1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/filemap.c 4 * 5 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 7 8 /* 9 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differently, for example) 12 */ 13 #include <linux/export.h> 14 #include <linux/compiler.h> 15 #include <linux/dax.h> 16 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 19 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 22 #include <linux/mm.h> 23 #include <linux/swap.h> 24 #include <linux/swapops.h> 25 #include <linux/syscalls.h> 26 #include <linux/mman.h> 27 #include <linux/pagemap.h> 28 #include <linux/file.h> 29 #include <linux/uio.h> 30 #include <linux/error-injection.h> 31 #include <linux/hash.h> 32 #include <linux/writeback.h> 33 #include <linux/backing-dev.h> 34 #include <linux/pagevec.h> 35 #include <linux/security.h> 36 #include <linux/cpuset.h> 37 #include <linux/hugetlb.h> 38 #include <linux/memcontrol.h> 39 #include <linux/shmem_fs.h> 40 #include <linux/rmap.h> 41 #include <linux/delayacct.h> 42 #include <linux/psi.h> 43 #include <linux/ramfs.h> 44 #include <linux/page_idle.h> 45 #include <linux/migrate.h> 46 #include <linux/pipe_fs_i.h> 47 #include <linux/splice.h> 48 #include <linux/rcupdate_wait.h> 49 #include <linux/sched/mm.h> 50 #include <linux/sysctl.h> 51 #include <asm/pgalloc.h> 52 #include <asm/tlbflush.h> 53 #include "internal.h" 54 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/filemap.h> 57 58 /* 59 * FIXME: remove all knowledge of the buffer layer from the core VM 60 */ 61 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 62 63 #include <asm/mman.h> 64 65 #include "swap.h" 66 67 /* 68 * Shared mappings implemented 30.11.1994. It's not fully working yet, 69 * though. 70 * 71 * Shared mappings now work. 15.8.1995 Bruno. 72 * 73 * finished 'unifying' the page and buffer cache and SMP-threaded the 74 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 75 * 76 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 77 */ 78 79 /* 80 * Lock ordering: 81 * 82 * ->i_mmap_rwsem (truncate_pagecache) 83 * ->private_lock (__free_pte->block_dirty_folio) 84 * ->swap_lock (exclusive_swap_page, others) 85 * ->i_pages lock 86 * 87 * ->i_rwsem 88 * ->invalidate_lock (acquired by fs in truncate path) 89 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 90 * 91 * ->mmap_lock 92 * ->i_mmap_rwsem 93 * ->page_table_lock or pte_lock (various, mainly in memory.c) 94 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 95 * 96 * ->mmap_lock 97 * ->invalidate_lock (filemap_fault) 98 * ->lock_page (filemap_fault, access_process_vm) 99 * 100 * ->i_rwsem (generic_perform_write) 101 * ->mmap_lock (fault_in_readable->do_page_fault) 102 * 103 * bdi->wb.list_lock 104 * sb_lock (fs/fs-writeback.c) 105 * ->i_pages lock (__sync_single_inode) 106 * 107 * ->i_mmap_rwsem 108 * ->anon_vma.lock (vma_merge) 109 * 110 * ->anon_vma.lock 111 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 112 * 113 * ->page_table_lock or pte_lock 114 * ->swap_lock (try_to_unmap_one) 115 * ->private_lock (try_to_unmap_one) 116 * ->i_pages lock (try_to_unmap_one) 117 * ->lruvec->lru_lock (follow_page_mask->mark_page_accessed) 118 * ->lruvec->lru_lock (check_pte_range->folio_isolate_lru) 119 * ->private_lock (folio_remove_rmap_pte->set_page_dirty) 120 * ->i_pages lock (folio_remove_rmap_pte->set_page_dirty) 121 * bdi.wb->list_lock (folio_remove_rmap_pte->set_page_dirty) 122 * ->inode->i_lock (folio_remove_rmap_pte->set_page_dirty) 123 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 124 * ->inode->i_lock (zap_pte_range->set_page_dirty) 125 * ->private_lock (zap_pte_range->block_dirty_folio) 126 */ 127 128 static void page_cache_delete(struct address_space *mapping, 129 struct folio *folio, void *shadow) 130 { 131 XA_STATE(xas, &mapping->i_pages, folio->index); 132 long nr = 1; 133 134 mapping_set_update(&xas, mapping); 135 136 xas_set_order(&xas, folio->index, folio_order(folio)); 137 nr = folio_nr_pages(folio); 138 139 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 140 141 xas_store(&xas, shadow); 142 xas_init_marks(&xas); 143 144 folio->mapping = NULL; 145 /* Leave folio->index set: truncation lookup relies upon it */ 146 mapping->nrpages -= nr; 147 } 148 149 static void filemap_unaccount_folio(struct address_space *mapping, 150 struct folio *folio) 151 { 152 long nr; 153 154 VM_BUG_ON_FOLIO(folio_mapped(folio), folio); 155 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) { 156 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 157 current->comm, folio_pfn(folio)); 158 dump_page(&folio->page, "still mapped when deleted"); 159 dump_stack(); 160 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 161 162 if (mapping_exiting(mapping) && !folio_test_large(folio)) { 163 int mapcount = folio_mapcount(folio); 164 165 if (folio_ref_count(folio) >= mapcount + 2) { 166 /* 167 * All vmas have already been torn down, so it's 168 * a good bet that actually the page is unmapped 169 * and we'd rather not leak it: if we're wrong, 170 * another bad page check should catch it later. 171 */ 172 atomic_set(&folio->_mapcount, -1); 173 folio_ref_sub(folio, mapcount); 174 } 175 } 176 } 177 178 /* hugetlb folios do not participate in page cache accounting. */ 179 if (folio_test_hugetlb(folio)) 180 return; 181 182 nr = folio_nr_pages(folio); 183 184 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 185 if (folio_test_swapbacked(folio)) { 186 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 187 if (folio_test_pmd_mappable(folio)) 188 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr); 189 } else if (folio_test_pmd_mappable(folio)) { 190 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr); 191 filemap_nr_thps_dec(mapping); 192 } 193 if (test_bit(AS_KERNEL_FILE, &folio->mapping->flags)) 194 mod_node_page_state(folio_pgdat(folio), 195 NR_KERNEL_FILE_PAGES, -nr); 196 197 /* 198 * At this point folio must be either written or cleaned by 199 * truncate. Dirty folio here signals a bug and loss of 200 * unwritten data - on ordinary filesystems. 201 * 202 * But it's harmless on in-memory filesystems like tmpfs; and can 203 * occur when a driver which did get_user_pages() sets page dirty 204 * before putting it, while the inode is being finally evicted. 205 * 206 * Below fixes dirty accounting after removing the folio entirely 207 * but leaves the dirty flag set: it has no effect for truncated 208 * folio and anyway will be cleared before returning folio to 209 * buddy allocator. 210 */ 211 if (WARN_ON_ONCE(folio_test_dirty(folio) && 212 mapping_can_writeback(mapping))) 213 folio_account_cleaned(folio, inode_to_wb(mapping->host)); 214 } 215 216 /* 217 * Delete a page from the page cache and free it. Caller has to make 218 * sure the page is locked and that nobody else uses it - or that usage 219 * is safe. The caller must hold the i_pages lock. 220 */ 221 void __filemap_remove_folio(struct folio *folio, void *shadow) 222 { 223 struct address_space *mapping = folio->mapping; 224 225 trace_mm_filemap_delete_from_page_cache(folio); 226 filemap_unaccount_folio(mapping, folio); 227 page_cache_delete(mapping, folio, shadow); 228 } 229 230 void filemap_free_folio(struct address_space *mapping, struct folio *folio) 231 { 232 void (*free_folio)(struct folio *); 233 234 free_folio = mapping->a_ops->free_folio; 235 if (free_folio) 236 free_folio(folio); 237 238 folio_put_refs(folio, folio_nr_pages(folio)); 239 } 240 241 /** 242 * filemap_remove_folio - Remove folio from page cache. 243 * @folio: The folio. 244 * 245 * This must be called only on folios that are locked and have been 246 * verified to be in the page cache. It will never put the folio into 247 * the free list because the caller has a reference on the page. 248 */ 249 void filemap_remove_folio(struct folio *folio) 250 { 251 struct address_space *mapping = folio->mapping; 252 253 BUG_ON(!folio_test_locked(folio)); 254 spin_lock(&mapping->host->i_lock); 255 xa_lock_irq(&mapping->i_pages); 256 __filemap_remove_folio(folio, NULL); 257 xa_unlock_irq(&mapping->i_pages); 258 if (mapping_shrinkable(mapping)) 259 inode_add_lru(mapping->host); 260 spin_unlock(&mapping->host->i_lock); 261 262 filemap_free_folio(mapping, folio); 263 } 264 265 /* 266 * page_cache_delete_batch - delete several folios from page cache 267 * @mapping: the mapping to which folios belong 268 * @fbatch: batch of folios to delete 269 * 270 * The function walks over mapping->i_pages and removes folios passed in 271 * @fbatch from the mapping. The function expects @fbatch to be sorted 272 * by page index and is optimised for it to be dense. 273 * It tolerates holes in @fbatch (mapping entries at those indices are not 274 * modified). 275 * 276 * The function expects the i_pages lock to be held. 277 */ 278 static void page_cache_delete_batch(struct address_space *mapping, 279 struct folio_batch *fbatch) 280 { 281 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index); 282 long total_pages = 0; 283 int i = 0; 284 struct folio *folio; 285 286 mapping_set_update(&xas, mapping); 287 xas_for_each(&xas, folio, ULONG_MAX) { 288 if (i >= folio_batch_count(fbatch)) 289 break; 290 291 /* A swap/dax/shadow entry got inserted? Skip it. */ 292 if (xa_is_value(folio)) 293 continue; 294 /* 295 * A page got inserted in our range? Skip it. We have our 296 * pages locked so they are protected from being removed. 297 * If we see a page whose index is higher than ours, it 298 * means our page has been removed, which shouldn't be 299 * possible because we're holding the PageLock. 300 */ 301 if (folio != fbatch->folios[i]) { 302 VM_BUG_ON_FOLIO(folio->index > 303 fbatch->folios[i]->index, folio); 304 continue; 305 } 306 307 WARN_ON_ONCE(!folio_test_locked(folio)); 308 309 folio->mapping = NULL; 310 /* Leave folio->index set: truncation lookup relies on it */ 311 312 i++; 313 xas_store(&xas, NULL); 314 total_pages += folio_nr_pages(folio); 315 } 316 mapping->nrpages -= total_pages; 317 } 318 319 void delete_from_page_cache_batch(struct address_space *mapping, 320 struct folio_batch *fbatch) 321 { 322 int i; 323 324 if (!folio_batch_count(fbatch)) 325 return; 326 327 spin_lock(&mapping->host->i_lock); 328 xa_lock_irq(&mapping->i_pages); 329 for (i = 0; i < folio_batch_count(fbatch); i++) { 330 struct folio *folio = fbatch->folios[i]; 331 332 trace_mm_filemap_delete_from_page_cache(folio); 333 filemap_unaccount_folio(mapping, folio); 334 } 335 page_cache_delete_batch(mapping, fbatch); 336 xa_unlock_irq(&mapping->i_pages); 337 if (mapping_shrinkable(mapping)) 338 inode_add_lru(mapping->host); 339 spin_unlock(&mapping->host->i_lock); 340 341 for (i = 0; i < folio_batch_count(fbatch); i++) 342 filemap_free_folio(mapping, fbatch->folios[i]); 343 } 344 345 int filemap_check_errors(struct address_space *mapping) 346 { 347 int ret = 0; 348 /* Check for outstanding write errors */ 349 if (test_bit(AS_ENOSPC, &mapping->flags) && 350 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 351 ret = -ENOSPC; 352 if (test_bit(AS_EIO, &mapping->flags) && 353 test_and_clear_bit(AS_EIO, &mapping->flags)) 354 ret = -EIO; 355 return ret; 356 } 357 EXPORT_SYMBOL(filemap_check_errors); 358 359 static int filemap_check_and_keep_errors(struct address_space *mapping) 360 { 361 /* Check for outstanding write errors */ 362 if (test_bit(AS_EIO, &mapping->flags)) 363 return -EIO; 364 if (test_bit(AS_ENOSPC, &mapping->flags)) 365 return -ENOSPC; 366 return 0; 367 } 368 369 /** 370 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range 371 * @mapping: address space structure to write 372 * @wbc: the writeback_control controlling the writeout 373 * 374 * Call writepages on the mapping using the provided wbc to control the 375 * writeout. 376 * 377 * Return: %0 on success, negative error code otherwise. 378 */ 379 int filemap_fdatawrite_wbc(struct address_space *mapping, 380 struct writeback_control *wbc) 381 { 382 int ret; 383 384 if (!mapping_can_writeback(mapping) || 385 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 386 return 0; 387 388 wbc_attach_fdatawrite_inode(wbc, mapping->host); 389 ret = do_writepages(mapping, wbc); 390 wbc_detach_inode(wbc); 391 return ret; 392 } 393 EXPORT_SYMBOL(filemap_fdatawrite_wbc); 394 395 /** 396 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 397 * @mapping: address space structure to write 398 * @start: offset in bytes where the range starts 399 * @end: offset in bytes where the range ends (inclusive) 400 * @sync_mode: enable synchronous operation 401 * 402 * Start writeback against all of a mapping's dirty pages that lie 403 * within the byte offsets <start, end> inclusive. 404 * 405 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 406 * opposed to a regular memory cleansing writeback. The difference between 407 * these two operations is that if a dirty page/buffer is encountered, it must 408 * be waited upon, and not just skipped over. 409 * 410 * Return: %0 on success, negative error code otherwise. 411 */ 412 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 413 loff_t end, int sync_mode) 414 { 415 struct writeback_control wbc = { 416 .sync_mode = sync_mode, 417 .nr_to_write = LONG_MAX, 418 .range_start = start, 419 .range_end = end, 420 }; 421 422 return filemap_fdatawrite_wbc(mapping, &wbc); 423 } 424 425 static inline int __filemap_fdatawrite(struct address_space *mapping, 426 int sync_mode) 427 { 428 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 429 } 430 431 int filemap_fdatawrite(struct address_space *mapping) 432 { 433 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 434 } 435 EXPORT_SYMBOL(filemap_fdatawrite); 436 437 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 438 loff_t end) 439 { 440 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 441 } 442 EXPORT_SYMBOL(filemap_fdatawrite_range); 443 444 /** 445 * filemap_fdatawrite_range_kick - start writeback on a range 446 * @mapping: target address_space 447 * @start: index to start writeback on 448 * @end: last (inclusive) index for writeback 449 * 450 * This is a non-integrity writeback helper, to start writing back folios 451 * for the indicated range. 452 * 453 * Return: %0 on success, negative error code otherwise. 454 */ 455 int filemap_fdatawrite_range_kick(struct address_space *mapping, loff_t start, 456 loff_t end) 457 { 458 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_NONE); 459 } 460 EXPORT_SYMBOL_GPL(filemap_fdatawrite_range_kick); 461 462 /** 463 * filemap_flush - mostly a non-blocking flush 464 * @mapping: target address_space 465 * 466 * This is a mostly non-blocking flush. Not suitable for data-integrity 467 * purposes - I/O may not be started against all dirty pages. 468 * 469 * Return: %0 on success, negative error code otherwise. 470 */ 471 int filemap_flush(struct address_space *mapping) 472 { 473 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 474 } 475 EXPORT_SYMBOL(filemap_flush); 476 477 /** 478 * filemap_range_has_page - check if a page exists in range. 479 * @mapping: address space within which to check 480 * @start_byte: offset in bytes where the range starts 481 * @end_byte: offset in bytes where the range ends (inclusive) 482 * 483 * Find at least one page in the range supplied, usually used to check if 484 * direct writing in this range will trigger a writeback. 485 * 486 * Return: %true if at least one page exists in the specified range, 487 * %false otherwise. 488 */ 489 bool filemap_range_has_page(struct address_space *mapping, 490 loff_t start_byte, loff_t end_byte) 491 { 492 struct folio *folio; 493 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 494 pgoff_t max = end_byte >> PAGE_SHIFT; 495 496 if (end_byte < start_byte) 497 return false; 498 499 rcu_read_lock(); 500 for (;;) { 501 folio = xas_find(&xas, max); 502 if (xas_retry(&xas, folio)) 503 continue; 504 /* Shadow entries don't count */ 505 if (xa_is_value(folio)) 506 continue; 507 /* 508 * We don't need to try to pin this page; we're about to 509 * release the RCU lock anyway. It is enough to know that 510 * there was a page here recently. 511 */ 512 break; 513 } 514 rcu_read_unlock(); 515 516 return folio != NULL; 517 } 518 EXPORT_SYMBOL(filemap_range_has_page); 519 520 static void __filemap_fdatawait_range(struct address_space *mapping, 521 loff_t start_byte, loff_t end_byte) 522 { 523 pgoff_t index = start_byte >> PAGE_SHIFT; 524 pgoff_t end = end_byte >> PAGE_SHIFT; 525 struct folio_batch fbatch; 526 unsigned nr_folios; 527 528 folio_batch_init(&fbatch); 529 530 while (index <= end) { 531 unsigned i; 532 533 nr_folios = filemap_get_folios_tag(mapping, &index, end, 534 PAGECACHE_TAG_WRITEBACK, &fbatch); 535 536 if (!nr_folios) 537 break; 538 539 for (i = 0; i < nr_folios; i++) { 540 struct folio *folio = fbatch.folios[i]; 541 542 folio_wait_writeback(folio); 543 } 544 folio_batch_release(&fbatch); 545 cond_resched(); 546 } 547 } 548 549 /** 550 * filemap_fdatawait_range - wait for writeback to complete 551 * @mapping: address space structure to wait for 552 * @start_byte: offset in bytes where the range starts 553 * @end_byte: offset in bytes where the range ends (inclusive) 554 * 555 * Walk the list of under-writeback pages of the given address space 556 * in the given range and wait for all of them. Check error status of 557 * the address space and return it. 558 * 559 * Since the error status of the address space is cleared by this function, 560 * callers are responsible for checking the return value and handling and/or 561 * reporting the error. 562 * 563 * Return: error status of the address space. 564 */ 565 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 566 loff_t end_byte) 567 { 568 __filemap_fdatawait_range(mapping, start_byte, end_byte); 569 return filemap_check_errors(mapping); 570 } 571 EXPORT_SYMBOL(filemap_fdatawait_range); 572 573 /** 574 * filemap_fdatawait_range_keep_errors - wait for writeback to complete 575 * @mapping: address space structure to wait for 576 * @start_byte: offset in bytes where the range starts 577 * @end_byte: offset in bytes where the range ends (inclusive) 578 * 579 * Walk the list of under-writeback pages of the given address space in the 580 * given range and wait for all of them. Unlike filemap_fdatawait_range(), 581 * this function does not clear error status of the address space. 