1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/filemap.c 4 * 5 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 7 8 /* 9 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differently, for example) 12 */ 13 #include <linux/export.h> 14 #include <linux/compiler.h> 15 #include <linux/dax.h> 16 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 19 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 22 #include <linux/mm.h> 23 #include <linux/swap.h> 24 #include <linux/swapops.h> 25 #include <linux/syscalls.h> 26 #include <linux/mman.h> 27 #include <linux/pagemap.h> 28 #include <linux/file.h> 29 #include <linux/uio.h> 30 #include <linux/error-injection.h> 31 #include <linux/hash.h> 32 #include <linux/writeback.h> 33 #include <linux/backing-dev.h> 34 #include <linux/pagevec.h> 35 #include <linux/security.h> 36 #include <linux/cpuset.h> 37 #include <linux/hugetlb.h> 38 #include <linux/memcontrol.h> 39 #include <linux/shmem_fs.h> 40 #include <linux/rmap.h> 41 #include <linux/delayacct.h> 42 #include <linux/psi.h> 43 #include <linux/ramfs.h> 44 #include <linux/page_idle.h> 45 #include <linux/migrate.h> 46 #include <linux/pipe_fs_i.h> 47 #include <linux/splice.h> 48 #include <asm/pgalloc.h> 49 #include <asm/tlbflush.h> 50 #include "internal.h" 51 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/filemap.h> 54 55 /* 56 * FIXME: remove all knowledge of the buffer layer from the core VM 57 */ 58 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 59 60 #include <asm/mman.h> 61 62 #include "swap.h" 63 64 /* 65 * Shared mappings implemented 30.11.1994. It's not fully working yet, 66 * though. 67 * 68 * Shared mappings now work. 15.8.1995 Bruno. 69 * 70 * finished 'unifying' the page and buffer cache and SMP-threaded the 71 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 72 * 73 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 74 */ 75 76 /* 77 * Lock ordering: 78 * 79 * ->i_mmap_rwsem (truncate_pagecache) 80 * ->private_lock (__free_pte->block_dirty_folio) 81 * ->swap_lock (exclusive_swap_page, others) 82 * ->i_pages lock 83 * 84 * ->i_rwsem 85 * ->invalidate_lock (acquired by fs in truncate path) 86 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 87 * 88 * ->mmap_lock 89 * ->i_mmap_rwsem 90 * ->page_table_lock or pte_lock (various, mainly in memory.c) 91 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 92 * 93 * ->mmap_lock 94 * ->invalidate_lock (filemap_fault) 95 * ->lock_page (filemap_fault, access_process_vm) 96 * 97 * ->i_rwsem (generic_perform_write) 98 * ->mmap_lock (fault_in_readable->do_page_fault) 99 * 100 * bdi->wb.list_lock 101 * sb_lock (fs/fs-writeback.c) 102 * ->i_pages lock (__sync_single_inode) 103 * 104 * ->i_mmap_rwsem 105 * ->anon_vma.lock (vma_merge) 106 * 107 * ->anon_vma.lock 108 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 109 * 110 * ->page_table_lock or pte_lock 111 * ->swap_lock (try_to_unmap_one) 112 * ->private_lock (try_to_unmap_one) 113 * ->i_pages lock (try_to_unmap_one) 114 * ->lruvec->lru_lock (follow_page->mark_page_accessed) 115 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page) 116 * ->private_lock (page_remove_rmap->set_page_dirty) 117 * ->i_pages lock (page_remove_rmap->set_page_dirty) 118 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 119 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 120 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) 121 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 122 * ->inode->i_lock (zap_pte_range->set_page_dirty) 123 * ->private_lock (zap_pte_range->block_dirty_folio) 124 * 125 * ->i_mmap_rwsem 126 * ->tasklist_lock (memory_failure, collect_procs_ao) 127 */ 128 129 static void page_cache_delete(struct address_space *mapping, 130 struct folio *folio, void *shadow) 131 { 132 XA_STATE(xas, &mapping->i_pages, folio->index); 133 long nr = 1; 134 135 mapping_set_update(&xas, mapping); 136 137 /* hugetlb pages are represented by a single entry in the xarray */ 138 if (!folio_test_hugetlb(folio)) { 139 xas_set_order(&xas, folio->index, folio_order(folio)); 140 nr = folio_nr_pages(folio); 141 } 142 143 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 144 145 xas_store(&xas, shadow); 146 xas_init_marks(&xas); 147 148 folio->mapping = NULL; 149 /* Leave page->index set: truncation lookup relies upon it */ 150 mapping->nrpages -= nr; 151 } 152 153 static void filemap_unaccount_folio(struct address_space *mapping, 154 struct folio *folio) 155 { 156 long nr; 157 158 VM_BUG_ON_FOLIO(folio_mapped(folio), folio); 159 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) { 160 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 161 current->comm, folio_pfn(folio)); 162 dump_page(&folio->page, "still mapped when deleted"); 163 dump_stack(); 164 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 165 166 if (mapping_exiting(mapping) && !folio_test_large(folio)) { 167 int mapcount = page_mapcount(&folio->page); 168 169 if (folio_ref_count(folio) >= mapcount + 2) { 170 /* 171 * All vmas have already been torn down, so it's 172 * a good bet that actually the page is unmapped 173 * and we'd rather not leak it: if we're wrong, 174 * another bad page check should catch it later. 175 */ 176 page_mapcount_reset(&folio->page); 177 folio_ref_sub(folio, mapcount); 178 } 179 } 180 } 181 182 /* hugetlb folios do not participate in page cache accounting. */ 183 if (folio_test_hugetlb(folio)) 184 return; 185 186 nr = folio_nr_pages(folio); 187 188 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 189 if (folio_test_swapbacked(folio)) { 190 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 191 if (folio_test_pmd_mappable(folio)) 192 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr); 193 } else if (folio_test_pmd_mappable(folio)) { 194 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr); 195 filemap_nr_thps_dec(mapping); 196 } 197 198 /* 199 * At this point folio must be either written or cleaned by 200 * truncate. Dirty folio here signals a bug and loss of 201 * unwritten data - on ordinary filesystems. 202 * 203 * But it's harmless on in-memory filesystems like tmpfs; and can 204 * occur when a driver which did get_user_pages() sets page dirty 205 * before putting it, while the inode is being finally evicted. 206 * 207 * Below fixes dirty accounting after removing the folio entirely 208 * but leaves the dirty flag set: it has no effect for truncated 209 * folio and anyway will be cleared before returning folio to 210 * buddy allocator. 211 */ 212 if (WARN_ON_ONCE(folio_test_dirty(folio) && 213 mapping_can_writeback(mapping))) 214 folio_account_cleaned(folio, inode_to_wb(mapping->host)); 215 } 216 217 /* 218 * Delete a page from the page cache and free it. Caller has to make 219 * sure the page is locked and that nobody else uses it - or that usage 220 * is safe. The caller must hold the i_pages lock. 221 */ 222 void __filemap_remove_folio(struct folio *folio, void *shadow) 223 { 224 struct address_space *mapping = folio->mapping; 225 226 trace_mm_filemap_delete_from_page_cache(folio); 227 filemap_unaccount_folio(mapping, folio); 228 page_cache_delete(mapping, folio, shadow); 229 } 230 231 void filemap_free_folio(struct address_space *mapping, struct folio *folio) 232 { 233 void (*free_folio)(struct folio *); 234 int refs = 1; 235 236 free_folio = mapping->a_ops->free_folio; 237 if (free_folio) 238 free_folio(folio); 239 240 if (folio_test_large(folio) && !folio_test_hugetlb(folio)) 241 refs = folio_nr_pages(folio); 242 folio_put_refs(folio, refs); 243 } 244 245 /** 246 * filemap_remove_folio - Remove folio from page cache. 247 * @folio: The folio. 248 * 249 * This must be called only on folios that are locked and have been 250 * verified to be in the page cache. It will never put the folio into 251 * the free list because the caller has a reference on the page. 252 */ 253 void filemap_remove_folio(struct folio *folio) 254 { 255 struct address_space *mapping = folio->mapping; 256 257 BUG_ON(!folio_test_locked(folio)); 258 spin_lock(&mapping->host->i_lock); 259 xa_lock_irq(&mapping->i_pages); 260 __filemap_remove_folio(folio, NULL); 261 xa_unlock_irq(&mapping->i_pages); 262 if (mapping_shrinkable(mapping)) 263 inode_add_lru(mapping->host); 264 spin_unlock(&mapping->host->i_lock); 265 266 filemap_free_folio(mapping, folio); 267 } 268 269 /* 270 * page_cache_delete_batch - delete several folios from page cache 271 * @mapping: the mapping to which folios belong 272 * @fbatch: batch of folios to delete 273 * 274 * The function walks over mapping->i_pages and removes folios passed in 275 * @fbatch from the mapping. The function expects @fbatch to be sorted 276 * by page index and is optimised for it to be dense. 277 * It tolerates holes in @fbatch (mapping entries at those indices are not 278 * modified). 279 * 280 * The function expects the i_pages lock to be held. 281 */ 282 static void page_cache_delete_batch(struct address_space *mapping, 283 struct folio_batch *fbatch) 284 { 285 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index); 286 long total_pages = 0; 287 int i = 0; 288 struct folio *folio; 289 290 mapping_set_update(&xas, mapping); 291 xas_for_each(&xas, folio, ULONG_MAX) { 292 if (i >= folio_batch_count(fbatch)) 293 break; 294 295 /* A swap/dax/shadow entry got inserted? Skip it. */ 296 if (xa_is_value(folio)) 297 continue; 298 /* 299 * A page got inserted in our range? Skip it. We have our 300 * pages locked so they are protected from being removed. 301 * If we see a page whose index is higher than ours, it 302 * means our page has been removed, which shouldn't be 303 * possible because we're holding the PageLock. 304 */ 305 if (folio != fbatch->folios[i]) { 306 VM_BUG_ON_FOLIO(folio->index > 307 fbatch->folios[i]->index, folio); 308 continue; 309 } 310 311 WARN_ON_ONCE(!folio_test_locked(folio)); 312 313 folio->mapping = NULL; 314 /* Leave folio->index set: truncation lookup relies on it */ 315 316 i++; 317 xas_store(&xas, NULL); 318 total_pages += folio_nr_pages(folio); 319 } 320 mapping->nrpages -= total_pages; 321 } 322 323 void delete_from_page_cache_batch(struct address_space *mapping, 324 struct folio_batch *fbatch) 325 { 326 int i; 327 328 if (!folio_batch_count(fbatch)) 329 return; 330 331 spin_lock(&mapping->host->i_lock); 332 xa_lock_irq(&mapping->i_pages); 333 for (i = 0; i < folio_batch_count(fbatch); i++) { 334 struct folio *folio = fbatch->folios[i]; 335 336 trace_mm_filemap_delete_from_page_cache(folio); 337 filemap_unaccount_folio(mapping, folio); 338 } 339 page_cache_delete_batch(mapping, fbatch); 340 xa_unlock_irq(&mapping->i_pages); 341 if (mapping_shrinkable(mapping)) 342 inode_add_lru(mapping->host); 343 spin_unlock(&mapping->host->i_lock); 344 345 for (i = 0; i < folio_batch_count(fbatch); i++) 346 filemap_free_folio(mapping, fbatch->folios[i]); 347 } 348 349 int filemap_check_errors(struct address_space *mapping) 350 { 351 int ret = 0; 352 /* Check for outstanding write errors */ 353 if (test_bit(AS_ENOSPC, &mapping->flags) && 354 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 355 ret = -ENOSPC; 356 if (test_bit(AS_EIO, &mapping->flags) && 357 test_and_clear_bit(AS_EIO, &mapping->flags)) 358 ret = -EIO; 359 return ret; 360 } 361 EXPORT_SYMBOL(filemap_check_errors); 362 363 static int filemap_check_and_keep_errors(struct address_space *mapping) 364 { 365 /* Check for outstanding write errors */ 366 if (test_bit(AS_EIO, &mapping->flags)) 367 return -EIO; 368 if (test_bit(AS_ENOSPC, &mapping->flags)) 369 return -ENOSPC; 370 return 0; 371 } 372 373 /** 374 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range 375 * @mapping: address space structure to write 376 * @wbc: the writeback_control controlling the writeout 377 * 378 * Call writepages on the mapping using the provided wbc to control the 379 * writeout. 380 * 381 * Return: %0 on success, negative error code otherwise. 382 */ 383 int filemap_fdatawrite_wbc(struct address_space *mapping, 384 struct writeback_control *wbc) 385 { 386 int ret; 387 388 if (!mapping_can_writeback(mapping) || 389 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 390 return 0; 391 392 wbc_attach_fdatawrite_inode(wbc, mapping->host); 393 ret = do_writepages(mapping, wbc); 394 wbc_detach_inode(wbc); 395 return ret; 396 } 397 EXPORT_SYMBOL(filemap_fdatawrite_wbc); 398 399 /** 400 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 401 * @mapping: address space structure to write 402 * @start: offset in bytes where the range starts 403 * @end: offset in bytes where the range ends (inclusive) 404 * @sync_mode: enable synchronous operation 405 * 406 * Start writeback against all of a mapping's dirty pages that lie 407 * within the byte offsets <start, end> inclusive. 408 * 409 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 410 * opposed to a regular memory cleansing writeback. The difference between 411 * these two operations is that if a dirty page/buffer is encountered, it must 412 * be waited upon, and not just skipped over. 413 * 414 * Return: %0 on success, negative error code otherwise. 415 */ 416 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 417 loff_t end, int sync_mode) 418 { 419 struct writeback_control wbc = { 420 .sync_mode = sync_mode, 421 .nr_to_write = LONG_MAX, 422 .range_start = start, 423 .range_end = end, 424 }; 425 426 return filemap_fdatawrite_wbc(mapping, &wbc); 427 } 428 429 static inline int __filemap_fdatawrite(struct address_space *mapping, 430 int sync_mode) 431 { 432 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 433 } 434 435 int filemap_fdatawrite(struct address_space *mapping) 436 { 437 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 438 } 439 EXPORT_SYMBOL(filemap_fdatawrite); 440 441 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 442 loff_t end) 443 { 444 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 445 } 446 EXPORT_SYMBOL(filemap_fdatawrite_range); 447 448 /** 449 * filemap_flush - mostly a non-blocking flush 450 * @mapping: target address_space 451 * 452 * This is a mostly non-blocking flush. Not suitable for data-integrity 453 * purposes - I/O may not be started against all dirty pages. 454 * 455 * Return: %0 on success, negative error code otherwise. 456 */ 457 int filemap_flush(struct address_space *mapping) 458 { 459 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 460 } 461 EXPORT_SYMBOL(filemap_flush); 462 463 /** 464 * filemap_range_has_page - check if a page exists in range. 465 * @mapping: address space within which to check 466 * @start_byte: offset in bytes where the range starts 467 * @end_byte: offset in bytes where the range ends (inclusive) 468 * 469 * Find at least one page in the range supplied, usually used to check if 470 * direct writing in this range will trigger a writeback. 471 * 472 * Return: %true if at least one page exists in the specified range, 473 * %false otherwise. 474 */ 475 bool filemap_range_has_page(struct address_space *mapping, 476 loff_t start_byte, loff_t end_byte) 477 { 478 struct folio *folio; 479 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 480 pgoff_t max = end_byte >> PAGE_SHIFT; 481 482 if (end_byte < start_byte) 483 return false; 484 485 rcu_read_lock(); 486 for (;;) { 487 folio = xas_find(&xas, max); 488 if (xas_retry(&xas, folio)) 489 continue; 490 /* Shadow entries don't count */ 491 if (xa_is_value(folio)) 492 continue; 493 /* 494 * We don't need to try to pin this page; we're about to 495 * release the RCU lock anyway. It is enough to know that 496 * there was a page here recently. 497 */ 498 break; 499 } 500 rcu_read_unlock(); 501 502 return folio != NULL; 503 } 504 EXPORT_SYMBOL(filemap_range_has_page); 505 506 static void __filemap_fdatawait_range(struct address_space *mapping, 507 loff_t start_byte, loff_t end_byte) 508 { 509 pgoff_t index = start_byte >> PAGE_SHIFT; 510 pgoff_t end = end_byte >> PAGE_SHIFT; 511 struct folio_batch fbatch; 512 unsigned nr_folios; 513 514 folio_batch_init(&fbatch); 515 516 while (index <= end) { 517 unsigned i; 518 519 nr_folios = filemap_get_folios_tag(mapping, &index, end, 520 PAGECACHE_TAG_WRITEBACK, &fbatch); 521 522 if (!nr_folios) 523 break; 524 525 for (i = 0; i < nr_folios; i++) { 526 struct folio *folio = fbatch.folios[i]; 527 528 folio_wait_writeback(folio); 529 folio_clear_error(folio); 530 } 531 folio_batch_release(&fbatch); 532 cond_resched(); 533 } 534 } 535 536 /** 537 * filemap_fdatawait_range - wait for writeback to complete 538 * @mapping: address space structure to wait for 539 * @start_byte: offset in bytes where the range starts 540 * @end_byte: offset in bytes where the range ends (inclusive) 541 * 542 * Walk the list of under-writeback pages of the given address space 543 * in the given range and wait for all of them. Check error status of 544 * the address space and return it. 545 * 546 * Since the error status of the address space is cleared by this function, 547 * callers are responsible for checking the return value and handling and/or 548 * reporting the error. 