xref: /linux/mm/filemap.c (revision d67b569f5f620c0fb95d5212642746b7ba9d29e4)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/config.h>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <linux/compiler.h>
16 #include <linux/fs.h>
17 #include <linux/aio.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/file.h>
24 #include <linux/uio.h>
25 #include <linux/hash.h>
26 #include <linux/writeback.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include "filemap.h"
32 /*
33  * FIXME: remove all knowledge of the buffer layer from the core VM
34  */
35 #include <linux/buffer_head.h> /* for generic_osync_inode */
36 
37 #include <asm/uaccess.h>
38 #include <asm/mman.h>
39 
40 /*
41  * Shared mappings implemented 30.11.1994. It's not fully working yet,
42  * though.
43  *
44  * Shared mappings now work. 15.8.1995  Bruno.
45  *
46  * finished 'unifying' the page and buffer cache and SMP-threaded the
47  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
48  *
49  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
50  */
51 
52 /*
53  * Lock ordering:
54  *
55  *  ->i_mmap_lock		(vmtruncate)
56  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
57  *      ->swap_list_lock
58  *        ->swap_device_lock	(exclusive_swap_page, others)
59  *          ->mapping->tree_lock
60  *
61  *  ->i_sem
62  *    ->i_mmap_lock		(truncate->unmap_mapping_range)
63  *
64  *  ->mmap_sem
65  *    ->i_mmap_lock
66  *      ->page_table_lock	(various places, mainly in mmap.c)
67  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
68  *
69  *  ->mmap_sem
70  *    ->lock_page		(access_process_vm)
71  *
72  *  ->mmap_sem
73  *    ->i_sem			(msync)
74  *
75  *  ->i_sem
76  *    ->i_alloc_sem             (various)
77  *
78  *  ->inode_lock
79  *    ->sb_lock			(fs/fs-writeback.c)
80  *    ->mapping->tree_lock	(__sync_single_inode)
81  *
82  *  ->i_mmap_lock
83  *    ->anon_vma.lock		(vma_adjust)
84  *
85  *  ->anon_vma.lock
86  *    ->page_table_lock		(anon_vma_prepare and various)
87  *
88  *  ->page_table_lock
89  *    ->swap_device_lock	(try_to_unmap_one)
90  *    ->private_lock		(try_to_unmap_one)
91  *    ->tree_lock		(try_to_unmap_one)
92  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
93  *    ->private_lock		(page_remove_rmap->set_page_dirty)
94  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
95  *    ->inode_lock		(page_remove_rmap->set_page_dirty)
96  *    ->inode_lock		(zap_pte_range->set_page_dirty)
97  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
98  *
99  *  ->task->proc_lock
100  *    ->dcache_lock		(proc_pid_lookup)
101  */
102 
103 /*
104  * Remove a page from the page cache and free it. Caller has to make
105  * sure the page is locked and that nobody else uses it - or that usage
106  * is safe.  The caller must hold a write_lock on the mapping's tree_lock.
107  */
108 void __remove_from_page_cache(struct page *page)
109 {
110 	struct address_space *mapping = page->mapping;
111 
112 	radix_tree_delete(&mapping->page_tree, page->index);
113 	page->mapping = NULL;
114 	mapping->nrpages--;
115 	pagecache_acct(-1);
116 }
117 
118 void remove_from_page_cache(struct page *page)
119 {
120 	struct address_space *mapping = page->mapping;
121 
122 	BUG_ON(!PageLocked(page));
123 
124 	write_lock_irq(&mapping->tree_lock);
125 	__remove_from_page_cache(page);
126 	write_unlock_irq(&mapping->tree_lock);
127 }
128 
129 static int sync_page(void *word)
130 {
131 	struct address_space *mapping;
132 	struct page *page;
133 
134 	page = container_of((page_flags_t *)word, struct page, flags);
135 
136 	/*
137 	 * page_mapping() is being called without PG_locked held.
138 	 * Some knowledge of the state and use of the page is used to
139 	 * reduce the requirements down to a memory barrier.
140 	 * The danger here is of a stale page_mapping() return value
141 	 * indicating a struct address_space different from the one it's
142 	 * associated with when it is associated with one.
143 	 * After smp_mb(), it's either the correct page_mapping() for
144 	 * the page, or an old page_mapping() and the page's own
145 	 * page_mapping() has gone NULL.
146 	 * The ->sync_page() address_space operation must tolerate
147 	 * page_mapping() going NULL. By an amazing coincidence,
148 	 * this comes about because none of the users of the page
149 	 * in the ->sync_page() methods make essential use of the
150 	 * page_mapping(), merely passing the page down to the backing
151 	 * device's unplug functions when it's non-NULL, which in turn
152 	 * ignore it for all cases but swap, where only page->private is
153 	 * of interest. When page_mapping() does go NULL, the entire
154 	 * call stack gracefully ignores the page and returns.
155 	 * -- wli
156 	 */
157 	smp_mb();
158 	mapping = page_mapping(page);
159 	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
160 		mapping->a_ops->sync_page(page);
161 	io_schedule();
162 	return 0;
163 }
164 
165 /**
166  * filemap_fdatawrite_range - start writeback against all of a mapping's
167  * dirty pages that lie within the byte offsets <start, end>
168  * @mapping:	address space structure to write
169  * @start:	offset in bytes where the range starts
170  * @end:	offset in bytes where the range ends
171  * @sync_mode:	enable synchronous operation
172  *
173  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
174  * opposed to a regular memory * cleansing writeback.  The difference between
175  * these two operations is that if a dirty page/buffer is encountered, it must
176  * be waited upon, and not just skipped over.
177  */
178 static int __filemap_fdatawrite_range(struct address_space *mapping,
179 	loff_t start, loff_t end, int sync_mode)
180 {
181 	int ret;
182 	struct writeback_control wbc = {
183 		.sync_mode = sync_mode,
184 		.nr_to_write = mapping->nrpages * 2,
185 		.start = start,
186 		.end = end,
187 	};
188 
189 	if (!mapping_cap_writeback_dirty(mapping))
190 		return 0;
191 
192 	ret = do_writepages(mapping, &wbc);
193 	return ret;
194 }
195 
196 static inline int __filemap_fdatawrite(struct address_space *mapping,
197 	int sync_mode)
198 {
199 	return __filemap_fdatawrite_range(mapping, 0, 0, sync_mode);
200 }
201 
202 int filemap_fdatawrite(struct address_space *mapping)
203 {
204 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
205 }
206 EXPORT_SYMBOL(filemap_fdatawrite);
207 
208 static int filemap_fdatawrite_range(struct address_space *mapping,
209 	loff_t start, loff_t end)
210 {
211 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
212 }
213 
214 /*
215  * This is a mostly non-blocking flush.  Not suitable for data-integrity
216  * purposes - I/O may not be started against all dirty pages.
217  */
218 int filemap_flush(struct address_space *mapping)
219 {
220 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
221 }
222 EXPORT_SYMBOL(filemap_flush);
223 
224 /*
225  * Wait for writeback to complete against pages indexed by start->end
226  * inclusive
227  */
228 static int wait_on_page_writeback_range(struct address_space *mapping,
229 				pgoff_t start, pgoff_t end)
230 {
231 	struct pagevec pvec;
232 	int nr_pages;
233 	int ret = 0;
234 	pgoff_t index;
235 
236 	if (end < start)
237 		return 0;
238 
239 	pagevec_init(&pvec, 0);
240 	index = start;
241 	while ((index <= end) &&
242 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
243 			PAGECACHE_TAG_WRITEBACK,
244 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
245 		unsigned i;
246 
247 		for (i = 0; i < nr_pages; i++) {
248 			struct page *page = pvec.pages[i];
249 
250 			/* until radix tree lookup accepts end_index */
251 			if (page->index > end)
252 				continue;
253 
254 			wait_on_page_writeback(page);
255 			if (PageError(page))
256 				ret = -EIO;
257 		}
258 		pagevec_release(&pvec);
259 		cond_resched();
260 	}
261 
262 	/* Check for outstanding write errors */
263 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
264 		ret = -ENOSPC;
265 	if (test_and_clear_bit(AS_EIO, &mapping->flags))
266 		ret = -EIO;
267 
268 	return ret;
269 }
270 
271 /*
272  * Write and wait upon all the pages in the passed range.  This is a "data
273  * integrity" operation.  It waits upon in-flight writeout before starting and
274  * waiting upon new writeout.  If there was an IO error, return it.
275  *
276  * We need to re-take i_sem during the generic_osync_inode list walk because
277  * it is otherwise livelockable.
278  */
279 int sync_page_range(struct inode *inode, struct address_space *mapping,
280 			loff_t pos, size_t count)
281 {
282 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
283 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
284 	int ret;
285 
286 	if (!mapping_cap_writeback_dirty(mapping) || !count)
287 		return 0;
288 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
289 	if (ret == 0) {
290 		down(&inode->i_sem);
291 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
292 		up(&inode->i_sem);
293 	}
294 	if (ret == 0)
295 		ret = wait_on_page_writeback_range(mapping, start, end);
296 	return ret;
297 }
298 EXPORT_SYMBOL(sync_page_range);
299 
300 /*
301  * Note: Holding i_sem across sync_page_range_nolock is not a good idea
302  * as it forces O_SYNC writers to different parts of the same file
303  * to be serialised right until io completion.