582 * 583 * Use this function if callers don't handle errors themselves. Expected 584 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 585 * fsfreeze(8) 586 */ 587 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 588 loff_t start_byte, loff_t end_byte) 589 { 590 __filemap_fdatawait_range(mapping, start_byte, end_byte); 591 return filemap_check_and_keep_errors(mapping); 592 } 593 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); 594 595 /** 596 * file_fdatawait_range - wait for writeback to complete 597 * @file: file pointing to address space structure to wait for 598 * @start_byte: offset in bytes where the range starts 599 * @end_byte: offset in bytes where the range ends (inclusive) 600 * 601 * Walk the list of under-writeback pages of the address space that file 602 * refers to, in the given range and wait for all of them. Check error 603 * status of the address space vs. the file->f_wb_err cursor and return it. 604 * 605 * Since the error status of the file is advanced by this function, 606 * callers are responsible for checking the return value and handling and/or 607 * reporting the error. 608 * 609 * Return: error status of the address space vs. the file->f_wb_err cursor. 610 */ 611 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 612 { 613 struct address_space *mapping = file->f_mapping; 614 615 __filemap_fdatawait_range(mapping, start_byte, end_byte); 616 return file_check_and_advance_wb_err(file); 617 } 618 EXPORT_SYMBOL(file_fdatawait_range); 619 620 /** 621 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 622 * @mapping: address space structure to wait for 623 * 624 * Walk the list of under-writeback pages of the given address space 625 * and wait for all of them. Unlike filemap_fdatawait(), this function 626 * does not clear error status of the address space. 627 * 628 * Use this function if callers don't handle errors themselves. Expected 629 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 630 * fsfreeze(8) 631 * 632 * Return: error status of the address space. 633 */ 634 int filemap_fdatawait_keep_errors(struct address_space *mapping) 635 { 636 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 637 return filemap_check_and_keep_errors(mapping); 638 } 639 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 640 641 /* Returns true if writeback might be needed or already in progress. */ 642 static bool mapping_needs_writeback(struct address_space *mapping) 643 { 644 return mapping->nrpages; 645 } 646 647 bool filemap_range_has_writeback(struct address_space *mapping, 648 loff_t start_byte, loff_t end_byte) 649 { 650 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 651 pgoff_t max = end_byte >> PAGE_SHIFT; 652 struct folio *folio; 653 654 if (end_byte < start_byte) 655 return false; 656 657 rcu_read_lock(); 658 xas_for_each(&xas, folio, max) { 659 if (xas_retry(&xas, folio)) 660 continue; 661 if (xa_is_value(folio)) 662 continue; 663 if (folio_test_dirty(folio) || folio_test_locked(folio) || 664 folio_test_writeback(folio)) 665 break; 666 } 667 rcu_read_unlock(); 668 return folio != NULL; 669 } 670 EXPORT_SYMBOL_GPL(filemap_range_has_writeback); 671 672 /** 673 * filemap_write_and_wait_range - write out & wait on a file range 674 * @mapping: the address_space for the pages 675 * @lstart: offset in bytes where the range starts 676 * @lend: offset in bytes where the range ends (inclusive) 677 * 678 * Write out and wait upon file offsets lstart->lend, inclusive. 679 * 680 * Note that @lend is inclusive (describes the last byte to be written) so 681 * that this function can be used to write to the very end-of-file (end = -1). 682 * 683 * Return: error status of the address space. 684 */ 685 int filemap_write_and_wait_range(struct address_space *mapping, 686 loff_t lstart, loff_t lend) 687 { 688 int err = 0, err2; 689 690 if (lend < lstart) 691 return 0; 692 693 if (mapping_needs_writeback(mapping)) { 694 err = __filemap_fdatawrite_range(mapping, lstart, lend, 695 WB_SYNC_ALL); 696 /* 697 * Even if the above returned error, the pages may be 698 * written partially (e.g. -ENOSPC), so we wait for it. 699 * But the -EIO is special case, it may indicate the worst 700 * thing (e.g. bug) happened, so we avoid waiting for it. 701 */ 702 if (err != -EIO) 703 __filemap_fdatawait_range(mapping, lstart, lend); 704 } 705 err2 = filemap_check_errors(mapping); 706 if (!err) 707 err = err2; 708 return err; 709 } 710 EXPORT_SYMBOL(filemap_write_and_wait_range); 711 712 void __filemap_set_wb_err(struct address_space *mapping, int err) 713 { 714 errseq_t eseq = errseq_set(&mapping->wb_err, err); 715 716 trace_filemap_set_wb_err(mapping, eseq); 717 } 718 EXPORT_SYMBOL(__filemap_set_wb_err); 719 720 /** 721 * file_check_and_advance_wb_err - report wb error (if any) that was previously 722 * and advance wb_err to current one 723 * @file: struct file on which the error is being reported 724 * 725 * When userland calls fsync (or something like nfsd does the equivalent), we 726 * want to report any writeback errors that occurred since the last fsync (or 727 * since the file was opened if there haven't been any). 728 * 729 * Grab the wb_err from the mapping. If it matches what we have in the file, 730 * then just quickly return 0. The file is all caught up. 731 * 732 * If it doesn't match, then take the mapping value, set the "seen" flag in 733 * it and try to swap it into place. If it works, or another task beat us 734 * to it with the new value, then update the f_wb_err and return the error 735 * portion. The error at this point must be reported via proper channels 736 * (a'la fsync, or NFS COMMIT operation, etc.). 737 * 738 * While we handle mapping->wb_err with atomic operations, the f_wb_err 739 * value is protected by the f_lock since we must ensure that it reflects 740 * the latest value swapped in for this file descriptor. 741 * 742 * Return: %0 on success, negative error code otherwise. 743 */ 744 int file_check_and_advance_wb_err(struct file *file) 745 { 746 int err = 0; 747 errseq_t old = READ_ONCE(file->f_wb_err); 748 struct address_space *mapping = file->f_mapping; 749 750 /* Locklessly handle the common case where nothing has changed */ 751 if (errseq_check(&mapping->wb_err, old)) { 752 /* Something changed, must use slow path */ 753 spin_lock(&file->f_lock); 754 old = file->f_wb_err; 755 err = errseq_check_and_advance(&mapping->wb_err, 756 &file->f_wb_err); 757 trace_file_check_and_advance_wb_err(file, old); 758 spin_unlock(&file->f_lock); 759 } 760 761 /* 762 * We're mostly using this function as a drop in replacement for 763 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 764 * that the legacy code would have had on these flags. 765 */ 766 clear_bit(AS_EIO, &mapping->flags); 767 clear_bit(AS_ENOSPC, &mapping->flags); 768 return err; 769 } 770 EXPORT_SYMBOL(file_check_and_advance_wb_err); 771 772 /** 773 * file_write_and_wait_range - write out & wait on a file range 774 * @file: file pointing to address_space with pages 775 * @lstart: offset in bytes where the range starts 776 * @lend: offset in bytes where the range ends (inclusive) 777 * 778 * Write out and wait upon file offsets lstart->lend, inclusive. 779 * 780 * Note that @lend is inclusive (describes the last byte to be written) so 781 * that this function can be used to write to the very end-of-file (end = -1). 782 * 783 * After writing out and waiting on the data, we check and advance the 784 * f_wb_err cursor to the latest value, and return any errors detected there. 785 * 786 * Return: %0 on success, negative error code otherwise. 787 */ 788 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 789 { 790 int err = 0, err2; 791 struct address_space *mapping = file->f_mapping; 792 793 if (lend < lstart) 794 return 0; 795 796 if (mapping_needs_writeback(mapping)) { 797 err = __filemap_fdatawrite_range(mapping, lstart, lend, 798 WB_SYNC_ALL); 799 /* See comment of filemap_write_and_wait() */ 800 if (err != -EIO) 801 __filemap_fdatawait_range(mapping, lstart, lend); 802 } 803 err2 = file_check_and_advance_wb_err(file); 804 if (!err) 805 err = err2; 806 return err; 807 } 808 EXPORT_SYMBOL(file_write_and_wait_range); 809 810 /** 811 * replace_page_cache_folio - replace a pagecache folio with a new one 812 * @old: folio to be replaced 813 * @new: folio to replace with 814 * 815 * This function replaces a folio in the pagecache with a new one. On 816 * success it acquires the pagecache reference for the new folio and 817 * drops it for the old folio. Both the old and new folios must be 818 * locked. This function does not add the new folio to the LRU, the 819 * caller must do that. 820 * 821 * The remove + add is atomic. This function cannot fail. 822 */ 823 void replace_page_cache_folio(struct folio *old, struct folio *new) 824 { 825 struct address_space *mapping = old->mapping; 826 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio; 827 pgoff_t offset = old->index; 828 XA_STATE(xas, &mapping->i_pages, offset); 829 830 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 831 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 832 VM_BUG_ON_FOLIO(new->mapping, new); 833 834 folio_get(new); 835 new->mapping = mapping; 836 new->index = offset; 837 838 mem_cgroup_replace_folio(old, new); 839 840 xas_lock_irq(&xas); 841 xas_store(&xas, new); 842 843 old->mapping = NULL; 844 /* hugetlb pages do not participate in page cache accounting. */ 845 if (!folio_test_hugetlb(old)) 846 __lruvec_stat_sub_folio(old, NR_FILE_PAGES); 847 if (!folio_test_hugetlb(new)) 848 __lruvec_stat_add_folio(new, NR_FILE_PAGES); 849 if (folio_test_swapbacked(old)) 850 __lruvec_stat_sub_folio(old, NR_SHMEM); 851 if (folio_test_swapbacked(new)) 852 __lruvec_stat_add_folio(new, NR_SHMEM); 853 xas_unlock_irq(&xas); 854 if (free_folio) 855 free_folio(old); 856 folio_put(old); 857 } 858 EXPORT_SYMBOL_GPL(replace_page_cache_folio); 859 860 noinline int __filemap_add_folio(struct address_space *mapping, 861 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp) 862 { 863 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio)); 864 bool huge; 865 long nr; 866 unsigned int forder = folio_order(folio); 867 868 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 869 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio); 870 VM_BUG_ON_FOLIO(folio_order(folio) < mapping_min_folio_order(mapping), 871 folio); 872 mapping_set_update(&xas, mapping); 873 874 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio); 875 huge = folio_test_hugetlb(folio); 876 nr = folio_nr_pages(folio); 877 878 gfp &= GFP_RECLAIM_MASK; 879 folio_ref_add(folio, nr); 880 folio->mapping = mapping; 881 folio->index = xas.xa_index; 882 883 for (;;) { 884 int order = -1; 885 void *entry, *old = NULL; 886 887 xas_lock_irq(&xas); 888 xas_for_each_conflict(&xas, entry) { 889 old = entry; 890 if (!xa_is_value(entry)) { 891 xas_set_err(&xas, -EEXIST); 892 goto unlock; 893 } 894 /* 895 * If a larger entry exists, 896 * it will be the first and only entry iterated. 897 */ 898 if (order == -1) 899 order = xas_get_order(&xas); 900 } 901 902 if (old) { 903 if (order > 0 && order > forder) { 904 unsigned int split_order = max(forder, 905 xas_try_split_min_order(order)); 906 907 /* How to handle large swap entries? */ 908 BUG_ON(shmem_mapping(mapping)); 909 910 while (order > forder) { 911 xas_set_order(&xas, index, split_order); 912 xas_try_split(&xas, old, order); 913 if (xas_error(&xas)) 914 goto unlock; 915 order = split_order; 916 split_order = 917 max(xas_try_split_min_order( 918 split_order), 919 forder); 920 } 921 xas_reset(&xas); 922 } 923 if (shadowp) 924 *shadowp = old; 925 } 926 927 xas_store(&xas, folio); 928 if (xas_error(&xas)) 929 goto unlock; 930 931 mapping->nrpages += nr; 932 933 /* hugetlb pages do not participate in page cache accounting */ 934 if (!huge) { 935 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 936 if (folio_test_pmd_mappable(folio)) 937 __lruvec_stat_mod_folio(folio, 938 NR_FILE_THPS, nr); 939 } 940 941 unlock: 942 xas_unlock_irq(&xas); 943 944 if (!xas_nomem(&xas, gfp)) 945 break; 946 } 947 948 if (xas_error(&xas)) 949 goto error; 950 951 trace_mm_filemap_add_to_page_cache(folio); 952 return 0; 953 error: 954 folio->mapping = NULL; 955 /* Leave folio->index set: truncation relies upon it */ 956 folio_put_refs(folio, nr); 957 return xas_error(&xas); 958 } 959 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO); 960 961 int filemap_add_folio(struct address_space *mapping, struct folio *folio, 962 pgoff_t index, gfp_t gfp) 963 { 964 void *shadow = NULL; 965 int ret; 966 struct mem_cgroup *tmp; 967 bool kernel_file = test_bit(AS_KERNEL_FILE, &mapping->flags); 968 969 if (kernel_file) 970 tmp = set_active_memcg(root_mem_cgroup); 971 ret = mem_cgroup_charge(folio, NULL, gfp); 972 if (kernel_file) 973 set_active_memcg(tmp); 974 if (ret) 975 return ret; 976 977 __folio_set_locked(folio); 978 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow); 979 if (unlikely(ret)) { 980 mem_cgroup_uncharge(folio); 981 __folio_clear_locked(folio); 982 } else { 983 /* 984 * The folio might have been evicted from cache only 985 * recently, in which case it should be activated like 986 * any other repeatedly accessed folio. 987 * The exception is folios getting rewritten; evicting other 988 * data from the working set, only to cache data that will 989 * get overwritten with something else, is a waste of memory. 990 */ 991 WARN_ON_ONCE(folio_test_active(folio)); 992 if (!(gfp & __GFP_WRITE) && shadow) 993 workingset_refault(folio, shadow); 994 folio_add_lru(folio); 995 if (kernel_file) 996 mod_node_page_state(folio_pgdat(folio), 997 NR_KERNEL_FILE_PAGES, 998 folio_nr_pages(folio)); 999 } 1000 return ret; 1001 } 1002 EXPORT_SYMBOL_GPL(filemap_add_folio); 1003 1004 #ifdef CONFIG_NUMA 1005 struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order) 1006 { 1007 int n; 1008 struct folio *folio; 1009 1010 if (cpuset_do_page_mem_spread()) { 1011 unsigned int cpuset_mems_cookie; 1012 do { 1013 cpuset_mems_cookie = read_mems_allowed_begin(); 1014 n = cpuset_mem_spread_node(); 1015 folio = __folio_alloc_node_noprof(gfp, order, n); 1016 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie)); 1017 1018 return folio; 1019 } 1020 return folio_alloc_noprof(gfp, order); 1021 } 1022 EXPORT_SYMBOL(filemap_alloc_folio_noprof); 1023 #endif 1024 1025 /* 1026 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings 1027 * 1028 * Lock exclusively invalidate_lock of any passed mapping that is not NULL. 1029 * 1030 * @mapping1: the first mapping to lock 1031 * @mapping2: the second mapping to lock 1032 */ 1033 void filemap_invalidate_lock_two(struct address_space *mapping1, 1034 struct address_space *mapping2) 1035 { 1036 if (mapping1 > mapping2) 1037 swap(mapping1, mapping2); 1038 if (mapping1) 1039 down_write(&mapping1->invalidate_lock); 1040 if (mapping2 && mapping1 != mapping2) 1041 down_write_nested(&mapping2->invalidate_lock, 1); 1042 } 1043 EXPORT_SYMBOL(filemap_invalidate_lock_two); 1044 1045 /* 1046 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings 1047 * 1048 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL. 1049 * 1050 * @mapping1: the first mapping to unlock 1051 * @mapping2: the second mapping to unlock 1052 */ 1053 void filemap_invalidate_unlock_two(struct address_space *mapping1, 1054 struct address_space *mapping2) 1055 { 1056 if (mapping1) 1057 up_write(&mapping1->invalidate_lock); 1058 if (mapping2 && mapping1 != mapping2) 1059 up_write(&mapping2->invalidate_lock); 1060 } 1061 EXPORT_SYMBOL(filemap_invalidate_unlock_two); 1062 1063 /* 1064 * In order to wait for pages to become available there must be 1065 * waitqueues associated with pages. By using a hash table of 1066 * waitqueues where the bucket discipline is to maintain all 1067 * waiters on the same queue and wake all when any of the pages 1068 * become available, and for the woken contexts to check to be 1069 * sure the appropriate page became available, this saves space 1070 * at a cost of "thundering herd" phenomena during rare hash 1071 * collisions. 1072 */ 1073 #define PAGE_WAIT_TABLE_BITS 8 1074 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 1075 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 1076 1077 static wait_queue_head_t *folio_waitqueue(struct folio *folio) 1078 { 1079 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)]; 1080 } 1081 1082 /* How many times do we accept lock stealing from under a waiter? */ 1083 static int sysctl_page_lock_unfairness = 5; 1084 static const struct ctl_table filemap_sysctl_table[] = { 1085 { 1086 .procname = "page_lock_unfairness", 1087 .data = &sysctl_page_lock_unfairness, 1088 .maxlen = sizeof(sysctl_page_lock_unfairness), 1089 .mode = 0644, 1090 .proc_handler = proc_dointvec_minmax, 1091 .extra1 = SYSCTL_ZERO, 1092 } 1093 }; 1094 1095 void __init pagecache_init(void) 1096 { 1097 int i; 1098 1099 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 1100 init_waitqueue_head(&folio_wait_table[i]); 1101 1102 page_writeback_init(); 1103 register_sysctl_init("vm", filemap_sysctl_table); 1104 } 1105 1106 /* 1107 * The page wait code treats the "wait->flags" somewhat unusually, because 1108 * we have multiple different kinds of waits, not just the usual "exclusive" 1109 * one. 1110 * 1111 * We have: 1112 * 1113 * (a) no special bits set: 1114 * 1115 * We're just waiting for the bit to be released, and when a waker 1116 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up, 1117 * and remove it from the wait queue. 1118 * 1119 * Simple and straightforward. 1120 * 1121 * (b) WQ_FLAG_EXCLUSIVE: 1122 * 1123 * The waiter is waiting to get the lock, and only one waiter should 1124 * be woken up to avoid any thundering herd behavior. We'll set the 1125 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue. 1126 * 1127 * This is the traditional exclusive wait. 1128 * 1129 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM: 1130 * 1131 * The waiter is waiting to get the bit, and additionally wants the 1132 * lock to be transferred to it for fair lock behavior. If the lock 1133 * cannot be taken, we stop walking the wait queue without waking 1134 * the waiter. 