549 * 550 * Return: error status of the address space. 551 */ 552 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 553 loff_t end_byte) 554 { 555 __filemap_fdatawait_range(mapping, start_byte, end_byte); 556 return filemap_check_errors(mapping); 557 } 558 EXPORT_SYMBOL(filemap_fdatawait_range); 559 560 /** 561 * filemap_fdatawait_range_keep_errors - wait for writeback to complete 562 * @mapping: address space structure to wait for 563 * @start_byte: offset in bytes where the range starts 564 * @end_byte: offset in bytes where the range ends (inclusive) 565 * 566 * Walk the list of under-writeback pages of the given address space in the 567 * given range and wait for all of them. Unlike filemap_fdatawait_range(), 568 * this function does not clear error status of the address space. 569 * 570 * Use this function if callers don't handle errors themselves. Expected 571 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 572 * fsfreeze(8) 573 */ 574 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 575 loff_t start_byte, loff_t end_byte) 576 { 577 __filemap_fdatawait_range(mapping, start_byte, end_byte); 578 return filemap_check_and_keep_errors(mapping); 579 } 580 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); 581 582 /** 583 * file_fdatawait_range - wait for writeback to complete 584 * @file: file pointing to address space structure to wait for 585 * @start_byte: offset in bytes where the range starts 586 * @end_byte: offset in bytes where the range ends (inclusive) 587 * 588 * Walk the list of under-writeback pages of the address space that file 589 * refers to, in the given range and wait for all of them. Check error 590 * status of the address space vs. the file->f_wb_err cursor and return it. 591 * 592 * Since the error status of the file is advanced by this function, 593 * callers are responsible for checking the return value and handling and/or 594 * reporting the error. 595 * 596 * Return: error status of the address space vs. the file->f_wb_err cursor. 597 */ 598 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 599 { 600 struct address_space *mapping = file->f_mapping; 601 602 __filemap_fdatawait_range(mapping, start_byte, end_byte); 603 return file_check_and_advance_wb_err(file); 604 } 605 EXPORT_SYMBOL(file_fdatawait_range); 606 607 /** 608 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 609 * @mapping: address space structure to wait for 610 * 611 * Walk the list of under-writeback pages of the given address space 612 * and wait for all of them. Unlike filemap_fdatawait(), this function 613 * does not clear error status of the address space. 614 * 615 * Use this function if callers don't handle errors themselves. Expected 616 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 617 * fsfreeze(8) 618 * 619 * Return: error status of the address space. 620 */ 621 int filemap_fdatawait_keep_errors(struct address_space *mapping) 622 { 623 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 624 return filemap_check_and_keep_errors(mapping); 625 } 626 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 627 628 /* Returns true if writeback might be needed or already in progress. */ 629 static bool mapping_needs_writeback(struct address_space *mapping) 630 { 631 return mapping->nrpages; 632 } 633 634 bool filemap_range_has_writeback(struct address_space *mapping, 635 loff_t start_byte, loff_t end_byte) 636 { 637 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 638 pgoff_t max = end_byte >> PAGE_SHIFT; 639 struct folio *folio; 640 641 if (end_byte < start_byte) 642 return false; 643 644 rcu_read_lock(); 645 xas_for_each(&xas, folio, max) { 646 if (xas_retry(&xas, folio)) 647 continue; 648 if (xa_is_value(folio)) 649 continue; 650 if (folio_test_dirty(folio) || folio_test_locked(folio) || 651 folio_test_writeback(folio)) 652 break; 653 } 654 rcu_read_unlock(); 655 return folio != NULL; 656 } 657 EXPORT_SYMBOL_GPL(filemap_range_has_writeback); 658 659 /** 660 * filemap_write_and_wait_range - write out & wait on a file range 661 * @mapping: the address_space for the pages 662 * @lstart: offset in bytes where the range starts 663 * @lend: offset in bytes where the range ends (inclusive) 664 * 665 * Write out and wait upon file offsets lstart->lend, inclusive. 666 * 667 * Note that @lend is inclusive (describes the last byte to be written) so 668 * that this function can be used to write to the very end-of-file (end = -1). 669 * 670 * Return: error status of the address space. 671 */ 672 int filemap_write_and_wait_range(struct address_space *mapping, 673 loff_t lstart, loff_t lend) 674 { 675 int err = 0, err2; 676 677 if (lend < lstart) 678 return 0; 679 680 if (mapping_needs_writeback(mapping)) { 681 err = __filemap_fdatawrite_range(mapping, lstart, lend, 682 WB_SYNC_ALL); 683 /* 684 * Even if the above returned error, the pages may be 685 * written partially (e.g. -ENOSPC), so we wait for it. 686 * But the -EIO is special case, it may indicate the worst 687 * thing (e.g. bug) happened, so we avoid waiting for it. 688 */ 689 if (err != -EIO) 690 __filemap_fdatawait_range(mapping, lstart, lend); 691 } 692 err2 = filemap_check_errors(mapping); 693 if (!err) 694 err = err2; 695 return err; 696 } 697 EXPORT_SYMBOL(filemap_write_and_wait_range); 698 699 void __filemap_set_wb_err(struct address_space *mapping, int err) 700 { 701 errseq_t eseq = errseq_set(&mapping->wb_err, err); 702 703 trace_filemap_set_wb_err(mapping, eseq); 704 } 705 EXPORT_SYMBOL(__filemap_set_wb_err); 706 707 /** 708 * file_check_and_advance_wb_err - report wb error (if any) that was previously 709 * and advance wb_err to current one 710 * @file: struct file on which the error is being reported 711 * 712 * When userland calls fsync (or something like nfsd does the equivalent), we 713 * want to report any writeback errors that occurred since the last fsync (or 714 * since the file was opened if there haven't been any). 715 * 716 * Grab the wb_err from the mapping. If it matches what we have in the file, 717 * then just quickly return 0. The file is all caught up. 718 * 719 * If it doesn't match, then take the mapping value, set the "seen" flag in 720 * it and try to swap it into place. If it works, or another task beat us 721 * to it with the new value, then update the f_wb_err and return the error 722 * portion. The error at this point must be reported via proper channels 723 * (a'la fsync, or NFS COMMIT operation, etc.). 724 * 725 * While we handle mapping->wb_err with atomic operations, the f_wb_err 726 * value is protected by the f_lock since we must ensure that it reflects 727 * the latest value swapped in for this file descriptor. 728 * 729 * Return: %0 on success, negative error code otherwise. 730 */ 731 int file_check_and_advance_wb_err(struct file *file) 732 { 733 int err = 0; 734 errseq_t old = READ_ONCE(file->f_wb_err); 735 struct address_space *mapping = file->f_mapping; 736 737 /* Locklessly handle the common case where nothing has changed */ 738 if (errseq_check(&mapping->wb_err, old)) { 739 /* Something changed, must use slow path */ 740 spin_lock(&file->f_lock); 741 old = file->f_wb_err; 742 err = errseq_check_and_advance(&mapping->wb_err, 743 &file->f_wb_err); 744 trace_file_check_and_advance_wb_err(file, old); 745 spin_unlock(&file->f_lock); 746 } 747 748 /* 749 * We're mostly using this function as a drop in replacement for 750 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 751 * that the legacy code would have had on these flags. 752 */ 753 clear_bit(AS_EIO, &mapping->flags); 754 clear_bit(AS_ENOSPC, &mapping->flags); 755 return err; 756 } 757 EXPORT_SYMBOL(file_check_and_advance_wb_err); 758 759 /** 760 * file_write_and_wait_range - write out & wait on a file range 761 * @file: file pointing to address_space with pages 762 * @lstart: offset in bytes where the range starts 763 * @lend: offset in bytes where the range ends (inclusive) 764 * 765 * Write out and wait upon file offsets lstart->lend, inclusive. 766 * 767 * Note that @lend is inclusive (describes the last byte to be written) so 768 * that this function can be used to write to the very end-of-file (end = -1). 769 * 770 * After writing out and waiting on the data, we check and advance the 771 * f_wb_err cursor to the latest value, and return any errors detected there. 772 * 773 * Return: %0 on success, negative error code otherwise. 774 */ 775 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 776 { 777 int err = 0, err2; 778 struct address_space *mapping = file->f_mapping; 779 780 if (lend < lstart) 781 return 0; 782 783 if (mapping_needs_writeback(mapping)) { 784 err = __filemap_fdatawrite_range(mapping, lstart, lend, 785 WB_SYNC_ALL); 786 /* See comment of filemap_write_and_wait() */ 787 if (err != -EIO) 788 __filemap_fdatawait_range(mapping, lstart, lend); 789 } 790 err2 = file_check_and_advance_wb_err(file); 791 if (!err) 792 err = err2; 793 return err; 794 } 795 EXPORT_SYMBOL(file_write_and_wait_range); 796 797 /** 798 * replace_page_cache_folio - replace a pagecache folio with a new one 799 * @old: folio to be replaced 800 * @new: folio to replace with 801 * 802 * This function replaces a folio in the pagecache with a new one. On 803 * success it acquires the pagecache reference for the new folio and 804 * drops it for the old folio. Both the old and new folios must be 805 * locked. This function does not add the new folio to the LRU, the 806 * caller must do that. 807 * 808 * The remove + add is atomic. This function cannot fail. 809 */ 810 void replace_page_cache_folio(struct folio *old, struct folio *new) 811 { 812 struct address_space *mapping = old->mapping; 813 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio; 814 pgoff_t offset = old->index; 815 XA_STATE(xas, &mapping->i_pages, offset); 816 817 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 818 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 819 VM_BUG_ON_FOLIO(new->mapping, new); 820 821 folio_get(new); 822 new->mapping = mapping; 823 new->index = offset; 824 825 mem_cgroup_migrate(old, new); 826 827 xas_lock_irq(&xas); 828 xas_store(&xas, new); 829 830 old->mapping = NULL; 831 /* hugetlb pages do not participate in page cache accounting. */ 832 if (!folio_test_hugetlb(old)) 833 __lruvec_stat_sub_folio(old, NR_FILE_PAGES); 834 if (!folio_test_hugetlb(new)) 835 __lruvec_stat_add_folio(new, NR_FILE_PAGES); 836 if (folio_test_swapbacked(old)) 837 __lruvec_stat_sub_folio(old, NR_SHMEM); 838 if (folio_test_swapbacked(new)) 839 __lruvec_stat_add_folio(new, NR_SHMEM); 840 xas_unlock_irq(&xas); 841 if (free_folio) 842 free_folio(old); 843 folio_put(old); 844 } 845 EXPORT_SYMBOL_GPL(replace_page_cache_folio); 846 847 noinline int __filemap_add_folio(struct address_space *mapping, 848 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp) 849 { 850 XA_STATE(xas, &mapping->i_pages, index); 851 int huge = folio_test_hugetlb(folio); 852 bool charged = false; 853 long nr = 1; 854 855 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 856 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio); 857 mapping_set_update(&xas, mapping); 858 859 if (!huge) { 860 int error = mem_cgroup_charge(folio, NULL, gfp); 861 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio); 862 if (error) 863 return error; 864 charged = true; 865 xas_set_order(&xas, index, folio_order(folio)); 866 nr = folio_nr_pages(folio); 867 } 868 869 gfp &= GFP_RECLAIM_MASK; 870 folio_ref_add(folio, nr); 871 folio->mapping = mapping; 872 folio->index = xas.xa_index; 873 874 do { 875 unsigned int order = xa_get_order(xas.xa, xas.xa_index); 876 void *entry, *old = NULL; 877 878 if (order > folio_order(folio)) 879 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index), 880 order, gfp); 881 xas_lock_irq(&xas); 882 xas_for_each_conflict(&xas, entry) { 883 old = entry; 884 if (!xa_is_value(entry)) { 885 xas_set_err(&xas, -EEXIST); 886 goto unlock; 887 } 888 } 889 890 if (old) { 891 if (shadowp) 892 *shadowp = old; 893 /* entry may have been split before we acquired lock */ 894 order = xa_get_order(xas.xa, xas.xa_index); 895 if (order > folio_order(folio)) { 896 /* How to handle large swap entries? */ 897 BUG_ON(shmem_mapping(mapping)); 898 xas_split(&xas, old, order); 899 xas_reset(&xas); 900 } 901 } 902 903 xas_store(&xas, folio); 904 if (xas_error(&xas)) 905 goto unlock; 906 907 mapping->nrpages += nr; 908 909 /* hugetlb pages do not participate in page cache accounting */ 910 if (!huge) { 911 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 912 if (folio_test_pmd_mappable(folio)) 913 __lruvec_stat_mod_folio(folio, 914 NR_FILE_THPS, nr); 915 } 916 unlock: 917 xas_unlock_irq(&xas); 918 } while (xas_nomem(&xas, gfp)); 919 920 if (xas_error(&xas)) 921 goto error; 922 923 trace_mm_filemap_add_to_page_cache(folio); 924 return 0; 925 error: 926 if (charged) 927 mem_cgroup_uncharge(folio); 928 folio->mapping = NULL; 929 /* Leave page->index set: truncation relies upon it */ 930 folio_put_refs(folio, nr); 931 return xas_error(&xas); 932 } 933 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO); 934 935 int filemap_add_folio(struct address_space *mapping, struct folio *folio, 936 pgoff_t index, gfp_t gfp) 937 { 938 void *shadow = NULL; 939 int ret; 940 941 __folio_set_locked(folio); 942 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow); 943 if (unlikely(ret)) 944 __folio_clear_locked(folio); 945 else { 946 /* 947 * The folio might have been evicted from cache only 948 * recently, in which case it should be activated like 949 * any other repeatedly accessed folio. 950 * The exception is folios getting rewritten; evicting other 951 * data from the working set, only to cache data that will 952 * get overwritten with something else, is a waste of memory. 953 */ 954 WARN_ON_ONCE(folio_test_active(folio)); 955 if (!(gfp & __GFP_WRITE) && shadow) 956 workingset_refault(folio, shadow); 957 folio_add_lru(folio); 958 } 959 return ret; 960 } 961 EXPORT_SYMBOL_GPL(filemap_add_folio); 962 963 #ifdef CONFIG_NUMA 964 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order) 965 { 966 int n; 967 struct folio *folio; 968 969 if (cpuset_do_page_mem_spread()) { 970 unsigned int cpuset_mems_cookie; 971 do { 972 cpuset_mems_cookie = read_mems_allowed_begin(); 973 n = cpuset_mem_spread_node(); 974 folio = __folio_alloc_node(gfp, order, n); 975 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie)); 976 977 return folio; 978 } 979 return folio_alloc(gfp, order); 980 } 981 EXPORT_SYMBOL(filemap_alloc_folio); 982 #endif 983 984 /* 985 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings 986 * 987 * Lock exclusively invalidate_lock of any passed mapping that is not NULL. 988 * 989 * @mapping1: the first mapping to lock 990 * @mapping2: the second mapping to lock 991 */ 992 void filemap_invalidate_lock_two(struct address_space *mapping1, 993 struct address_space *mapping2) 994 { 995 if (mapping1 > mapping2) 996 swap(mapping1, mapping2); 997 if (mapping1) 998 down_write(&mapping1->invalidate_lock); 999 if (mapping2 && mapping1 != mapping2) 1000 down_write_nested(&mapping2->invalidate_lock, 1); 1001 } 1002 EXPORT_SYMBOL(filemap_invalidate_lock_two); 1003 1004 /* 1005 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings 1006 * 1007 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL. 1008 * 1009 * @mapping1: the first mapping to unlock 1010 * @mapping2: the second mapping to unlock 1011 */ 1012 void filemap_invalidate_unlock_two(struct address_space *mapping1, 1013 struct address_space *mapping2) 1014 { 1015 if (mapping1) 1016 up_write(&mapping1->invalidate_lock); 1017 if (mapping2 && mapping1 != mapping2) 1018 up_write(&mapping2->invalidate_lock); 1019 } 1020 EXPORT_SYMBOL(filemap_invalidate_unlock_two); 1021 1022 /* 1023 * In order to wait for pages to become available there must be 1024 * waitqueues associated with pages. By using a hash table of 1025 * waitqueues where the bucket discipline is to maintain all 1026 * waiters on the same queue and wake all when any of the pages 1027 * become available, and for the woken contexts to check to be 1028 * sure the appropriate page became available, this saves space 1029 * at a cost of "thundering herd" phenomena during rare hash 1030 * collisions. 1031 */ 1032 #define PAGE_WAIT_TABLE_BITS 8 1033 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 1034 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 1035 1036 static wait_queue_head_t *folio_waitqueue(struct folio *folio) 1037 { 1038 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)]; 1039 } 1040 1041 void __init pagecache_init(void) 1042 { 1043 int i; 1044 1045 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 1046 init_waitqueue_head(&folio_wait_table[i]); 1047 1048 page_writeback_init(); 1049 } 1050 1051 /* 1052 * The page wait code treats the "wait->flags" somewhat unusually, because 1053 * we have multiple different kinds of waits, not just the usual "exclusive" 1054 * one. 1055 * 1056 * We have: 1057 * 1058 * (a) no special bits set: 1059 * 1060 * We're just waiting for the bit to be released, and when a waker 1061 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up, 1062 * and remove it from the wait queue. 