1 /* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12 #include <linux/config.h> 13 #include <linux/module.h> 14 #include <linux/slab.h> 15 #include <linux/compiler.h> 16 #include <linux/fs.h> 17 #include <linux/aio.h> 18 #include <linux/capability.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/mm.h> 21 #include <linux/swap.h> 22 #include <linux/mman.h> 23 #include <linux/pagemap.h> 24 #include <linux/file.h> 25 #include <linux/uio.h> 26 #include <linux/hash.h> 27 #include <linux/writeback.h> 28 #include <linux/pagevec.h> 29 #include <linux/blkdev.h> 30 #include <linux/security.h> 31 #include <linux/syscalls.h> 32 #include "filemap.h" 33 /* 34 * FIXME: remove all knowledge of the buffer layer from the core VM 35 */ 36 #include <linux/buffer_head.h> /* for generic_osync_inode */ 37 38 #include <asm/uaccess.h> 39 #include <asm/mman.h> 40 41 static ssize_t 42 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, 43 loff_t offset, unsigned long nr_segs); 44 45 /* 46 * Shared mappings implemented 30.11.1994. It's not fully working yet, 47 * though. 48 * 49 * Shared mappings now work. 15.8.1995 Bruno. 50 * 51 * finished 'unifying' the page and buffer cache and SMP-threaded the 52 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 53 * 54 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 55 */ 56 57 /* 58 * Lock ordering: 59 * 60 * ->i_mmap_lock (vmtruncate) 61 * ->private_lock (__free_pte->__set_page_dirty_buffers) 62 * ->swap_lock (exclusive_swap_page, others) 63 * ->mapping->tree_lock 64 * 65 * ->i_mutex 66 * ->i_mmap_lock (truncate->unmap_mapping_range) 67 * 68 * ->mmap_sem 69 * ->i_mmap_lock 70 * ->page_table_lock or pte_lock (various, mainly in memory.c) 71 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) 72 * 73 * ->mmap_sem 74 * ->lock_page (access_process_vm) 75 * 76 * ->mmap_sem 77 * ->i_mutex (msync) 78 * 79 * ->i_mutex 80 * ->i_alloc_sem (various) 81 * 82 * ->inode_lock 83 * ->sb_lock (fs/fs-writeback.c) 84 * ->mapping->tree_lock (__sync_single_inode) 85 * 86 * ->i_mmap_lock 87 * ->anon_vma.lock (vma_adjust) 88 * 89 * ->anon_vma.lock 90 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 91 * 92 * ->page_table_lock or pte_lock 93 * ->swap_lock (try_to_unmap_one) 94 * ->private_lock (try_to_unmap_one) 95 * ->tree_lock (try_to_unmap_one) 96 * ->zone.lru_lock (follow_page->mark_page_accessed) 97 * ->zone.lru_lock (check_pte_range->isolate_lru_page) 98 * ->private_lock (page_remove_rmap->set_page_dirty) 99 * ->tree_lock (page_remove_rmap->set_page_dirty) 100 * ->inode_lock (page_remove_rmap->set_page_dirty) 101 * ->inode_lock (zap_pte_range->set_page_dirty) 102 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 103 * 104 * ->task->proc_lock 105 * ->dcache_lock (proc_pid_lookup) 106 */ 107 108 /* 109 * Remove a page from the page cache and free it. Caller has to make 110 * sure the page is locked and that nobody else uses it - or that usage 111 * is safe. The caller must hold a write_lock on the mapping's tree_lock. 112 */ 113 void __remove_from_page_cache(struct page *page) 114 { 115 struct address_space *mapping = page->mapping; 116 117 radix_tree_delete(&mapping->page_tree, page->index); 118 page->mapping = NULL; 119 mapping->nrpages--; 120 pagecache_acct(-1); 121 } 122 123 void remove_from_page_cache(struct page *page) 124 { 125 struct address_space *mapping = page->mapping; 126 127 BUG_ON(!PageLocked(page)); 128 129 write_lock_irq(&mapping->tree_lock); 130 __remove_from_page_cache(page); 131 write_unlock_irq(&mapping->tree_lock); 132 } 133 134 static int sync_page(void *word) 135 { 136 struct address_space *mapping; 137 struct page *page; 138 139 page = container_of((unsigned long *)word, struct page, flags); 140 141 /* 142 * page_mapping() is being called without PG_locked held. 143 * Some knowledge of the state and use of the page is used to 144 * reduce the requirements down to a memory barrier. 145 * The danger here is of a stale page_mapping() return value 146 * indicating a struct address_space different from the one it's 147 * associated with when it is associated with one. 148 * After smp_mb(), it's either the correct page_mapping() for 149 * the page, or an old page_mapping() and the page's own 150 * page_mapping() has gone NULL. 151 * The ->sync_page() address_space operation must tolerate 152 * page_mapping() going NULL. By an amazing coincidence, 153 * this comes about because none of the users of the page 154 * in the ->sync_page() methods make essential use of the 155 * page_mapping(), merely passing the page down to the backing 156 * device's unplug functions when it's non-NULL, which in turn 157 * ignore it for all cases but swap, where only page_private(page) is 158 * of interest. When page_mapping() does go NULL, the entire 159 * call stack gracefully ignores the page and returns. 160 * -- wli 161 */ 162 smp_mb(); 163 mapping = page_mapping(page); 164 if (mapping && mapping->a_ops && mapping->a_ops->sync_page) 165 mapping->a_ops->sync_page(page); 166 io_schedule(); 167 return 0; 168 } 169 170 /** 171 * filemap_fdatawrite_range - start writeback against all of a mapping's 172 * dirty pages that lie within the byte offsets <start, end> 173 * @mapping: address space structure to write 174 * @start: offset in bytes where the range starts 175 * @end: offset in bytes where the range ends 176 * @sync_mode: enable synchronous operation 177 * 178 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 179 * opposed to a regular memory * cleansing writeback. The difference between 180 * these two operations is that if a dirty page/buffer is encountered, it must 181 * be waited upon, and not just skipped over. 182 */ 183 static int __filemap_fdatawrite_range(struct address_space *mapping, 184 loff_t start, loff_t end, int sync_mode) 185 { 186 int ret; 187 struct writeback_control wbc = { 188 .sync_mode = sync_mode, 189 .nr_to_write = mapping->nrpages * 2, 190 .start = start, 191 .end = end, 192 }; 193 194 if (!mapping_cap_writeback_dirty(mapping)) 195 return 0; 196 197 ret = do_writepages(mapping, &wbc); 198 return ret; 199 } 200 201 static inline int __filemap_fdatawrite(struct address_space *mapping, 202 int sync_mode) 203 { 204 return __filemap_fdatawrite_range(mapping, 0, 0, sync_mode); 205 } 206 207 int filemap_fdatawrite(struct address_space *mapping) 208 { 209 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 210 } 211 EXPORT_SYMBOL(filemap_fdatawrite); 212 213 static int filemap_fdatawrite_range(struct address_space *mapping, 214 loff_t start, loff_t end) 215 { 216 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 217 } 218 219 /* 220 * This is a mostly non-blocking flush. Not suitable for data-integrity 221 * purposes - I/O may not be started against all dirty pages. 222 */ 223 int filemap_flush(struct address_space *mapping) 224 { 225 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 226 } 227 EXPORT_SYMBOL(filemap_flush); 228 229 /* 230 * Wait for writeback to complete against pages indexed by start->end 231 * inclusive 232 */ 233 static int wait_on_page_writeback_range(struct address_space *mapping, 234 pgoff_t start, pgoff_t end) 235 { 236 struct pagevec pvec; 237 int nr_pages; 238 int ret = 0; 239 pgoff_t index; 240 241 if (end < start) 242 return 0; 243 244 pagevec_init(&pvec, 0); 245 index = start; 246 while ((index <= end) && 247 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 248 PAGECACHE_TAG_WRITEBACK, 249 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { 250 unsigned i; 251 252 for (i = 0; i < nr_pages; i++) { 253 struct page *page = pvec.pages[i]; 254 255 /* until radix tree lookup accepts end_index */ 256 if (page->index > end) 257 continue; 258 259 wait_on_page_writeback(page); 260 if (PageError(page)) 261 ret = -EIO; 262 } 263 pagevec_release(&pvec); 264 cond_resched(); 265 } 266 267 /* Check for outstanding write errors */ 268 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 269 ret = -ENOSPC; 270 if (test_and_clear_bit(AS_EIO, &mapping->flags)) 271 ret = -EIO; 272 273 return ret; 274 } 275 276 /* 277 * Write and wait upon all the pages in the passed range. This is a "data 278 * integrity" operation. It waits upon in-flight writeout before starting and 279 * waiting upon new writeout. If there was an IO error, return it. 280 * 281 * We need to re-take i_mutex during the generic_osync_inode list walk because 282 * it is otherwise livelockable. 