1135 * 1136 * This is the "fair lock handoff" case, and in addition to setting 1137 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see 1138 * that it now has the lock. 1139 */ 1140 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 1141 { 1142 unsigned int flags; 1143 struct wait_page_key *key = arg; 1144 struct wait_page_queue *wait_page 1145 = container_of(wait, struct wait_page_queue, wait); 1146 1147 if (!wake_page_match(wait_page, key)) 1148 return 0; 1149 1150 /* 1151 * If it's a lock handoff wait, we get the bit for it, and 1152 * stop walking (and do not wake it up) if we can't. 1153 */ 1154 flags = wait->flags; 1155 if (flags & WQ_FLAG_EXCLUSIVE) { 1156 if (test_bit(key->bit_nr, &key->folio->flags.f)) 1157 return -1; 1158 if (flags & WQ_FLAG_CUSTOM) { 1159 if (test_and_set_bit(key->bit_nr, &key->folio->flags.f)) 1160 return -1; 1161 flags |= WQ_FLAG_DONE; 1162 } 1163 } 1164 1165 /* 1166 * We are holding the wait-queue lock, but the waiter that 1167 * is waiting for this will be checking the flags without 1168 * any locking. 1169 * 1170 * So update the flags atomically, and wake up the waiter 1171 * afterwards to avoid any races. This store-release pairs 1172 * with the load-acquire in folio_wait_bit_common(). 1173 */ 1174 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN); 1175 wake_up_state(wait->private, mode); 1176 1177 /* 1178 * Ok, we have successfully done what we're waiting for, 1179 * and we can unconditionally remove the wait entry. 1180 * 1181 * Note that this pairs with the "finish_wait()" in the 1182 * waiter, and has to be the absolute last thing we do. 1183 * After this list_del_init(&wait->entry) the wait entry 1184 * might be de-allocated and the process might even have 1185 * exited. 1186 */ 1187 list_del_init_careful(&wait->entry); 1188 return (flags & WQ_FLAG_EXCLUSIVE) != 0; 1189 } 1190 1191 static void folio_wake_bit(struct folio *folio, int bit_nr) 1192 { 1193 wait_queue_head_t *q = folio_waitqueue(folio); 1194 struct wait_page_key key; 1195 unsigned long flags; 1196 1197 key.folio = folio; 1198 key.bit_nr = bit_nr; 1199 key.page_match = 0; 1200 1201 spin_lock_irqsave(&q->lock, flags); 1202 __wake_up_locked_key(q, TASK_NORMAL, &key); 1203 1204 /* 1205 * It's possible to miss clearing waiters here, when we woke our page 1206 * waiters, but the hashed waitqueue has waiters for other pages on it. 1207 * That's okay, it's a rare case. The next waker will clear it. 1208 * 1209 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE, 1210 * other), the flag may be cleared in the course of freeing the page; 1211 * but that is not required for correctness. 1212 */ 1213 if (!waitqueue_active(q) || !key.page_match) 1214 folio_clear_waiters(folio); 1215 1216 spin_unlock_irqrestore(&q->lock, flags); 1217 } 1218 1219 /* 1220 * A choice of three behaviors for folio_wait_bit_common(): 1221 */ 1222 enum behavior { 1223 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1224 * __folio_lock() waiting on then setting PG_locked. 1225 */ 1226 SHARED, /* Hold ref to page and check the bit when woken, like 1227 * folio_wait_writeback() waiting on PG_writeback. 1228 */ 1229 DROP, /* Drop ref to page before wait, no check when woken, 1230 * like folio_put_wait_locked() on PG_locked. 1231 */ 1232 }; 1233 1234 /* 1235 * Attempt to check (or get) the folio flag, and mark us done 1236 * if successful. 1237 */ 1238 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr, 1239 struct wait_queue_entry *wait) 1240 { 1241 if (wait->flags & WQ_FLAG_EXCLUSIVE) { 1242 if (test_and_set_bit(bit_nr, &folio->flags.f)) 1243 return false; 1244 } else if (test_bit(bit_nr, &folio->flags.f)) 1245 return false; 1246 1247 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE; 1248 return true; 1249 } 1250 1251 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr, 1252 int state, enum behavior behavior) 1253 { 1254 wait_queue_head_t *q = folio_waitqueue(folio); 1255 int unfairness = sysctl_page_lock_unfairness; 1256 struct wait_page_queue wait_page; 1257 wait_queue_entry_t *wait = &wait_page.wait; 1258 bool thrashing = false; 1259 unsigned long pflags; 1260 bool in_thrashing; 1261 1262 if (bit_nr == PG_locked && 1263 !folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1264 delayacct_thrashing_start(&in_thrashing); 1265 psi_memstall_enter(&pflags); 1266 thrashing = true; 1267 } 1268 1269 init_wait(wait); 1270 wait->func = wake_page_function; 1271 wait_page.folio = folio; 1272 wait_page.bit_nr = bit_nr; 1273 1274 repeat: 1275 wait->flags = 0; 1276 if (behavior == EXCLUSIVE) { 1277 wait->flags = WQ_FLAG_EXCLUSIVE; 1278 if (--unfairness < 0) 1279 wait->flags |= WQ_FLAG_CUSTOM; 1280 } 1281 1282 /* 1283 * Do one last check whether we can get the 1284 * page bit synchronously. 1285 * 1286 * Do the folio_set_waiters() marking before that 1287 * to let any waker we _just_ missed know they 1288 * need to wake us up (otherwise they'll never 1289 * even go to the slow case that looks at the 1290 * page queue), and add ourselves to the wait 1291 * queue if we need to sleep. 1292 * 1293 * This part needs to be done under the queue 1294 * lock to avoid races. 1295 */ 1296 spin_lock_irq(&q->lock); 1297 folio_set_waiters(folio); 1298 if (!folio_trylock_flag(folio, bit_nr, wait)) 1299 __add_wait_queue_entry_tail(q, wait); 1300 spin_unlock_irq(&q->lock); 1301 1302 /* 1303 * From now on, all the logic will be based on 1304 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to 1305 * see whether the page bit testing has already 1306 * been done by the wake function. 1307 * 1308 * We can drop our reference to the folio. 1309 */ 1310 if (behavior == DROP) 1311 folio_put(folio); 1312 1313 /* 1314 * Note that until the "finish_wait()", or until 1315 * we see the WQ_FLAG_WOKEN flag, we need to 1316 * be very careful with the 'wait->flags', because 1317 * we may race with a waker that sets them. 1318 */ 1319 for (;;) { 1320 unsigned int flags; 1321 1322 set_current_state(state); 1323 1324 /* Loop until we've been woken or interrupted */ 1325 flags = smp_load_acquire(&wait->flags); 1326 if (!(flags & WQ_FLAG_WOKEN)) { 1327 if (signal_pending_state(state, current)) 1328 break; 1329 1330 io_schedule(); 1331 continue; 1332 } 1333 1334 /* If we were non-exclusive, we're done */ 1335 if (behavior != EXCLUSIVE) 1336 break; 1337 1338 /* If the waker got the lock for us, we're done */ 1339 if (flags & WQ_FLAG_DONE) 1340 break; 1341 1342 /* 1343 * Otherwise, if we're getting the lock, we need to 1344 * try to get it ourselves. 1345 * 1346 * And if that fails, we'll have to retry this all. 1347 */ 1348 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0)))) 1349 goto repeat; 1350 1351 wait->flags |= WQ_FLAG_DONE; 1352 break; 1353 } 1354 1355 /* 1356 * If a signal happened, this 'finish_wait()' may remove the last 1357 * waiter from the wait-queues, but the folio waiters bit will remain 1358 * set. That's ok. The next wakeup will take care of it, and trying 1359 * to do it here would be difficult and prone to races. 1360 */ 1361 finish_wait(q, wait); 1362 1363 if (thrashing) { 1364 delayacct_thrashing_end(&in_thrashing); 1365 psi_memstall_leave(&pflags); 1366 } 1367 1368 /* 1369 * NOTE! The wait->flags weren't stable until we've done the 1370 * 'finish_wait()', and we could have exited the loop above due 1371 * to a signal, and had a wakeup event happen after the signal 1372 * test but before the 'finish_wait()'. 1373 * 1374 * So only after the finish_wait() can we reliably determine 1375 * if we got woken up or not, so we can now figure out the final 1376 * return value based on that state without races. 1377 * 1378 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive 1379 * waiter, but an exclusive one requires WQ_FLAG_DONE. 1380 */ 1381 if (behavior == EXCLUSIVE) 1382 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR; 1383 1384 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR; 1385 } 1386 1387 #ifdef CONFIG_MIGRATION 1388 /** 1389 * migration_entry_wait_on_locked - Wait for a migration entry to be removed 1390 * @entry: migration swap entry. 1391 * @ptl: already locked ptl. This function will drop the lock. 1392 * 1393 * Wait for a migration entry referencing the given page to be removed. This is 1394 * equivalent to folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE) except 1395 * this can be called without taking a reference on the page. Instead this 1396 * should be called while holding the ptl for the migration entry referencing 1397 * the page. 1398 * 1399 * Returns after unlocking the ptl. 1400 * 1401 * This follows the same logic as folio_wait_bit_common() so see the comments 1402 * there. 1403 */ 1404 void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl) 1405 __releases(ptl) 1406 { 1407 struct wait_page_queue wait_page; 1408 wait_queue_entry_t *wait = &wait_page.wait; 1409 bool thrashing = false; 1410 unsigned long pflags; 1411 bool in_thrashing; 1412 wait_queue_head_t *q; 1413 struct folio *folio = pfn_swap_entry_folio(entry); 1414 1415 q = folio_waitqueue(folio); 1416 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1417 delayacct_thrashing_start(&in_thrashing); 1418 psi_memstall_enter(&pflags); 1419 thrashing = true; 1420 } 1421 1422 init_wait(wait); 1423 wait->func = wake_page_function; 1424 wait_page.folio = folio; 1425 wait_page.bit_nr = PG_locked; 1426 wait->flags = 0; 1427 1428 spin_lock_irq(&q->lock); 1429 folio_set_waiters(folio); 1430 if (!folio_trylock_flag(folio, PG_locked, wait)) 1431 __add_wait_queue_entry_tail(q, wait); 1432 spin_unlock_irq(&q->lock); 1433 1434 /* 1435 * If a migration entry exists for the page the migration path must hold 1436 * a valid reference to the page, and it must take the ptl to remove the 1437 * migration entry. So the page is valid until the ptl is dropped. 1438 */ 1439 spin_unlock(ptl); 1440 1441 for (;;) { 1442 unsigned int flags; 1443 1444 set_current_state(TASK_UNINTERRUPTIBLE); 1445 1446 /* Loop until we've been woken or interrupted */ 1447 flags = smp_load_acquire(&wait->flags); 1448 if (!(flags & WQ_FLAG_WOKEN)) { 1449 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current)) 1450 break; 1451 1452 io_schedule(); 1453 continue; 1454 } 1455 break; 1456 } 1457 1458 finish_wait(q, wait); 1459 1460 if (thrashing) { 1461 delayacct_thrashing_end(&in_thrashing); 1462 psi_memstall_leave(&pflags); 1463 } 1464 } 1465 #endif 1466 1467 void folio_wait_bit(struct folio *folio, int bit_nr) 1468 { 1469 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1470 } 1471 EXPORT_SYMBOL(folio_wait_bit); 1472 1473 int folio_wait_bit_killable(struct folio *folio, int bit_nr) 1474 { 1475 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED); 1476 } 1477 EXPORT_SYMBOL(folio_wait_bit_killable); 1478 1479 /** 1480 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked 1481 * @folio: The folio to wait for. 1482 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc). 1483 * 1484 * The caller should hold a reference on @folio. They expect the page to 1485 * become unlocked relatively soon, but do not wish to hold up migration 1486 * (for example) by holding the reference while waiting for the folio to 1487 * come unlocked. After this function returns, the caller should not 1488 * dereference @folio. 1489 * 1490 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal. 1491 */ 1492 static int folio_put_wait_locked(struct folio *folio, int state) 1493 { 1494 return folio_wait_bit_common(folio, PG_locked, state, DROP); 1495 } 1496 1497 /** 1498 * folio_unlock - Unlock a locked folio. 1499 * @folio: The folio. 1500 * 1501 * Unlocks the folio and wakes up any thread sleeping on the page lock. 1502 * 1503 * Context: May be called from interrupt or process context. May not be 1504 * called from NMI context. 1505 */ 1506 void folio_unlock(struct folio *folio) 1507 { 1508 /* Bit 7 allows x86 to check the byte's sign bit */ 1509 BUILD_BUG_ON(PG_waiters != 7); 1510 BUILD_BUG_ON(PG_locked > 7); 1511 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1512 if (folio_xor_flags_has_waiters(folio, 1 << PG_locked)) 1513 folio_wake_bit(folio, PG_locked); 1514 } 1515 EXPORT_SYMBOL(folio_unlock); 1516 1517 /** 1518 * folio_end_read - End read on a folio. 1519 * @folio: The folio. 1520 * @success: True if all reads completed successfully. 1521 * 1522 * When all reads against a folio have completed, filesystems should 1523 * call this function to let the pagecache know that no more reads 1524 * are outstanding. This will unlock the folio and wake up any thread 1525 * sleeping on the lock. The folio will also be marked uptodate if all 1526 * reads succeeded. 1527 * 1528 * Context: May be called from interrupt or process context. May not be 1529 * called from NMI context. 1530 */ 1531 void folio_end_read(struct folio *folio, bool success) 1532 { 1533 unsigned long mask = 1 << PG_locked; 1534 1535 /* Must be in bottom byte for x86 to work */ 1536 BUILD_BUG_ON(PG_uptodate > 7); 1537 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1538 VM_BUG_ON_FOLIO(success && folio_test_uptodate(folio), folio); 1539 1540 if (likely(success)) 1541 mask |= 1 << PG_uptodate; 1542 if (folio_xor_flags_has_waiters(folio, mask)) 1543 folio_wake_bit(folio, PG_locked); 1544 } 1545 EXPORT_SYMBOL(folio_end_read); 1546 1547 /** 1548 * folio_end_private_2 - Clear PG_private_2 and wake any waiters. 1549 * @folio: The folio. 1550 * 1551 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for 1552 * it. The folio reference held for PG_private_2 being set is released. 1553 * 1554 * This is, for example, used when a netfs folio is being written to a local 1555 * disk cache, thereby allowing writes to the cache for the same folio to be 1556 * serialised. 1557 */ 1558 void folio_end_private_2(struct folio *folio) 1559 { 1560 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio); 1561 clear_bit_unlock(PG_private_2, folio_flags(folio, 0)); 1562 folio_wake_bit(folio, PG_private_2); 1563 folio_put(folio); 1564 } 1565 EXPORT_SYMBOL(folio_end_private_2); 1566 1567 /** 1568 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio. 1569 * @folio: The folio to wait on. 1570 * 1571 * Wait for PG_private_2 to be cleared on a folio. 1572 */ 1573 void folio_wait_private_2(struct folio *folio) 1574 { 1575 while (folio_test_private_2(folio)) 1576 folio_wait_bit(folio, PG_private_2); 1577 } 1578 EXPORT_SYMBOL(folio_wait_private_2); 1579 1580 /** 1581 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio. 1582 * @folio: The folio to wait on. 1583 * 1584 * Wait for PG_private_2 to be cleared on a folio or until a fatal signal is 1585 * received by the calling task. 1586 * 1587 * Return: 1588 * - 0 if successful. 1589 * - -EINTR if a fatal signal was encountered. 1590 */ 1591 int folio_wait_private_2_killable(struct folio *folio) 1592 { 1593 int ret = 0; 1594 1595 while (folio_test_private_2(folio)) { 1596 ret = folio_wait_bit_killable(folio, PG_private_2); 1597 if (ret < 0) 1598 break; 1599 } 1600 1601 return ret; 1602 } 1603 EXPORT_SYMBOL(folio_wait_private_2_killable); 1604 1605 static void filemap_end_dropbehind(struct folio *folio) 1606 { 1607 struct address_space *mapping = folio->mapping; 1608 1609 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1610 1611 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 1612 return; 1613 if (!folio_test_clear_dropbehind(folio)) 1614 return; 1615 if (mapping) 1616 folio_unmap_invalidate(mapping, folio, 0); 1617 } 1618 1619 /* 1620 * If folio was marked as dropbehind, then pages should be dropped when writeback 1621 * completes. Do that now. If we fail, it's likely because of a big folio - 1622 * just reset dropbehind for that case and latter completions should invalidate. 1623 */ 1624 static void filemap_end_dropbehind_write(struct folio *folio) 1625 { 1626 if (!folio_test_dropbehind(folio)) 1627 return; 1628 1629 /* 1630 * Hitting !in_task() should not happen off RWF_DONTCACHE writeback, 1631 * but can happen if normal writeback just happens to find dirty folios 1632 * that were created as part of uncached writeback, and that writeback 1633 * would otherwise not need non-IRQ handling. Just skip the 1634 * invalidation in that case. 1635 */ 1636 if (in_task() && folio_trylock(folio)) { 1637 filemap_end_dropbehind(folio); 1638 folio_unlock(folio); 1639 } 1640 } 1641 1642 /** 1643 * folio_end_writeback - End writeback against a folio. 1644 * @folio: The folio. 1645 * 1646 * The folio must actually be under writeback. 1647 * 1648 * Context: May be called from process or interrupt context. 1649 */ 1650 void folio_end_writeback(struct folio *folio) 1651 { 1652 VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio); 1653 1654 /* 1655 * folio_test_clear_reclaim() could be used here but it is an 1656 * atomic operation and overkill in this particular case. Failing 1657 * to shuffle a folio marked for immediate reclaim is too mild 1658 * a gain to justify taking an atomic operation penalty at the 1659 * end of every folio writeback. 1660 */ 1661 if (folio_test_reclaim(folio)) { 1662 folio_clear_reclaim(folio); 1663 folio_rotate_reclaimable(folio); 1664 } 1665 1666 /* 1667 * Writeback does not hold a folio reference of its own, relying 1668 * on truncation to wait for the clearing of PG_writeback. 1669 * But here we must make sure that the folio is not freed and 1670 * reused before the folio_wake_bit(). 1671 */ 1672 folio_get(folio); 1673 if (__folio_end_writeback(folio)) 1674 folio_wake_bit(folio, PG_writeback); 1675 1676 filemap_end_dropbehind_write(folio); 1677 acct_reclaim_writeback(folio); 1678 folio_put(folio); 1679 } 1680 EXPORT_SYMBOL(folio_end_writeback); 1681 1682 /** 1683 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it. 1684 * @folio: The folio to lock 1685 */ 1686 void __folio_lock(struct folio *folio) 1687 { 1688 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE, 1689 EXCLUSIVE); 1690 } 1691 EXPORT_SYMBOL(__folio_lock); 1692 1693 int __folio_lock_killable(struct folio *folio) 1694 { 1695 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE, 1696 EXCLUSIVE); 1697 } 1698 EXPORT_SYMBOL_GPL(__folio_lock_killable); 1699 1700 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait) 1701 { 1702 struct wait_queue_head *q = folio_waitqueue(folio); 1703 int ret; 1704 1705 wait->folio = folio; 1706 wait->bit_nr = PG_locked; 1707 1708 spin_lock_irq(&q->lock); 1709 __add_wait_queue_entry_tail(q, &wait->wait); 1710 folio_set_waiters(folio); 1711 ret = !folio_trylock(folio); 1712 /* 1713 * If we were successful now, we know we're still on the 1714 * waitqueue as we're still under the lock. This means it's 1715 * safe to remove and return success, we know the callback 1716 * isn't going to trigger. 1717 */ 1718 if (!ret) 1719 __remove_wait_queue(q, &wait->wait); 1720 else 1721 ret = -EIOCBQUEUED; 1722 spin_unlock_irq(&q->lock); 1723 return ret; 1724 } 1725 1726 /* 1727 * Return values: 1728 * 0 - folio is locked. 