xref: /linux/mm/filemap.c (revision d6296cb65320be16dbf20f2fd584ddc25f3437cd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/mm/filemap.c
4  *
5  * Copyright (C) 1994-1999  Linus Torvalds
6  */
7 
8 /*
9  * This file handles the generic file mmap semantics used by
10  * most "normal" filesystems (but you don't /have/ to use this:
11  * the NFS filesystem used to do this differently, for example)
12  */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/mman.h>
26 #include <linux/pagemap.h>
27 #include <linux/file.h>
28 #include <linux/uio.h>
29 #include <linux/error-injection.h>
30 #include <linux/hash.h>
31 #include <linux/writeback.h>
32 #include <linux/backing-dev.h>
33 #include <linux/pagevec.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/shmem_fs.h>
39 #include <linux/rmap.h>
40 #include <linux/delayacct.h>
41 #include <linux/psi.h>
42 #include <linux/ramfs.h>
43 #include <linux/page_idle.h>
44 #include <linux/migrate.h>
45 #include <linux/pipe_fs_i.h>
46 #include <linux/splice.h>
47 #include <asm/pgalloc.h>
48 #include <asm/tlbflush.h>
49 #include "internal.h"
50 
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/filemap.h>
53 
54 /*
55  * FIXME: remove all knowledge of the buffer layer from the core VM
56  */
57 #include <linux/buffer_head.h> /* for try_to_free_buffers */
58 
59 #include <asm/mman.h>
60 
61 /*
62  * Shared mappings implemented 30.11.1994. It's not fully working yet,
63  * though.
64  *
65  * Shared mappings now work. 15.8.1995  Bruno.
66  *
67  * finished 'unifying' the page and buffer cache and SMP-threaded the
68  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
69  *
70  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
71  */
72 
73 /*
74  * Lock ordering:
75  *
76  *  ->i_mmap_rwsem		(truncate_pagecache)
77  *    ->private_lock		(__free_pte->block_dirty_folio)
78  *      ->swap_lock		(exclusive_swap_page, others)
79  *        ->i_pages lock
80  *
81  *  ->i_rwsem
82  *    ->invalidate_lock		(acquired by fs in truncate path)
83  *      ->i_mmap_rwsem		(truncate->unmap_mapping_range)
84  *
85  *  ->mmap_lock
86  *    ->i_mmap_rwsem
87  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
88  *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
89  *
90  *  ->mmap_lock
91  *    ->invalidate_lock		(filemap_fault)
92  *      ->lock_page		(filemap_fault, access_process_vm)
93  *
94  *  ->i_rwsem			(generic_perform_write)
95  *    ->mmap_lock		(fault_in_readable->do_page_fault)
96  *
97  *  bdi->wb.list_lock
98  *    sb_lock			(fs/fs-writeback.c)
99  *    ->i_pages lock		(__sync_single_inode)
100  *
101  *  ->i_mmap_rwsem
102  *    ->anon_vma.lock		(vma_adjust)
103  *
104  *  ->anon_vma.lock
105  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
106  *
107  *  ->page_table_lock or pte_lock
108  *    ->swap_lock		(try_to_unmap_one)
109  *    ->private_lock		(try_to_unmap_one)
110  *    ->i_pages lock		(try_to_unmap_one)
111  *    ->lruvec->lru_lock	(follow_page->mark_page_accessed)
112  *    ->lruvec->lru_lock	(check_pte_range->isolate_lru_page)
113  *    ->private_lock		(page_remove_rmap->set_page_dirty)
114  *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
115  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
116  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
117  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
118  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
119  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
120  *    ->private_lock		(zap_pte_range->block_dirty_folio)
121  *
122  * ->i_mmap_rwsem
123  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
124  */
125 
126 static void page_cache_delete(struct address_space *mapping,
127 				   struct folio *folio, void *shadow)
128 {
129 	XA_STATE(xas, &mapping->i_pages, folio->index);
130 	long nr = 1;
131 
132 	mapping_set_update(&xas, mapping);
133 
134 	/* hugetlb pages are represented by a single entry in the xarray */
135 	if (!folio_test_hugetlb(folio)) {
136 		xas_set_order(&xas, folio->index, folio_order(folio));
137 		nr = folio_nr_pages(folio);
138 	}
139 
140 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
141 
142 	xas_store(&xas, shadow);
143 	xas_init_marks(&xas);
144 
145 	folio->mapping = NULL;
146 	/* Leave page->index set: truncation lookup relies upon it */
147 	mapping->nrpages -= nr;
148 }
149 
150 static void filemap_unaccount_folio(struct address_space *mapping,
151 		struct folio *folio)
152 {
153 	long nr;
154 
155 	VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
156 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
157 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
158 			 current->comm, folio_pfn(folio));
159 		dump_page(&folio->page, "still mapped when deleted");
160 		dump_stack();
161 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
162 
163 		if (mapping_exiting(mapping) && !folio_test_large(folio)) {
164 			int mapcount = page_mapcount(&folio->page);
165 
166 			if (folio_ref_count(folio) >= mapcount + 2) {
167 				/*
168 				 * All vmas have already been torn down, so it's
169 				 * a good bet that actually the page is unmapped
170 				 * and we'd rather not leak it: if we're wrong,
171 				 * another bad page check should catch it later.
172 				 */
173 				page_mapcount_reset(&folio->page);
174 				folio_ref_sub(folio, mapcount);
175 			}
176 		}
177 	}
178 
179 	/* hugetlb folios do not participate in page cache accounting. */
180 	if (folio_test_hugetlb(folio))
181 		return;
182 
183 	nr = folio_nr_pages(folio);
184 
185 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
186 	if (folio_test_swapbacked(folio)) {
187 		__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
188 		if (folio_test_pmd_mappable(folio))
189 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
190 	} else if (folio_test_pmd_mappable(folio)) {
191 		__lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
192 		filemap_nr_thps_dec(mapping);
193 	}
194 
195 	/*
196 	 * At this point folio must be either written or cleaned by
197 	 * truncate.  Dirty folio here signals a bug and loss of
198 	 * unwritten data - on ordinary filesystems.
199 	 *
200 	 * But it's harmless on in-memory filesystems like tmpfs; and can
201 	 * occur when a driver which did get_user_pages() sets page dirty
202 	 * before putting it, while the inode is being finally evicted.
203 	 *
204 	 * Below fixes dirty accounting after removing the folio entirely
205 	 * but leaves the dirty flag set: it has no effect for truncated
206 	 * folio and anyway will be cleared before returning folio to
207 	 * buddy allocator.
208 	 */
209 	if (WARN_ON_ONCE(folio_test_dirty(folio) &&
210 			 mapping_can_writeback(mapping)))
211 		folio_account_cleaned(folio, inode_to_wb(mapping->host));
212 }
213 
214 /*
215  * Delete a page from the page cache and free it. Caller has to make
216  * sure the page is locked and that nobody else uses it - or that usage
217  * is safe.  The caller must hold the i_pages lock.
218  */
219 void __filemap_remove_folio(struct folio *folio, void *shadow)
220 {
221 	struct address_space *mapping = folio->mapping;
222 
223 	trace_mm_filemap_delete_from_page_cache(folio);
224 	filemap_unaccount_folio(mapping, folio);
225 	page_cache_delete(mapping, folio, shadow);
226 }
227 
228 void filemap_free_folio(struct address_space *mapping, struct folio *folio)
229 {
230 	void (*free_folio)(struct folio *);
231 	int refs = 1;
232 
233 	free_folio = mapping->a_ops->free_folio;
234 	if (free_folio)
235 		free_folio(folio);
236 
237 	if (folio_test_large(folio) && !folio_test_hugetlb(folio))
238 		refs = folio_nr_pages(folio);
239 	folio_put_refs(folio, refs);
240 }
241 
242 /**
243  * filemap_remove_folio - Remove folio from page cache.
244  * @folio: The folio.
245  *
246  * This must be called only on folios that are locked and have been
247  * verified to be in the page cache.  It will never put the folio into
248  * the free list because the caller has a reference on the page.