1063 * 1064 * Simple and straightforward. 1065 * 1066 * (b) WQ_FLAG_EXCLUSIVE: 1067 * 1068 * The waiter is waiting to get the lock, and only one waiter should 1069 * be woken up to avoid any thundering herd behavior. We'll set the 1070 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue. 1071 * 1072 * This is the traditional exclusive wait. 1073 * 1074 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM: 1075 * 1076 * The waiter is waiting to get the bit, and additionally wants the 1077 * lock to be transferred to it for fair lock behavior. If the lock 1078 * cannot be taken, we stop walking the wait queue without waking 1079 * the waiter. 1080 * 1081 * This is the "fair lock handoff" case, and in addition to setting 1082 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see 1083 * that it now has the lock. 1084 */ 1085 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 1086 { 1087 unsigned int flags; 1088 struct wait_page_key *key = arg; 1089 struct wait_page_queue *wait_page 1090 = container_of(wait, struct wait_page_queue, wait); 1091 1092 if (!wake_page_match(wait_page, key)) 1093 return 0; 1094 1095 /* 1096 * If it's a lock handoff wait, we get the bit for it, and 1097 * stop walking (and do not wake it up) if we can't. 1098 */ 1099 flags = wait->flags; 1100 if (flags & WQ_FLAG_EXCLUSIVE) { 1101 if (test_bit(key->bit_nr, &key->folio->flags)) 1102 return -1; 1103 if (flags & WQ_FLAG_CUSTOM) { 1104 if (test_and_set_bit(key->bit_nr, &key->folio->flags)) 1105 return -1; 1106 flags |= WQ_FLAG_DONE; 1107 } 1108 } 1109 1110 /* 1111 * We are holding the wait-queue lock, but the waiter that 1112 * is waiting for this will be checking the flags without 1113 * any locking. 1114 * 1115 * So update the flags atomically, and wake up the waiter 1116 * afterwards to avoid any races. This store-release pairs 1117 * with the load-acquire in folio_wait_bit_common(). 1118 */ 1119 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN); 1120 wake_up_state(wait->private, mode); 1121 1122 /* 1123 * Ok, we have successfully done what we're waiting for, 1124 * and we can unconditionally remove the wait entry. 1125 * 1126 * Note that this pairs with the "finish_wait()" in the 1127 * waiter, and has to be the absolute last thing we do. 1128 * After this list_del_init(&wait->entry) the wait entry 1129 * might be de-allocated and the process might even have 1130 * exited. 1131 */ 1132 list_del_init_careful(&wait->entry); 1133 return (flags & WQ_FLAG_EXCLUSIVE) != 0; 1134 } 1135 1136 static void folio_wake_bit(struct folio *folio, int bit_nr) 1137 { 1138 wait_queue_head_t *q = folio_waitqueue(folio); 1139 struct wait_page_key key; 1140 unsigned long flags; 1141 wait_queue_entry_t bookmark; 1142 1143 key.folio = folio; 1144 key.bit_nr = bit_nr; 1145 key.page_match = 0; 1146 1147 bookmark.flags = 0; 1148 bookmark.private = NULL; 1149 bookmark.func = NULL; 1150 INIT_LIST_HEAD(&bookmark.entry); 1151 1152 spin_lock_irqsave(&q->lock, flags); 1153 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1154 1155 while (bookmark.flags & WQ_FLAG_BOOKMARK) { 1156 /* 1157 * Take a breather from holding the lock, 1158 * allow pages that finish wake up asynchronously 1159 * to acquire the lock and remove themselves 1160 * from wait queue 1161 */ 1162 spin_unlock_irqrestore(&q->lock, flags); 1163 cpu_relax(); 1164 spin_lock_irqsave(&q->lock, flags); 1165 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1166 } 1167 1168 /* 1169 * It's possible to miss clearing waiters here, when we woke our page 1170 * waiters, but the hashed waitqueue has waiters for other pages on it. 1171 * That's okay, it's a rare case. The next waker will clear it. 1172 * 1173 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE, 1174 * other), the flag may be cleared in the course of freeing the page; 1175 * but that is not required for correctness. 1176 */ 1177 if (!waitqueue_active(q) || !key.page_match) 1178 folio_clear_waiters(folio); 1179 1180 spin_unlock_irqrestore(&q->lock, flags); 1181 } 1182 1183 static void folio_wake(struct folio *folio, int bit) 1184 { 1185 if (!folio_test_waiters(folio)) 1186 return; 1187 folio_wake_bit(folio, bit); 1188 } 1189 1190 /* 1191 * A choice of three behaviors for folio_wait_bit_common(): 1192 */ 1193 enum behavior { 1194 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1195 * __folio_lock() waiting on then setting PG_locked. 1196 */ 1197 SHARED, /* Hold ref to page and check the bit when woken, like 1198 * folio_wait_writeback() waiting on PG_writeback. 1199 */ 1200 DROP, /* Drop ref to page before wait, no check when woken, 1201 * like folio_put_wait_locked() on PG_locked. 1202 */ 1203 }; 1204 1205 /* 1206 * Attempt to check (or get) the folio flag, and mark us done 1207 * if successful. 1208 */ 1209 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr, 1210 struct wait_queue_entry *wait) 1211 { 1212 if (wait->flags & WQ_FLAG_EXCLUSIVE) { 1213 if (test_and_set_bit(bit_nr, &folio->flags)) 1214 return false; 1215 } else if (test_bit(bit_nr, &folio->flags)) 1216 return false; 1217 1218 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE; 1219 return true; 1220 } 1221 1222 /* How many times do we accept lock stealing from under a waiter? */ 1223 int sysctl_page_lock_unfairness = 5; 1224 1225 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr, 1226 int state, enum behavior behavior) 1227 { 1228 wait_queue_head_t *q = folio_waitqueue(folio); 1229 int unfairness = sysctl_page_lock_unfairness; 1230 struct wait_page_queue wait_page; 1231 wait_queue_entry_t *wait = &wait_page.wait; 1232 bool thrashing = false; 1233 unsigned long pflags; 1234 bool in_thrashing; 1235 1236 if (bit_nr == PG_locked && 1237 !folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1238 delayacct_thrashing_start(&in_thrashing); 1239 psi_memstall_enter(&pflags); 1240 thrashing = true; 1241 } 1242 1243 init_wait(wait); 1244 wait->func = wake_page_function; 1245 wait_page.folio = folio; 1246 wait_page.bit_nr = bit_nr; 1247 1248 repeat: 1249 wait->flags = 0; 1250 if (behavior == EXCLUSIVE) { 1251 wait->flags = WQ_FLAG_EXCLUSIVE; 1252 if (--unfairness < 0) 1253 wait->flags |= WQ_FLAG_CUSTOM; 1254 } 1255 1256 /* 1257 * Do one last check whether we can get the 1258 * page bit synchronously. 1259 * 1260 * Do the folio_set_waiters() marking before that 1261 * to let any waker we _just_ missed know they 1262 * need to wake us up (otherwise they'll never 1263 * even go to the slow case that looks at the 1264 * page queue), and add ourselves to the wait 1265 * queue if we need to sleep. 1266 * 1267 * This part needs to be done under the queue 1268 * lock to avoid races. 1269 */ 1270 spin_lock_irq(&q->lock); 1271 folio_set_waiters(folio); 1272 if (!folio_trylock_flag(folio, bit_nr, wait)) 1273 __add_wait_queue_entry_tail(q, wait); 1274 spin_unlock_irq(&q->lock); 1275 1276 /* 1277 * From now on, all the logic will be based on 1278 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to 1279 * see whether the page bit testing has already 1280 * been done by the wake function. 1281 * 1282 * We can drop our reference to the folio. 1283 */ 1284 if (behavior == DROP) 1285 folio_put(folio); 1286 1287 /* 1288 * Note that until the "finish_wait()", or until 1289 * we see the WQ_FLAG_WOKEN flag, we need to 1290 * be very careful with the 'wait->flags', because 1291 * we may race with a waker that sets them. 1292 */ 1293 for (;;) { 1294 unsigned int flags; 1295 1296 set_current_state(state); 1297 1298 /* Loop until we've been woken or interrupted */ 1299 flags = smp_load_acquire(&wait->flags); 1300 if (!(flags & WQ_FLAG_WOKEN)) { 1301 if (signal_pending_state(state, current)) 1302 break; 1303 1304 io_schedule(); 1305 continue; 1306 } 1307 1308 /* If we were non-exclusive, we're done */ 1309 if (behavior != EXCLUSIVE) 1310 break; 1311 1312 /* If the waker got the lock for us, we're done */ 1313 if (flags & WQ_FLAG_DONE) 1314 break; 1315 1316 /* 1317 * Otherwise, if we're getting the lock, we need to 1318 * try to get it ourselves. 1319 * 1320 * And if that fails, we'll have to retry this all. 1321 */ 1322 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0)))) 1323 goto repeat; 1324 1325 wait->flags |= WQ_FLAG_DONE; 1326 break; 1327 } 1328 1329 /* 1330 * If a signal happened, this 'finish_wait()' may remove the last 1331 * waiter from the wait-queues, but the folio waiters bit will remain 1332 * set. That's ok. The next wakeup will take care of it, and trying 1333 * to do it here would be difficult and prone to races. 1334 */ 1335 finish_wait(q, wait); 1336 1337 if (thrashing) { 1338 delayacct_thrashing_end(&in_thrashing); 1339 psi_memstall_leave(&pflags); 1340 } 1341 1342 /* 1343 * NOTE! The wait->flags weren't stable until we've done the 1344 * 'finish_wait()', and we could have exited the loop above due 1345 * to a signal, and had a wakeup event happen after the signal 1346 * test but before the 'finish_wait()'. 1347 * 1348 * So only after the finish_wait() can we reliably determine 1349 * if we got woken up or not, so we can now figure out the final 1350 * return value based on that state without races. 1351 * 1352 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive 1353 * waiter, but an exclusive one requires WQ_FLAG_DONE. 1354 */ 1355 if (behavior == EXCLUSIVE) 1356 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR; 1357 1358 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR; 1359 } 1360 1361 #ifdef CONFIG_MIGRATION 1362 /** 1363 * migration_entry_wait_on_locked - Wait for a migration entry to be removed 1364 * @entry: migration swap entry. 1365 * @ptep: mapped pte pointer. Will return with the ptep unmapped. Only required 1366 * for pte entries, pass NULL for pmd entries. 1367 * @ptl: already locked ptl. This function will drop the lock. 1368 * 1369 * Wait for a migration entry referencing the given page to be removed. This is 1370 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except 1371 * this can be called without taking a reference on the page. Instead this 1372 * should be called while holding the ptl for the migration entry referencing 1373 * the page. 1374 * 1375 * Returns after unmapping and unlocking the pte/ptl with pte_unmap_unlock(). 1376 * 1377 * This follows the same logic as folio_wait_bit_common() so see the comments 1378 * there. 1379 */ 1380 void migration_entry_wait_on_locked(swp_entry_t entry, pte_t *ptep, 1381 spinlock_t *ptl) 1382 { 1383 struct wait_page_queue wait_page; 1384 wait_queue_entry_t *wait = &wait_page.wait; 1385 bool thrashing = false; 1386 unsigned long pflags; 1387 bool in_thrashing; 1388 wait_queue_head_t *q; 1389 struct folio *folio = page_folio(pfn_swap_entry_to_page(entry)); 1390 1391 q = folio_waitqueue(folio); 1392 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1393 delayacct_thrashing_start(&in_thrashing); 1394 psi_memstall_enter(&pflags); 1395 thrashing = true; 1396 } 1397 1398 init_wait(wait); 1399 wait->func = wake_page_function; 1400 wait_page.folio = folio; 1401 wait_page.bit_nr = PG_locked; 1402 wait->flags = 0; 1403 1404 spin_lock_irq(&q->lock); 1405 folio_set_waiters(folio); 1406 if (!folio_trylock_flag(folio, PG_locked, wait)) 1407 __add_wait_queue_entry_tail(q, wait); 1408 spin_unlock_irq(&q->lock); 1409 1410 /* 1411 * If a migration entry exists for the page the migration path must hold 1412 * a valid reference to the page, and it must take the ptl to remove the 1413 * migration entry. So the page is valid until the ptl is dropped. 1414 */ 1415 if (ptep) 1416 pte_unmap_unlock(ptep, ptl); 1417 else 1418 spin_unlock(ptl); 1419 1420 for (;;) { 1421 unsigned int flags; 1422 1423 set_current_state(TASK_UNINTERRUPTIBLE); 1424 1425 /* Loop until we've been woken or interrupted */ 1426 flags = smp_load_acquire(&wait->flags); 1427 if (!(flags & WQ_FLAG_WOKEN)) { 1428 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current)) 1429 break; 1430 1431 io_schedule(); 1432 continue; 1433 } 1434 break; 1435 } 1436 1437 finish_wait(q, wait); 1438 1439 if (thrashing) { 1440 delayacct_thrashing_end(&in_thrashing); 1441 psi_memstall_leave(&pflags); 1442 } 1443 } 1444 #endif 1445 1446 void folio_wait_bit(struct folio *folio, int bit_nr) 1447 { 1448 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1449 } 1450 EXPORT_SYMBOL(folio_wait_bit); 1451 1452 int folio_wait_bit_killable(struct folio *folio, int bit_nr) 1453 { 1454 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED); 1455 } 1456 EXPORT_SYMBOL(folio_wait_bit_killable); 1457 1458 /** 1459 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked 1460 * @folio: The folio to wait for. 1461 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc). 1462 * 1463 * The caller should hold a reference on @folio. They expect the page to 1464 * become unlocked relatively soon, but do not wish to hold up migration 1465 * (for example) by holding the reference while waiting for the folio to 1466 * come unlocked. After this function returns, the caller should not 1467 * dereference @folio. 1468 * 1469 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal. 1470 */ 1471 static int folio_put_wait_locked(struct folio *folio, int state) 1472 { 1473 return folio_wait_bit_common(folio, PG_locked, state, DROP); 1474 } 1475 1476 /** 1477 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue 1478 * @folio: Folio defining the wait queue of interest 1479 * @waiter: Waiter to add to the queue 1480 * 1481 * Add an arbitrary @waiter to the wait queue for the nominated @folio. 1482 */ 1483 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter) 1484 { 1485 wait_queue_head_t *q = folio_waitqueue(folio); 1486 unsigned long flags; 1487 1488 spin_lock_irqsave(&q->lock, flags); 1489 __add_wait_queue_entry_tail(q, waiter); 1490 folio_set_waiters(folio); 1491 spin_unlock_irqrestore(&q->lock, flags); 1492 } 1493 EXPORT_SYMBOL_GPL(folio_add_wait_queue); 1494 1495 #ifndef clear_bit_unlock_is_negative_byte 1496 1497 /* 1498 * PG_waiters is the high bit in the same byte as PG_lock. 1499 * 1500 * On x86 (and on many other architectures), we can clear PG_lock and 1501 * test the sign bit at the same time. But if the architecture does 1502 * not support that special operation, we just do this all by hand 1503 * instead. 1504 * 1505 * The read of PG_waiters has to be after (or concurrently with) PG_locked 1506 * being cleared, but a memory barrier should be unnecessary since it is 1507 * in the same byte as PG_locked. 1508 */ 1509 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) 1510 { 1511 clear_bit_unlock(nr, mem); 1512 /* smp_mb__after_atomic(); */ 1513 return test_bit(PG_waiters, mem); 1514 } 1515 1516 #endif 1517 1518 /** 1519 * folio_unlock - Unlock a locked folio. 1520 * @folio: The folio. 1521 * 1522 * Unlocks the folio and wakes up any thread sleeping on the page lock. 1523 * 1524 * Context: May be called from interrupt or process context. May not be 1525 * called from NMI context. 1526 */ 1527 void folio_unlock(struct folio *folio) 1528 { 1529 /* Bit 7 allows x86 to check the byte's sign bit */ 1530 BUILD_BUG_ON(PG_waiters != 7); 1531 BUILD_BUG_ON(PG_locked > 7); 1532 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1533 if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0))) 1534 folio_wake_bit(folio, PG_locked); 1535 } 1536 EXPORT_SYMBOL(folio_unlock); 1537 1538 /** 1539 * folio_end_private_2 - Clear PG_private_2 and wake any waiters. 1540 * @folio: The folio. 1541 * 1542 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for 1543 * it. The folio reference held for PG_private_2 being set is released. 1544 * 1545 * This is, for example, used when a netfs folio is being written to a local 1546 * disk cache, thereby allowing writes to the cache for the same folio to be 1547 * serialised. 1548 */ 1549 void folio_end_private_2(struct folio *folio) 1550 { 1551 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio); 1552 clear_bit_unlock(PG_private_2, folio_flags(folio, 0)); 1553 folio_wake_bit(folio, PG_private_2); 1554 folio_put(folio); 1555 } 1556 EXPORT_SYMBOL(folio_end_private_2); 1557 1558 /** 1559 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio. 1560 * @folio: The folio to wait on. 1561 * 1562 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio. 1563 */ 1564 void folio_wait_private_2(struct folio *folio) 1565 { 1566 while (folio_test_private_2(folio)) 1567 folio_wait_bit(folio, PG_private_2); 1568 } 1569 EXPORT_SYMBOL(folio_wait_private_2); 1570 1571 /** 1572 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio. 1573 * @folio: The folio to wait on. 1574 * 1575 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a 1576 * fatal signal is received by the calling task. 1577 * 1578 * Return: 1579 * - 0 if successful. 