1729 * non-zero - folio is not locked. 1730 * mmap_lock or per-VMA lock has been released (mmap_read_unlock() or 1731 * vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and 1732 * FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held. 1733 * 1734 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0 1735 * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed. 1736 */ 1737 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf) 1738 { 1739 unsigned int flags = vmf->flags; 1740 1741 if (fault_flag_allow_retry_first(flags)) { 1742 /* 1743 * CAUTION! In this case, mmap_lock/per-VMA lock is not 1744 * released even though returning VM_FAULT_RETRY. 1745 */ 1746 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1747 return VM_FAULT_RETRY; 1748 1749 release_fault_lock(vmf); 1750 if (flags & FAULT_FLAG_KILLABLE) 1751 folio_wait_locked_killable(folio); 1752 else 1753 folio_wait_locked(folio); 1754 return VM_FAULT_RETRY; 1755 } 1756 if (flags & FAULT_FLAG_KILLABLE) { 1757 bool ret; 1758 1759 ret = __folio_lock_killable(folio); 1760 if (ret) { 1761 release_fault_lock(vmf); 1762 return VM_FAULT_RETRY; 1763 } 1764 } else { 1765 __folio_lock(folio); 1766 } 1767 1768 return 0; 1769 } 1770 1771 /** 1772 * page_cache_next_miss() - Find the next gap in the page cache. 1773 * @mapping: Mapping. 1774 * @index: Index. 1775 * @max_scan: Maximum range to search. 1776 * 1777 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1778 * gap with the lowest index. 1779 * 1780 * This function may be called under the rcu_read_lock. However, this will 1781 * not atomically search a snapshot of the cache at a single point in time. 1782 * For example, if a gap is created at index 5, then subsequently a gap is 1783 * created at index 10, page_cache_next_miss covering both indices may 1784 * return 10 if called under the rcu_read_lock. 1785 * 1786 * Return: The index of the gap if found, otherwise an index outside the 1787 * range specified (in which case 'return - index >= max_scan' will be true). 1788 * In the rare case of index wrap-around, 0 will be returned. 1789 */ 1790 pgoff_t page_cache_next_miss(struct address_space *mapping, 1791 pgoff_t index, unsigned long max_scan) 1792 { 1793 XA_STATE(xas, &mapping->i_pages, index); 1794 unsigned long nr = max_scan; 1795 1796 while (nr--) { 1797 void *entry = xas_next(&xas); 1798 if (!entry || xa_is_value(entry)) 1799 return xas.xa_index; 1800 if (xas.xa_index == 0) 1801 return 0; 1802 } 1803 1804 return index + max_scan; 1805 } 1806 EXPORT_SYMBOL(page_cache_next_miss); 1807 1808 /** 1809 * page_cache_prev_miss() - Find the previous gap in the page cache. 1810 * @mapping: Mapping. 1811 * @index: Index. 1812 * @max_scan: Maximum range to search. 1813 * 1814 * Search the range [max(index - max_scan + 1, 0), index] for the 1815 * gap with the highest index. 1816 * 1817 * This function may be called under the rcu_read_lock. However, this will 1818 * not atomically search a snapshot of the cache at a single point in time. 1819 * For example, if a gap is created at index 10, then subsequently a gap is 1820 * created at index 5, page_cache_prev_miss() covering both indices may 1821 * return 5 if called under the rcu_read_lock. 1822 * 1823 * Return: The index of the gap if found, otherwise an index outside the 1824 * range specified (in which case 'index - return >= max_scan' will be true). 1825 * In the rare case of wrap-around, ULONG_MAX will be returned. 1826 */ 1827 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1828 pgoff_t index, unsigned long max_scan) 1829 { 1830 XA_STATE(xas, &mapping->i_pages, index); 1831 1832 while (max_scan--) { 1833 void *entry = xas_prev(&xas); 1834 if (!entry || xa_is_value(entry)) 1835 break; 1836 if (xas.xa_index == ULONG_MAX) 1837 break; 1838 } 1839 1840 return xas.xa_index; 1841 } 1842 EXPORT_SYMBOL(page_cache_prev_miss); 1843 1844 /* 1845 * Lockless page cache protocol: 1846 * On the lookup side: 1847 * 1. Load the folio from i_pages 1848 * 2. Increment the refcount if it's not zero 1849 * 3. If the folio is not found by xas_reload(), put the refcount and retry 1850 * 1851 * On the removal side: 1852 * A. Freeze the page (by zeroing the refcount if nobody else has a reference) 1853 * B. Remove the page from i_pages 1854 * C. Return the page to the page allocator 1855 * 1856 * This means that any page may have its reference count temporarily 1857 * increased by a speculative page cache (or GUP-fast) lookup as it can 1858 * be allocated by another user before the RCU grace period expires. 1859 * Because the refcount temporarily acquired here may end up being the 1860 * last refcount on the page, any page allocation must be freeable by 1861 * folio_put(). 1862 */ 1863 1864 /* 1865 * filemap_get_entry - Get a page cache entry. 1866 * @mapping: the address_space to search 1867 * @index: The page cache index. 1868 * 1869 * Looks up the page cache entry at @mapping & @index. If it is a folio, 1870 * it is returned with an increased refcount. If it is a shadow entry 1871 * of a previously evicted folio, or a swap entry from shmem/tmpfs, 1872 * it is returned without further action. 1873 * 1874 * Return: The folio, swap or shadow entry, %NULL if nothing is found. 1875 */ 1876 void *filemap_get_entry(struct address_space *mapping, pgoff_t index) 1877 { 1878 XA_STATE(xas, &mapping->i_pages, index); 1879 struct folio *folio; 1880 1881 rcu_read_lock(); 1882 repeat: 1883 xas_reset(&xas); 1884 folio = xas_load(&xas); 1885 if (xas_retry(&xas, folio)) 1886 goto repeat; 1887 /* 1888 * A shadow entry of a recently evicted page, or a swap entry from 1889 * shmem/tmpfs. Return it without attempting to raise page count. 1890 */ 1891 if (!folio || xa_is_value(folio)) 1892 goto out; 1893 1894 if (!folio_try_get(folio)) 1895 goto repeat; 1896 1897 if (unlikely(folio != xas_reload(&xas))) { 1898 folio_put(folio); 1899 goto repeat; 1900 } 1901 out: 1902 rcu_read_unlock(); 1903 1904 return folio; 1905 } 1906 1907 /** 1908 * __filemap_get_folio - Find and get a reference to a folio. 1909 * @mapping: The address_space to search. 1910 * @index: The page index. 1911 * @fgp_flags: %FGP flags modify how the folio is returned. 1912 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified. 1913 * 1914 * Looks up the page cache entry at @mapping & @index. 1915 * 1916 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even 1917 * if the %GFP flags specified for %FGP_CREAT are atomic. 1918 * 1919 * If this function returns a folio, it is returned with an increased refcount. 1920 * 1921 * Return: The found folio or an ERR_PTR() otherwise. 1922 */ 1923 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index, 1924 fgf_t fgp_flags, gfp_t gfp) 1925 { 1926 struct folio *folio; 1927 1928 repeat: 1929 folio = filemap_get_entry(mapping, index); 1930 if (xa_is_value(folio)) 1931 folio = NULL; 1932 if (!folio) 1933 goto no_page; 1934 1935 if (fgp_flags & FGP_LOCK) { 1936 if (fgp_flags & FGP_NOWAIT) { 1937 if (!folio_trylock(folio)) { 1938 folio_put(folio); 1939 return ERR_PTR(-EAGAIN); 1940 } 1941 } else { 1942 folio_lock(folio); 1943 } 1944 1945 /* Has the page been truncated? */ 1946 if (unlikely(folio->mapping != mapping)) { 1947 folio_unlock(folio); 1948 folio_put(folio); 1949 goto repeat; 1950 } 1951 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 1952 } 1953 1954 if (fgp_flags & FGP_ACCESSED) 1955 folio_mark_accessed(folio); 1956 else if (fgp_flags & FGP_WRITE) { 1957 /* Clear idle flag for buffer write */ 1958 if (folio_test_idle(folio)) 1959 folio_clear_idle(folio); 1960 } 1961 1962 if (fgp_flags & FGP_STABLE) 1963 folio_wait_stable(folio); 1964 no_page: 1965 if (!folio && (fgp_flags & FGP_CREAT)) { 1966 unsigned int min_order = mapping_min_folio_order(mapping); 1967 unsigned int order = max(min_order, FGF_GET_ORDER(fgp_flags)); 1968 int err; 1969 index = mapping_align_index(mapping, index); 1970 1971 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping)) 1972 gfp |= __GFP_WRITE; 1973 if (fgp_flags & FGP_NOFS) 1974 gfp &= ~__GFP_FS; 1975 if (fgp_flags & FGP_NOWAIT) { 1976 gfp &= ~GFP_KERNEL; 1977 gfp |= GFP_NOWAIT; 1978 } 1979 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 1980 fgp_flags |= FGP_LOCK; 1981 1982 if (order > mapping_max_folio_order(mapping)) 1983 order = mapping_max_folio_order(mapping); 1984 /* If we're not aligned, allocate a smaller folio */ 1985 if (index & ((1UL << order) - 1)) 1986 order = __ffs(index); 1987 1988 do { 1989 gfp_t alloc_gfp = gfp; 1990 1991 err = -ENOMEM; 1992 if (order > min_order) 1993 alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN; 1994 folio = filemap_alloc_folio(alloc_gfp, order); 1995 if (!folio) 1996 continue; 1997 1998 /* Init accessed so avoid atomic mark_page_accessed later */ 1999 if (fgp_flags & FGP_ACCESSED) 2000 __folio_set_referenced(folio); 2001 if (fgp_flags & FGP_DONTCACHE) 2002 __folio_set_dropbehind(folio); 2003 2004 err = filemap_add_folio(mapping, folio, index, gfp); 2005 if (!err) 2006 break; 2007 folio_put(folio); 2008 folio = NULL; 2009 } while (order-- > min_order); 2010 2011 if (err == -EEXIST) 2012 goto repeat; 2013 if (err) { 2014 /* 2015 * When NOWAIT I/O fails to allocate folios this could 2016 * be due to a nonblocking memory allocation and not 2017 * because the system actually is out of memory. 2018 * Return -EAGAIN so that there caller retries in a 2019 * blocking fashion instead of propagating -ENOMEM 2020 * to the application. 2021 */ 2022 if ((fgp_flags & FGP_NOWAIT) && err == -ENOMEM) 2023 err = -EAGAIN; 2024 return ERR_PTR(err); 2025 } 2026 /* 2027 * filemap_add_folio locks the page, and for mmap 2028 * we expect an unlocked page. 2029 */ 2030 if (folio && (fgp_flags & FGP_FOR_MMAP)) 2031 folio_unlock(folio); 2032 } 2033 2034 if (!folio) 2035 return ERR_PTR(-ENOENT); 2036 /* not an uncached lookup, clear uncached if set */ 2037 if (folio_test_dropbehind(folio) && !(fgp_flags & FGP_DONTCACHE)) 2038 folio_clear_dropbehind(folio); 2039 return folio; 2040 } 2041 EXPORT_SYMBOL(__filemap_get_folio); 2042 2043 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max, 2044 xa_mark_t mark) 2045 { 2046 struct folio *folio; 2047 2048 retry: 2049 if (mark == XA_PRESENT) 2050 folio = xas_find(xas, max); 2051 else 2052 folio = xas_find_marked(xas, max, mark); 2053 2054 if (xas_retry(xas, folio)) 2055 goto retry; 2056 /* 2057 * A shadow entry of a recently evicted page, a swap 2058 * entry from shmem/tmpfs or a DAX entry. Return it 2059 * without attempting to raise page count. 2060 */ 2061 if (!folio || xa_is_value(folio)) 2062 return folio; 2063 2064 if (!folio_try_get(folio)) 2065 goto reset; 2066 2067 if (unlikely(folio != xas_reload(xas))) { 2068 folio_put(folio); 2069 goto reset; 2070 } 2071 2072 return folio; 2073 reset: 2074 xas_reset(xas); 2075 goto retry; 2076 } 2077 2078 /** 2079 * find_get_entries - gang pagecache lookup 2080 * @mapping: The address_space to search 2081 * @start: The starting page cache index 2082 * @end: The final page index (inclusive). 2083 * @fbatch: Where the resulting entries are placed. 2084 * @indices: The cache indices corresponding to the entries in @entries 2085 * 2086 * find_get_entries() will search for and return a batch of entries in 2087 * the mapping. The entries are placed in @fbatch. find_get_entries() 2088 * takes a reference on any actual folios it returns. 2089 * 2090 * The entries have ascending indexes. The indices may not be consecutive 2091 * due to not-present entries or large folios. 2092 * 2093 * Any shadow entries of evicted folios, or swap entries from 2094 * shmem/tmpfs, are included in the returned array. 2095 * 2096 * Return: The number of entries which were found. 2097 */ 2098 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start, 2099 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2100 { 2101 XA_STATE(xas, &mapping->i_pages, *start); 2102 struct folio *folio; 2103 2104 rcu_read_lock(); 2105 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) { 2106 indices[fbatch->nr] = xas.xa_index; 2107 if (!folio_batch_add(fbatch, folio)) 2108 break; 2109 } 2110 2111 if (folio_batch_count(fbatch)) { 2112 unsigned long nr; 2113 int idx = folio_batch_count(fbatch) - 1; 2114 2115 folio = fbatch->folios[idx]; 2116 if (!xa_is_value(folio)) 2117 nr = folio_nr_pages(folio); 2118 else 2119 nr = 1 << xa_get_order(&mapping->i_pages, indices[idx]); 2120 *start = round_down(indices[idx] + nr, nr); 2121 } 2122 rcu_read_unlock(); 2123 2124 return folio_batch_count(fbatch); 2125 } 2126 2127 /** 2128 * find_lock_entries - Find a batch of pagecache entries. 2129 * @mapping: The address_space to search. 2130 * @start: The starting page cache index. 2131 * @end: The final page index (inclusive). 2132 * @fbatch: Where the resulting entries are placed. 2133 * @indices: The cache indices of the entries in @fbatch. 2134 * 2135 * find_lock_entries() will return a batch of entries from @mapping. 2136 * Swap, shadow and DAX entries are included. Folios are returned 2137 * locked and with an incremented refcount. Folios which are locked 2138 * by somebody else or under writeback are skipped. Folios which are 2139 * partially outside the range are not returned. 2140 * 2141 * The entries have ascending indexes. The indices may not be consecutive 2142 * due to not-present entries, large folios, folios which could not be 2143 * locked or folios under writeback. 2144 * 2145 * Return: The number of entries which were found. 2146 */ 2147 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start, 2148 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2149 { 2150 XA_STATE(xas, &mapping->i_pages, *start); 2151 struct folio *folio; 2152 2153 rcu_read_lock(); 2154 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) { 2155 unsigned long base; 2156 unsigned long nr; 2157 2158 if (!xa_is_value(folio)) { 2159 nr = folio_nr_pages(folio); 2160 base = folio->index; 2161 /* Omit large folio which begins before the start */ 2162 if (base < *start) 2163 goto put; 2164 /* Omit large folio which extends beyond the end */ 2165 if (base + nr - 1 > end) 2166 goto put; 2167 if (!folio_trylock(folio)) 2168 goto put; 2169 if (folio->mapping != mapping || 2170 folio_test_writeback(folio)) 2171 goto unlock; 2172 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index), 2173 folio); 2174 } else { 2175 nr = 1 << xas_get_order(&xas); 2176 base = xas.xa_index & ~(nr - 1); 2177 /* Omit order>0 value which begins before the start */ 2178 if (base < *start) 2179 continue; 2180 /* Omit order>0 value which extends beyond the end */ 2181 if (base + nr - 1 > end) 2182 break; 2183 } 2184 2185 /* Update start now so that last update is correct on return */ 2186 *start = base + nr; 2187 indices[fbatch->nr] = xas.xa_index; 2188 if (!folio_batch_add(fbatch, folio)) 2189 break; 2190 continue; 2191 unlock: 2192 folio_unlock(folio); 2193 put: 2194 folio_put(folio); 2195 } 2196 rcu_read_unlock(); 2197 2198 return folio_batch_count(fbatch); 2199 } 2200 2201 /** 2202 * filemap_get_folios - Get a batch of folios 2203 * @mapping: The address_space to search 2204 * @start: The starting page index 2205 * @end: The final page index (inclusive) 2206 * @fbatch: The batch to fill. 2207 * 2208 * Search for and return a batch of folios in the mapping starting at 2209 * index @start and up to index @end (inclusive). The folios are returned 2210 * in @fbatch with an elevated reference count. 2211 * 2212 * Return: The number of folios which were found. 2213 * We also update @start to index the next folio for the traversal. 2214 */ 2215 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start, 2216 pgoff_t end, struct folio_batch *fbatch) 2217 { 2218 return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch); 2219 } 2220 EXPORT_SYMBOL(filemap_get_folios); 2221 2222 /** 2223 * filemap_get_folios_contig - Get a batch of contiguous folios 2224 * @mapping: The address_space to search 2225 * @start: The starting page index 2226 * @end: The final page index (inclusive) 2227 * @fbatch: The batch to fill 2228 * 2229 * filemap_get_folios_contig() works exactly like filemap_get_folios(), 2230 * except the returned folios are guaranteed to be contiguous. This may 2231 * not return all contiguous folios if the batch gets filled up. 2232 * 2233 * Return: The number of folios found. 2234 * Also update @start to be positioned for traversal of the next folio. 2235 */ 2236 2237 unsigned filemap_get_folios_contig(struct address_space *mapping, 2238 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch) 2239 { 2240 XA_STATE(xas, &mapping->i_pages, *start); 2241 unsigned long nr; 2242 struct folio *folio; 2243 2244 rcu_read_lock(); 2245 2246 for (folio = xas_load(&xas); folio && xas.xa_index <= end; 2247 folio = xas_next(&xas)) { 2248 if (xas_retry(&xas, folio)) 2249 continue; 2250 /* 2251 * If the entry has been swapped out, we can stop looking. 2252 * No current caller is looking for DAX entries. 2253 */ 2254 if (xa_is_value(folio)) 2255 goto update_start; 2256 2257 /* If we landed in the middle of a THP, continue at its end. */ 2258 if (xa_is_sibling(folio)) 2259 goto update_start; 2260 2261 if (!folio_try_get(folio)) 2262 goto retry; 2263 2264 if (unlikely(folio != xas_reload(&xas))) 2265 goto put_folio; 2266 2267 if (!folio_batch_add(fbatch, folio)) { 2268 nr = folio_nr_pages(folio); 2269 *start = folio->index + nr; 2270 goto out; 2271 } 2272 xas_advance(&xas, folio_next_index(folio) - 1); 2273 continue; 2274 put_folio: 2275 folio_put(folio); 2276 2277 retry: 2278 xas_reset(&xas); 2279 } 2280 2281 update_start: 2282 nr = folio_batch_count(fbatch); 2283 2284 if (nr) { 2285 folio = fbatch->folios[nr - 1]; 2286 *start = folio_next_index(folio); 2287 } 2288 out: 2289 rcu_read_unlock(); 2290 return folio_batch_count(fbatch); 2291 } 2292 EXPORT_SYMBOL(filemap_get_folios_contig); 2293 2294 /** 2295 * filemap_get_folios_tag - Get a batch of folios matching @tag 2296 * @mapping: The address_space to search 2297 * @start: The starting page index 2298 * @end: The final page index (inclusive) 2299 * @tag: The tag index 2300 * @fbatch: The batch to fill 2301 * 2302 * The first folio may start before @start; if it does, it will contain 2303 * @start. The final folio may extend beyond @end; if it does, it will 2304 * contain @end. The folios have ascending indices. There may be gaps 2305 * between the folios if there are indices which have no folio in the 2306 * page cache. If folios are added to or removed from the page cache 2307 * while this is running, they may or may not be found by this call. 2308 * Only returns folios that are tagged with @tag. 2309 * 2310 * Return: The number of folios found. 