304  */
305 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
306 			loff_t pos, size_t count)
307 {
308 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
309 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
310 	int ret;
311 
312 	if (!mapping_cap_writeback_dirty(mapping) || !count)
313 		return 0;
314 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
315 	if (ret == 0)
316 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
317 	if (ret == 0)
318 		ret = wait_on_page_writeback_range(mapping, start, end);
319 	return ret;
320 }
321 EXPORT_SYMBOL(sync_page_range_nolock);
322 
323 /**
324  * filemap_fdatawait - walk the list of under-writeback pages of the given
325  *     address space and wait for all of them.
326  *
327  * @mapping: address space structure to wait for
328  */
329 int filemap_fdatawait(struct address_space *mapping)
330 {
331 	loff_t i_size = i_size_read(mapping->host);
332 
333 	if (i_size == 0)
334 		return 0;
335 
336 	return wait_on_page_writeback_range(mapping, 0,
337 				(i_size - 1) >> PAGE_CACHE_SHIFT);
338 }
339 EXPORT_SYMBOL(filemap_fdatawait);
340 
341 int filemap_write_and_wait(struct address_space *mapping)
342 {
343 	int retval = 0;
344 
345 	if (mapping->nrpages) {
346 		retval = filemap_fdatawrite(mapping);
347 		if (retval == 0)
348 			retval = filemap_fdatawait(mapping);
349 	}
350 	return retval;
351 }
352 
353 int filemap_write_and_wait_range(struct address_space *mapping,
354 				 loff_t lstart, loff_t lend)
355 {
356 	int retval = 0;
357 
358 	if (mapping->nrpages) {
359 		retval = __filemap_fdatawrite_range(mapping, lstart, lend,
360 						    WB_SYNC_ALL);
361 		if (retval == 0)
362 			retval = wait_on_page_writeback_range(mapping,
363 						    lstart >> PAGE_CACHE_SHIFT,
364 						    lend >> PAGE_CACHE_SHIFT);
365 	}
366 	return retval;
367 }
368 
369 /*
370  * This function is used to add newly allocated pagecache pages:
371  * the page is new, so we can just run SetPageLocked() against it.
372  * The other page state flags were set by rmqueue().
373  *
374  * This function does not add the page to the LRU.  The caller must do that.
375  */
376 int add_to_page_cache(struct page *page, struct address_space *mapping,
377 		pgoff_t offset, int gfp_mask)
378 {
379 	int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
380 
381 	if (error == 0) {
382 		write_lock_irq(&mapping->tree_lock);
383 		error = radix_tree_insert(&mapping->page_tree, offset, page);
384 		if (!error) {
385 			page_cache_get(page);
386 			SetPageLocked(page);
387 			page->mapping = mapping;
388 			page->index = offset;
389 			mapping->nrpages++;
390 			pagecache_acct(1);
391 		}
392 		write_unlock_irq(&mapping->tree_lock);
393 		radix_tree_preload_end();
394 	}
395 	return error;
396 }
397 
398 EXPORT_SYMBOL(add_to_page_cache);
399 
400 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
401 				pgoff_t offset, int gfp_mask)
402 {
403 	int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
404 	if (ret == 0)
405 		lru_cache_add(page);
406 	return ret;
407 }
408 
409 /*
410  * In order to wait for pages to become available there must be
411  * waitqueues associated with pages. By using a hash table of
412  * waitqueues where the bucket discipline is to maintain all
413  * waiters on the same queue and wake all when any of the pages
414  * become available, and for the woken contexts to check to be
415  * sure the appropriate page became available, this saves space
416  * at a cost of "thundering herd" phenomena during rare hash
417  * collisions.
418  */
419 static wait_queue_head_t *page_waitqueue(struct page *page)
420 {
421 	const struct zone *zone = page_zone(page);
422 
423 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
424 }
425 
426 static inline void wake_up_page(struct page *page, int bit)
427 {
428 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
429 }
430 
431 void fastcall wait_on_page_bit(struct page *page, int bit_nr)
432 {
433 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
434 
435 	if (test_bit(bit_nr, &page->flags))
436 		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
437 							TASK_UNINTERRUPTIBLE);
438 }
439 EXPORT_SYMBOL(wait_on_page_bit);
440 
441 /**
442  * unlock_page() - unlock a locked page
443  *
444  * @page: the page
445  *
446  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
447  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
448  * mechananism between PageLocked pages and PageWriteback pages is shared.
449  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
450  *
451  * The first mb is necessary to safely close the critical section opened by the
452  * TestSetPageLocked(), the second mb is necessary to enforce ordering between
453  * the clear_bit and the read of the waitqueue (to avoid SMP races with a
454  * parallel wait_on_page_locked()).
455  */
456 void fastcall unlock_page(struct page *page)
457 {
458 	smp_mb__before_clear_bit();
459 	if (!TestClearPageLocked(page))
460 		BUG();
461 	smp_mb__after_clear_bit();
462 	wake_up_page(page, PG_locked);
463 }
464 EXPORT_SYMBOL(unlock_page);
465 
466 /*
467  * End writeback against a page.
468  */
469 void end_page_writeback(struct page *page)
470 {
471 	if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
472 		if (!test_clear_page_writeback(page))
473 			BUG();
474 	}
475 	smp_mb__after_clear_bit();
476 	wake_up_page(page, PG_writeback);
477 }
478 EXPORT_SYMBOL(end_page_writeback);
479 
480 /*
481  * Get a lock on the page, assuming we need to sleep to get it.
482  *
483  * Ugly: running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
484  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
485  * chances are that on the second loop, the block layer's plug list is empty,
486  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
487  */
488 void fastcall __lock_page(struct page *page)
489 {
490 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
491 
492 	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
493 							TASK_UNINTERRUPTIBLE);
494 }
495 EXPORT_SYMBOL(__lock_page);
496 
497 /*
498  * a rather lightweight function, finding and getting a reference to a
499  * hashed page atomically.
500  */
501 struct page * find_get_page(struct address_space *mapping, unsigned long offset)
502 {
503 	struct page *page;
504 
505 	read_lock_irq(&mapping->tree_lock);
506 	page = radix_tree_lookup(&mapping->page_tree, offset);
507 	if (page)
508 		page_cache_get(page);
509 	read_unlock_irq(&mapping->tree_lock);
510 	return page;
511 }
512 
513 EXPORT_SYMBOL(find_get_page);
514 
515 /*
516  * Same as above, but trylock it instead of incrementing the count.
517  */
518 struct page *find_trylock_page(struct address_space *mapping, unsigned long offset)
519 {
520 	struct page *page;
521 
522 	read_lock_irq(&mapping->tree_lock);
523 	page = radix_tree_lookup(&mapping->page_tree, offset);
524 	if (page && TestSetPageLocked(page))
525 		page = NULL;
526 	read_unlock_irq(&mapping->tree_lock);
527 	return page;
528 }
529 
530 EXPORT_SYMBOL(find_trylock_page);
531 
532 /**
533  * find_lock_page - locate, pin and lock a pagecache page
534  *
535  * @mapping: the address_space to search
536  * @offset: the page index
537  *
538  * Locates the desired pagecache page, locks it, increments its reference
539  * count and returns its address.
540  *
541  * Returns zero if the page was not present. find_lock_page() may sleep.
542  */
543 struct page *find_lock_page(struct address_space *mapping,
544 				unsigned long offset)
545 {
546 	struct page *page;
547 
548 	read_lock_irq(&mapping->tree_lock);
549 repeat:
550 	page = radix_tree_lookup(&mapping->page_tree, offset);
551 	if (page) {
552 		page_cache_get(page);
553 		if (TestSetPageLocked(page)) {
554 			read_unlock_irq(&mapping->tree_lock);
555 			lock_page(page);
556 			read_lock_irq(&mapping->tree_lock);
557 
558 			/* Has the page been truncated while we slept? */
559 			if (page->mapping != mapping || page->index != offset) {
560 				unlock_page(page);
561 				page_cache_release(page);
562 				goto repeat;
563 			}
564 		}
565 	}
566 	read_unlock_irq(&mapping->tree_lock);
567 	return page;
568 }
569 
570 EXPORT_SYMBOL(find_lock_page);
571 
572 /**
573  * find_or_create_page - locate or add a pagecache page
574  *
575  * @mapping: the page's address_space
576  * @index: the page's index into the mapping
577  * @gfp_mask: page allocation mode
578  *
579  * Locates a page in the pagecache.  If the page is not present, a new page
580  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
581  * LRU list.  The returned page is locked and has its reference count
582  * incremented.
583  *
584  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
585  * allocation!
586  *
587  * find_or_create_page() returns the desired page's address, or zero on
588  * memory exhaustion.