1580 * - -EINTR if a fatal signal was encountered. 1581 */ 1582 int folio_wait_private_2_killable(struct folio *folio) 1583 { 1584 int ret = 0; 1585 1586 while (folio_test_private_2(folio)) { 1587 ret = folio_wait_bit_killable(folio, PG_private_2); 1588 if (ret < 0) 1589 break; 1590 } 1591 1592 return ret; 1593 } 1594 EXPORT_SYMBOL(folio_wait_private_2_killable); 1595 1596 /** 1597 * folio_end_writeback - End writeback against a folio. 1598 * @folio: The folio. 1599 */ 1600 void folio_end_writeback(struct folio *folio) 1601 { 1602 /* 1603 * folio_test_clear_reclaim() could be used here but it is an 1604 * atomic operation and overkill in this particular case. Failing 1605 * to shuffle a folio marked for immediate reclaim is too mild 1606 * a gain to justify taking an atomic operation penalty at the 1607 * end of every folio writeback. 1608 */ 1609 if (folio_test_reclaim(folio)) { 1610 folio_clear_reclaim(folio); 1611 folio_rotate_reclaimable(folio); 1612 } 1613 1614 /* 1615 * Writeback does not hold a folio reference of its own, relying 1616 * on truncation to wait for the clearing of PG_writeback. 1617 * But here we must make sure that the folio is not freed and 1618 * reused before the folio_wake(). 1619 */ 1620 folio_get(folio); 1621 if (!__folio_end_writeback(folio)) 1622 BUG(); 1623 1624 smp_mb__after_atomic(); 1625 folio_wake(folio, PG_writeback); 1626 acct_reclaim_writeback(folio); 1627 folio_put(folio); 1628 } 1629 EXPORT_SYMBOL(folio_end_writeback); 1630 1631 /** 1632 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it. 1633 * @folio: The folio to lock 1634 */ 1635 void __folio_lock(struct folio *folio) 1636 { 1637 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE, 1638 EXCLUSIVE); 1639 } 1640 EXPORT_SYMBOL(__folio_lock); 1641 1642 int __folio_lock_killable(struct folio *folio) 1643 { 1644 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE, 1645 EXCLUSIVE); 1646 } 1647 EXPORT_SYMBOL_GPL(__folio_lock_killable); 1648 1649 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait) 1650 { 1651 struct wait_queue_head *q = folio_waitqueue(folio); 1652 int ret = 0; 1653 1654 wait->folio = folio; 1655 wait->bit_nr = PG_locked; 1656 1657 spin_lock_irq(&q->lock); 1658 __add_wait_queue_entry_tail(q, &wait->wait); 1659 folio_set_waiters(folio); 1660 ret = !folio_trylock(folio); 1661 /* 1662 * If we were successful now, we know we're still on the 1663 * waitqueue as we're still under the lock. This means it's 1664 * safe to remove and return success, we know the callback 1665 * isn't going to trigger. 1666 */ 1667 if (!ret) 1668 __remove_wait_queue(q, &wait->wait); 1669 else 1670 ret = -EIOCBQUEUED; 1671 spin_unlock_irq(&q->lock); 1672 return ret; 1673 } 1674 1675 /* 1676 * Return values: 1677 * true - folio is locked; mmap_lock is still held. 1678 * false - folio is not locked. 1679 * mmap_lock has been released (mmap_read_unlock(), unless flags had both 1680 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 1681 * which case mmap_lock is still held. 1682 * 1683 * If neither ALLOW_RETRY nor KILLABLE are set, will always return true 1684 * with the folio locked and the mmap_lock unperturbed. 1685 */ 1686 bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm, 1687 unsigned int flags) 1688 { 1689 if (fault_flag_allow_retry_first(flags)) { 1690 /* 1691 * CAUTION! In this case, mmap_lock is not released 1692 * even though return 0. 1693 */ 1694 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1695 return false; 1696 1697 mmap_read_unlock(mm); 1698 if (flags & FAULT_FLAG_KILLABLE) 1699 folio_wait_locked_killable(folio); 1700 else 1701 folio_wait_locked(folio); 1702 return false; 1703 } 1704 if (flags & FAULT_FLAG_KILLABLE) { 1705 bool ret; 1706 1707 ret = __folio_lock_killable(folio); 1708 if (ret) { 1709 mmap_read_unlock(mm); 1710 return false; 1711 } 1712 } else { 1713 __folio_lock(folio); 1714 } 1715 1716 return true; 1717 } 1718 1719 /** 1720 * page_cache_next_miss() - Find the next gap in the page cache. 1721 * @mapping: Mapping. 1722 * @index: Index. 1723 * @max_scan: Maximum range to search. 1724 * 1725 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1726 * gap with the lowest index. 1727 * 1728 * This function may be called under the rcu_read_lock. However, this will 1729 * not atomically search a snapshot of the cache at a single point in time. 1730 * For example, if a gap is created at index 5, then subsequently a gap is 1731 * created at index 10, page_cache_next_miss covering both indices may 1732 * return 10 if called under the rcu_read_lock. 1733 * 1734 * Return: The index of the gap if found, otherwise an index outside the 1735 * range specified (in which case 'return - index >= max_scan' will be true). 1736 * In the rare case of index wrap-around, 0 will be returned. 1737 */ 1738 pgoff_t page_cache_next_miss(struct address_space *mapping, 1739 pgoff_t index, unsigned long max_scan) 1740 { 1741 XA_STATE(xas, &mapping->i_pages, index); 1742 1743 while (max_scan--) { 1744 void *entry = xas_next(&xas); 1745 if (!entry || xa_is_value(entry)) 1746 break; 1747 if (xas.xa_index == 0) 1748 break; 1749 } 1750 1751 return xas.xa_index; 1752 } 1753 EXPORT_SYMBOL(page_cache_next_miss); 1754 1755 /** 1756 * page_cache_prev_miss() - Find the previous gap in the page cache. 1757 * @mapping: Mapping. 1758 * @index: Index. 1759 * @max_scan: Maximum range to search. 1760 * 1761 * Search the range [max(index - max_scan + 1, 0), index] for the 1762 * gap with the highest index. 1763 * 1764 * This function may be called under the rcu_read_lock. However, this will 1765 * not atomically search a snapshot of the cache at a single point in time. 1766 * For example, if a gap is created at index 10, then subsequently a gap is 1767 * created at index 5, page_cache_prev_miss() covering both indices may 1768 * return 5 if called under the rcu_read_lock. 1769 * 1770 * Return: The index of the gap if found, otherwise an index outside the 1771 * range specified (in which case 'index - return >= max_scan' will be true). 1772 * In the rare case of wrap-around, ULONG_MAX will be returned. 1773 */ 1774 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1775 pgoff_t index, unsigned long max_scan) 1776 { 1777 XA_STATE(xas, &mapping->i_pages, index); 1778 1779 while (max_scan--) { 1780 void *entry = xas_prev(&xas); 1781 if (!entry || xa_is_value(entry)) 1782 break; 1783 if (xas.xa_index == ULONG_MAX) 1784 break; 1785 } 1786 1787 return xas.xa_index; 1788 } 1789 EXPORT_SYMBOL(page_cache_prev_miss); 1790 1791 /* 1792 * Lockless page cache protocol: 1793 * On the lookup side: 1794 * 1. Load the folio from i_pages 1795 * 2. Increment the refcount if it's not zero 1796 * 3. If the folio is not found by xas_reload(), put the refcount and retry 1797 * 1798 * On the removal side: 1799 * A. Freeze the page (by zeroing the refcount if nobody else has a reference) 1800 * B. Remove the page from i_pages 1801 * C. Return the page to the page allocator 1802 * 1803 * This means that any page may have its reference count temporarily 1804 * increased by a speculative page cache (or fast GUP) lookup as it can 1805 * be allocated by another user before the RCU grace period expires. 1806 * Because the refcount temporarily acquired here may end up being the 1807 * last refcount on the page, any page allocation must be freeable by 1808 * folio_put(). 1809 */ 1810 1811 /* 1812 * filemap_get_entry - Get a page cache entry. 1813 * @mapping: the address_space to search 1814 * @index: The page cache index. 1815 * 1816 * Looks up the page cache entry at @mapping & @index. If it is a folio, 1817 * it is returned with an increased refcount. If it is a shadow entry 1818 * of a previously evicted folio, or a swap entry from shmem/tmpfs, 1819 * it is returned without further action. 1820 * 1821 * Return: The folio, swap or shadow entry, %NULL if nothing is found. 1822 */ 1823 void *filemap_get_entry(struct address_space *mapping, pgoff_t index) 1824 { 1825 XA_STATE(xas, &mapping->i_pages, index); 1826 struct folio *folio; 1827 1828 rcu_read_lock(); 1829 repeat: 1830 xas_reset(&xas); 1831 folio = xas_load(&xas); 1832 if (xas_retry(&xas, folio)) 1833 goto repeat; 1834 /* 1835 * A shadow entry of a recently evicted page, or a swap entry from 1836 * shmem/tmpfs. Return it without attempting to raise page count. 1837 */ 1838 if (!folio || xa_is_value(folio)) 1839 goto out; 1840 1841 if (!folio_try_get_rcu(folio)) 1842 goto repeat; 1843 1844 if (unlikely(folio != xas_reload(&xas))) { 1845 folio_put(folio); 1846 goto repeat; 1847 } 1848 out: 1849 rcu_read_unlock(); 1850 1851 return folio; 1852 } 1853 1854 /** 1855 * __filemap_get_folio - Find and get a reference to a folio. 1856 * @mapping: The address_space to search. 1857 * @index: The page index. 1858 * @fgp_flags: %FGP flags modify how the folio is returned. 1859 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified. 1860 * 1861 * Looks up the page cache entry at @mapping & @index. 1862 * 1863 * @fgp_flags can be zero or more of these flags: 1864 * 1865 * * %FGP_ACCESSED - The folio will be marked accessed. 1866 * * %FGP_LOCK - The folio is returned locked. 1867 * * %FGP_CREAT - If no page is present then a new page is allocated using 1868 * @gfp and added to the page cache and the VM's LRU list. 1869 * The page is returned locked and with an increased refcount. 1870 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the 1871 * page is already in cache. If the page was allocated, unlock it before 1872 * returning so the caller can do the same dance. 1873 * * %FGP_WRITE - The page will be written to by the caller. 1874 * * %FGP_NOFS - __GFP_FS will get cleared in gfp. 1875 * * %FGP_NOWAIT - Don't get blocked by page lock. 1876 * * %FGP_STABLE - Wait for the folio to be stable (finished writeback) 1877 * 1878 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even 1879 * if the %GFP flags specified for %FGP_CREAT are atomic. 1880 * 1881 * If there is a page cache page, it is returned with an increased refcount. 1882 * 1883 * Return: The found folio or an ERR_PTR() otherwise. 1884 */ 1885 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index, 1886 int fgp_flags, gfp_t gfp) 1887 { 1888 struct folio *folio; 1889 1890 repeat: 1891 folio = filemap_get_entry(mapping, index); 1892 if (xa_is_value(folio)) 1893 folio = NULL; 1894 if (!folio) 1895 goto no_page; 1896 1897 if (fgp_flags & FGP_LOCK) { 1898 if (fgp_flags & FGP_NOWAIT) { 1899 if (!folio_trylock(folio)) { 1900 folio_put(folio); 1901 return ERR_PTR(-EAGAIN); 1902 } 1903 } else { 1904 folio_lock(folio); 1905 } 1906 1907 /* Has the page been truncated? */ 1908 if (unlikely(folio->mapping != mapping)) { 1909 folio_unlock(folio); 1910 folio_put(folio); 1911 goto repeat; 1912 } 1913 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 1914 } 1915 1916 if (fgp_flags & FGP_ACCESSED) 1917 folio_mark_accessed(folio); 1918 else if (fgp_flags & FGP_WRITE) { 1919 /* Clear idle flag for buffer write */ 1920 if (folio_test_idle(folio)) 1921 folio_clear_idle(folio); 1922 } 1923 1924 if (fgp_flags & FGP_STABLE) 1925 folio_wait_stable(folio); 1926 no_page: 1927 if (!folio && (fgp_flags & FGP_CREAT)) { 1928 int err; 1929 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping)) 1930 gfp |= __GFP_WRITE; 1931 if (fgp_flags & FGP_NOFS) 1932 gfp &= ~__GFP_FS; 1933 if (fgp_flags & FGP_NOWAIT) { 1934 gfp &= ~GFP_KERNEL; 1935 gfp |= GFP_NOWAIT | __GFP_NOWARN; 1936 } 1937 1938 folio = filemap_alloc_folio(gfp, 0); 1939 if (!folio) 1940 return ERR_PTR(-ENOMEM); 1941 1942 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 1943 fgp_flags |= FGP_LOCK; 1944 1945 /* Init accessed so avoid atomic mark_page_accessed later */ 1946 if (fgp_flags & FGP_ACCESSED) 1947 __folio_set_referenced(folio); 1948 1949 err = filemap_add_folio(mapping, folio, index, gfp); 1950 if (unlikely(err)) { 1951 folio_put(folio); 1952 folio = NULL; 1953 if (err == -EEXIST) 1954 goto repeat; 1955 } 1956 1957 /* 1958 * filemap_add_folio locks the page, and for mmap 1959 * we expect an unlocked page. 1960 */ 1961 if (folio && (fgp_flags & FGP_FOR_MMAP)) 1962 folio_unlock(folio); 1963 } 1964 1965 if (!folio) 1966 return ERR_PTR(-ENOENT); 1967 return folio; 1968 } 1969 EXPORT_SYMBOL(__filemap_get_folio); 1970 1971 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max, 1972 xa_mark_t mark) 1973 { 1974 struct folio *folio; 1975 1976 retry: 1977 if (mark == XA_PRESENT) 1978 folio = xas_find(xas, max); 1979 else 1980 folio = xas_find_marked(xas, max, mark); 1981 1982 if (xas_retry(xas, folio)) 1983 goto retry; 1984 /* 1985 * A shadow entry of a recently evicted page, a swap 1986 * entry from shmem/tmpfs or a DAX entry. Return it 1987 * without attempting to raise page count. 1988 */ 1989 if (!folio || xa_is_value(folio)) 1990 return folio; 1991 1992 if (!folio_try_get_rcu(folio)) 1993 goto reset; 1994 1995 if (unlikely(folio != xas_reload(xas))) { 1996 folio_put(folio); 1997 goto reset; 1998 } 1999 2000 return folio; 2001 reset: 2002 xas_reset(xas); 2003 goto retry; 2004 } 2005 2006 /** 2007 * find_get_entries - gang pagecache lookup 2008 * @mapping: The address_space to search 2009 * @start: The starting page cache index 2010 * @end: The final page index (inclusive). 2011 * @fbatch: Where the resulting entries are placed. 2012 * @indices: The cache indices corresponding to the entries in @entries 2013 * 2014 * find_get_entries() will search for and return a batch of entries in 2015 * the mapping. The entries are placed in @fbatch. find_get_entries() 2016 * takes a reference on any actual folios it returns. 2017 * 2018 * The entries have ascending indexes. The indices may not be consecutive 2019 * due to not-present entries or large folios. 2020 * 2021 * Any shadow entries of evicted folios, or swap entries from 2022 * shmem/tmpfs, are included in the returned array. 2023 * 2024 * Return: The number of entries which were found. 2025 */ 2026 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start, 2027 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2028 { 2029 XA_STATE(xas, &mapping->i_pages, *start); 2030 struct folio *folio; 2031 2032 rcu_read_lock(); 2033 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) { 2034 indices[fbatch->nr] = xas.xa_index; 2035 if (!folio_batch_add(fbatch, folio)) 2036 break; 2037 } 2038 rcu_read_unlock(); 2039 2040 if (folio_batch_count(fbatch)) { 2041 unsigned long nr = 1; 2042 int idx = folio_batch_count(fbatch) - 1; 2043 2044 folio = fbatch->folios[idx]; 2045 if (!xa_is_value(folio) && !folio_test_hugetlb(folio)) 2046 nr = folio_nr_pages(folio); 2047 *start = indices[idx] + nr; 2048 } 2049 return folio_batch_count(fbatch); 2050 } 2051 2052 /** 2053 * find_lock_entries - Find a batch of pagecache entries. 2054 * @mapping: The address_space to search. 2055 * @start: The starting page cache index. 2056 * @end: The final page index (inclusive). 2057 * @fbatch: Where the resulting entries are placed. 2058 * @indices: The cache indices of the entries in @fbatch. 2059 * 2060 * find_lock_entries() will return a batch of entries from @mapping. 2061 * Swap, shadow and DAX entries are included. Folios are returned 2062 * locked and with an incremented refcount. Folios which are locked 2063 * by somebody else or under writeback are skipped. Folios which are 2064 * partially outside the range are not returned. 2065 * 2066 * The entries have ascending indexes. The indices may not be consecutive 2067 * due to not-present entries, large folios, folios which could not be 2068 * locked or folios under writeback. 2069 * 2070 * Return: The number of entries which were found. 2071 */ 2072 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start, 2073 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2074 { 2075 XA_STATE(xas, &mapping->i_pages, *start); 2076 struct folio *folio; 2077 2078 rcu_read_lock(); 2079 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) { 2080 if (!xa_is_value(folio)) { 2081 if (folio->index < *start) 2082 goto put; 2083 if (folio->index + folio_nr_pages(folio) - 1 > end) 2084 goto put; 2085 if (!folio_trylock(folio)) 2086 goto put; 2087 if (folio->mapping != mapping || 2088 folio_test_writeback(folio)) 2089 goto unlock; 2090 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index), 2091 folio); 2092 } 2093 indices[fbatch->nr] = xas.xa_index; 2094 if (!folio_batch_add(fbatch, folio)) 2095 break; 2096 continue; 2097 unlock: 2098 folio_unlock(folio); 2099 put: 2100 folio_put(folio); 2101 } 2102 rcu_read_unlock(); 2103 2104 if (folio_batch_count(fbatch)) { 2105 unsigned long nr = 1; 2106 int idx = folio_batch_count(fbatch) - 1; 2107 2108 folio = fbatch->folios[idx]; 2109 if (!xa_is_value(folio) && !folio_test_hugetlb(folio)) 2110 nr = folio_nr_pages(folio); 2111 *start = indices[idx] + nr; 2112 } 2113 return folio_batch_count(fbatch); 2114 } 2115 2116 /** 2117 * filemap_get_folios - Get a batch of folios 2118 * @mapping: The address_space to search 2119 * @start: The starting page index 2120 * @end: The final page index (inclusive) 2121 * @fbatch: The batch to fill. 2122 * 2123 * Search for and return a batch of folios in the mapping starting at 2124 * index @start and up to index @end (inclusive). The folios are returned 2125 * in @fbatch with an elevated reference count. 