2311 * Also update @start to index the next folio for traversal. 2312 */ 2313 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start, 2314 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch) 2315 { 2316 XA_STATE(xas, &mapping->i_pages, *start); 2317 struct folio *folio; 2318 2319 rcu_read_lock(); 2320 while ((folio = find_get_entry(&xas, end, tag)) != NULL) { 2321 /* 2322 * Shadow entries should never be tagged, but this iteration 2323 * is lockless so there is a window for page reclaim to evict 2324 * a page we saw tagged. Skip over it. 2325 */ 2326 if (xa_is_value(folio)) 2327 continue; 2328 if (!folio_batch_add(fbatch, folio)) { 2329 unsigned long nr = folio_nr_pages(folio); 2330 *start = folio->index + nr; 2331 goto out; 2332 } 2333 } 2334 /* 2335 * We come here when there is no page beyond @end. We take care to not 2336 * overflow the index @start as it confuses some of the callers. This 2337 * breaks the iteration when there is a page at index -1 but that is 2338 * already broke anyway. 2339 */ 2340 if (end == (pgoff_t)-1) 2341 *start = (pgoff_t)-1; 2342 else 2343 *start = end + 1; 2344 out: 2345 rcu_read_unlock(); 2346 2347 return folio_batch_count(fbatch); 2348 } 2349 EXPORT_SYMBOL(filemap_get_folios_tag); 2350 2351 /* 2352 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 2353 * a _large_ part of the i/o request. Imagine the worst scenario: 2354 * 2355 * ---R__________________________________________B__________ 2356 * ^ reading here ^ bad block(assume 4k) 2357 * 2358 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2359 * => failing the whole request => read(R) => read(R+1) => 2360 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2361 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2362 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2363 * 2364 * It is going insane. Fix it by quickly scaling down the readahead size. 2365 */ 2366 static void shrink_readahead_size_eio(struct file_ra_state *ra) 2367 { 2368 ra->ra_pages /= 4; 2369 } 2370 2371 /* 2372 * filemap_get_read_batch - Get a batch of folios for read 2373 * 2374 * Get a batch of folios which represent a contiguous range of bytes in 2375 * the file. No exceptional entries will be returned. If @index is in 2376 * the middle of a folio, the entire folio will be returned. The last 2377 * folio in the batch may have the readahead flag set or the uptodate flag 2378 * clear so that the caller can take the appropriate action. 2379 */ 2380 static void filemap_get_read_batch(struct address_space *mapping, 2381 pgoff_t index, pgoff_t max, struct folio_batch *fbatch) 2382 { 2383 XA_STATE(xas, &mapping->i_pages, index); 2384 struct folio *folio; 2385 2386 rcu_read_lock(); 2387 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) { 2388 if (xas_retry(&xas, folio)) 2389 continue; 2390 if (xas.xa_index > max || xa_is_value(folio)) 2391 break; 2392 if (xa_is_sibling(folio)) 2393 break; 2394 if (!folio_try_get(folio)) 2395 goto retry; 2396 2397 if (unlikely(folio != xas_reload(&xas))) 2398 goto put_folio; 2399 2400 if (!folio_batch_add(fbatch, folio)) 2401 break; 2402 if (!folio_test_uptodate(folio)) 2403 break; 2404 if (folio_test_readahead(folio)) 2405 break; 2406 xas_advance(&xas, folio_next_index(folio) - 1); 2407 continue; 2408 put_folio: 2409 folio_put(folio); 2410 retry: 2411 xas_reset(&xas); 2412 } 2413 rcu_read_unlock(); 2414 } 2415 2416 static int filemap_read_folio(struct file *file, filler_t filler, 2417 struct folio *folio) 2418 { 2419 bool workingset = folio_test_workingset(folio); 2420 unsigned long pflags; 2421 int error; 2422 2423 /* Start the actual read. The read will unlock the page. */ 2424 if (unlikely(workingset)) 2425 psi_memstall_enter(&pflags); 2426 error = filler(file, folio); 2427 if (unlikely(workingset)) 2428 psi_memstall_leave(&pflags); 2429 if (error) 2430 return error; 2431 2432 error = folio_wait_locked_killable(folio); 2433 if (error) 2434 return error; 2435 if (folio_test_uptodate(folio)) 2436 return 0; 2437 if (file) 2438 shrink_readahead_size_eio(&file->f_ra); 2439 return -EIO; 2440 } 2441 2442 static bool filemap_range_uptodate(struct address_space *mapping, 2443 loff_t pos, size_t count, struct folio *folio, 2444 bool need_uptodate) 2445 { 2446 if (folio_test_uptodate(folio)) 2447 return true; 2448 /* pipes can't handle partially uptodate pages */ 2449 if (need_uptodate) 2450 return false; 2451 if (!mapping->a_ops->is_partially_uptodate) 2452 return false; 2453 if (mapping->host->i_blkbits >= folio_shift(folio)) 2454 return false; 2455 2456 if (folio_pos(folio) > pos) { 2457 count -= folio_pos(folio) - pos; 2458 pos = 0; 2459 } else { 2460 pos -= folio_pos(folio); 2461 } 2462 2463 if (pos == 0 && count >= folio_size(folio)) 2464 return false; 2465 2466 return mapping->a_ops->is_partially_uptodate(folio, pos, count); 2467 } 2468 2469 static int filemap_update_page(struct kiocb *iocb, 2470 struct address_space *mapping, size_t count, 2471 struct folio *folio, bool need_uptodate) 2472 { 2473 int error; 2474 2475 if (iocb->ki_flags & IOCB_NOWAIT) { 2476 if (!filemap_invalidate_trylock_shared(mapping)) 2477 return -EAGAIN; 2478 } else { 2479 filemap_invalidate_lock_shared(mapping); 2480 } 2481 2482 if (!folio_trylock(folio)) { 2483 error = -EAGAIN; 2484 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) 2485 goto unlock_mapping; 2486 if (!(iocb->ki_flags & IOCB_WAITQ)) { 2487 filemap_invalidate_unlock_shared(mapping); 2488 /* 2489 * This is where we usually end up waiting for a 2490 * previously submitted readahead to finish. 2491 */ 2492 folio_put_wait_locked(folio, TASK_KILLABLE); 2493 return AOP_TRUNCATED_PAGE; 2494 } 2495 error = __folio_lock_async(folio, iocb->ki_waitq); 2496 if (error) 2497 goto unlock_mapping; 2498 } 2499 2500 error = AOP_TRUNCATED_PAGE; 2501 if (!folio->mapping) 2502 goto unlock; 2503 2504 error = 0; 2505 if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio, 2506 need_uptodate)) 2507 goto unlock; 2508 2509 error = -EAGAIN; 2510 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ)) 2511 goto unlock; 2512 2513 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio, 2514 folio); 2515 goto unlock_mapping; 2516 unlock: 2517 folio_unlock(folio); 2518 unlock_mapping: 2519 filemap_invalidate_unlock_shared(mapping); 2520 if (error == AOP_TRUNCATED_PAGE) 2521 folio_put(folio); 2522 return error; 2523 } 2524 2525 static int filemap_create_folio(struct kiocb *iocb, struct folio_batch *fbatch) 2526 { 2527 struct address_space *mapping = iocb->ki_filp->f_mapping; 2528 struct folio *folio; 2529 int error; 2530 unsigned int min_order = mapping_min_folio_order(mapping); 2531 pgoff_t index; 2532 2533 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ)) 2534 return -EAGAIN; 2535 2536 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), min_order); 2537 if (!folio) 2538 return -ENOMEM; 2539 if (iocb->ki_flags & IOCB_DONTCACHE) 2540 __folio_set_dropbehind(folio); 2541 2542 /* 2543 * Protect against truncate / hole punch. Grabbing invalidate_lock 2544 * here assures we cannot instantiate and bring uptodate new 2545 * pagecache folios after evicting page cache during truncate 2546 * and before actually freeing blocks. Note that we could 2547 * release invalidate_lock after inserting the folio into 2548 * the page cache as the locked folio would then be enough to 2549 * synchronize with hole punching. But there are code paths 2550 * such as filemap_update_page() filling in partially uptodate 2551 * pages or ->readahead() that need to hold invalidate_lock 2552 * while mapping blocks for IO so let's hold the lock here as 2553 * well to keep locking rules simple. 2554 */ 2555 filemap_invalidate_lock_shared(mapping); 2556 index = (iocb->ki_pos >> (PAGE_SHIFT + min_order)) << min_order; 2557 error = filemap_add_folio(mapping, folio, index, 2558 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2559 if (error == -EEXIST) 2560 error = AOP_TRUNCATED_PAGE; 2561 if (error) 2562 goto error; 2563 2564 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio, 2565 folio); 2566 if (error) 2567 goto error; 2568 2569 filemap_invalidate_unlock_shared(mapping); 2570 folio_batch_add(fbatch, folio); 2571 return 0; 2572 error: 2573 filemap_invalidate_unlock_shared(mapping); 2574 folio_put(folio); 2575 return error; 2576 } 2577 2578 static int filemap_readahead(struct kiocb *iocb, struct file *file, 2579 struct address_space *mapping, struct folio *folio, 2580 pgoff_t last_index) 2581 { 2582 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index); 2583 2584 if (iocb->ki_flags & IOCB_NOIO) 2585 return -EAGAIN; 2586 if (iocb->ki_flags & IOCB_DONTCACHE) 2587 ractl.dropbehind = 1; 2588 page_cache_async_ra(&ractl, folio, last_index - folio->index); 2589 return 0; 2590 } 2591 2592 static int filemap_get_pages(struct kiocb *iocb, size_t count, 2593 struct folio_batch *fbatch, bool need_uptodate) 2594 { 2595 struct file *filp = iocb->ki_filp; 2596 struct address_space *mapping = filp->f_mapping; 2597 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT; 2598 pgoff_t last_index; 2599 struct folio *folio; 2600 unsigned int flags; 2601 int err = 0; 2602 2603 /* "last_index" is the index of the folio beyond the end of the read */ 2604 last_index = round_up(iocb->ki_pos + count, 2605 mapping_min_folio_nrbytes(mapping)) >> PAGE_SHIFT; 2606 retry: 2607 if (fatal_signal_pending(current)) 2608 return -EINTR; 2609 2610 filemap_get_read_batch(mapping, index, last_index - 1, fbatch); 2611 if (!folio_batch_count(fbatch)) { 2612 DEFINE_READAHEAD(ractl, filp, &filp->f_ra, mapping, index); 2613 2614 if (iocb->ki_flags & IOCB_NOIO) 2615 return -EAGAIN; 2616 if (iocb->ki_flags & IOCB_NOWAIT) 2617 flags = memalloc_noio_save(); 2618 if (iocb->ki_flags & IOCB_DONTCACHE) 2619 ractl.dropbehind = 1; 2620 page_cache_sync_ra(&ractl, last_index - index); 2621 if (iocb->ki_flags & IOCB_NOWAIT) 2622 memalloc_noio_restore(flags); 2623 filemap_get_read_batch(mapping, index, last_index - 1, fbatch); 2624 } 2625 if (!folio_batch_count(fbatch)) { 2626 err = filemap_create_folio(iocb, fbatch); 2627 if (err == AOP_TRUNCATED_PAGE) 2628 goto retry; 2629 return err; 2630 } 2631 2632 folio = fbatch->folios[folio_batch_count(fbatch) - 1]; 2633 if (folio_test_readahead(folio)) { 2634 err = filemap_readahead(iocb, filp, mapping, folio, last_index); 2635 if (err) 2636 goto err; 2637 } 2638 if (!folio_test_uptodate(folio)) { 2639 if (folio_batch_count(fbatch) > 1) { 2640 err = -EAGAIN; 2641 goto err; 2642 } 2643 err = filemap_update_page(iocb, mapping, count, folio, 2644 need_uptodate); 2645 if (err) 2646 goto err; 2647 } 2648 2649 trace_mm_filemap_get_pages(mapping, index, last_index - 1); 2650 return 0; 2651 err: 2652 if (err < 0) 2653 folio_put(folio); 2654 if (likely(--fbatch->nr)) 2655 return 0; 2656 if (err == AOP_TRUNCATED_PAGE) 2657 goto retry; 2658 return err; 2659 } 2660 2661 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio) 2662 { 2663 unsigned int shift = folio_shift(folio); 2664 2665 return (pos1 >> shift == pos2 >> shift); 2666 } 2667 2668 static void filemap_end_dropbehind_read(struct folio *folio) 2669 { 2670 if (!folio_test_dropbehind(folio)) 2671 return; 2672 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 2673 return; 2674 if (folio_trylock(folio)) { 2675 filemap_end_dropbehind(folio); 2676 folio_unlock(folio); 2677 } 2678 } 2679 2680 /** 2681 * filemap_read - Read data from the page cache. 2682 * @iocb: The iocb to read. 2683 * @iter: Destination for the data. 2684 * @already_read: Number of bytes already read by the caller. 2685 * 2686 * Copies data from the page cache. If the data is not currently present, 2687 * uses the readahead and read_folio address_space operations to fetch it. 2688 * 2689 * Return: Total number of bytes copied, including those already read by 2690 * the caller. If an error happens before any bytes are copied, returns 2691 * a negative error number. 2692 */ 2693 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter, 2694 ssize_t already_read) 2695 { 2696 struct file *filp = iocb->ki_filp; 2697 struct file_ra_state *ra = &filp->f_ra; 2698 struct address_space *mapping = filp->f_mapping; 2699 struct inode *inode = mapping->host; 2700 struct folio_batch fbatch; 2701 int i, error = 0; 2702 bool writably_mapped; 2703 loff_t isize, end_offset; 2704 loff_t last_pos = ra->prev_pos; 2705 2706 if (unlikely(iocb->ki_pos < 0)) 2707 return -EINVAL; 2708 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes)) 2709 return 0; 2710 if (unlikely(!iov_iter_count(iter))) 2711 return 0; 2712 2713 iov_iter_truncate(iter, inode->i_sb->s_maxbytes - iocb->ki_pos); 2714 folio_batch_init(&fbatch); 2715 2716 do { 2717 cond_resched(); 2718 2719 /* 2720 * If we've already successfully copied some data, then we 2721 * can no longer safely return -EIOCBQUEUED. Hence mark 2722 * an async read NOWAIT at that point. 2723 */ 2724 if ((iocb->ki_flags & IOCB_WAITQ) && already_read) 2725 iocb->ki_flags |= IOCB_NOWAIT; 2726 2727 if (unlikely(iocb->ki_pos >= i_size_read(inode))) 2728 break; 2729 2730 error = filemap_get_pages(iocb, iter->count, &fbatch, false); 2731 if (error < 0) 2732 break; 2733 2734 /* 2735 * i_size must be checked after we know the pages are Uptodate. 2736 * 2737 * Checking i_size after the check allows us to calculate 2738 * the correct value for "nr", which means the zero-filled 2739 * part of the page is not copied back to userspace (unless 2740 * another truncate extends the file - this is desired though). 2741 */ 2742 isize = i_size_read(inode); 2743 if (unlikely(iocb->ki_pos >= isize)) 2744 goto put_folios; 2745 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count); 2746 2747 /* 2748 * Once we start copying data, we don't want to be touching any 2749 * cachelines that might be contended: 2750 */ 2751 writably_mapped = mapping_writably_mapped(mapping); 2752 2753 /* 2754 * When a read accesses the same folio several times, only 2755 * mark it as accessed the first time. 2756 */ 2757 if (!pos_same_folio(iocb->ki_pos, last_pos - 1, 2758 fbatch.folios[0])) 2759 folio_mark_accessed(fbatch.folios[0]); 2760 2761 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2762 struct folio *folio = fbatch.folios[i]; 2763 size_t fsize = folio_size(folio); 2764 size_t offset = iocb->ki_pos & (fsize - 1); 2765 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos, 2766 fsize - offset); 2767 size_t copied; 2768 2769 if (end_offset < folio_pos(folio)) 2770 break; 2771 if (i > 0) 2772 folio_mark_accessed(folio); 2773 /* 2774 * If users can be writing to this folio using arbitrary 2775 * virtual addresses, take care of potential aliasing 2776 * before reading the folio on the kernel side. 2777 */ 2778 if (writably_mapped) 2779 flush_dcache_folio(folio); 2780 2781 copied = copy_folio_to_iter(folio, offset, bytes, iter); 2782 2783 already_read += copied; 2784 iocb->ki_pos += copied; 2785 last_pos = iocb->ki_pos; 2786 2787 if (copied < bytes) { 2788 error = -EFAULT; 2789 break; 2790 } 2791 } 2792 put_folios: 2793 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2794 struct folio *folio = fbatch.folios[i]; 2795 2796 filemap_end_dropbehind_read(folio); 2797 folio_put(folio); 2798 } 2799 folio_batch_init(&fbatch); 2800 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error); 2801 2802 file_accessed(filp); 2803 ra->prev_pos = last_pos; 2804 return already_read ? already_read : error; 2805 } 2806 EXPORT_SYMBOL_GPL(filemap_read); 2807 2808 int kiocb_write_and_wait(struct kiocb *iocb, size_t count) 2809 { 2810 struct address_space *mapping = iocb->ki_filp->f_mapping; 2811 loff_t pos = iocb->ki_pos; 2812 loff_t end = pos + count - 1; 2813 2814 if (iocb->ki_flags & IOCB_NOWAIT) { 2815 if (filemap_range_needs_writeback(mapping, pos, end)) 2816 return -EAGAIN; 2817 return 0; 2818 } 2819 2820 return filemap_write_and_wait_range(mapping, pos, end); 2821 } 2822 EXPORT_SYMBOL_GPL(kiocb_write_and_wait); 2823 2824 int filemap_invalidate_pages(struct address_space *mapping, 2825 loff_t pos, loff_t end, bool nowait) 2826 { 2827 int ret; 2828 2829 if (nowait) { 2830 /* we could block if there are any pages in the range */ 2831 if (filemap_range_has_page(mapping, pos, end)) 2832 return -EAGAIN; 2833 } else { 2834 ret = filemap_write_and_wait_range(mapping, pos, end); 2835 if (ret) 2836 return ret; 2837 } 2838 2839 /* 2840 * After a write we want buffered reads to be sure to go to disk to get 2841 * the new data. We invalidate clean cached page from the region we're 2842 * about to write. We do this *before* the write so that we can return 2843 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2844 */ 2845 return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, 2846 end >> PAGE_SHIFT); 2847 } 2848 2849 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count) 2850 { 2851 struct address_space *mapping = iocb->ki_filp->f_mapping; 2852 2853 return filemap_invalidate_pages(mapping, iocb->ki_pos, 2854 iocb->ki_pos + count - 1, 2855 iocb->ki_flags & IOCB_NOWAIT); 2856 } 2857 EXPORT_SYMBOL_GPL(kiocb_invalidate_pages); 2858 2859 /** 2860 * generic_file_read_iter - generic filesystem read routine 2861 * @iocb: kernel I/O control block 2862 * @iter: destination for the data read 2863 * 2864 * This is the "read_iter()" routine for all filesystems 2865 * that can use the page cache directly. 2866 * 2867 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall 2868 * be returned when no data can be read without waiting for I/O requests 2869 * to complete; it doesn't prevent readahead. 2870 * 2871 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O 2872 * requests shall be made for the read or for readahead. When no data 2873 * can be read, -EAGAIN shall be returned. When readahead would be 2874 * triggered, a partial, possibly empty read shall be returned. 