xref: /linux/mm/filemap.c (revision da939ef4c494246bc2102ecb628bbcc71d650410)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/mm/filemap.c
4  *
5  * Copyright (C) 1994-1999  Linus Torvalds
6  */
7 
8 /*
9  * This file handles the generic file mmap semantics used by
10  * most "normal" filesystems (but you don't /have/ to use this:
11  * the NFS filesystem used to do this differently, for example)
12  */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/syscalls.h>
26 #include <linux/mman.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
29 #include <linux/uio.h>
30 #include <linux/error-injection.h>
31 #include <linux/hash.h>
32 #include <linux/writeback.h>
33 #include <linux/backing-dev.h>
34 #include <linux/pagevec.h>
35 #include <linux/security.h>
36 #include <linux/cpuset.h>
37 #include <linux/hugetlb.h>
38 #include <linux/memcontrol.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include <linux/page_idle.h>
45 #include <linux/migrate.h>
46 #include <linux/pipe_fs_i.h>
47 #include <linux/splice.h>
48 #include <linux/rcupdate_wait.h>
49 #include <linux/sched/mm.h>
50 #include <linux/sysctl.h>
51 #include <asm/pgalloc.h>
52 #include <asm/tlbflush.h>
53 #include "internal.h"
54 
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/filemap.h>
57 
58 /*
59  * FIXME: remove all knowledge of the buffer layer from the core VM
60  */
61 #include <linux/buffer_head.h> /* for try_to_free_buffers */
62 
63 #include <asm/mman.h>
64 
65 #include "swap.h"
66 
67 /*
68  * Shared mappings implemented 30.11.1994. It's not fully working yet,
69  * though.
70  *
71  * Shared mappings now work. 15.8.1995  Bruno.
72  *
73  * finished 'unifying' the page and buffer cache and SMP-threaded the
74  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
75  *
76  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
77  */
78 
79 /*
80  * Lock ordering:
81  *
82  *  ->i_mmap_rwsem		(truncate_pagecache)
83  *    ->private_lock		(__free_pte->block_dirty_folio)
84  *      ->swap_lock		(exclusive_swap_page, others)
85  *        ->i_pages lock
86  *
87  *  ->i_rwsem
88  *    ->invalidate_lock		(acquired by fs in truncate path)
89  *      ->i_mmap_rwsem		(truncate->unmap_mapping_range)
90  *
91  *  ->mmap_lock
92  *    ->i_mmap_rwsem
93  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
94  *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
95  *
96  *  ->mmap_lock
97  *    ->invalidate_lock		(filemap_fault)
98  *      ->lock_page		(filemap_fault, access_process_vm)
99  *
100  *  ->i_rwsem			(generic_perform_write)
101  *    ->mmap_lock		(fault_in_readable->do_page_fault)
102  *
103  *  bdi->wb.list_lock
104  *    sb_lock			(fs/fs-writeback.c)
105  *    ->i_pages lock		(__sync_single_inode)
106  *
107  *  ->i_mmap_rwsem
108  *    ->anon_vma.lock		(vma_merge)
109  *
110  *  ->anon_vma.lock
111  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
112  *
113  *  ->page_table_lock or pte_lock
114  *    ->swap_lock		(try_to_unmap_one)
115  *    ->private_lock		(try_to_unmap_one)
116  *    ->i_pages lock		(try_to_unmap_one)
117  *    ->lruvec->lru_lock	(follow_page_mask->mark_page_accessed)
118  *    ->lruvec->lru_lock	(check_pte_range->folio_isolate_lru)
119  *    ->private_lock		(folio_remove_rmap_pte->set_page_dirty)
120  *    ->i_pages lock		(folio_remove_rmap_pte->set_page_dirty)
121  *    bdi.wb->list_lock		(folio_remove_rmap_pte->set_page_dirty)
122  *    ->inode->i_lock		(folio_remove_rmap_pte->set_page_dirty)
123  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
124  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
125  *    ->private_lock		(zap_pte_range->block_dirty_folio)
126  */
127 
128 static void page_cache_delete(struct address_space *mapping,
129 				   struct folio *folio, void *shadow)
130 {
131 	XA_STATE(xas, &mapping->i_pages, folio->index);
132 	long nr = 1;
133 
134 	mapping_set_update(&xas, mapping);
135 
136 	xas_set_order(&xas, folio->index, folio_order(folio));
137 	nr = folio_nr_pages(folio);
138 
139 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
140 
141 	xas_store(&xas, shadow);
142 	xas_init_marks(&xas);
143 
144 	folio->mapping = NULL;
145 	/* Leave folio->index set: truncation lookup relies upon it */
146 	mapping->nrpages -= nr;
147 }
148 
149 static void filemap_unaccount_folio(struct address_space *mapping,
150 		struct folio *folio)
151 {
152 	long nr;
153 
154 	VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
155 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
156 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
157 			 current->comm, folio_pfn(folio));
158 		dump_page(&folio->page, "still mapped when deleted");
159 		dump_stack();
160 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
161 
162 		if (mapping_exiting(mapping) && !folio_test_large(folio)) {
163 			int mapcount = folio_mapcount(folio);
164 
165 			if (folio_ref_count(folio) >= mapcount + 2) {
166 				/*
167 				 * All vmas have already been torn down, so it's
168 				 * a good bet that actually the page is unmapped
169 				 * and we'd rather not leak it: if we're wrong,
170 				 * another bad page check should catch it later.
171 				 */
172 				atomic_set(&folio->_mapcount, -1);
173 				folio_ref_sub(folio, mapcount);
174 			}
175 		}
176 	}
177 
178 	/* hugetlb folios do not participate in page cache accounting. */
179 	if (folio_test_hugetlb(folio))
180 		return;
181 
182 	nr = folio_nr_pages(folio);
183 
184 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
185 	if (folio_test_swapbacked(folio)) {
186 		__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
187 		if (folio_test_pmd_mappable(folio))
188 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
189 	} else if (folio_test_pmd_mappable(folio)) {
190 		__lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
191 		filemap_nr_thps_dec(mapping);
192 	}
193 	if (test_bit(AS_KERNEL_FILE, &folio->mapping->flags))
194 		mod_node_page_state(folio_pgdat(folio),
195 				    NR_KERNEL_FILE_PAGES, -nr);
196 
197 	/*
198 	 * At this point folio must be either written or cleaned by
199 	 * truncate.  Dirty folio here signals a bug and loss of
200 	 * unwritten data - on ordinary filesystems.
201 	 *
202 	 * But it's harmless on in-memory filesystems like tmpfs; and can
203 	 * occur when a driver which did get_user_pages() sets page dirty
204 	 * before putting it, while the inode is being finally evicted.
205 	 *
206 	 * Below fixes dirty accounting after removing the folio entirely
207 	 * but leaves the dirty flag set: it has no effect for truncated
208 	 * folio and anyway will be cleared before returning folio to
209 	 * buddy allocator.
210 	 */
211 	if (WARN_ON_ONCE(folio_test_dirty(folio) &&
212 			 mapping_can_writeback(mapping)))
213 		folio_account_cleaned(folio, inode_to_wb(mapping->host));
214 }
215 
216 /*
217  * Delete a page from the page cache and free it. Caller has to make
218  * sure the page is locked and that nobody else uses it - or that usage
219  * is safe.  The caller must hold the i_pages lock.
220  */
221 void __filemap_remove_folio(struct folio *folio, void *shadow)
222 {
223 	struct address_space *mapping = folio->mapping;
224 
225 	trace_mm_filemap_delete_from_page_cache(folio);
226 	filemap_unaccount_folio(mapping, folio);
227 	page_cache_delete(mapping, folio, shadow);
228 }
229 
230 void filemap_free_folio(struct address_space *mapping, struct folio *folio)
231 {
232 	void (*free_folio)(struct folio *);
233 
234 	free_folio = mapping->a_ops->free_folio;
235 	if (free_folio)
236 		free_folio(folio);
237 
238 	folio_put_refs(folio, folio_nr_pages(folio));
239 }
240 
241 /**
242  * filemap_remove_folio - Remove folio from page cache.
243  * @folio: The folio.
244  *
245  * This must be called only on folios that are locked and have been
246  * verified to be in the page cache.  It will never put the folio into
247  * the free list because the caller has a reference on the page.
248  */
249 void filemap_remove_folio(struct folio *folio)
250 {
251 	struct address_space *mapping = folio->mapping;
252 
253 	BUG_ON(!folio_test_locked(folio));
254 	spin_lock(&mapping->host->i_lock);
255 	xa_lock_irq(&mapping->i_pages);
256 	__filemap_remove_folio(folio, NULL);
257 	xa_unlock_irq(&mapping->i_pages);
258 	if (mapping_shrinkable(mapping))
259 		inode_add_lru(mapping->host);
260 	spin_unlock(&mapping->host->i_lock);
261 
262 	filemap_free_folio(mapping, folio);
263 }
264 
265 /*
266  * page_cache_delete_batch - delete several folios from page cache
267  * @mapping: the mapping to which folios belong
268  * @fbatch: batch of folios to delete
269  *
270  * The function walks over mapping->i_pages and removes folios passed in
271  * @fbatch from the mapping. The function expects @fbatch to be sorted
272  * by page index and is optimised for it to be dense.
273  * It tolerates holes in @fbatch (mapping entries at those indices are not
274  * modified).
275  *
276  * The function expects the i_pages lock to be held.
277  */
278 static void page_cache_delete_batch(struct address_space *mapping,
279 			     struct folio_batch *fbatch)
280 {
281 	XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
282 	long total_pages = 0;
283 	int i = 0;
284 	struct folio *folio;
285 
286 	mapping_set_update(&xas, mapping);
287 	xas_for_each(&xas, folio, ULONG_MAX) {
288 		if (i >= folio_batch_count(fbatch))
289 			break;
290 
291 		/* A swap/dax/shadow entry got inserted? Skip it. */
292 		if (xa_is_value(folio))
293 			continue;
294 		/*
295 		 * A page got inserted in our range? Skip it. We have our
296 		 * pages locked so they are protected from being removed.
297 		 * If we see a page whose index is higher than ours, it
298 		 * means our page has been removed, which shouldn't be
299 		 * possible because we're holding the PageLock.
300 		 */
301 		if (folio != fbatch->folios[i]) {
302 			VM_BUG_ON_FOLIO(folio->index >
303 					fbatch->folios[i]->index, folio);
304 			continue;
305 		}
306 
307 		WARN_ON_ONCE(!folio_test_locked(folio));
308 
309 		folio->mapping = NULL;
310 		/* Leave folio->index set: truncation lookup relies on it */
311 
312 		i++;
313 		xas_store(&xas, NULL);
314 		total_pages += folio_nr_pages(folio);
315 	}
316 	mapping->nrpages -= total_pages;
317 }
318 
319 void delete_from_page_cache_batch(struct address_space *mapping,
320 				  struct folio_batch *fbatch)
321 {
322 	int i;
323 
324 	if (!folio_batch_count(fbatch))
325 		return;
326 
327 	spin_lock(&mapping->host->i_lock);
328 	xa_lock_irq(&mapping->i_pages);
329 	for (i = 0; i < folio_batch_count(fbatch); i++) {
330 		struct folio *folio = fbatch->folios[i];
331 
332 		trace_mm_filemap_delete_from_page_cache(folio);
333 		filemap_unaccount_folio(mapping, folio);
334 	}
335 	page_cache_delete_batch(mapping, fbatch);
336 	xa_unlock_irq(&mapping->i_pages);
337 	if (mapping_shrinkable(mapping))
338 		inode_add_lru(mapping->host);
339 	spin_unlock(&mapping->host->i_lock);
340 
341 	for (i = 0; i < folio_batch_count(fbatch); i++)
342 		filemap_free_folio(mapping, fbatch->folios[i]);
343 }
344 
345 int filemap_check_errors(struct address_space *mapping)
346 {
347 	int ret = 0;
348 	/* Check for outstanding write errors */
349 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
350 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
351 		ret = -ENOSPC;
352 	if (test_bit(AS_EIO, &mapping->flags) &&
353 	    test_and_clear_bit(AS_EIO, &mapping->flags))
354 		ret = -EIO;
355 	return ret;
356 }
357 EXPORT_SYMBOL(filemap_check_errors);
358 
359 static int filemap_check_and_keep_errors(struct address_space *mapping)
360 {
361 	/* Check for outstanding write errors */
362 	if (test_bit(AS_EIO, &mapping->flags))
363 		return -EIO;
364 	if (test_bit(AS_ENOSPC, &mapping->flags))
365 		return -ENOSPC;
366 	return 0;
367 }
368 
369 /**
370  * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
371  * @mapping:	address space structure to write
372  * @wbc:	the writeback_control controlling the writeout
373  *
374  * Call writepages on the mapping using the provided wbc to control the
375  * writeout.
376  *
377  * Return: %0 on success, negative error code otherwise.
378  */
379 int filemap_fdatawrite_wbc(struct address_space *mapping,
380 			   struct writeback_control *wbc)
381 {
382 	int ret;
383 
384 	if (!mapping_can_writeback(mapping) ||
385 	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
386 		return 0;
387 
388 	wbc_attach_fdatawrite_inode(wbc, mapping->host);
389 	ret = do_writepages(mapping, wbc);
390 	wbc_detach_inode(wbc);
391 	return ret;
392 }
393 EXPORT_SYMBOL(filemap_fdatawrite_wbc);
394 
395 /**
396  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
397  * @mapping:	address space structure to write
398  * @start:	offset in bytes where the range starts
399  * @end:	offset in bytes where the range ends (inclusive)
400  * @sync_mode:	enable synchronous operation
401  *
402  * Start writeback against all of a mapping's dirty pages that lie
403  * within the byte offsets <start, end> inclusive.
404  *
405  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
406  * opposed to a regular memory cleansing writeback.  The difference between
407  * these two operations is that if a dirty page/buffer is encountered, it must
408  * be waited upon, and not just skipped over.
409  *
410  * Return: %0 on success, negative error code otherwise.
411  */
412 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
413 				loff_t end, int sync_mode)
414 {
415 	struct writeback_control wbc = {
416 		.sync_mode = sync_mode,
417 		.nr_to_write = LONG_MAX,
418 		.range_start = start,
419 		.range_end = end,
420 	};
421 
422 	return filemap_fdatawrite_wbc(mapping, &wbc);
423 }
424 
425 static inline int __filemap_fdatawrite(struct address_space *mapping,
426 	int sync_mode)
427 {
428 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
429 }
430 
431 int filemap_fdatawrite(struct address_space *mapping)
432 {
433 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
434 }
435 EXPORT_SYMBOL(filemap_fdatawrite);
436 
437 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
438 				loff_t end)
439 {
440 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
441 }
442 EXPORT_SYMBOL(filemap_fdatawrite_range);
443 
444 /**
445  * filemap_fdatawrite_range_kick - start writeback on a range
446  * @mapping:	target address_space
447  * @start:	index to start writeback on
448  * @end:	last (inclusive) index for writeback
449  *
450  * This is a non-integrity writeback helper, to start writing back folios
451  * for the indicated range.
452  *
453  * Return: %0 on success, negative error code otherwise.
454  */
455 int filemap_fdatawrite_range_kick(struct address_space *mapping, loff_t start,
456 				  loff_t end)
457 {
458 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_NONE);
459 }
460 EXPORT_SYMBOL_GPL(filemap_fdatawrite_range_kick);
461 
462 /**
463  * filemap_flush - mostly a non-blocking flush
464  * @mapping:	target address_space
465  *
466  * This is a mostly non-blocking flush.  Not suitable for data-integrity
467  * purposes - I/O may not be started against all dirty pages.
468  *
469  * Return: %0 on success, negative error code otherwise.
470  */
471 int filemap_flush(struct address_space *mapping)
472 {
473 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
474 }
475 EXPORT_SYMBOL(filemap_flush);
476 
477 /**
478  * filemap_range_has_page - check if a page exists in range.
479  * @mapping:           address space within which to check
480  * @start_byte:        offset in bytes where the range starts
481  * @end_byte:          offset in bytes where the range ends (inclusive)
482  *
483  * Find at least one page in the range supplied, usually used to check if
484  * direct writing in this range will trigger a writeback.
485  *
486  * Return: %true if at least one page exists in the specified range,
487  * %false otherwise.
488  */
489 bool filemap_range_has_page(struct address_space *mapping,
490 			   loff_t start_byte, loff_t end_byte)
491 {
492 	struct folio *folio;
493 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
494 	pgoff_t max = end_byte >> PAGE_SHIFT;
495 
496 	if (end_byte < start_byte)
497 		return false;
498 
499 	rcu_read_lock();
500 	for (;;) {
501 		folio = xas_find(&xas, max);
502 		if (xas_retry(&xas, folio))
503 			continue;
504 		/* Shadow entries don't count */
505 		if (xa_is_value(folio))
506 			continue;
507 		/*
508 		 * We don't need to try to pin this page; we're about to
509 		 * release the RCU lock anyway.  It is enough to know that
510 		 * there was a page here recently.
511 		 */
512 		break;
513 	}
514 	rcu_read_unlock();
515 
516 	return folio != NULL;
517 }
518 EXPORT_SYMBOL(filemap_range_has_page);
519 
520 static void __filemap_fdatawait_range(struct address_space *mapping,
521 				     loff_t start_byte, loff_t end_byte)
522 {
523 	pgoff_t index = start_byte >> PAGE_SHIFT;
524 	pgoff_t end = end_byte >> PAGE_SHIFT;
525 	struct folio_batch fbatch;
526 	unsigned nr_folios;
527 
528 	folio_batch_init(&fbatch);
529 
530 	while (index <= end) {
531 		unsigned i;
532 
533 		nr_folios = filemap_get_folios_tag(mapping, &index, end,
534 				PAGECACHE_TAG_WRITEBACK, &fbatch);
535 
536 		if (!nr_folios)
537 			break;
538 
539 		for (i = 0; i < nr_folios; i++) {
540 			struct folio *folio = fbatch.folios[i];
541 
542 			folio_wait_writeback(folio);
543 		}
544 		folio_batch_release(&fbatch);
545 		cond_resched();
546 	}
547 }
548 
549 /**
550  * filemap_fdatawait_range - wait for writeback to complete
551  * @mapping:		address space structure to wait for
552  * @start_byte:		offset in bytes where the range starts
553  * @end_byte:		offset in bytes where the range ends (inclusive)
554  *
555  * Walk the list of under-writeback pages of the given address space
556  * in the given range and wait for all of them.  Check error status of
557  * the address space and return it.
558  *
559  * Since the error status of the address space is cleared by this function,
560  * callers are responsible for checking the return value and handling and/or
561  * reporting the error.
562  *
563  * Return: error status of the address space.
564  */
565 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
566 			    loff_t end_byte)
567 {
568 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
569 	return filemap_check_errors(mapping);
570 }
571 EXPORT_SYMBOL(filemap_fdatawait_range);
572 
573 /**
574  * filemap_fdatawait_range_keep_errors - wait for writeback to complete
575  * @mapping:		address space structure to wait for
576  * @start_byte:		offset in bytes where the range starts
577  * @end_byte:		offset in bytes where the range ends (inclusive)
578  *
579  * Walk the list of under-writeback pages of the given address space in the
580  * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
581  * this function does not clear error status of the address space.
582  *
583  * Use this function if callers don't handle errors themselves.  Expected
584  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
585  * fsfreeze(8)
586  */
587 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
588 		loff_t start_byte, loff_t end_byte)
589 {
590 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
591 	return filemap_check_and_keep_errors(mapping);
592 }
593 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
594 
595 /**
596  * file_fdatawait_range - wait for writeback to complete
597  * @file:		file pointing to address space structure to wait for
598  * @start_byte:		offset in bytes where the range starts
599  * @end_byte:		offset in bytes where the range ends (inclusive)
600  *
601  * Walk the list of under-writeback pages of the address space that file
602  * refers to, in the given range and wait for all of them.  Check error
603  * status of the address space vs. the file->f_wb_err cursor and return it.
604  *
605  * Since the error status of the file is advanced by this function,
606  * callers are responsible for checking the return value and handling and/or
607  * reporting the error.
608  *
609  * Return: error status of the address space vs. the file->f_wb_err cursor.