2126 * 2127 * The first folio may start before @start; if it does, it will contain 2128 * @start. The final folio may extend beyond @end; if it does, it will 2129 * contain @end. The folios have ascending indices. There may be gaps 2130 * between the folios if there are indices which have no folio in the 2131 * page cache. If folios are added to or removed from the page cache 2132 * while this is running, they may or may not be found by this call. 2133 * 2134 * Return: The number of folios which were found. 2135 * We also update @start to index the next folio for the traversal. 2136 */ 2137 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start, 2138 pgoff_t end, struct folio_batch *fbatch) 2139 { 2140 XA_STATE(xas, &mapping->i_pages, *start); 2141 struct folio *folio; 2142 2143 rcu_read_lock(); 2144 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) { 2145 /* Skip over shadow, swap and DAX entries */ 2146 if (xa_is_value(folio)) 2147 continue; 2148 if (!folio_batch_add(fbatch, folio)) { 2149 unsigned long nr = folio_nr_pages(folio); 2150 2151 if (folio_test_hugetlb(folio)) 2152 nr = 1; 2153 *start = folio->index + nr; 2154 goto out; 2155 } 2156 } 2157 2158 /* 2159 * We come here when there is no page beyond @end. We take care to not 2160 * overflow the index @start as it confuses some of the callers. This 2161 * breaks the iteration when there is a page at index -1 but that is 2162 * already broken anyway. 2163 */ 2164 if (end == (pgoff_t)-1) 2165 *start = (pgoff_t)-1; 2166 else 2167 *start = end + 1; 2168 out: 2169 rcu_read_unlock(); 2170 2171 return folio_batch_count(fbatch); 2172 } 2173 EXPORT_SYMBOL(filemap_get_folios); 2174 2175 static inline 2176 bool folio_more_pages(struct folio *folio, pgoff_t index, pgoff_t max) 2177 { 2178 if (!folio_test_large(folio) || folio_test_hugetlb(folio)) 2179 return false; 2180 if (index >= max) 2181 return false; 2182 return index < folio->index + folio_nr_pages(folio) - 1; 2183 } 2184 2185 /** 2186 * filemap_get_folios_contig - Get a batch of contiguous folios 2187 * @mapping: The address_space to search 2188 * @start: The starting page index 2189 * @end: The final page index (inclusive) 2190 * @fbatch: The batch to fill 2191 * 2192 * filemap_get_folios_contig() works exactly like filemap_get_folios(), 2193 * except the returned folios are guaranteed to be contiguous. This may 2194 * not return all contiguous folios if the batch gets filled up. 2195 * 2196 * Return: The number of folios found. 2197 * Also update @start to be positioned for traversal of the next folio. 2198 */ 2199 2200 unsigned filemap_get_folios_contig(struct address_space *mapping, 2201 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch) 2202 { 2203 XA_STATE(xas, &mapping->i_pages, *start); 2204 unsigned long nr; 2205 struct folio *folio; 2206 2207 rcu_read_lock(); 2208 2209 for (folio = xas_load(&xas); folio && xas.xa_index <= end; 2210 folio = xas_next(&xas)) { 2211 if (xas_retry(&xas, folio)) 2212 continue; 2213 /* 2214 * If the entry has been swapped out, we can stop looking. 2215 * No current caller is looking for DAX entries. 2216 */ 2217 if (xa_is_value(folio)) 2218 goto update_start; 2219 2220 if (!folio_try_get_rcu(folio)) 2221 goto retry; 2222 2223 if (unlikely(folio != xas_reload(&xas))) 2224 goto put_folio; 2225 2226 if (!folio_batch_add(fbatch, folio)) { 2227 nr = folio_nr_pages(folio); 2228 2229 if (folio_test_hugetlb(folio)) 2230 nr = 1; 2231 *start = folio->index + nr; 2232 goto out; 2233 } 2234 continue; 2235 put_folio: 2236 folio_put(folio); 2237 2238 retry: 2239 xas_reset(&xas); 2240 } 2241 2242 update_start: 2243 nr = folio_batch_count(fbatch); 2244 2245 if (nr) { 2246 folio = fbatch->folios[nr - 1]; 2247 if (folio_test_hugetlb(folio)) 2248 *start = folio->index + 1; 2249 else 2250 *start = folio->index + folio_nr_pages(folio); 2251 } 2252 out: 2253 rcu_read_unlock(); 2254 return folio_batch_count(fbatch); 2255 } 2256 EXPORT_SYMBOL(filemap_get_folios_contig); 2257 2258 /** 2259 * filemap_get_folios_tag - Get a batch of folios matching @tag 2260 * @mapping: The address_space to search 2261 * @start: The starting page index 2262 * @end: The final page index (inclusive) 2263 * @tag: The tag index 2264 * @fbatch: The batch to fill 2265 * 2266 * Same as filemap_get_folios(), but only returning folios tagged with @tag. 2267 * 2268 * Return: The number of folios found. 2269 * Also update @start to index the next folio for traversal. 2270 */ 2271 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start, 2272 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch) 2273 { 2274 XA_STATE(xas, &mapping->i_pages, *start); 2275 struct folio *folio; 2276 2277 rcu_read_lock(); 2278 while ((folio = find_get_entry(&xas, end, tag)) != NULL) { 2279 /* 2280 * Shadow entries should never be tagged, but this iteration 2281 * is lockless so there is a window for page reclaim to evict 2282 * a page we saw tagged. Skip over it. 2283 */ 2284 if (xa_is_value(folio)) 2285 continue; 2286 if (!folio_batch_add(fbatch, folio)) { 2287 unsigned long nr = folio_nr_pages(folio); 2288 2289 if (folio_test_hugetlb(folio)) 2290 nr = 1; 2291 *start = folio->index + nr; 2292 goto out; 2293 } 2294 } 2295 /* 2296 * We come here when there is no page beyond @end. We take care to not 2297 * overflow the index @start as it confuses some of the callers. This 2298 * breaks the iteration when there is a page at index -1 but that is 2299 * already broke anyway. 2300 */ 2301 if (end == (pgoff_t)-1) 2302 *start = (pgoff_t)-1; 2303 else 2304 *start = end + 1; 2305 out: 2306 rcu_read_unlock(); 2307 2308 return folio_batch_count(fbatch); 2309 } 2310 EXPORT_SYMBOL(filemap_get_folios_tag); 2311 2312 /* 2313 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 2314 * a _large_ part of the i/o request. Imagine the worst scenario: 2315 * 2316 * ---R__________________________________________B__________ 2317 * ^ reading here ^ bad block(assume 4k) 2318 * 2319 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2320 * => failing the whole request => read(R) => read(R+1) => 2321 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2322 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2323 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2324 * 2325 * It is going insane. Fix it by quickly scaling down the readahead size. 2326 */ 2327 static void shrink_readahead_size_eio(struct file_ra_state *ra) 2328 { 2329 ra->ra_pages /= 4; 2330 } 2331 2332 /* 2333 * filemap_get_read_batch - Get a batch of folios for read 2334 * 2335 * Get a batch of folios which represent a contiguous range of bytes in 2336 * the file. No exceptional entries will be returned. If @index is in 2337 * the middle of a folio, the entire folio will be returned. The last 2338 * folio in the batch may have the readahead flag set or the uptodate flag 2339 * clear so that the caller can take the appropriate action. 2340 */ 2341 static void filemap_get_read_batch(struct address_space *mapping, 2342 pgoff_t index, pgoff_t max, struct folio_batch *fbatch) 2343 { 2344 XA_STATE(xas, &mapping->i_pages, index); 2345 struct folio *folio; 2346 2347 rcu_read_lock(); 2348 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) { 2349 if (xas_retry(&xas, folio)) 2350 continue; 2351 if (xas.xa_index > max || xa_is_value(folio)) 2352 break; 2353 if (xa_is_sibling(folio)) 2354 break; 2355 if (!folio_try_get_rcu(folio)) 2356 goto retry; 2357 2358 if (unlikely(folio != xas_reload(&xas))) 2359 goto put_folio; 2360 2361 if (!folio_batch_add(fbatch, folio)) 2362 break; 2363 if (!folio_test_uptodate(folio)) 2364 break; 2365 if (folio_test_readahead(folio)) 2366 break; 2367 xas_advance(&xas, folio->index + folio_nr_pages(folio) - 1); 2368 continue; 2369 put_folio: 2370 folio_put(folio); 2371 retry: 2372 xas_reset(&xas); 2373 } 2374 rcu_read_unlock(); 2375 } 2376 2377 static int filemap_read_folio(struct file *file, filler_t filler, 2378 struct folio *folio) 2379 { 2380 bool workingset = folio_test_workingset(folio); 2381 unsigned long pflags; 2382 int error; 2383 2384 /* 2385 * A previous I/O error may have been due to temporary failures, 2386 * eg. multipath errors. PG_error will be set again if read_folio 2387 * fails. 2388 */ 2389 folio_clear_error(folio); 2390 2391 /* Start the actual read. The read will unlock the page. */ 2392 if (unlikely(workingset)) 2393 psi_memstall_enter(&pflags); 2394 error = filler(file, folio); 2395 if (unlikely(workingset)) 2396 psi_memstall_leave(&pflags); 2397 if (error) 2398 return error; 2399 2400 error = folio_wait_locked_killable(folio); 2401 if (error) 2402 return error; 2403 if (folio_test_uptodate(folio)) 2404 return 0; 2405 if (file) 2406 shrink_readahead_size_eio(&file->f_ra); 2407 return -EIO; 2408 } 2409 2410 static bool filemap_range_uptodate(struct address_space *mapping, 2411 loff_t pos, size_t count, struct folio *folio, 2412 bool need_uptodate) 2413 { 2414 if (folio_test_uptodate(folio)) 2415 return true; 2416 /* pipes can't handle partially uptodate pages */ 2417 if (need_uptodate) 2418 return false; 2419 if (!mapping->a_ops->is_partially_uptodate) 2420 return false; 2421 if (mapping->host->i_blkbits >= folio_shift(folio)) 2422 return false; 2423 2424 if (folio_pos(folio) > pos) { 2425 count -= folio_pos(folio) - pos; 2426 pos = 0; 2427 } else { 2428 pos -= folio_pos(folio); 2429 } 2430 2431 return mapping->a_ops->is_partially_uptodate(folio, pos, count); 2432 } 2433 2434 static int filemap_update_page(struct kiocb *iocb, 2435 struct address_space *mapping, size_t count, 2436 struct folio *folio, bool need_uptodate) 2437 { 2438 int error; 2439 2440 if (iocb->ki_flags & IOCB_NOWAIT) { 2441 if (!filemap_invalidate_trylock_shared(mapping)) 2442 return -EAGAIN; 2443 } else { 2444 filemap_invalidate_lock_shared(mapping); 2445 } 2446 2447 if (!folio_trylock(folio)) { 2448 error = -EAGAIN; 2449 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) 2450 goto unlock_mapping; 2451 if (!(iocb->ki_flags & IOCB_WAITQ)) { 2452 filemap_invalidate_unlock_shared(mapping); 2453 /* 2454 * This is where we usually end up waiting for a 2455 * previously submitted readahead to finish. 2456 */ 2457 folio_put_wait_locked(folio, TASK_KILLABLE); 2458 return AOP_TRUNCATED_PAGE; 2459 } 2460 error = __folio_lock_async(folio, iocb->ki_waitq); 2461 if (error) 2462 goto unlock_mapping; 2463 } 2464 2465 error = AOP_TRUNCATED_PAGE; 2466 if (!folio->mapping) 2467 goto unlock; 2468 2469 error = 0; 2470 if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio, 2471 need_uptodate)) 2472 goto unlock; 2473 2474 error = -EAGAIN; 2475 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ)) 2476 goto unlock; 2477 2478 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio, 2479 folio); 2480 goto unlock_mapping; 2481 unlock: 2482 folio_unlock(folio); 2483 unlock_mapping: 2484 filemap_invalidate_unlock_shared(mapping); 2485 if (error == AOP_TRUNCATED_PAGE) 2486 folio_put(folio); 2487 return error; 2488 } 2489 2490 static int filemap_create_folio(struct file *file, 2491 struct address_space *mapping, pgoff_t index, 2492 struct folio_batch *fbatch) 2493 { 2494 struct folio *folio; 2495 int error; 2496 2497 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0); 2498 if (!folio) 2499 return -ENOMEM; 2500 2501 /* 2502 * Protect against truncate / hole punch. Grabbing invalidate_lock 2503 * here assures we cannot instantiate and bring uptodate new 2504 * pagecache folios after evicting page cache during truncate 2505 * and before actually freeing blocks. Note that we could 2506 * release invalidate_lock after inserting the folio into 2507 * the page cache as the locked folio would then be enough to 2508 * synchronize with hole punching. But there are code paths 2509 * such as filemap_update_page() filling in partially uptodate 2510 * pages or ->readahead() that need to hold invalidate_lock 2511 * while mapping blocks for IO so let's hold the lock here as 2512 * well to keep locking rules simple. 2513 */ 2514 filemap_invalidate_lock_shared(mapping); 2515 error = filemap_add_folio(mapping, folio, index, 2516 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2517 if (error == -EEXIST) 2518 error = AOP_TRUNCATED_PAGE; 2519 if (error) 2520 goto error; 2521 2522 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio); 2523 if (error) 2524 goto error; 2525 2526 filemap_invalidate_unlock_shared(mapping); 2527 folio_batch_add(fbatch, folio); 2528 return 0; 2529 error: 2530 filemap_invalidate_unlock_shared(mapping); 2531 folio_put(folio); 2532 return error; 2533 } 2534 2535 static int filemap_readahead(struct kiocb *iocb, struct file *file, 2536 struct address_space *mapping, struct folio *folio, 2537 pgoff_t last_index) 2538 { 2539 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index); 2540 2541 if (iocb->ki_flags & IOCB_NOIO) 2542 return -EAGAIN; 2543 page_cache_async_ra(&ractl, folio, last_index - folio->index); 2544 return 0; 2545 } 2546 2547 static int filemap_get_pages(struct kiocb *iocb, size_t count, 2548 struct folio_batch *fbatch, bool need_uptodate) 2549 { 2550 struct file *filp = iocb->ki_filp; 2551 struct address_space *mapping = filp->f_mapping; 2552 struct file_ra_state *ra = &filp->f_ra; 2553 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT; 2554 pgoff_t last_index; 2555 struct folio *folio; 2556 int err = 0; 2557 2558 /* "last_index" is the index of the page beyond the end of the read */ 2559 last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE); 2560 retry: 2561 if (fatal_signal_pending(current)) 2562 return -EINTR; 2563 2564 filemap_get_read_batch(mapping, index, last_index - 1, fbatch); 2565 if (!folio_batch_count(fbatch)) { 2566 if (iocb->ki_flags & IOCB_NOIO) 2567 return -EAGAIN; 2568 page_cache_sync_readahead(mapping, ra, filp, index, 2569 last_index - index); 2570 filemap_get_read_batch(mapping, index, last_index - 1, fbatch); 2571 } 2572 if (!folio_batch_count(fbatch)) { 2573 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ)) 2574 return -EAGAIN; 2575 err = filemap_create_folio(filp, mapping, 2576 iocb->ki_pos >> PAGE_SHIFT, fbatch); 2577 if (err == AOP_TRUNCATED_PAGE) 2578 goto retry; 2579 return err; 2580 } 2581 2582 folio = fbatch->folios[folio_batch_count(fbatch) - 1]; 2583 if (folio_test_readahead(folio)) { 2584 err = filemap_readahead(iocb, filp, mapping, folio, last_index); 2585 if (err) 2586 goto err; 2587 } 2588 if (!folio_test_uptodate(folio)) { 2589 if ((iocb->ki_flags & IOCB_WAITQ) && 2590 folio_batch_count(fbatch) > 1) 2591 iocb->ki_flags |= IOCB_NOWAIT; 2592 err = filemap_update_page(iocb, mapping, count, folio, 2593 need_uptodate); 2594 if (err) 2595 goto err; 2596 } 2597 2598 return 0; 2599 err: 2600 if (err < 0) 2601 folio_put(folio); 2602 if (likely(--fbatch->nr)) 2603 return 0; 2604 if (err == AOP_TRUNCATED_PAGE) 2605 goto retry; 2606 return err; 2607 } 2608 2609 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio) 2610 { 2611 unsigned int shift = folio_shift(folio); 2612 2613 return (pos1 >> shift == pos2 >> shift); 2614 } 2615 2616 /** 2617 * filemap_read - Read data from the page cache. 2618 * @iocb: The iocb to read. 2619 * @iter: Destination for the data. 2620 * @already_read: Number of bytes already read by the caller. 2621 * 2622 * Copies data from the page cache. If the data is not currently present, 2623 * uses the readahead and read_folio address_space operations to fetch it. 2624 * 2625 * Return: Total number of bytes copied, including those already read by 2626 * the caller. If an error happens before any bytes are copied, returns 2627 * a negative error number. 2628 */ 2629 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter, 2630 ssize_t already_read) 2631 { 2632 struct file *filp = iocb->ki_filp; 2633 struct file_ra_state *ra = &filp->f_ra; 2634 struct address_space *mapping = filp->f_mapping; 2635 struct inode *inode = mapping->host; 2636 struct folio_batch fbatch; 2637 int i, error = 0; 2638 bool writably_mapped; 2639 loff_t isize, end_offset; 2640 2641 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes)) 2642 return 0; 2643 if (unlikely(!iov_iter_count(iter))) 2644 return 0; 2645 2646 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 2647 folio_batch_init(&fbatch); 2648 2649 do { 2650 cond_resched(); 2651 2652 /* 2653 * If we've already successfully copied some data, then we 2654 * can no longer safely return -EIOCBQUEUED. Hence mark 2655 * an async read NOWAIT at that point. 