283 */ 284 int sync_page_range(struct inode *inode, struct address_space *mapping, 285 loff_t pos, loff_t count) 286 { 287 pgoff_t start = pos >> PAGE_CACHE_SHIFT; 288 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT; 289 int ret; 290 291 if (!mapping_cap_writeback_dirty(mapping) || !count) 292 return 0; 293 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1); 294 if (ret == 0) { 295 mutex_lock(&inode->i_mutex); 296 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA); 297 mutex_unlock(&inode->i_mutex); 298 } 299 if (ret == 0) 300 ret = wait_on_page_writeback_range(mapping, start, end); 301 return ret; 302 } 303 EXPORT_SYMBOL(sync_page_range); 304 305 /* 306 * Note: Holding i_mutex across sync_page_range_nolock is not a good idea 307 * as it forces O_SYNC writers to different parts of the same file 308 * to be serialised right until io completion. 309 */ 310 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping, 311 loff_t pos, loff_t count) 312 { 313 pgoff_t start = pos >> PAGE_CACHE_SHIFT; 314 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT; 315 int ret; 316 317 if (!mapping_cap_writeback_dirty(mapping) || !count) 318 return 0; 319 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1); 320 if (ret == 0) 321 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA); 322 if (ret == 0) 323 ret = wait_on_page_writeback_range(mapping, start, end); 324 return ret; 325 } 326 EXPORT_SYMBOL(sync_page_range_nolock); 327 328 /** 329 * filemap_fdatawait - walk the list of under-writeback pages of the given 330 * address space and wait for all of them. 331 * 332 * @mapping: address space structure to wait for 333 */ 334 int filemap_fdatawait(struct address_space *mapping) 335 { 336 loff_t i_size = i_size_read(mapping->host); 337 338 if (i_size == 0) 339 return 0; 340 341 return wait_on_page_writeback_range(mapping, 0, 342 (i_size - 1) >> PAGE_CACHE_SHIFT); 343 } 344 EXPORT_SYMBOL(filemap_fdatawait); 345 346 int filemap_write_and_wait(struct address_space *mapping) 347 { 348 int err = 0; 349 350 if (mapping->nrpages) { 351 err = filemap_fdatawrite(mapping); 352 /* 353 * Even if the above returned error, the pages may be 354 * written partially (e.g. -ENOSPC), so we wait for it. 355 * But the -EIO is special case, it may indicate the worst 356 * thing (e.g. bug) happened, so we avoid waiting for it. 357 */ 358 if (err != -EIO) { 359 int err2 = filemap_fdatawait(mapping); 360 if (!err) 361 err = err2; 362 } 363 } 364 return err; 365 } 366 EXPORT_SYMBOL(filemap_write_and_wait); 367 368 int filemap_write_and_wait_range(struct address_space *mapping, 369 loff_t lstart, loff_t lend) 370 { 371 int err = 0; 372 373 if (mapping->nrpages) { 374 err = __filemap_fdatawrite_range(mapping, lstart, lend, 375 WB_SYNC_ALL); 376 /* See comment of filemap_write_and_wait() */ 377 if (err != -EIO) { 378 int err2 = wait_on_page_writeback_range(mapping, 379 lstart >> PAGE_CACHE_SHIFT, 380 lend >> PAGE_CACHE_SHIFT); 381 if (!err) 382 err = err2; 383 } 384 } 385 return err; 386 } 387 388 /* 389 * This function is used to add newly allocated pagecache pages: 390 * the page is new, so we can just run SetPageLocked() against it. 391 * The other page state flags were set by rmqueue(). 392 * 393 * This function does not add the page to the LRU. The caller must do that. 394 */ 395 int add_to_page_cache(struct page *page, struct address_space *mapping, 396 pgoff_t offset, gfp_t gfp_mask) 397 { 398 int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 399 400 if (error == 0) { 401 write_lock_irq(&mapping->tree_lock); 402 error = radix_tree_insert(&mapping->page_tree, offset, page); 403 if (!error) { 404 page_cache_get(page); 405 SetPageLocked(page); 406 page->mapping = mapping; 407 page->index = offset; 408 mapping->nrpages++; 409 pagecache_acct(1); 410 } 411 write_unlock_irq(&mapping->tree_lock); 412 radix_tree_preload_end(); 413 } 414 return error; 415 } 416 417 EXPORT_SYMBOL(add_to_page_cache); 418 419 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 420 pgoff_t offset, gfp_t gfp_mask) 421 { 422 int ret = add_to_page_cache(page, mapping, offset, gfp_mask); 423 if (ret == 0) 424 lru_cache_add(page); 425 return ret; 426 } 427 428 /* 429 * In order to wait for pages to become available there must be 430 * waitqueues associated with pages. By using a hash table of 431 * waitqueues where the bucket discipline is to maintain all 432 * waiters on the same queue and wake all when any of the pages 433 * become available, and for the woken contexts to check to be 434 * sure the appropriate page became available, this saves space 435 * at a cost of "thundering herd" phenomena during rare hash 436 * collisions. 437 */ 438 static wait_queue_head_t *page_waitqueue(struct page *page) 439 { 440 const struct zone *zone = page_zone(page); 441 442 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)]; 443 } 444 445 static inline void wake_up_page(struct page *page, int bit) 446 { 447 __wake_up_bit(page_waitqueue(page), &page->flags, bit); 448 } 449 450 void fastcall wait_on_page_bit(struct page *page, int bit_nr) 451 { 452 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 453 454 if (test_bit(bit_nr, &page->flags)) 455 __wait_on_bit(page_waitqueue(page), &wait, sync_page, 456 TASK_UNINTERRUPTIBLE); 457 } 458 EXPORT_SYMBOL(wait_on_page_bit); 459 460 /** 461 * unlock_page() - unlock a locked page 462 * 463 * @page: the page 464 * 465 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 466 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 467 * mechananism between PageLocked pages and PageWriteback pages is shared. 468 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 469 * 470 * The first mb is necessary to safely close the critical section opened by the 471 * TestSetPageLocked(), the second mb is necessary to enforce ordering between 472 * the clear_bit and the read of the waitqueue (to avoid SMP races with a 473 * parallel wait_on_page_locked()). 474 */ 475 void fastcall unlock_page(struct page *page) 476 { 477 smp_mb__before_clear_bit(); 478 if (!TestClearPageLocked(page)) 479 BUG(); 480 smp_mb__after_clear_bit(); 481 wake_up_page(page, PG_locked); 482 } 483 EXPORT_SYMBOL(unlock_page); 484 485 /* 486 * End writeback against a page. 487 */ 488 void end_page_writeback(struct page *page) 489 { 490 if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) { 491 if (!test_clear_page_writeback(page)) 492 BUG(); 493 } 494 smp_mb__after_clear_bit(); 495 wake_up_page(page, PG_writeback); 496 } 497 EXPORT_SYMBOL(end_page_writeback); 498 499 /* 500 * Get a lock on the page, assuming we need to sleep to get it. 501 * 502 * Ugly: running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some 503 * random driver's requestfn sets TASK_RUNNING, we could busywait. However 504 * chances are that on the second loop, the block layer's plug list is empty, 505 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE. 506 */ 507 void fastcall __lock_page(struct page *page) 508 { 509 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 510 511 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page, 512 TASK_UNINTERRUPTIBLE); 513 } 514 EXPORT_SYMBOL(__lock_page); 515 516 /* 517 * a rather lightweight function, finding and getting a reference to a 518 * hashed page atomically. 519 */ 520 struct page * find_get_page(struct address_space *mapping, unsigned long offset) 521 { 522 struct page *page; 523 524 read_lock_irq(&mapping->tree_lock); 525 page = radix_tree_lookup(&mapping->page_tree, offset); 526 if (page) 527 page_cache_get(page); 528 read_unlock_irq(&mapping->tree_lock); 529 return page; 530 } 531 532 EXPORT_SYMBOL(find_get_page); 533 534 /* 535 * Same as above, but trylock it instead of incrementing the count. 