610  */
611 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
612 {
613 	struct address_space *mapping = file->f_mapping;
614 
615 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
616 	return file_check_and_advance_wb_err(file);
617 }
618 EXPORT_SYMBOL(file_fdatawait_range);
619 
620 /**
621  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
622  * @mapping: address space structure to wait for
623  *
624  * Walk the list of under-writeback pages of the given address space
625  * and wait for all of them.  Unlike filemap_fdatawait(), this function
626  * does not clear error status of the address space.
627  *
628  * Use this function if callers don't handle errors themselves.  Expected
629  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
630  * fsfreeze(8)
631  *
632  * Return: error status of the address space.
633  */
634 int filemap_fdatawait_keep_errors(struct address_space *mapping)
635 {
636 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
637 	return filemap_check_and_keep_errors(mapping);
638 }
639 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
640 
641 /* Returns true if writeback might be needed or already in progress. */
642 static bool mapping_needs_writeback(struct address_space *mapping)
643 {
644 	return mapping->nrpages;
645 }
646 
647 bool filemap_range_has_writeback(struct address_space *mapping,
648 				 loff_t start_byte, loff_t end_byte)
649 {
650 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
651 	pgoff_t max = end_byte >> PAGE_SHIFT;
652 	struct folio *folio;
653 
654 	if (end_byte < start_byte)
655 		return false;
656 
657 	rcu_read_lock();
658 	xas_for_each(&xas, folio, max) {
659 		if (xas_retry(&xas, folio))
660 			continue;
661 		if (xa_is_value(folio))
662 			continue;
663 		if (folio_test_dirty(folio) || folio_test_locked(folio) ||
664 				folio_test_writeback(folio))
665 			break;
666 	}
667 	rcu_read_unlock();
668 	return folio != NULL;
669 }
670 EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
671 
672 /**
673  * filemap_write_and_wait_range - write out & wait on a file range
674  * @mapping:	the address_space for the pages
675  * @lstart:	offset in bytes where the range starts
676  * @lend:	offset in bytes where the range ends (inclusive)
677  *
678  * Write out and wait upon file offsets lstart->lend, inclusive.
679  *
680  * Note that @lend is inclusive (describes the last byte to be written) so
681  * that this function can be used to write to the very end-of-file (end = -1).
682  *
683  * Return: error status of the address space.
684  */
685 int filemap_write_and_wait_range(struct address_space *mapping,
686 				 loff_t lstart, loff_t lend)
687 {
688 	int err = 0, err2;
689 
690 	if (lend < lstart)
691 		return 0;
692 
693 	if (mapping_needs_writeback(mapping)) {
694 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
695 						 WB_SYNC_ALL);
696 		/*
697 		 * Even if the above returned error, the pages may be
698 		 * written partially (e.g. -ENOSPC), so we wait for it.
699 		 * But the -EIO is special case, it may indicate the worst
700 		 * thing (e.g. bug) happened, so we avoid waiting for it.
701 		 */
702 		if (err != -EIO)
703 			__filemap_fdatawait_range(mapping, lstart, lend);
704 	}
705 	err2 = filemap_check_errors(mapping);
706 	if (!err)
707 		err = err2;
708 	return err;
709 }
710 EXPORT_SYMBOL(filemap_write_and_wait_range);
711 
712 void __filemap_set_wb_err(struct address_space *mapping, int err)
713 {
714 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
715 
716 	trace_filemap_set_wb_err(mapping, eseq);
717 }
718 EXPORT_SYMBOL(__filemap_set_wb_err);
719 
720 /**
721  * file_check_and_advance_wb_err - report wb error (if any) that was previously
722  * 				   and advance wb_err to current one
723  * @file: struct file on which the error is being reported
724  *
725  * When userland calls fsync (or something like nfsd does the equivalent), we
726  * want to report any writeback errors that occurred since the last fsync (or
727  * since the file was opened if there haven't been any).
728  *
729  * Grab the wb_err from the mapping. If it matches what we have in the file,
730  * then just quickly return 0. The file is all caught up.
731  *
732  * If it doesn't match, then take the mapping value, set the "seen" flag in
733  * it and try to swap it into place. If it works, or another task beat us
734  * to it with the new value, then update the f_wb_err and return the error
735  * portion. The error at this point must be reported via proper channels
736  * (a'la fsync, or NFS COMMIT operation, etc.).
737  *
738  * While we handle mapping->wb_err with atomic operations, the f_wb_err
739  * value is protected by the f_lock since we must ensure that it reflects
740  * the latest value swapped in for this file descriptor.
741  *
742  * Return: %0 on success, negative error code otherwise.
743  */
744 int file_check_and_advance_wb_err(struct file *file)
745 {
746 	int err = 0;
747 	errseq_t old = READ_ONCE(file->f_wb_err);
748 	struct address_space *mapping = file->f_mapping;
749 
750 	/* Locklessly handle the common case where nothing has changed */
751 	if (errseq_check(&mapping->wb_err, old)) {
752 		/* Something changed, must use slow path */
753 		spin_lock(&file->f_lock);
754 		old = file->f_wb_err;
755 		err = errseq_check_and_advance(&mapping->wb_err,
756 						&file->f_wb_err);
757 		trace_file_check_and_advance_wb_err(file, old);
758 		spin_unlock(&file->f_lock);
759 	}
760 
761 	/*
762 	 * We're mostly using this function as a drop in replacement for
763 	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
764 	 * that the legacy code would have had on these flags.
765 	 */
766 	clear_bit(AS_EIO, &mapping->flags);
767 	clear_bit(AS_ENOSPC, &mapping->flags);
768 	return err;
769 }
770 EXPORT_SYMBOL(file_check_and_advance_wb_err);
771 
772 /**
773  * file_write_and_wait_range - write out & wait on a file range
774  * @file:	file pointing to address_space with pages
775  * @lstart:	offset in bytes where the range starts
776  * @lend:	offset in bytes where the range ends (inclusive)
777  *
778  * Write out and wait upon file offsets lstart->lend, inclusive.
779  *
780  * Note that @lend is inclusive (describes the last byte to be written) so
781  * that this function can be used to write to the very end-of-file (end = -1).
782  *
783  * After writing out and waiting on the data, we check and advance the
784  * f_wb_err cursor to the latest value, and return any errors detected there.
785  *
786  * Return: %0 on success, negative error code otherwise.
787  */
788 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
789 {
790 	int err = 0, err2;
791 	struct address_space *mapping = file->f_mapping;
792 
793 	if (lend < lstart)
794 		return 0;
795 
796 	if (mapping_needs_writeback(mapping)) {
797 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
798 						 WB_SYNC_ALL);
799 		/* See comment of filemap_write_and_wait() */
800 		if (err != -EIO)
801 			__filemap_fdatawait_range(mapping, lstart, lend);
802 	}
803 	err2 = file_check_and_advance_wb_err(file);
804 	if (!err)
805 		err = err2;
806 	return err;
807 }
808 EXPORT_SYMBOL(file_write_and_wait_range);
809 
810 /**
811  * replace_page_cache_folio - replace a pagecache folio with a new one
812  * @old:	folio to be replaced
813  * @new:	folio to replace with
814  *
815  * This function replaces a folio in the pagecache with a new one.  On
816  * success it acquires the pagecache reference for the new folio and
817  * drops it for the old folio.  Both the old and new folios must be
818  * locked.  This function does not add the new folio to the LRU, the
819  * caller must do that.
820  *
821  * The remove + add is atomic.  This function cannot fail.
822  */
823 void replace_page_cache_folio(struct folio *old, struct folio *new)
824 {
825 	struct address_space *mapping = old->mapping;
826 	void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
827 	pgoff_t offset = old->index;
828 	XA_STATE(xas, &mapping->i_pages, offset);
829 
830 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
831 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
832 	VM_BUG_ON_FOLIO(new->mapping, new);
833 
834 	folio_get(new);
835 	new->mapping = mapping;
836 	new->index = offset;
837 
838 	mem_cgroup_replace_folio(old, new);
839 
840 	xas_lock_irq(&xas);
841 	xas_store(&xas, new);
842 
843 	old->mapping = NULL;
844 	/* hugetlb pages do not participate in page cache accounting. */
845 	if (!folio_test_hugetlb(old))
846 		__lruvec_stat_sub_folio(old, NR_FILE_PAGES);
847 	if (!folio_test_hugetlb(new))
848 		__lruvec_stat_add_folio(new, NR_FILE_PAGES);
849 	if (folio_test_swapbacked(old))
850 		__lruvec_stat_sub_folio(old, NR_SHMEM);
851 	if (folio_test_swapbacked(new))
852 		__lruvec_stat_add_folio(new, NR_SHMEM);
853 	xas_unlock_irq(&xas);
854 	if (free_folio)
855 		free_folio(old);
856 	folio_put(old);
857 }
858 EXPORT_SYMBOL_GPL(replace_page_cache_folio);
859 
860 noinline int __filemap_add_folio(struct address_space *mapping,
861 		struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
862 {
863 	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
864 	bool huge;
865 	long nr;
866 	unsigned int forder = folio_order(folio);
867 
868 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
869 	VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
870 	VM_BUG_ON_FOLIO(folio_order(folio) < mapping_min_folio_order(mapping),
871 			folio);
872 	mapping_set_update(&xas, mapping);
873 
874 	VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
875 	huge = folio_test_hugetlb(folio);
876 	nr = folio_nr_pages(folio);
877 
878 	gfp &= GFP_RECLAIM_MASK;
879 	folio_ref_add(folio, nr);
880 	folio->mapping = mapping;
881 	folio->index = xas.xa_index;
882 
883 	for (;;) {
884 		int order = -1;
885 		void *entry, *old = NULL;
886 
887 		xas_lock_irq(&xas);
888 		xas_for_each_conflict(&xas, entry) {
889 			old = entry;
890 			if (!xa_is_value(entry)) {
891 				xas_set_err(&xas, -EEXIST);
892 				goto unlock;
893 			}
894 			/*
895 			 * If a larger entry exists,
896 			 * it will be the first and only entry iterated.
897 			 */
898 			if (order == -1)
899 				order = xas_get_order(&xas);
900 		}
901 
902 		if (old) {
903 			if (order > 0 && order > forder) {
904 				unsigned int split_order = max(forder,
905 						xas_try_split_min_order(order));
906 
907 				/* How to handle large swap entries? */
908 				BUG_ON(shmem_mapping(mapping));
909 
910 				while (order > forder) {
911 					xas_set_order(&xas, index, split_order);
912 					xas_try_split(&xas, old, order);
913 					if (xas_error(&xas))
914 						goto unlock;
915 					order = split_order;
916 					split_order =
917 						max(xas_try_split_min_order(
918 							    split_order),
919 						    forder);
920 				}
921 				xas_reset(&xas);
922 			}
923 			if (shadowp)
924 				*shadowp = old;
925 		}
926 
927 		xas_store(&xas, folio);
928 		if (xas_error(&xas))
929 			goto unlock;
930 
931 		mapping->nrpages += nr;
932 
933 		/* hugetlb pages do not participate in page cache accounting */
934 		if (!huge) {
935 			__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
936 			if (folio_test_pmd_mappable(folio))
937 				__lruvec_stat_mod_folio(folio,
938 						NR_FILE_THPS, nr);
939 		}
940 
941 unlock:
942 		xas_unlock_irq(&xas);
943 
944 		if (!xas_nomem(&xas, gfp))
945 			break;
946 	}
947 
948 	if (xas_error(&xas))
949 		goto error;
950 
951 	trace_mm_filemap_add_to_page_cache(folio);
952 	return 0;
953 error:
954 	folio->mapping = NULL;
955 	/* Leave folio->index set: truncation relies upon it */
956 	folio_put_refs(folio, nr);
957 	return xas_error(&xas);
958 }
959 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
960 
961 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
962 				pgoff_t index, gfp_t gfp)
963 {
964 	void *shadow = NULL;
965 	int ret;
966 	struct mem_cgroup *tmp;
967 	bool kernel_file = test_bit(AS_KERNEL_FILE, &mapping->flags);
968 
969 	if (kernel_file)
970 		tmp = set_active_memcg(root_mem_cgroup);
971 	ret = mem_cgroup_charge(folio, NULL, gfp);
972 	if (kernel_file)
973 		set_active_memcg(tmp);
974 	if (ret)
975 		return ret;
976 
977 	__folio_set_locked(folio);
978 	ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
979 	if (unlikely(ret)) {
980 		mem_cgroup_uncharge(folio);
981 		__folio_clear_locked(folio);
982 	} else {
983 		/*
984 		 * The folio might have been evicted from cache only
985 		 * recently, in which case it should be activated like
986 		 * any other repeatedly accessed folio.
987 		 * The exception is folios getting rewritten; evicting other
988 		 * data from the working set, only to cache data that will
989 		 * get overwritten with something else, is a waste of memory.
990 		 */
991 		WARN_ON_ONCE(folio_test_active(folio));
992 		if (!(gfp & __GFP_WRITE) && shadow)
993 			workingset_refault(folio, shadow);
994 		folio_add_lru(folio);
995 		if (kernel_file)
996 			mod_node_page_state(folio_pgdat(folio),
997 					    NR_KERNEL_FILE_PAGES,
998 					    folio_nr_pages(folio));
999 	}
1000 	return ret;
1001 }
1002 EXPORT_SYMBOL_GPL(filemap_add_folio);
1003 
1004 #ifdef CONFIG_NUMA
1005 struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order)
1006 {
1007 	int n;
1008 	struct folio *folio;
1009 
1010 	if (cpuset_do_page_mem_spread()) {
1011 		unsigned int cpuset_mems_cookie;
1012 		do {
1013 			cpuset_mems_cookie = read_mems_allowed_begin();
1014 			n = cpuset_mem_spread_node();
1015 			folio = __folio_alloc_node_noprof(gfp, order, n);
1016 		} while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
1017 
1018 		return folio;
1019 	}
1020 	return folio_alloc_noprof(gfp, order);
1021 }
1022 EXPORT_SYMBOL(filemap_alloc_folio_noprof);
1023 #endif
1024 
1025 /*
1026  * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
1027  *
1028  * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
1029  *
1030  * @mapping1: the first mapping to lock
1031  * @mapping2: the second mapping to lock
1032  */
1033 void filemap_invalidate_lock_two(struct address_space *mapping1,
1034 				 struct address_space *mapping2)
1035 {
1036 	if (mapping1 > mapping2)
1037 		swap(mapping1, mapping2);
1038 	if (mapping1)
1039 		down_write(&mapping1->invalidate_lock);
1040 	if (mapping2 && mapping1 != mapping2)
1041 		down_write_nested(&mapping2->invalidate_lock, 1);
1042 }
1043 EXPORT_SYMBOL(filemap_invalidate_lock_two);
1044 
1045 /*
1046  * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1047  *
1048  * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1049  *
1050  * @mapping1: the first mapping to unlock
1051  * @mapping2: the second mapping to unlock
1052  */
1053 void filemap_invalidate_unlock_two(struct address_space *mapping1,
1054 				   struct address_space *mapping2)
1055 {
1056 	if (mapping1)
1057 		up_write(&mapping1->invalidate_lock);
1058 	if (mapping2 && mapping1 != mapping2)
1059 		up_write(&mapping2->invalidate_lock);
1060 }
1061 EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1062 
1063 /*
1064  * In order to wait for pages to become available there must be
1065  * waitqueues associated with pages. By using a hash table of
1066  * waitqueues where the bucket discipline is to maintain all
1067  * waiters on the same queue and wake all when any of the pages
1068  * become available, and for the woken contexts to check to be
1069  * sure the appropriate page became available, this saves space
1070  * at a cost of "thundering herd" phenomena during rare hash
1071  * collisions.
1072  */
1073 #define PAGE_WAIT_TABLE_BITS 8
1074 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1075 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1076 
1077 static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1078 {
1079 	return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1080 }
1081 
1082 /* How many times do we accept lock stealing from under a waiter? */
1083 static int sysctl_page_lock_unfairness = 5;
1084 static const struct ctl_table filemap_sysctl_table[] = {
1085 	{
1086 		.procname	= "page_lock_unfairness",
1087 		.data		= &sysctl_page_lock_unfairness,
1088 		.maxlen		= sizeof(sysctl_page_lock_unfairness),
1089 		.mode		= 0644,
1090 		.proc_handler	= proc_dointvec_minmax,
1091 		.extra1		= SYSCTL_ZERO,
1092 	}
1093 };
1094 
1095 void __init pagecache_init(void)
1096 {
1097 	int i;
1098 
1099 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1100 		init_waitqueue_head(&folio_wait_table[i]);
1101 
1102 	page_writeback_init();
1103 	register_sysctl_init("vm", filemap_sysctl_table);
1104 }
1105 
1106 /*
1107  * The page wait code treats the "wait->flags" somewhat unusually, because
1108  * we have multiple different kinds of waits, not just the usual "exclusive"
1109  * one.
1110  *
1111  * We have:
1112  *
1113  *  (a) no special bits set:
1114  *
1115  *	We're just waiting for the bit to be released, and when a waker
1116  *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1117  *	and remove it from the wait queue.
1118  *
1119  *	Simple and straightforward.
1120  *
1121  *  (b) WQ_FLAG_EXCLUSIVE:
1122  *
1123  *	The waiter is waiting to get the lock, and only one waiter should
1124  *	be woken up to avoid any thundering herd behavior. We'll set the
1125  *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1126  *
1127  *	This is the traditional exclusive wait.
1128  *
1129  *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1130  *
1131  *	The waiter is waiting to get the bit, and additionally wants the
1132  *	lock to be transferred to it for fair lock behavior. If the lock
1133  *	cannot be taken, we stop walking the wait queue without waking
1134  *	the waiter.
1135  *
1136  *	This is the "fair lock handoff" case, and in addition to setting
1137  *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1138  *	that it now has the lock.
1139  */
1140 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1141 {
1142 	unsigned int flags;
1143 	struct wait_page_key *key = arg;
1144 	struct wait_page_queue *wait_page
1145 		= container_of(wait, struct wait_page_queue, wait);
1146 
1147 	if (!wake_page_match(wait_page, key))
1148 		return 0;
1149 
1150 	/*
1151 	 * If it's a lock handoff wait, we get the bit for it, and
1152 	 * stop walking (and do not wake it up) if we can't.
1153 	 */
1154 	flags = wait->flags;
1155 	if (flags & WQ_FLAG_EXCLUSIVE) {
1156 		if (test_bit(key->bit_nr, &key->folio->flags.f))
1157 			return -1;
1158 		if (flags & WQ_FLAG_CUSTOM) {
1159 			if (test_and_set_bit(key->bit_nr, &key->folio->flags.f))
1160 				return -1;
1161 			flags |= WQ_FLAG_DONE;
1162 		}
1163 	}
1164 
1165 	/*
1166 	 * We are holding the wait-queue lock, but the waiter that
1167 	 * is waiting for this will be checking the flags without
1168 	 * any locking.
1169 	 *
1170 	 * So update the flags atomically, and wake up the waiter
1171 	 * afterwards to avoid any races. This store-release pairs
1172 	 * with the load-acquire in folio_wait_bit_common().
1173 	 */
1174 	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1175 	wake_up_state(wait->private, mode);
1176 
1177 	/*
1178 	 * Ok, we have successfully done what we're waiting for,
1179 	 * and we can unconditionally remove the wait entry.
1180 	 *
1181 	 * Note that this pairs with the "finish_wait()" in the
1182 	 * waiter, and has to be the absolute last thing we do.
1183 	 * After this list_del_init(&wait->entry) the wait entry
1184 	 * might be de-allocated and the process might even have
1185 	 * exited.
1186 	 */
1187 	list_del_init_careful(&wait->entry);
1188 	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1189 }
1190 
1191 static void folio_wake_bit(struct folio *folio, int bit_nr)
1192 {
1193 	wait_queue_head_t *q = folio_waitqueue(folio);
1194 	struct wait_page_key key;
1195 	unsigned long flags;
1196 
1197 	key.folio = folio;
1198 	key.bit_nr = bit_nr;
1199 	key.page_match = 0;
1200 
1201 	spin_lock_irqsave(&q->lock, flags);
1202 	__wake_up_locked_key(q, TASK_NORMAL, &key);
1203 
1204 	/*
1205 	 * It's possible to miss clearing waiters here, when we woke our page
1206 	 * waiters, but the hashed waitqueue has waiters for other pages on it.
1207 	 * That's okay, it's a rare case. The next waker will clear it.