249  */
250 void filemap_remove_folio(struct folio *folio)
251 {
252 	struct address_space *mapping = folio->mapping;
253 
254 	BUG_ON(!folio_test_locked(folio));
255 	spin_lock(&mapping->host->i_lock);
256 	xa_lock_irq(&mapping->i_pages);
257 	__filemap_remove_folio(folio, NULL);
258 	xa_unlock_irq(&mapping->i_pages);
259 	if (mapping_shrinkable(mapping))
260 		inode_add_lru(mapping->host);
261 	spin_unlock(&mapping->host->i_lock);
262 
263 	filemap_free_folio(mapping, folio);
264 }
265 
266 /*
267  * page_cache_delete_batch - delete several folios from page cache
268  * @mapping: the mapping to which folios belong
269  * @fbatch: batch of folios to delete
270  *
271  * The function walks over mapping->i_pages and removes folios passed in
272  * @fbatch from the mapping. The function expects @fbatch to be sorted
273  * by page index and is optimised for it to be dense.
274  * It tolerates holes in @fbatch (mapping entries at those indices are not
275  * modified).
276  *
277  * The function expects the i_pages lock to be held.
278  */
279 static void page_cache_delete_batch(struct address_space *mapping,
280 			     struct folio_batch *fbatch)
281 {
282 	XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
283 	long total_pages = 0;
284 	int i = 0;
285 	struct folio *folio;
286 
287 	mapping_set_update(&xas, mapping);
288 	xas_for_each(&xas, folio, ULONG_MAX) {
289 		if (i >= folio_batch_count(fbatch))
290 			break;
291 
292 		/* A swap/dax/shadow entry got inserted? Skip it. */
293 		if (xa_is_value(folio))
294 			continue;
295 		/*
296 		 * A page got inserted in our range? Skip it. We have our
297 		 * pages locked so they are protected from being removed.
298 		 * If we see a page whose index is higher than ours, it
299 		 * means our page has been removed, which shouldn't be
300 		 * possible because we're holding the PageLock.
301 		 */
302 		if (folio != fbatch->folios[i]) {
303 			VM_BUG_ON_FOLIO(folio->index >
304 					fbatch->folios[i]->index, folio);
305 			continue;
306 		}
307 
308 		WARN_ON_ONCE(!folio_test_locked(folio));
309 
310 		folio->mapping = NULL;
311 		/* Leave folio->index set: truncation lookup relies on it */
312 
313 		i++;
314 		xas_store(&xas, NULL);
315 		total_pages += folio_nr_pages(folio);
316 	}
317 	mapping->nrpages -= total_pages;
318 }
319 
320 void delete_from_page_cache_batch(struct address_space *mapping,
321 				  struct folio_batch *fbatch)
322 {
323 	int i;
324 
325 	if (!folio_batch_count(fbatch))
326 		return;
327 
328 	spin_lock(&mapping->host->i_lock);
329 	xa_lock_irq(&mapping->i_pages);
330 	for (i = 0; i < folio_batch_count(fbatch); i++) {
331 		struct folio *folio = fbatch->folios[i];
332 
333 		trace_mm_filemap_delete_from_page_cache(folio);
334 		filemap_unaccount_folio(mapping, folio);
335 	}
336 	page_cache_delete_batch(mapping, fbatch);
337 	xa_unlock_irq(&mapping->i_pages);
338 	if (mapping_shrinkable(mapping))
339 		inode_add_lru(mapping->host);
340 	spin_unlock(&mapping->host->i_lock);
341 
342 	for (i = 0; i < folio_batch_count(fbatch); i++)
343 		filemap_free_folio(mapping, fbatch->folios[i]);
344 }
345 
346 int filemap_check_errors(struct address_space *mapping)
347 {
348 	int ret = 0;
349 	/* Check for outstanding write errors */
350 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
351 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
352 		ret = -ENOSPC;
353 	if (test_bit(AS_EIO, &mapping->flags) &&
354 	    test_and_clear_bit(AS_EIO, &mapping->flags))
355 		ret = -EIO;
356 	return ret;
357 }
358 EXPORT_SYMBOL(filemap_check_errors);
359 
360 static int filemap_check_and_keep_errors(struct address_space *mapping)
361 {
362 	/* Check for outstanding write errors */
363 	if (test_bit(AS_EIO, &mapping->flags))
364 		return -EIO;
365 	if (test_bit(AS_ENOSPC, &mapping->flags))
366 		return -ENOSPC;
367 	return 0;
368 }
369 
370 /**
371  * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
372  * @mapping:	address space structure to write
373  * @wbc:	the writeback_control controlling the writeout
374  *
375  * Call writepages on the mapping using the provided wbc to control the
376  * writeout.
377  *
378  * Return: %0 on success, negative error code otherwise.
379  */
380 int filemap_fdatawrite_wbc(struct address_space *mapping,
381 			   struct writeback_control *wbc)
382 {
383 	int ret;
384 
385 	if (!mapping_can_writeback(mapping) ||
386 	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
387 		return 0;
388 
389 	wbc_attach_fdatawrite_inode(wbc, mapping->host);
390 	ret = do_writepages(mapping, wbc);
391 	wbc_detach_inode(wbc);
392 	return ret;
393 }
394 EXPORT_SYMBOL(filemap_fdatawrite_wbc);
395 
396 /**
397  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
398  * @mapping:	address space structure to write
399  * @start:	offset in bytes where the range starts
400  * @end:	offset in bytes where the range ends (inclusive)
401  * @sync_mode:	enable synchronous operation
402  *
403  * Start writeback against all of a mapping's dirty pages that lie
404  * within the byte offsets <start, end> inclusive.
405  *
406  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
407  * opposed to a regular memory cleansing writeback.  The difference between
408  * these two operations is that if a dirty page/buffer is encountered, it must
409  * be waited upon, and not just skipped over.
410  *
411  * Return: %0 on success, negative error code otherwise.
412  */
413 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
414 				loff_t end, int sync_mode)
415 {
416 	struct writeback_control wbc = {
417 		.sync_mode = sync_mode,
418 		.nr_to_write = LONG_MAX,
419 		.range_start = start,
420 		.range_end = end,
421 	};
422 
423 	return filemap_fdatawrite_wbc(mapping, &wbc);
424 }
425 
426 static inline int __filemap_fdatawrite(struct address_space *mapping,
427 	int sync_mode)
428 {
429 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
430 }
431 
432 int filemap_fdatawrite(struct address_space *mapping)
433 {
434 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
435 }
436 EXPORT_SYMBOL(filemap_fdatawrite);
437 
438 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
439 				loff_t end)
440 {
441 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
442 }
443 EXPORT_SYMBOL(filemap_fdatawrite_range);
444 
445 /**
446  * filemap_flush - mostly a non-blocking flush
447  * @mapping:	target address_space
448  *
449  * This is a mostly non-blocking flush.  Not suitable for data-integrity
450  * purposes - I/O may not be started against all dirty pages.
451  *
452  * Return: %0 on success, negative error code otherwise.
453  */
454 int filemap_flush(struct address_space *mapping)
455 {
456 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
457 }
458 EXPORT_SYMBOL(filemap_flush);
459 
460 /**
461  * filemap_range_has_page - check if a page exists in range.
462  * @mapping:           address space within which to check
463  * @start_byte:        offset in bytes where the range starts
464  * @end_byte:          offset in bytes where the range ends (inclusive)
465  *
466  * Find at least one page in the range supplied, usually used to check if
467  * direct writing in this range will trigger a writeback.
468  *
469  * Return: %true if at least one page exists in the specified range,
470  * %false otherwise.
471  */
472 bool filemap_range_has_page(struct address_space *mapping,
473 			   loff_t start_byte, loff_t end_byte)
474 {
475 	struct page *page;
476 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
477 	pgoff_t max = end_byte >> PAGE_SHIFT;
478 
479 	if (end_byte < start_byte)
480 		return false;
481 
482 	rcu_read_lock();
483 	for (;;) {
484 		page = xas_find(&xas, max);
485 		if (xas_retry(&xas, page))
486 			continue;
487 		/* Shadow entries don't count */
488 		if (xa_is_value(page))
489 			continue;
490 		/*
491 		 * We don't need to try to pin this page; we're about to
492 		 * release the RCU lock anyway.  It is enough to know that
493 		 * there was a page here recently.