589  */
590 struct page *find_or_create_page(struct address_space *mapping,
591 		unsigned long index, unsigned int gfp_mask)
592 {
593 	struct page *page, *cached_page = NULL;
594 	int err;
595 repeat:
596 	page = find_lock_page(mapping, index);
597 	if (!page) {
598 		if (!cached_page) {
599 			cached_page = alloc_page(gfp_mask);
600 			if (!cached_page)
601 				return NULL;
602 		}
603 		err = add_to_page_cache_lru(cached_page, mapping,
604 					index, gfp_mask);
605 		if (!err) {
606 			page = cached_page;
607 			cached_page = NULL;
608 		} else if (err == -EEXIST)
609 			goto repeat;
610 	}
611 	if (cached_page)
612 		page_cache_release(cached_page);
613 	return page;
614 }
615 
616 EXPORT_SYMBOL(find_or_create_page);
617 
618 /**
619  * find_get_pages - gang pagecache lookup
620  * @mapping:	The address_space to search
621  * @start:	The starting page index
622  * @nr_pages:	The maximum number of pages
623  * @pages:	Where the resulting pages are placed
624  *
625  * find_get_pages() will search for and return a group of up to
626  * @nr_pages pages in the mapping.  The pages are placed at @pages.
627  * find_get_pages() takes a reference against the returned pages.
628  *
629  * The search returns a group of mapping-contiguous pages with ascending
630  * indexes.  There may be holes in the indices due to not-present pages.
631  *
632  * find_get_pages() returns the number of pages which were found.
633  */
634 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
635 			    unsigned int nr_pages, struct page **pages)
636 {
637 	unsigned int i;
638 	unsigned int ret;
639 
640 	read_lock_irq(&mapping->tree_lock);
641 	ret = radix_tree_gang_lookup(&mapping->page_tree,
642 				(void **)pages, start, nr_pages);
643 	for (i = 0; i < ret; i++)
644 		page_cache_get(pages[i]);
645 	read_unlock_irq(&mapping->tree_lock);
646 	return ret;
647 }
648 
649 /*
650  * Like find_get_pages, except we only return pages which are tagged with
651  * `tag'.   We update *index to index the next page for the traversal.
652  */
653 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
654 			int tag, unsigned int nr_pages, struct page **pages)
655 {
656 	unsigned int i;
657 	unsigned int ret;
658 
659 	read_lock_irq(&mapping->tree_lock);
660 	ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
661 				(void **)pages, *index, nr_pages, tag);
662 	for (i = 0; i < ret; i++)
663 		page_cache_get(pages[i]);
664 	if (ret)
665 		*index = pages[ret - 1]->index + 1;
666 	read_unlock_irq(&mapping->tree_lock);
667 	return ret;
668 }
669 
670 /*
671  * Same as grab_cache_page, but do not wait if the page is unavailable.
672  * This is intended for speculative data generators, where the data can
673  * be regenerated if the page couldn't be grabbed.  This routine should
674  * be safe to call while holding the lock for another page.
675  *
676  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
677  * and deadlock against the caller's locked page.
678  */
679 struct page *
680 grab_cache_page_nowait(struct address_space *mapping, unsigned long index)
681 {
682 	struct page *page = find_get_page(mapping, index);
683 	unsigned int gfp_mask;
684 
685 	if (page) {
686 		if (!TestSetPageLocked(page))
687 			return page;
688 		page_cache_release(page);
689 		return NULL;
690 	}
691 	gfp_mask = mapping_gfp_mask(mapping) & ~__GFP_FS;
692 	page = alloc_pages(gfp_mask, 0);
693 	if (page && add_to_page_cache_lru(page, mapping, index, gfp_mask)) {
694 		page_cache_release(page);
695 		page = NULL;
696 	}
697 	return page;
698 }
699 
700 EXPORT_SYMBOL(grab_cache_page_nowait);
701 
702 /*
703  * This is a generic file read routine, and uses the
704  * mapping->a_ops->readpage() function for the actual low-level
705  * stuff.
706  *
707  * This is really ugly. But the goto's actually try to clarify some
708  * of the logic when it comes to error handling etc.
709  *
710  * Note the struct file* is only passed for the use of readpage.  It may be
711  * NULL.
712  */
713 void do_generic_mapping_read(struct address_space *mapping,
714 			     struct file_ra_state *_ra,
715 			     struct file *filp,
716 			     loff_t *ppos,
717 			     read_descriptor_t *desc,
718 			     read_actor_t actor)
719 {
720 	struct inode *inode = mapping->host;
721 	unsigned long index;
722 	unsigned long end_index;
723 	unsigned long offset;
724 	unsigned long last_index;
725 	unsigned long next_index;
726 	unsigned long prev_index;
727 	loff_t isize;
728 	struct page *cached_page;
729 	int error;
730 	struct file_ra_state ra = *_ra;
731 
732 	cached_page = NULL;
733 	index = *ppos >> PAGE_CACHE_SHIFT;
734 	next_index = index;
735 	prev_index = ra.prev_page;
736 	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
737 	offset = *ppos & ~PAGE_CACHE_MASK;
738 
739 	isize = i_size_read(inode);
740 	if (!isize)
741 		goto out;
742 
743 	end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
744 	for (;;) {
745 		struct page *page;
746 		unsigned long nr, ret;
747 
748 		/* nr is the maximum number of bytes to copy from this page */
749 		nr = PAGE_CACHE_SIZE;
750 		if (index >= end_index) {
751 			if (index > end_index)
752 				goto out;
753 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
754 			if (nr <= offset) {
755 				goto out;
756 			}
757 		}
758 		nr = nr - offset;
759 
760 		cond_resched();
761 		if (index == next_index)
762 			next_index = page_cache_readahead(mapping, &ra, filp,
763 					index, last_index - index);
764 
765 find_page:
766 		page = find_get_page(mapping, index);
767 		if (unlikely(page == NULL)) {
768 			handle_ra_miss(mapping, &ra, index);
769 			goto no_cached_page;
770 		}
771 		if (!PageUptodate(page))
772 			goto page_not_up_to_date;
773 page_ok:
774 
775 		/* If users can be writing to this page using arbitrary
776 		 * virtual addresses, take care about potential aliasing
777 		 * before reading the page on the kernel side.
778 		 */
779 		if (mapping_writably_mapped(mapping))
780 			flush_dcache_page(page);
781 
782 		/*
783 		 * When (part of) the same page is read multiple times
784 		 * in succession, only mark it as accessed the first time.
785 		 */
786 		if (prev_index != index)
787 			mark_page_accessed(page);
788 		prev_index = index;
789 
790 		/*
791 		 * Ok, we have the page, and it's up-to-date, so
792 		 * now we can copy it to user space...
793 		 *
794 		 * The actor routine returns how many bytes were actually used..
795 		 * NOTE! This may not be the same as how much of a user buffer
796 		 * we filled up (we may be padding etc), so we can only update
797 		 * "pos" here (the actor routine has to update the user buffer
798 		 * pointers and the remaining count).
799 		 */
800 		ret = actor(desc, page, offset, nr);
801 		offset += ret;
802 		index += offset >> PAGE_CACHE_SHIFT;
803 		offset &= ~PAGE_CACHE_MASK;
804 
805 		page_cache_release(page);
806 		if (ret == nr && desc->count)
807 			continue;
808 		goto out;
809 
810 page_not_up_to_date:
811 		/* Get exclusive access to the page ... */
812 		lock_page(page);
813 
814 		/* Did it get unhashed before we got the lock? */
815 		if (!page->mapping) {
816 			unlock_page(page);
817 			page_cache_release(page);
818 			continue;
819 		}
820 
821 		/* Did somebody else fill it already? */
822 		if (PageUptodate(page)) {
823 			unlock_page(page);
824 			goto page_ok;
825 		}
826 
827 readpage:
828 		/* Start the actual read. The read will unlock the page. */
829 		error = mapping->a_ops->readpage(filp, page);
830 
831 		if (unlikely(error))
832 			goto readpage_error;
833 
834 		if (!PageUptodate(page)) {
835 			lock_page(page);
836 			if (!PageUptodate(page)) {
837 				if (page->mapping == NULL) {
838 					/*
839 					 * invalidate_inode_pages got it
840 					 */
841 					unlock_page(page);
842 					page_cache_release(page);
843 					goto find_page;
844 				}
845 				unlock_page(page);
846 				error = -EIO;
847 				goto readpage_error;
848 			}
849 			unlock_page(page);
850 		}
851 
852 		/*
853 		 * i_size must be checked after we have done ->readpage.
854 		 *
855 		 * Checking i_size after the readpage allows us to calculate
856 		 * the correct value for "nr", which means the zero-filled
857 		 * part of the page is not copied back to userspace (unless
858 		 * another truncate extends the file - this is desired though).
859 		 */
860 		isize = i_size_read(inode);
861 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
862 		if (unlikely(!isize || index > end_index)) {
863 			page_cache_release(page);
864 			goto out;
865 		}
866 
867 		/* nr is the maximum number of bytes to copy from this page */
868 		nr = PAGE_CACHE_SIZE;
869 		if (index == end_index) {
870 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
871 			if (nr <= offset) {
872 				page_cache_release(page);
873 				goto out;
874 			}
875 		}
876 		nr = nr - offset;
877 		goto page_ok;
878 
879 readpage_error:
880 		/* UHHUH! A synchronous read error occurred. Report it */
881 		desc->error = error;
882 		page_cache_release(page);
883 		goto out;
884 
885 no_cached_page:
886 		/*
887 		 * Ok, it wasn't cached, so we need to create a new
888 		 * page..