1208 	 *
1209 	 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1210 	 * other), the flag may be cleared in the course of freeing the page;
1211 	 * but that is not required for correctness.
1212 	 */
1213 	if (!waitqueue_active(q) || !key.page_match)
1214 		folio_clear_waiters(folio);
1215 
1216 	spin_unlock_irqrestore(&q->lock, flags);
1217 }
1218 
1219 /*
1220  * A choice of three behaviors for folio_wait_bit_common():
1221  */
1222 enum behavior {
1223 	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1224 			 * __folio_lock() waiting on then setting PG_locked.
1225 			 */
1226 	SHARED,		/* Hold ref to page and check the bit when woken, like
1227 			 * folio_wait_writeback() waiting on PG_writeback.
1228 			 */
1229 	DROP,		/* Drop ref to page before wait, no check when woken,
1230 			 * like folio_put_wait_locked() on PG_locked.
1231 			 */
1232 };
1233 
1234 /*
1235  * Attempt to check (or get) the folio flag, and mark us done
1236  * if successful.
1237  */
1238 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1239 					struct wait_queue_entry *wait)
1240 {
1241 	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1242 		if (test_and_set_bit(bit_nr, &folio->flags.f))
1243 			return false;
1244 	} else if (test_bit(bit_nr, &folio->flags.f))
1245 		return false;
1246 
1247 	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1248 	return true;
1249 }
1250 
1251 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1252 		int state, enum behavior behavior)
1253 {
1254 	wait_queue_head_t *q = folio_waitqueue(folio);
1255 	int unfairness = sysctl_page_lock_unfairness;
1256 	struct wait_page_queue wait_page;
1257 	wait_queue_entry_t *wait = &wait_page.wait;
1258 	bool thrashing = false;
1259 	unsigned long pflags;
1260 	bool in_thrashing;
1261 
1262 	if (bit_nr == PG_locked &&
1263 	    !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1264 		delayacct_thrashing_start(&in_thrashing);
1265 		psi_memstall_enter(&pflags);
1266 		thrashing = true;
1267 	}
1268 
1269 	init_wait(wait);
1270 	wait->func = wake_page_function;
1271 	wait_page.folio = folio;
1272 	wait_page.bit_nr = bit_nr;
1273 
1274 repeat:
1275 	wait->flags = 0;
1276 	if (behavior == EXCLUSIVE) {
1277 		wait->flags = WQ_FLAG_EXCLUSIVE;
1278 		if (--unfairness < 0)
1279 			wait->flags |= WQ_FLAG_CUSTOM;
1280 	}
1281 
1282 	/*
1283 	 * Do one last check whether we can get the
1284 	 * page bit synchronously.
1285 	 *
1286 	 * Do the folio_set_waiters() marking before that
1287 	 * to let any waker we _just_ missed know they
1288 	 * need to wake us up (otherwise they'll never
1289 	 * even go to the slow case that looks at the
1290 	 * page queue), and add ourselves to the wait
1291 	 * queue if we need to sleep.
1292 	 *
1293 	 * This part needs to be done under the queue
1294 	 * lock to avoid races.
1295 	 */
1296 	spin_lock_irq(&q->lock);
1297 	folio_set_waiters(folio);
1298 	if (!folio_trylock_flag(folio, bit_nr, wait))
1299 		__add_wait_queue_entry_tail(q, wait);
1300 	spin_unlock_irq(&q->lock);
1301 
1302 	/*
1303 	 * From now on, all the logic will be based on
1304 	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1305 	 * see whether the page bit testing has already
1306 	 * been done by the wake function.
1307 	 *
1308 	 * We can drop our reference to the folio.
1309 	 */
1310 	if (behavior == DROP)
1311 		folio_put(folio);
1312 
1313 	/*
1314 	 * Note that until the "finish_wait()", or until
1315 	 * we see the WQ_FLAG_WOKEN flag, we need to
1316 	 * be very careful with the 'wait->flags', because
1317 	 * we may race with a waker that sets them.
1318 	 */
1319 	for (;;) {
1320 		unsigned int flags;
1321 
1322 		set_current_state(state);
1323 
1324 		/* Loop until we've been woken or interrupted */
1325 		flags = smp_load_acquire(&wait->flags);
1326 		if (!(flags & WQ_FLAG_WOKEN)) {
1327 			if (signal_pending_state(state, current))
1328 				break;
1329 
1330 			io_schedule();
1331 			continue;
1332 		}
1333 
1334 		/* If we were non-exclusive, we're done */
1335 		if (behavior != EXCLUSIVE)
1336 			break;
1337 
1338 		/* If the waker got the lock for us, we're done */
1339 		if (flags & WQ_FLAG_DONE)
1340 			break;
1341 
1342 		/*
1343 		 * Otherwise, if we're getting the lock, we need to
1344 		 * try to get it ourselves.
1345 		 *
1346 		 * And if that fails, we'll have to retry this all.
1347 		 */
1348 		if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1349 			goto repeat;
1350 
1351 		wait->flags |= WQ_FLAG_DONE;
1352 		break;
1353 	}
1354 
1355 	/*
1356 	 * If a signal happened, this 'finish_wait()' may remove the last
1357 	 * waiter from the wait-queues, but the folio waiters bit will remain
1358 	 * set. That's ok. The next wakeup will take care of it, and trying
1359 	 * to do it here would be difficult and prone to races.
1360 	 */
1361 	finish_wait(q, wait);
1362 
1363 	if (thrashing) {
1364 		delayacct_thrashing_end(&in_thrashing);
1365 		psi_memstall_leave(&pflags);
1366 	}
1367 
1368 	/*
1369 	 * NOTE! The wait->flags weren't stable until we've done the
1370 	 * 'finish_wait()', and we could have exited the loop above due
1371 	 * to a signal, and had a wakeup event happen after the signal
1372 	 * test but before the 'finish_wait()'.
1373 	 *
1374 	 * So only after the finish_wait() can we reliably determine
1375 	 * if we got woken up or not, so we can now figure out the final
1376 	 * return value based on that state without races.
1377 	 *
1378 	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1379 	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1380 	 */
1381 	if (behavior == EXCLUSIVE)
1382 		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1383 
1384 	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1385 }
1386 
1387 #ifdef CONFIG_MIGRATION
1388 /**
1389  * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1390  * @entry: migration swap entry.
1391  * @ptl: already locked ptl. This function will drop the lock.
1392  *
1393  * Wait for a migration entry referencing the given page to be removed. This is
1394  * equivalent to folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE) except
1395  * this can be called without taking a reference on the page. Instead this
1396  * should be called while holding the ptl for the migration entry referencing
1397  * the page.
1398  *
1399  * Returns after unlocking the ptl.
1400  *
1401  * This follows the same logic as folio_wait_bit_common() so see the comments
1402  * there.
1403  */
1404 void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl)
1405 	__releases(ptl)
1406 {
1407 	struct wait_page_queue wait_page;
1408 	wait_queue_entry_t *wait = &wait_page.wait;
1409 	bool thrashing = false;
1410 	unsigned long pflags;
1411 	bool in_thrashing;
1412 	wait_queue_head_t *q;
1413 	struct folio *folio = pfn_swap_entry_folio(entry);
1414 
1415 	q = folio_waitqueue(folio);
1416 	if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1417 		delayacct_thrashing_start(&in_thrashing);
1418 		psi_memstall_enter(&pflags);
1419 		thrashing = true;
1420 	}
1421 
1422 	init_wait(wait);
1423 	wait->func = wake_page_function;
1424 	wait_page.folio = folio;
1425 	wait_page.bit_nr = PG_locked;
1426 	wait->flags = 0;
1427 
1428 	spin_lock_irq(&q->lock);
1429 	folio_set_waiters(folio);
1430 	if (!folio_trylock_flag(folio, PG_locked, wait))
1431 		__add_wait_queue_entry_tail(q, wait);
1432 	spin_unlock_irq(&q->lock);
1433 
1434 	/*
1435 	 * If a migration entry exists for the page the migration path must hold
1436 	 * a valid reference to the page, and it must take the ptl to remove the
1437 	 * migration entry. So the page is valid until the ptl is dropped.
1438 	 */
1439 	spin_unlock(ptl);
1440 
1441 	for (;;) {
1442 		unsigned int flags;
1443 
1444 		set_current_state(TASK_UNINTERRUPTIBLE);
1445 
1446 		/* Loop until we've been woken or interrupted */
1447 		flags = smp_load_acquire(&wait->flags);
1448 		if (!(flags & WQ_FLAG_WOKEN)) {
1449 			if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1450 				break;
1451 
1452 			io_schedule();
1453 			continue;
1454 		}
1455 		break;
1456 	}
1457 
1458 	finish_wait(q, wait);
1459 
1460 	if (thrashing) {
1461 		delayacct_thrashing_end(&in_thrashing);
1462 		psi_memstall_leave(&pflags);
1463 	}
1464 }
1465 #endif
1466 
1467 void folio_wait_bit(struct folio *folio, int bit_nr)
1468 {
1469 	folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1470 }
1471 EXPORT_SYMBOL(folio_wait_bit);
1472 
1473 int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1474 {
1475 	return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1476 }
1477 EXPORT_SYMBOL(folio_wait_bit_killable);
1478 
1479 /**
1480  * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1481  * @folio: The folio to wait for.
1482  * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1483  *
1484  * The caller should hold a reference on @folio.  They expect the page to
1485  * become unlocked relatively soon, but do not wish to hold up migration
1486  * (for example) by holding the reference while waiting for the folio to
1487  * come unlocked.  After this function returns, the caller should not
1488  * dereference @folio.
1489  *
1490  * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1491  */
1492 static int folio_put_wait_locked(struct folio *folio, int state)
1493 {
1494 	return folio_wait_bit_common(folio, PG_locked, state, DROP);
1495 }
1496 
1497 /**
1498  * folio_unlock - Unlock a locked folio.
1499  * @folio: The folio.
1500  *
1501  * Unlocks the folio and wakes up any thread sleeping on the page lock.
1502  *
1503  * Context: May be called from interrupt or process context.  May not be
1504  * called from NMI context.
1505  */
1506 void folio_unlock(struct folio *folio)
1507 {
1508 	/* Bit 7 allows x86 to check the byte's sign bit */
1509 	BUILD_BUG_ON(PG_waiters != 7);
1510 	BUILD_BUG_ON(PG_locked > 7);
1511 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1512 	if (folio_xor_flags_has_waiters(folio, 1 << PG_locked))
1513 		folio_wake_bit(folio, PG_locked);
1514 }
1515 EXPORT_SYMBOL(folio_unlock);
1516 
1517 /**
1518  * folio_end_read - End read on a folio.
1519  * @folio: The folio.
1520  * @success: True if all reads completed successfully.
1521  *
1522  * When all reads against a folio have completed, filesystems should
1523  * call this function to let the pagecache know that no more reads
1524  * are outstanding.  This will unlock the folio and wake up any thread
1525  * sleeping on the lock.  The folio will also be marked uptodate if all
1526  * reads succeeded.
1527  *
1528  * Context: May be called from interrupt or process context.  May not be
1529  * called from NMI context.
1530  */
1531 void folio_end_read(struct folio *folio, bool success)
1532 {
1533 	unsigned long mask = 1 << PG_locked;
1534 
1535 	/* Must be in bottom byte for x86 to work */
1536 	BUILD_BUG_ON(PG_uptodate > 7);
1537 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1538 	VM_BUG_ON_FOLIO(success && folio_test_uptodate(folio), folio);
1539 
1540 	if (likely(success))
1541 		mask |= 1 << PG_uptodate;
1542 	if (folio_xor_flags_has_waiters(folio, mask))
1543 		folio_wake_bit(folio, PG_locked);
1544 }
1545 EXPORT_SYMBOL(folio_end_read);
1546 
1547 /**
1548  * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1549  * @folio: The folio.
1550  *
1551  * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1552  * it.  The folio reference held for PG_private_2 being set is released.
1553  *
1554  * This is, for example, used when a netfs folio is being written to a local
1555  * disk cache, thereby allowing writes to the cache for the same folio to be
1556  * serialised.
1557  */
1558 void folio_end_private_2(struct folio *folio)
1559 {
1560 	VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1561 	clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1562 	folio_wake_bit(folio, PG_private_2);
1563 	folio_put(folio);
1564 }
1565 EXPORT_SYMBOL(folio_end_private_2);
1566 
1567 /**
1568  * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1569  * @folio: The folio to wait on.
1570  *
1571  * Wait for PG_private_2 to be cleared on a folio.
1572  */
1573 void folio_wait_private_2(struct folio *folio)
1574 {
1575 	while (folio_test_private_2(folio))
1576 		folio_wait_bit(folio, PG_private_2);
1577 }
1578 EXPORT_SYMBOL(folio_wait_private_2);
1579 
1580 /**
1581  * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1582  * @folio: The folio to wait on.
1583  *
1584  * Wait for PG_private_2 to be cleared on a folio or until a fatal signal is
1585  * received by the calling task.
1586  *
1587  * Return:
1588  * - 0 if successful.
1589  * - -EINTR if a fatal signal was encountered.
1590  */
1591 int folio_wait_private_2_killable(struct folio *folio)
1592 {
1593 	int ret = 0;
1594 
1595 	while (folio_test_private_2(folio)) {
1596 		ret = folio_wait_bit_killable(folio, PG_private_2);
1597 		if (ret < 0)
1598 			break;
1599 	}
1600 
1601 	return ret;
1602 }
1603 EXPORT_SYMBOL(folio_wait_private_2_killable);
1604 
1605 static void filemap_end_dropbehind(struct folio *folio)
1606 {
1607 	struct address_space *mapping = folio->mapping;
1608 
1609 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1610 
1611 	if (folio_test_writeback(folio) || folio_test_dirty(folio))
1612 		return;
1613 	if (!folio_test_clear_dropbehind(folio))
1614 		return;
1615 	if (mapping)
1616 		folio_unmap_invalidate(mapping, folio, 0);
1617 }
1618 
1619 /*
1620  * If folio was marked as dropbehind, then pages should be dropped when writeback
1621  * completes. Do that now. If we fail, it's likely because of a big folio -
1622  * just reset dropbehind for that case and latter completions should invalidate.
1623  */
1624 static void filemap_end_dropbehind_write(struct folio *folio)
1625 {
1626 	if (!folio_test_dropbehind(folio))
1627 		return;
1628 
1629 	/*
1630 	 * Hitting !in_task() should not happen off RWF_DONTCACHE writeback,
1631 	 * but can happen if normal writeback just happens to find dirty folios
1632 	 * that were created as part of uncached writeback, and that writeback
1633 	 * would otherwise not need non-IRQ handling. Just skip the
1634 	 * invalidation in that case.
1635 	 */
1636 	if (in_task() && folio_trylock(folio)) {
1637 		filemap_end_dropbehind(folio);
1638 		folio_unlock(folio);
1639 	}
1640 }
1641 
1642 /**
1643  * folio_end_writeback - End writeback against a folio.
1644  * @folio: The folio.
1645  *
1646  * The folio must actually be under writeback.
1647  *
1648  * Context: May be called from process or interrupt context.
1649  */
1650 void folio_end_writeback(struct folio *folio)
1651 {
1652 	VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio);
1653 
1654 	/*
1655 	 * folio_test_clear_reclaim() could be used here but it is an
1656 	 * atomic operation and overkill in this particular case. Failing
1657 	 * to shuffle a folio marked for immediate reclaim is too mild
1658 	 * a gain to justify taking an atomic operation penalty at the
1659 	 * end of every folio writeback.
1660 	 */
1661 	if (folio_test_reclaim(folio)) {
1662 		folio_clear_reclaim(folio);
1663 		folio_rotate_reclaimable(folio);
1664 	}
1665 
1666 	/*
1667 	 * Writeback does not hold a folio reference of its own, relying
1668 	 * on truncation to wait for the clearing of PG_writeback.
1669 	 * But here we must make sure that the folio is not freed and
1670 	 * reused before the folio_wake_bit().
1671 	 */
1672 	folio_get(folio);
1673 	if (__folio_end_writeback(folio))
1674 		folio_wake_bit(folio, PG_writeback);
1675 
1676 	filemap_end_dropbehind_write(folio);
1677 	acct_reclaim_writeback(folio);
1678 	folio_put(folio);
1679 }
1680 EXPORT_SYMBOL(folio_end_writeback);
1681 
1682 /**
1683  * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1684  * @folio: The folio to lock
1685  */
1686 void __folio_lock(struct folio *folio)
1687 {
1688 	folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1689 				EXCLUSIVE);
1690 }
1691 EXPORT_SYMBOL(__folio_lock);
1692 
1693 int __folio_lock_killable(struct folio *folio)
1694 {
1695 	return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1696 					EXCLUSIVE);
1697 }
1698 EXPORT_SYMBOL_GPL(__folio_lock_killable);
1699 
1700 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1701 {
1702 	struct wait_queue_head *q = folio_waitqueue(folio);
1703 	int ret;
1704 
1705 	wait->folio = folio;
1706 	wait->bit_nr = PG_locked;
1707 
1708 	spin_lock_irq(&q->lock);
1709 	__add_wait_queue_entry_tail(q, &wait->wait);
1710 	folio_set_waiters(folio);
1711 	ret = !folio_trylock(folio);
1712 	/*
1713 	 * If we were successful now, we know we're still on the
1714 	 * waitqueue as we're still under the lock. This means it's
1715 	 * safe to remove and return success, we know the callback
1716 	 * isn't going to trigger.
1717 	 */
1718 	if (!ret)
1719 		__remove_wait_queue(q, &wait->wait);
1720 	else
1721 		ret = -EIOCBQUEUED;
1722 	spin_unlock_irq(&q->lock);
1723 	return ret;
1724 }
1725 
1726 /*
1727  * Return values:
1728  * 0 - folio is locked.
1729  * non-zero - folio is not locked.
1730  *     mmap_lock or per-VMA lock has been released (mmap_read_unlock() or
1731  *     vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and
1732  *     FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held.
1733  *
1734  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0
1735  * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed.
1736  */
1737 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf)
1738 {
1739 	unsigned int flags = vmf->flags;
1740 
1741 	if (fault_flag_allow_retry_first(flags)) {
1742 		/*
1743 		 * CAUTION! In this case, mmap_lock/per-VMA lock is not
1744 		 * released even though returning VM_FAULT_RETRY.
1745 		 */
1746 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1747 			return VM_FAULT_RETRY;
1748 
1749 		release_fault_lock(vmf);
1750 		if (flags & FAULT_FLAG_KILLABLE)
1751 			folio_wait_locked_killable(folio);
1752 		else
1753 			folio_wait_locked(folio);
1754 		return VM_FAULT_RETRY;
1755 	}
1756 	if (flags & FAULT_FLAG_KILLABLE) {
1757 		bool ret;
1758 
1759 		ret = __folio_lock_killable(folio);
1760 		if (ret) {
1761 			release_fault_lock(vmf);
1762 			return VM_FAULT_RETRY;
1763 		}
1764 	} else {
1765 		__folio_lock(folio);
1766 	}
1767 
1768 	return 0;
1769 }
1770 
1771 /**
1772  * page_cache_next_miss() - Find the next gap in the page cache.
1773  * @mapping: Mapping.
1774  * @index: Index.
1775  * @max_scan: Maximum range to search.
1776  *
1777  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1778  * gap with the lowest index.
1779  *
1780  * This function may be called under the rcu_read_lock.  However, this will
1781  * not atomically search a snapshot of the cache at a single point in time.
1782  * For example, if a gap is created at index 5, then subsequently a gap is
1783  * created at index 10, page_cache_next_miss covering both indices may
1784  * return 10 if called under the rcu_read_lock.
1785  *
1786  * Return: The index of the gap if found, otherwise an index outside the
1787  * range specified (in which case 'return - index >= max_scan' will be true).
1788  * In the rare case of index wrap-around, 0 will be returned.
1789  */
1790 pgoff_t page_cache_next_miss(struct address_space *mapping,
1791 			     pgoff_t index, unsigned long max_scan)
1792 {
1793 	XA_STATE(xas, &mapping->i_pages, index);
1794 	unsigned long nr = max_scan;
1795 
1796 	while (nr--) {
1797 		void *entry = xas_next(&xas);
1798 		if (!entry || xa_is_value(entry))
1799 			return xas.xa_index;
1800 		if (xas.xa_index == 0)
1801 			return 0;
1802 	}
1803 
1804 	return index + max_scan;
1805 }
1806 EXPORT_SYMBOL(page_cache_next_miss);
1807 
1808 /**
1809  * page_cache_prev_miss() - Find the previous gap in the page cache.