494 		 */
495 		break;
496 	}
497 	rcu_read_unlock();
498 
499 	return page != NULL;
500 }
501 EXPORT_SYMBOL(filemap_range_has_page);
502 
503 static void __filemap_fdatawait_range(struct address_space *mapping,
504 				     loff_t start_byte, loff_t end_byte)
505 {
506 	pgoff_t index = start_byte >> PAGE_SHIFT;
507 	pgoff_t end = end_byte >> PAGE_SHIFT;
508 	struct pagevec pvec;
509 	int nr_pages;
510 
511 	pagevec_init(&pvec);
512 	while (index <= end) {
513 		unsigned i;
514 
515 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
516 				end, PAGECACHE_TAG_WRITEBACK);
517 		if (!nr_pages)
518 			break;
519 
520 		for (i = 0; i < nr_pages; i++) {
521 			struct page *page = pvec.pages[i];
522 
523 			wait_on_page_writeback(page);
524 			ClearPageError(page);
525 		}
526 		pagevec_release(&pvec);
527 		cond_resched();
528 	}
529 }
530 
531 /**
532  * filemap_fdatawait_range - wait for writeback to complete
533  * @mapping:		address space structure to wait for
534  * @start_byte:		offset in bytes where the range starts
535  * @end_byte:		offset in bytes where the range ends (inclusive)
536  *
537  * Walk the list of under-writeback pages of the given address space
538  * in the given range and wait for all of them.  Check error status of
539  * the address space and return it.
540  *
541  * Since the error status of the address space is cleared by this function,
542  * callers are responsible for checking the return value and handling and/or
543  * reporting the error.
544  *
545  * Return: error status of the address space.
546  */
547 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
548 			    loff_t end_byte)
549 {
550 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
551 	return filemap_check_errors(mapping);
552 }
553 EXPORT_SYMBOL(filemap_fdatawait_range);
554 
555 /**
556  * filemap_fdatawait_range_keep_errors - wait for writeback to complete
557  * @mapping:		address space structure to wait for
558  * @start_byte:		offset in bytes where the range starts
559  * @end_byte:		offset in bytes where the range ends (inclusive)
560  *
561  * Walk the list of under-writeback pages of the given address space in the
562  * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
563  * this function does not clear error status of the address space.
564  *
565  * Use this function if callers don't handle errors themselves.  Expected
566  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
567  * fsfreeze(8)
568  */
569 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
570 		loff_t start_byte, loff_t end_byte)
571 {
572 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
573 	return filemap_check_and_keep_errors(mapping);
574 }
575 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
576 
577 /**
578  * file_fdatawait_range - wait for writeback to complete
579  * @file:		file pointing to address space structure to wait for
580  * @start_byte:		offset in bytes where the range starts
581  * @end_byte:		offset in bytes where the range ends (inclusive)
582  *
583  * Walk the list of under-writeback pages of the address space that file
584  * refers to, in the given range and wait for all of them.  Check error
585  * status of the address space vs. the file->f_wb_err cursor and return it.
586  *
587  * Since the error status of the file is advanced by this function,
588  * callers are responsible for checking the return value and handling and/or
589  * reporting the error.
590  *
591  * Return: error status of the address space vs. the file->f_wb_err cursor.
592  */
593 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
594 {
595 	struct address_space *mapping = file->f_mapping;
596 
597 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
598 	return file_check_and_advance_wb_err(file);
599 }
600 EXPORT_SYMBOL(file_fdatawait_range);
601 
602 /**
603  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
604  * @mapping: address space structure to wait for
605  *
606  * Walk the list of under-writeback pages of the given address space
607  * and wait for all of them.  Unlike filemap_fdatawait(), this function
608  * does not clear error status of the address space.
609  *
610  * Use this function if callers don't handle errors themselves.  Expected
611  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
612  * fsfreeze(8)
613  *
614  * Return: error status of the address space.
615  */
616 int filemap_fdatawait_keep_errors(struct address_space *mapping)
617 {
618 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
619 	return filemap_check_and_keep_errors(mapping);
620 }
621 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
622 
623 /* Returns true if writeback might be needed or already in progress. */
624 static bool mapping_needs_writeback(struct address_space *mapping)
625 {
626 	return mapping->nrpages;
627 }
628 
629 bool filemap_range_has_writeback(struct address_space *mapping,
630 				 loff_t start_byte, loff_t end_byte)
631 {
632 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
633 	pgoff_t max = end_byte >> PAGE_SHIFT;
634 	struct folio *folio;
635 
636 	if (end_byte < start_byte)
637 		return false;
638 
639 	rcu_read_lock();
640 	xas_for_each(&xas, folio, max) {
641 		if (xas_retry(&xas, folio))
642 			continue;
643 		if (xa_is_value(folio))
644 			continue;
645 		if (folio_test_dirty(folio) || folio_test_locked(folio) ||
646 				folio_test_writeback(folio))
647 			break;
648 	}
649 	rcu_read_unlock();
650 	return folio != NULL;
651 }
652 EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
653 
654 /**
655  * filemap_write_and_wait_range - write out & wait on a file range
656  * @mapping:	the address_space for the pages
657  * @lstart:	offset in bytes where the range starts
658  * @lend:	offset in bytes where the range ends (inclusive)
659  *
660  * Write out and wait upon file offsets lstart->lend, inclusive.
661  *
662  * Note that @lend is inclusive (describes the last byte to be written) so
663  * that this function can be used to write to the very end-of-file (end = -1).
664  *
665  * Return: error status of the address space.
666  */
667 int filemap_write_and_wait_range(struct address_space *mapping,
668 				 loff_t lstart, loff_t lend)
669 {
670 	int err = 0, err2;
671 
672 	if (lend < lstart)
673 		return 0;
674 
675 	if (mapping_needs_writeback(mapping)) {
676 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
677 						 WB_SYNC_ALL);
678 		/*
679 		 * Even if the above returned error, the pages may be
680 		 * written partially (e.g. -ENOSPC), so we wait for it.
681 		 * But the -EIO is special case, it may indicate the worst
682 		 * thing (e.g. bug) happened, so we avoid waiting for it.
683 		 */
684 		if (err != -EIO)
685 			__filemap_fdatawait_range(mapping, lstart, lend);
686 	}
687 	err2 = filemap_check_errors(mapping);
688 	if (!err)
689 		err = err2;
690 	return err;
691 }
692 EXPORT_SYMBOL(filemap_write_and_wait_range);
693 
694 void __filemap_set_wb_err(struct address_space *mapping, int err)
695 {
696 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
697 
698 	trace_filemap_set_wb_err(mapping, eseq);
699 }
700 EXPORT_SYMBOL(__filemap_set_wb_err);
701 
702 /**
703  * file_check_and_advance_wb_err - report wb error (if any) that was previously
704  * 				   and advance wb_err to current one
705  * @file: struct file on which the error is being reported
706  *
707  * When userland calls fsync (or something like nfsd does the equivalent), we
708  * want to report any writeback errors that occurred since the last fsync (or
709  * since the file was opened if there haven't been any).
710  *
711  * Grab the wb_err from the mapping. If it matches what we have in the file,
712  * then just quickly return 0. The file is all caught up.
713  *
714  * If it doesn't match, then take the mapping value, set the "seen" flag in
715  * it and try to swap it into place. If it works, or another task beat us
716  * to it with the new value, then update the f_wb_err and return the error
717  * portion. The error at this point must be reported via proper channels
718  * (a'la fsync, or NFS COMMIT operation, etc.).
719  *
720  * While we handle mapping->wb_err with atomic operations, the f_wb_err
721  * value is protected by the f_lock since we must ensure that it reflects
722  * the latest value swapped in for this file descriptor.
723  *
724  * Return: %0 on success, negative error code otherwise.
725  */
726 int file_check_and_advance_wb_err(struct file *file)
727 {
728 	int err = 0;
729 	errseq_t old = READ_ONCE(file->f_wb_err);
730 	struct address_space *mapping = file->f_mapping;
731 
732 	/* Locklessly handle the common case where nothing has changed */
733 	if (errseq_check(&mapping->wb_err, old)) {
734 		/* Something changed, must use slow path */
735 		spin_lock(&file->f_lock);
736 		old = file->f_wb_err;
737 		err = errseq_check_and_advance(&mapping->wb_err,
738 						&file->f_wb_err);
739 		trace_file_check_and_advance_wb_err(file, old);
740 		spin_unlock(&file->f_lock);
741 	}
742 
743 	/*
744 	 * We're mostly using this function as a drop in replacement for
745 	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
746 	 * that the legacy code would have had on these flags.
747 	 */
748 	clear_bit(AS_EIO, &mapping->flags);
749 	clear_bit(AS_ENOSPC, &mapping->flags);
750 	return err;
751 }
752 EXPORT_SYMBOL(file_check_and_advance_wb_err);
753 
754 /**
755  * file_write_and_wait_range - write out & wait on a file range
756  * @file:	file pointing to address_space with pages
757  * @lstart:	offset in bytes where the range starts
758  * @lend:	offset in bytes where the range ends (inclusive)
759  *
760  * Write out and wait upon file offsets lstart->lend, inclusive.