2656 */ 2657 if ((iocb->ki_flags & IOCB_WAITQ) && already_read) 2658 iocb->ki_flags |= IOCB_NOWAIT; 2659 2660 if (unlikely(iocb->ki_pos >= i_size_read(inode))) 2661 break; 2662 2663 error = filemap_get_pages(iocb, iter->count, &fbatch, 2664 iov_iter_is_pipe(iter)); 2665 if (error < 0) 2666 break; 2667 2668 /* 2669 * i_size must be checked after we know the pages are Uptodate. 2670 * 2671 * Checking i_size after the check allows us to calculate 2672 * the correct value for "nr", which means the zero-filled 2673 * part of the page is not copied back to userspace (unless 2674 * another truncate extends the file - this is desired though). 2675 */ 2676 isize = i_size_read(inode); 2677 if (unlikely(iocb->ki_pos >= isize)) 2678 goto put_folios; 2679 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count); 2680 2681 /* 2682 * Once we start copying data, we don't want to be touching any 2683 * cachelines that might be contended: 2684 */ 2685 writably_mapped = mapping_writably_mapped(mapping); 2686 2687 /* 2688 * When a read accesses the same folio several times, only 2689 * mark it as accessed the first time. 2690 */ 2691 if (!pos_same_folio(iocb->ki_pos, ra->prev_pos - 1, 2692 fbatch.folios[0])) 2693 folio_mark_accessed(fbatch.folios[0]); 2694 2695 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2696 struct folio *folio = fbatch.folios[i]; 2697 size_t fsize = folio_size(folio); 2698 size_t offset = iocb->ki_pos & (fsize - 1); 2699 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos, 2700 fsize - offset); 2701 size_t copied; 2702 2703 if (end_offset < folio_pos(folio)) 2704 break; 2705 if (i > 0) 2706 folio_mark_accessed(folio); 2707 /* 2708 * If users can be writing to this folio using arbitrary 2709 * virtual addresses, take care of potential aliasing 2710 * before reading the folio on the kernel side. 2711 */ 2712 if (writably_mapped) 2713 flush_dcache_folio(folio); 2714 2715 copied = copy_folio_to_iter(folio, offset, bytes, iter); 2716 2717 already_read += copied; 2718 iocb->ki_pos += copied; 2719 ra->prev_pos = iocb->ki_pos; 2720 2721 if (copied < bytes) { 2722 error = -EFAULT; 2723 break; 2724 } 2725 } 2726 put_folios: 2727 for (i = 0; i < folio_batch_count(&fbatch); i++) 2728 folio_put(fbatch.folios[i]); 2729 folio_batch_init(&fbatch); 2730 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error); 2731 2732 file_accessed(filp); 2733 2734 return already_read ? already_read : error; 2735 } 2736 EXPORT_SYMBOL_GPL(filemap_read); 2737 2738 /** 2739 * generic_file_read_iter - generic filesystem read routine 2740 * @iocb: kernel I/O control block 2741 * @iter: destination for the data read 2742 * 2743 * This is the "read_iter()" routine for all filesystems 2744 * that can use the page cache directly. 2745 * 2746 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall 2747 * be returned when no data can be read without waiting for I/O requests 2748 * to complete; it doesn't prevent readahead. 2749 * 2750 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O 2751 * requests shall be made for the read or for readahead. When no data 2752 * can be read, -EAGAIN shall be returned. When readahead would be 2753 * triggered, a partial, possibly empty read shall be returned. 2754 * 2755 * Return: 2756 * * number of bytes copied, even for partial reads 2757 * * negative error code (or 0 if IOCB_NOIO) if nothing was read 2758 */ 2759 ssize_t 2760 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2761 { 2762 size_t count = iov_iter_count(iter); 2763 ssize_t retval = 0; 2764 2765 if (!count) 2766 return 0; /* skip atime */ 2767 2768 if (iocb->ki_flags & IOCB_DIRECT) { 2769 struct file *file = iocb->ki_filp; 2770 struct address_space *mapping = file->f_mapping; 2771 struct inode *inode = mapping->host; 2772 2773 if (iocb->ki_flags & IOCB_NOWAIT) { 2774 if (filemap_range_needs_writeback(mapping, iocb->ki_pos, 2775 iocb->ki_pos + count - 1)) 2776 return -EAGAIN; 2777 } else { 2778 retval = filemap_write_and_wait_range(mapping, 2779 iocb->ki_pos, 2780 iocb->ki_pos + count - 1); 2781 if (retval < 0) 2782 return retval; 2783 } 2784 2785 file_accessed(file); 2786 2787 retval = mapping->a_ops->direct_IO(iocb, iter); 2788 if (retval >= 0) { 2789 iocb->ki_pos += retval; 2790 count -= retval; 2791 } 2792 if (retval != -EIOCBQUEUED) 2793 iov_iter_revert(iter, count - iov_iter_count(iter)); 2794 2795 /* 2796 * Btrfs can have a short DIO read if we encounter 2797 * compressed extents, so if there was an error, or if 2798 * we've already read everything we wanted to, or if 2799 * there was a short read because we hit EOF, go ahead 2800 * and return. Otherwise fallthrough to buffered io for 2801 * the rest of the read. Buffered reads will not work for 2802 * DAX files, so don't bother trying. 2803 */ 2804 if (retval < 0 || !count || IS_DAX(inode)) 2805 return retval; 2806 if (iocb->ki_pos >= i_size_read(inode)) 2807 return retval; 2808 } 2809 2810 return filemap_read(iocb, iter, retval); 2811 } 2812 EXPORT_SYMBOL(generic_file_read_iter); 2813 2814 /* 2815 * Splice subpages from a folio into a pipe. 2816 */ 2817 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe, 2818 struct folio *folio, loff_t fpos, size_t size) 2819 { 2820 struct page *page; 2821 size_t spliced = 0, offset = offset_in_folio(folio, fpos); 2822 2823 page = folio_page(folio, offset / PAGE_SIZE); 2824 size = min(size, folio_size(folio) - offset); 2825 offset %= PAGE_SIZE; 2826 2827 while (spliced < size && 2828 !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) { 2829 struct pipe_buffer *buf = pipe_head_buf(pipe); 2830 size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced); 2831 2832 *buf = (struct pipe_buffer) { 2833 .ops = &page_cache_pipe_buf_ops, 2834 .page = page, 2835 .offset = offset, 2836 .len = part, 2837 }; 2838 folio_get(folio); 2839 pipe->head++; 2840 page++; 2841 spliced += part; 2842 offset = 0; 2843 } 2844 2845 return spliced; 2846 } 2847 2848 /* 2849 * Splice folios from the pagecache of a buffered (ie. non-O_DIRECT) file into 2850 * a pipe. 2851 */ 2852 ssize_t filemap_splice_read(struct file *in, loff_t *ppos, 2853 struct pipe_inode_info *pipe, 2854 size_t len, unsigned int flags) 2855 { 2856 struct folio_batch fbatch; 2857 struct kiocb iocb; 2858 size_t total_spliced = 0, used, npages; 2859 loff_t isize, end_offset; 2860 bool writably_mapped; 2861 int i, error = 0; 2862 2863 init_sync_kiocb(&iocb, in); 2864 iocb.ki_pos = *ppos; 2865 2866 /* Work out how much data we can actually add into the pipe */ 2867 used = pipe_occupancy(pipe->head, pipe->tail); 2868 npages = max_t(ssize_t, pipe->max_usage - used, 0); 2869 len = min_t(size_t, len, npages * PAGE_SIZE); 2870 2871 folio_batch_init(&fbatch); 2872 2873 do { 2874 cond_resched(); 2875 2876 if (*ppos >= i_size_read(file_inode(in))) 2877 break; 2878 2879 iocb.ki_pos = *ppos; 2880 error = filemap_get_pages(&iocb, len, &fbatch, true); 2881 if (error < 0) 2882 break; 2883 2884 /* 2885 * i_size must be checked after we know the pages are Uptodate. 2886 * 2887 * Checking i_size after the check allows us to calculate 2888 * the correct value for "nr", which means the zero-filled 2889 * part of the page is not copied back to userspace (unless 2890 * another truncate extends the file - this is desired though). 2891 */ 2892 isize = i_size_read(file_inode(in)); 2893 if (unlikely(*ppos >= isize)) 2894 break; 2895 end_offset = min_t(loff_t, isize, *ppos + len); 2896 2897 /* 2898 * Once we start copying data, we don't want to be touching any 2899 * cachelines that might be contended: 2900 */ 2901 writably_mapped = mapping_writably_mapped(in->f_mapping); 2902 2903 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2904 struct folio *folio = fbatch.folios[i]; 2905 size_t n; 2906 2907 if (folio_pos(folio) >= end_offset) 2908 goto out; 2909 folio_mark_accessed(folio); 2910 2911 /* 2912 * If users can be writing to this folio using arbitrary 2913 * virtual addresses, take care of potential aliasing 2914 * before reading the folio on the kernel side. 2915 */ 2916 if (writably_mapped) 2917 flush_dcache_folio(folio); 2918 2919 n = min_t(loff_t, len, isize - *ppos); 2920 n = splice_folio_into_pipe(pipe, folio, *ppos, n); 2921 if (!n) 2922 goto out; 2923 len -= n; 2924 total_spliced += n; 2925 *ppos += n; 2926 in->f_ra.prev_pos = *ppos; 2927 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 2928 goto out; 2929 } 2930 2931 folio_batch_release(&fbatch); 2932 } while (len); 2933 2934 out: 2935 folio_batch_release(&fbatch); 2936 file_accessed(in); 2937 2938 return total_spliced ? total_spliced : error; 2939 } 2940 EXPORT_SYMBOL(filemap_splice_read); 2941 2942 static inline loff_t folio_seek_hole_data(struct xa_state *xas, 2943 struct address_space *mapping, struct folio *folio, 2944 loff_t start, loff_t end, bool seek_data) 2945 { 2946 const struct address_space_operations *ops = mapping->a_ops; 2947 size_t offset, bsz = i_blocksize(mapping->host); 2948 2949 if (xa_is_value(folio) || folio_test_uptodate(folio)) 2950 return seek_data ? start : end; 2951 if (!ops->is_partially_uptodate) 2952 return seek_data ? end : start; 2953 2954 xas_pause(xas); 2955 rcu_read_unlock(); 2956 folio_lock(folio); 2957 if (unlikely(folio->mapping != mapping)) 2958 goto unlock; 2959 2960 offset = offset_in_folio(folio, start) & ~(bsz - 1); 2961 2962 do { 2963 if (ops->is_partially_uptodate(folio, offset, bsz) == 2964 seek_data) 2965 break; 2966 start = (start + bsz) & ~(bsz - 1); 2967 offset += bsz; 2968 } while (offset < folio_size(folio)); 2969 unlock: 2970 folio_unlock(folio); 2971 rcu_read_lock(); 2972 return start; 2973 } 2974 2975 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio) 2976 { 2977 if (xa_is_value(folio)) 2978 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index); 2979 return folio_size(folio); 2980 } 2981 2982 /** 2983 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache. 2984 * @mapping: Address space to search. 2985 * @start: First byte to consider. 2986 * @end: Limit of search (exclusive). 2987 * @whence: Either SEEK_HOLE or SEEK_DATA. 2988 * 2989 * If the page cache knows which blocks contain holes and which blocks 2990 * contain data, your filesystem can use this function to implement 2991 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are 2992 * entirely memory-based such as tmpfs, and filesystems which support 2993 * unwritten extents. 2994 * 2995 * Return: The requested offset on success, or -ENXIO if @whence specifies 2996 * SEEK_DATA and there is no data after @start. There is an implicit hole 2997 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start 2998 * and @end contain data. 2999 */ 3000 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start, 3001 loff_t end, int whence) 3002 { 3003 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT); 3004 pgoff_t max = (end - 1) >> PAGE_SHIFT; 3005 bool seek_data = (whence == SEEK_DATA); 3006 struct folio *folio; 3007 3008 if (end <= start) 3009 return -ENXIO; 3010 3011 rcu_read_lock(); 3012 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) { 3013 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT; 3014 size_t seek_size; 3015 3016 if (start < pos) { 3017 if (!seek_data) 3018 goto unlock; 3019 start = pos; 3020 } 3021 3022 seek_size = seek_folio_size(&xas, folio); 3023 pos = round_up((u64)pos + 1, seek_size); 3024 start = folio_seek_hole_data(&xas, mapping, folio, start, pos, 3025 seek_data); 3026 if (start < pos) 3027 goto unlock; 3028 if (start >= end) 3029 break; 3030 if (seek_size > PAGE_SIZE) 3031 xas_set(&xas, pos >> PAGE_SHIFT); 3032 if (!xa_is_value(folio)) 3033 folio_put(folio); 3034 } 3035 if (seek_data) 3036 start = -ENXIO; 3037 unlock: 3038 rcu_read_unlock(); 3039 if (folio && !xa_is_value(folio)) 3040 folio_put(folio); 3041 if (start > end) 3042 return end; 3043 return start; 3044 } 3045 3046 #ifdef CONFIG_MMU 3047 #define MMAP_LOTSAMISS (100) 3048 /* 3049 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock 3050 * @vmf - the vm_fault for this fault. 3051 * @folio - the folio to lock. 3052 * @fpin - the pointer to the file we may pin (or is already pinned). 3053 * 3054 * This works similar to lock_folio_or_retry in that it can drop the 3055 * mmap_lock. It differs in that it actually returns the folio locked 3056 * if it returns 1 and 0 if it couldn't lock the folio. If we did have 3057 * to drop the mmap_lock then fpin will point to the pinned file and 3058 * needs to be fput()'ed at a later point. 3059 */ 3060 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio, 3061 struct file **fpin) 3062 { 3063 if (folio_trylock(folio)) 3064 return 1; 3065 3066 /* 3067 * NOTE! This will make us return with VM_FAULT_RETRY, but with 3068 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT 3069 * is supposed to work. We have way too many special cases.. 3070 */ 3071 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 3072 return 0; 3073 3074 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 3075 if (vmf->flags & FAULT_FLAG_KILLABLE) { 3076 if (__folio_lock_killable(folio)) { 3077 /* 3078 * We didn't have the right flags to drop the mmap_lock, 3079 * but all fault_handlers only check for fatal signals 3080 * if we return VM_FAULT_RETRY, so we need to drop the 3081 * mmap_lock here and return 0 if we don't have a fpin. 3082 */ 3083 if (*fpin == NULL) 3084 mmap_read_unlock(vmf->vma->vm_mm); 3085 return 0; 3086 } 3087 } else 3088 __folio_lock(folio); 3089 3090 return 1; 3091 } 3092 3093 /* 3094 * Synchronous readahead happens when we don't even find a page in the page 3095 * cache at all. We don't want to perform IO under the mmap sem, so if we have 3096 * to drop the mmap sem we return the file that was pinned in order for us to do 3097 * that. If we didn't pin a file then we return NULL. The file that is 3098 * returned needs to be fput()'ed when we're done with it. 3099 */ 3100 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 3101 { 3102 struct file *file = vmf->vma->vm_file; 3103 struct file_ra_state *ra = &file->f_ra; 3104 struct address_space *mapping = file->f_mapping; 3105 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff); 3106 struct file *fpin = NULL; 3107 unsigned long vm_flags = vmf->vma->vm_flags; 3108 unsigned int mmap_miss; 3109 3110 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3111 /* Use the readahead code, even if readahead is disabled */ 3112 if (vm_flags & VM_HUGEPAGE) { 3113 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3114 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1); 3115 ra->size = HPAGE_PMD_NR; 3116 /* 3117 * Fetch two PMD folios, so we get the chance to actually 3118 * readahead, unless we've been told not to. 3119 */ 3120 if (!(vm_flags & VM_RAND_READ)) 3121 ra->size *= 2; 3122 ra->async_size = HPAGE_PMD_NR; 3123 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER); 3124 return fpin; 3125 } 3126 #endif 3127 3128 /* If we don't want any read-ahead, don't bother */ 3129 if (vm_flags & VM_RAND_READ) 3130 return fpin; 3131 if (!ra->ra_pages) 3132 return fpin; 3133 3134 if (vm_flags & VM_SEQ_READ) { 3135 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3136 page_cache_sync_ra(&ractl, ra->ra_pages); 3137 return fpin; 3138 } 3139 3140 /* Avoid banging the cache line if not needed */ 3141 mmap_miss = READ_ONCE(ra->mmap_miss); 3142 if (mmap_miss < MMAP_LOTSAMISS * 10) 3143 WRITE_ONCE(ra->mmap_miss, ++mmap_miss); 3144 3145 /* 3146 * Do we miss much more than hit in this file? If so, 3147 * stop bothering with read-ahead. It will only hurt. 3148 */ 3149 if (mmap_miss > MMAP_LOTSAMISS) 3150 return fpin; 3151 3152 /* 3153 * mmap read-around 3154 */ 3155 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3156 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2); 3157 ra->size = ra->ra_pages; 3158 ra->async_size = ra->ra_pages / 4; 3159 ractl._index = ra->start; 3160 page_cache_ra_order(&ractl, ra, 0); 3161 return fpin; 3162 } 3163 3164 /* 3165 * Asynchronous readahead happens when we find the page and PG_readahead, 3166 * so we want to possibly extend the readahead further. We return the file that 3167 * was pinned if we have to drop the mmap_lock in order to do IO. 3168 */ 3169 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 3170 struct folio *folio) 3171 { 3172 struct file *file = vmf->vma->vm_file; 3173 struct file_ra_state *ra = &file->f_ra; 3174 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff); 3175 struct file *fpin = NULL; 3176 unsigned int mmap_miss; 3177 3178 /* If we don't want any read-ahead, don't bother */ 3179 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages) 3180 return fpin; 3181 3182 mmap_miss = READ_ONCE(ra->mmap_miss); 3183 if (mmap_miss) 3184 WRITE_ONCE(ra->mmap_miss, --mmap_miss); 3185 3186 if (folio_test_readahead(folio)) { 3187 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3188 page_cache_async_ra(&ractl, folio, ra->ra_pages); 3189 } 3190 return fpin; 3191 } 3192 3193 /** 3194 * filemap_fault - read in file data for page fault handling 3195 * @vmf: struct vm_fault containing details of the fault 3196 * 3197 * filemap_fault() is invoked via the vma operations vector for a 3198 * mapped memory region to read in file data during a page fault. 