1810  * @mapping: Mapping.
1811  * @index: Index.
1812  * @max_scan: Maximum range to search.
1813  *
1814  * Search the range [max(index - max_scan + 1, 0), index] for the
1815  * gap with the highest index.
1816  *
1817  * This function may be called under the rcu_read_lock.  However, this will
1818  * not atomically search a snapshot of the cache at a single point in time.
1819  * For example, if a gap is created at index 10, then subsequently a gap is
1820  * created at index 5, page_cache_prev_miss() covering both indices may
1821  * return 5 if called under the rcu_read_lock.
1822  *
1823  * Return: The index of the gap if found, otherwise an index outside the
1824  * range specified (in which case 'index - return >= max_scan' will be true).
1825  * In the rare case of wrap-around, ULONG_MAX will be returned.
1826  */
1827 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1828 			     pgoff_t index, unsigned long max_scan)
1829 {
1830 	XA_STATE(xas, &mapping->i_pages, index);
1831 
1832 	while (max_scan--) {
1833 		void *entry = xas_prev(&xas);
1834 		if (!entry || xa_is_value(entry))
1835 			break;
1836 		if (xas.xa_index == ULONG_MAX)
1837 			break;
1838 	}
1839 
1840 	return xas.xa_index;
1841 }
1842 EXPORT_SYMBOL(page_cache_prev_miss);
1843 
1844 /*
1845  * Lockless page cache protocol:
1846  * On the lookup side:
1847  * 1. Load the folio from i_pages
1848  * 2. Increment the refcount if it's not zero
1849  * 3. If the folio is not found by xas_reload(), put the refcount and retry
1850  *
1851  * On the removal side:
1852  * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1853  * B. Remove the page from i_pages
1854  * C. Return the page to the page allocator
1855  *
1856  * This means that any page may have its reference count temporarily
1857  * increased by a speculative page cache (or GUP-fast) lookup as it can
1858  * be allocated by another user before the RCU grace period expires.
1859  * Because the refcount temporarily acquired here may end up being the
1860  * last refcount on the page, any page allocation must be freeable by
1861  * folio_put().
1862  */
1863 
1864 /*
1865  * filemap_get_entry - Get a page cache entry.
1866  * @mapping: the address_space to search
1867  * @index: The page cache index.
1868  *
1869  * Looks up the page cache entry at @mapping & @index.  If it is a folio,
1870  * it is returned with an increased refcount.  If it is a shadow entry
1871  * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1872  * it is returned without further action.
1873  *
1874  * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1875  */
1876 void *filemap_get_entry(struct address_space *mapping, pgoff_t index)
1877 {
1878 	XA_STATE(xas, &mapping->i_pages, index);
1879 	struct folio *folio;
1880 
1881 	rcu_read_lock();
1882 repeat:
1883 	xas_reset(&xas);
1884 	folio = xas_load(&xas);
1885 	if (xas_retry(&xas, folio))
1886 		goto repeat;
1887 	/*
1888 	 * A shadow entry of a recently evicted page, or a swap entry from
1889 	 * shmem/tmpfs.  Return it without attempting to raise page count.
1890 	 */
1891 	if (!folio || xa_is_value(folio))
1892 		goto out;
1893 
1894 	if (!folio_try_get(folio))
1895 		goto repeat;
1896 
1897 	if (unlikely(folio != xas_reload(&xas))) {
1898 		folio_put(folio);
1899 		goto repeat;
1900 	}
1901 out:
1902 	rcu_read_unlock();
1903 
1904 	return folio;
1905 }
1906 
1907 /**
1908  * __filemap_get_folio - Find and get a reference to a folio.
1909  * @mapping: The address_space to search.
1910  * @index: The page index.
1911  * @fgp_flags: %FGP flags modify how the folio is returned.
1912  * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1913  *
1914  * Looks up the page cache entry at @mapping & @index.
1915  *
1916  * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1917  * if the %GFP flags specified for %FGP_CREAT are atomic.
1918  *
1919  * If this function returns a folio, it is returned with an increased refcount.
1920  *
1921  * Return: The found folio or an ERR_PTR() otherwise.
1922  */
1923 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1924 		fgf_t fgp_flags, gfp_t gfp)
1925 {
1926 	struct folio *folio;
1927 
1928 repeat:
1929 	folio = filemap_get_entry(mapping, index);
1930 	if (xa_is_value(folio))
1931 		folio = NULL;
1932 	if (!folio)
1933 		goto no_page;
1934 
1935 	if (fgp_flags & FGP_LOCK) {
1936 		if (fgp_flags & FGP_NOWAIT) {
1937 			if (!folio_trylock(folio)) {
1938 				folio_put(folio);
1939 				return ERR_PTR(-EAGAIN);
1940 			}
1941 		} else {
1942 			folio_lock(folio);
1943 		}
1944 
1945 		/* Has the page been truncated? */
1946 		if (unlikely(folio->mapping != mapping)) {
1947 			folio_unlock(folio);
1948 			folio_put(folio);
1949 			goto repeat;
1950 		}
1951 		VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1952 	}
1953 
1954 	if (fgp_flags & FGP_ACCESSED)
1955 		folio_mark_accessed(folio);
1956 	else if (fgp_flags & FGP_WRITE) {
1957 		/* Clear idle flag for buffer write */
1958 		if (folio_test_idle(folio))
1959 			folio_clear_idle(folio);
1960 	}
1961 
1962 	if (fgp_flags & FGP_STABLE)
1963 		folio_wait_stable(folio);
1964 no_page:
1965 	if (!folio && (fgp_flags & FGP_CREAT)) {
1966 		unsigned int min_order = mapping_min_folio_order(mapping);
1967 		unsigned int order = max(min_order, FGF_GET_ORDER(fgp_flags));
1968 		int err;
1969 		index = mapping_align_index(mapping, index);
1970 
1971 		if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1972 			gfp |= __GFP_WRITE;
1973 		if (fgp_flags & FGP_NOFS)
1974 			gfp &= ~__GFP_FS;
1975 		if (fgp_flags & FGP_NOWAIT) {
1976 			gfp &= ~GFP_KERNEL;
1977 			gfp |= GFP_NOWAIT;
1978 		}
1979 		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1980 			fgp_flags |= FGP_LOCK;
1981 
1982 		if (order > mapping_max_folio_order(mapping))
1983 			order = mapping_max_folio_order(mapping);
1984 		/* If we're not aligned, allocate a smaller folio */
1985 		if (index & ((1UL << order) - 1))
1986 			order = __ffs(index);
1987 
1988 		do {
1989 			gfp_t alloc_gfp = gfp;
1990 
1991 			err = -ENOMEM;
1992 			if (order > min_order)
1993 				alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN;
1994 			folio = filemap_alloc_folio(alloc_gfp, order);
1995 			if (!folio)
1996 				continue;
1997 
1998 			/* Init accessed so avoid atomic mark_page_accessed later */
1999 			if (fgp_flags & FGP_ACCESSED)
2000 				__folio_set_referenced(folio);
2001 			if (fgp_flags & FGP_DONTCACHE)
2002 				__folio_set_dropbehind(folio);
2003 
2004 			err = filemap_add_folio(mapping, folio, index, gfp);
2005 			if (!err)
2006 				break;
2007 			folio_put(folio);
2008 			folio = NULL;
2009 		} while (order-- > min_order);
2010 
2011 		if (err == -EEXIST)
2012 			goto repeat;
2013 		if (err) {
2014 			/*
2015 			 * When NOWAIT I/O fails to allocate folios this could
2016 			 * be due to a nonblocking memory allocation and not
2017 			 * because the system actually is out of memory.
2018 			 * Return -EAGAIN so that there caller retries in a
2019 			 * blocking fashion instead of propagating -ENOMEM
2020 			 * to the application.
2021 			 */
2022 			if ((fgp_flags & FGP_NOWAIT) && err == -ENOMEM)
2023 				err = -EAGAIN;
2024 			return ERR_PTR(err);
2025 		}
2026 		/*
2027 		 * filemap_add_folio locks the page, and for mmap
2028 		 * we expect an unlocked page.
2029 		 */
2030 		if (folio && (fgp_flags & FGP_FOR_MMAP))
2031 			folio_unlock(folio);
2032 	}
2033 
2034 	if (!folio)
2035 		return ERR_PTR(-ENOENT);
2036 	/* not an uncached lookup, clear uncached if set */
2037 	if (folio_test_dropbehind(folio) && !(fgp_flags & FGP_DONTCACHE))
2038 		folio_clear_dropbehind(folio);
2039 	return folio;
2040 }
2041 EXPORT_SYMBOL(__filemap_get_folio);
2042 
2043 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
2044 		xa_mark_t mark)
2045 {
2046 	struct folio *folio;
2047 
2048 retry:
2049 	if (mark == XA_PRESENT)
2050 		folio = xas_find(xas, max);
2051 	else
2052 		folio = xas_find_marked(xas, max, mark);
2053 
2054 	if (xas_retry(xas, folio))
2055 		goto retry;
2056 	/*
2057 	 * A shadow entry of a recently evicted page, a swap
2058 	 * entry from shmem/tmpfs or a DAX entry.  Return it
2059 	 * without attempting to raise page count.
2060 	 */
2061 	if (!folio || xa_is_value(folio))
2062 		return folio;
2063 
2064 	if (!folio_try_get(folio))
2065 		goto reset;
2066 
2067 	if (unlikely(folio != xas_reload(xas))) {
2068 		folio_put(folio);
2069 		goto reset;
2070 	}
2071 
2072 	return folio;
2073 reset:
2074 	xas_reset(xas);
2075 	goto retry;
2076 }
2077 
2078 /**
2079  * find_get_entries - gang pagecache lookup
2080  * @mapping:	The address_space to search
2081  * @start:	The starting page cache index
2082  * @end:	The final page index (inclusive).
2083  * @fbatch:	Where the resulting entries are placed.
2084  * @indices:	The cache indices corresponding to the entries in @entries
2085  *
2086  * find_get_entries() will search for and return a batch of entries in
2087  * the mapping.  The entries are placed in @fbatch.  find_get_entries()
2088  * takes a reference on any actual folios it returns.
2089  *
2090  * The entries have ascending indexes.  The indices may not be consecutive
2091  * due to not-present entries or large folios.
2092  *
2093  * Any shadow entries of evicted folios, or swap entries from
2094  * shmem/tmpfs, are included in the returned array.
2095  *
2096  * Return: The number of entries which were found.
2097  */
2098 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
2099 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2100 {
2101 	XA_STATE(xas, &mapping->i_pages, *start);
2102 	struct folio *folio;
2103 
2104 	rcu_read_lock();
2105 	while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2106 		indices[fbatch->nr] = xas.xa_index;
2107 		if (!folio_batch_add(fbatch, folio))
2108 			break;
2109 	}
2110 
2111 	if (folio_batch_count(fbatch)) {
2112 		unsigned long nr;
2113 		int idx = folio_batch_count(fbatch) - 1;
2114 
2115 		folio = fbatch->folios[idx];
2116 		if (!xa_is_value(folio))
2117 			nr = folio_nr_pages(folio);
2118 		else
2119 			nr = 1 << xa_get_order(&mapping->i_pages, indices[idx]);
2120 		*start = round_down(indices[idx] + nr, nr);
2121 	}
2122 	rcu_read_unlock();
2123 
2124 	return folio_batch_count(fbatch);
2125 }
2126 
2127 /**
2128  * find_lock_entries - Find a batch of pagecache entries.
2129  * @mapping:	The address_space to search.
2130  * @start:	The starting page cache index.
2131  * @end:	The final page index (inclusive).
2132  * @fbatch:	Where the resulting entries are placed.
2133  * @indices:	The cache indices of the entries in @fbatch.
2134  *
2135  * find_lock_entries() will return a batch of entries from @mapping.
2136  * Swap, shadow and DAX entries are included.  Folios are returned
2137  * locked and with an incremented refcount.  Folios which are locked
2138  * by somebody else or under writeback are skipped.  Folios which are
2139  * partially outside the range are not returned.
2140  *
2141  * The entries have ascending indexes.  The indices may not be consecutive
2142  * due to not-present entries, large folios, folios which could not be
2143  * locked or folios under writeback.
2144  *
2145  * Return: The number of entries which were found.
2146  */
2147 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
2148 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2149 {
2150 	XA_STATE(xas, &mapping->i_pages, *start);
2151 	struct folio *folio;
2152 
2153 	rcu_read_lock();
2154 	while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2155 		unsigned long base;
2156 		unsigned long nr;
2157 
2158 		if (!xa_is_value(folio)) {
2159 			nr = folio_nr_pages(folio);
2160 			base = folio->index;
2161 			/* Omit large folio which begins before the start */
2162 			if (base < *start)
2163 				goto put;
2164 			/* Omit large folio which extends beyond the end */
2165 			if (base + nr - 1 > end)
2166 				goto put;
2167 			if (!folio_trylock(folio))
2168 				goto put;
2169 			if (folio->mapping != mapping ||
2170 			    folio_test_writeback(folio))
2171 				goto unlock;
2172 			VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2173 					folio);
2174 		} else {
2175 			nr = 1 << xas_get_order(&xas);
2176 			base = xas.xa_index & ~(nr - 1);
2177 			/* Omit order>0 value which begins before the start */
2178 			if (base < *start)
2179 				continue;
2180 			/* Omit order>0 value which extends beyond the end */
2181 			if (base + nr - 1 > end)
2182 				break;
2183 		}
2184 
2185 		/* Update start now so that last update is correct on return */
2186 		*start = base + nr;
2187 		indices[fbatch->nr] = xas.xa_index;
2188 		if (!folio_batch_add(fbatch, folio))
2189 			break;
2190 		continue;
2191 unlock:
2192 		folio_unlock(folio);
2193 put:
2194 		folio_put(folio);
2195 	}
2196 	rcu_read_unlock();
2197 
2198 	return folio_batch_count(fbatch);
2199 }
2200 
2201 /**
2202  * filemap_get_folios - Get a batch of folios
2203  * @mapping:	The address_space to search
2204  * @start:	The starting page index
2205  * @end:	The final page index (inclusive)
2206  * @fbatch:	The batch to fill.
2207  *
2208  * Search for and return a batch of folios in the mapping starting at
2209  * index @start and up to index @end (inclusive).  The folios are returned
2210  * in @fbatch with an elevated reference count.
2211  *
2212  * Return: The number of folios which were found.
2213  * We also update @start to index the next folio for the traversal.
2214  */
2215 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2216 		pgoff_t end, struct folio_batch *fbatch)
2217 {
2218 	return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch);
2219 }
2220 EXPORT_SYMBOL(filemap_get_folios);
2221 
2222 /**
2223  * filemap_get_folios_contig - Get a batch of contiguous folios
2224  * @mapping:	The address_space to search
2225  * @start:	The starting page index
2226  * @end:	The final page index (inclusive)
2227  * @fbatch:	The batch to fill
2228  *
2229  * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2230  * except the returned folios are guaranteed to be contiguous. This may
2231  * not return all contiguous folios if the batch gets filled up.
2232  *
2233  * Return: The number of folios found.
2234  * Also update @start to be positioned for traversal of the next folio.
2235  */
2236 
2237 unsigned filemap_get_folios_contig(struct address_space *mapping,
2238 		pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
2239 {
2240 	XA_STATE(xas, &mapping->i_pages, *start);
2241 	unsigned long nr;
2242 	struct folio *folio;
2243 
2244 	rcu_read_lock();
2245 
2246 	for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2247 			folio = xas_next(&xas)) {
2248 		if (xas_retry(&xas, folio))
2249 			continue;
2250 		/*
2251 		 * If the entry has been swapped out, we can stop looking.
2252 		 * No current caller is looking for DAX entries.
2253 		 */
2254 		if (xa_is_value(folio))
2255 			goto update_start;
2256 
2257 		/* If we landed in the middle of a THP, continue at its end. */
2258 		if (xa_is_sibling(folio))
2259 			goto update_start;
2260 
2261 		if (!folio_try_get(folio))
2262 			goto retry;
2263 
2264 		if (unlikely(folio != xas_reload(&xas)))
2265 			goto put_folio;
2266 
2267 		if (!folio_batch_add(fbatch, folio)) {
2268 			nr = folio_nr_pages(folio);
2269 			*start = folio->index + nr;
2270 			goto out;
2271 		}
2272 		xas_advance(&xas, folio_next_index(folio) - 1);
2273 		continue;
2274 put_folio:
2275 		folio_put(folio);
2276 
2277 retry:
2278 		xas_reset(&xas);
2279 	}
2280 
2281 update_start:
2282 	nr = folio_batch_count(fbatch);
2283 
2284 	if (nr) {
2285 		folio = fbatch->folios[nr - 1];
2286 		*start = folio_next_index(folio);
2287 	}
2288 out:
2289 	rcu_read_unlock();
2290 	return folio_batch_count(fbatch);
2291 }
2292 EXPORT_SYMBOL(filemap_get_folios_contig);
2293 
2294 /**
2295  * filemap_get_folios_tag - Get a batch of folios matching @tag
2296  * @mapping:    The address_space to search
2297  * @start:      The starting page index
2298  * @end:        The final page index (inclusive)
2299  * @tag:        The tag index
2300  * @fbatch:     The batch to fill
2301  *
2302  * The first folio may start before @start; if it does, it will contain
2303  * @start.  The final folio may extend beyond @end; if it does, it will
2304  * contain @end.  The folios have ascending indices.  There may be gaps
2305  * between the folios if there are indices which have no folio in the
2306  * page cache.  If folios are added to or removed from the page cache
2307  * while this is running, they may or may not be found by this call.
2308  * Only returns folios that are tagged with @tag.
2309  *
2310  * Return: The number of folios found.
2311  * Also update @start to index the next folio for traversal.
2312  */
2313 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
2314 			pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
2315 {
2316 	XA_STATE(xas, &mapping->i_pages, *start);
2317 	struct folio *folio;
2318 
2319 	rcu_read_lock();
2320 	while ((folio = find_get_entry(&xas, end, tag)) != NULL) {
2321 		/*
2322 		 * Shadow entries should never be tagged, but this iteration
2323 		 * is lockless so there is a window for page reclaim to evict
2324 		 * a page we saw tagged. Skip over it.
2325 		 */
2326 		if (xa_is_value(folio))
2327 			continue;
2328 		if (!folio_batch_add(fbatch, folio)) {
2329 			unsigned long nr = folio_nr_pages(folio);
2330 			*start = folio->index + nr;
2331 			goto out;
2332 		}
2333 	}
2334 	/*
2335 	 * We come here when there is no page beyond @end. We take care to not
2336 	 * overflow the index @start as it confuses some of the callers. This
2337 	 * breaks the iteration when there is a page at index -1 but that is
2338 	 * already broke anyway.
2339 	 */
2340 	if (end == (pgoff_t)-1)
2341 		*start = (pgoff_t)-1;
2342 	else
2343 		*start = end + 1;
2344 out:
2345 	rcu_read_unlock();
2346 
2347 	return folio_batch_count(fbatch);
2348 }
2349 EXPORT_SYMBOL(filemap_get_folios_tag);
2350 
2351 /*
2352  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2353  * a _large_ part of the i/o request. Imagine the worst scenario:
2354  *
2355  *      ---R__________________________________________B__________
2356  *         ^ reading here                             ^ bad block(assume 4k)
2357  *
2358  * read(R) => miss => readahead(R...B) => media error => frustrating retries
2359  * => failing the whole request => read(R) => read(R+1) =>
2360  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2361  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2362  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2363  *
2364  * It is going insane. Fix it by quickly scaling down the readahead size.
2365  */
2366 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2367 {
2368 	ra->ra_pages /= 4;
2369 }
2370 
2371 /*
2372  * filemap_get_read_batch - Get a batch of folios for read
2373  *
2374  * Get a batch of folios which represent a contiguous range of bytes in
2375  * the file.  No exceptional entries will be returned.  If @index is in
2376  * the middle of a folio, the entire folio will be returned.  The last
2377  * folio in the batch may have the readahead flag set or the uptodate flag
2378  * clear so that the caller can take the appropriate action.