761  *
762  * Note that @lend is inclusive (describes the last byte to be written) so
763  * that this function can be used to write to the very end-of-file (end = -1).
764  *
765  * After writing out and waiting on the data, we check and advance the
766  * f_wb_err cursor to the latest value, and return any errors detected there.
767  *
768  * Return: %0 on success, negative error code otherwise.
769  */
770 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
771 {
772 	int err = 0, err2;
773 	struct address_space *mapping = file->f_mapping;
774 
775 	if (lend < lstart)
776 		return 0;
777 
778 	if (mapping_needs_writeback(mapping)) {
779 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
780 						 WB_SYNC_ALL);
781 		/* See comment of filemap_write_and_wait() */
782 		if (err != -EIO)
783 			__filemap_fdatawait_range(mapping, lstart, lend);
784 	}
785 	err2 = file_check_and_advance_wb_err(file);
786 	if (!err)
787 		err = err2;
788 	return err;
789 }
790 EXPORT_SYMBOL(file_write_and_wait_range);
791 
792 /**
793  * replace_page_cache_folio - replace a pagecache folio with a new one
794  * @old:	folio to be replaced
795  * @new:	folio to replace with
796  *
797  * This function replaces a folio in the pagecache with a new one.  On
798  * success it acquires the pagecache reference for the new folio and
799  * drops it for the old folio.  Both the old and new folios must be
800  * locked.  This function does not add the new folio to the LRU, the
801  * caller must do that.
802  *
803  * The remove + add is atomic.  This function cannot fail.
804  */
805 void replace_page_cache_folio(struct folio *old, struct folio *new)
806 {
807 	struct address_space *mapping = old->mapping;
808 	void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
809 	pgoff_t offset = old->index;
810 	XA_STATE(xas, &mapping->i_pages, offset);
811 
812 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
813 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
814 	VM_BUG_ON_FOLIO(new->mapping, new);
815 
816 	folio_get(new);
817 	new->mapping = mapping;
818 	new->index = offset;
819 
820 	mem_cgroup_migrate(old, new);
821 
822 	xas_lock_irq(&xas);
823 	xas_store(&xas, new);
824 
825 	old->mapping = NULL;
826 	/* hugetlb pages do not participate in page cache accounting. */
827 	if (!folio_test_hugetlb(old))
828 		__lruvec_stat_sub_folio(old, NR_FILE_PAGES);
829 	if (!folio_test_hugetlb(new))
830 		__lruvec_stat_add_folio(new, NR_FILE_PAGES);
831 	if (folio_test_swapbacked(old))
832 		__lruvec_stat_sub_folio(old, NR_SHMEM);
833 	if (folio_test_swapbacked(new))
834 		__lruvec_stat_add_folio(new, NR_SHMEM);
835 	xas_unlock_irq(&xas);
836 	if (free_folio)
837 		free_folio(old);
838 	folio_put(old);
839 }
840 EXPORT_SYMBOL_GPL(replace_page_cache_folio);
841 
842 noinline int __filemap_add_folio(struct address_space *mapping,
843 		struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
844 {
845 	XA_STATE(xas, &mapping->i_pages, index);
846 	int huge = folio_test_hugetlb(folio);
847 	bool charged = false;
848 	long nr = 1;
849 
850 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
851 	VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
852 	mapping_set_update(&xas, mapping);
853 
854 	if (!huge) {
855 		int error = mem_cgroup_charge(folio, NULL, gfp);
856 		VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
857 		if (error)
858 			return error;
859 		charged = true;
860 		xas_set_order(&xas, index, folio_order(folio));
861 		nr = folio_nr_pages(folio);
862 	}
863 
864 	gfp &= GFP_RECLAIM_MASK;
865 	folio_ref_add(folio, nr);
866 	folio->mapping = mapping;
867 	folio->index = xas.xa_index;
868 
869 	do {
870 		unsigned int order = xa_get_order(xas.xa, xas.xa_index);
871 		void *entry, *old = NULL;
872 
873 		if (order > folio_order(folio))
874 			xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
875 					order, gfp);
876 		xas_lock_irq(&xas);
877 		xas_for_each_conflict(&xas, entry) {
878 			old = entry;
879 			if (!xa_is_value(entry)) {
880 				xas_set_err(&xas, -EEXIST);
881 				goto unlock;
882 			}
883 		}
884 
885 		if (old) {
886 			if (shadowp)
887 				*shadowp = old;
888 			/* entry may have been split before we acquired lock */
889 			order = xa_get_order(xas.xa, xas.xa_index);
890 			if (order > folio_order(folio)) {
891 				/* How to handle large swap entries? */
892 				BUG_ON(shmem_mapping(mapping));
893 				xas_split(&xas, old, order);
894 				xas_reset(&xas);
895 			}
896 		}
897 
898 		xas_store(&xas, folio);
899 		if (xas_error(&xas))
900 			goto unlock;
901 
902 		mapping->nrpages += nr;
903 
904 		/* hugetlb pages do not participate in page cache accounting */
905 		if (!huge) {
906 			__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
907 			if (folio_test_pmd_mappable(folio))
908 				__lruvec_stat_mod_folio(folio,
909 						NR_FILE_THPS, nr);
910 		}
911 unlock:
912 		xas_unlock_irq(&xas);
913 	} while (xas_nomem(&xas, gfp));
914 
915 	if (xas_error(&xas))
916 		goto error;
917 
918 	trace_mm_filemap_add_to_page_cache(folio);
919 	return 0;
920 error:
921 	if (charged)
922 		mem_cgroup_uncharge(folio);
923 	folio->mapping = NULL;
924 	/* Leave page->index set: truncation relies upon it */
925 	folio_put_refs(folio, nr);
926 	return xas_error(&xas);
927 }
928 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
929 
930 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
931 				pgoff_t index, gfp_t gfp)
932 {
933 	void *shadow = NULL;
934 	int ret;
935 
936 	__folio_set_locked(folio);
937 	ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
938 	if (unlikely(ret))
939 		__folio_clear_locked(folio);
940 	else {
941 		/*
942 		 * The folio might have been evicted from cache only
943 		 * recently, in which case it should be activated like
944 		 * any other repeatedly accessed folio.
945 		 * The exception is folios getting rewritten; evicting other
946 		 * data from the working set, only to cache data that will
947 		 * get overwritten with something else, is a waste of memory.
948 		 */
949 		WARN_ON_ONCE(folio_test_active(folio));
950 		if (!(gfp & __GFP_WRITE) && shadow)
951 			workingset_refault(folio, shadow);
952 		folio_add_lru(folio);
953 	}
954 	return ret;
955 }
956 EXPORT_SYMBOL_GPL(filemap_add_folio);
957 
958 #ifdef CONFIG_NUMA
959 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
960 {
961 	int n;
962 	struct folio *folio;
963 
964 	if (cpuset_do_page_mem_spread()) {
965 		unsigned int cpuset_mems_cookie;
966 		do {
967 			cpuset_mems_cookie = read_mems_allowed_begin();
968 			n = cpuset_mem_spread_node();
969 			folio = __folio_alloc_node(gfp, order, n);
970 		} while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
971 
972 		return folio;
973 	}
974 	return folio_alloc(gfp, order);
975 }
976 EXPORT_SYMBOL(filemap_alloc_folio);
977 #endif
978 
979 /*
980  * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
981  *
982  * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
983  *
984  * @mapping1: the first mapping to lock
985  * @mapping2: the second mapping to lock
986  */
987 void filemap_invalidate_lock_two(struct address_space *mapping1,
988 				 struct address_space *mapping2)
989 {
990 	if (mapping1 > mapping2)
991 		swap(mapping1, mapping2);
992 	if (mapping1)
993 		down_write(&mapping1->invalidate_lock);
994 	if (mapping2 && mapping1 != mapping2)
995 		down_write_nested(&mapping2->invalidate_lock, 1);
996 }
997 EXPORT_SYMBOL(filemap_invalidate_lock_two);
998 
999 /*
1000  * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1001  *
1002  * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1003  *
1004  * @mapping1: the first mapping to unlock
1005  * @mapping2: the second mapping to unlock
1006  */
1007 void filemap_invalidate_unlock_two(struct address_space *mapping1,
1008 				   struct address_space *mapping2)
1009 {
1010 	if (mapping1)
1011 		up_write(&mapping1->invalidate_lock);
1012 	if (mapping2 && mapping1 != mapping2)
1013 		up_write(&mapping2->invalidate_lock);
1014 }
1015 EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1016 
1017 /*
1018  * In order to wait for pages to become available there must be
1019  * waitqueues associated with pages. By using a hash table of
1020  * waitqueues where the bucket discipline is to maintain all
1021  * waiters on the same queue and wake all when any of the pages
1022  * become available, and for the woken contexts to check to be
1023  * sure the appropriate page became available, this saves space
1024  * at a cost of "thundering herd" phenomena during rare hash
1025  * collisions.