2875 * 2876 * Return: 2877 * * number of bytes copied, even for partial reads 2878 * * negative error code (or 0 if IOCB_NOIO) if nothing was read 2879 */ 2880 ssize_t 2881 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2882 { 2883 size_t count = iov_iter_count(iter); 2884 ssize_t retval = 0; 2885 2886 if (!count) 2887 return 0; /* skip atime */ 2888 2889 if (iocb->ki_flags & IOCB_DIRECT) { 2890 struct file *file = iocb->ki_filp; 2891 struct address_space *mapping = file->f_mapping; 2892 struct inode *inode = mapping->host; 2893 2894 retval = kiocb_write_and_wait(iocb, count); 2895 if (retval < 0) 2896 return retval; 2897 file_accessed(file); 2898 2899 retval = mapping->a_ops->direct_IO(iocb, iter); 2900 if (retval >= 0) { 2901 iocb->ki_pos += retval; 2902 count -= retval; 2903 } 2904 if (retval != -EIOCBQUEUED) 2905 iov_iter_revert(iter, count - iov_iter_count(iter)); 2906 2907 /* 2908 * Btrfs can have a short DIO read if we encounter 2909 * compressed extents, so if there was an error, or if 2910 * we've already read everything we wanted to, or if 2911 * there was a short read because we hit EOF, go ahead 2912 * and return. Otherwise fallthrough to buffered io for 2913 * the rest of the read. Buffered reads will not work for 2914 * DAX files, so don't bother trying. 2915 */ 2916 if (retval < 0 || !count || IS_DAX(inode)) 2917 return retval; 2918 if (iocb->ki_pos >= i_size_read(inode)) 2919 return retval; 2920 } 2921 2922 return filemap_read(iocb, iter, retval); 2923 } 2924 EXPORT_SYMBOL(generic_file_read_iter); 2925 2926 /* 2927 * Splice subpages from a folio into a pipe. 2928 */ 2929 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe, 2930 struct folio *folio, loff_t fpos, size_t size) 2931 { 2932 struct page *page; 2933 size_t spliced = 0, offset = offset_in_folio(folio, fpos); 2934 2935 page = folio_page(folio, offset / PAGE_SIZE); 2936 size = min(size, folio_size(folio) - offset); 2937 offset %= PAGE_SIZE; 2938 2939 while (spliced < size && !pipe_is_full(pipe)) { 2940 struct pipe_buffer *buf = pipe_head_buf(pipe); 2941 size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced); 2942 2943 *buf = (struct pipe_buffer) { 2944 .ops = &page_cache_pipe_buf_ops, 2945 .page = page, 2946 .offset = offset, 2947 .len = part, 2948 }; 2949 folio_get(folio); 2950 pipe->head++; 2951 page++; 2952 spliced += part; 2953 offset = 0; 2954 } 2955 2956 return spliced; 2957 } 2958 2959 /** 2960 * filemap_splice_read - Splice data from a file's pagecache into a pipe 2961 * @in: The file to read from 2962 * @ppos: Pointer to the file position to read from 2963 * @pipe: The pipe to splice into 2964 * @len: The amount to splice 2965 * @flags: The SPLICE_F_* flags 2966 * 2967 * This function gets folios from a file's pagecache and splices them into the 2968 * pipe. Readahead will be called as necessary to fill more folios. This may 2969 * be used for blockdevs also. 2970 * 2971 * Return: On success, the number of bytes read will be returned and *@ppos 2972 * will be updated if appropriate; 0 will be returned if there is no more data 2973 * to be read; -EAGAIN will be returned if the pipe had no space, and some 2974 * other negative error code will be returned on error. A short read may occur 2975 * if the pipe has insufficient space, we reach the end of the data or we hit a 2976 * hole. 2977 */ 2978 ssize_t filemap_splice_read(struct file *in, loff_t *ppos, 2979 struct pipe_inode_info *pipe, 2980 size_t len, unsigned int flags) 2981 { 2982 struct folio_batch fbatch; 2983 struct kiocb iocb; 2984 size_t total_spliced = 0, used, npages; 2985 loff_t isize, end_offset; 2986 bool writably_mapped; 2987 int i, error = 0; 2988 2989 if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes)) 2990 return 0; 2991 2992 init_sync_kiocb(&iocb, in); 2993 iocb.ki_pos = *ppos; 2994 2995 /* Work out how much data we can actually add into the pipe */ 2996 used = pipe_buf_usage(pipe); 2997 npages = max_t(ssize_t, pipe->max_usage - used, 0); 2998 len = min_t(size_t, len, npages * PAGE_SIZE); 2999 3000 folio_batch_init(&fbatch); 3001 3002 do { 3003 cond_resched(); 3004 3005 if (*ppos >= i_size_read(in->f_mapping->host)) 3006 break; 3007 3008 iocb.ki_pos = *ppos; 3009 error = filemap_get_pages(&iocb, len, &fbatch, true); 3010 if (error < 0) 3011 break; 3012 3013 /* 3014 * i_size must be checked after we know the pages are Uptodate. 3015 * 3016 * Checking i_size after the check allows us to calculate 3017 * the correct value for "nr", which means the zero-filled 3018 * part of the page is not copied back to userspace (unless 3019 * another truncate extends the file - this is desired though). 3020 */ 3021 isize = i_size_read(in->f_mapping->host); 3022 if (unlikely(*ppos >= isize)) 3023 break; 3024 end_offset = min_t(loff_t, isize, *ppos + len); 3025 3026 /* 3027 * Once we start copying data, we don't want to be touching any 3028 * cachelines that might be contended: 3029 */ 3030 writably_mapped = mapping_writably_mapped(in->f_mapping); 3031 3032 for (i = 0; i < folio_batch_count(&fbatch); i++) { 3033 struct folio *folio = fbatch.folios[i]; 3034 size_t n; 3035 3036 if (folio_pos(folio) >= end_offset) 3037 goto out; 3038 folio_mark_accessed(folio); 3039 3040 /* 3041 * If users can be writing to this folio using arbitrary 3042 * virtual addresses, take care of potential aliasing 3043 * before reading the folio on the kernel side. 3044 */ 3045 if (writably_mapped) 3046 flush_dcache_folio(folio); 3047 3048 n = min_t(loff_t, len, isize - *ppos); 3049 n = splice_folio_into_pipe(pipe, folio, *ppos, n); 3050 if (!n) 3051 goto out; 3052 len -= n; 3053 total_spliced += n; 3054 *ppos += n; 3055 in->f_ra.prev_pos = *ppos; 3056 if (pipe_is_full(pipe)) 3057 goto out; 3058 } 3059 3060 folio_batch_release(&fbatch); 3061 } while (len); 3062 3063 out: 3064 folio_batch_release(&fbatch); 3065 file_accessed(in); 3066 3067 return total_spliced ? total_spliced : error; 3068 } 3069 EXPORT_SYMBOL(filemap_splice_read); 3070 3071 static inline loff_t folio_seek_hole_data(struct xa_state *xas, 3072 struct address_space *mapping, struct folio *folio, 3073 loff_t start, loff_t end, bool seek_data) 3074 { 3075 const struct address_space_operations *ops = mapping->a_ops; 3076 size_t offset, bsz = i_blocksize(mapping->host); 3077 3078 if (xa_is_value(folio) || folio_test_uptodate(folio)) 3079 return seek_data ? start : end; 3080 if (!ops->is_partially_uptodate) 3081 return seek_data ? end : start; 3082 3083 xas_pause(xas); 3084 rcu_read_unlock(); 3085 folio_lock(folio); 3086 if (unlikely(folio->mapping != mapping)) 3087 goto unlock; 3088 3089 offset = offset_in_folio(folio, start) & ~(bsz - 1); 3090 3091 do { 3092 if (ops->is_partially_uptodate(folio, offset, bsz) == 3093 seek_data) 3094 break; 3095 start = (start + bsz) & ~((u64)bsz - 1); 3096 offset += bsz; 3097 } while (offset < folio_size(folio)); 3098 unlock: 3099 folio_unlock(folio); 3100 rcu_read_lock(); 3101 return start; 3102 } 3103 3104 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio) 3105 { 3106 if (xa_is_value(folio)) 3107 return PAGE_SIZE << xas_get_order(xas); 3108 return folio_size(folio); 3109 } 3110 3111 /** 3112 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache. 3113 * @mapping: Address space to search. 3114 * @start: First byte to consider. 3115 * @end: Limit of search (exclusive). 3116 * @whence: Either SEEK_HOLE or SEEK_DATA. 3117 * 3118 * If the page cache knows which blocks contain holes and which blocks 3119 * contain data, your filesystem can use this function to implement 3120 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are 3121 * entirely memory-based such as tmpfs, and filesystems which support 3122 * unwritten extents. 3123 * 3124 * Return: The requested offset on success, or -ENXIO if @whence specifies 3125 * SEEK_DATA and there is no data after @start. There is an implicit hole 3126 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start 3127 * and @end contain data. 3128 */ 3129 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start, 3130 loff_t end, int whence) 3131 { 3132 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT); 3133 pgoff_t max = (end - 1) >> PAGE_SHIFT; 3134 bool seek_data = (whence == SEEK_DATA); 3135 struct folio *folio; 3136 3137 if (end <= start) 3138 return -ENXIO; 3139 3140 rcu_read_lock(); 3141 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) { 3142 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT; 3143 size_t seek_size; 3144 3145 if (start < pos) { 3146 if (!seek_data) 3147 goto unlock; 3148 start = pos; 3149 } 3150 3151 seek_size = seek_folio_size(&xas, folio); 3152 pos = round_up((u64)pos + 1, seek_size); 3153 start = folio_seek_hole_data(&xas, mapping, folio, start, pos, 3154 seek_data); 3155 if (start < pos) 3156 goto unlock; 3157 if (start >= end) 3158 break; 3159 if (seek_size > PAGE_SIZE) 3160 xas_set(&xas, pos >> PAGE_SHIFT); 3161 if (!xa_is_value(folio)) 3162 folio_put(folio); 3163 } 3164 if (seek_data) 3165 start = -ENXIO; 3166 unlock: 3167 rcu_read_unlock(); 3168 if (folio && !xa_is_value(folio)) 3169 folio_put(folio); 3170 if (start > end) 3171 return end; 3172 return start; 3173 } 3174 3175 #ifdef CONFIG_MMU 3176 #define MMAP_LOTSAMISS (100) 3177 /* 3178 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock 3179 * @vmf - the vm_fault for this fault. 3180 * @folio - the folio to lock. 3181 * @fpin - the pointer to the file we may pin (or is already pinned). 3182 * 3183 * This works similar to lock_folio_or_retry in that it can drop the 3184 * mmap_lock. It differs in that it actually returns the folio locked 3185 * if it returns 1 and 0 if it couldn't lock the folio. If we did have 3186 * to drop the mmap_lock then fpin will point to the pinned file and 3187 * needs to be fput()'ed at a later point. 3188 */ 3189 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio, 3190 struct file **fpin) 3191 { 3192 if (folio_trylock(folio)) 3193 return 1; 3194 3195 /* 3196 * NOTE! This will make us return with VM_FAULT_RETRY, but with 3197 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT 3198 * is supposed to work. We have way too many special cases.. 3199 */ 3200 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 3201 return 0; 3202 3203 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 3204 if (vmf->flags & FAULT_FLAG_KILLABLE) { 3205 if (__folio_lock_killable(folio)) { 3206 /* 3207 * We didn't have the right flags to drop the 3208 * fault lock, but all fault_handlers only check 3209 * for fatal signals if we return VM_FAULT_RETRY, 3210 * so we need to drop the fault lock here and 3211 * return 0 if we don't have a fpin. 3212 */ 3213 if (*fpin == NULL) 3214 release_fault_lock(vmf); 3215 return 0; 3216 } 3217 } else 3218 __folio_lock(folio); 3219 3220 return 1; 3221 } 3222 3223 /* 3224 * Synchronous readahead happens when we don't even find a page in the page 3225 * cache at all. We don't want to perform IO under the mmap sem, so if we have 3226 * to drop the mmap sem we return the file that was pinned in order for us to do 3227 * that. If we didn't pin a file then we return NULL. The file that is 3228 * returned needs to be fput()'ed when we're done with it. 3229 */ 3230 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 3231 { 3232 struct file *file = vmf->vma->vm_file; 3233 struct file_ra_state *ra = &file->f_ra; 3234 struct address_space *mapping = file->f_mapping; 3235 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff); 3236 struct file *fpin = NULL; 3237 vm_flags_t vm_flags = vmf->vma->vm_flags; 3238 unsigned short mmap_miss; 3239 3240 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3241 /* Use the readahead code, even if readahead is disabled */ 3242 if ((vm_flags & VM_HUGEPAGE) && HPAGE_PMD_ORDER <= MAX_PAGECACHE_ORDER) { 3243 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3244 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1); 3245 ra->size = HPAGE_PMD_NR; 3246 /* 3247 * Fetch two PMD folios, so we get the chance to actually 3248 * readahead, unless we've been told not to. 3249 */ 3250 if (!(vm_flags & VM_RAND_READ)) 3251 ra->size *= 2; 3252 ra->async_size = HPAGE_PMD_NR; 3253 ra->order = HPAGE_PMD_ORDER; 3254 page_cache_ra_order(&ractl, ra); 3255 return fpin; 3256 } 3257 #endif 3258 3259 /* 3260 * If we don't want any read-ahead, don't bother. VM_EXEC case below is 3261 * already intended for random access. 3262 */ 3263 if ((vm_flags & (VM_RAND_READ | VM_EXEC)) == VM_RAND_READ) 3264 return fpin; 3265 if (!ra->ra_pages) 3266 return fpin; 3267 3268 if (vm_flags & VM_SEQ_READ) { 3269 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3270 page_cache_sync_ra(&ractl, ra->ra_pages); 3271 return fpin; 3272 } 3273 3274 /* Avoid banging the cache line if not needed */ 3275 mmap_miss = READ_ONCE(ra->mmap_miss); 3276 if (mmap_miss < MMAP_LOTSAMISS * 10) 3277 WRITE_ONCE(ra->mmap_miss, ++mmap_miss); 3278 3279 /* 3280 * Do we miss much more than hit in this file? If so, 3281 * stop bothering with read-ahead. It will only hurt. 3282 */ 3283 if (mmap_miss > MMAP_LOTSAMISS) 3284 return fpin; 3285 3286 if (vm_flags & VM_EXEC) { 3287 /* 3288 * Allow arch to request a preferred minimum folio order for 3289 * executable memory. This can often be beneficial to 3290 * performance if (e.g.) arm64 can contpte-map the folio. 3291 * Executable memory rarely benefits from readahead, due to its 3292 * random access nature, so set async_size to 0. 3293 * 3294 * Limit to the boundaries of the VMA to avoid reading in any 3295 * pad that might exist between sections, which would be a waste 3296 * of memory. 3297 */ 3298 struct vm_area_struct *vma = vmf->vma; 3299 unsigned long start = vma->vm_pgoff; 3300 unsigned long end = start + vma_pages(vma); 3301 unsigned long ra_end; 3302 3303 ra->order = exec_folio_order(); 3304 ra->start = round_down(vmf->pgoff, 1UL << ra->order); 3305 ra->start = max(ra->start, start); 3306 ra_end = round_up(ra->start + ra->ra_pages, 1UL << ra->order); 3307 ra_end = min(ra_end, end); 3308 ra->size = ra_end - ra->start; 3309 ra->async_size = 0; 3310 } else { 3311 /* 3312 * mmap read-around 3313 */ 3314 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2); 3315 ra->size = ra->ra_pages; 3316 ra->async_size = ra->ra_pages / 4; 3317 ra->order = 0; 3318 } 3319 3320 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3321 ractl._index = ra->start; 3322 page_cache_ra_order(&ractl, ra); 3323 return fpin; 3324 } 3325 3326 /* 3327 * Asynchronous readahead happens when we find the page and PG_readahead, 3328 * so we want to possibly extend the readahead further. We return the file that 3329 * was pinned if we have to drop the mmap_lock in order to do IO. 3330 */ 3331 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 3332 struct folio *folio) 3333 { 3334 struct file *file = vmf->vma->vm_file; 3335 struct file_ra_state *ra = &file->f_ra; 3336 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff); 3337 struct file *fpin = NULL; 3338 unsigned short mmap_miss; 3339 3340 /* If we don't want any read-ahead, don't bother */ 3341 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages) 3342 return fpin; 3343 3344 /* 3345 * If the folio is locked, we're likely racing against another fault. 3346 * Don't touch the mmap_miss counter to avoid decreasing it multiple 3347 * times for a single folio and break the balance with mmap_miss 3348 * increase in do_sync_mmap_readahead(). 3349 */ 3350 if (likely(!folio_test_locked(folio))) { 3351 mmap_miss = READ_ONCE(ra->mmap_miss); 3352 if (mmap_miss) 3353 WRITE_ONCE(ra->mmap_miss, --mmap_miss); 3354 } 3355 3356 if (folio_test_readahead(folio)) { 3357 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3358 page_cache_async_ra(&ractl, folio, ra->ra_pages); 3359 } 3360 return fpin; 3361 } 3362 3363 static vm_fault_t filemap_fault_recheck_pte_none(struct vm_fault *vmf) 3364 { 3365 struct vm_area_struct *vma = vmf->vma; 3366 vm_fault_t ret = 0; 3367 pte_t *ptep; 3368 3369 /* 3370 * We might have COW'ed a pagecache folio and might now have an mlocked 3371 * anon folio mapped. The original pagecache folio is not mlocked and 3372 * might have been evicted. During a read+clear/modify/write update of 3373 * the PTE, such as done in do_numa_page()/change_pte_range(), we 3374 * temporarily clear the PTE under PT lock and might detect it here as 3375 * "none" when not holding the PT lock. 3376 * 3377 * Not rechecking the PTE under PT lock could result in an unexpected 3378 * major fault in an mlock'ed region. Recheck only for this special 3379 * scenario while holding the PT lock, to not degrade non-mlocked 3380 * scenarios. Recheck the PTE without PT lock firstly, thereby reducing 3381 * the number of times we hold PT lock. 3382 */ 3383 if (!(vma->vm_flags & VM_LOCKED)) 3384 return 0; 3385 3386 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 3387 return 0; 3388 3389 ptep = pte_offset_map_ro_nolock(vma->vm_mm, vmf->pmd, vmf->address, 3390 &vmf->ptl); 3391 if (unlikely(!ptep)) 3392 return VM_FAULT_NOPAGE; 3393 3394 if (unlikely(!pte_none(ptep_get_lockless(ptep)))) { 3395 ret = VM_FAULT_NOPAGE; 3396 } else { 3397 spin_lock(vmf->ptl); 3398 if (unlikely(!pte_none(ptep_get(ptep)))) 3399 ret = VM_FAULT_NOPAGE; 3400 spin_unlock(vmf->ptl); 3401 } 3402 pte_unmap(ptep); 3403 return ret; 3404 } 3405 3406 /** 3407 * filemap_fault - read in file data for page fault handling 3408 * @vmf: struct vm_fault containing details of the fault 3409 * 3410 * filemap_fault() is invoked via the vma operations vector for a 3411 * mapped memory region to read in file data during a page fault. 3412 * 3413 * The goto's are kind of ugly, but this streamlines the normal case of having 3414 * it in the page cache, and handles the special cases reasonably without 3415 * having a lot of duplicated code. 3416 * 3417 * vma->vm_mm->mmap_lock must be held on entry. 3418 * 3419 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock 3420 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap(). 3421 * 3422 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock 3423 * has not been released. 3424 * 3425 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 3426 * 3427 * Return: bitwise-OR of %VM_FAULT_ codes. 3428 */ 3429 vm_fault_t filemap_fault(struct vm_fault *vmf) 3430 { 3431 int error; 3432 struct file *file = vmf->vma->vm_file; 3433 struct file *fpin = NULL; 3434 struct address_space *mapping = file->f_mapping; 3435 struct inode *inode = mapping->host; 3436 pgoff_t max_idx, index = vmf->pgoff; 3437 struct folio *folio; 3438 vm_fault_t ret = 0; 3439 bool mapping_locked = false; 3440 3441 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3442 if (unlikely(index >= max_idx)) 3443 return VM_FAULT_SIGBUS; 3444 3445 trace_mm_filemap_fault(mapping, index); 3446 3447 /* 3448 * Do we have something in the page cache already? 