2379  */
2380 static void filemap_get_read_batch(struct address_space *mapping,
2381 		pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2382 {
2383 	XA_STATE(xas, &mapping->i_pages, index);
2384 	struct folio *folio;
2385 
2386 	rcu_read_lock();
2387 	for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2388 		if (xas_retry(&xas, folio))
2389 			continue;
2390 		if (xas.xa_index > max || xa_is_value(folio))
2391 			break;
2392 		if (xa_is_sibling(folio))
2393 			break;
2394 		if (!folio_try_get(folio))
2395 			goto retry;
2396 
2397 		if (unlikely(folio != xas_reload(&xas)))
2398 			goto put_folio;
2399 
2400 		if (!folio_batch_add(fbatch, folio))
2401 			break;
2402 		if (!folio_test_uptodate(folio))
2403 			break;
2404 		if (folio_test_readahead(folio))
2405 			break;
2406 		xas_advance(&xas, folio_next_index(folio) - 1);
2407 		continue;
2408 put_folio:
2409 		folio_put(folio);
2410 retry:
2411 		xas_reset(&xas);
2412 	}
2413 	rcu_read_unlock();
2414 }
2415 
2416 static int filemap_read_folio(struct file *file, filler_t filler,
2417 		struct folio *folio)
2418 {
2419 	bool workingset = folio_test_workingset(folio);
2420 	unsigned long pflags;
2421 	int error;
2422 
2423 	/* Start the actual read. The read will unlock the page. */
2424 	if (unlikely(workingset))
2425 		psi_memstall_enter(&pflags);
2426 	error = filler(file, folio);
2427 	if (unlikely(workingset))
2428 		psi_memstall_leave(&pflags);
2429 	if (error)
2430 		return error;
2431 
2432 	error = folio_wait_locked_killable(folio);
2433 	if (error)
2434 		return error;
2435 	if (folio_test_uptodate(folio))
2436 		return 0;
2437 	if (file)
2438 		shrink_readahead_size_eio(&file->f_ra);
2439 	return -EIO;
2440 }
2441 
2442 static bool filemap_range_uptodate(struct address_space *mapping,
2443 		loff_t pos, size_t count, struct folio *folio,
2444 		bool need_uptodate)
2445 {
2446 	if (folio_test_uptodate(folio))
2447 		return true;
2448 	/* pipes can't handle partially uptodate pages */
2449 	if (need_uptodate)
2450 		return false;
2451 	if (!mapping->a_ops->is_partially_uptodate)
2452 		return false;
2453 	if (mapping->host->i_blkbits >= folio_shift(folio))
2454 		return false;
2455 
2456 	if (folio_pos(folio) > pos) {
2457 		count -= folio_pos(folio) - pos;
2458 		pos = 0;
2459 	} else {
2460 		pos -= folio_pos(folio);
2461 	}
2462 
2463 	if (pos == 0 && count >= folio_size(folio))
2464 		return false;
2465 
2466 	return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2467 }
2468 
2469 static int filemap_update_page(struct kiocb *iocb,
2470 		struct address_space *mapping, size_t count,
2471 		struct folio *folio, bool need_uptodate)
2472 {
2473 	int error;
2474 
2475 	if (iocb->ki_flags & IOCB_NOWAIT) {
2476 		if (!filemap_invalidate_trylock_shared(mapping))
2477 			return -EAGAIN;
2478 	} else {
2479 		filemap_invalidate_lock_shared(mapping);
2480 	}
2481 
2482 	if (!folio_trylock(folio)) {
2483 		error = -EAGAIN;
2484 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2485 			goto unlock_mapping;
2486 		if (!(iocb->ki_flags & IOCB_WAITQ)) {
2487 			filemap_invalidate_unlock_shared(mapping);
2488 			/*
2489 			 * This is where we usually end up waiting for a
2490 			 * previously submitted readahead to finish.
2491 			 */
2492 			folio_put_wait_locked(folio, TASK_KILLABLE);
2493 			return AOP_TRUNCATED_PAGE;
2494 		}
2495 		error = __folio_lock_async(folio, iocb->ki_waitq);
2496 		if (error)
2497 			goto unlock_mapping;
2498 	}
2499 
2500 	error = AOP_TRUNCATED_PAGE;
2501 	if (!folio->mapping)
2502 		goto unlock;
2503 
2504 	error = 0;
2505 	if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio,
2506 				   need_uptodate))
2507 		goto unlock;
2508 
2509 	error = -EAGAIN;
2510 	if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2511 		goto unlock;
2512 
2513 	error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2514 			folio);
2515 	goto unlock_mapping;
2516 unlock:
2517 	folio_unlock(folio);
2518 unlock_mapping:
2519 	filemap_invalidate_unlock_shared(mapping);
2520 	if (error == AOP_TRUNCATED_PAGE)
2521 		folio_put(folio);
2522 	return error;
2523 }
2524 
2525 static int filemap_create_folio(struct kiocb *iocb, struct folio_batch *fbatch)
2526 {
2527 	struct address_space *mapping = iocb->ki_filp->f_mapping;
2528 	struct folio *folio;
2529 	int error;
2530 	unsigned int min_order = mapping_min_folio_order(mapping);
2531 	pgoff_t index;
2532 
2533 	if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2534 		return -EAGAIN;
2535 
2536 	folio = filemap_alloc_folio(mapping_gfp_mask(mapping), min_order);
2537 	if (!folio)
2538 		return -ENOMEM;
2539 	if (iocb->ki_flags & IOCB_DONTCACHE)
2540 		__folio_set_dropbehind(folio);
2541 
2542 	/*
2543 	 * Protect against truncate / hole punch. Grabbing invalidate_lock
2544 	 * here assures we cannot instantiate and bring uptodate new
2545 	 * pagecache folios after evicting page cache during truncate
2546 	 * and before actually freeing blocks.	Note that we could
2547 	 * release invalidate_lock after inserting the folio into
2548 	 * the page cache as the locked folio would then be enough to
2549 	 * synchronize with hole punching. But there are code paths
2550 	 * such as filemap_update_page() filling in partially uptodate
2551 	 * pages or ->readahead() that need to hold invalidate_lock
2552 	 * while mapping blocks for IO so let's hold the lock here as
2553 	 * well to keep locking rules simple.
2554 	 */
2555 	filemap_invalidate_lock_shared(mapping);
2556 	index = (iocb->ki_pos >> (PAGE_SHIFT + min_order)) << min_order;
2557 	error = filemap_add_folio(mapping, folio, index,
2558 			mapping_gfp_constraint(mapping, GFP_KERNEL));
2559 	if (error == -EEXIST)
2560 		error = AOP_TRUNCATED_PAGE;
2561 	if (error)
2562 		goto error;
2563 
2564 	error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2565 					folio);
2566 	if (error)
2567 		goto error;
2568 
2569 	filemap_invalidate_unlock_shared(mapping);
2570 	folio_batch_add(fbatch, folio);
2571 	return 0;
2572 error:
2573 	filemap_invalidate_unlock_shared(mapping);
2574 	folio_put(folio);
2575 	return error;
2576 }
2577 
2578 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2579 		struct address_space *mapping, struct folio *folio,
2580 		pgoff_t last_index)
2581 {
2582 	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2583 
2584 	if (iocb->ki_flags & IOCB_NOIO)
2585 		return -EAGAIN;
2586 	if (iocb->ki_flags & IOCB_DONTCACHE)
2587 		ractl.dropbehind = 1;
2588 	page_cache_async_ra(&ractl, folio, last_index - folio->index);
2589 	return 0;
2590 }
2591 
2592 static int filemap_get_pages(struct kiocb *iocb, size_t count,
2593 		struct folio_batch *fbatch, bool need_uptodate)
2594 {
2595 	struct file *filp = iocb->ki_filp;
2596 	struct address_space *mapping = filp->f_mapping;
2597 	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2598 	pgoff_t last_index;
2599 	struct folio *folio;
2600 	unsigned int flags;
2601 	int err = 0;
2602 
2603 	/* "last_index" is the index of the folio beyond the end of the read */
2604 	last_index = round_up(iocb->ki_pos + count,
2605 			mapping_min_folio_nrbytes(mapping)) >> PAGE_SHIFT;
2606 retry:
2607 	if (fatal_signal_pending(current))
2608 		return -EINTR;
2609 
2610 	filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2611 	if (!folio_batch_count(fbatch)) {
2612 		DEFINE_READAHEAD(ractl, filp, &filp->f_ra, mapping, index);
2613 
2614 		if (iocb->ki_flags & IOCB_NOIO)
2615 			return -EAGAIN;
2616 		if (iocb->ki_flags & IOCB_NOWAIT)
2617 			flags = memalloc_noio_save();
2618 		if (iocb->ki_flags & IOCB_DONTCACHE)
2619 			ractl.dropbehind = 1;
2620 		page_cache_sync_ra(&ractl, last_index - index);
2621 		if (iocb->ki_flags & IOCB_NOWAIT)
2622 			memalloc_noio_restore(flags);
2623 		filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2624 	}
2625 	if (!folio_batch_count(fbatch)) {
2626 		err = filemap_create_folio(iocb, fbatch);
2627 		if (err == AOP_TRUNCATED_PAGE)
2628 			goto retry;
2629 		return err;
2630 	}
2631 
2632 	folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2633 	if (folio_test_readahead(folio)) {
2634 		err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2635 		if (err)
2636 			goto err;
2637 	}
2638 	if (!folio_test_uptodate(folio)) {
2639 		if (folio_batch_count(fbatch) > 1) {
2640 			err = -EAGAIN;
2641 			goto err;
2642 		}
2643 		err = filemap_update_page(iocb, mapping, count, folio,
2644 					  need_uptodate);
2645 		if (err)
2646 			goto err;
2647 	}
2648 
2649 	trace_mm_filemap_get_pages(mapping, index, last_index - 1);
2650 	return 0;
2651 err:
2652 	if (err < 0)
2653 		folio_put(folio);
2654 	if (likely(--fbatch->nr))
2655 		return 0;
2656 	if (err == AOP_TRUNCATED_PAGE)
2657 		goto retry;
2658 	return err;
2659 }
2660 
2661 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2662 {
2663 	unsigned int shift = folio_shift(folio);
2664 
2665 	return (pos1 >> shift == pos2 >> shift);
2666 }
2667 
2668 static void filemap_end_dropbehind_read(struct folio *folio)
2669 {
2670 	if (!folio_test_dropbehind(folio))
2671 		return;
2672 	if (folio_test_writeback(folio) || folio_test_dirty(folio))
2673 		return;
2674 	if (folio_trylock(folio)) {
2675 		filemap_end_dropbehind(folio);
2676 		folio_unlock(folio);
2677 	}
2678 }
2679 
2680 /**
2681  * filemap_read - Read data from the page cache.
2682  * @iocb: The iocb to read.
2683  * @iter: Destination for the data.
2684  * @already_read: Number of bytes already read by the caller.
2685  *
2686  * Copies data from the page cache.  If the data is not currently present,
2687  * uses the readahead and read_folio address_space operations to fetch it.
2688  *
2689  * Return: Total number of bytes copied, including those already read by
2690  * the caller.  If an error happens before any bytes are copied, returns
2691  * a negative error number.
2692  */
2693 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2694 		ssize_t already_read)
2695 {
2696 	struct file *filp = iocb->ki_filp;
2697 	struct file_ra_state *ra = &filp->f_ra;
2698 	struct address_space *mapping = filp->f_mapping;
2699 	struct inode *inode = mapping->host;
2700 	struct folio_batch fbatch;
2701 	int i, error = 0;
2702 	bool writably_mapped;
2703 	loff_t isize, end_offset;
2704 	loff_t last_pos = ra->prev_pos;
2705 
2706 	if (unlikely(iocb->ki_pos < 0))
2707 		return -EINVAL;
2708 	if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2709 		return 0;
2710 	if (unlikely(!iov_iter_count(iter)))
2711 		return 0;
2712 
2713 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes - iocb->ki_pos);
2714 	folio_batch_init(&fbatch);
2715 
2716 	do {
2717 		cond_resched();
2718 
2719 		/*
2720 		 * If we've already successfully copied some data, then we
2721 		 * can no longer safely return -EIOCBQUEUED. Hence mark
2722 		 * an async read NOWAIT at that point.
2723 		 */
2724 		if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2725 			iocb->ki_flags |= IOCB_NOWAIT;
2726 
2727 		if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2728 			break;
2729 
2730 		error = filemap_get_pages(iocb, iter->count, &fbatch, false);
2731 		if (error < 0)
2732 			break;
2733 
2734 		/*
2735 		 * i_size must be checked after we know the pages are Uptodate.
2736 		 *
2737 		 * Checking i_size after the check allows us to calculate
2738 		 * the correct value for "nr", which means the zero-filled
2739 		 * part of the page is not copied back to userspace (unless
2740 		 * another truncate extends the file - this is desired though).
2741 		 */
2742 		isize = i_size_read(inode);
2743 		if (unlikely(iocb->ki_pos >= isize))
2744 			goto put_folios;
2745 		end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2746 
2747 		/*
2748 		 * Once we start copying data, we don't want to be touching any
2749 		 * cachelines that might be contended:
2750 		 */
2751 		writably_mapped = mapping_writably_mapped(mapping);
2752 
2753 		/*
2754 		 * When a read accesses the same folio several times, only
2755 		 * mark it as accessed the first time.
2756 		 */
2757 		if (!pos_same_folio(iocb->ki_pos, last_pos - 1,
2758 				    fbatch.folios[0]))
2759 			folio_mark_accessed(fbatch.folios[0]);
2760 
2761 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2762 			struct folio *folio = fbatch.folios[i];
2763 			size_t fsize = folio_size(folio);
2764 			size_t offset = iocb->ki_pos & (fsize - 1);
2765 			size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2766 					     fsize - offset);
2767 			size_t copied;
2768 
2769 			if (end_offset < folio_pos(folio))
2770 				break;
2771 			if (i > 0)
2772 				folio_mark_accessed(folio);
2773 			/*
2774 			 * If users can be writing to this folio using arbitrary
2775 			 * virtual addresses, take care of potential aliasing
2776 			 * before reading the folio on the kernel side.
2777 			 */
2778 			if (writably_mapped)
2779 				flush_dcache_folio(folio);
2780 
2781 			copied = copy_folio_to_iter(folio, offset, bytes, iter);
2782 
2783 			already_read += copied;
2784 			iocb->ki_pos += copied;
2785 			last_pos = iocb->ki_pos;
2786 
2787 			if (copied < bytes) {
2788 				error = -EFAULT;
2789 				break;
2790 			}
2791 		}
2792 put_folios:
2793 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2794 			struct folio *folio = fbatch.folios[i];
2795 
2796 			filemap_end_dropbehind_read(folio);
2797 			folio_put(folio);
2798 		}
2799 		folio_batch_init(&fbatch);
2800 	} while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2801 
2802 	file_accessed(filp);
2803 	ra->prev_pos = last_pos;
2804 	return already_read ? already_read : error;
2805 }
2806 EXPORT_SYMBOL_GPL(filemap_read);
2807 
2808 int kiocb_write_and_wait(struct kiocb *iocb, size_t count)
2809 {
2810 	struct address_space *mapping = iocb->ki_filp->f_mapping;
2811 	loff_t pos = iocb->ki_pos;
2812 	loff_t end = pos + count - 1;
2813 
2814 	if (iocb->ki_flags & IOCB_NOWAIT) {
2815 		if (filemap_range_needs_writeback(mapping, pos, end))
2816 			return -EAGAIN;
2817 		return 0;
2818 	}
2819 
2820 	return filemap_write_and_wait_range(mapping, pos, end);
2821 }
2822 EXPORT_SYMBOL_GPL(kiocb_write_and_wait);
2823 
2824 int filemap_invalidate_pages(struct address_space *mapping,
2825 			     loff_t pos, loff_t end, bool nowait)
2826 {
2827 	int ret;
2828 
2829 	if (nowait) {
2830 		/* we could block if there are any pages in the range */
2831 		if (filemap_range_has_page(mapping, pos, end))
2832 			return -EAGAIN;
2833 	} else {
2834 		ret = filemap_write_and_wait_range(mapping, pos, end);
2835 		if (ret)
2836 			return ret;
2837 	}
2838 
2839 	/*
2840 	 * After a write we want buffered reads to be sure to go to disk to get
2841 	 * the new data.  We invalidate clean cached page from the region we're
2842 	 * about to write.  We do this *before* the write so that we can return
2843 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2844 	 */
2845 	return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT,
2846 					     end >> PAGE_SHIFT);
2847 }
2848 
2849 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count)
2850 {
2851 	struct address_space *mapping = iocb->ki_filp->f_mapping;
2852 
2853 	return filemap_invalidate_pages(mapping, iocb->ki_pos,
2854 					iocb->ki_pos + count - 1,
2855 					iocb->ki_flags & IOCB_NOWAIT);
2856 }
2857 EXPORT_SYMBOL_GPL(kiocb_invalidate_pages);
2858 
2859 /**
2860  * generic_file_read_iter - generic filesystem read routine
2861  * @iocb:	kernel I/O control block
2862  * @iter:	destination for the data read
2863  *
2864  * This is the "read_iter()" routine for all filesystems
2865  * that can use the page cache directly.
2866  *
2867  * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2868  * be returned when no data can be read without waiting for I/O requests
2869  * to complete; it doesn't prevent readahead.
2870  *
2871  * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2872  * requests shall be made for the read or for readahead.  When no data
2873  * can be read, -EAGAIN shall be returned.  When readahead would be
2874  * triggered, a partial, possibly empty read shall be returned.
2875  *
2876  * Return:
2877  * * number of bytes copied, even for partial reads
2878  * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2879  */
2880 ssize_t
2881 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2882 {
2883 	size_t count = iov_iter_count(iter);
2884 	ssize_t retval = 0;
2885 
2886 	if (!count)
2887 		return 0; /* skip atime */
2888 
2889 	if (iocb->ki_flags & IOCB_DIRECT) {
2890 		struct file *file = iocb->ki_filp;
2891 		struct address_space *mapping = file->f_mapping;
2892 		struct inode *inode = mapping->host;
2893 
2894 		retval = kiocb_write_and_wait(iocb, count);
2895 		if (retval < 0)
2896 			return retval;
2897 		file_accessed(file);
2898 
2899 		retval = mapping->a_ops->direct_IO(iocb, iter);
2900 		if (retval >= 0) {
2901 			iocb->ki_pos += retval;
2902 			count -= retval;
2903 		}
2904 		if (retval != -EIOCBQUEUED)
2905 			iov_iter_revert(iter, count - iov_iter_count(iter));
2906 
2907 		/*
2908 		 * Btrfs can have a short DIO read if we encounter
2909 		 * compressed extents, so if there was an error, or if
2910 		 * we've already read everything we wanted to, or if
2911 		 * there was a short read because we hit EOF, go ahead
2912 		 * and return.  Otherwise fallthrough to buffered io for
2913 		 * the rest of the read.  Buffered reads will not work for
2914 		 * DAX files, so don't bother trying.
2915 		 */
2916 		if (retval < 0 || !count || IS_DAX(inode))
2917 			return retval;
2918 		if (iocb->ki_pos >= i_size_read(inode))
2919 			return retval;
2920 	}
2921 
2922 	return filemap_read(iocb, iter, retval);
2923 }
2924 EXPORT_SYMBOL(generic_file_read_iter);
2925 
2926 /*
2927  * Splice subpages from a folio into a pipe.
2928  */
2929 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
2930 			      struct folio *folio, loff_t fpos, size_t size)
2931 {
2932 	struct page *page;
2933 	size_t spliced = 0, offset = offset_in_folio(folio, fpos);
2934 
2935 	page = folio_page(folio, offset / PAGE_SIZE);
2936 	size = min(size, folio_size(folio) - offset);
2937 	offset %= PAGE_SIZE;
2938 
2939 	while (spliced < size && !pipe_is_full(pipe)) {
2940 		struct pipe_buffer *buf = pipe_head_buf(pipe);
2941 		size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
2942 
2943 		*buf = (struct pipe_buffer) {
2944 			.ops	= &page_cache_pipe_buf_ops,
2945 			.page	= page,
2946 			.offset	= offset,
2947 			.len	= part,
2948 		};
2949 		folio_get(folio);
2950 		pipe->head++;
2951 		page++;
2952 		spliced += part;
2953 		offset = 0;
2954 	}
2955 
2956 	return spliced;
2957 }
2958 
2959 /**
2960  * filemap_splice_read -  Splice data from a file's pagecache into a pipe
2961  * @in: The file to read from
2962  * @ppos: Pointer to the file position to read from
2963  * @pipe: The pipe to splice into
2964  * @len: The amount to splice
2965  * @flags: The SPLICE_F_* flags
2966  *
2967  * This function gets folios from a file's pagecache and splices them into the
2968  * pipe.  Readahead will be called as necessary to fill more folios.  This may
2969  * be used for blockdevs also.