889 		 */
890 		if (!cached_page) {
891 			cached_page = page_cache_alloc_cold(mapping);
892 			if (!cached_page) {
893 				desc->error = -ENOMEM;
894 				goto out;
895 			}
896 		}
897 		error = add_to_page_cache_lru(cached_page, mapping,
898 						index, GFP_KERNEL);
899 		if (error) {
900 			if (error == -EEXIST)
901 				goto find_page;
902 			desc->error = error;
903 			goto out;
904 		}
905 		page = cached_page;
906 		cached_page = NULL;
907 		goto readpage;
908 	}
909 
910 out:
911 	*_ra = ra;
912 
913 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
914 	if (cached_page)
915 		page_cache_release(cached_page);
916 	if (filp)
917 		file_accessed(filp);
918 }
919 
920 EXPORT_SYMBOL(do_generic_mapping_read);
921 
922 int file_read_actor(read_descriptor_t *desc, struct page *page,
923 			unsigned long offset, unsigned long size)
924 {
925 	char *kaddr;
926 	unsigned long left, count = desc->count;
927 
928 	if (size > count)
929 		size = count;
930 
931 	/*
932 	 * Faults on the destination of a read are common, so do it before
933 	 * taking the kmap.
934 	 */
935 	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
936 		kaddr = kmap_atomic(page, KM_USER0);
937 		left = __copy_to_user_inatomic(desc->arg.buf,
938 						kaddr + offset, size);
939 		kunmap_atomic(kaddr, KM_USER0);
940 		if (left == 0)
941 			goto success;
942 	}
943 
944 	/* Do it the slow way */
945 	kaddr = kmap(page);
946 	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
947 	kunmap(page);
948 
949 	if (left) {
950 		size -= left;
951 		desc->error = -EFAULT;
952 	}
953 success:
954 	desc->count = count - size;
955 	desc->written += size;
956 	desc->arg.buf += size;
957 	return size;
958 }
959 
960 /*
961  * This is the "read()" routine for all filesystems
962  * that can use the page cache directly.
963  */
964 ssize_t
965 __generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
966 		unsigned long nr_segs, loff_t *ppos)
967 {
968 	struct file *filp = iocb->ki_filp;
969 	ssize_t retval;
970 	unsigned long seg;
971 	size_t count;
972 
973 	count = 0;
974 	for (seg = 0; seg < nr_segs; seg++) {
975 		const struct iovec *iv = &iov[seg];
976 
977 		/*
978 		 * If any segment has a negative length, or the cumulative
979 		 * length ever wraps negative then return -EINVAL.
980 		 */
981 		count += iv->iov_len;
982 		if (unlikely((ssize_t)(count|iv->iov_len) < 0))
983 			return -EINVAL;
984 		if (access_ok(VERIFY_WRITE, iv->iov_base, iv->iov_len))
985 			continue;
986 		if (seg == 0)
987 			return -EFAULT;
988 		nr_segs = seg;
989 		count -= iv->iov_len;	/* This segment is no good */
990 		break;
991 	}
992 
993 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
994 	if (filp->f_flags & O_DIRECT) {
995 		loff_t pos = *ppos, size;
996 		struct address_space *mapping;
997 		struct inode *inode;
998 
999 		mapping = filp->f_mapping;
1000 		inode = mapping->host;
1001 		retval = 0;
1002 		if (!count)
1003 			goto out; /* skip atime */
1004 		size = i_size_read(inode);
1005 		if (pos < size) {
1006 			retval = generic_file_direct_IO(READ, iocb,
1007 						iov, pos, nr_segs);
1008 			if (retval > 0 && !is_sync_kiocb(iocb))
1009 				retval = -EIOCBQUEUED;
1010 			if (retval > 0)
1011 				*ppos = pos + retval;
1012 		}
1013 		file_accessed(filp);
1014 		goto out;
1015 	}
1016 
1017 	retval = 0;
1018 	if (count) {
1019 		for (seg = 0; seg < nr_segs; seg++) {
1020 			read_descriptor_t desc;
1021 
1022 			desc.written = 0;
1023 			desc.arg.buf = iov[seg].iov_base;
1024 			desc.count = iov[seg].iov_len;
1025 			if (desc.count == 0)
1026 				continue;
1027 			desc.error = 0;
1028 			do_generic_file_read(filp,ppos,&desc,file_read_actor);
1029 			retval += desc.written;
1030 			if (!retval) {
1031 				retval = desc.error;
1032 				break;
1033 			}
1034 		}
1035 	}
1036 out:
1037 	return retval;
1038 }
1039 
1040 EXPORT_SYMBOL(__generic_file_aio_read);
1041 
1042 ssize_t
1043 generic_file_aio_read(struct kiocb *iocb, char __user *buf, size_t count, loff_t pos)
1044 {
1045 	struct iovec local_iov = { .iov_base = buf, .iov_len = count };
1046 
1047 	BUG_ON(iocb->ki_pos != pos);
1048 	return __generic_file_aio_read(iocb, &local_iov, 1, &iocb->ki_pos);
1049 }
1050 
1051 EXPORT_SYMBOL(generic_file_aio_read);
1052 
1053 ssize_t
1054 generic_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1055 {
1056 	struct iovec local_iov = { .iov_base = buf, .iov_len = count };
1057 	struct kiocb kiocb;
1058 	ssize_t ret;
1059 
1060 	init_sync_kiocb(&kiocb, filp);
1061 	ret = __generic_file_aio_read(&kiocb, &local_iov, 1, ppos);
1062 	if (-EIOCBQUEUED == ret)
1063 		ret = wait_on_sync_kiocb(&kiocb);
1064 	return ret;
1065 }
1066 
1067 EXPORT_SYMBOL(generic_file_read);
1068 
1069 int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size)
1070 {
1071 	ssize_t written;
1072 	unsigned long count = desc->count;
1073 	struct file *file = desc->arg.data;
1074 
1075 	if (size > count)
1076 		size = count;
1077 
1078 	written = file->f_op->sendpage(file, page, offset,
1079 				       size, &file->f_pos, size<count);
1080 	if (written < 0) {
1081 		desc->error = written;
1082 		written = 0;
1083 	}
1084 	desc->count = count - written;
1085 	desc->written += written;
1086 	return written;
1087 }
1088 
1089 ssize_t generic_file_sendfile(struct file *in_file, loff_t *ppos,
1090 			 size_t count, read_actor_t actor, void *target)
1091 {
1092 	read_descriptor_t desc;
1093 
1094 	if (!count)
1095 		return 0;
1096 
1097 	desc.written = 0;
1098 	desc.count = count;
1099 	desc.arg.data = target;
1100 	desc.error = 0;
1101 
1102 	do_generic_file_read(in_file, ppos, &desc, actor);
1103 	if (desc.written)
1104 		return desc.written;
1105 	return desc.error;
1106 }
1107 
1108 EXPORT_SYMBOL(generic_file_sendfile);
1109 
1110 static ssize_t
1111 do_readahead(struct address_space *mapping, struct file *filp,
1112 	     unsigned long index, unsigned long nr)
1113 {
1114 	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1115 		return -EINVAL;
1116 
1117 	force_page_cache_readahead(mapping, filp, index,
1118 					max_sane_readahead(nr));
1119 	return 0;
1120 }
1121 
1122 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1123 {
1124 	ssize_t ret;
1125 	struct file *file;
1126 
1127 	ret = -EBADF;
1128 	file = fget(fd);
1129 	if (file) {
1130 		if (file->f_mode & FMODE_READ) {
1131 			struct address_space *mapping = file->f_mapping;
1132 			unsigned long start = offset >> PAGE_CACHE_SHIFT;
1133 			unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1134 			unsigned long len = end - start + 1;
1135 			ret = do_readahead(mapping, file, start, len);
1136 		}
1137 		fput(file);
1138 	}
1139 	return ret;
1140 }
1141 
1142 #ifdef CONFIG_MMU
1143 /*
1144  * This adds the requested page to the page cache if it isn't already there,
1145  * and schedules an I/O to read in its contents from disk.
1146  */
1147 static int FASTCALL(page_cache_read(struct file * file, unsigned long offset));
1148 static int fastcall page_cache_read(struct file * file, unsigned long offset)
1149 {
1150 	struct address_space *mapping = file->f_mapping;
1151 	struct page *page;
1152 	int error;
1153 
1154 	page = page_cache_alloc_cold(mapping);
1155 	if (!page)
1156 		return -ENOMEM;
1157 
1158 	error = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1159 	if (!error) {
1160 		error = mapping->a_ops->readpage(file, page);
1161 		page_cache_release(page);
1162 		return error;
1163 	}
1164 
1165 	/*
1166 	 * We arrive here in the unlikely event that someone
1167 	 * raced with us and added our page to the cache first
1168 	 * or we are out of memory for radix-tree nodes.