536 */ 537 struct page *find_trylock_page(struct address_space *mapping, unsigned long offset) 538 { 539 struct page *page; 540 541 read_lock_irq(&mapping->tree_lock); 542 page = radix_tree_lookup(&mapping->page_tree, offset); 543 if (page && TestSetPageLocked(page)) 544 page = NULL; 545 read_unlock_irq(&mapping->tree_lock); 546 return page; 547 } 548 549 EXPORT_SYMBOL(find_trylock_page); 550 551 /** 552 * find_lock_page - locate, pin and lock a pagecache page 553 * 554 * @mapping: the address_space to search 555 * @offset: the page index 556 * 557 * Locates the desired pagecache page, locks it, increments its reference 558 * count and returns its address. 559 * 560 * Returns zero if the page was not present. find_lock_page() may sleep. 561 */ 562 struct page *find_lock_page(struct address_space *mapping, 563 unsigned long offset) 564 { 565 struct page *page; 566 567 read_lock_irq(&mapping->tree_lock); 568 repeat: 569 page = radix_tree_lookup(&mapping->page_tree, offset); 570 if (page) { 571 page_cache_get(page); 572 if (TestSetPageLocked(page)) { 573 read_unlock_irq(&mapping->tree_lock); 574 __lock_page(page); 575 read_lock_irq(&mapping->tree_lock); 576 577 /* Has the page been truncated while we slept? */ 578 if (unlikely(page->mapping != mapping || 579 page->index != offset)) { 580 unlock_page(page); 581 page_cache_release(page); 582 goto repeat; 583 } 584 } 585 } 586 read_unlock_irq(&mapping->tree_lock); 587 return page; 588 } 589 590 EXPORT_SYMBOL(find_lock_page); 591 592 /** 593 * find_or_create_page - locate or add a pagecache page 594 * 595 * @mapping: the page's address_space 596 * @index: the page's index into the mapping 597 * @gfp_mask: page allocation mode 598 * 599 * Locates a page in the pagecache. If the page is not present, a new page 600 * is allocated using @gfp_mask and is added to the pagecache and to the VM's 601 * LRU list. The returned page is locked and has its reference count 602 * incremented. 603 * 604 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic 605 * allocation! 606 * 607 * find_or_create_page() returns the desired page's address, or zero on 608 * memory exhaustion. 609 */ 610 struct page *find_or_create_page(struct address_space *mapping, 611 unsigned long index, gfp_t gfp_mask) 612 { 613 struct page *page, *cached_page = NULL; 614 int err; 615 repeat: 616 page = find_lock_page(mapping, index); 617 if (!page) { 618 if (!cached_page) { 619 cached_page = alloc_page(gfp_mask); 620 if (!cached_page) 621 return NULL; 622 } 623 err = add_to_page_cache_lru(cached_page, mapping, 624 index, gfp_mask); 625 if (!err) { 626 page = cached_page; 627 cached_page = NULL; 628 } else if (err == -EEXIST) 629 goto repeat; 630 } 631 if (cached_page) 632 page_cache_release(cached_page); 633 return page; 634 } 635 636 EXPORT_SYMBOL(find_or_create_page); 637 638 /** 639 * find_get_pages - gang pagecache lookup 640 * @mapping: The address_space to search 641 * @start: The starting page index 642 * @nr_pages: The maximum number of pages 643 * @pages: Where the resulting pages are placed 644 * 645 * find_get_pages() will search for and return a group of up to 646 * @nr_pages pages in the mapping. The pages are placed at @pages. 647 * find_get_pages() takes a reference against the returned pages. 648 * 649 * The search returns a group of mapping-contiguous pages with ascending 650 * indexes. There may be holes in the indices due to not-present pages. 651 * 652 * find_get_pages() returns the number of pages which were found. 653 */ 654 unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 655 unsigned int nr_pages, struct page **pages) 656 { 657 unsigned int i; 658 unsigned int ret; 659 660 read_lock_irq(&mapping->tree_lock); 661 ret = radix_tree_gang_lookup(&mapping->page_tree, 662 (void **)pages, start, nr_pages); 663 for (i = 0; i < ret; i++) 664 page_cache_get(pages[i]); 665 read_unlock_irq(&mapping->tree_lock); 666 return ret; 667 } 668 669 /* 670 * Like find_get_pages, except we only return pages which are tagged with 671 * `tag'. We update *index to index the next page for the traversal. 672 */ 673 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 674 int tag, unsigned int nr_pages, struct page **pages) 675 { 676 unsigned int i; 677 unsigned int ret; 678 679 read_lock_irq(&mapping->tree_lock); 680 ret = radix_tree_gang_lookup_tag(&mapping->page_tree, 681 (void **)pages, *index, nr_pages, tag); 682 for (i = 0; i < ret; i++) 683 page_cache_get(pages[i]); 684 if (ret) 685 *index = pages[ret - 1]->index + 1; 686 read_unlock_irq(&mapping->tree_lock); 687 return ret; 688 } 689 690 /* 691 * Same as grab_cache_page, but do not wait if the page is unavailable. 692 * This is intended for speculative data generators, where the data can 693 * be regenerated if the page couldn't be grabbed. This routine should 694 * be safe to call while holding the lock for another page. 695 * 696 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 697 * and deadlock against the caller's locked page. 698 */ 699 struct page * 700 grab_cache_page_nowait(struct address_space *mapping, unsigned long index) 701 { 702 struct page *page = find_get_page(mapping, index); 703 gfp_t gfp_mask; 704 705 if (page) { 706 if (!TestSetPageLocked(page)) 707 return page; 708 page_cache_release(page); 709 return NULL; 710 } 711 gfp_mask = mapping_gfp_mask(mapping) & ~__GFP_FS; 712 page = alloc_pages(gfp_mask, 0); 713 if (page && add_to_page_cache_lru(page, mapping, index, gfp_mask)) { 714 page_cache_release(page); 715 page = NULL; 716 } 717 return page; 718 } 719 720 EXPORT_SYMBOL(grab_cache_page_nowait); 721 722 /* 723 * This is a generic file read routine, and uses the 724 * mapping->a_ops->readpage() function for the actual low-level 725 * stuff. 726 * 727 * This is really ugly. But the goto's actually try to clarify some 728 * of the logic when it comes to error handling etc. 729 * 730 * Note the struct file* is only passed for the use of readpage. It may be 731 * NULL. 732 */ 733 void do_generic_mapping_read(struct address_space *mapping, 734 struct file_ra_state *_ra, 735 struct file *filp, 736 loff_t *ppos, 737 read_descriptor_t *desc, 738 read_actor_t actor) 739 { 740 struct inode *inode = mapping->host; 741 unsigned long index; 742 unsigned long end_index; 743 unsigned long offset; 744 unsigned long last_index; 745 unsigned long next_index; 746 unsigned long prev_index; 747 loff_t isize; 748 struct page *cached_page; 749 int error; 750 struct file_ra_state ra = *_ra; 751 752 cached_page = NULL; 753 index = *ppos >> PAGE_CACHE_SHIFT; 754 next_index = index; 755 prev_index = ra.prev_page; 756 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; 757 offset = *ppos & ~PAGE_CACHE_MASK; 758 759 isize = i_size_read(inode); 760 if (!isize) 761 goto out; 762 763 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 764 for (;;) { 765 struct page *page; 766 unsigned long nr, ret; 767 768 /* nr is the maximum number of bytes to copy from this page */ 769 nr = PAGE_CACHE_SIZE; 770 if (index >= end_index) { 771 if (index > end_index) 772 goto out; 773 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 774 if (nr <= offset) { 775 goto out; 776 } 777 } 778 nr = nr - offset; 779 780 cond_resched(); 781 if (index == next_index) 782 next_index = page_cache_readahead(mapping, &ra, filp, 783 index, last_index - index); 784 785 find_page: 786 page = find_get_page(mapping, index); 787 if (unlikely(page == NULL)) { 788 handle_ra_miss(mapping, &ra, index); 789 goto no_cached_page; 790 } 791 if (!PageUptodate(page)) 792 goto page_not_up_to_date; 793 page_ok: 794 795 /* If users can be writing to this page using arbitrary 796 * virtual addresses, take care about potential aliasing 797 * before reading the page on the kernel side. 798 */ 799 if (mapping_writably_mapped(mapping)) 800 flush_dcache_page(page); 801 802 /* 803 * When (part of) the same page is read multiple times 804 * in succession, only mark it as accessed the first time. 805 */ 806 if (prev_index != index) 807 mark_page_accessed(page); 808 prev_index = index; 809 810 /* 811 * Ok, we have the page, and it's up-to-date, so 812 * now we can copy it to user space... 