2970  *
2971  * Return: On success, the number of bytes read will be returned and *@ppos
2972  * will be updated if appropriate; 0 will be returned if there is no more data
2973  * to be read; -EAGAIN will be returned if the pipe had no space, and some
2974  * other negative error code will be returned on error.  A short read may occur
2975  * if the pipe has insufficient space, we reach the end of the data or we hit a
2976  * hole.
2977  */
2978 ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
2979 			    struct pipe_inode_info *pipe,
2980 			    size_t len, unsigned int flags)
2981 {
2982 	struct folio_batch fbatch;
2983 	struct kiocb iocb;
2984 	size_t total_spliced = 0, used, npages;
2985 	loff_t isize, end_offset;
2986 	bool writably_mapped;
2987 	int i, error = 0;
2988 
2989 	if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes))
2990 		return 0;
2991 
2992 	init_sync_kiocb(&iocb, in);
2993 	iocb.ki_pos = *ppos;
2994 
2995 	/* Work out how much data we can actually add into the pipe */
2996 	used = pipe_buf_usage(pipe);
2997 	npages = max_t(ssize_t, pipe->max_usage - used, 0);
2998 	len = min_t(size_t, len, npages * PAGE_SIZE);
2999 
3000 	folio_batch_init(&fbatch);
3001 
3002 	do {
3003 		cond_resched();
3004 
3005 		if (*ppos >= i_size_read(in->f_mapping->host))
3006 			break;
3007 
3008 		iocb.ki_pos = *ppos;
3009 		error = filemap_get_pages(&iocb, len, &fbatch, true);
3010 		if (error < 0)
3011 			break;
3012 
3013 		/*
3014 		 * i_size must be checked after we know the pages are Uptodate.
3015 		 *
3016 		 * Checking i_size after the check allows us to calculate
3017 		 * the correct value for "nr", which means the zero-filled
3018 		 * part of the page is not copied back to userspace (unless
3019 		 * another truncate extends the file - this is desired though).
3020 		 */
3021 		isize = i_size_read(in->f_mapping->host);
3022 		if (unlikely(*ppos >= isize))
3023 			break;
3024 		end_offset = min_t(loff_t, isize, *ppos + len);
3025 
3026 		/*
3027 		 * Once we start copying data, we don't want to be touching any
3028 		 * cachelines that might be contended:
3029 		 */
3030 		writably_mapped = mapping_writably_mapped(in->f_mapping);
3031 
3032 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
3033 			struct folio *folio = fbatch.folios[i];
3034 			size_t n;
3035 
3036 			if (folio_pos(folio) >= end_offset)
3037 				goto out;
3038 			folio_mark_accessed(folio);
3039 
3040 			/*
3041 			 * If users can be writing to this folio using arbitrary
3042 			 * virtual addresses, take care of potential aliasing
3043 			 * before reading the folio on the kernel side.
3044 			 */
3045 			if (writably_mapped)
3046 				flush_dcache_folio(folio);
3047 
3048 			n = min_t(loff_t, len, isize - *ppos);
3049 			n = splice_folio_into_pipe(pipe, folio, *ppos, n);
3050 			if (!n)
3051 				goto out;
3052 			len -= n;
3053 			total_spliced += n;
3054 			*ppos += n;
3055 			in->f_ra.prev_pos = *ppos;
3056 			if (pipe_is_full(pipe))
3057 				goto out;
3058 		}
3059 
3060 		folio_batch_release(&fbatch);
3061 	} while (len);
3062 
3063 out:
3064 	folio_batch_release(&fbatch);
3065 	file_accessed(in);
3066 
3067 	return total_spliced ? total_spliced : error;
3068 }
3069 EXPORT_SYMBOL(filemap_splice_read);
3070 
3071 static inline loff_t folio_seek_hole_data(struct xa_state *xas,
3072 		struct address_space *mapping, struct folio *folio,
3073 		loff_t start, loff_t end, bool seek_data)
3074 {
3075 	const struct address_space_operations *ops = mapping->a_ops;
3076 	size_t offset, bsz = i_blocksize(mapping->host);
3077 
3078 	if (xa_is_value(folio) || folio_test_uptodate(folio))
3079 		return seek_data ? start : end;
3080 	if (!ops->is_partially_uptodate)
3081 		return seek_data ? end : start;
3082 
3083 	xas_pause(xas);
3084 	rcu_read_unlock();
3085 	folio_lock(folio);
3086 	if (unlikely(folio->mapping != mapping))
3087 		goto unlock;
3088 
3089 	offset = offset_in_folio(folio, start) & ~(bsz - 1);
3090 
3091 	do {
3092 		if (ops->is_partially_uptodate(folio, offset, bsz) ==
3093 							seek_data)
3094 			break;
3095 		start = (start + bsz) & ~((u64)bsz - 1);
3096 		offset += bsz;
3097 	} while (offset < folio_size(folio));
3098 unlock:
3099 	folio_unlock(folio);
3100 	rcu_read_lock();
3101 	return start;
3102 }
3103 
3104 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
3105 {
3106 	if (xa_is_value(folio))
3107 		return PAGE_SIZE << xas_get_order(xas);
3108 	return folio_size(folio);
3109 }
3110 
3111 /**
3112  * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3113  * @mapping: Address space to search.
3114  * @start: First byte to consider.
3115  * @end: Limit of search (exclusive).
3116  * @whence: Either SEEK_HOLE or SEEK_DATA.
3117  *
3118  * If the page cache knows which blocks contain holes and which blocks
3119  * contain data, your filesystem can use this function to implement
3120  * SEEK_HOLE and SEEK_DATA.  This is useful for filesystems which are
3121  * entirely memory-based such as tmpfs, and filesystems which support
3122  * unwritten extents.
3123  *
3124  * Return: The requested offset on success, or -ENXIO if @whence specifies
3125  * SEEK_DATA and there is no data after @start.  There is an implicit hole
3126  * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
3127  * and @end contain data.
3128  */
3129 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
3130 		loff_t end, int whence)
3131 {
3132 	XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
3133 	pgoff_t max = (end - 1) >> PAGE_SHIFT;
3134 	bool seek_data = (whence == SEEK_DATA);
3135 	struct folio *folio;
3136 
3137 	if (end <= start)
3138 		return -ENXIO;
3139 
3140 	rcu_read_lock();
3141 	while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
3142 		loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
3143 		size_t seek_size;
3144 
3145 		if (start < pos) {
3146 			if (!seek_data)
3147 				goto unlock;
3148 			start = pos;
3149 		}
3150 
3151 		seek_size = seek_folio_size(&xas, folio);
3152 		pos = round_up((u64)pos + 1, seek_size);
3153 		start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
3154 				seek_data);
3155 		if (start < pos)
3156 			goto unlock;
3157 		if (start >= end)
3158 			break;
3159 		if (seek_size > PAGE_SIZE)
3160 			xas_set(&xas, pos >> PAGE_SHIFT);
3161 		if (!xa_is_value(folio))
3162 			folio_put(folio);
3163 	}
3164 	if (seek_data)
3165 		start = -ENXIO;
3166 unlock:
3167 	rcu_read_unlock();
3168 	if (folio && !xa_is_value(folio))
3169 		folio_put(folio);
3170 	if (start > end)
3171 		return end;
3172 	return start;
3173 }
3174 
3175 #ifdef CONFIG_MMU
3176 #define MMAP_LOTSAMISS  (100)
3177 /*
3178  * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
3179  * @vmf - the vm_fault for this fault.
3180  * @folio - the folio to lock.
3181  * @fpin - the pointer to the file we may pin (or is already pinned).
3182  *
3183  * This works similar to lock_folio_or_retry in that it can drop the
3184  * mmap_lock.  It differs in that it actually returns the folio locked
3185  * if it returns 1 and 0 if it couldn't lock the folio.  If we did have
3186  * to drop the mmap_lock then fpin will point to the pinned file and
3187  * needs to be fput()'ed at a later point.
3188  */
3189 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
3190 				     struct file **fpin)
3191 {
3192 	if (folio_trylock(folio))
3193 		return 1;
3194 
3195 	/*
3196 	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
3197 	 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
3198 	 * is supposed to work. We have way too many special cases..
3199 	 */
3200 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3201 		return 0;
3202 
3203 	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
3204 	if (vmf->flags & FAULT_FLAG_KILLABLE) {
3205 		if (__folio_lock_killable(folio)) {
3206 			/*
3207 			 * We didn't have the right flags to drop the
3208 			 * fault lock, but all fault_handlers only check
3209 			 * for fatal signals if we return VM_FAULT_RETRY,
3210 			 * so we need to drop the fault lock here and
3211 			 * return 0 if we don't have a fpin.
3212 			 */
3213 			if (*fpin == NULL)
3214 				release_fault_lock(vmf);
3215 			return 0;
3216 		}
3217 	} else
3218 		__folio_lock(folio);
3219 
3220 	return 1;
3221 }
3222 
3223 /*
3224  * Synchronous readahead happens when we don't even find a page in the page
3225  * cache at all.  We don't want to perform IO under the mmap sem, so if we have
3226  * to drop the mmap sem we return the file that was pinned in order for us to do
3227  * that.  If we didn't pin a file then we return NULL.  The file that is
3228  * returned needs to be fput()'ed when we're done with it.
3229  */
3230 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
3231 {
3232 	struct file *file = vmf->vma->vm_file;
3233 	struct file_ra_state *ra = &file->f_ra;
3234 	struct address_space *mapping = file->f_mapping;
3235 	DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
3236 	struct file *fpin = NULL;
3237 	vm_flags_t vm_flags = vmf->vma->vm_flags;
3238 	unsigned short mmap_miss;
3239 
3240 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3241 	/* Use the readahead code, even if readahead is disabled */
3242 	if ((vm_flags & VM_HUGEPAGE) && HPAGE_PMD_ORDER <= MAX_PAGECACHE_ORDER) {
3243 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3244 		ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3245 		ra->size = HPAGE_PMD_NR;
3246 		/*
3247 		 * Fetch two PMD folios, so we get the chance to actually
3248 		 * readahead, unless we've been told not to.
3249 		 */
3250 		if (!(vm_flags & VM_RAND_READ))
3251 			ra->size *= 2;
3252 		ra->async_size = HPAGE_PMD_NR;
3253 		ra->order = HPAGE_PMD_ORDER;
3254 		page_cache_ra_order(&ractl, ra);
3255 		return fpin;
3256 	}
3257 #endif
3258 
3259 	/*
3260 	 * If we don't want any read-ahead, don't bother. VM_EXEC case below is
3261 	 * already intended for random access.
3262 	 */
3263 	if ((vm_flags & (VM_RAND_READ | VM_EXEC)) == VM_RAND_READ)
3264 		return fpin;
3265 	if (!ra->ra_pages)
3266 		return fpin;
3267 
3268 	if (vm_flags & VM_SEQ_READ) {
3269 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3270 		page_cache_sync_ra(&ractl, ra->ra_pages);
3271 		return fpin;
3272 	}
3273 
3274 	/* Avoid banging the cache line if not needed */
3275 	mmap_miss = READ_ONCE(ra->mmap_miss);
3276 	if (mmap_miss < MMAP_LOTSAMISS * 10)
3277 		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3278 
3279 	/*
3280 	 * Do we miss much more than hit in this file? If so,
3281 	 * stop bothering with read-ahead. It will only hurt.
3282 	 */
3283 	if (mmap_miss > MMAP_LOTSAMISS)
3284 		return fpin;
3285 
3286 	if (vm_flags & VM_EXEC) {
3287 		/*
3288 		 * Allow arch to request a preferred minimum folio order for
3289 		 * executable memory. This can often be beneficial to
3290 		 * performance if (e.g.) arm64 can contpte-map the folio.
3291 		 * Executable memory rarely benefits from readahead, due to its
3292 		 * random access nature, so set async_size to 0.
3293 		 *
3294 		 * Limit to the boundaries of the VMA to avoid reading in any
3295 		 * pad that might exist between sections, which would be a waste
3296 		 * of memory.
3297 		 */
3298 		struct vm_area_struct *vma = vmf->vma;
3299 		unsigned long start = vma->vm_pgoff;
3300 		unsigned long end = start + vma_pages(vma);
3301 		unsigned long ra_end;
3302 
3303 		ra->order = exec_folio_order();
3304 		ra->start = round_down(vmf->pgoff, 1UL << ra->order);
3305 		ra->start = max(ra->start, start);
3306 		ra_end = round_up(ra->start + ra->ra_pages, 1UL << ra->order);
3307 		ra_end = min(ra_end, end);
3308 		ra->size = ra_end - ra->start;
3309 		ra->async_size = 0;
3310 	} else {
3311 		/*
3312 		 * mmap read-around
3313 		 */
3314 		ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3315 		ra->size = ra->ra_pages;
3316 		ra->async_size = ra->ra_pages / 4;
3317 		ra->order = 0;
3318 	}
3319 
3320 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3321 	ractl._index = ra->start;
3322 	page_cache_ra_order(&ractl, ra);
3323 	return fpin;
3324 }
3325 
3326 /*
3327  * Asynchronous readahead happens when we find the page and PG_readahead,
3328  * so we want to possibly extend the readahead further.  We return the file that
3329  * was pinned if we have to drop the mmap_lock in order to do IO.
3330  */
3331 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3332 					    struct folio *folio)
3333 {
3334 	struct file *file = vmf->vma->vm_file;
3335 	struct file_ra_state *ra = &file->f_ra;
3336 	DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3337 	struct file *fpin = NULL;
3338 	unsigned short mmap_miss;
3339 
3340 	/* If we don't want any read-ahead, don't bother */
3341 	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3342 		return fpin;
3343 
3344 	/*
3345 	 * If the folio is locked, we're likely racing against another fault.
3346 	 * Don't touch the mmap_miss counter to avoid decreasing it multiple
3347 	 * times for a single folio and break the balance with mmap_miss
3348 	 * increase in do_sync_mmap_readahead().
3349 	 */
3350 	if (likely(!folio_test_locked(folio))) {
3351 		mmap_miss = READ_ONCE(ra->mmap_miss);
3352 		if (mmap_miss)
3353 			WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3354 	}
3355 
3356 	if (folio_test_readahead(folio)) {
3357 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3358 		page_cache_async_ra(&ractl, folio, ra->ra_pages);
3359 	}
3360 	return fpin;
3361 }
3362 
3363 static vm_fault_t filemap_fault_recheck_pte_none(struct vm_fault *vmf)
3364 {
3365 	struct vm_area_struct *vma = vmf->vma;
3366 	vm_fault_t ret = 0;
3367 	pte_t *ptep;
3368 
3369 	/*
3370 	 * We might have COW'ed a pagecache folio and might now have an mlocked
3371 	 * anon folio mapped. The original pagecache folio is not mlocked and
3372 	 * might have been evicted. During a read+clear/modify/write update of
3373 	 * the PTE, such as done in do_numa_page()/change_pte_range(), we
3374 	 * temporarily clear the PTE under PT lock and might detect it here as
3375 	 * "none" when not holding the PT lock.
3376 	 *
3377 	 * Not rechecking the PTE under PT lock could result in an unexpected
3378 	 * major fault in an mlock'ed region. Recheck only for this special
3379 	 * scenario while holding the PT lock, to not degrade non-mlocked
3380 	 * scenarios. Recheck the PTE without PT lock firstly, thereby reducing
3381 	 * the number of times we hold PT lock.
3382 	 */
3383 	if (!(vma->vm_flags & VM_LOCKED))
3384 		return 0;
3385 
3386 	if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
3387 		return 0;
3388 
3389 	ptep = pte_offset_map_ro_nolock(vma->vm_mm, vmf->pmd, vmf->address,
3390 					&vmf->ptl);
3391 	if (unlikely(!ptep))
3392 		return VM_FAULT_NOPAGE;
3393 
3394 	if (unlikely(!pte_none(ptep_get_lockless(ptep)))) {
3395 		ret = VM_FAULT_NOPAGE;
3396 	} else {
3397 		spin_lock(vmf->ptl);
3398 		if (unlikely(!pte_none(ptep_get(ptep))))
3399 			ret = VM_FAULT_NOPAGE;
3400 		spin_unlock(vmf->ptl);
3401 	}
3402 	pte_unmap(ptep);
3403 	return ret;
3404 }
3405 
3406 /**
3407  * filemap_fault - read in file data for page fault handling
3408  * @vmf:	struct vm_fault containing details of the fault
3409  *
3410  * filemap_fault() is invoked via the vma operations vector for a
3411  * mapped memory region to read in file data during a page fault.
3412  *
3413  * The goto's are kind of ugly, but this streamlines the normal case of having
3414  * it in the page cache, and handles the special cases reasonably without
3415  * having a lot of duplicated code.
3416  *
3417  * vma->vm_mm->mmap_lock must be held on entry.
3418  *
3419  * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3420  * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3421  *
3422  * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3423  * has not been released.
3424  *
3425  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3426  *
3427  * Return: bitwise-OR of %VM_FAULT_ codes.
3428  */
3429 vm_fault_t filemap_fault(struct vm_fault *vmf)
3430 {
3431 	int error;
3432 	struct file *file = vmf->vma->vm_file;
3433 	struct file *fpin = NULL;
3434 	struct address_space *mapping = file->f_mapping;
3435 	struct inode *inode = mapping->host;
3436 	pgoff_t max_idx, index = vmf->pgoff;
3437 	struct folio *folio;
3438 	vm_fault_t ret = 0;
3439 	bool mapping_locked = false;
3440 
3441 	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3442 	if (unlikely(index >= max_idx))
3443 		return VM_FAULT_SIGBUS;
3444 
3445 	trace_mm_filemap_fault(mapping, index);
3446 
3447 	/*
3448 	 * Do we have something in the page cache already?
3449 	 */
3450 	folio = filemap_get_folio(mapping, index);
3451 	if (likely(!IS_ERR(folio))) {
3452 		/*
3453 		 * We found the page, so try async readahead before waiting for
3454 		 * the lock.
3455 		 */
3456 		if (!(vmf->flags & FAULT_FLAG_TRIED))
3457 			fpin = do_async_mmap_readahead(vmf, folio);
3458 		if (unlikely(!folio_test_uptodate(folio))) {
3459 			filemap_invalidate_lock_shared(mapping);
3460 			mapping_locked = true;
3461 		}
3462 	} else {
3463 		ret = filemap_fault_recheck_pte_none(vmf);
3464 		if (unlikely(ret))
3465 			return ret;
3466 
3467 		/* No page in the page cache at all */
3468 		count_vm_event(PGMAJFAULT);
3469 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3470 		ret = VM_FAULT_MAJOR;
3471 		fpin = do_sync_mmap_readahead(vmf);
3472 retry_find:
3473 		/*
3474 		 * See comment in filemap_create_folio() why we need
3475 		 * invalidate_lock
3476 		 */
3477 		if (!mapping_locked) {
3478 			filemap_invalidate_lock_shared(mapping);
3479 			mapping_locked = true;
3480 		}
3481 		folio = __filemap_get_folio(mapping, index,
3482 					  FGP_CREAT|FGP_FOR_MMAP,
3483 					  vmf->gfp_mask);
3484 		if (IS_ERR(folio)) {
3485 			if (fpin)
3486 				goto out_retry;
3487 			filemap_invalidate_unlock_shared(mapping);
3488 			return VM_FAULT_OOM;
3489 		}
3490 	}
3491 
3492 	if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3493 		goto out_retry;
3494 
3495 	/* Did it get truncated? */
3496 	if (unlikely(folio->mapping != mapping)) {
3497 		folio_unlock(folio);
3498 		folio_put(folio);
3499 		goto retry_find;
3500 	}
3501 	VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3502 
3503 	/*
3504 	 * We have a locked folio in the page cache, now we need to check
3505 	 * that it's up-to-date. If not, it is going to be due to an error,
3506 	 * or because readahead was otherwise unable to retrieve it.