1026  */
1027 #define PAGE_WAIT_TABLE_BITS 8
1028 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1029 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1030 
1031 static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1032 {
1033 	return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1034 }
1035 
1036 void __init pagecache_init(void)
1037 {
1038 	int i;
1039 
1040 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1041 		init_waitqueue_head(&folio_wait_table[i]);
1042 
1043 	page_writeback_init();
1044 }
1045 
1046 /*
1047  * The page wait code treats the "wait->flags" somewhat unusually, because
1048  * we have multiple different kinds of waits, not just the usual "exclusive"
1049  * one.
1050  *
1051  * We have:
1052  *
1053  *  (a) no special bits set:
1054  *
1055  *	We're just waiting for the bit to be released, and when a waker
1056  *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1057  *	and remove it from the wait queue.
1058  *
1059  *	Simple and straightforward.
1060  *
1061  *  (b) WQ_FLAG_EXCLUSIVE:
1062  *
1063  *	The waiter is waiting to get the lock, and only one waiter should
1064  *	be woken up to avoid any thundering herd behavior. We'll set the
1065  *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1066  *
1067  *	This is the traditional exclusive wait.
1068  *
1069  *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1070  *
1071  *	The waiter is waiting to get the bit, and additionally wants the
1072  *	lock to be transferred to it for fair lock behavior. If the lock
1073  *	cannot be taken, we stop walking the wait queue without waking
1074  *	the waiter.
1075  *
1076  *	This is the "fair lock handoff" case, and in addition to setting
1077  *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1078  *	that it now has the lock.
1079  */
1080 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1081 {
1082 	unsigned int flags;
1083 	struct wait_page_key *key = arg;
1084 	struct wait_page_queue *wait_page
1085 		= container_of(wait, struct wait_page_queue, wait);
1086 
1087 	if (!wake_page_match(wait_page, key))
1088 		return 0;
1089 
1090 	/*
1091 	 * If it's a lock handoff wait, we get the bit for it, and
1092 	 * stop walking (and do not wake it up) if we can't.
1093 	 */
1094 	flags = wait->flags;
1095 	if (flags & WQ_FLAG_EXCLUSIVE) {
1096 		if (test_bit(key->bit_nr, &key->folio->flags))
1097 			return -1;
1098 		if (flags & WQ_FLAG_CUSTOM) {
1099 			if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1100 				return -1;
1101 			flags |= WQ_FLAG_DONE;
1102 		}
1103 	}
1104 
1105 	/*
1106 	 * We are holding the wait-queue lock, but the waiter that
1107 	 * is waiting for this will be checking the flags without
1108 	 * any locking.
1109 	 *
1110 	 * So update the flags atomically, and wake up the waiter
1111 	 * afterwards to avoid any races. This store-release pairs
1112 	 * with the load-acquire in folio_wait_bit_common().
1113 	 */
1114 	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1115 	wake_up_state(wait->private, mode);
1116 
1117 	/*
1118 	 * Ok, we have successfully done what we're waiting for,
1119 	 * and we can unconditionally remove the wait entry.
1120 	 *
1121 	 * Note that this pairs with the "finish_wait()" in the
1122 	 * waiter, and has to be the absolute last thing we do.
1123 	 * After this list_del_init(&wait->entry) the wait entry
1124 	 * might be de-allocated and the process might even have
1125 	 * exited.
1126 	 */
1127 	list_del_init_careful(&wait->entry);
1128 	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1129 }
1130 
1131 static void folio_wake_bit(struct folio *folio, int bit_nr)
1132 {
1133 	wait_queue_head_t *q = folio_waitqueue(folio);
1134 	struct wait_page_key key;
1135 	unsigned long flags;
1136 	wait_queue_entry_t bookmark;
1137 
1138 	key.folio = folio;
1139 	key.bit_nr = bit_nr;
1140 	key.page_match = 0;
1141 
1142 	bookmark.flags = 0;
1143 	bookmark.private = NULL;
1144 	bookmark.func = NULL;
1145 	INIT_LIST_HEAD(&bookmark.entry);
1146 
1147 	spin_lock_irqsave(&q->lock, flags);
1148 	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1149 
1150 	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1151 		/*
1152 		 * Take a breather from holding the lock,
1153 		 * allow pages that finish wake up asynchronously
1154 		 * to acquire the lock and remove themselves
1155 		 * from wait queue
1156 		 */
1157 		spin_unlock_irqrestore(&q->lock, flags);
1158 		cpu_relax();
1159 		spin_lock_irqsave(&q->lock, flags);
1160 		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1161 	}
1162 
1163 	/*
1164 	 * It's possible to miss clearing waiters here, when we woke our page
1165 	 * waiters, but the hashed waitqueue has waiters for other pages on it.
1166 	 * That's okay, it's a rare case. The next waker will clear it.
1167 	 *
1168 	 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1169 	 * other), the flag may be cleared in the course of freeing the page;
1170 	 * but that is not required for correctness.
1171 	 */
1172 	if (!waitqueue_active(q) || !key.page_match)
1173 		folio_clear_waiters(folio);
1174 
1175 	spin_unlock_irqrestore(&q->lock, flags);
1176 }
1177 
1178 static void folio_wake(struct folio *folio, int bit)
1179 {
1180 	if (!folio_test_waiters(folio))
1181 		return;
1182 	folio_wake_bit(folio, bit);
1183 }
1184 
1185 /*
1186  * A choice of three behaviors for folio_wait_bit_common():
1187  */
1188 enum behavior {
1189 	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1190 			 * __folio_lock() waiting on then setting PG_locked.
1191 			 */
1192 	SHARED,		/* Hold ref to page and check the bit when woken, like
1193 			 * folio_wait_writeback() waiting on PG_writeback.
1194 			 */
1195 	DROP,		/* Drop ref to page before wait, no check when woken,
1196 			 * like folio_put_wait_locked() on PG_locked.
1197 			 */
1198 };
1199 
1200 /*
1201  * Attempt to check (or get) the folio flag, and mark us done
1202  * if successful.
1203  */
1204 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1205 					struct wait_queue_entry *wait)
1206 {
1207 	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1208 		if (test_and_set_bit(bit_nr, &folio->flags))
1209 			return false;
1210 	} else if (test_bit(bit_nr, &folio->flags))
1211 		return false;
1212 
1213 	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1214 	return true;
1215 }
1216 
1217 /* How many times do we accept lock stealing from under a waiter? */
1218 int sysctl_page_lock_unfairness = 5;
1219 
1220 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1221 		int state, enum behavior behavior)
1222 {
1223 	wait_queue_head_t *q = folio_waitqueue(folio);
1224 	int unfairness = sysctl_page_lock_unfairness;
1225 	struct wait_page_queue wait_page;
1226 	wait_queue_entry_t *wait = &wait_page.wait;
1227 	bool thrashing = false;
1228 	unsigned long pflags;
1229 	bool in_thrashing;
1230 
1231 	if (bit_nr == PG_locked &&
1232 	    !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1233 		delayacct_thrashing_start(&in_thrashing);
1234 		psi_memstall_enter(&pflags);
1235 		thrashing = true;
1236 	}
1237 
1238 	init_wait(wait);
1239 	wait->func = wake_page_function;
1240 	wait_page.folio = folio;
1241 	wait_page.bit_nr = bit_nr;
1242 
1243 repeat:
1244 	wait->flags = 0;
1245 	if (behavior == EXCLUSIVE) {
1246 		wait->flags = WQ_FLAG_EXCLUSIVE;
1247 		if (--unfairness < 0)
1248 			wait->flags |= WQ_FLAG_CUSTOM;
1249 	}
1250 
1251 	/*
1252 	 * Do one last check whether we can get the
1253 	 * page bit synchronously.
1254 	 *
1255 	 * Do the folio_set_waiters() marking before that
1256 	 * to let any waker we _just_ missed know they
1257 	 * need to wake us up (otherwise they'll never
1258 	 * even go to the slow case that looks at the
1259 	 * page queue), and add ourselves to the wait
1260 	 * queue if we need to sleep.