813 * 814 * The actor routine returns how many bytes were actually used.. 815 * NOTE! This may not be the same as how much of a user buffer 816 * we filled up (we may be padding etc), so we can only update 817 * "pos" here (the actor routine has to update the user buffer 818 * pointers and the remaining count). 819 */ 820 ret = actor(desc, page, offset, nr); 821 offset += ret; 822 index += offset >> PAGE_CACHE_SHIFT; 823 offset &= ~PAGE_CACHE_MASK; 824 825 page_cache_release(page); 826 if (ret == nr && desc->count) 827 continue; 828 goto out; 829 830 page_not_up_to_date: 831 /* Get exclusive access to the page ... */ 832 lock_page(page); 833 834 /* Did it get unhashed before we got the lock? */ 835 if (!page->mapping) { 836 unlock_page(page); 837 page_cache_release(page); 838 continue; 839 } 840 841 /* Did somebody else fill it already? */ 842 if (PageUptodate(page)) { 843 unlock_page(page); 844 goto page_ok; 845 } 846 847 readpage: 848 /* Start the actual read. The read will unlock the page. */ 849 error = mapping->a_ops->readpage(filp, page); 850 851 if (unlikely(error)) { 852 if (error == AOP_TRUNCATED_PAGE) { 853 page_cache_release(page); 854 goto find_page; 855 } 856 goto readpage_error; 857 } 858 859 if (!PageUptodate(page)) { 860 lock_page(page); 861 if (!PageUptodate(page)) { 862 if (page->mapping == NULL) { 863 /* 864 * invalidate_inode_pages got it 865 */ 866 unlock_page(page); 867 page_cache_release(page); 868 goto find_page; 869 } 870 unlock_page(page); 871 error = -EIO; 872 goto readpage_error; 873 } 874 unlock_page(page); 875 } 876 877 /* 878 * i_size must be checked after we have done ->readpage. 879 * 880 * Checking i_size after the readpage allows us to calculate 881 * the correct value for "nr", which means the zero-filled 882 * part of the page is not copied back to userspace (unless 883 * another truncate extends the file - this is desired though). 884 */ 885 isize = i_size_read(inode); 886 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 887 if (unlikely(!isize || index > end_index)) { 888 page_cache_release(page); 889 goto out; 890 } 891 892 /* nr is the maximum number of bytes to copy from this page */ 893 nr = PAGE_CACHE_SIZE; 894 if (index == end_index) { 895 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 896 if (nr <= offset) { 897 page_cache_release(page); 898 goto out; 899 } 900 } 901 nr = nr - offset; 902 goto page_ok; 903 904 readpage_error: 905 /* UHHUH! A synchronous read error occurred. Report it */ 906 desc->error = error; 907 page_cache_release(page); 908 goto out; 909 910 no_cached_page: 911 /* 912 * Ok, it wasn't cached, so we need to create a new 913 * page.. 914 */ 915 if (!cached_page) { 916 cached_page = page_cache_alloc_cold(mapping); 917 if (!cached_page) { 918 desc->error = -ENOMEM; 919 goto out; 920 } 921 } 922 error = add_to_page_cache_lru(cached_page, mapping, 923 index, GFP_KERNEL); 924 if (error) { 925 if (error == -EEXIST) 926 goto find_page; 927 desc->error = error; 928 goto out; 929 } 930 page = cached_page; 931 cached_page = NULL; 932 goto readpage; 933 } 934 935 out: 936 *_ra = ra; 937 938 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset; 939 if (cached_page) 940 page_cache_release(cached_page); 941 if (filp) 942 file_accessed(filp); 943 } 944 945 EXPORT_SYMBOL(do_generic_mapping_read); 946 947 int file_read_actor(read_descriptor_t *desc, struct page *page, 948 unsigned long offset, unsigned long size) 949 { 950 char *kaddr; 951 unsigned long left, count = desc->count; 952 953 if (size > count) 954 size = count; 955 956 /* 957 * Faults on the destination of a read are common, so do it before 958 * taking the kmap. 959 */ 960 if (!fault_in_pages_writeable(desc->arg.buf, size)) { 961 kaddr = kmap_atomic(page, KM_USER0); 962 left = __copy_to_user_inatomic(desc->arg.buf, 963 kaddr + offset, size); 964 kunmap_atomic(kaddr, KM_USER0); 965 if (left == 0) 966 goto success; 967 } 968 969 /* Do it the slow way */ 970 kaddr = kmap(page); 971 left = __copy_to_user(desc->arg.buf, kaddr + offset, size); 972 kunmap(page); 973 974 if (left) { 975 size -= left; 976 desc->error = -EFAULT; 977 } 978 success: 979 desc->count = count - size; 980 desc->written += size; 981 desc->arg.buf += size; 982 return size; 983 } 984 985 /* 986 * This is the "read()" routine for all filesystems 987 * that can use the page cache directly. 988 */ 989 ssize_t 990 __generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov, 991 unsigned long nr_segs, loff_t *ppos) 992 { 993 struct file *filp = iocb->ki_filp; 994 ssize_t retval; 995 unsigned long seg; 996 size_t count; 997 998 count = 0; 999 for (seg = 0; seg < nr_segs; seg++) { 1000 const struct iovec *iv = &iov[seg]; 1001 1002 /* 1003 * If any segment has a negative length, or the cumulative 1004 * length ever wraps negative then return -EINVAL. 1005 */ 1006 count += iv->iov_len; 1007 if (unlikely((ssize_t)(count|iv->iov_len) < 0)) 1008 return -EINVAL; 1009 if (access_ok(VERIFY_WRITE, iv->iov_base, iv->iov_len)) 1010 continue; 1011 if (seg == 0) 1012 return -EFAULT; 1013 nr_segs = seg; 1014 count -= iv->iov_len; /* This segment is no good */ 1015 break; 1016 } 1017 1018 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 1019 if (filp->f_flags & O_DIRECT) { 1020 loff_t pos = *ppos, size; 1021 struct address_space *mapping; 1022 struct inode *inode; 1023 1024 mapping = filp->f_mapping; 1025 inode = mapping->host; 1026 retval = 0; 1027 if (!count) 1028 goto out; /* skip atime */ 1029 size = i_size_read(inode); 1030 if (pos < size) { 1031 retval = generic_file_direct_IO(READ, iocb, 1032 iov, pos, nr_segs); 1033 if (retval > 0 && !is_sync_kiocb(iocb)) 1034 retval = -EIOCBQUEUED; 1035 if (retval > 0) 1036 *ppos = pos + retval; 1037 } 1038 file_accessed(filp); 1039 goto out; 1040 } 1041 1042 retval = 0; 1043 if (count) { 1044 for (seg = 0; seg < nr_segs; seg++) { 1045 read_descriptor_t desc; 1046 1047 desc.written = 0; 1048 desc.arg.buf = iov[seg].iov_base; 1049 desc.count = iov[seg].iov_len; 1050 if (desc.count == 0) 1051 continue; 1052 desc.error = 0; 1053 do_generic_file_read(filp,ppos,&desc,file_read_actor); 1054 retval += desc.written; 1055 if (desc.error) { 1056 retval = retval ?: desc.error; 1057 break; 1058 } 1059 } 1060 } 1061 out: 1062 return retval; 1063 } 1064 1065 EXPORT_SYMBOL(__generic_file_aio_read); 1066 1067 ssize_t 1068 generic_file_aio_read(struct kiocb *iocb, char __user *buf, size_t count, loff_t pos) 1069 { 1070 struct iovec local_iov = { .iov_base = buf, .iov_len = count }; 1071 1072 BUG_ON(iocb->ki_pos != pos); 1073 return __generic_file_aio_read(iocb, &local_iov, 1, &iocb->ki_pos); 1074 } 1075 1076 EXPORT_SYMBOL(generic_file_aio_read); 1077 1078 ssize_t 1079 generic_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos) 1080 { 1081 struct iovec local_iov = { .iov_base = buf, .iov_len = count }; 1082 struct kiocb kiocb; 1083 ssize_t ret; 1084 1085 init_sync_kiocb(&kiocb, filp); 1086 ret = __generic_file_aio_read(&kiocb, &local_iov, 1, ppos); 1087 if (-EIOCBQUEUED == ret) 1088 ret = wait_on_sync_kiocb(&kiocb); 1089 return ret; 1090 } 1091 1092 EXPORT_SYMBOL(generic_file_read); 1093 1094 int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size) 1095 { 1096 ssize_t written; 1097 unsigned long count = desc->count; 1098 struct file *file = desc->arg.data; 1099 1100 if (size > count) 1101 size = count; 1102 1103 written = file->f_op->sendpage(file, page, offset, 1104 size, &file->f_pos, size<count); 1105 if (written < 0) { 1106 desc->error = written; 1107 written = 0; 1108 } 1109 desc->count = count - written; 1110 desc->written += written; 1111 return written; 1112 } 1113 1114 ssize_t generic_file_sendfile(struct file *in_file, loff_t *ppos, 1115 size_t count, read_actor_t actor, void *target) 1116 { 1117 read_descriptor_t desc; 1118 1119 if (!count) 1120 return 0; 1121 1122 desc.written = 0; 1123 desc.count = count; 1124 desc.arg.data = target; 1125 desc.error = 0; 1126 1127 do_generic_file_read(in_file, ppos, &desc, actor); 1128 if (desc.written) 1129 return desc.written; 1130 return desc.error; 1131 } 1132 1133 EXPORT_SYMBOL(generic_file_sendfile); 1134 1135 static ssize_t 1136 do_readahead(struct address_space *mapping, struct file *filp, 1137 unsigned long index, unsigned long nr) 1138 { 1139 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage) 1140 return -EINVAL; 1141 1142 force_page_cache_readahead(mapping, filp, index, 1143 max_sane_readahead(nr)); 1144 return 0; 1145 } 1146 1147 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count) 1148 { 1149 ssize_t ret; 1150 struct file *file; 1151 1152 ret = -EBADF; 1153 file = fget(fd); 1154 if (file) { 1155 if (file->f_mode & FMODE_READ) { 1156 struct address_space *mapping = file->f_mapping; 1157 unsigned long start = offset >> PAGE_CACHE_SHIFT; 1158 unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT; 1159 unsigned long len = end - start + 1; 1160 ret = do_readahead(mapping, file, start, len); 1161 } 1162 fput(file); 1163 } 1164 return ret; 1165 } 1166 1167 #ifdef CONFIG_MMU 1168 /* 1169 * This adds the requested page to the page cache if it isn't already there, 1170 * and schedules an I/O to read in its contents from disk. 1171 */ 1172 static int FASTCALL(page_cache_read(struct file * file, unsigned long offset)); 1173 static int fastcall page_cache_read(struct file * file, unsigned long offset) 1174 { 1175 struct address_space *mapping = file->f_mapping; 1176 struct page *page; 1177 int ret; 1178 1179 do { 1180 page = page_cache_alloc_cold(mapping); 1181 if (!page) 1182 return -ENOMEM; 1183 1184 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL); 1185 if (ret == 0) 1186 ret = mapping->a_ops->readpage(file, page); 1187 else if (ret == -EEXIST) 1188 ret = 0; /* losing race to add is OK */ 1189 1190 page_cache_release(page); 1191 1192 } while (ret == AOP_TRUNCATED_PAGE); 1193 1194 return ret; 1195 } 1196 1197 #define MMAP_LOTSAMISS (100) 1198 1199 /* 1200 * filemap_nopage() is invoked via the vma operations vector for a 1201 * mapped memory region to read in file data during a page fault. 1202 * 1203 * The goto's are kind of ugly, but this streamlines the normal case of having 1204 * it in the page cache, and handles the special cases reasonably without 1205 * having a lot of duplicated code. 1206 */ 1207 struct page *filemap_nopage(struct vm_area_struct *area, 1208 unsigned long address, int *type) 1209 { 1210 int error; 1211 struct file *file = area->vm_file; 1212 struct address_space *mapping = file->f_mapping; 1213 struct file_ra_state *ra = &file->f_ra; 1214 struct inode *inode = mapping->host; 1215 struct page *page; 1216 unsigned long size, pgoff; 1217 int did_readaround = 0, majmin = VM_FAULT_MINOR; 1218 1219 pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff; 1220 1221 retry_all: 1222 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1223 if (pgoff >= size) 1224 goto outside_data_content; 1225 1226 /* If we don't want any read-ahead, don't bother */ 1227 if (VM_RandomReadHint(area)) 1228 goto no_cached_page; 1229 1230 /* 1231 * The readahead code wants to be told about each and every page 1232 * so it can build and shrink its windows appropriately 1233 * 1234 * For sequential accesses, we use the generic readahead logic. 1235 */ 1236 if (VM_SequentialReadHint(area)) 1237 page_cache_readahead(mapping, ra, file, pgoff, 1); 1238 1239 /* 1240 * Do we have something in the page cache already? 1241 */ 1242 retry_find: 1243 page = find_get_page(mapping, pgoff); 1244 if (!page) { 1245 unsigned long ra_pages; 1246 1247 if (VM_SequentialReadHint(area)) { 1248 handle_ra_miss(mapping, ra, pgoff); 1249 goto no_cached_page; 1250 } 1251 ra->mmap_miss++; 1252 1253 /* 1254 * Do we miss much more than hit in this file? If so, 1255 * stop bothering with read-ahead. It will only hurt. 1256 */ 1257 if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS) 1258 goto no_cached_page; 1259 1260 /* 1261 * To keep the pgmajfault counter straight, we need to 1262 * check did_readaround, as this is an inner loop. 1263 */ 1264 if (!did_readaround) { 1265 majmin = VM_FAULT_MAJOR; 1266 inc_page_state(pgmajfault); 1267 } 1268 did_readaround = 1; 1269 ra_pages = max_sane_readahead(file->f_ra.ra_pages); 1270 if (ra_pages) { 1271 pgoff_t start = 0; 1272 1273 if (pgoff > ra_pages / 2) 1274 start = pgoff - ra_pages / 2; 1275 do_page_cache_readahead(mapping, file, start, ra_pages); 1276 } 1277 page = find_get_page(mapping, pgoff); 1278 if (!page) 1279 goto no_cached_page; 1280 } 1281 1282 if (!did_readaround) 1283 ra->mmap_hit++; 1284 1285 /* 1286 * Ok, found a page in the page cache, now we need to check 1287 * that it's up-to-date. 1288 */ 1289 if (!PageUptodate(page)) 1290 goto page_not_uptodate; 1291 1292 success: 1293 /* 1294 * Found the page and have a reference on it. 1295 */ 1296 mark_page_accessed(page); 1297 if (type) 1298 *type = majmin; 1299 return page; 1300 1301 outside_data_content: 1302 /* 1303 * An external ptracer can access pages that normally aren't 1304 * accessible.. 1305 */ 1306 if (area->vm_mm == current->mm) 1307 return NULL; 1308 /* Fall through to the non-read-ahead case */ 1309 no_cached_page: 1310 /* 1311 * We're only likely to ever get here if MADV_RANDOM is in 1312 * effect. 1313 */ 1314 error = page_cache_read(file, pgoff); 1315 grab_swap_token(); 1316 1317 /* 1318 * The page we want has now been added to the page cache. 1319 * In the unlikely event that someone removed it in the 1320 * meantime, we'll just come back here and read it again. 1321 */ 1322 if (error >= 0) 1323 goto retry_find; 1324 1325 /* 1326 * An error return from page_cache_read can result if the 1327 * system is low on memory, or a problem occurs while trying 1328 * to schedule I/O. 1329 */ 1330 if (error == -ENOMEM) 1331 return NOPAGE_OOM; 1332 return NULL; 1333 1334 page_not_uptodate: 1335 if (!did_readaround) { 1336 majmin = VM_FAULT_MAJOR; 1337 inc_page_state(pgmajfault); 1338 } 1339 lock_page(page); 1340 1341 /* Did it get unhashed while we waited for it? */ 1342 if (!page->mapping) { 1343 unlock_page(page); 1344 page_cache_release(page); 1345 goto retry_all; 1346 } 1347 1348 /* Did somebody else get it up-to-date? */ 1349 if (PageUptodate(page)) { 1350 unlock_page(page); 1351 goto success; 1352 } 1353 1354 error = mapping->a_ops->readpage(file, page); 1355 if (!error) { 1356 wait_on_page_locked(page); 1357 if (PageUptodate(page)) 1358 goto success; 1359 } else if (error == AOP_TRUNCATED_PAGE) { 1360 page_cache_release(page); 1361 goto retry_find; 1362 } 1363 1364 /* 1365 * Umm, take care of errors if the page isn't up-to-date. 1366 * Try to re-read it _once_. We do this synchronously, 1367 * because there really aren't any performance issues here 1368 * and we need to check for errors. 1369 */ 1370 lock_page(page); 1371 1372 /* Somebody truncated the page on us? */ 1373 if (!page->mapping) { 1374 unlock_page(page); 1375 page_cache_release(page); 1376 goto retry_all; 1377 } 1378 1379 /* Somebody else successfully read it in? */ 1380 if (PageUptodate(page)) { 1381 unlock_page(page); 1382 goto success; 1383 } 1384 ClearPageError(page); 1385 error = mapping->a_ops->readpage(file, page); 1386 if (!error) { 1387 wait_on_page_locked(page); 1388 if (PageUptodate(page)) 1389 goto success; 1390 } else if (error == AOP_TRUNCATED_PAGE) { 1391 page_cache_release(page); 1392 goto retry_find; 1393 } 1394 1395 /* 1396 * Things didn't work out. Return zero to tell the 1397 * mm layer so, possibly freeing the page cache page first. 1398 */ 1399 page_cache_release(page); 1400 return NULL; 1401 } 1402 1403 EXPORT_SYMBOL(filemap_nopage); 1404 1405 static struct page * filemap_getpage(struct file *file, unsigned long pgoff, 1406 int nonblock) 1407 { 1408 struct address_space *mapping = file->f_mapping; 1409 struct page *page; 1410 int error; 1411 1412 /* 1413 * Do we have something in the page cache already? 1414 */ 1415 retry_find: 1416 page = find_get_page(mapping, pgoff); 1417 if (!page) { 1418 if (nonblock) 1419 return NULL; 1420 goto no_cached_page; 1421 } 1422 1423 /* 1424 * Ok, found a page in the page cache, now we need to check 1425 * that it's up-to-date. 1426 */ 1427 if (!PageUptodate(page)) { 1428 if (nonblock) { 1429 page_cache_release(page); 1430 return NULL; 1431 } 1432 goto page_not_uptodate; 1433 } 1434 1435 success: 1436 /* 1437 * Found the page and have a reference on it. 1438 */ 1439 mark_page_accessed(page); 1440 return page; 1441 1442 no_cached_page: 1443 error = page_cache_read(file, pgoff); 1444 1445 /* 1446 * The page we want has now been added to the page cache. 