3507 	 */
3508 	if (unlikely(!folio_test_uptodate(folio))) {
3509 		/*
3510 		 * If the invalidate lock is not held, the folio was in cache
3511 		 * and uptodate and now it is not. Strange but possible since we
3512 		 * didn't hold the page lock all the time. Let's drop
3513 		 * everything, get the invalidate lock and try again.
3514 		 */
3515 		if (!mapping_locked) {
3516 			folio_unlock(folio);
3517 			folio_put(folio);
3518 			goto retry_find;
3519 		}
3520 
3521 		/*
3522 		 * OK, the folio is really not uptodate. This can be because the
3523 		 * VMA has the VM_RAND_READ flag set, or because an error
3524 		 * arose. Let's read it in directly.
3525 		 */
3526 		goto page_not_uptodate;
3527 	}
3528 
3529 	/*
3530 	 * We've made it this far and we had to drop our mmap_lock, now is the
3531 	 * time to return to the upper layer and have it re-find the vma and
3532 	 * redo the fault.
3533 	 */
3534 	if (fpin) {
3535 		folio_unlock(folio);
3536 		goto out_retry;
3537 	}
3538 	if (mapping_locked)
3539 		filemap_invalidate_unlock_shared(mapping);
3540 
3541 	/*
3542 	 * Found the page and have a reference on it.
3543 	 * We must recheck i_size under page lock.
3544 	 */
3545 	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3546 	if (unlikely(index >= max_idx)) {
3547 		folio_unlock(folio);
3548 		folio_put(folio);
3549 		return VM_FAULT_SIGBUS;
3550 	}
3551 
3552 	vmf->page = folio_file_page(folio, index);
3553 	return ret | VM_FAULT_LOCKED;
3554 
3555 page_not_uptodate:
3556 	/*
3557 	 * Umm, take care of errors if the page isn't up-to-date.
3558 	 * Try to re-read it _once_. We do this synchronously,
3559 	 * because there really aren't any performance issues here
3560 	 * and we need to check for errors.
3561 	 */
3562 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3563 	error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
3564 	if (fpin)
3565 		goto out_retry;
3566 	folio_put(folio);
3567 
3568 	if (!error || error == AOP_TRUNCATED_PAGE)
3569 		goto retry_find;
3570 	filemap_invalidate_unlock_shared(mapping);
3571 
3572 	return VM_FAULT_SIGBUS;
3573 
3574 out_retry:
3575 	/*
3576 	 * We dropped the mmap_lock, we need to return to the fault handler to
3577 	 * re-find the vma and come back and find our hopefully still populated
3578 	 * page.
3579 	 */
3580 	if (!IS_ERR(folio))
3581 		folio_put(folio);
3582 	if (mapping_locked)
3583 		filemap_invalidate_unlock_shared(mapping);
3584 	if (fpin)
3585 		fput(fpin);
3586 	return ret | VM_FAULT_RETRY;
3587 }
3588 EXPORT_SYMBOL(filemap_fault);
3589 
3590 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio,
3591 		pgoff_t start)
3592 {
3593 	struct mm_struct *mm = vmf->vma->vm_mm;
3594 
3595 	/* Huge page is mapped? No need to proceed. */
3596 	if (pmd_trans_huge(*vmf->pmd)) {
3597 		folio_unlock(folio);
3598 		folio_put(folio);
3599 		return true;
3600 	}
3601 
3602 	if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) {
3603 		struct page *page = folio_file_page(folio, start);
3604 		vm_fault_t ret = do_set_pmd(vmf, folio, page);
3605 		if (!ret) {
3606 			/* The page is mapped successfully, reference consumed. */
3607 			folio_unlock(folio);
3608 			return true;
3609 		}
3610 	}
3611 
3612 	if (pmd_none(*vmf->pmd) && vmf->prealloc_pte)
3613 		pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3614 
3615 	return false;
3616 }
3617 
3618 static struct folio *next_uptodate_folio(struct xa_state *xas,
3619 		struct address_space *mapping, pgoff_t end_pgoff)
3620 {
3621 	struct folio *folio = xas_next_entry(xas, end_pgoff);
3622 	unsigned long max_idx;
3623 
3624 	do {
3625 		if (!folio)
3626 			return NULL;
3627 		if (xas_retry(xas, folio))
3628 			continue;
3629 		if (xa_is_value(folio))
3630 			continue;
3631 		if (!folio_try_get(folio))
3632 			continue;
3633 		if (folio_test_locked(folio))
3634 			goto skip;
3635 		/* Has the page moved or been split? */
3636 		if (unlikely(folio != xas_reload(xas)))
3637 			goto skip;
3638 		if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3639 			goto skip;
3640 		if (!folio_trylock(folio))
3641 			goto skip;
3642 		if (folio->mapping != mapping)
3643 			goto unlock;
3644 		if (!folio_test_uptodate(folio))
3645 			goto unlock;
3646 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3647 		if (xas->xa_index >= max_idx)
3648 			goto unlock;
3649 		return folio;
3650 unlock:
3651 		folio_unlock(folio);
3652 skip:
3653 		folio_put(folio);
3654 	} while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3655 
3656 	return NULL;
3657 }
3658 
3659 /*
3660  * Map page range [start_page, start_page + nr_pages) of folio.
3661  * start_page is gotten from start by folio_page(folio, start)
3662  */
3663 static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf,
3664 			struct folio *folio, unsigned long start,
3665 			unsigned long addr, unsigned int nr_pages,
3666 			unsigned long *rss, unsigned short *mmap_miss)
3667 {
3668 	vm_fault_t ret = 0;
3669 	struct page *page = folio_page(folio, start);
3670 	unsigned int count = 0;
3671 	pte_t *old_ptep = vmf->pte;
3672 
3673 	do {
3674 		if (PageHWPoison(page + count))
3675 			goto skip;
3676 
3677 		/*
3678 		 * If there are too many folios that are recently evicted
3679 		 * in a file, they will probably continue to be evicted.
3680 		 * In such situation, read-ahead is only a waste of IO.
3681 		 * Don't decrease mmap_miss in this scenario to make sure
3682 		 * we can stop read-ahead.
3683 		 */
3684 		if (!folio_test_workingset(folio))
3685 			(*mmap_miss)++;
3686 
3687 		/*
3688 		 * NOTE: If there're PTE markers, we'll leave them to be
3689 		 * handled in the specific fault path, and it'll prohibit the
3690 		 * fault-around logic.
3691 		 */
3692 		if (!pte_none(ptep_get(&vmf->pte[count])))
3693 			goto skip;
3694 
3695 		count++;
3696 		continue;
3697 skip:
3698 		if (count) {
3699 			set_pte_range(vmf, folio, page, count, addr);
3700 			*rss += count;
3701 			folio_ref_add(folio, count);
3702 			if (in_range(vmf->address, addr, count * PAGE_SIZE))
3703 				ret = VM_FAULT_NOPAGE;
3704 		}
3705 
3706 		count++;
3707 		page += count;
3708 		vmf->pte += count;
3709 		addr += count * PAGE_SIZE;
3710 		count = 0;
3711 	} while (--nr_pages > 0);
3712 
3713 	if (count) {
3714 		set_pte_range(vmf, folio, page, count, addr);
3715 		*rss += count;
3716 		folio_ref_add(folio, count);
3717 		if (in_range(vmf->address, addr, count * PAGE_SIZE))
3718 			ret = VM_FAULT_NOPAGE;
3719 	}
3720 
3721 	vmf->pte = old_ptep;
3722 
3723 	return ret;
3724 }
3725 
3726 static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf,
3727 		struct folio *folio, unsigned long addr,
3728 		unsigned long *rss, unsigned short *mmap_miss)
3729 {
3730 	vm_fault_t ret = 0;
3731 	struct page *page = &folio->page;
3732 
3733 	if (PageHWPoison(page))
3734 		return ret;
3735 
3736 	/* See comment of filemap_map_folio_range() */
3737 	if (!folio_test_workingset(folio))
3738 		(*mmap_miss)++;
3739 
3740 	/*
3741 	 * NOTE: If there're PTE markers, we'll leave them to be
3742 	 * handled in the specific fault path, and it'll prohibit
3743 	 * the fault-around logic.
3744 	 */
3745 	if (!pte_none(ptep_get(vmf->pte)))
3746 		return ret;
3747 
3748 	if (vmf->address == addr)
3749 		ret = VM_FAULT_NOPAGE;
3750 
3751 	set_pte_range(vmf, folio, page, 1, addr);
3752 	(*rss)++;
3753 	folio_ref_inc(folio);
3754 
3755 	return ret;
3756 }
3757 
3758 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3759 			     pgoff_t start_pgoff, pgoff_t end_pgoff)
3760 {
3761 	struct vm_area_struct *vma = vmf->vma;
3762 	struct file *file = vma->vm_file;
3763 	struct address_space *mapping = file->f_mapping;
3764 	pgoff_t file_end, last_pgoff = start_pgoff;
3765 	unsigned long addr;
3766 	XA_STATE(xas, &mapping->i_pages, start_pgoff);
3767 	struct folio *folio;
3768 	vm_fault_t ret = 0;
3769 	unsigned long rss = 0;
3770 	unsigned int nr_pages = 0, folio_type;
3771 	unsigned short mmap_miss = 0, mmap_miss_saved;
3772 
3773 	rcu_read_lock();
3774 	folio = next_uptodate_folio(&xas, mapping, end_pgoff);
3775 	if (!folio)
3776 		goto out;
3777 
3778 	if (filemap_map_pmd(vmf, folio, start_pgoff)) {
3779 		ret = VM_FAULT_NOPAGE;
3780 		goto out;
3781 	}
3782 
3783 	addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3784 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3785 	if (!vmf->pte) {
3786 		folio_unlock(folio);
3787 		folio_put(folio);
3788 		goto out;
3789 	}
3790 
3791 	file_end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE) - 1;
3792 	if (end_pgoff > file_end)
3793 		end_pgoff = file_end;
3794 
3795 	folio_type = mm_counter_file(folio);
3796 	do {
3797 		unsigned long end;
3798 
3799 		addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3800 		vmf->pte += xas.xa_index - last_pgoff;
3801 		last_pgoff = xas.xa_index;
3802 		end = folio_next_index(folio) - 1;
3803 		nr_pages = min(end, end_pgoff) - xas.xa_index + 1;
3804 
3805 		if (!folio_test_large(folio))
3806 			ret |= filemap_map_order0_folio(vmf,
3807 					folio, addr, &rss, &mmap_miss);
3808 		else
3809 			ret |= filemap_map_folio_range(vmf, folio,
3810 					xas.xa_index - folio->index, addr,
3811 					nr_pages, &rss, &mmap_miss);
3812 
3813 		folio_unlock(folio);
3814 		folio_put(folio);
3815 	} while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL);
3816 	add_mm_counter(vma->vm_mm, folio_type, rss);
3817 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3818 	trace_mm_filemap_map_pages(mapping, start_pgoff, end_pgoff);
3819 out:
3820 	rcu_read_unlock();
3821 
3822 	mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss);
3823 	if (mmap_miss >= mmap_miss_saved)
3824 		WRITE_ONCE(file->f_ra.mmap_miss, 0);
3825 	else
3826 		WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss);
3827 
3828 	return ret;
3829 }
3830 EXPORT_SYMBOL(filemap_map_pages);
3831 
3832 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3833 {
3834 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3835 	struct folio *folio = page_folio(vmf->page);
3836 	vm_fault_t ret = VM_FAULT_LOCKED;
3837 
3838 	sb_start_pagefault(mapping->host->i_sb);
3839 	file_update_time(vmf->vma->vm_file);
3840 	folio_lock(folio);
3841 	if (folio->mapping != mapping) {
3842 		folio_unlock(folio);
3843 		ret = VM_FAULT_NOPAGE;
3844 		goto out;
3845 	}
3846 	/*
3847 	 * We mark the folio dirty already here so that when freeze is in
3848 	 * progress, we are guaranteed that writeback during freezing will
3849 	 * see the dirty folio and writeprotect it again.
3850 	 */
3851 	folio_mark_dirty(folio);
3852 	folio_wait_stable(folio);
3853 out:
3854 	sb_end_pagefault(mapping->host->i_sb);
3855 	return ret;
3856 }
3857 
3858 const struct vm_operations_struct generic_file_vm_ops = {
3859 	.fault		= filemap_fault,
3860 	.map_pages	= filemap_map_pages,
3861 	.page_mkwrite	= filemap_page_mkwrite,
3862 };
3863 
3864 /* This is used for a general mmap of a disk file */
3865 
3866 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3867 {
3868 	struct address_space *mapping = file->f_mapping;
3869 
3870 	if (!mapping->a_ops->read_folio)
3871 		return -ENOEXEC;
3872 	file_accessed(file);
3873 	vma->vm_ops = &generic_file_vm_ops;
3874 	return 0;
3875 }
3876 
3877 int generic_file_mmap_prepare(struct vm_area_desc *desc)
3878 {
3879 	struct file *file = desc->file;
3880 	struct address_space *mapping = file->f_mapping;
3881 
3882 	if (!mapping->a_ops->read_folio)
3883 		return -ENOEXEC;
3884 	file_accessed(file);
3885 	desc->vm_ops = &generic_file_vm_ops;
3886 	return 0;
3887 }
3888 
3889 /*
3890  * This is for filesystems which do not implement ->writepage.
3891  */
3892 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3893 {
3894 	if (vma_is_shared_maywrite(vma))
3895 		return -EINVAL;
3896 	return generic_file_mmap(file, vma);
3897 }
3898 
3899 int generic_file_readonly_mmap_prepare(struct vm_area_desc *desc)
3900 {
3901 	if (is_shared_maywrite(desc->vm_flags))
3902 		return -EINVAL;
3903 	return generic_file_mmap_prepare(desc);
3904 }
3905 #else
3906 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3907 {
3908 	return VM_FAULT_SIGBUS;
3909 }
3910 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3911 {
3912 	return -ENOSYS;
3913 }
3914 int generic_file_mmap_prepare(struct vm_area_desc *desc)
3915 {
3916 	return -ENOSYS;
3917 }
3918 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3919 {
3920 	return -ENOSYS;
3921 }
3922 int generic_file_readonly_mmap_prepare(struct vm_area_desc *desc)
3923 {
3924 	return -ENOSYS;
3925 }
3926 #endif /* CONFIG_MMU */
3927 
3928 EXPORT_SYMBOL(filemap_page_mkwrite);
3929 EXPORT_SYMBOL(generic_file_mmap);
3930 EXPORT_SYMBOL(generic_file_mmap_prepare);
3931 EXPORT_SYMBOL(generic_file_readonly_mmap);
3932 EXPORT_SYMBOL(generic_file_readonly_mmap_prepare);
3933 
3934 static struct folio *do_read_cache_folio(struct address_space *mapping,
3935 		pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
3936 {
3937 	struct folio *folio;
3938 	int err;
3939 
3940 	if (!filler)
3941 		filler = mapping->a_ops->read_folio;
3942 repeat:
3943 	folio = filemap_get_folio(mapping, index);
3944 	if (IS_ERR(folio)) {
3945 		folio = filemap_alloc_folio(gfp,
3946 					    mapping_min_folio_order(mapping));
3947 		if (!folio)
3948 			return ERR_PTR(-ENOMEM);
3949 		index = mapping_align_index(mapping, index);
3950 		err = filemap_add_folio(mapping, folio, index, gfp);
3951 		if (unlikely(err)) {
3952 			folio_put(folio);
3953 			if (err == -EEXIST)
3954 				goto repeat;
3955 			/* Presumably ENOMEM for xarray node */
3956 			return ERR_PTR(err);
3957 		}
3958 
3959 		goto filler;
3960 	}
3961 	if (folio_test_uptodate(folio))
3962 		goto out;
3963 
3964 	if (!folio_trylock(folio)) {
3965 		folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3966 		goto repeat;
3967 	}
3968 
3969 	/* Folio was truncated from mapping */
3970 	if (!folio->mapping) {
3971 		folio_unlock(folio);
3972 		folio_put(folio);
3973 		goto repeat;
3974 	}
3975 
3976 	/* Someone else locked and filled the page in a very small window */
3977 	if (folio_test_uptodate(folio)) {
3978 		folio_unlock(folio);
3979 		goto out;
3980 	}
3981 
3982 filler:
3983 	err = filemap_read_folio(file, filler, folio);
3984 	if (err) {
3985 		folio_put(folio);
3986 		if (err == AOP_TRUNCATED_PAGE)
3987 			goto repeat;
3988 		return ERR_PTR(err);
3989 	}
3990 
3991 out:
3992 	folio_mark_accessed(folio);
3993 	return folio;
3994 }
3995 
3996 /**
3997  * read_cache_folio - Read into page cache, fill it if needed.
3998  * @mapping: The address_space to read from.
3999  * @index: The index to read.
4000  * @filler: Function to perform the read, or NULL to use aops->read_folio().
4001  * @file: Passed to filler function, may be NULL if not required.
4002  *
4003  * Read one page into the page cache.  If it succeeds, the folio returned
4004  * will contain @index, but it may not be the first page of the folio.
4005  *
4006  * If the filler function returns an error, it will be returned to the
4007  * caller.
4008  *
4009  * Context: May sleep.  Expects mapping->invalidate_lock to be held.
4010  * Return: An uptodate folio on success, ERR_PTR() on failure.
4011  */
4012 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
4013 		filler_t filler, struct file *file)
4014 {
4015 	return do_read_cache_folio(mapping, index, filler, file,
4016 			mapping_gfp_mask(mapping));
4017 }
4018 EXPORT_SYMBOL(read_cache_folio);
4019 
4020 /**
4021  * mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
4022  * @mapping:	The address_space for the folio.
4023  * @index:	The index that the allocated folio will contain.
4024  * @gfp:	The page allocator flags to use if allocating.
4025  *
4026  * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
4027  * any new memory allocations done using the specified allocation flags.
4028  *
4029  * The most likely error from this function is EIO, but ENOMEM is
4030  * possible and so is EINTR.  If ->read_folio returns another error,
4031  * that will be returned to the caller.
4032  *
4033  * The function expects mapping->invalidate_lock to be already held.
4034  *
4035  * Return: Uptodate folio on success, ERR_PTR() on failure.
4036  */
4037 struct folio *mapping_read_folio_gfp(struct address_space *mapping,
4038 		pgoff_t index, gfp_t gfp)
4039 {
4040 	return do_read_cache_folio(mapping, index, NULL, NULL, gfp);
4041 }
4042 EXPORT_SYMBOL(mapping_read_folio_gfp);
4043 
4044 static struct page *do_read_cache_page(struct address_space *mapping,
4045 		pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
4046 {
4047 	struct folio *folio;
4048 
4049 	folio = do_read_cache_folio(mapping, index, filler, file, gfp);
4050 	if (IS_ERR(folio))
4051 		return &folio->page;
4052 	return folio_file_page(folio, index);
4053 }
4054 
4055 struct page *read_cache_page(struct address_space *mapping,
4056 			pgoff_t index, filler_t *filler, struct file *file)
4057 {
4058 	return do_read_cache_page(mapping, index, filler, file,
4059 			mapping_gfp_mask(mapping));
4060 }
4061 EXPORT_SYMBOL(read_cache_page);
4062 
4063 /**
4064  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
4065  * @mapping:	the page's address_space
4066  * @index:	the page index
4067  * @gfp:	the page allocator flags to use if allocating
4068  *
4069  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
4070  * any new page allocations done using the specified allocation flags.
4071  *
4072  * If the page does not get brought uptodate, return -EIO.
4073  *
4074  * The function expects mapping->invalidate_lock to be already held.
4075  *
4076  * Return: up to date page on success, ERR_PTR() on failure.
4077  */
4078 struct page *read_cache_page_gfp(struct address_space *mapping,
4079 				pgoff_t index,
4080 				gfp_t gfp)
4081 {
4082 	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
4083 }
4084 EXPORT_SYMBOL(read_cache_page_gfp);
4085 
4086 /*
4087  * Warn about a page cache invalidation failure during a direct I/O write.