1169 	 */
1170 	page_cache_release(page);
1171 	return error == -EEXIST ? 0 : error;
1172 }
1173 
1174 #define MMAP_LOTSAMISS  (100)
1175 
1176 /*
1177  * filemap_nopage() is invoked via the vma operations vector for a
1178  * mapped memory region to read in file data during a page fault.
1179  *
1180  * The goto's are kind of ugly, but this streamlines the normal case of having
1181  * it in the page cache, and handles the special cases reasonably without
1182  * having a lot of duplicated code.
1183  */
1184 struct page *filemap_nopage(struct vm_area_struct *area,
1185 				unsigned long address, int *type)
1186 {
1187 	int error;
1188 	struct file *file = area->vm_file;
1189 	struct address_space *mapping = file->f_mapping;
1190 	struct file_ra_state *ra = &file->f_ra;
1191 	struct inode *inode = mapping->host;
1192 	struct page *page;
1193 	unsigned long size, pgoff;
1194 	int did_readaround = 0, majmin = VM_FAULT_MINOR;
1195 
1196 	pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff;
1197 
1198 retry_all:
1199 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1200 	if (pgoff >= size)
1201 		goto outside_data_content;
1202 
1203 	/* If we don't want any read-ahead, don't bother */
1204 	if (VM_RandomReadHint(area))
1205 		goto no_cached_page;
1206 
1207 	/*
1208 	 * The readahead code wants to be told about each and every page
1209 	 * so it can build and shrink its windows appropriately
1210 	 *
1211 	 * For sequential accesses, we use the generic readahead logic.
1212 	 */
1213 	if (VM_SequentialReadHint(area))
1214 		page_cache_readahead(mapping, ra, file, pgoff, 1);
1215 
1216 	/*
1217 	 * Do we have something in the page cache already?
1218 	 */
1219 retry_find:
1220 	page = find_get_page(mapping, pgoff);
1221 	if (!page) {
1222 		unsigned long ra_pages;
1223 
1224 		if (VM_SequentialReadHint(area)) {
1225 			handle_ra_miss(mapping, ra, pgoff);
1226 			goto no_cached_page;
1227 		}
1228 		ra->mmap_miss++;
1229 
1230 		/*
1231 		 * Do we miss much more than hit in this file? If so,
1232 		 * stop bothering with read-ahead. It will only hurt.
1233 		 */
1234 		if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS)
1235 			goto no_cached_page;
1236 
1237 		/*
1238 		 * To keep the pgmajfault counter straight, we need to
1239 		 * check did_readaround, as this is an inner loop.
1240 		 */
1241 		if (!did_readaround) {
1242 			majmin = VM_FAULT_MAJOR;
1243 			inc_page_state(pgmajfault);
1244 		}
1245 		did_readaround = 1;
1246 		ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1247 		if (ra_pages) {
1248 			pgoff_t start = 0;
1249 
1250 			if (pgoff > ra_pages / 2)
1251 				start = pgoff - ra_pages / 2;
1252 			do_page_cache_readahead(mapping, file, start, ra_pages);
1253 		}
1254 		page = find_get_page(mapping, pgoff);
1255 		if (!page)
1256 			goto no_cached_page;
1257 	}
1258 
1259 	if (!did_readaround)
1260 		ra->mmap_hit++;
1261 
1262 	/*
1263 	 * Ok, found a page in the page cache, now we need to check
1264 	 * that it's up-to-date.
1265 	 */
1266 	if (!PageUptodate(page))
1267 		goto page_not_uptodate;
1268 
1269 success:
1270 	/*
1271 	 * Found the page and have a reference on it.
1272 	 */
1273 	mark_page_accessed(page);
1274 	if (type)
1275 		*type = majmin;
1276 	return page;
1277 
1278 outside_data_content:
1279 	/*
1280 	 * An external ptracer can access pages that normally aren't
1281 	 * accessible..
1282 	 */
1283 	if (area->vm_mm == current->mm)
1284 		return NULL;
1285 	/* Fall through to the non-read-ahead case */
1286 no_cached_page:
1287 	/*
1288 	 * We're only likely to ever get here if MADV_RANDOM is in
1289 	 * effect.
1290 	 */
1291 	error = page_cache_read(file, pgoff);
1292 	grab_swap_token();
1293 
1294 	/*
1295 	 * The page we want has now been added to the page cache.
1296 	 * In the unlikely event that someone removed it in the
1297 	 * meantime, we'll just come back here and read it again.
1298 	 */
1299 	if (error >= 0)
1300 		goto retry_find;
1301 
1302 	/*
1303 	 * An error return from page_cache_read can result if the
1304 	 * system is low on memory, or a problem occurs while trying
1305 	 * to schedule I/O.
1306 	 */
1307 	if (error == -ENOMEM)
1308 		return NOPAGE_OOM;
1309 	return NULL;
1310 
1311 page_not_uptodate:
1312 	if (!did_readaround) {
1313 		majmin = VM_FAULT_MAJOR;
1314 		inc_page_state(pgmajfault);
1315 	}
1316 	lock_page(page);
1317 
1318 	/* Did it get unhashed while we waited for it? */
1319 	if (!page->mapping) {
1320 		unlock_page(page);
1321 		page_cache_release(page);
1322 		goto retry_all;
1323 	}
1324 
1325 	/* Did somebody else get it up-to-date? */
1326 	if (PageUptodate(page)) {
1327 		unlock_page(page);
1328 		goto success;
1329 	}
1330 
1331 	if (!mapping->a_ops->readpage(file, page)) {
1332 		wait_on_page_locked(page);
1333 		if (PageUptodate(page))
1334 			goto success;
1335 	}
1336 
1337 	/*
1338 	 * Umm, take care of errors if the page isn't up-to-date.
1339 	 * Try to re-read it _once_. We do this synchronously,
1340 	 * because there really aren't any performance issues here
1341 	 * and we need to check for errors.
1342 	 */
1343 	lock_page(page);
1344 
1345 	/* Somebody truncated the page on us? */
1346 	if (!page->mapping) {
1347 		unlock_page(page);
1348 		page_cache_release(page);
1349 		goto retry_all;
1350 	}
1351 
1352 	/* Somebody else successfully read it in? */
1353 	if (PageUptodate(page)) {
1354 		unlock_page(page);
1355 		goto success;
1356 	}
1357 	ClearPageError(page);
1358 	if (!mapping->a_ops->readpage(file, page)) {
1359 		wait_on_page_locked(page);
1360 		if (PageUptodate(page))
1361 			goto success;
1362 	}
1363 
1364 	/*
1365 	 * Things didn't work out. Return zero to tell the
1366 	 * mm layer so, possibly freeing the page cache page first.
1367 	 */
1368 	page_cache_release(page);
1369 	return NULL;
1370 }
1371 
1372 EXPORT_SYMBOL(filemap_nopage);
1373 
1374 static struct page * filemap_getpage(struct file *file, unsigned long pgoff,
1375 					int nonblock)
1376 {
1377 	struct address_space *mapping = file->f_mapping;
1378 	struct page *page;
1379 	int error;
1380 
1381 	/*
1382 	 * Do we have something in the page cache already?
1383 	 */
1384 retry_find:
1385 	page = find_get_page(mapping, pgoff);
1386 	if (!page) {
1387 		if (nonblock)
1388 			return NULL;
1389 		goto no_cached_page;
1390 	}
1391 
1392 	/*
1393 	 * Ok, found a page in the page cache, now we need to check
1394 	 * that it's up-to-date.
1395 	 */
1396 	if (!PageUptodate(page)) {
1397 		if (nonblock) {
1398 			page_cache_release(page);
1399 			return NULL;
1400 		}
1401 		goto page_not_uptodate;
1402 	}
1403 
1404 success:
1405 	/*
1406 	 * Found the page and have a reference on it.
1407 	 */
1408 	mark_page_accessed(page);
1409 	return page;
1410 
1411 no_cached_page:
1412 	error = page_cache_read(file, pgoff);
1413 
1414 	/*
1415 	 * The page we want has now been added to the page cache.
1416 	 * In the unlikely event that someone removed it in the
1417 	 * meantime, we'll just come back here and read it again.
1418 	 */
1419 	if (error >= 0)
1420 		goto retry_find;
1421 
1422 	/*
1423 	 * An error return from page_cache_read can result if the
1424 	 * system is low on memory, or a problem occurs while trying
1425 	 * to schedule I/O.
1426 	 */
1427 	return NULL;
1428 
1429 page_not_uptodate:
1430 	lock_page(page);
1431 
1432 	/* Did it get unhashed while we waited for it? */
1433 	if (!page->mapping) {
1434 		unlock_page(page);
1435 		goto err;
1436 	}
1437 
1438 	/* Did somebody else get it up-to-date? */
1439 	if (PageUptodate(page)) {
1440 		unlock_page(page);
1441 		goto success;
1442 	}
1443 
1444 	if (!mapping->a_ops->readpage(file, page)) {
1445 		wait_on_page_locked(page);
1446 		if (PageUptodate(page))
1447 			goto success;
1448 	}
1449 
1450 	/*
1451 	 * Umm, take care of errors if the page isn't up-to-date.
1452 	 * Try to re-read it _once_. We do this synchronously,
1453 	 * because there really aren't any performance issues here
1454 	 * and we need to check for errors.