1261 	 *
1262 	 * This part needs to be done under the queue
1263 	 * lock to avoid races.
1264 	 */
1265 	spin_lock_irq(&q->lock);
1266 	folio_set_waiters(folio);
1267 	if (!folio_trylock_flag(folio, bit_nr, wait))
1268 		__add_wait_queue_entry_tail(q, wait);
1269 	spin_unlock_irq(&q->lock);
1270 
1271 	/*
1272 	 * From now on, all the logic will be based on
1273 	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1274 	 * see whether the page bit testing has already
1275 	 * been done by the wake function.
1276 	 *
1277 	 * We can drop our reference to the folio.
1278 	 */
1279 	if (behavior == DROP)
1280 		folio_put(folio);
1281 
1282 	/*
1283 	 * Note that until the "finish_wait()", or until
1284 	 * we see the WQ_FLAG_WOKEN flag, we need to
1285 	 * be very careful with the 'wait->flags', because
1286 	 * we may race with a waker that sets them.
1287 	 */
1288 	for (;;) {
1289 		unsigned int flags;
1290 
1291 		set_current_state(state);
1292 
1293 		/* Loop until we've been woken or interrupted */
1294 		flags = smp_load_acquire(&wait->flags);
1295 		if (!(flags & WQ_FLAG_WOKEN)) {
1296 			if (signal_pending_state(state, current))
1297 				break;
1298 
1299 			io_schedule();
1300 			continue;
1301 		}
1302 
1303 		/* If we were non-exclusive, we're done */
1304 		if (behavior != EXCLUSIVE)
1305 			break;
1306 
1307 		/* If the waker got the lock for us, we're done */
1308 		if (flags & WQ_FLAG_DONE)
1309 			break;
1310 
1311 		/*
1312 		 * Otherwise, if we're getting the lock, we need to
1313 		 * try to get it ourselves.
1314 		 *
1315 		 * And if that fails, we'll have to retry this all.
1316 		 */
1317 		if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1318 			goto repeat;
1319 
1320 		wait->flags |= WQ_FLAG_DONE;
1321 		break;
1322 	}
1323 
1324 	/*
1325 	 * If a signal happened, this 'finish_wait()' may remove the last
1326 	 * waiter from the wait-queues, but the folio waiters bit will remain
1327 	 * set. That's ok. The next wakeup will take care of it, and trying
1328 	 * to do it here would be difficult and prone to races.
1329 	 */
1330 	finish_wait(q, wait);
1331 
1332 	if (thrashing) {
1333 		delayacct_thrashing_end(&in_thrashing);
1334 		psi_memstall_leave(&pflags);
1335 	}
1336 
1337 	/*
1338 	 * NOTE! The wait->flags weren't stable until we've done the
1339 	 * 'finish_wait()', and we could have exited the loop above due
1340 	 * to a signal, and had a wakeup event happen after the signal
1341 	 * test but before the 'finish_wait()'.
1342 	 *
1343 	 * So only after the finish_wait() can we reliably determine
1344 	 * if we got woken up or not, so we can now figure out the final
1345 	 * return value based on that state without races.
1346 	 *
1347 	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1348 	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1349 	 */
1350 	if (behavior == EXCLUSIVE)
1351 		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1352 
1353 	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1354 }
1355 
1356 #ifdef CONFIG_MIGRATION
1357 /**
1358  * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1359  * @entry: migration swap entry.
1360  * @ptep: mapped pte pointer. Will return with the ptep unmapped. Only required
1361  *        for pte entries, pass NULL for pmd entries.
1362  * @ptl: already locked ptl. This function will drop the lock.
1363  *
1364  * Wait for a migration entry referencing the given page to be removed. This is
1365  * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1366  * this can be called without taking a reference on the page. Instead this
1367  * should be called while holding the ptl for the migration entry referencing
1368  * the page.
1369  *
1370  * Returns after unmapping and unlocking the pte/ptl with pte_unmap_unlock().
1371  *
1372  * This follows the same logic as folio_wait_bit_common() so see the comments
1373  * there.
1374  */
1375 void migration_entry_wait_on_locked(swp_entry_t entry, pte_t *ptep,
1376 				spinlock_t *ptl)
1377 {
1378 	struct wait_page_queue wait_page;
1379 	wait_queue_entry_t *wait = &wait_page.wait;
1380 	bool thrashing = false;
1381 	unsigned long pflags;
1382 	bool in_thrashing;
1383 	wait_queue_head_t *q;
1384 	struct folio *folio = page_folio(pfn_swap_entry_to_page(entry));
1385 
1386 	q = folio_waitqueue(folio);
1387 	if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1388 		delayacct_thrashing_start(&in_thrashing);
1389 		psi_memstall_enter(&pflags);
1390 		thrashing = true;
1391 	}
1392 
1393 	init_wait(wait);
1394 	wait->func = wake_page_function;
1395 	wait_page.folio = folio;
1396 	wait_page.bit_nr = PG_locked;
1397 	wait->flags = 0;
1398 
1399 	spin_lock_irq(&q->lock);
1400 	folio_set_waiters(folio);
1401 	if (!folio_trylock_flag(folio, PG_locked, wait))
1402 		__add_wait_queue_entry_tail(q, wait);
1403 	spin_unlock_irq(&q->lock);
1404 
1405 	/*
1406 	 * If a migration entry exists for the page the migration path must hold
1407 	 * a valid reference to the page, and it must take the ptl to remove the
1408 	 * migration entry. So the page is valid until the ptl is dropped.
1409 	 */
1410 	if (ptep)
1411 		pte_unmap_unlock(ptep, ptl);
1412 	else
1413 		spin_unlock(ptl);
1414 
1415 	for (;;) {
1416 		unsigned int flags;
1417 
1418 		set_current_state(TASK_UNINTERRUPTIBLE);
1419 
1420 		/* Loop until we've been woken or interrupted */
1421 		flags = smp_load_acquire(&wait->flags);
1422 		if (!(flags & WQ_FLAG_WOKEN)) {
1423 			if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1424 				break;
1425 
1426 			io_schedule();
1427 			continue;
1428 		}
1429 		break;
1430 	}
1431 
1432 	finish_wait(q, wait);
1433 
1434 	if (thrashing) {
1435 		delayacct_thrashing_end(&in_thrashing);
1436 		psi_memstall_leave(&pflags);
1437 	}
1438 }
1439 #endif
1440 
1441 void folio_wait_bit(struct folio *folio, int bit_nr)
1442 {
1443 	folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1444 }
1445 EXPORT_SYMBOL(folio_wait_bit);
1446 
1447 int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1448 {
1449 	return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1450 }
1451 EXPORT_SYMBOL(folio_wait_bit_killable);
1452 
1453 /**
1454  * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1455  * @folio: The folio to wait for.
1456  * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1457  *
1458  * The caller should hold a reference on @folio.  They expect the page to
1459  * become unlocked relatively soon, but do not wish to hold up migration
1460  * (for example) by holding the reference while waiting for the folio to
1461  * come unlocked.  After this function returns, the caller should not
1462  * dereference @folio.
1463  *
1464  * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1465  */
1466 static int folio_put_wait_locked(struct folio *folio, int state)
1467 {
1468 	return folio_wait_bit_common(folio, PG_locked, state, DROP);
1469 }
1470 
1471 /**
1472  * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1473  * @folio: Folio defining the wait queue of interest
1474  * @waiter: Waiter to add to the queue
1475  *
1476  * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1477  */
1478 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1479 {
1480 	wait_queue_head_t *q = folio_waitqueue(folio);
1481 	unsigned long flags;
1482 
1483 	spin_lock_irqsave(&q->lock, flags);
1484 	__add_wait_queue_entry_tail(q, waiter);
1485 	folio_set_waiters(folio);
1486 	spin_unlock_irqrestore(&q->lock, flags);
1487 }
1488 EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1489 
1490 #ifndef clear_bit_unlock_is_negative_byte
1491 
1492 /*
1493  * PG_waiters is the high bit in the same byte as PG_lock.
1494  *
1495  * On x86 (and on many other architectures), we can clear PG_lock and
1496  * test the sign bit at the same time. But if the architecture does
1497  * not support that special operation, we just do this all by hand
1498  * instead.
1499  *
1500  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1501  * being cleared, but a memory barrier should be unnecessary since it is
1502  * in the same byte as PG_locked.