1447 * In the unlikely event that someone removed it in the 1448 * meantime, we'll just come back here and read it again. 1449 */ 1450 if (error >= 0) 1451 goto retry_find; 1452 1453 /* 1454 * An error return from page_cache_read can result if the 1455 * system is low on memory, or a problem occurs while trying 1456 * to schedule I/O. 1457 */ 1458 return NULL; 1459 1460 page_not_uptodate: 1461 lock_page(page); 1462 1463 /* Did it get unhashed while we waited for it? */ 1464 if (!page->mapping) { 1465 unlock_page(page); 1466 goto err; 1467 } 1468 1469 /* Did somebody else get it up-to-date? */ 1470 if (PageUptodate(page)) { 1471 unlock_page(page); 1472 goto success; 1473 } 1474 1475 error = mapping->a_ops->readpage(file, page); 1476 if (!error) { 1477 wait_on_page_locked(page); 1478 if (PageUptodate(page)) 1479 goto success; 1480 } else if (error == AOP_TRUNCATED_PAGE) { 1481 page_cache_release(page); 1482 goto retry_find; 1483 } 1484 1485 /* 1486 * Umm, take care of errors if the page isn't up-to-date. 1487 * Try to re-read it _once_. We do this synchronously, 1488 * because there really aren't any performance issues here 1489 * and we need to check for errors. 1490 */ 1491 lock_page(page); 1492 1493 /* Somebody truncated the page on us? */ 1494 if (!page->mapping) { 1495 unlock_page(page); 1496 goto err; 1497 } 1498 /* Somebody else successfully read it in? */ 1499 if (PageUptodate(page)) { 1500 unlock_page(page); 1501 goto success; 1502 } 1503 1504 ClearPageError(page); 1505 error = mapping->a_ops->readpage(file, page); 1506 if (!error) { 1507 wait_on_page_locked(page); 1508 if (PageUptodate(page)) 1509 goto success; 1510 } else if (error == AOP_TRUNCATED_PAGE) { 1511 page_cache_release(page); 1512 goto retry_find; 1513 } 1514 1515 /* 1516 * Things didn't work out. Return zero to tell the 1517 * mm layer so, possibly freeing the page cache page first. 1518 */ 1519 err: 1520 page_cache_release(page); 1521 1522 return NULL; 1523 } 1524 1525 int filemap_populate(struct vm_area_struct *vma, unsigned long addr, 1526 unsigned long len, pgprot_t prot, unsigned long pgoff, 1527 int nonblock) 1528 { 1529 struct file *file = vma->vm_file; 1530 struct address_space *mapping = file->f_mapping; 1531 struct inode *inode = mapping->host; 1532 unsigned long size; 1533 struct mm_struct *mm = vma->vm_mm; 1534 struct page *page; 1535 int err; 1536 1537 if (!nonblock) 1538 force_page_cache_readahead(mapping, vma->vm_file, 1539 pgoff, len >> PAGE_CACHE_SHIFT); 1540 1541 repeat: 1542 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1543 if (pgoff + (len >> PAGE_CACHE_SHIFT) > size) 1544 return -EINVAL; 1545 1546 page = filemap_getpage(file, pgoff, nonblock); 1547 1548 /* XXX: This is wrong, a filesystem I/O error may have happened. Fix that as 1549 * done in shmem_populate calling shmem_getpage */ 1550 if (!page && !nonblock) 1551 return -ENOMEM; 1552 1553 if (page) { 1554 err = install_page(mm, vma, addr, page, prot); 1555 if (err) { 1556 page_cache_release(page); 1557 return err; 1558 } 1559 } else if (vma->vm_flags & VM_NONLINEAR) { 1560 /* No page was found just because we can't read it in now (being 1561 * here implies nonblock != 0), but the page may exist, so set 1562 * the PTE to fault it in later. */ 1563 err = install_file_pte(mm, vma, addr, pgoff, prot); 1564 if (err) 1565 return err; 1566 } 1567 1568 len -= PAGE_SIZE; 1569 addr += PAGE_SIZE; 1570 pgoff++; 1571 if (len) 1572 goto repeat; 1573 1574 return 0; 1575 } 1576 EXPORT_SYMBOL(filemap_populate); 1577 1578 struct vm_operations_struct generic_file_vm_ops = { 1579 .nopage = filemap_nopage, 1580 .populate = filemap_populate, 1581 }; 1582 1583 /* This is used for a general mmap of a disk file */ 1584 1585 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1586 { 1587 struct address_space *mapping = file->f_mapping; 1588 1589 if (!mapping->a_ops->readpage) 1590 return -ENOEXEC; 1591 file_accessed(file); 1592 vma->vm_ops = &generic_file_vm_ops; 1593 return 0; 1594 } 1595 1596 /* 1597 * This is for filesystems which do not implement ->writepage. 1598 */ 1599 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 1600 { 1601 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 1602 return -EINVAL; 1603 return generic_file_mmap(file, vma); 1604 } 1605 #else 1606 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1607 { 1608 return -ENOSYS; 1609 } 1610 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 1611 { 1612 return -ENOSYS; 1613 } 1614 #endif /* CONFIG_MMU */ 1615 1616 EXPORT_SYMBOL(generic_file_mmap); 1617 EXPORT_SYMBOL(generic_file_readonly_mmap); 1618 1619 static inline struct page *__read_cache_page(struct address_space *mapping, 1620 unsigned long index, 1621 int (*filler)(void *,struct page*), 1622 void *data) 1623 { 1624 struct page *page, *cached_page = NULL; 1625 int err; 1626 repeat: 1627 page = find_get_page(mapping, index); 1628 if (!page) { 1629 if (!cached_page) { 1630 cached_page = page_cache_alloc_cold(mapping); 1631 if (!cached_page) 1632 return ERR_PTR(-ENOMEM); 1633 } 1634 err = add_to_page_cache_lru(cached_page, mapping, 1635 index, GFP_KERNEL); 1636 if (err == -EEXIST) 1637 goto repeat; 1638 if (err < 0) { 1639 /* Presumably ENOMEM for radix tree node */ 1640 page_cache_release(cached_page); 1641 return ERR_PTR(err); 1642 } 1643 page = cached_page; 1644 cached_page = NULL; 1645 err = filler(data, page); 1646 if (err < 0) { 1647 page_cache_release(page); 1648 page = ERR_PTR(err); 1649 } 1650 } 1651 if (cached_page) 1652 page_cache_release(cached_page); 1653 return page; 1654 } 1655 1656 /* 1657 * Read into the page cache. If a page already exists, 1658 * and PageUptodate() is not set, try to fill the page. 1659 */ 1660 struct page *read_cache_page(struct address_space *mapping, 1661 unsigned long index, 1662 int (*filler)(void *,struct page*), 1663 void *data) 1664 { 1665 struct page *page; 1666 int err; 1667 1668 retry: 1669 page = __read_cache_page(mapping, index, filler, data); 1670 if (IS_ERR(page)) 1671 goto out; 1672 mark_page_accessed(page); 1673 if (PageUptodate(page)) 1674 goto out; 1675 1676 lock_page(page); 1677 if (!page->mapping) { 1678 unlock_page(page); 1679 page_cache_release(page); 1680 goto retry; 1681 } 1682 if (PageUptodate(page)) { 1683 unlock_page(page); 1684 goto out; 1685 } 1686 err = filler(data, page); 1687 if (err < 0) { 1688 page_cache_release(page); 1689 page = ERR_PTR(err); 1690 } 1691 out: 1692 return page; 1693 } 1694 1695 EXPORT_SYMBOL(read_cache_page); 1696 1697 /* 1698 * If the page was newly created, increment its refcount and add it to the 1699 * caller's lru-buffering pagevec. This function is specifically for 1700 * generic_file_write(). 1701 */ 1702 static inline struct page * 1703 __grab_cache_page(struct address_space *mapping, unsigned long index, 1704 struct page **cached_page, struct pagevec *lru_pvec) 1705 { 1706 int err; 1707 struct page *page; 1708 repeat: 1709 page = find_lock_page(mapping, index); 1710 if (!page) { 1711 if (!*cached_page) { 1712 *cached_page = page_cache_alloc(mapping); 1713 if (!