1455 	 */
1456 	lock_page(page);
1457 
1458 	/* Somebody truncated the page on us? */
1459 	if (!page->mapping) {
1460 		unlock_page(page);
1461 		goto err;
1462 	}
1463 	/* Somebody else successfully read it in? */
1464 	if (PageUptodate(page)) {
1465 		unlock_page(page);
1466 		goto success;
1467 	}
1468 
1469 	ClearPageError(page);
1470 	if (!mapping->a_ops->readpage(file, page)) {
1471 		wait_on_page_locked(page);
1472 		if (PageUptodate(page))
1473 			goto success;
1474 	}
1475 
1476 	/*
1477 	 * Things didn't work out. Return zero to tell the
1478 	 * mm layer so, possibly freeing the page cache page first.
1479 	 */
1480 err:
1481 	page_cache_release(page);
1482 
1483 	return NULL;
1484 }
1485 
1486 int filemap_populate(struct vm_area_struct *vma, unsigned long addr,
1487 		unsigned long len, pgprot_t prot, unsigned long pgoff,
1488 		int nonblock)
1489 {
1490 	struct file *file = vma->vm_file;
1491 	struct address_space *mapping = file->f_mapping;
1492 	struct inode *inode = mapping->host;
1493 	unsigned long size;
1494 	struct mm_struct *mm = vma->vm_mm;
1495 	struct page *page;
1496 	int err;
1497 
1498 	if (!nonblock)
1499 		force_page_cache_readahead(mapping, vma->vm_file,
1500 					pgoff, len >> PAGE_CACHE_SHIFT);
1501 
1502 repeat:
1503 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1504 	if (pgoff + (len >> PAGE_CACHE_SHIFT) > size)
1505 		return -EINVAL;
1506 
1507 	page = filemap_getpage(file, pgoff, nonblock);
1508 	if (!page && !nonblock)
1509 		return -ENOMEM;
1510 	if (page) {
1511 		err = install_page(mm, vma, addr, page, prot);
1512 		if (err) {
1513 			page_cache_release(page);
1514 			return err;
1515 		}
1516 	} else {
1517 		err = install_file_pte(mm, vma, addr, pgoff, prot);
1518 		if (err)
1519 			return err;
1520 	}
1521 
1522 	len -= PAGE_SIZE;
1523 	addr += PAGE_SIZE;
1524 	pgoff++;
1525 	if (len)
1526 		goto repeat;
1527 
1528 	return 0;
1529 }
1530 
1531 struct vm_operations_struct generic_file_vm_ops = {
1532 	.nopage		= filemap_nopage,
1533 	.populate	= filemap_populate,
1534 };
1535 
1536 /* This is used for a general mmap of a disk file */
1537 
1538 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1539 {
1540 	struct address_space *mapping = file->f_mapping;
1541 
1542 	if (!mapping->a_ops->readpage)
1543 		return -ENOEXEC;
1544 	file_accessed(file);
1545 	vma->vm_ops = &generic_file_vm_ops;
1546 	return 0;
1547 }
1548 EXPORT_SYMBOL(filemap_populate);
1549 
1550 /*
1551  * This is for filesystems which do not implement ->writepage.
1552  */
1553 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1554 {
1555 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1556 		return -EINVAL;
1557 	return generic_file_mmap(file, vma);
1558 }
1559 #else
1560 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1561 {
1562 	return -ENOSYS;
1563 }
1564 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1565 {
1566 	return -ENOSYS;
1567 }
1568 #endif /* CONFIG_MMU */
1569 
1570 EXPORT_SYMBOL(generic_file_mmap);
1571 EXPORT_SYMBOL(generic_file_readonly_mmap);
1572 
1573 static inline struct page *__read_cache_page(struct address_space *mapping,
1574 				unsigned long index,
1575 				int (*filler)(void *,struct page*),
1576 				void *data)
1577 {
1578 	struct page *page, *cached_page = NULL;
1579 	int err;
1580 repeat:
1581 	page = find_get_page(mapping, index);
1582 	if (!page) {
1583 		if (!cached_page) {
1584 			cached_page = page_cache_alloc_cold(mapping);
1585 			if (!cached_page)
1586 				return ERR_PTR(-ENOMEM);
1587 		}
1588 		err = add_to_page_cache_lru(cached_page, mapping,
1589 					index, GFP_KERNEL);
1590 		if (err == -EEXIST)
1591 			goto repeat;
1592 		if (err < 0) {
1593 			/* Presumably ENOMEM for radix tree node */
1594 			page_cache_release(cached_page);
1595 			return ERR_PTR(err);
1596 		}
1597 		page = cached_page;
1598 		cached_page = NULL;
1599 		err = filler(data, page);
1600 		if (err < 0) {
1601 			page_cache_release(page);
1602 			page = ERR_PTR(err);
1603 		}
1604 	}
1605 	if (cached_page)
1606 		page_cache_release(cached_page);
1607 	return page;
1608 }
1609 
1610 /*
1611  * Read into the page cache. If a page already exists,
1612  * and PageUptodate() is not set, try to fill the page.
1613  */
1614 struct page *read_cache_page(struct address_space *mapping,
1615 				unsigned long index,
1616 				int (*filler)(void *,struct page*),
1617 				void *data)
1618 {
1619 	struct page *page;
1620 	int err;
1621 
1622 retry:
1623 	page = __read_cache_page(mapping, index, filler, data);
1624 	if (IS_ERR(page))
1625 		goto out;
1626 	mark_page_accessed(page);
1627 	if (PageUptodate(page))
1628 		goto out;
1629 
1630 	lock_page(page);
1631 	if (!page->mapping) {
1632 		unlock_page(page);
1633 		page_cache_release(page);
1634 		goto retry;
1635 	}
1636 	if (PageUptodate(page)) {
1637 		unlock_page(page);
1638 		goto out;
1639 	}
1640 	err = filler(data, page);
1641 	if (err < 0) {
1642 		page_cache_release(page);
1643 		page = ERR_PTR(err);
1644 	}
1645  out:
1646 	return page;
1647 }
1648 
1649 EXPORT_SYMBOL(read_cache_page);
1650 
1651 /*
1652  * If the page was newly created, increment its refcount and add it to the
1653  * caller's lru-buffering pagevec.  This function is specifically for
1654  * generic_file_write().
1655  */
1656 static inline struct page *
1657 __grab_cache_page(struct address_space *mapping, unsigned long index,
1658 			struct page **cached_page, struct pagevec *lru_pvec)
1659 {
1660 	int err;
1661 	struct page *page;
1662 repeat:
1663 	page = find_lock_page(mapping, index);
1664 	if (!page) {
1665 		if (!*cached_page) {
1666 			*cached_page = page_cache_alloc(mapping);
1667 			if (!*cached_page)
1668 				return NULL;
1669 		}
1670 		err = add_to_page_cache(*cached_page, mapping,
1671 					index, GFP_KERNEL);
1672 		if (err == -EEXIST)
1673 			goto repeat;
1674 		if (err == 0) {
1675 			page = *cached_page;
1676 			page_cache_get(page);
1677 			if (!pagevec_add(lru_pvec, page))
1678 				__pagevec_lru_add(lru_pvec);
1679 			*cached_page = NULL;
1680 		}
1681 	}
1682 	return page;
1683 }
1684 
1685 /*
1686  * The logic we want is
1687  *
1688  *	if suid or (sgid and xgrp)
1689  *		remove privs
1690  */
1691 int remove_suid(struct dentry *dentry)
1692 {
1693 	mode_t mode = dentry->d_inode->i_mode;
1694 	int kill = 0;
1695 	int result = 0;
1696 
1697 	/* suid always must be killed */
1698 	if (unlikely(mode & S_ISUID))
1699 		kill = ATTR_KILL_SUID;
1700 
1701 	/*
1702 	 * sgid without any exec bits is just a mandatory locking mark; leave
1703 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1704 	 */
1705 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1706 		kill |= ATTR_KILL_SGID;
1707 
1708 	if (unlikely(kill && !capable(CAP_FSETID))) {
1709 		struct iattr newattrs;
1710 
1711 		newattrs.ia_valid = ATTR_FORCE | kill;
1712 		result = notify_change(dentry, &newattrs);
1713 	}
1714 	return result;
1715 }
1716 EXPORT_SYMBOL(remove_suid);
1717 
1718 size_t
1719 __filemap_copy_from_user_iovec(char *vaddr,
1720 			const struct iovec *iov, size_t base, size_t bytes)
1721 {
1722 	size_t copied = 0, left = 0;
1723 
1724 	while (bytes) {
1725 		char __user *buf = iov->iov_base + base;
1726 		int copy = min(bytes, iov->iov_len - base);
1727 
1728 		base = 0;
1729 		left = __copy_from_user_inatomic(vaddr, buf, copy);
1730 		copied += copy;
1731 		bytes -= copy;
1732 		vaddr += copy;
1733 		iov++;
1734 
1735 		if (unlikely(left)) {
1736 			/* zero the rest of the target like __copy_from_user */
1737 			if (bytes)
1738 				memset(vaddr, 0, bytes);
1739 			break;
1740 		}
1741 	}
1742 	return copied - left;
1743 }
1744 
1745 /*
1746  * Performs necessary checks before doing a write
1747  *
1748  * Can adjust writing position aor amount of bytes to write.