3199 * 3200 * The goto's are kind of ugly, but this streamlines the normal case of having 3201 * it in the page cache, and handles the special cases reasonably without 3202 * having a lot of duplicated code. 3203 * 3204 * vma->vm_mm->mmap_lock must be held on entry. 3205 * 3206 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock 3207 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap(). 3208 * 3209 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock 3210 * has not been released. 3211 * 3212 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 3213 * 3214 * Return: bitwise-OR of %VM_FAULT_ codes. 3215 */ 3216 vm_fault_t filemap_fault(struct vm_fault *vmf) 3217 { 3218 int error; 3219 struct file *file = vmf->vma->vm_file; 3220 struct file *fpin = NULL; 3221 struct address_space *mapping = file->f_mapping; 3222 struct inode *inode = mapping->host; 3223 pgoff_t max_idx, index = vmf->pgoff; 3224 struct folio *folio; 3225 vm_fault_t ret = 0; 3226 bool mapping_locked = false; 3227 3228 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3229 if (unlikely(index >= max_idx)) 3230 return VM_FAULT_SIGBUS; 3231 3232 /* 3233 * Do we have something in the page cache already? 3234 */ 3235 folio = filemap_get_folio(mapping, index); 3236 if (likely(!IS_ERR(folio))) { 3237 /* 3238 * We found the page, so try async readahead before waiting for 3239 * the lock. 3240 */ 3241 if (!(vmf->flags & FAULT_FLAG_TRIED)) 3242 fpin = do_async_mmap_readahead(vmf, folio); 3243 if (unlikely(!folio_test_uptodate(folio))) { 3244 filemap_invalidate_lock_shared(mapping); 3245 mapping_locked = true; 3246 } 3247 } else { 3248 /* No page in the page cache at all */ 3249 count_vm_event(PGMAJFAULT); 3250 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 3251 ret = VM_FAULT_MAJOR; 3252 fpin = do_sync_mmap_readahead(vmf); 3253 retry_find: 3254 /* 3255 * See comment in filemap_create_folio() why we need 3256 * invalidate_lock 3257 */ 3258 if (!mapping_locked) { 3259 filemap_invalidate_lock_shared(mapping); 3260 mapping_locked = true; 3261 } 3262 folio = __filemap_get_folio(mapping, index, 3263 FGP_CREAT|FGP_FOR_MMAP, 3264 vmf->gfp_mask); 3265 if (IS_ERR(folio)) { 3266 if (fpin) 3267 goto out_retry; 3268 filemap_invalidate_unlock_shared(mapping); 3269 return VM_FAULT_OOM; 3270 } 3271 } 3272 3273 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin)) 3274 goto out_retry; 3275 3276 /* Did it get truncated? */ 3277 if (unlikely(folio->mapping != mapping)) { 3278 folio_unlock(folio); 3279 folio_put(folio); 3280 goto retry_find; 3281 } 3282 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 3283 3284 /* 3285 * We have a locked page in the page cache, now we need to check 3286 * that it's up-to-date. If not, it is going to be due to an error. 3287 */ 3288 if (unlikely(!folio_test_uptodate(folio))) { 3289 /* 3290 * The page was in cache and uptodate and now it is not. 3291 * Strange but possible since we didn't hold the page lock all 3292 * the time. Let's drop everything get the invalidate lock and 3293 * try again. 3294 */ 3295 if (!mapping_locked) { 3296 folio_unlock(folio); 3297 folio_put(folio); 3298 goto retry_find; 3299 } 3300 goto page_not_uptodate; 3301 } 3302 3303 /* 3304 * We've made it this far and we had to drop our mmap_lock, now is the 3305 * time to return to the upper layer and have it re-find the vma and 3306 * redo the fault. 3307 */ 3308 if (fpin) { 3309 folio_unlock(folio); 3310 goto out_retry; 3311 } 3312 if (mapping_locked) 3313 filemap_invalidate_unlock_shared(mapping); 3314 3315 /* 3316 * Found the page and have a reference on it. 3317 * We must recheck i_size under page lock. 3318 */ 3319 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3320 if (unlikely(index >= max_idx)) { 3321 folio_unlock(folio); 3322 folio_put(folio); 3323 return VM_FAULT_SIGBUS; 3324 } 3325 3326 vmf->page = folio_file_page(folio, index); 3327 return ret | VM_FAULT_LOCKED; 3328 3329 page_not_uptodate: 3330 /* 3331 * Umm, take care of errors if the page isn't up-to-date. 3332 * Try to re-read it _once_. We do this synchronously, 3333 * because there really aren't any performance issues here 3334 * and we need to check for errors. 3335 */ 3336 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3337 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio); 3338 if (fpin) 3339 goto out_retry; 3340 folio_put(folio); 3341 3342 if (!error || error == AOP_TRUNCATED_PAGE) 3343 goto retry_find; 3344 filemap_invalidate_unlock_shared(mapping); 3345 3346 return VM_FAULT_SIGBUS; 3347 3348 out_retry: 3349 /* 3350 * We dropped the mmap_lock, we need to return to the fault handler to 3351 * re-find the vma and come back and find our hopefully still populated 3352 * page. 3353 */ 3354 if (!IS_ERR(folio)) 3355 folio_put(folio); 3356 if (mapping_locked) 3357 filemap_invalidate_unlock_shared(mapping); 3358 if (fpin) 3359 fput(fpin); 3360 return ret | VM_FAULT_RETRY; 3361 } 3362 EXPORT_SYMBOL(filemap_fault); 3363 3364 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio, 3365 pgoff_t start) 3366 { 3367 struct mm_struct *mm = vmf->vma->vm_mm; 3368 3369 /* Huge page is mapped? No need to proceed. */ 3370 if (pmd_trans_huge(*vmf->pmd)) { 3371 folio_unlock(folio); 3372 folio_put(folio); 3373 return true; 3374 } 3375 3376 if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) { 3377 struct page *page = folio_file_page(folio, start); 3378 vm_fault_t ret = do_set_pmd(vmf, page); 3379 if (!ret) { 3380 /* The page is mapped successfully, reference consumed. */ 3381 folio_unlock(folio); 3382 return true; 3383 } 3384 } 3385 3386 if (pmd_none(*vmf->pmd)) 3387 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte); 3388 3389 /* See comment in handle_pte_fault() */ 3390 if (pmd_devmap_trans_unstable(vmf->pmd)) { 3391 folio_unlock(folio); 3392 folio_put(folio); 3393 return true; 3394 } 3395 3396 return false; 3397 } 3398 3399 static struct folio *next_uptodate_page(struct folio *folio, 3400 struct address_space *mapping, 3401 struct xa_state *xas, pgoff_t end_pgoff) 3402 { 3403 unsigned long max_idx; 3404 3405 do { 3406 if (!folio) 3407 return NULL; 3408 if (xas_retry(xas, folio)) 3409 continue; 3410 if (xa_is_value(folio)) 3411 continue; 3412 if (folio_test_locked(folio)) 3413 continue; 3414 if (!folio_try_get_rcu(folio)) 3415 continue; 3416 /* Has the page moved or been split? */ 3417 if (unlikely(folio != xas_reload(xas))) 3418 goto skip; 3419 if (!folio_test_uptodate(folio) || folio_test_readahead(folio)) 3420 goto skip; 3421 if (!folio_trylock(folio)) 3422 goto skip; 3423 if (folio->mapping != mapping) 3424 goto unlock; 3425 if (!folio_test_uptodate(folio)) 3426 goto unlock; 3427 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3428 if (xas->xa_index >= max_idx) 3429 goto unlock; 3430 return folio; 3431 unlock: 3432 folio_unlock(folio); 3433 skip: 3434 folio_put(folio); 3435 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL); 3436 3437 return NULL; 3438 } 3439 3440 static inline struct folio *first_map_page(struct address_space *mapping, 3441 struct xa_state *xas, 3442 pgoff_t end_pgoff) 3443 { 3444 return next_uptodate_page(xas_find(xas, end_pgoff), 3445 mapping, xas, end_pgoff); 3446 } 3447 3448 static inline struct folio *next_map_page(struct address_space *mapping, 3449 struct xa_state *xas, 3450 pgoff_t end_pgoff) 3451 { 3452 return next_uptodate_page(xas_next_entry(xas, end_pgoff), 3453 mapping, xas, end_pgoff); 3454 } 3455 3456 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3457 pgoff_t start_pgoff, pgoff_t end_pgoff) 3458 { 3459 struct vm_area_struct *vma = vmf->vma; 3460 struct file *file = vma->vm_file; 3461 struct address_space *mapping = file->f_mapping; 3462 pgoff_t last_pgoff = start_pgoff; 3463 unsigned long addr; 3464 XA_STATE(xas, &mapping->i_pages, start_pgoff); 3465 struct folio *folio; 3466 struct page *page; 3467 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss); 3468 vm_fault_t ret = 0; 3469 3470 rcu_read_lock(); 3471 folio = first_map_page(mapping, &xas, end_pgoff); 3472 if (!folio) 3473 goto out; 3474 3475 if (filemap_map_pmd(vmf, folio, start_pgoff)) { 3476 ret = VM_FAULT_NOPAGE; 3477 goto out; 3478 } 3479 3480 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT); 3481 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 3482 do { 3483 again: 3484 page = folio_file_page(folio, xas.xa_index); 3485 if (PageHWPoison(page)) 3486 goto unlock; 3487 3488 if (mmap_miss > 0) 3489 mmap_miss--; 3490 3491 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 3492 vmf->pte += xas.xa_index - last_pgoff; 3493 last_pgoff = xas.xa_index; 3494 3495 /* 3496 * NOTE: If there're PTE markers, we'll leave them to be 3497 * handled in the specific fault path, and it'll prohibit the 3498 * fault-around logic. 3499 */ 3500 if (!pte_none(*vmf->pte)) 3501 goto unlock; 3502 3503 /* We're about to handle the fault */ 3504 if (vmf->address == addr) 3505 ret = VM_FAULT_NOPAGE; 3506 3507 do_set_pte(vmf, page, addr); 3508 /* no need to invalidate: a not-present page won't be cached */ 3509 update_mmu_cache(vma, addr, vmf->pte); 3510 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) { 3511 xas.xa_index++; 3512 folio_ref_inc(folio); 3513 goto again; 3514 } 3515 folio_unlock(folio); 3516 continue; 3517 unlock: 3518 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) { 3519 xas.xa_index++; 3520 goto again; 3521 } 3522 folio_unlock(folio); 3523 folio_put(folio); 3524 } while ((folio = next_map_page(mapping, &xas, end_pgoff)) != NULL); 3525 pte_unmap_unlock(vmf->pte, vmf->ptl); 3526 out: 3527 rcu_read_unlock(); 3528 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss); 3529 return ret; 3530 } 3531 EXPORT_SYMBOL(filemap_map_pages); 3532 3533 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3534 { 3535 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 3536 struct folio *folio = page_folio(vmf->page); 3537 vm_fault_t ret = VM_FAULT_LOCKED; 3538 3539 sb_start_pagefault(mapping->host->i_sb); 3540 file_update_time(vmf->vma->vm_file); 3541 folio_lock(folio); 3542 if (folio->mapping != mapping) { 3543 folio_unlock(folio); 3544 ret = VM_FAULT_NOPAGE; 3545 goto out; 3546 } 3547 /* 3548 * We mark the folio dirty already here so that when freeze is in 3549 * progress, we are guaranteed that writeback during freezing will 3550 * see the dirty folio and writeprotect it again. 3551 */ 3552 folio_mark_dirty(folio); 3553 folio_wait_stable(folio); 3554 out: 3555 sb_end_pagefault(mapping->host->i_sb); 3556 return ret; 3557 } 3558 3559 const struct vm_operations_struct generic_file_vm_ops = { 3560 .fault = filemap_fault, 3561 .map_pages = filemap_map_pages, 3562 .page_mkwrite = filemap_page_mkwrite, 3563 }; 3564 3565 /* This is used for a general mmap of a disk file */ 3566 3567 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3568 { 3569 struct address_space *mapping = file->f_mapping; 3570 3571 if (!mapping->a_ops->read_folio) 3572 return -ENOEXEC; 3573 file_accessed(file); 3574 vma->vm_ops = &generic_file_vm_ops; 3575 return 0; 3576 } 3577 3578 /* 3579 * This is for filesystems which do not implement ->writepage. 3580 */ 3581 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3582 { 3583 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 3584 return -EINVAL; 3585 return generic_file_mmap(file, vma); 3586 } 3587 #else 3588 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3589 { 3590 return VM_FAULT_SIGBUS; 3591 } 3592 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3593 { 3594 return -ENOSYS; 3595 } 3596 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3597 { 3598 return -ENOSYS; 3599 } 3600 #endif /* CONFIG_MMU */ 3601 3602 EXPORT_SYMBOL(filemap_page_mkwrite); 3603 EXPORT_SYMBOL(generic_file_mmap); 3604 EXPORT_SYMBOL(generic_file_readonly_mmap); 3605 3606 static struct folio *do_read_cache_folio(struct address_space *mapping, 3607 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp) 3608 { 3609 struct folio *folio; 3610 int err; 3611 3612 if (!filler) 3613 filler = mapping->a_ops->read_folio; 3614 repeat: 3615 folio = filemap_get_folio(mapping, index); 3616 if (IS_ERR(folio)) { 3617 folio = filemap_alloc_folio(gfp, 0); 3618 if (!folio) 3619 return ERR_PTR(-ENOMEM); 3620 err = filemap_add_folio(mapping, folio, index, gfp); 3621 if (unlikely(err)) { 3622 folio_put(folio); 3623 if (err == -EEXIST) 3624 goto repeat; 3625 /* Presumably ENOMEM for xarray node */ 3626 return ERR_PTR(err); 3627 } 3628 3629 goto filler; 3630 } 3631 if (folio_test_uptodate(folio)) 3632 goto out; 3633 3634 if (!folio_trylock(folio)) { 3635 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE); 3636 goto repeat; 3637 } 3638 3639 /* Folio was truncated from mapping */ 3640 if (!folio->mapping) { 3641 folio_unlock(folio); 3642 folio_put(folio); 3643 goto repeat; 3644 } 3645 3646 /* Someone else locked and filled the page in a very small window */ 3647 if (folio_test_uptodate(folio)) { 3648 folio_unlock(folio); 3649 goto out; 3650 } 3651 3652 filler: 3653 err = filemap_read_folio(file, filler, folio); 3654 if (err) { 3655 folio_put(folio); 3656 if (err == AOP_TRUNCATED_PAGE) 3657 goto repeat; 3658 return ERR_PTR(err); 3659 } 3660 3661 out: 3662 folio_mark_accessed(folio); 3663 return folio; 3664 } 3665 3666 /** 3667 * read_cache_folio - Read into page cache, fill it if needed. 3668 * @mapping: The address_space to read from. 3669 * @index: The index to read. 3670 * @filler: Function to perform the read, or NULL to use aops->read_folio(). 3671 * @file: Passed to filler function, may be NULL if not required. 3672 * 3673 * Read one page into the page cache. If it succeeds, the folio returned 3674 * will contain @index, but it may not be the first page of the folio. 3675 * 3676 * If the filler function returns an error, it will be returned to the 3677 * caller. 3678 * 3679 * Context: May sleep. Expects mapping->invalidate_lock to be held. 3680 * Return: An uptodate folio on success, ERR_PTR() on failure. 3681 */ 3682 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index, 3683 filler_t filler, struct file *file) 3684 { 3685 return do_read_cache_folio(mapping, index, filler, file, 3686 mapping_gfp_mask(mapping)); 3687 } 3688 EXPORT_SYMBOL(read_cache_folio); 3689 3690 /** 3691 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags. 3692 * @mapping: The address_space for the folio. 3693 * @index: The index that the allocated folio will contain. 3694 * @gfp: The page allocator flags to use if allocating. 3695 * 3696 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with 3697 * any new memory allocations done using the specified allocation flags. 3698 * 3699 * The most likely error from this function is EIO, but ENOMEM is 3700 * possible and so is EINTR. If ->read_folio returns another error, 3701 * that will be returned to the caller. 3702 * 3703 * The function expects mapping->invalidate_lock to be already held. 3704 * 3705 * Return: Uptodate folio on success, ERR_PTR() on failure. 3706 */ 3707 struct folio *mapping_read_folio_gfp(struct address_space *mapping, 3708 pgoff_t index, gfp_t gfp) 3709 { 3710 return do_read_cache_folio(mapping, index, NULL, NULL, gfp); 3711 } 3712 EXPORT_SYMBOL(mapping_read_folio_gfp); 3713 3714 static struct page *do_read_cache_page(struct address_space *mapping, 3715 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp) 3716 { 3717 struct folio *folio; 3718 3719 folio = do_read_cache_folio(mapping, index, filler, file, gfp); 3720 if (IS_ERR(folio)) 3721 return &folio->page; 3722 return folio_file_page(folio, index); 3723 } 3724 3725 struct page *read_cache_page(struct address_space *mapping, 3726 pgoff_t index, filler_t *filler, struct file *file) 3727 { 3728 return do_read_cache_page(mapping, index, filler, file, 3729 mapping_gfp_mask(mapping)); 3730 } 3731 EXPORT_SYMBOL(read_cache_page); 3732 3733 /** 3734 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 3735 * @mapping: the page's address_space 3736 * @index: the page index 3737 * @gfp: the page allocator flags to use if allocating 3738 * 3739 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 3740 * any new page allocations done using the specified allocation flags. 3741 * 3742 * If the page does not get brought uptodate, return -EIO. 3743 * 3744 * The function expects mapping->invalidate_lock to be already held. 3745 * 3746 * Return: up to date page on success, ERR_PTR() on failure. 