*cached_page) 1714 return NULL; 1715 } 1716 err = add_to_page_cache(*cached_page, mapping, 1717 index, GFP_KERNEL); 1718 if (err == -EEXIST) 1719 goto repeat; 1720 if (err == 0) { 1721 page = *cached_page; 1722 page_cache_get(page); 1723 if (!pagevec_add(lru_pvec, page)) 1724 __pagevec_lru_add(lru_pvec); 1725 *cached_page = NULL; 1726 } 1727 } 1728 return page; 1729 } 1730 1731 /* 1732 * The logic we want is 1733 * 1734 * if suid or (sgid and xgrp) 1735 * remove privs 1736 */ 1737 int remove_suid(struct dentry *dentry) 1738 { 1739 mode_t mode = dentry->d_inode->i_mode; 1740 int kill = 0; 1741 int result = 0; 1742 1743 /* suid always must be killed */ 1744 if (unlikely(mode & S_ISUID)) 1745 kill = ATTR_KILL_SUID; 1746 1747 /* 1748 * sgid without any exec bits is just a mandatory locking mark; leave 1749 * it alone. If some exec bits are set, it's a real sgid; kill it. 1750 */ 1751 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1752 kill |= ATTR_KILL_SGID; 1753 1754 if (unlikely(kill && !capable(CAP_FSETID))) { 1755 struct iattr newattrs; 1756 1757 newattrs.ia_valid = ATTR_FORCE | kill; 1758 result = notify_change(dentry, &newattrs); 1759 } 1760 return result; 1761 } 1762 EXPORT_SYMBOL(remove_suid); 1763 1764 size_t 1765 __filemap_copy_from_user_iovec(char *vaddr, 1766 const struct iovec *iov, size_t base, size_t bytes) 1767 { 1768 size_t copied = 0, left = 0; 1769 1770 while (bytes) { 1771 char __user *buf = iov->iov_base + base; 1772 int copy = min(bytes, iov->iov_len - base); 1773 1774 base = 0; 1775 left = __copy_from_user_inatomic(vaddr, buf, copy); 1776 copied += copy; 1777 bytes -= copy; 1778 vaddr += copy; 1779 iov++; 1780 1781 if (unlikely(left)) { 1782 /* zero the rest of the target like __copy_from_user */ 1783 if (bytes) 1784 memset(vaddr, 0, bytes); 1785 break; 1786 } 1787 } 1788 return copied - left; 1789 } 1790 1791 /* 1792 * Performs necessary checks before doing a write 1793 * 1794 * Can adjust writing position aor amount of bytes to write. 1795 * Returns appropriate error code that caller should return or 1796 * zero in case that write should be allowed. 1797 */ 1798 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk) 1799 { 1800 struct inode *inode = file->f_mapping->host; 1801 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 1802 1803 if (unlikely(*pos < 0)) 1804 return -EINVAL; 1805 1806 if (!isblk) { 1807 /* FIXME: this is for backwards compatibility with 2.4 */ 1808 if (file->f_flags & O_APPEND) 1809 *pos = i_size_read(inode); 1810 1811 if (limit != RLIM_INFINITY) { 1812 if (*pos >= limit) { 1813 send_sig(SIGXFSZ, current, 0); 1814 return -EFBIG; 1815 } 1816 if (*count > limit - (typeof(limit))*pos) { 1817 *count = limit - (typeof(limit))*pos; 1818 } 1819 } 1820 } 1821 1822 /* 1823 * LFS rule 1824 */ 1825 if (unlikely(*pos + *count > MAX_NON_LFS && 1826 !(file->f_flags & O_LARGEFILE))) { 1827 if (*pos >= MAX_NON_LFS) { 1828 send_sig(SIGXFSZ, current, 0); 1829 return -EFBIG; 1830 } 1831 if (*count > MAX_NON_LFS - (unsigned long)*pos) { 1832 *count = MAX_NON_LFS - (unsigned long)*pos; 1833 } 1834 } 1835 1836 /* 1837 * Are we about to exceed the fs block limit ? 1838 * 1839 * If we have written data it becomes a short write. If we have 1840 * exceeded without writing data we send a signal and return EFBIG. 1841 * Linus frestrict idea will clean these up nicely.. 1842 */ 1843 if (likely(!isblk)) { 1844 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) { 1845 if (*count || *pos > inode->i_sb->s_maxbytes) { 1846 send_sig(SIGXFSZ, current, 0); 1847 return -EFBIG; 1848 } 1849 /* zero-length writes at ->s_maxbytes are OK */ 1850 } 1851 1852 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes)) 1853 *count = inode->i_sb->s_maxbytes - *pos; 1854 } else { 1855 loff_t isize; 1856 if (bdev_read_only(I_BDEV(inode))) 1857 return -EPERM; 1858 isize = i_size_read(inode); 1859 if (*pos >= isize) { 1860 if (*count || *pos > isize) 1861 return -ENOSPC; 1862 } 1863 1864 if (*pos + *count > isize) 1865 *count = isize - *pos; 1866 } 1867 return 0; 1868 } 1869 EXPORT_SYMBOL(generic_write_checks); 1870 1871 ssize_t 1872 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov, 1873 unsigned long *nr_segs, loff_t pos, loff_t *ppos, 1874 size_t count, size_t ocount) 1875 { 1876 struct file *file = iocb->ki_filp; 1877 struct address_space *mapping = file->f_mapping; 1878 struct inode *inode = mapping->host; 1879 ssize_t written; 1880 1881 if (count != ocount) 1882 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count); 1883 1884 written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs); 1885 if (written > 0) { 1886 loff_t end = pos + written; 1887 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 1888 i_size_write(inode, end); 1889 mark_inode_dirty(inode); 1890 } 1891 *ppos = end; 1892 } 1893 1894 /* 1895 * Sync the fs metadata but not the minor inode changes and 1896 * of course not the data as we did direct DMA for the IO. 1897 * i_mutex is held, which protects generic_osync_inode() from 1898 * livelocking. 1899 */ 1900 if (written >= 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 1901 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA); 1902 if (err < 0) 1903 written = err; 1904 } 1905 if (written == count && !is_sync_kiocb(iocb)) 1906 written = -EIOCBQUEUED; 1907 return written; 1908 } 1909 EXPORT_SYMBOL(generic_file_direct_write); 1910 1911 ssize_t 1912 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov, 1913 unsigned long nr_segs, loff_t pos, loff_t *ppos, 1914 size_t count, ssize_t written) 1915 { 1916 struct file *file = iocb->ki_filp; 1917 struct address_space * mapping = file->f_mapping; 1918 struct address_space_operations *a_ops = mapping->a_ops; 1919 struct inode *inode = mapping->host; 1920 long status = 0; 1921 struct page *page; 1922 struct page *cached_page = NULL; 1923 size_t bytes; 1924 struct pagevec lru_pvec; 1925 const struct iovec *cur_iov = iov; /* current iovec */ 1926 size_t iov_base = 0; /* offset in the current iovec */ 1927 char __user *buf; 1928 1929 pagevec_init(&lru_pvec, 0); 1930 1931 /* 1932 * handle partial DIO write. Adjust cur_iov if needed. 1933 */ 1934 if (likely(nr_segs == 1)) 1935 buf = iov->iov_base + written; 1936 else { 1937 filemap_set_next_iovec(&cur_iov, &iov_base, written); 1938 buf = cur_iov->iov_base + iov_base; 1939 } 1940 1941 do { 1942 unsigned long index; 1943 unsigned long offset; 1944 unsigned long maxlen; 1945 size_t copied; 1946 1947 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */ 1948 index = pos >> PAGE_CACHE_SHIFT; 1949 bytes = PAGE_CACHE_SIZE - offset; 1950 if (bytes > count) 1951 bytes = count; 1952 1953 /* 1954 * Bring in the user page that we will copy from _first_. 1955 * Otherwise there's a nasty deadlock on copying from the 1956 * same page as we're writing to, without it being marked 1957 * up-to-date. 1958 */ 1959 maxlen = cur_iov->iov_len - iov_base; 1960 if (maxlen > bytes) 1961 maxlen = bytes; 1962 fault_in_pages_readable(buf, maxlen); 1963 1964 page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec); 1965 if (!page) { 1966 status = -ENOMEM; 1967 break; 1968 } 1969 1970 status = a_ops->prepare_write(file, page, offset, offset+bytes); 1971 if (unlikely(status)) { 1972 loff_t isize = i_size_read(inode); 1973 1974 if (status != AOP_TRUNCATED_PAGE) 1975 unlock_page(page); 1976 page_cache_release(page); 1977 if (status == AOP_TRUNCATED_PAGE) 1978 continue; 1979 /* 1980 * prepare_write() may have instantiated a few blocks 1981 * outside i_size. Trim these off again. 1982 */ 1983 if (pos + bytes > isize) 1984 vmtruncate(inode, isize); 1985 break; 1986 } 1987 if (likely(nr_segs == 1)) 1988 copied = filemap_copy_from_user(page, offset, 1989 buf, bytes); 1990 else 1991 copied = filemap_copy_from_user_iovec(page, offset, 1992 cur_iov, iov_base, bytes); 1993 flush_dcache_page(page); 1994 status = a_ops->commit_write(file, page, offset, offset+bytes); 1995 if (status == AOP_TRUNCATED_PAGE) { 1996 page_cache_release(page); 1997 continue; 1998 } 1999 if (likely(copied > 0)) { 2000 if (!status) 2001 status = copied; 2002 2003 if (status >= 0) { 2004 written += status; 2005 count -= status; 2006 pos += status; 2007 buf += status; 2008 if (unlikely(nr_segs > 1)) { 2009 filemap_set_next_iovec(&cur_iov, 2010 &iov_base, status); 2011 if (count) 2012 buf = cur_iov->iov_base + 2013 iov_base; 2014 } else { 2015 iov_base += status; 2016 } 2017 } 2018 } 2019 if (unlikely(copied != bytes)) 2020 if (status >= 0) 2021 status = -EFAULT; 2022 unlock_page(page); 2023 mark_page_accessed(page); 2024 page_cache_release(page); 2025 if (status < 0) 2026 break; 2027 balance_dirty_pages_ratelimited(mapping); 2028 cond_resched(); 2029 } while (count); 2030 *ppos = pos; 2031 2032 if (cached_page) 2033 page_cache_release(cached_page); 2034 2035 /* 2036 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC 2037 */ 2038 if (likely(status >= 0)) { 2039 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2040 if (!a_ops->writepage || !is_sync_kiocb(iocb)) 2041 status = generic_osync_inode(inode, mapping, 2042 OSYNC_METADATA|OSYNC_DATA); 2043 } 2044 } 2045 2046 /* 2047 * If we get here for O_DIRECT writes then we must have fallen through 2048 * to buffered writes (block instantiation inside i_size). So we sync 2049 * the file data here, to try to honour O_DIRECT expectations. 