1749  * Returns appropriate error code that caller should return or
1750  * zero in case that write should be allowed.
1751  */
1752 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1753 {
1754 	struct inode *inode = file->f_mapping->host;
1755 	unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1756 
1757         if (unlikely(*pos < 0))
1758                 return -EINVAL;
1759 
1760 	if (!isblk) {
1761 		/* FIXME: this is for backwards compatibility with 2.4 */
1762 		if (file->f_flags & O_APPEND)
1763                         *pos = i_size_read(inode);
1764 
1765 		if (limit != RLIM_INFINITY) {
1766 			if (*pos >= limit) {
1767 				send_sig(SIGXFSZ, current, 0);
1768 				return -EFBIG;
1769 			}
1770 			if (*count > limit - (typeof(limit))*pos) {
1771 				*count = limit - (typeof(limit))*pos;
1772 			}
1773 		}
1774 	}
1775 
1776 	/*
1777 	 * LFS rule
1778 	 */
1779 	if (unlikely(*pos + *count > MAX_NON_LFS &&
1780 				!(file->f_flags & O_LARGEFILE))) {
1781 		if (*pos >= MAX_NON_LFS) {
1782 			send_sig(SIGXFSZ, current, 0);
1783 			return -EFBIG;
1784 		}
1785 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1786 			*count = MAX_NON_LFS - (unsigned long)*pos;
1787 		}
1788 	}
1789 
1790 	/*
1791 	 * Are we about to exceed the fs block limit ?
1792 	 *
1793 	 * If we have written data it becomes a short write.  If we have
1794 	 * exceeded without writing data we send a signal and return EFBIG.
1795 	 * Linus frestrict idea will clean these up nicely..
1796 	 */
1797 	if (likely(!isblk)) {
1798 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1799 			if (*count || *pos > inode->i_sb->s_maxbytes) {
1800 				send_sig(SIGXFSZ, current, 0);
1801 				return -EFBIG;
1802 			}
1803 			/* zero-length writes at ->s_maxbytes are OK */
1804 		}
1805 
1806 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1807 			*count = inode->i_sb->s_maxbytes - *pos;
1808 	} else {
1809 		loff_t isize;
1810 		if (bdev_read_only(I_BDEV(inode)))
1811 			return -EPERM;
1812 		isize = i_size_read(inode);
1813 		if (*pos >= isize) {
1814 			if (*count || *pos > isize)
1815 				return -ENOSPC;
1816 		}
1817 
1818 		if (*pos + *count > isize)
1819 			*count = isize - *pos;
1820 	}
1821 	return 0;
1822 }
1823 EXPORT_SYMBOL(generic_write_checks);
1824 
1825 ssize_t
1826 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1827 		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
1828 		size_t count, size_t ocount)
1829 {
1830 	struct file	*file = iocb->ki_filp;
1831 	struct address_space *mapping = file->f_mapping;
1832 	struct inode	*inode = mapping->host;
1833 	ssize_t		written;
1834 
1835 	if (count != ocount)
1836 		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
1837 
1838 	written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
1839 	if (written > 0) {
1840 		loff_t end = pos + written;
1841 		if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
1842 			i_size_write(inode,  end);
1843 			mark_inode_dirty(inode);
1844 		}
1845 		*ppos = end;
1846 	}
1847 
1848 	/*
1849 	 * Sync the fs metadata but not the minor inode changes and
1850 	 * of course not the data as we did direct DMA for the IO.
1851 	 * i_sem is held, which protects generic_osync_inode() from
1852 	 * livelocking.
1853 	 */
1854 	if (written >= 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
1855 		int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
1856 		if (err < 0)
1857 			written = err;
1858 	}
1859 	if (written == count && !is_sync_kiocb(iocb))
1860 		written = -EIOCBQUEUED;
1861 	return written;
1862 }
1863 EXPORT_SYMBOL(generic_file_direct_write);
1864 
1865 ssize_t
1866 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
1867 		unsigned long nr_segs, loff_t pos, loff_t *ppos,
1868 		size_t count, ssize_t written)
1869 {
1870 	struct file *file = iocb->ki_filp;
1871 	struct address_space * mapping = file->f_mapping;
1872 	struct address_space_operations *a_ops = mapping->a_ops;
1873 	struct inode 	*inode = mapping->host;
1874 	long		status = 0;
1875 	struct page	*page;
1876 	struct page	*cached_page = NULL;
1877 	size_t		bytes;
1878 	struct pagevec	lru_pvec;
1879 	const struct iovec *cur_iov = iov; /* current iovec */
1880 	size_t		iov_base = 0;	   /* offset in the current iovec */
1881 	char __user	*buf;
1882 
1883 	pagevec_init(&lru_pvec, 0);
1884 
1885 	/*
1886 	 * handle partial DIO write.  Adjust cur_iov if needed.
1887 	 */
1888 	if (likely(nr_segs == 1))
1889 		buf = iov->iov_base + written;
1890 	else {
1891 		filemap_set_next_iovec(&cur_iov, &iov_base, written);
1892 		buf = cur_iov->iov_base + iov_base;
1893 	}
1894 
1895 	do {
1896 		unsigned long index;
1897 		unsigned long offset;
1898 		unsigned long maxlen;
1899 		size_t copied;
1900 
1901 		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1902 		index = pos >> PAGE_CACHE_SHIFT;
1903 		bytes = PAGE_CACHE_SIZE - offset;
1904 		if (bytes > count)
1905 			bytes = count;
1906 
1907 		/*
1908 		 * Bring in the user page that we will copy from _first_.
1909 		 * Otherwise there's a nasty deadlock on copying from the
1910 		 * same page as we're writing to, without it being marked
1911 		 * up-to-date.
1912 		 */
1913 		maxlen = cur_iov->iov_len - iov_base;
1914 		if (maxlen > bytes)
1915 			maxlen = bytes;
1916 		fault_in_pages_readable(buf, maxlen);
1917 
1918 		page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec);
1919 		if (!page) {
1920 			status = -ENOMEM;
1921 			break;
1922 		}
1923 
1924 		status = a_ops->prepare_write(file, page, offset, offset+bytes);
1925 		if (unlikely(status)) {
1926 			loff_t isize = i_size_read(inode);
1927 			/*
1928 			 * prepare_write() may have instantiated a few blocks
1929 			 * outside i_size.  Trim these off again.
1930 			 */
1931 			unlock_page(page);
1932 			page_cache_release(page);
1933 			if (pos + bytes > isize)
1934 				vmtruncate(inode, isize);
1935 			break;
1936 		}
1937 		if (likely(nr_segs == 1))
1938 			copied = filemap_copy_from_user(page, offset,
1939 							buf, bytes);
1940 		else
1941 			copied = filemap_copy_from_user_iovec(page, offset,
1942 						cur_iov, iov_base, bytes);
1943 		flush_dcache_page(page);
1944 		status = a_ops->commit_write(file, page, offset, offset+bytes);
1945 		if (likely(copied > 0)) {
1946 			if (!status)
1947 				status = copied;
1948 
1949 			if (status >= 0) {
1950 				written += status;
1951 				count -= status;
1952 				pos += status;
1953 				buf += status;
1954 				if (unlikely(nr_segs > 1)) {
1955 					filemap_set_next_iovec(&cur_iov,
1956 							&iov_base, status);
1957 					if (count)
1958 						buf = cur_iov->iov_base +
1959 							iov_base;
1960 				} else {
1961 					iov_base += status;
1962 				}
1963 			}
1964 		}
1965 		if (unlikely(copied != bytes))
1966 			if (status >= 0)
1967 				status = -EFAULT;
1968 		unlock_page(page);
1969 		mark_page_accessed(page);
1970 		page_cache_release(page);
1971 		if (status < 0)
1972 			break;
1973 		balance_dirty_pages_ratelimited(mapping);
1974 		cond_resched();
1975 	} while (count);
1976 	*ppos = pos;
1977 
1978 	if (cached_page)
1979 		page_cache_release(cached_page);
1980 
1981 	/*
1982 	 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
1983 	 */
1984 	if (likely(status >= 0)) {
1985 		if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
1986 			if (!a_ops->writepage || !is_sync_kiocb(iocb))
1987 				status = generic_osync_inode(inode, mapping,
1988 						OSYNC_METADATA|OSYNC_DATA);
1989 		}
1990   	}
1991 
1992 	/*
1993 	 * If we get here for O_DIRECT writes then we must have fallen through
1994 	 * to buffered writes (block instantiation inside i_size).  So we sync
1995 	 * the file data here, to try to honour O_DIRECT expectations.