3747 */ 3748 struct page *read_cache_page_gfp(struct address_space *mapping, 3749 pgoff_t index, 3750 gfp_t gfp) 3751 { 3752 return do_read_cache_page(mapping, index, NULL, NULL, gfp); 3753 } 3754 EXPORT_SYMBOL(read_cache_page_gfp); 3755 3756 /* 3757 * Warn about a page cache invalidation failure during a direct I/O write. 3758 */ 3759 void dio_warn_stale_pagecache(struct file *filp) 3760 { 3761 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 3762 char pathname[128]; 3763 char *path; 3764 3765 errseq_set(&filp->f_mapping->wb_err, -EIO); 3766 if (__ratelimit(&_rs)) { 3767 path = file_path(filp, pathname, sizeof(pathname)); 3768 if (IS_ERR(path)) 3769 path = "(unknown)"; 3770 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); 3771 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, 3772 current->comm); 3773 } 3774 } 3775 3776 ssize_t 3777 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 3778 { 3779 struct file *file = iocb->ki_filp; 3780 struct address_space *mapping = file->f_mapping; 3781 struct inode *inode = mapping->host; 3782 loff_t pos = iocb->ki_pos; 3783 ssize_t written; 3784 size_t write_len; 3785 pgoff_t end; 3786 3787 write_len = iov_iter_count(from); 3788 end = (pos + write_len - 1) >> PAGE_SHIFT; 3789 3790 if (iocb->ki_flags & IOCB_NOWAIT) { 3791 /* If there are pages to writeback, return */ 3792 if (filemap_range_has_page(file->f_mapping, pos, 3793 pos + write_len - 1)) 3794 return -EAGAIN; 3795 } else { 3796 written = filemap_write_and_wait_range(mapping, pos, 3797 pos + write_len - 1); 3798 if (written) 3799 goto out; 3800 } 3801 3802 /* 3803 * After a write we want buffered reads to be sure to go to disk to get 3804 * the new data. We invalidate clean cached page from the region we're 3805 * about to write. We do this *before* the write so that we can return 3806 * without clobbering -EIOCBQUEUED from ->direct_IO(). 3807 */ 3808 written = invalidate_inode_pages2_range(mapping, 3809 pos >> PAGE_SHIFT, end); 3810 /* 3811 * If a page can not be invalidated, return 0 to fall back 3812 * to buffered write. 3813 */ 3814 if (written) { 3815 if (written == -EBUSY) 3816 return 0; 3817 goto out; 3818 } 3819 3820 written = mapping->a_ops->direct_IO(iocb, from); 3821 3822 /* 3823 * Finally, try again to invalidate clean pages which might have been 3824 * cached by non-direct readahead, or faulted in by get_user_pages() 3825 * if the source of the write was an mmap'ed region of the file 3826 * we're writing. Either one is a pretty crazy thing to do, 3827 * so we don't support it 100%. If this invalidation 3828 * fails, tough, the write still worked... 3829 * 3830 * Most of the time we do not need this since dio_complete() will do 3831 * the invalidation for us. However there are some file systems that 3832 * do not end up with dio_complete() being called, so let's not break 3833 * them by removing it completely. 3834 * 3835 * Noticeable example is a blkdev_direct_IO(). 3836 * 3837 * Skip invalidation for async writes or if mapping has no pages. 3838 */ 3839 if (written > 0 && mapping->nrpages && 3840 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end)) 3841 dio_warn_stale_pagecache(file); 3842 3843 if (written > 0) { 3844 pos += written; 3845 write_len -= written; 3846 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 3847 i_size_write(inode, pos); 3848 mark_inode_dirty(inode); 3849 } 3850 iocb->ki_pos = pos; 3851 } 3852 if (written != -EIOCBQUEUED) 3853 iov_iter_revert(from, write_len - iov_iter_count(from)); 3854 out: 3855 return written; 3856 } 3857 EXPORT_SYMBOL(generic_file_direct_write); 3858 3859 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i) 3860 { 3861 struct file *file = iocb->ki_filp; 3862 loff_t pos = iocb->ki_pos; 3863 struct address_space *mapping = file->f_mapping; 3864 const struct address_space_operations *a_ops = mapping->a_ops; 3865 long status = 0; 3866 ssize_t written = 0; 3867 3868 do { 3869 struct page *page; 3870 unsigned long offset; /* Offset into pagecache page */ 3871 unsigned long bytes; /* Bytes to write to page */ 3872 size_t copied; /* Bytes copied from user */ 3873 void *fsdata = NULL; 3874 3875 offset = (pos & (PAGE_SIZE - 1)); 3876 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3877 iov_iter_count(i)); 3878 3879 again: 3880 /* 3881 * Bring in the user page that we will copy from _first_. 3882 * Otherwise there's a nasty deadlock on copying from the 3883 * same page as we're writing to, without it being marked 3884 * up-to-date. 3885 */ 3886 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) { 3887 status = -EFAULT; 3888 break; 3889 } 3890 3891 if (fatal_signal_pending(current)) { 3892 status = -EINTR; 3893 break; 3894 } 3895 3896 status = a_ops->write_begin(file, mapping, pos, bytes, 3897 &page, &fsdata); 3898 if (unlikely(status < 0)) 3899 break; 3900 3901 if (mapping_writably_mapped(mapping)) 3902 flush_dcache_page(page); 3903 3904 copied = copy_page_from_iter_atomic(page, offset, bytes, i); 3905 flush_dcache_page(page); 3906 3907 status = a_ops->write_end(file, mapping, pos, bytes, copied, 3908 page, fsdata); 3909 if (unlikely(status != copied)) { 3910 iov_iter_revert(i, copied - max(status, 0L)); 3911 if (unlikely(status < 0)) 3912 break; 3913 } 3914 cond_resched(); 3915 3916 if (unlikely(status == 0)) { 3917 /* 3918 * A short copy made ->write_end() reject the 3919 * thing entirely. Might be memory poisoning 3920 * halfway through, might be a race with munmap, 3921 * might be severe memory pressure. 3922 */ 3923 if (copied) 3924 bytes = copied; 3925 goto again; 3926 } 3927 pos += status; 3928 written += status; 3929 3930 balance_dirty_pages_ratelimited(mapping); 3931 } while (iov_iter_count(i)); 3932 3933 return written ? written : status; 3934 } 3935 EXPORT_SYMBOL(generic_perform_write); 3936 3937 /** 3938 * __generic_file_write_iter - write data to a file 3939 * @iocb: IO state structure (file, offset, etc.) 3940 * @from: iov_iter with data to write 3941 * 3942 * This function does all the work needed for actually writing data to a 3943 * file. It does all basic checks, removes SUID from the file, updates 3944 * modification times and calls proper subroutines depending on whether we 3945 * do direct IO or a standard buffered write. 3946 * 3947 * It expects i_rwsem to be grabbed unless we work on a block device or similar 3948 * object which does not need locking at all. 3949 * 3950 * This function does *not* take care of syncing data in case of O_SYNC write. 3951 * A caller has to handle it. This is mainly due to the fact that we want to 3952 * avoid syncing under i_rwsem. 3953 * 3954 * Return: 3955 * * number of bytes written, even for truncated writes 3956 * * negative error code if no data has been written at all 3957 */ 3958 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3959 { 3960 struct file *file = iocb->ki_filp; 3961 struct address_space *mapping = file->f_mapping; 3962 struct inode *inode = mapping->host; 3963 ssize_t written = 0; 3964 ssize_t err; 3965 ssize_t status; 3966 3967 /* We can write back this queue in page reclaim */ 3968 current->backing_dev_info = inode_to_bdi(inode); 3969 err = file_remove_privs(file); 3970 if (err) 3971 goto out; 3972 3973 err = file_update_time(file); 3974 if (err) 3975 goto out; 3976 3977 if (iocb->ki_flags & IOCB_DIRECT) { 3978 loff_t pos, endbyte; 3979 3980 written = generic_file_direct_write(iocb, from); 3981 /* 3982 * If the write stopped short of completing, fall back to 3983 * buffered writes. Some filesystems do this for writes to 3984 * holes, for example. For DAX files, a buffered write will 3985 * not succeed (even if it did, DAX does not handle dirty 3986 * page-cache pages correctly). 3987 */ 3988 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) 3989 goto out; 3990 3991 pos = iocb->ki_pos; 3992 status = generic_perform_write(iocb, from); 3993 /* 3994 * If generic_perform_write() returned a synchronous error 3995 * then we want to return the number of bytes which were 3996 * direct-written, or the error code if that was zero. Note 3997 * that this differs from normal direct-io semantics, which 3998 * will return -EFOO even if some bytes were written. 3999 */ 4000 if (unlikely(status < 0)) { 4001 err = status; 4002 goto out; 4003 } 4004 /* 4005 * We need to ensure that the page cache pages are written to 4006 * disk and invalidated to preserve the expected O_DIRECT 4007 * semantics. 4008 */ 4009 endbyte = pos + status - 1; 4010 err = filemap_write_and_wait_range(mapping, pos, endbyte); 4011 if (err == 0) { 4012 iocb->ki_pos = endbyte + 1; 4013 written += status; 4014 invalidate_mapping_pages(mapping, 4015 pos >> PAGE_SHIFT, 4016 endbyte >> PAGE_SHIFT); 4017 } else { 4018 /* 4019 * We don't know how much we wrote, so just return 4020 * the number of bytes which were direct-written 4021 */ 4022 } 4023 } else { 4024 written = generic_perform_write(iocb, from); 4025 if (likely(written > 0)) 4026 iocb->ki_pos += written; 4027 } 4028 out: 4029 current->backing_dev_info = NULL; 4030 return written ? written : err; 4031 } 4032 EXPORT_SYMBOL(__generic_file_write_iter); 4033 4034 /** 4035 * generic_file_write_iter - write data to a file 4036 * @iocb: IO state structure 4037 * @from: iov_iter with data to write 4038 * 4039 * This is a wrapper around __generic_file_write_iter() to be used by most 4040 * filesystems. It takes care of syncing the file in case of O_SYNC file 4041 * and acquires i_rwsem as needed. 4042 * Return: 4043 * * negative error code if no data has been written at all of 4044 * vfs_fsync_range() failed for a synchronous write 4045 * * number of bytes written, even for truncated writes 4046 */ 4047 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4048 { 4049 struct file *file = iocb->ki_filp; 4050 struct inode *inode = file->f_mapping->host; 4051 ssize_t ret; 4052 4053 inode_lock(inode); 4054 ret = generic_write_checks(iocb, from); 4055 if (ret > 0) 4056 ret = __generic_file_write_iter(iocb, from); 4057 inode_unlock(inode); 4058 4059 if (ret > 0) 4060 ret = generic_write_sync(iocb, ret); 4061 return ret; 4062 } 4063 EXPORT_SYMBOL(generic_file_write_iter); 4064 4065 /** 4066 * filemap_release_folio() - Release fs-specific metadata on a folio. 4067 * @folio: The folio which the kernel is trying to free. 4068 * @gfp: Memory allocation flags (and I/O mode). 4069 * 4070 * The address_space is trying to release any data attached to a folio 4071 * (presumably at folio->private). 4072 * 4073 * This will also be called if the private_2 flag is set on a page, 4074 * indicating that the folio has other metadata associated with it. 4075 * 4076 * The @gfp argument specifies whether I/O may be performed to release 4077 * this page (__GFP_IO), and whether the call may block 4078 * (__GFP_RECLAIM & __GFP_FS). 4079 * 4080 * Return: %true if the release was successful, otherwise %false. 4081 */ 4082 bool filemap_release_folio(struct folio *folio, gfp_t gfp) 4083 { 4084 struct address_space * const mapping = folio->mapping; 4085 4086 BUG_ON(!folio_test_locked(folio)); 4087 if (folio_test_writeback(folio)) 4088 return false; 4089 4090 if (mapping && mapping->a_ops->release_folio) 4091 return mapping->a_ops->release_folio(folio, gfp); 4092 return try_to_free_buffers(folio); 4093 } 4094 EXPORT_SYMBOL(filemap_release_folio); 4095 4096 #ifdef CONFIG_CACHESTAT_SYSCALL 4097 /** 4098 * filemap_cachestat() - compute the page cache statistics of a mapping 4099 * @mapping: The mapping to compute the statistics for. 4100 * @first_index: The starting page cache index. 4101 * @last_index: The final page index (inclusive). 4102 * @cs: the cachestat struct to write the result to. 4103 * 4104 * This will query the page cache statistics of a mapping in the 4105 * page range of [first_index, last_index] (inclusive). The statistics 4106 * queried include: number of dirty pages, number of pages marked for 4107 * writeback, and the number of (recently) evicted pages. 4108 */ 4109 static void filemap_cachestat(struct address_space *mapping, 4110 pgoff_t first_index, pgoff_t last_index, struct cachestat *cs) 4111 { 4112 XA_STATE(xas, &mapping->i_pages, first_index); 4113 struct folio *folio; 4114 4115 rcu_read_lock(); 4116 xas_for_each(&xas, folio, last_index) { 4117 unsigned long nr_pages; 4118 pgoff_t folio_first_index, folio_last_index; 4119 4120 if (xas_retry(&xas, folio)) 4121 continue; 4122 4123 if (xa_is_value(folio)) { 4124 /* page is evicted */ 4125 void *shadow = (void *)folio; 4126 bool workingset; /* not used */ 4127 int order = xa_get_order(xas.xa, xas.xa_index); 4128 4129 nr_pages = 1 << order; 4130 folio_first_index = round_down(xas.xa_index, 1 << order); 4131 folio_last_index = folio_first_index + nr_pages - 1; 4132 4133 /* Folios might straddle the range boundaries, only count covered pages */ 4134 if (folio_first_index < first_index) 4135 nr_pages -= first_index - folio_first_index; 4136 4137 if (folio_last_index > last_index) 4138 nr_pages -= folio_last_index - last_index; 4139 4140 cs->nr_evicted += nr_pages; 4141 4142 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */ 4143 if (shmem_mapping(mapping)) { 4144 /* shmem file - in swap cache */ 4145 swp_entry_t swp = radix_to_swp_entry(folio); 4146 4147 shadow = get_shadow_from_swap_cache(swp); 4148 } 4149 #endif 4150 if (workingset_test_recent(shadow, true, &workingset)) 4151 cs->nr_recently_evicted += nr_pages; 4152 4153 goto resched; 4154 } 4155 4156 nr_pages = folio_nr_pages(folio); 4157 folio_first_index = folio_pgoff(folio); 4158 folio_last_index = folio_first_index + nr_pages - 1; 4159 4160 /* Folios might straddle the range boundaries, only count covered pages */ 4161 if (folio_first_index < first_index) 4162 nr_pages -= first_index - folio_first_index; 4163 4164 if (folio_last_index > last_index) 4165 nr_pages -= folio_last_index - last_index; 4166 4167 /* page is in cache */ 4168 cs->nr_cache += nr_pages; 4169 4170 if (folio_test_dirty(folio)) 4171 cs->nr_dirty += nr_pages; 4172 4173 if (folio_test_writeback(folio)) 4174 cs->nr_writeback += nr_pages; 4175 4176 resched: 4177 if (need_resched()) { 4178 xas_pause(&xas); 4179 cond_resched_rcu(); 4180 } 4181 } 4182 rcu_read_unlock(); 4183 } 4184 4185 /* 4186 * The cachestat(2) system call. 4187 * 4188 * cachestat() returns the page cache statistics of a file in the 4189 * bytes range specified by `off` and `len`: number of cached pages, 4190 * number of dirty pages, number of pages marked for writeback, 4191 * number of evicted pages, and number of recently evicted pages. 4192 * 4193 * An evicted page is a page that is previously in the page cache 4194 * but has been evicted since. A page is recently evicted if its last 4195 * eviction was recent enough that its reentry to the cache would 4196 * indicate that it is actively being used by the system, and that 4197 * there is memory pressure on the system. 4198 * 4199 * `off` and `len` must be non-negative integers. If `len` > 0, 4200 * the queried range is [`off`, `off` + `len`]. If `len` == 0, 4201 * we will query in the range from `off` to the end of the file. 4202 * 4203 * The `flags` argument is unused for now, but is included for future 4204 * extensibility. User should pass 0 (i.e no flag specified). 4205 * 4206 * Currently, hugetlbfs is not supported. 4207 * 4208 * Because the status of a page can change after cachestat() checks it 4209 * but before it returns to the application, the returned values may 4210 * contain stale information. 4211 * 4212 * return values: 4213 * zero - success 4214 * -EFAULT - cstat or cstat_range points to an illegal address 4215 * -EINVAL - invalid flags 4216 * -EBADF - invalid file descriptor 4217 * -EOPNOTSUPP - file descriptor is of a hugetlbfs file 4218 */ 4219 SYSCALL_DEFINE4(cachestat, unsigned int, fd, 4220 struct cachestat_range __user *, cstat_range, 4221 struct cachestat __user *, cstat, unsigned int, flags) 4222 { 4223 struct fd f = fdget(fd); 4224 struct address_space *mapping; 4225 struct cachestat_range csr; 4226 struct cachestat cs; 4227 pgoff_t first_index, last_index; 4228 4229 if (!f.file) 4230 return -EBADF; 4231 4232 if (copy_from_user(&csr, cstat_range, 4233 sizeof(struct cachestat_range))) { 4234 fdput(f); 4235 return -EFAULT; 4236 } 4237 4238 /* hugetlbfs is not supported */ 4239 if (is_file_hugepages(f.file)) { 4240 fdput(f); 4241 return -EOPNOTSUPP; 4242 } 4243 4244 if (flags != 0) { 4245 fdput(f); 4246 return -EINVAL; 4247 } 4248 4249 first_index = csr.off >> PAGE_SHIFT; 4250 last_index = 4251 csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT; 4252 memset(&cs, 0, sizeof(struct cachestat)); 4253 mapping = f.file->f_mapping; 4254 filemap_cachestat(mapping, first_index, last_index, &cs); 4255 fdput(f); 4256 4257 if (copy_to_user(cstat, &cs, sizeof(struct cachestat))) 4258 return -EFAULT; 4259 4260 return 0; 4261 } 4262 #endif /* CONFIG_CACHESTAT_SYSCALL */ 4263