3449 */ 3450 folio = filemap_get_folio(mapping, index); 3451 if (likely(!IS_ERR(folio))) { 3452 /* 3453 * We found the page, so try async readahead before waiting for 3454 * the lock. 3455 */ 3456 if (!(vmf->flags & FAULT_FLAG_TRIED)) 3457 fpin = do_async_mmap_readahead(vmf, folio); 3458 if (unlikely(!folio_test_uptodate(folio))) { 3459 filemap_invalidate_lock_shared(mapping); 3460 mapping_locked = true; 3461 } 3462 } else { 3463 ret = filemap_fault_recheck_pte_none(vmf); 3464 if (unlikely(ret)) 3465 return ret; 3466 3467 /* No page in the page cache at all */ 3468 count_vm_event(PGMAJFAULT); 3469 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 3470 ret = VM_FAULT_MAJOR; 3471 fpin = do_sync_mmap_readahead(vmf); 3472 retry_find: 3473 /* 3474 * See comment in filemap_create_folio() why we need 3475 * invalidate_lock 3476 */ 3477 if (!mapping_locked) { 3478 filemap_invalidate_lock_shared(mapping); 3479 mapping_locked = true; 3480 } 3481 folio = __filemap_get_folio(mapping, index, 3482 FGP_CREAT|FGP_FOR_MMAP, 3483 vmf->gfp_mask); 3484 if (IS_ERR(folio)) { 3485 if (fpin) 3486 goto out_retry; 3487 filemap_invalidate_unlock_shared(mapping); 3488 return VM_FAULT_OOM; 3489 } 3490 } 3491 3492 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin)) 3493 goto out_retry; 3494 3495 /* Did it get truncated? */ 3496 if (unlikely(folio->mapping != mapping)) { 3497 folio_unlock(folio); 3498 folio_put(folio); 3499 goto retry_find; 3500 } 3501 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 3502 3503 /* 3504 * We have a locked folio in the page cache, now we need to check 3505 * that it's up-to-date. If not, it is going to be due to an error, 3506 * or because readahead was otherwise unable to retrieve it. 3507 */ 3508 if (unlikely(!folio_test_uptodate(folio))) { 3509 /* 3510 * If the invalidate lock is not held, the folio was in cache 3511 * and uptodate and now it is not. Strange but possible since we 3512 * didn't hold the page lock all the time. Let's drop 3513 * everything, get the invalidate lock and try again. 3514 */ 3515 if (!mapping_locked) { 3516 folio_unlock(folio); 3517 folio_put(folio); 3518 goto retry_find; 3519 } 3520 3521 /* 3522 * OK, the folio is really not uptodate. This can be because the 3523 * VMA has the VM_RAND_READ flag set, or because an error 3524 * arose. Let's read it in directly. 3525 */ 3526 goto page_not_uptodate; 3527 } 3528 3529 /* 3530 * We've made it this far and we had to drop our mmap_lock, now is the 3531 * time to return to the upper layer and have it re-find the vma and 3532 * redo the fault. 3533 */ 3534 if (fpin) { 3535 folio_unlock(folio); 3536 goto out_retry; 3537 } 3538 if (mapping_locked) 3539 filemap_invalidate_unlock_shared(mapping); 3540 3541 /* 3542 * Found the page and have a reference on it. 3543 * We must recheck i_size under page lock. 3544 */ 3545 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3546 if (unlikely(index >= max_idx)) { 3547 folio_unlock(folio); 3548 folio_put(folio); 3549 return VM_FAULT_SIGBUS; 3550 } 3551 3552 vmf->page = folio_file_page(folio, index); 3553 return ret | VM_FAULT_LOCKED; 3554 3555 page_not_uptodate: 3556 /* 3557 * Umm, take care of errors if the page isn't up-to-date. 3558 * Try to re-read it _once_. We do this synchronously, 3559 * because there really aren't any performance issues here 3560 * and we need to check for errors. 3561 */ 3562 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3563 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio); 3564 if (fpin) 3565 goto out_retry; 3566 folio_put(folio); 3567 3568 if (!error || error == AOP_TRUNCATED_PAGE) 3569 goto retry_find; 3570 filemap_invalidate_unlock_shared(mapping); 3571 3572 return VM_FAULT_SIGBUS; 3573 3574 out_retry: 3575 /* 3576 * We dropped the mmap_lock, we need to return to the fault handler to 3577 * re-find the vma and come back and find our hopefully still populated 3578 * page. 3579 */ 3580 if (!IS_ERR(folio)) 3581 folio_put(folio); 3582 if (mapping_locked) 3583 filemap_invalidate_unlock_shared(mapping); 3584 if (fpin) 3585 fput(fpin); 3586 return ret | VM_FAULT_RETRY; 3587 } 3588 EXPORT_SYMBOL(filemap_fault); 3589 3590 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio, 3591 pgoff_t start) 3592 { 3593 struct mm_struct *mm = vmf->vma->vm_mm; 3594 3595 /* Huge page is mapped? No need to proceed. */ 3596 if (pmd_trans_huge(*vmf->pmd)) { 3597 folio_unlock(folio); 3598 folio_put(folio); 3599 return true; 3600 } 3601 3602 if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) { 3603 struct page *page = folio_file_page(folio, start); 3604 vm_fault_t ret = do_set_pmd(vmf, folio, page); 3605 if (!ret) { 3606 /* The page is mapped successfully, reference consumed. */ 3607 folio_unlock(folio); 3608 return true; 3609 } 3610 } 3611 3612 if (pmd_none(*vmf->pmd) && vmf->prealloc_pte) 3613 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte); 3614 3615 return false; 3616 } 3617 3618 static struct folio *next_uptodate_folio(struct xa_state *xas, 3619 struct address_space *mapping, pgoff_t end_pgoff) 3620 { 3621 struct folio *folio = xas_next_entry(xas, end_pgoff); 3622 unsigned long max_idx; 3623 3624 do { 3625 if (!folio) 3626 return NULL; 3627 if (xas_retry(xas, folio)) 3628 continue; 3629 if (xa_is_value(folio)) 3630 continue; 3631 if (!folio_try_get(folio)) 3632 continue; 3633 if (folio_test_locked(folio)) 3634 goto skip; 3635 /* Has the page moved or been split? */ 3636 if (unlikely(folio != xas_reload(xas))) 3637 goto skip; 3638 if (!folio_test_uptodate(folio) || folio_test_readahead(folio)) 3639 goto skip; 3640 if (!folio_trylock(folio)) 3641 goto skip; 3642 if (folio->mapping != mapping) 3643 goto unlock; 3644 if (!folio_test_uptodate(folio)) 3645 goto unlock; 3646 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3647 if (xas->xa_index >= max_idx) 3648 goto unlock; 3649 return folio; 3650 unlock: 3651 folio_unlock(folio); 3652 skip: 3653 folio_put(folio); 3654 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL); 3655 3656 return NULL; 3657 } 3658 3659 /* 3660 * Map page range [start_page, start_page + nr_pages) of folio. 3661 * start_page is gotten from start by folio_page(folio, start) 3662 */ 3663 static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf, 3664 struct folio *folio, unsigned long start, 3665 unsigned long addr, unsigned int nr_pages, 3666 unsigned long *rss, unsigned short *mmap_miss) 3667 { 3668 vm_fault_t ret = 0; 3669 struct page *page = folio_page(folio, start); 3670 unsigned int count = 0; 3671 pte_t *old_ptep = vmf->pte; 3672 3673 do { 3674 if (PageHWPoison(page + count)) 3675 goto skip; 3676 3677 /* 3678 * If there are too many folios that are recently evicted 3679 * in a file, they will probably continue to be evicted. 3680 * In such situation, read-ahead is only a waste of IO. 3681 * Don't decrease mmap_miss in this scenario to make sure 3682 * we can stop read-ahead. 3683 */ 3684 if (!folio_test_workingset(folio)) 3685 (*mmap_miss)++; 3686 3687 /* 3688 * NOTE: If there're PTE markers, we'll leave them to be 3689 * handled in the specific fault path, and it'll prohibit the 3690 * fault-around logic. 3691 */ 3692 if (!pte_none(ptep_get(&vmf->pte[count]))) 3693 goto skip; 3694 3695 count++; 3696 continue; 3697 skip: 3698 if (count) { 3699 set_pte_range(vmf, folio, page, count, addr); 3700 *rss += count; 3701 folio_ref_add(folio, count); 3702 if (in_range(vmf->address, addr, count * PAGE_SIZE)) 3703 ret = VM_FAULT_NOPAGE; 3704 } 3705 3706 count++; 3707 page += count; 3708 vmf->pte += count; 3709 addr += count * PAGE_SIZE; 3710 count = 0; 3711 } while (--nr_pages > 0); 3712 3713 if (count) { 3714 set_pte_range(vmf, folio, page, count, addr); 3715 *rss += count; 3716 folio_ref_add(folio, count); 3717 if (in_range(vmf->address, addr, count * PAGE_SIZE)) 3718 ret = VM_FAULT_NOPAGE; 3719 } 3720 3721 vmf->pte = old_ptep; 3722 3723 return ret; 3724 } 3725 3726 static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf, 3727 struct folio *folio, unsigned long addr, 3728 unsigned long *rss, unsigned short *mmap_miss) 3729 { 3730 vm_fault_t ret = 0; 3731 struct page *page = &folio->page; 3732 3733 if (PageHWPoison(page)) 3734 return ret; 3735 3736 /* See comment of filemap_map_folio_range() */ 3737 if (!folio_test_workingset(folio)) 3738 (*mmap_miss)++; 3739 3740 /* 3741 * NOTE: If there're PTE markers, we'll leave them to be 3742 * handled in the specific fault path, and it'll prohibit 3743 * the fault-around logic. 3744 */ 3745 if (!pte_none(ptep_get(vmf->pte))) 3746 return ret; 3747 3748 if (vmf->address == addr) 3749 ret = VM_FAULT_NOPAGE; 3750 3751 set_pte_range(vmf, folio, page, 1, addr); 3752 (*rss)++; 3753 folio_ref_inc(folio); 3754 3755 return ret; 3756 } 3757 3758 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3759 pgoff_t start_pgoff, pgoff_t end_pgoff) 3760 { 3761 struct vm_area_struct *vma = vmf->vma; 3762 struct file *file = vma->vm_file; 3763 struct address_space *mapping = file->f_mapping; 3764 pgoff_t file_end, last_pgoff = start_pgoff; 3765 unsigned long addr; 3766 XA_STATE(xas, &mapping->i_pages, start_pgoff); 3767 struct folio *folio; 3768 vm_fault_t ret = 0; 3769 unsigned long rss = 0; 3770 unsigned int nr_pages = 0, folio_type; 3771 unsigned short mmap_miss = 0, mmap_miss_saved; 3772 3773 rcu_read_lock(); 3774 folio = next_uptodate_folio(&xas, mapping, end_pgoff); 3775 if (!folio) 3776 goto out; 3777 3778 if (filemap_map_pmd(vmf, folio, start_pgoff)) { 3779 ret = VM_FAULT_NOPAGE; 3780 goto out; 3781 } 3782 3783 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT); 3784 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 3785 if (!vmf->pte) { 3786 folio_unlock(folio); 3787 folio_put(folio); 3788 goto out; 3789 } 3790 3791 file_end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE) - 1; 3792 if (end_pgoff > file_end) 3793 end_pgoff = file_end; 3794 3795 folio_type = mm_counter_file(folio); 3796 do { 3797 unsigned long end; 3798 3799 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 3800 vmf->pte += xas.xa_index - last_pgoff; 3801 last_pgoff = xas.xa_index; 3802 end = folio_next_index(folio) - 1; 3803 nr_pages = min(end, end_pgoff) - xas.xa_index + 1; 3804 3805 if (!folio_test_large(folio)) 3806 ret |= filemap_map_order0_folio(vmf, 3807 folio, addr, &rss, &mmap_miss); 3808 else 3809 ret |= filemap_map_folio_range(vmf, folio, 3810 xas.xa_index - folio->index, addr, 3811 nr_pages, &rss, &mmap_miss); 3812 3813 folio_unlock(folio); 3814 folio_put(folio); 3815 } while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL); 3816 add_mm_counter(vma->vm_mm, folio_type, rss); 3817 pte_unmap_unlock(vmf->pte, vmf->ptl); 3818 trace_mm_filemap_map_pages(mapping, start_pgoff, end_pgoff); 3819 out: 3820 rcu_read_unlock(); 3821 3822 mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss); 3823 if (mmap_miss >= mmap_miss_saved) 3824 WRITE_ONCE(file->f_ra.mmap_miss, 0); 3825 else 3826 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss); 3827 3828 return ret; 3829 } 3830 EXPORT_SYMBOL(filemap_map_pages); 3831 3832 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3833 { 3834 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 3835 struct folio *folio = page_folio(vmf->page); 3836 vm_fault_t ret = VM_FAULT_LOCKED; 3837 3838 sb_start_pagefault(mapping->host->i_sb); 3839 file_update_time(vmf->vma->vm_file); 3840 folio_lock(folio); 3841 if (folio->mapping != mapping) { 3842 folio_unlock(folio); 3843 ret = VM_FAULT_NOPAGE; 3844 goto out; 3845 } 3846 /* 3847 * We mark the folio dirty already here so that when freeze is in 3848 * progress, we are guaranteed that writeback during freezing will 3849 * see the dirty folio and writeprotect it again. 3850 */ 3851 folio_mark_dirty(folio); 3852 folio_wait_stable(folio); 3853 out: 3854 sb_end_pagefault(mapping->host->i_sb); 3855 return ret; 3856 } 3857 3858 const struct vm_operations_struct generic_file_vm_ops = { 3859 .fault = filemap_fault, 3860 .map_pages = filemap_map_pages, 3861 .page_mkwrite = filemap_page_mkwrite, 3862 }; 3863 3864 /* This is used for a general mmap of a disk file */ 3865 3866 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3867 { 3868 struct address_space *mapping = file->f_mapping; 3869 3870 if (!mapping->a_ops->read_folio) 3871 return -ENOEXEC; 3872 file_accessed(file); 3873 vma->vm_ops = &generic_file_vm_ops; 3874 return 0; 3875 } 3876 3877 int generic_file_mmap_prepare(struct vm_area_desc *desc) 3878 { 3879 struct file *file = desc->file; 3880 struct address_space *mapping = file->f_mapping; 3881 3882 if (!mapping->a_ops->read_folio) 3883 return -ENOEXEC; 3884 file_accessed(file); 3885 desc->vm_ops = &generic_file_vm_ops; 3886 return 0; 3887 } 3888 3889 /* 3890 * This is for filesystems which do not implement ->writepage. 3891 */ 3892 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3893 { 3894 if (vma_is_shared_maywrite(vma)) 3895 return -EINVAL; 3896 return generic_file_mmap(file, vma); 3897 } 3898 3899 int generic_file_readonly_mmap_prepare(struct vm_area_desc *desc) 3900 { 3901 if (is_shared_maywrite(desc->vm_flags)) 3902 return -EINVAL; 3903 return generic_file_mmap_prepare(desc); 3904 } 3905 #else 3906 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3907 { 3908 return VM_FAULT_SIGBUS; 3909 } 3910 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3911 { 3912 return -ENOSYS; 3913 } 3914 int generic_file_mmap_prepare(struct vm_area_desc *desc) 3915 { 3916 return -ENOSYS; 3917 } 3918 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3919 { 3920 return -ENOSYS; 3921 } 3922 int generic_file_readonly_mmap_prepare(struct vm_area_desc *desc) 3923 { 3924 return -ENOSYS; 3925 } 3926 #endif /* CONFIG_MMU */ 3927 3928 EXPORT_SYMBOL(filemap_page_mkwrite); 3929 EXPORT_SYMBOL(generic_file_mmap); 3930 EXPORT_SYMBOL(generic_file_mmap_prepare); 3931 EXPORT_SYMBOL(generic_file_readonly_mmap); 3932 EXPORT_SYMBOL(generic_file_readonly_mmap_prepare); 3933 3934 static struct folio *do_read_cache_folio(struct address_space *mapping, 3935 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp) 3936 { 3937 struct folio *folio; 3938 int err; 3939 3940 if (!filler) 3941 filler = mapping->a_ops->read_folio; 3942 repeat: 3943 folio = filemap_get_folio(mapping, index); 3944 if (IS_ERR(folio)) { 3945 folio = filemap_alloc_folio(gfp, 3946 mapping_min_folio_order(mapping)); 3947 if (!folio) 3948 return ERR_PTR(-ENOMEM); 3949 index = mapping_align_index(mapping, index); 3950 err = filemap_add_folio(mapping, folio, index, gfp); 3951 if (unlikely(err)) { 3952 folio_put(folio); 3953 if (err == -EEXIST) 3954 goto repeat; 3955 /* Presumably ENOMEM for xarray node */ 3956 return ERR_PTR(err); 3957 } 3958 3959 goto filler; 3960 } 3961 if (folio_test_uptodate(folio)) 3962 goto out; 3963 3964 if (!folio_trylock(folio)) { 3965 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE); 3966 goto repeat; 3967 } 3968 3969 /* Folio was truncated from mapping */ 3970 if (!folio->mapping) { 3971 folio_unlock(folio); 3972 folio_put(folio); 3973 goto repeat; 3974 } 3975 3976 /* Someone else locked and filled the page in a very small window */ 3977 if (folio_test_uptodate(folio)) { 3978 folio_unlock(folio); 3979 goto out; 3980 } 3981 3982 filler: 3983 err = filemap_read_folio(file, filler, folio); 3984 if (err) { 3985 folio_put(folio); 3986 if (err == AOP_TRUNCATED_PAGE) 3987 goto repeat; 3988 return ERR_PTR(err); 3989 } 3990 3991 out: 3992 folio_mark_accessed(folio); 3993 return folio; 3994 } 3995 3996 /** 3997 * read_cache_folio - Read into page cache, fill it if needed. 3998 * @mapping: The address_space to read from. 3999 * @index: The index to read. 4000 * @filler: Function to perform the read, or NULL to use aops->read_folio(). 4001 * @file: Passed to filler function, may be NULL if not required. 4002 * 4003 * Read one page into the page cache. If it succeeds, the folio returned 4004 * will contain @index, but it may not be the first page of the folio. 4005 * 4006 * If the filler function returns an error, it will be returned to the 4007 * caller. 4008 * 4009 * Context: May sleep. Expects mapping->invalidate_lock to be held. 4010 * Return: An uptodate folio on success, ERR_PTR() on failure. 4011 */ 4012 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index, 4013 filler_t filler, struct file *file) 4014 { 4015 return do_read_cache_folio(mapping, index, filler, file, 4016 mapping_gfp_mask(mapping)); 4017 } 4018 EXPORT_SYMBOL(read_cache_folio); 4019 4020 /** 4021 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags. 4022 * @mapping: The address_space for the folio. 4023 * @index: The index that the allocated folio will contain. 4024 * @gfp: The page allocator flags to use if allocating. 4025 * 4026 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with 4027 * any new memory allocations done using the specified allocation flags. 4028 * 4029 * The most likely error from this function is EIO, but ENOMEM is 4030 * possible and so is EINTR. If ->read_folio returns another error, 4031 * that will be returned to the caller. 4032 * 4033 * The function expects mapping->invalidate_lock to be already held. 4034 * 4035 * Return: Uptodate folio on success, ERR_PTR() on failure. 4036 */ 4037 struct folio *mapping_read_folio_gfp(struct address_space *mapping, 4038 pgoff_t index, gfp_t gfp) 4039 { 4040 return do_read_cache_folio(mapping, index, NULL, NULL, gfp); 4041 } 4042 EXPORT_SYMBOL(mapping_read_folio_gfp); 4043 4044 static struct page *do_read_cache_page(struct address_space *mapping, 4045 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp) 4046 { 4047 struct folio *folio; 4048 4049 folio = do_read_cache_folio(mapping, index, filler, file, gfp); 4050 if (IS_ERR(folio)) 4051 return &folio->page; 4052 return folio_file_page(folio, index); 4053 } 4054 4055 struct page *read_cache_page(struct address_space *mapping, 4056 pgoff_t index, filler_t *filler, struct file *file) 4057 { 4058 return do_read_cache_page(mapping, index, filler, file, 4059 mapping_gfp_mask(mapping)); 4060 } 4061 EXPORT_SYMBOL(read_cache_page); 4062 4063 /** 4064 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 4065 * @mapping: the page's address_space 4066 * @index: the page index 4067 * @gfp: the page allocator flags to use if allocating 4068 * 4069 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 4070 * any new page allocations done using the specified allocation flags. 