1503  */
1504 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1505 {
1506 	clear_bit_unlock(nr, mem);
1507 	/* smp_mb__after_atomic(); */
1508 	return test_bit(PG_waiters, mem);
1509 }
1510 
1511 #endif
1512 
1513 /**
1514  * folio_unlock - Unlock a locked folio.
1515  * @folio: The folio.
1516  *
1517  * Unlocks the folio and wakes up any thread sleeping on the page lock.
1518  *
1519  * Context: May be called from interrupt or process context.  May not be
1520  * called from NMI context.
1521  */
1522 void folio_unlock(struct folio *folio)
1523 {
1524 	/* Bit 7 allows x86 to check the byte's sign bit */
1525 	BUILD_BUG_ON(PG_waiters != 7);
1526 	BUILD_BUG_ON(PG_locked > 7);
1527 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1528 	if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0)))
1529 		folio_wake_bit(folio, PG_locked);
1530 }
1531 EXPORT_SYMBOL(folio_unlock);
1532 
1533 /**
1534  * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1535  * @folio: The folio.
1536  *
1537  * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1538  * it.  The folio reference held for PG_private_2 being set is released.
1539  *
1540  * This is, for example, used when a netfs folio is being written to a local
1541  * disk cache, thereby allowing writes to the cache for the same folio to be
1542  * serialised.
1543  */
1544 void folio_end_private_2(struct folio *folio)
1545 {
1546 	VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1547 	clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1548 	folio_wake_bit(folio, PG_private_2);
1549 	folio_put(folio);
1550 }
1551 EXPORT_SYMBOL(folio_end_private_2);
1552 
1553 /**
1554  * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1555  * @folio: The folio to wait on.
1556  *
1557  * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
1558  */
1559 void folio_wait_private_2(struct folio *folio)
1560 {
1561 	while (folio_test_private_2(folio))
1562 		folio_wait_bit(folio, PG_private_2);
1563 }
1564 EXPORT_SYMBOL(folio_wait_private_2);
1565 
1566 /**
1567  * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1568  * @folio: The folio to wait on.
1569  *
1570  * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
1571  * fatal signal is received by the calling task.
1572  *
1573  * Return:
1574  * - 0 if successful.
1575  * - -EINTR if a fatal signal was encountered.
1576  */
1577 int folio_wait_private_2_killable(struct folio *folio)
1578 {
1579 	int ret = 0;
1580 
1581 	while (folio_test_private_2(folio)) {
1582 		ret = folio_wait_bit_killable(folio, PG_private_2);
1583 		if (ret < 0)
1584 			break;
1585 	}
1586 
1587 	return ret;
1588 }
1589 EXPORT_SYMBOL(folio_wait_private_2_killable);
1590 
1591 /**
1592  * folio_end_writeback - End writeback against a folio.
1593  * @folio: The folio.
1594  */
1595 void folio_end_writeback(struct folio *folio)
1596 {
1597 	/*
1598 	 * folio_test_clear_reclaim() could be used here but it is an
1599 	 * atomic operation and overkill in this particular case. Failing
1600 	 * to shuffle a folio marked for immediate reclaim is too mild
1601 	 * a gain to justify taking an atomic operation penalty at the
1602 	 * end of every folio writeback.
1603 	 */
1604 	if (folio_test_reclaim(folio)) {
1605 		folio_clear_reclaim(folio);
1606 		folio_rotate_reclaimable(folio);
1607 	}
1608 
1609 	/*
1610 	 * Writeback does not hold a folio reference of its own, relying
1611 	 * on truncation to wait for the clearing of PG_writeback.
1612 	 * But here we must make sure that the folio is not freed and
1613 	 * reused before the folio_wake().
1614 	 */
1615 	folio_get(folio);
1616 	if (!__folio_end_writeback(folio))
1617 		BUG();
1618 
1619 	smp_mb__after_atomic();
1620 	folio_wake(folio, PG_writeback);
1621 	acct_reclaim_writeback(folio);
1622 	folio_put(folio);
1623 }
1624 EXPORT_SYMBOL(folio_end_writeback);
1625 
1626 /*
1627  * After completing I/O on a page, call this routine to update the page
1628  * flags appropriately
1629  */
1630 void page_endio(struct page *page, bool is_write, int err)
1631 {
1632 	struct folio *folio = page_folio(page);
1633 
1634 	if (!is_write) {
1635 		if (!err) {
1636 			folio_mark_uptodate(folio);
1637 		} else {
1638 			folio_clear_uptodate(folio);
1639 			folio_set_error(folio);
1640 		}
1641 		folio_unlock(folio);
1642 	} else {
1643 		if (err) {
1644 			struct address_space *mapping;
1645 
1646 			folio_set_error(folio);
1647 			mapping = folio_mapping(folio);
1648 			if (mapping)
1649 				mapping_set_error(mapping, err);
1650 		}
1651 		folio_end_writeback(folio);
1652 	}
1653 }
1654 EXPORT_SYMBOL_GPL(page_endio);
1655 
1656 /**
1657  * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1658  * @folio: The folio to lock
1659  */
1660 void __folio_lock(struct folio *folio)
1661 {
1662 	folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1663 				EXCLUSIVE);
1664 }
1665 EXPORT_SYMBOL(__folio_lock);
1666 
1667 int __folio_lock_killable(struct folio *folio)
1668 {
1669 	return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1670 					EXCLUSIVE);
1671 }
1672 EXPORT_SYMBOL_GPL(__folio_lock_killable);
1673 
1674 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1675 {
1676 	struct wait_queue_head *q = folio_waitqueue(folio);
1677 	int ret = 0;
1678 
1679 	wait->folio = folio;
1680 	wait->bit_nr = PG_locked;
1681 
1682 	spin_lock_irq(&q->lock);
1683 	__add_wait_queue_entry_tail(q, &wait->wait);
1684 	folio_set_waiters(folio);
1685 	ret = !folio_trylock(folio);
1686 	/*
1687 	 * If we were successful now, we know we're still on the
1688 	 * waitqueue as we're still under the lock. This means it's
1689 	 * safe to remove and return success, we know the callback
1690 	 * isn't going to trigger.
1691 	 */
1692 	if (!ret)
1693 		__remove_wait_queue(q, &wait->wait);
1694 	else
1695 		ret = -EIOCBQUEUED;
1696 	spin_unlock_irq(&q->lock);
1697 	return ret;
1698 }
1699 
1700 /*
1701  * Return values:
1702  * true - folio is locked; mmap_lock is still held.
1703  * false - folio is not locked.
1704  *     mmap_lock has been released (mmap_read_unlock(), unless flags had both
1705  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1706  *     which case mmap_lock is still held.
1707  *
1708  * If neither ALLOW_RETRY nor KILLABLE are set, will always return true
1709  * with the folio locked and the mmap_lock unperturbed.
1710  */
1711 bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm,
1712 			 unsigned int flags)
1713 {
1714 	if (fault_flag_allow_retry_first(flags)) {
1715 		/*
1716 		 * CAUTION! In this case, mmap_lock is not released
1717 		 * even though return 0.
1718 		 */
1719 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1720 			return false;
1721 
1722 		mmap_read_unlock(mm);
1723 		if (flags & FAULT_FLAG_KILLABLE)
1724 			folio_wait_locked_killable(folio);
1725 		else
1726 			folio_wait_locked(folio);
1727 		return false;
1728 	}
1729 	if (flags & FAULT_FLAG_KILLABLE) {
1730 		bool ret;
1731 
1732 		ret = __folio_lock_killable(folio);
1733 		if (ret) {
1734 			mmap_read_unlock(mm);
1735 			return false;
1736 		}
1737 	} else {
1738 		__folio_lock(folio);
1739 	}
1740 
1741 	return true;
1742 }
1743 
1744 /**
1745  * page_cache_next_miss() - Find the next gap in the page cache.
1746  * @mapping: Mapping.
1747  * @index: Index.
1748  * @max_scan: Maximum range to search.
1749  *
1750  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1751  * gap with the lowest index.
1752  *
1753  * This function may be called under the rcu_read_lock.  However, this will
1754  * not atomically search a snapshot of the cache at a single point in time.
1755  * For example, if a gap is created at index 5, then subsequently a gap is
1756  * created at index 10, page_cache_next_miss covering both indices may
1757  * return 10 if called under the rcu_read_lock.
1758  *
1759  * Return: The index of the gap if found, otherwise an index outside the
1760  * range specified (in which case 'return - index >= max_scan' will be true).
1761  * In the rare case of index wrap-around, 0 will be returned.
