 	ssize_t ret;
2196 
2197 	init_sync_kiocb(&kiocb, file);
2198 	ret = __generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2199 	if (ret == -EIOCBQUEUED)
2200 		ret = wait_on_sync_kiocb(&kiocb);
2201 	return ret;
2202 }
2203 
2204 ssize_t
2205 generic_file_write_nolock(struct file *file, const struct iovec *iov,
2206 				unsigned long nr_segs, loff_t *ppos)
2207 {
2208 	struct kiocb kiocb;
2209 	ssize_t ret;
2210 
2211 	init_sync_kiocb(&kiocb, file);
2212 	ret = generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2213 	if (-EIOCBQUEUED == ret)
2214 		ret = wait_on_sync_kiocb(&kiocb);
2215 	return ret;
2216 }
2217 EXPORT_SYMBOL(generic_file_write_nolock);
2218 
2219 ssize_t generic_file_aio_write(struct kiocb *iocb, const char __user *buf,
2220 			       size_t count, loff_t pos)
2221 {
2222 	struct file *file = iocb->ki_filp;
2223 	struct address_space *mapping = file->f_mapping;
2224 	struct inode *inode = mapping->host;
2225 	ssize_t ret;
2226 	struct iovec local_iov = { .iov_base = (void __user *)buf,
2227 					.iov_len = count };
2228 
2229 	BUG_ON(iocb->ki_pos != pos);
2230 
2231 	mutex_lock(&inode->i_mutex);
2232 	ret = __generic_file_aio_write_nolock(iocb, &local_iov, 1,
2233 						&iocb->ki_pos);
2234 	mutex_unlock(&inode->i_mutex);
2235 
2236 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2237 		ssize_t err;
2238 
2239 		err = sync_page_range(inode, mapping, pos, ret);
2240 		if (err < 0)
2241 			ret = err;
2242 	}
2243 	return ret;
2244 }
2245 EXPORT_SYMBOL(generic_file_aio_write);
2246 
2247 ssize_t generic_file_write(struct file *file, const char __user *buf,
2248 			   size_t count, loff_t *ppos)
2249 {
2250 	struct address_space *mapping = file->f_mapping;
2251 	struct inode *inode = mapping->host;
2252 	ssize_t	ret;
2253 	struct iovec local_iov = { .iov_base = (void __user *)buf,
2254 					.iov_len = count };
2255 
2256 	mutex_lock(&inode->i_mutex);
2257 	ret = __generic_file_write_nolock(file, &local_iov, 1, ppos);
2258 	mutex_unlock(&inode->i_mutex);
2259 
2260 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2261 		ssize_t err;
2262 
2263 		err = sync_page_range(inode, mapping, *ppos - ret, ret);
2264 		if (err < 0)
2265 			ret = err;
2266 	}
2267 	return ret;
2268 }
2269 EXPORT_SYMBOL(generic_file_write);
2270 
2271 ssize_t generic_file_readv(struct file *filp, const struct iovec *iov,
2272 			unsigned long nr_segs, loff_t *ppos)
2273 {
2274 	struct kiocb kiocb;
2275 	ssize_t ret;
2276 
2277 	init_sync_kiocb(&kiocb, filp);
2278 	ret = __generic_file_aio_read(&kiocb, iov, nr_segs, ppos);
2279 	if (-EIOCBQUEUED == ret)
2280 		ret = wait_on_sync_kiocb(&kiocb);
2281 	return ret;
2282 }
2283 EXPORT_SYMBOL(generic_file_readv);
2284 
2285 ssize_t generic_file_writev(struct file *file, const struct iovec *iov,
2286 			unsigned long nr_segs, loff_t *ppos)
2287 {
2288 	struct address_space *mapping = file->f_mapping;
2289 	struct inode *inode = mapping->host;
2290 	ssize_t ret;
2291 
2292 	mutex_lock(&inode->i_mutex);
2293 	ret = __generic_file_write_nolock(file, iov, nr_segs, ppos);
2294 	mutex_unlock(&inode->i_mutex);
2295 
2296 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2297 		int err;
2298 
2299 		err = sync_page_range(inode, mapping, *ppos - ret, ret);
2300 		if (err < 0)
2301 			ret = err;
2302 	}
2303 	return ret;
2304 }
2305 EXPORT_SYMBOL(generic_file_writev);
2306 
2307 /*
2308  * Called under i_mutex for writes to S_ISREG files.   Returns -EIO if something
2309  * went wrong during pagecache shootdown.
2310  */
2311 static ssize_t
2312 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2313 	loff_t offset, unsigned long nr_segs)
2314 {
2315 	struct file *file = iocb->ki_filp;
2316 	struct address_space *mapping = file->f_mapping;
2317 	ssize_t retval;
2318 	size_t write_len = 0;
2319 
2320 	/*
2321 	 * If it's a write, unmap all mmappings of the file up-front.  This
2322 	 * will cause any pte dirty bits to be propagated into the pageframes
2323 	 * for the subsequent filemap_write_and_wait().
2324 	 */
2325 	if (rw == WRITE) {
2326 		write_len = iov_length(iov, nr_segs);
2327 	       	if (mapping_mapped(mapping))
2328 			unmap_mapping_range(mapping, offset, write_len, 0);
2329 	}
2330 
2331 	retval = filemap_write_and_wait(mapping);
2332 	if (retval == 0) {
2333 		retval = mapping->a_ops->direct_IO(rw, iocb, iov,
2334 						offset, nr_segs);
2335 		if (rw == WRITE && mapping->nrpages) {
2336 			pgoff_t end = (offset + write_len - 1)
2337 						>> PAGE_CACHE_SHIFT;
2338 			int err = invalidate_inode_pages2_range(mapping,
2339 					offset >> PAGE_CACHE_SHIFT, end);
2340 			if (err)
2341 				retval = err;
2342 		}
2343 	}
2344 	return retval;
2345 }
2346