4088  */
4089 static void dio_warn_stale_pagecache(struct file *filp)
4090 {
4091 	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
4092 	char pathname[128];
4093 	char *path;
4094 
4095 	errseq_set(&filp->f_mapping->wb_err, -EIO);
4096 	if (__ratelimit(&_rs)) {
4097 		path = file_path(filp, pathname, sizeof(pathname));
4098 		if (IS_ERR(path))
4099 			path = "(unknown)";
4100 		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
4101 		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
4102 			current->comm);
4103 	}
4104 }
4105 
4106 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count)
4107 {
4108 	struct address_space *mapping = iocb->ki_filp->f_mapping;
4109 
4110 	if (mapping->nrpages &&
4111 	    invalidate_inode_pages2_range(mapping,
4112 			iocb->ki_pos >> PAGE_SHIFT,
4113 			(iocb->ki_pos + count - 1) >> PAGE_SHIFT))
4114 		dio_warn_stale_pagecache(iocb->ki_filp);
4115 }
4116 
4117 ssize_t
4118 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
4119 {
4120 	struct address_space *mapping = iocb->ki_filp->f_mapping;
4121 	size_t write_len = iov_iter_count(from);
4122 	ssize_t written;
4123 
4124 	/*
4125 	 * If a page can not be invalidated, return 0 to fall back
4126 	 * to buffered write.
4127 	 */
4128 	written = kiocb_invalidate_pages(iocb, write_len);
4129 	if (written) {
4130 		if (written == -EBUSY)
4131 			return 0;
4132 		return written;
4133 	}
4134 
4135 	written = mapping->a_ops->direct_IO(iocb, from);
4136 
4137 	/*
4138 	 * Finally, try again to invalidate clean pages which might have been
4139 	 * cached by non-direct readahead, or faulted in by get_user_pages()
4140 	 * if the source of the write was an mmap'ed region of the file
4141 	 * we're writing.  Either one is a pretty crazy thing to do,
4142 	 * so we don't support it 100%.  If this invalidation
4143 	 * fails, tough, the write still worked...
4144 	 *
4145 	 * Most of the time we do not need this since dio_complete() will do
4146 	 * the invalidation for us. However there are some file systems that
4147 	 * do not end up with dio_complete() being called, so let's not break
4148 	 * them by removing it completely.
4149 	 *
4150 	 * Noticeable example is a blkdev_direct_IO().
4151 	 *
4152 	 * Skip invalidation for async writes or if mapping has no pages.
4153 	 */
4154 	if (written > 0) {
4155 		struct inode *inode = mapping->host;
4156 		loff_t pos = iocb->ki_pos;
4157 
4158 		kiocb_invalidate_post_direct_write(iocb, written);
4159 		pos += written;
4160 		write_len -= written;
4161 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
4162 			i_size_write(inode, pos);
4163 			mark_inode_dirty(inode);
4164 		}
4165 		iocb->ki_pos = pos;
4166 	}
4167 	if (written != -EIOCBQUEUED)
4168 		iov_iter_revert(from, write_len - iov_iter_count(from));
4169 	return written;
4170 }
4171 EXPORT_SYMBOL(generic_file_direct_write);
4172 
4173 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
4174 {
4175 	struct file *file = iocb->ki_filp;
4176 	loff_t pos = iocb->ki_pos;
4177 	struct address_space *mapping = file->f_mapping;
4178 	const struct address_space_operations *a_ops = mapping->a_ops;
4179 	size_t chunk = mapping_max_folio_size(mapping);
4180 	long status = 0;
4181 	ssize_t written = 0;
4182 
4183 	do {
4184 		struct folio *folio;
4185 		size_t offset;		/* Offset into folio */
4186 		size_t bytes;		/* Bytes to write to folio */
4187 		size_t copied;		/* Bytes copied from user */
4188 		void *fsdata = NULL;
4189 
4190 		bytes = iov_iter_count(i);
4191 retry:
4192 		offset = pos & (chunk - 1);
4193 		bytes = min(chunk - offset, bytes);
4194 		balance_dirty_pages_ratelimited(mapping);
4195 
4196 		if (fatal_signal_pending(current)) {
4197 			status = -EINTR;
4198 			break;
4199 		}
4200 
4201 		status = a_ops->write_begin(iocb, mapping, pos, bytes,
4202 						&folio, &fsdata);
4203 		if (unlikely(status < 0))
4204 			break;
4205 
4206 		offset = offset_in_folio(folio, pos);
4207 		if (bytes > folio_size(folio) - offset)
4208 			bytes = folio_size(folio) - offset;
4209 
4210 		if (mapping_writably_mapped(mapping))
4211 			flush_dcache_folio(folio);
4212 
4213 		/*
4214 		 * Faults here on mmap()s can recurse into arbitrary
4215 		 * filesystem code. Lots of locks are held that can
4216 		 * deadlock. Use an atomic copy to avoid deadlocking
4217 		 * in page fault handling.
4218 		 */
4219 		copied = copy_folio_from_iter_atomic(folio, offset, bytes, i);
4220 		flush_dcache_folio(folio);
4221 
4222 		status = a_ops->write_end(iocb, mapping, pos, bytes, copied,
4223 						folio, fsdata);
4224 		if (unlikely(status != copied)) {
4225 			iov_iter_revert(i, copied - max(status, 0L));
4226 			if (unlikely(status < 0))
4227 				break;
4228 		}
4229 		cond_resched();
4230 
4231 		if (unlikely(status == 0)) {
4232 			/*
4233 			 * A short copy made ->write_end() reject the
4234 			 * thing entirely.  Might be memory poisoning
4235 			 * halfway through, might be a race with munmap,
4236 			 * might be severe memory pressure.
4237 			 */
4238 			if (chunk > PAGE_SIZE)
4239 				chunk /= 2;
4240 			if (copied) {
4241 				bytes = copied;
4242 				goto retry;
4243 			}
4244 
4245 			/*
4246 			 * 'folio' is now unlocked and faults on it can be
4247 			 * handled. Ensure forward progress by trying to
4248 			 * fault it in now.
4249 			 */
4250 			if (fault_in_iov_iter_readable(i, bytes) == bytes) {
4251 				status = -EFAULT;
4252 				break;
4253 			}
4254 		} else {
4255 			pos += status;
4256 			written += status;
4257 		}
4258 	} while (iov_iter_count(i));
4259 
4260 	if (!written)
4261 		return status;
4262 	iocb->ki_pos += written;
4263 	return written;
4264 }
4265 EXPORT_SYMBOL(generic_perform_write);
4266 
4267 /**
4268  * __generic_file_write_iter - write data to a file
4269  * @iocb:	IO state structure (file, offset, etc.)
4270  * @from:	iov_iter with data to write
4271  *
4272  * This function does all the work needed for actually writing data to a
4273  * file. It does all basic checks, removes SUID from the file, updates
4274  * modification times and calls proper subroutines depending on whether we
4275  * do direct IO or a standard buffered write.
4276  *
4277  * It expects i_rwsem to be grabbed unless we work on a block device or similar
4278  * object which does not need locking at all.
4279  *
4280  * This function does *not* take care of syncing data in case of O_SYNC write.
4281  * A caller has to handle it. This is mainly due to the fact that we want to
4282  * avoid syncing under i_rwsem.
4283  *
4284  * Return:
4285  * * number of bytes written, even for truncated writes
4286  * * negative error code if no data has been written at all
4287  */
4288 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4289 {
4290 	struct file *file = iocb->ki_filp;
4291 	struct address_space *mapping = file->f_mapping;
4292 	struct inode *inode = mapping->host;
4293 	ssize_t ret;
4294 
4295 	ret = file_remove_privs(file);
4296 	if (ret)
4297 		return ret;
4298 
4299 	ret = file_update_time(file);
4300 	if (ret)
4301 		return ret;
4302 
4303 	if (iocb->ki_flags & IOCB_DIRECT) {
4304 		ret = generic_file_direct_write(iocb, from);
4305 		/*
4306 		 * If the write stopped short of completing, fall back to
4307 		 * buffered writes.  Some filesystems do this for writes to
4308 		 * holes, for example.  For DAX files, a buffered write will
4309 		 * not succeed (even if it did, DAX does not handle dirty
4310 		 * page-cache pages correctly).
4311 		 */
4312 		if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode))
4313 			return ret;
4314 		return direct_write_fallback(iocb, from, ret,
4315 				generic_perform_write(iocb, from));
4316 	}
4317 
4318 	return generic_perform_write(iocb, from);
4319 }
4320 EXPORT_SYMBOL(__generic_file_write_iter);
4321 
4322 /**
4323  * generic_file_write_iter - write data to a file
4324  * @iocb:	IO state structure
4325  * @from:	iov_iter with data to write
4326  *
4327  * This is a wrapper around __generic_file_write_iter() to be used by most
4328  * filesystems. It takes care of syncing the file in case of O_SYNC file
4329  * and acquires i_rwsem as needed.
4330  * Return:
4331  * * negative error code if no data has been written at all of
4332  *   vfs_fsync_range() failed for a synchronous write
4333  * * number of bytes written, even for truncated writes
4334  */
4335 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4336 {
4337 	struct file *file = iocb->ki_filp;
4338 	struct inode *inode = file->f_mapping->host;
4339 	ssize_t ret;
4340 
4341 	inode_lock(inode);
4342 	ret = generic_write_checks(iocb, from);
4343 	if (ret > 0)
4344 		ret = __generic_file_write_iter(iocb, from);
4345 	inode_unlock(inode);
4346 
4347 	if (ret > 0)
4348 		ret = generic_write_sync(iocb, ret);
4349 	return ret;
4350 }
4351 EXPORT_SYMBOL(generic_file_write_iter);
4352 
4353 /**
4354  * filemap_release_folio() - Release fs-specific metadata on a folio.
4355  * @folio: The folio which the kernel is trying to free.
4356  * @gfp: Memory allocation flags (and I/O mode).
4357  *
4358  * The address_space is trying to release any data attached to a folio
4359  * (presumably at folio->private).
4360  *
4361  * This will also be called if the private_2 flag is set on a page,
4362  * indicating that the folio has other metadata associated with it.
4363  *
4364  * The @gfp argument specifies whether I/O may be performed to release
4365  * this page (__GFP_IO), and whether the call may block
4366  * (__GFP_RECLAIM & __GFP_FS).
4367  *
4368  * Return: %true if the release was successful, otherwise %false.
4369  */
4370 bool filemap_release_folio(struct folio *folio, gfp_t gfp)
4371 {
4372 	struct address_space * const mapping = folio->mapping;
4373 
4374 	BUG_ON(!folio_test_locked(folio));
4375 	if (!folio_needs_release(folio))
4376 		return true;
4377 	if (folio_test_writeback(folio))
4378 		return false;
4379 
4380 	if (mapping && mapping->a_ops->release_folio)
4381 		return mapping->a_ops->release_folio(folio, gfp);
4382 	return try_to_free_buffers(folio);
4383 }
4384 EXPORT_SYMBOL(filemap_release_folio);
4385 
4386 /**
4387  * filemap_invalidate_inode - Invalidate/forcibly write back a range of an inode's pagecache
4388  * @inode: The inode to flush
4389  * @flush: Set to write back rather than simply invalidate.
4390  * @start: First byte to in range.
4391  * @end: Last byte in range (inclusive), or LLONG_MAX for everything from start
4392  *       onwards.
4393  *
4394  * Invalidate all the folios on an inode that contribute to the specified
4395  * range, possibly writing them back first.  Whilst the operation is
4396  * undertaken, the invalidate lock is held to prevent new folios from being
4397  * installed.
4398  */
4399 int filemap_invalidate_inode(struct inode *inode, bool flush,
4400 			     loff_t start, loff_t end)
4401 {
4402 	struct address_space *mapping = inode->i_mapping;
4403 	pgoff_t first = start >> PAGE_SHIFT;
4404 	pgoff_t last = end >> PAGE_SHIFT;
4405 	pgoff_t nr = end == LLONG_MAX ? ULONG_MAX : last - first + 1;
4406 
4407 	if (!mapping || !mapping->nrpages || end < start)
4408 		goto out;
4409 
4410 	/* Prevent new folios from being added to the inode. */
4411 	filemap_invalidate_lock(mapping);
4412 
4413 	if (!mapping->nrpages)
4414 		goto unlock;
4415 
4416 	unmap_mapping_pages(mapping, first, nr, false);
4417 
4418 	/* Write back the data if we're asked to. */
4419 	if (flush) {
4420 		struct writeback_control wbc = {
4421 			.sync_mode	= WB_SYNC_ALL,
4422 			.nr_to_write	= LONG_MAX,
4423 			.range_start	= start,
4424 			.range_end	= end,
4425 		};
4426 
4427 		filemap_fdatawrite_wbc(mapping, &wbc);
4428 	}
4429 
4430 	/* Wait for writeback to complete on all folios and discard. */
4431 	invalidate_inode_pages2_range(mapping, start / PAGE_SIZE, end / PAGE_SIZE);
4432 
4433 unlock:
4434 	filemap_invalidate_unlock(mapping);
4435 out:
4436 	return filemap_check_errors(mapping);
4437 }
4438 EXPORT_SYMBOL_GPL(filemap_invalidate_inode);
4439 
4440 #ifdef CONFIG_CACHESTAT_SYSCALL
4441 /**
4442  * filemap_cachestat() - compute the page cache statistics of a mapping
4443  * @mapping:	The mapping to compute the statistics for.
4444  * @first_index:	The starting page cache index.
4445  * @last_index:	The final page index (inclusive).
4446  * @cs:	the cachestat struct to write the result to.
4447  *
4448  * This will query the page cache statistics of a mapping in the
4449  * page range of [first_index, last_index] (inclusive). The statistics
4450  * queried include: number of dirty pages, number of pages marked for
4451  * writeback, and the number of (recently) evicted pages.
4452  */
4453 static void filemap_cachestat(struct address_space *mapping,
4454 		pgoff_t first_index, pgoff_t last_index, struct cachestat *cs)
4455 {
4456 	XA_STATE(xas, &mapping->i_pages, first_index);
4457 	struct folio *folio;
4458 
4459 	/* Flush stats (and potentially sleep) outside the RCU read section. */
4460 	mem_cgroup_flush_stats_ratelimited(NULL);
4461 
4462 	rcu_read_lock();
4463 	xas_for_each(&xas, folio, last_index) {
4464 		int order;
4465 		unsigned long nr_pages;
4466 		pgoff_t folio_first_index, folio_last_index;
4467 
4468 		/*
4469 		 * Don't deref the folio. It is not pinned, and might
4470 		 * get freed (and reused) underneath us.
4471 		 *
4472 		 * We *could* pin it, but that would be expensive for
4473 		 * what should be a fast and lightweight syscall.
4474 		 *
4475 		 * Instead, derive all information of interest from
4476 		 * the rcu-protected xarray.
4477 		 */
4478 
4479 		if (xas_retry(&xas, folio))
4480 			continue;
4481 
4482 		order = xas_get_order(&xas);
4483 		nr_pages = 1 << order;
4484 		folio_first_index = round_down(xas.xa_index, 1 << order);
4485 		folio_last_index = folio_first_index + nr_pages - 1;
4486 
4487 		/* Folios might straddle the range boundaries, only count covered pages */
4488 		if (folio_first_index < first_index)
4489 			nr_pages -= first_index - folio_first_index;
4490 
4491 		if (folio_last_index > last_index)
4492 			nr_pages -= folio_last_index - last_index;
4493 
4494 		if (xa_is_value(folio)) {
4495 			/* page is evicted */
4496 			void *shadow = (void *)folio;
4497 			bool workingset; /* not used */
4498 
4499 			cs->nr_evicted += nr_pages;
4500 
4501 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */
4502 			if (shmem_mapping(mapping)) {
4503 				/* shmem file - in swap cache */
4504 				swp_entry_t swp = radix_to_swp_entry(folio);
4505 
4506 				/* swapin error results in poisoned entry */
4507 				if (non_swap_entry(swp))
4508 					goto resched;
4509 
4510 				/*
4511 				 * Getting a swap entry from the shmem
4512 				 * inode means we beat
4513 				 * shmem_unuse(). rcu_read_lock()
4514 				 * ensures swapoff waits for us before
4515 				 * freeing the swapper space. However,
4516 				 * we can race with swapping and
4517 				 * invalidation, so there might not be
4518 				 * a shadow in the swapcache (yet).
4519 				 */
4520 				shadow = get_shadow_from_swap_cache(swp);
4521 				if (!shadow)
4522 					goto resched;
4523 			}
4524 #endif
4525 			if (workingset_test_recent(shadow, true, &workingset, false))
4526 				cs->nr_recently_evicted += nr_pages;
4527 
4528 			goto resched;
4529 		}
4530 
4531 		/* page is in cache */
4532 		cs->nr_cache += nr_pages;
4533 
4534 		if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY))
4535 			cs->nr_dirty += nr_pages;
4536 
4537 		if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK))
4538 			cs->nr_writeback += nr_pages;
4539 
4540 resched:
4541 		if (need_resched()) {
4542 			xas_pause(&xas);
4543 			cond_resched_rcu();
4544 		}
4545 	}
4546 	rcu_read_unlock();
4547 }
4548 
4549 /*
4550  * See mincore: reveal pagecache information only for files
4551  * that the calling process has write access to, or could (if
4552  * tried) open for writing.
4553  */
4554 static inline bool can_do_cachestat(struct file *f)
4555 {
4556 	if (f->f_mode & FMODE_WRITE)
4557 		return true;
4558 	if (inode_owner_or_capable(file_mnt_idmap(f), file_inode(f)))
4559 		return true;
4560 	return file_permission(f, MAY_WRITE) == 0;
4561 }
4562 
4563 /*
4564  * The cachestat(2) system call.
4565  *
4566  * cachestat() returns the page cache statistics of a file in the
4567  * bytes range specified by `off` and `len`: number of cached pages,
4568  * number of dirty pages, number of pages marked for writeback,
4569  * number of evicted pages, and number of recently evicted pages.
4570  *
4571  * An evicted page is a page that is previously in the page cache
4572  * but has been evicted since. A page is recently evicted if its last
4573  * eviction was recent enough that its reentry to the cache would
4574  * indicate that it is actively being used by the system, and that
4575  * there is memory pressure on the system.
4576  *
4577  * `off` and `len` must be non-negative integers. If `len` > 0,
4578  * the queried range is [`off`, `off` + `len`]. If `len` == 0,
4579  * we will query in the range from `off` to the end of the file.
4580  *
4581  * The `flags` argument is unused for now, but is included for future
4582  * extensibility. User should pass 0 (i.e no flag specified).
4583  *
4584  * Currently, hugetlbfs is not supported.
4585  *
4586  * Because the status of a page can change after cachestat() checks it
4587  * but before it returns to the application, the returned values may
4588  * contain stale information.
4589  *
4590  * return values:
4591  *  zero        - success
4592  *  -EFAULT     - cstat or cstat_range points to an illegal address
4593  *  -EINVAL     - invalid flags
4594  *  -EBADF      - invalid file descriptor
4595  *  -EOPNOTSUPP - file descriptor is of a hugetlbfs file
4596  */
4597 SYSCALL_DEFINE4(cachestat, unsigned int, fd,
4598 		struct cachestat_range __user *, cstat_range,
4599 		struct cachestat __user *, cstat, unsigned int, flags)
4600 {
4601 	CLASS(fd, f)(fd);
4602 	struct address_space *mapping;
4603 	struct cachestat_range csr;
4604 	struct cachestat cs;
4605 	pgoff_t first_index, last_index;
4606 
4607 	if (fd_empty(f))
4608 		return -EBADF;
4609 
4610 	if (copy_from_user(&csr, cstat_range,
4611 			sizeof(struct cachestat_range)))
4612 		return -EFAULT;
4613 
4614 	/* hugetlbfs is not supported */
4615 	if (is_file_hugepages(fd_file(f)))
4616 		return -EOPNOTSUPP;
4617 
4618 	if (!can_do_cachestat(fd_file(f)))
4619 		return -EPERM;
4620 
4621 	if (flags != 0)
4622 		return -EINVAL;
4623 
4624 	first_index = csr.off >> PAGE_SHIFT;
4625 	last_index =
4626 		csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT;
4627 	memset(&cs, 0, sizeof(struct cachestat));
4628 	mapping = fd_file(f)->f_mapping;
4629 	filemap_cachestat(mapping, first_index, last_index, &cs);
4630 
4631 	if (copy_to_user(cstat, &cs, sizeof(struct cachestat)))
4632 		return -EFAULT;
4633 
4634 	return 0;
4635 }
4636 #endif /* CONFIG_CACHESTAT_SYSCALL */
4637