1996 	 */
1997 	if (unlikely(file->f_flags & O_DIRECT) && written)
1998 		status = filemap_write_and_wait(mapping);
1999 
2000 	pagevec_lru_add(&lru_pvec);
2001 	return written ? written : status;
2002 }
2003 EXPORT_SYMBOL(generic_file_buffered_write);
2004 
2005 ssize_t
2006 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2007 				unsigned long nr_segs, loff_t *ppos)
2008 {
2009 	struct file *file = iocb->ki_filp;
2010 	struct address_space * mapping = file->f_mapping;
2011 	size_t ocount;		/* original count */
2012 	size_t count;		/* after file limit checks */
2013 	struct inode 	*inode = mapping->host;
2014 	unsigned long	seg;
2015 	loff_t		pos;
2016 	ssize_t		written;
2017 	ssize_t		err;
2018 
2019 	ocount = 0;
2020 	for (seg = 0; seg < nr_segs; seg++) {
2021 		const struct iovec *iv = &iov[seg];
2022 
2023 		/*
2024 		 * If any segment has a negative length, or the cumulative
2025 		 * length ever wraps negative then return -EINVAL.
2026 		 */
2027 		ocount += iv->iov_len;
2028 		if (unlikely((ssize_t)(ocount|iv->iov_len) < 0))
2029 			return -EINVAL;
2030 		if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len))
2031 			continue;
2032 		if (seg == 0)
2033 			return -EFAULT;
2034 		nr_segs = seg;
2035 		ocount -= iv->iov_len;	/* This segment is no good */
2036 		break;
2037 	}
2038 
2039 	count = ocount;
2040 	pos = *ppos;
2041 
2042 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2043 
2044 	/* We can write back this queue in page reclaim */
2045 	current->backing_dev_info = mapping->backing_dev_info;
2046 	written = 0;
2047 
2048 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2049 	if (err)
2050 		goto out;
2051 
2052 	if (count == 0)
2053 		goto out;
2054 
2055 	err = remove_suid(file->f_dentry);
2056 	if (err)
2057 		goto out;
2058 
2059 	inode_update_time(inode, 1);
2060 
2061 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2062 	if (unlikely(file->f_flags & O_DIRECT)) {
2063 		written = generic_file_direct_write(iocb, iov,
2064 				&nr_segs, pos, ppos, count, ocount);
2065 		if (written < 0 || written == count)
2066 			goto out;
2067 		/*
2068 		 * direct-io write to a hole: fall through to buffered I/O
2069 		 * for completing the rest of the request.
2070 		 */
2071 		pos += written;
2072 		count -= written;
2073 	}
2074 
2075 	written = generic_file_buffered_write(iocb, iov, nr_segs,
2076 			pos, ppos, count, written);
2077 out:
2078 	current->backing_dev_info = NULL;
2079 	return written ? written : err;
2080 }
2081 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2082 
2083 ssize_t
2084 generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2085 				unsigned long nr_segs, loff_t *ppos)
2086 {
2087 	struct file *file = iocb->ki_filp;
2088 	struct address_space *mapping = file->f_mapping;
2089 	struct inode *inode = mapping->host;
2090 	ssize_t ret;
2091 	loff_t pos = *ppos;
2092 
2093 	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, ppos);
2094 
2095 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2096 		int err;
2097 
2098 		err = sync_page_range_nolock(inode, mapping, pos, ret);
2099 		if (err < 0)
2100 			ret = err;
2101 	}
2102 	return ret;
2103 }
2104 
2105 ssize_t
2106 __generic_file_write_nolock(struct file *file, const struct iovec *iov,
2107 				unsigned long nr_segs, loff_t *ppos)
2108 {
2109 	struct kiocb kiocb;
2110 	ssize_t ret;
2111 
2112 	init_sync_kiocb(&kiocb, file);
2113 	ret = __generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2114 	if (ret == -EIOCBQUEUED)
2115 		ret = wait_on_sync_kiocb(&kiocb);
2116 	return ret;
2117 }
2118 
2119 ssize_t
2120 generic_file_write_nolock(struct file *file, const struct iovec *iov,
2121 				unsigned long nr_segs, loff_t *ppos)
2122 {
2123 	struct kiocb kiocb;
2124 	ssize_t ret;
2125 
2126 	init_sync_kiocb(&kiocb, file);
2127 	ret = generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2128 	if (-EIOCBQUEUED == ret)
2129 		ret = wait_on_sync_kiocb(&kiocb);
2130 	return ret;
2131 }
2132 EXPORT_SYMBOL(generic_file_write_nolock);
2133 
2134 ssize_t generic_file_aio_write(struct kiocb *iocb, const char __user *buf,
2135 			       size_t count, loff_t pos)
2136 {
2137 	struct file *file = iocb->ki_filp;
2138 	struct address_space *mapping = file->f_mapping;
2139 	struct inode *inode = mapping->host;
2140 	ssize_t ret;
2141 	struct iovec local_iov = { .iov_base = (void __user *)buf,
2142 					.iov_len = count };
2143 
2144 	BUG_ON(iocb->ki_pos != pos);
2145 
2146 	down(&inode->i_sem);
2147 	ret = __generic_file_aio_write_nolock(iocb, &local_iov, 1,
2148 						&iocb->ki_pos);
2149 	up(&inode->i_sem);
2150 
2151 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2152 		ssize_t err;
2153 
2154 		err = sync_page_range(inode, mapping, pos, ret);
2155 		if (err < 0)
2156 			ret = err;
2157 	}
2158 	return ret;
2159 }
2160 EXPORT_SYMBOL(generic_file_aio_write);
2161 
2162 ssize_t generic_file_write(struct file *file, const char __user *buf,
2163 			   size_t count, loff_t *ppos)
2164 {
2165 	struct address_space *mapping = file->f_mapping;
2166 	struct inode *inode = mapping->host;
2167 	ssize_t	ret;
2168 	struct iovec local_iov = { .iov_base = (void __user *)buf,
2169 					.iov_len = count };
2170 
2171 	down(&inode->i_sem);
2172 	ret = __generic_file_write_nolock(file, &local_iov, 1, ppos);
2173 	up(&inode->i_sem);
2174 
2175 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2176 		ssize_t err;
2177 
2178 		err = sync_page_range(inode, mapping, *ppos - ret, ret);
2179 		if (err < 0)
2180 			ret = err;
2181 	}
2182 	return ret;
2183 }
2184 EXPORT_SYMBOL(generic_file_write);
2185 
2186 ssize_t generic_file_readv(struct file *filp, const struct iovec *iov,
2187 			unsigned long nr_segs, loff_t *ppos)
2188 {
2189 	struct kiocb kiocb;
2190 	ssize_t ret;
2191 
2192 	init_sync_kiocb(&kiocb, filp);
2193 	ret = __generic_file_aio_read(&kiocb, iov, nr_segs, ppos);
2194 	if (-EIOCBQUEUED == ret)
2195 		ret = wait_on_sync_kiocb(&kiocb);
2196 	return ret;
2197 }
2198 EXPORT_SYMBOL(generic_file_readv);
2199 
2200 ssize_t generic_file_writev(struct file *file, const struct iovec *iov,
2201 			unsigned long nr_segs, loff_t *ppos)
2202 {
2203 	struct address_space *mapping = file->f_mapping;
2204 	struct inode *inode = mapping->host;
2205 	ssize_t ret;
2206 
2207 	down(&inode->i_sem);
2208 	ret = __generic_file_write_nolock(file, iov, nr_segs, ppos);
2209 	up(&inode->i_sem);
2210 
2211 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2212 		int err;
2213 
2214 		err = sync_page_range(inode, mapping, *ppos - ret, ret);
2215 		if (err < 0)
2216 			ret = err;
2217 	}
2218 	return ret;
2219 }
2220 EXPORT_SYMBOL(generic_file_writev);
2221 
2222 /*
2223  * Called under i_sem for writes to S_ISREG files.   Returns -EIO if something
2224  * went wrong during pagecache shootdown.
2225  */
2226 ssize_t
2227 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2228 	loff_t offset, unsigned long nr_segs)
2229 {
2230 	struct file *file = iocb->ki_filp;
2231 	struct address_space *mapping = file->f_mapping;
2232 	ssize_t retval;
2233 	size_t write_len = 0;
2234 
2235 	/*
2236 	 * If it's a write, unmap all mmappings of the file up-front.  This
2237 	 * will cause any pte dirty bits to be propagated into the pageframes
2238 	 * for the subsequent filemap_write_and_wait().
2239 	 */
2240 	if (rw == WRITE) {
2241 		write_len = iov_length(iov, nr_segs);
2242 	       	if (mapping_mapped(mapping))
2243 			unmap_mapping_range(mapping, offset, write_len, 0);
2244 	}
2245 
2246 	retval = filemap_write_and_wait(mapping);
2247 	if (retval == 0) {
2248 		retval = mapping->a_ops->direct_IO(rw, iocb, iov,
2249 						offset, nr_segs);
2250 		if (rw == WRITE && mapping->nrpages) {
2251 			pgoff_t end = (offset + write_len - 1)
2252 						>> PAGE_CACHE_SHIFT;
2253 			int err = invalidate_inode_pages2_range(mapping,
2254 					offset >> PAGE_CACHE_SHIFT, end);
2255 			if (err)
2256 				retval = err;
2257 		}
2258 	}
2259 	return retval;
2260 }
2261 EXPORT_SYMBOL_GPL(generic_file_direct_IO);
2262