4071 * 4072 * If the page does not get brought uptodate, return -EIO. 4073 * 4074 * The function expects mapping->invalidate_lock to be already held. 4075 * 4076 * Return: up to date page on success, ERR_PTR() on failure. 4077 */ 4078 struct page *read_cache_page_gfp(struct address_space *mapping, 4079 pgoff_t index, 4080 gfp_t gfp) 4081 { 4082 return do_read_cache_page(mapping, index, NULL, NULL, gfp); 4083 } 4084 EXPORT_SYMBOL(read_cache_page_gfp); 4085 4086 /* 4087 * Warn about a page cache invalidation failure during a direct I/O write. 4088 */ 4089 static void dio_warn_stale_pagecache(struct file *filp) 4090 { 4091 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 4092 char pathname[128]; 4093 char *path; 4094 4095 errseq_set(&filp->f_mapping->wb_err, -EIO); 4096 if (__ratelimit(&_rs)) { 4097 path = file_path(filp, pathname, sizeof(pathname)); 4098 if (IS_ERR(path)) 4099 path = "(unknown)"; 4100 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); 4101 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, 4102 current->comm); 4103 } 4104 } 4105 4106 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count) 4107 { 4108 struct address_space *mapping = iocb->ki_filp->f_mapping; 4109 4110 if (mapping->nrpages && 4111 invalidate_inode_pages2_range(mapping, 4112 iocb->ki_pos >> PAGE_SHIFT, 4113 (iocb->ki_pos + count - 1) >> PAGE_SHIFT)) 4114 dio_warn_stale_pagecache(iocb->ki_filp); 4115 } 4116 4117 ssize_t 4118 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 4119 { 4120 struct address_space *mapping = iocb->ki_filp->f_mapping; 4121 size_t write_len = iov_iter_count(from); 4122 ssize_t written; 4123 4124 /* 4125 * If a page can not be invalidated, return 0 to fall back 4126 * to buffered write. 4127 */ 4128 written = kiocb_invalidate_pages(iocb, write_len); 4129 if (written) { 4130 if (written == -EBUSY) 4131 return 0; 4132 return written; 4133 } 4134 4135 written = mapping->a_ops->direct_IO(iocb, from); 4136 4137 /* 4138 * Finally, try again to invalidate clean pages which might have been 4139 * cached by non-direct readahead, or faulted in by get_user_pages() 4140 * if the source of the write was an mmap'ed region of the file 4141 * we're writing. Either one is a pretty crazy thing to do, 4142 * so we don't support it 100%. If this invalidation 4143 * fails, tough, the write still worked... 4144 * 4145 * Most of the time we do not need this since dio_complete() will do 4146 * the invalidation for us. However there are some file systems that 4147 * do not end up with dio_complete() being called, so let's not break 4148 * them by removing it completely. 4149 * 4150 * Noticeable example is a blkdev_direct_IO(). 4151 * 4152 * Skip invalidation for async writes or if mapping has no pages. 4153 */ 4154 if (written > 0) { 4155 struct inode *inode = mapping->host; 4156 loff_t pos = iocb->ki_pos; 4157 4158 kiocb_invalidate_post_direct_write(iocb, written); 4159 pos += written; 4160 write_len -= written; 4161 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 4162 i_size_write(inode, pos); 4163 mark_inode_dirty(inode); 4164 } 4165 iocb->ki_pos = pos; 4166 } 4167 if (written != -EIOCBQUEUED) 4168 iov_iter_revert(from, write_len - iov_iter_count(from)); 4169 return written; 4170 } 4171 EXPORT_SYMBOL(generic_file_direct_write); 4172 4173 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i) 4174 { 4175 struct file *file = iocb->ki_filp; 4176 loff_t pos = iocb->ki_pos; 4177 struct address_space *mapping = file->f_mapping; 4178 const struct address_space_operations *a_ops = mapping->a_ops; 4179 size_t chunk = mapping_max_folio_size(mapping); 4180 long status = 0; 4181 ssize_t written = 0; 4182 4183 do { 4184 struct folio *folio; 4185 size_t offset; /* Offset into folio */ 4186 size_t bytes; /* Bytes to write to folio */ 4187 size_t copied; /* Bytes copied from user */ 4188 void *fsdata = NULL; 4189 4190 bytes = iov_iter_count(i); 4191 retry: 4192 offset = pos & (chunk - 1); 4193 bytes = min(chunk - offset, bytes); 4194 balance_dirty_pages_ratelimited(mapping); 4195 4196 if (fatal_signal_pending(current)) { 4197 status = -EINTR; 4198 break; 4199 } 4200 4201 status = a_ops->write_begin(iocb, mapping, pos, bytes, 4202 &folio, &fsdata); 4203 if (unlikely(status < 0)) 4204 break; 4205 4206 offset = offset_in_folio(folio, pos); 4207 if (bytes > folio_size(folio) - offset) 4208 bytes = folio_size(folio) - offset; 4209 4210 if (mapping_writably_mapped(mapping)) 4211 flush_dcache_folio(folio); 4212 4213 /* 4214 * Faults here on mmap()s can recurse into arbitrary 4215 * filesystem code. Lots of locks are held that can 4216 * deadlock. Use an atomic copy to avoid deadlocking 4217 * in page fault handling. 4218 */ 4219 copied = copy_folio_from_iter_atomic(folio, offset, bytes, i); 4220 flush_dcache_folio(folio); 4221 4222 status = a_ops->write_end(iocb, mapping, pos, bytes, copied, 4223 folio, fsdata); 4224 if (unlikely(status != copied)) { 4225 iov_iter_revert(i, copied - max(status, 0L)); 4226 if (unlikely(status < 0)) 4227 break; 4228 } 4229 cond_resched(); 4230 4231 if (unlikely(status == 0)) { 4232 /* 4233 * A short copy made ->write_end() reject the 4234 * thing entirely. Might be memory poisoning 4235 * halfway through, might be a race with munmap, 4236 * might be severe memory pressure. 4237 */ 4238 if (chunk > PAGE_SIZE) 4239 chunk /= 2; 4240 if (copied) { 4241 bytes = copied; 4242 goto retry; 4243 } 4244 4245 /* 4246 * 'folio' is now unlocked and faults on it can be 4247 * handled. Ensure forward progress by trying to 4248 * fault it in now. 4249 */ 4250 if (fault_in_iov_iter_readable(i, bytes) == bytes) { 4251 status = -EFAULT; 4252 break; 4253 } 4254 } else { 4255 pos += status; 4256 written += status; 4257 } 4258 } while (iov_iter_count(i)); 4259 4260 if (!written) 4261 return status; 4262 iocb->ki_pos += written; 4263 return written; 4264 } 4265 EXPORT_SYMBOL(generic_perform_write); 4266 4267 /** 4268 * __generic_file_write_iter - write data to a file 4269 * @iocb: IO state structure (file, offset, etc.) 4270 * @from: iov_iter with data to write 4271 * 4272 * This function does all the work needed for actually writing data to a 4273 * file. It does all basic checks, removes SUID from the file, updates 4274 * modification times and calls proper subroutines depending on whether we 4275 * do direct IO or a standard buffered write. 4276 * 4277 * It expects i_rwsem to be grabbed unless we work on a block device or similar 4278 * object which does not need locking at all. 4279 * 4280 * This function does *not* take care of syncing data in case of O_SYNC write. 4281 * A caller has to handle it. This is mainly due to the fact that we want to 4282 * avoid syncing under i_rwsem. 4283 * 4284 * Return: 4285 * * number of bytes written, even for truncated writes 4286 * * negative error code if no data has been written at all 4287 */ 4288 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4289 { 4290 struct file *file = iocb->ki_filp; 4291 struct address_space *mapping = file->f_mapping; 4292 struct inode *inode = mapping->host; 4293 ssize_t ret; 4294 4295 ret = file_remove_privs(file); 4296 if (ret) 4297 return ret; 4298 4299 ret = file_update_time(file); 4300 if (ret) 4301 return ret; 4302 4303 if (iocb->ki_flags & IOCB_DIRECT) { 4304 ret = generic_file_direct_write(iocb, from); 4305 /* 4306 * If the write stopped short of completing, fall back to 4307 * buffered writes. Some filesystems do this for writes to 4308 * holes, for example. For DAX files, a buffered write will 4309 * not succeed (even if it did, DAX does not handle dirty 4310 * page-cache pages correctly). 4311 */ 4312 if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode)) 4313 return ret; 4314 return direct_write_fallback(iocb, from, ret, 4315 generic_perform_write(iocb, from)); 4316 } 4317 4318 return generic_perform_write(iocb, from); 4319 } 4320 EXPORT_SYMBOL(__generic_file_write_iter); 4321 4322 /** 4323 * generic_file_write_iter - write data to a file 4324 * @iocb: IO state structure 4325 * @from: iov_iter with data to write 4326 * 4327 * This is a wrapper around __generic_file_write_iter() to be used by most 4328 * filesystems. It takes care of syncing the file in case of O_SYNC file 4329 * and acquires i_rwsem as needed. 4330 * Return: 4331 * * negative error code if no data has been written at all of 4332 * vfs_fsync_range() failed for a synchronous write 4333 * * number of bytes written, even for truncated writes 4334 */ 4335 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4336 { 4337 struct file *file = iocb->ki_filp; 4338 struct inode *inode = file->f_mapping->host; 4339 ssize_t ret; 4340 4341 inode_lock(inode); 4342 ret = generic_write_checks(iocb, from); 4343 if (ret > 0) 4344 ret = __generic_file_write_iter(iocb, from); 4345 inode_unlock(inode); 4346 4347 if (ret > 0) 4348 ret = generic_write_sync(iocb, ret); 4349 return ret; 4350 } 4351 EXPORT_SYMBOL(generic_file_write_iter); 4352 4353 /** 4354 * filemap_release_folio() - Release fs-specific metadata on a folio. 4355 * @folio: The folio which the kernel is trying to free. 4356 * @gfp: Memory allocation flags (and I/O mode). 4357 * 4358 * The address_space is trying to release any data attached to a folio 4359 * (presumably at folio->private). 4360 * 4361 * This will also be called if the private_2 flag is set on a page, 4362 * indicating that the folio has other metadata associated with it. 4363 * 4364 * The @gfp argument specifies whether I/O may be performed to release 4365 * this page (__GFP_IO), and whether the call may block 4366 * (__GFP_RECLAIM & __GFP_FS). 4367 * 4368 * Return: %true if the release was successful, otherwise %false. 4369 */ 4370 bool filemap_release_folio(struct folio *folio, gfp_t gfp) 4371 { 4372 struct address_space * const mapping = folio->mapping; 4373 4374 BUG_ON(!folio_test_locked(folio)); 4375 if (!folio_needs_release(folio)) 4376 return true; 4377 if (folio_test_writeback(folio)) 4378 return false; 4379 4380 if (mapping && mapping->a_ops->release_folio) 4381 return mapping->a_ops->release_folio(folio, gfp); 4382 return try_to_free_buffers(folio); 4383 } 4384 EXPORT_SYMBOL(filemap_release_folio); 4385 4386 /** 4387 * filemap_invalidate_inode - Invalidate/forcibly write back a range of an inode's pagecache 4388 * @inode: The inode to flush 4389 * @flush: Set to write back rather than simply invalidate. 4390 * @start: First byte to in range. 4391 * @end: Last byte in range (inclusive), or LLONG_MAX for everything from start 4392 * onwards. 4393 * 4394 * Invalidate all the folios on an inode that contribute to the specified 4395 * range, possibly writing them back first. Whilst the operation is 4396 * undertaken, the invalidate lock is held to prevent new folios from being 4397 * installed. 4398 */ 4399 int filemap_invalidate_inode(struct inode *inode, bool flush, 4400 loff_t start, loff_t end) 4401 { 4402 struct address_space *mapping = inode->i_mapping; 4403 pgoff_t first = start >> PAGE_SHIFT; 4404 pgoff_t last = end >> PAGE_SHIFT; 4405 pgoff_t nr = end == LLONG_MAX ? ULONG_MAX : last - first + 1; 4406 4407 if (!mapping || !mapping->nrpages || end < start) 4408 goto out; 4409 4410 /* Prevent new folios from being added to the inode. */ 4411 filemap_invalidate_lock(mapping); 4412 4413 if (!mapping->nrpages) 4414 goto unlock; 4415 4416 unmap_mapping_pages(mapping, first, nr, false); 4417 4418 /* Write back the data if we're asked to. */ 4419 if (flush) { 4420 struct writeback_control wbc = { 4421 .sync_mode = WB_SYNC_ALL, 4422 .nr_to_write = LONG_MAX, 4423 .range_start = start, 4424 .range_end = end, 4425 }; 4426 4427 filemap_fdatawrite_wbc(mapping, &wbc); 4428 } 4429 4430 /* Wait for writeback to complete on all folios and discard. */ 4431 invalidate_inode_pages2_range(mapping, start / PAGE_SIZE, end / PAGE_SIZE); 4432 4433 unlock: 4434 filemap_invalidate_unlock(mapping); 4435 out: 4436 return filemap_check_errors(mapping); 4437 } 4438 EXPORT_SYMBOL_GPL(filemap_invalidate_inode); 4439 4440 #ifdef CONFIG_CACHESTAT_SYSCALL 4441 /** 4442 * filemap_cachestat() - compute the page cache statistics of a mapping 4443 * @mapping: The mapping to compute the statistics for. 4444 * @first_index: The starting page cache index. 4445 * @last_index: The final page index (inclusive). 4446 * @cs: the cachestat struct to write the result to. 4447 * 4448 * This will query the page cache statistics of a mapping in the 4449 * page range of [first_index, last_index] (inclusive). The statistics 4450 * queried include: number of dirty pages, number of pages marked for 4451 * writeback, and the number of (recently) evicted pages. 4452 */ 4453 static void filemap_cachestat(struct address_space *mapping, 4454 pgoff_t first_index, pgoff_t last_index, struct cachestat *cs) 4455 { 4456 XA_STATE(xas, &mapping->i_pages, first_index); 4457 struct folio *folio; 4458 4459 /* Flush stats (and potentially sleep) outside the RCU read section. */ 4460 mem_cgroup_flush_stats_ratelimited(NULL); 4461 4462 rcu_read_lock(); 4463 xas_for_each(&xas, folio, last_index) { 4464 int order; 4465 unsigned long nr_pages; 4466 pgoff_t folio_first_index, folio_last_index; 4467 4468 /* 4469 * Don't deref the folio. It is not pinned, and might 4470 * get freed (and reused) underneath us. 4471 * 4472 * We *could* pin it, but that would be expensive for 4473 * what should be a fast and lightweight syscall. 4474 * 4475 * Instead, derive all information of interest from 4476 * the rcu-protected xarray. 4477 */ 4478 4479 if (xas_retry(&xas, folio)) 4480 continue; 4481 4482 order = xas_get_order(&xas); 4483 nr_pages = 1 << order; 4484 folio_first_index = round_down(xas.xa_index, 1 << order); 4485 folio_last_index = folio_first_index + nr_pages - 1; 4486 4487 /* Folios might straddle the range boundaries, only count covered pages */ 4488 if (folio_first_index < first_index) 4489 nr_pages -= first_index - folio_first_index; 4490 4491 if (folio_last_index > last_index) 4492 nr_pages -= folio_last_index - last_index; 4493 4494 if (xa_is_value(folio)) { 4495 /* page is evicted */ 4496 void *shadow = (void *)folio; 4497 bool workingset; /* not used */ 4498 4499 cs->nr_evicted += nr_pages; 4500 4501 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */ 4502 if (shmem_mapping(mapping)) { 4503 /* shmem file - in swap cache */ 4504 swp_entry_t swp = radix_to_swp_entry(folio); 4505 4506 /* swapin error results in poisoned entry */ 4507 if (non_swap_entry(swp)) 4508 goto resched; 4509 4510 /* 4511 * Getting a swap entry from the shmem 4512 * inode means we beat 4513 * shmem_unuse(). rcu_read_lock() 4514 * ensures swapoff waits for us before 4515 * freeing the swapper space. However, 4516 * we can race with swapping and 4517 * invalidation, so there might not be 4518 * a shadow in the swapcache (yet). 4519 */ 4520 shadow = get_shadow_from_swap_cache(swp); 4521 if (!shadow) 4522 goto resched; 4523 } 4524 #endif 4525 if (workingset_test_recent(shadow, true, &workingset, false)) 4526 cs->nr_recently_evicted += nr_pages; 4527 4528 goto resched; 4529 } 4530 4531 /* page is in cache */ 4532 cs->nr_cache += nr_pages; 4533 4534 if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY)) 4535 cs->nr_dirty += nr_pages; 4536 4537 if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK)) 4538 cs->nr_writeback += nr_pages; 4539 4540 resched: 4541 if (need_resched()) { 4542 xas_pause(&xas); 4543 cond_resched_rcu(); 4544 } 4545 } 4546 rcu_read_unlock(); 4547 } 4548 4549 /* 4550 * See mincore: reveal pagecache information only for files 4551 * that the calling process has write access to, or could (if 4552 * tried) open for writing. 4553 */ 4554 static inline bool can_do_cachestat(struct file *f) 4555 { 4556 if (f->f_mode & FMODE_WRITE) 4557 return true; 4558 if (inode_owner_or_capable(file_mnt_idmap(f), file_inode(f))) 4559 return true; 4560 return file_permission(f, MAY_WRITE) == 0; 4561 } 4562 4563 /* 4564 * The cachestat(2) system call. 4565 * 4566 * cachestat() returns the page cache statistics of a file in the 4567 * bytes range specified by `off` and `len`: number of cached pages, 4568 * number of dirty pages, number of pages marked for writeback, 4569 * number of evicted pages, and number of recently evicted pages. 4570 * 4571 * An evicted page is a page that is previously in the page cache 4572 * but has been evicted since. A page is recently evicted if its last 4573 * eviction was recent enough that its reentry to the cache would 4574 * indicate that it is actively being used by the system, and that 4575 * there is memory pressure on the system. 4576 * 4577 * `off` and `len` must be non-negative integers. If `len` > 0, 4578 * the queried range is [`off`, `off` + `len`]. If `len` == 0, 4579 * we will query in the range from `off` to the end of the file. 4580 * 4581 * The `flags` argument is unused for now, but is included for future 4582 * extensibility. User should pass 0 (i.e no flag specified). 4583 * 4584 * Currently, hugetlbfs is not supported. 4585 * 4586 * Because the status of a page can change after cachestat() checks it 4587 * but before it returns to the application, the returned values may 4588 * contain stale information. 4589 * 4590 * return values: 4591 * zero - success 4592 * -EFAULT - cstat or cstat_range points to an illegal address 4593 * -EINVAL - invalid flags 4594 * -EBADF - invalid file descriptor 4595 * -EOPNOTSUPP - file descriptor is of a hugetlbfs file 4596 */ 4597 SYSCALL_DEFINE4(cachestat, unsigned int, fd, 4598 struct cachestat_range __user *, cstat_range, 4599 struct cachestat __user *, cstat, unsigned int, flags) 4600 { 4601 CLASS(fd, f)(fd); 4602 struct address_space *mapping; 4603 struct cachestat_range csr; 4604 struct cachestat cs; 4605 pgoff_t first_index, last_index; 4606 4607 if (fd_empty(f)) 4608 return -EBADF; 4609 4610 if (copy_from_user(&csr, cstat_range, 4611 sizeof(struct cachestat_range))) 4612 return -EFAULT; 4613 4614 /* hugetlbfs is not supported */ 4615 if (is_file_hugepages(fd_file(f))) 4616 return -EOPNOTSUPP; 4617 4618 if (!can_do_cachestat(fd_file(f))) 4619 return -EPERM; 4620 4621 if (flags != 0) 4622 return -EINVAL; 4623 4624 first_index = csr.off >> PAGE_SHIFT; 4625 last_index = 4626 csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT; 4627 memset(&cs, 0, sizeof(struct cachestat)); 4628 mapping = fd_file(f)->f_mapping; 4629 filemap_cachestat(mapping, first_index, last_index, &cs); 4630 4631 if (copy_to_user(cstat, &cs, sizeof(struct cachestat))) 4632 return -EFAULT; 4633 4634 return 0; 4635 } 4636 #endif /* CONFIG_CACHESTAT_SYSCALL */ 4637