2050 */ 2051 if (unlikely(file->f_flags & O_DIRECT) && written) 2052 status = filemap_write_and_wait(mapping); 2053 2054 pagevec_lru_add(&lru_pvec); 2055 return written ? written : status; 2056 } 2057 EXPORT_SYMBOL(generic_file_buffered_write); 2058 2059 static ssize_t 2060 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov, 2061 unsigned long nr_segs, loff_t *ppos) 2062 { 2063 struct file *file = iocb->ki_filp; 2064 struct address_space * mapping = file->f_mapping; 2065 size_t ocount; /* original count */ 2066 size_t count; /* after file limit checks */ 2067 struct inode *inode = mapping->host; 2068 unsigned long seg; 2069 loff_t pos; 2070 ssize_t written; 2071 ssize_t err; 2072 2073 ocount = 0; 2074 for (seg = 0; seg < nr_segs; seg++) { 2075 const struct iovec *iv = &iov[seg]; 2076 2077 /* 2078 * If any segment has a negative length, or the cumulative 2079 * length ever wraps negative then return -EINVAL. 2080 */ 2081 ocount += iv->iov_len; 2082 if (unlikely((ssize_t)(ocount|iv->iov_len) < 0)) 2083 return -EINVAL; 2084 if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len)) 2085 continue; 2086 if (seg == 0) 2087 return -EFAULT; 2088 nr_segs = seg; 2089 ocount -= iv->iov_len; /* This segment is no good */ 2090 break; 2091 } 2092 2093 count = ocount; 2094 pos = *ppos; 2095 2096 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); 2097 2098 /* We can write back this queue in page reclaim */ 2099 current->backing_dev_info = mapping->backing_dev_info; 2100 written = 0; 2101 2102 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 2103 if (err) 2104 goto out; 2105 2106 if (count == 0) 2107 goto out; 2108 2109 err = remove_suid(file->f_dentry); 2110 if (err) 2111 goto out; 2112 2113 file_update_time(file); 2114 2115 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 2116 if (unlikely(file->f_flags & O_DIRECT)) { 2117 written = generic_file_direct_write(iocb, iov, 2118 &nr_segs, pos, ppos, count, ocount); 2119 if (written < 0 || written == count) 2120 goto out; 2121 /* 2122 * direct-io write to a hole: fall through to buffered I/O 2123 * for completing the rest of the request. 2124 */ 2125 pos += written; 2126 count -= written; 2127 } 2128 2129 written = generic_file_buffered_write(iocb, iov, nr_segs, 2130 pos, ppos, count, written); 2131 out: 2132 current->backing_dev_info = NULL; 2133 return written ? written : err; 2134 } 2135 EXPORT_SYMBOL(generic_file_aio_write_nolock); 2136 2137 ssize_t 2138 generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov, 2139 unsigned long nr_segs, loff_t *ppos) 2140 { 2141 struct file *file = iocb->ki_filp; 2142 struct address_space *mapping = file->f_mapping; 2143 struct inode *inode = mapping->host; 2144 ssize_t ret; 2145 loff_t pos = *ppos; 2146 2147 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, ppos); 2148 2149 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2150 int err; 2151 2152 err = sync_page_range_nolock(inode, mapping, pos, ret); 2153 if (err < 0) 2154 ret = err; 2155 } 2156 return ret; 2157 } 2158 2159 static ssize_t 2160 __generic_file_write_nolock(struct file *file, const struct iovec *iov, 2161 unsigned long nr_segs, loff_t *ppos) 2162 { 2163 struct kiocb kiocb; 2164 ssize_t ret; 2165 2166 init_sync_kiocb(&kiocb, file); 2167 ret = __generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos); 2168 if (ret == -EIOCBQUEUED) 2169 ret = wait_on_sync_kiocb(&kiocb); 2170 return ret; 2171 } 2172 2173 ssize_t 2174 generic_file_write_nolock(struct file *file, const struct iovec *iov, 2175 unsigned long nr_segs, loff_t *ppos) 2176 { 2177 struct kiocb kiocb; 2178 ssize_t ret; 2179 2180 init_sync_kiocb(&kiocb, file); 2181 ret = generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos); 2182 if (-EIOCBQUEUED == ret) 2183 ret = wait_on_sync_kiocb(&kiocb); 2184 return ret; 2185 } 2186 EXPORT_SYMBOL(generic_file_write_nolock); 2187 2188 ssize_t generic_file_aio_write(struct kiocb *iocb, const char __user *buf, 2189 size_t count, loff_t pos) 2190 { 2191 struct file *file = iocb->ki_filp; 2192 struct address_space *mapping = file->f_mapping; 2193 struct inode *inode = mapping->host; 2194 ssize_t ret; 2195 struct iovec local_iov = { .iov_base = (void __user *)buf, 2196 .iov_len = count }; 2197 2198 BUG_ON(iocb->ki_pos != pos); 2199 2200 mutex_lock(&inode->i_mutex); 2201 ret = __generic_file_aio_write_nolock(iocb, &local_iov, 1, 2202 &iocb->ki_pos); 2203 mutex_unlock(&inode->i_mutex); 2204 2205 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2206 ssize_t err; 2207 2208 err = sync_page_range(inode, mapping, pos, ret); 2209 if (err < 0) 2210 ret = err; 2211 } 2212 return ret; 2213 } 2214 EXPORT_SYMBOL(generic_file_aio_write); 2215 2216 ssize_t generic_file_write(struct file *file, const char __user *buf, 2217 size_t count, loff_t *ppos) 2218 { 2219 struct address_space *mapping = file->f_mapping; 2220 struct inode *inode = mapping->host; 2221 ssize_t ret; 2222 struct iovec local_iov = { .iov_base = (void __user *)buf, 2223 .iov_len = count }; 2224 2225 mutex_lock(&inode->i_mutex); 2226 ret = __generic_file_write_nolock(file, &local_iov, 1, ppos); 2227 mutex_unlock(&inode->i_mutex); 2228 2229 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2230 ssize_t err; 2231 2232 err = sync_page_range(inode, mapping, *ppos - ret, ret); 2233 if (err < 0) 2234 ret = err; 2235 } 2236 return ret; 2237 } 2238 EXPORT_SYMBOL(generic_file_write); 2239 2240 ssize_t generic_file_readv(struct file *filp, const struct iovec *iov, 2241 unsigned long nr_segs, loff_t *ppos) 2242 { 2243 struct kiocb kiocb; 2244 ssize_t ret; 2245 2246 init_sync_kiocb(&kiocb, filp); 2247 ret = __generic_file_aio_read(&kiocb, iov, nr_segs, ppos); 2248 if (-EIOCBQUEUED == ret) 2249 ret = wait_on_sync_kiocb(&kiocb); 2250 return ret; 2251 } 2252 EXPORT_SYMBOL(generic_file_readv); 2253 2254 ssize_t generic_file_writev(struct file *file, const struct iovec *iov, 2255 unsigned long nr_segs, loff_t *ppos) 2256 { 2257 struct address_space *mapping = file->f_mapping; 2258 struct inode *inode = mapping->host; 2259 ssize_t ret; 2260 2261 mutex_lock(&inode->i_mutex); 2262 ret = __generic_file_write_nolock(file, iov, nr_segs, ppos); 2263 mutex_unlock(&inode->i_mutex); 2264 2265 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2266 int err; 2267 2268 err = sync_page_range(inode, mapping, *ppos - ret, ret); 2269 if (err < 0) 2270 ret = err; 2271 } 2272 return ret; 2273 } 2274 EXPORT_SYMBOL(generic_file_writev); 2275 2276 /* 2277 * Called under i_mutex for writes to S_ISREG files. Returns -EIO if something 2278 * went wrong during pagecache shootdown. 2279 */ 2280 static ssize_t 2281 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, 2282 loff_t offset, unsigned long nr_segs) 2283 { 2284 struct file *file = iocb->ki_filp; 2285 struct address_space *mapping = file->f_mapping; 2286 ssize_t retval; 2287 size_t write_len = 0; 2288 2289 /* 2290 * If it's a write, unmap all mmappings of the file up-front. This 2291 * will cause any pte dirty bits to be propagated into the pageframes 2292 * for the subsequent filemap_write_and_wait(). 2293 */ 2294 if (rw == WRITE) { 2295 write_len = iov_length(iov, nr_segs); 2296 if (mapping_mapped(mapping)) 2297 unmap_mapping_range(mapping, offset, write_len, 0); 2298 } 2299 2300 retval = filemap_write_and_wait(mapping); 2301 if (retval == 0) { 2302 retval = mapping->a_ops->direct_IO(rw, iocb, iov, 2303 offset, nr_segs); 2304 if (rw == WRITE && mapping->nrpages) { 2305 pgoff_t end = (offset + write_len - 1) 2306 >> PAGE_CACHE_SHIFT; 2307 int err = invalidate_inode_pages2_range(mapping, 2308 offset >> PAGE_CACHE_SHIFT, end); 2309 if (err) 2310 retval = err; 2311 } 2312 } 2313 return retval; 2314 } 2315