1762  */
1763 pgoff_t page_cache_next_miss(struct address_space *mapping,
1764 			     pgoff_t index, unsigned long max_scan)
1765 {
1766 	XA_STATE(xas, &mapping->i_pages, index);
1767 
1768 	while (max_scan--) {
1769 		void *entry = xas_next(&xas);
1770 		if (!entry || xa_is_value(entry))
1771 			break;
1772 		if (xas.xa_index == 0)
1773 			break;
1774 	}
1775 
1776 	return xas.xa_index;
1777 }
1778 EXPORT_SYMBOL(page_cache_next_miss);
1779 
1780 /**
1781  * page_cache_prev_miss() - Find the previous gap in the page cache.
1782  * @mapping: Mapping.
1783  * @index: Index.
1784  * @max_scan: Maximum range to search.
1785  *
1786  * Search the range [max(index - max_scan + 1, 0), index] for the
1787  * gap with the highest index.
1788  *
1789  * This function may be called under the rcu_read_lock.  However, this will
1790  * not atomically search a snapshot of the cache at a single point in time.
1791  * For example, if a gap is created at index 10, then subsequently a gap is
1792  * created at index 5, page_cache_prev_miss() covering both indices may
1793  * return 5 if called under the rcu_read_lock.
1794  *
1795  * Return: The index of the gap if found, otherwise an index outside the
1796  * range specified (in which case 'index - return >= max_scan' will be true).
1797  * In the rare case of wrap-around, ULONG_MAX will be returned.
1798  */
1799 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1800 			     pgoff_t index, unsigned long max_scan)
1801 {
1802 	XA_STATE(xas, &mapping->i_pages, index);
1803 
1804 	while (max_scan--) {
1805 		void *entry = xas_prev(&xas);
1806 		if (!entry || xa_is_value(entry))
1807 			break;
1808 		if (xas.xa_index == ULONG_MAX)
1809 			break;
1810 	}
1811 
1812 	return xas.xa_index;
1813 }
1814 EXPORT_SYMBOL(page_cache_prev_miss);
1815 
1816 /*
1817  * Lockless page cache protocol:
1818  * On the lookup side:
1819  * 1. Load the folio from i_pages
1820  * 2. Increment the refcount if it's not zero
1821  * 3. If the folio is not found by xas_reload(), put the refcount and retry
1822  *
1823  * On the removal side:
1824  * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1825  * B. Remove the page from i_pages
1826  * C. Return the page to the page allocator
1827  *
1828  * This means that any page may have its reference count temporarily
1829  * increased by a speculative page cache (or fast GUP) lookup as it can
1830  * be allocated by another user before the RCU grace period expires.
1831  * Because the refcount temporarily acquired here may end up being the
1832  * last refcount on the page, any page allocation must be freeable by
1833  * folio_put().
1834  */
1835 
1836 /*
1837  * mapping_get_entry - Get a page cache entry.
1838  * @mapping: the address_space to search
1839  * @index: The page cache index.
1840  *
1841  * Looks up the page cache entry at @mapping & @index.  If it is a folio,
1842  * it is returned with an increased refcount.  If it is a shadow entry
1843  * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1844  * it is returned without further action.
1845  *
1846  * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1847  */
1848 static void *mapping_get_entry(struct address_space *mapping, pgoff_t index)
1849 {
1850 	XA_STATE(xas, &mapping->i_pages, index);
1851 	struct folio *folio;
1852 
1853 	rcu_read_lock();
1854 repeat:
1855 	xas_reset(&xas);
1856 	folio = xas_load(&xas);
1857 	if (xas_retry(&xas, folio))
1858 		goto repeat;
1859 	/*
1860 	 * A shadow entry of a recently evicted page, or a swap entry from
1861 	 * shmem/tmpfs.  Return it without attempting to raise page count.
1862 	 */
1863 	if (!folio || xa_is_value(folio))
1864 		goto out;
1865 
1866 	if (!folio_try_get_rcu(folio))
1867 		goto repeat;
1868 
1869 	if (unlikely(folio != xas_reload(&xas))) {
1870 		folio_put(folio);
1871 		goto repeat;
1872 	}
1873 out:
1874 	rcu_read_unlock();
1875 
1876 	return folio;
1877 }
1878 
1879 /**
1880  * __filemap_get_folio - Find and get a reference to a folio.
1881  * @mapping: The address_space to search.
1882  * @index: The page index.
1883  * @fgp_flags: %FGP flags modify how the folio is returned.
1884  * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1885  *
1886  * Looks up the page cache entry at @mapping & @index.
1887  *
1888  * @fgp_flags can be zero or more of these flags:
1889  *
1890  * * %FGP_ACCESSED - The folio will be marked accessed.
1891  * * %FGP_LOCK - The folio is returned locked.
1892  * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it
1893  *   instead of allocating a new folio to replace it.
1894  * * %FGP_CREAT - If no page is present then a new page is allocated using
1895  *   @gfp and added to the page cache and the VM's LRU list.
1896  *   The page is returned locked and with an increased refcount.
1897  * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1898  *   page is already in cache.  If the page was allocated, unlock it before
1899  *   returning so the caller can do the same dance.
1900  * * %FGP_WRITE - The page will be written to by the caller.
1901  * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
1902  * * %FGP_NOWAIT - Don't get blocked by page lock.
1903  * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
1904  *
1905  * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1906  * if the %GFP flags specified for %FGP_CREAT are atomic.
1907  *
1908  * If there is a page cache page, it is returned with an increased refcount.
1909  *
1910  * Return: The found folio or %NULL otherwise.
1911  */
1912 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1913 		int fgp_flags, gfp_t gfp)
1914 {
1915 	struct folio *folio;
1916 
1917 repeat:
1918 	folio = mapping_get_entry(mapping, index);
1919 	if (xa_is_value(folio)) {
1920 		if (fgp_flags & FGP_ENTRY)
1921 			return folio;
1922 		folio = NULL;
1923 	}
1924 	if (!folio)
1925 		goto no_page;
1926 
1927 	if (fgp_flags & FGP_LOCK) {
1928 		if (fgp_flags & FGP_NOWAIT) {
1929 			if (!folio_trylock(folio)) {
1930 				folio_put(folio);
1931 				return NULL;
1932 			}
1933 		} else {
1934 			folio_lock(folio);
1935 		}
1936 
1937 		/* Has the page been truncated? */
1938 		if (unlikely(folio->mapping != mapping)) {
1939 			folio_unlock(folio);
1940 			folio_put(folio);
1941 			goto repeat;
1942 		}
1943 		VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1944 	}
1945 
1946 	if (fgp_flags & FGP_ACCESSED)
1947 		folio_mark_accessed(folio);
1948 	else if (fgp_flags & FGP_WRITE) {
1949 		/* Clear idle flag for buffer write */
1950 		if (folio_test_idle(folio))
1951 			folio_clear_idle(folio);
1952 	}
1953 
1954 	if (fgp_flags & FGP_STABLE)
1955 		folio_wait_stable(folio);
1956 no_page:
1957 	if (!folio && (fgp_flags & FGP_CREAT)) {
1958 		int err;
1959 		if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1960 			gfp |= __GFP_WRITE;
1961 		if (fgp_flags & FGP_NOFS)
1962 			gfp &= ~__GFP_FS;
1963 		if (fgp_flags & FGP_NOWAIT) {
1964 			gfp &= ~GFP_KERNEL;
1965 			gfp |= GFP_NOWAIT | __GFP_NOWARN;
1966 		}
1967 
1968 		folio = filemap_alloc_folio(gfp, 0);
1969 		if (!folio)
1970 			return NULL;
1971 
1972 		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1973 			fgp_flags |= FGP_LOCK;
1974 
1975 		/* Init accessed so avoid atomic mark_page_accessed later */
1976 		if (fgp_flags & FGP_ACCESSED)
1977 			__folio_set_referenced(folio);
1978 
1979 		err = filemap_add_folio(mapping, folio, index, gfp);
1980 		if (unlikely(err)) {
1981 			folio_put(folio);
1982 			folio = NULL;
1983 			if (err == -EEXIST)
1984 				goto repeat;
1985 		}
1986 
1987 		/*
1988 		 * filemap_add_folio locks the page, and for mmap
1989 		 * we expect an unlocked page.
1990 		 */
1991 		if (folio && (fgp_flags & FGP_FOR_MMAP))
1992 			folio_unlock(folio);
1993 	}
1994 
1995 	return folio;
1996 }
1997 EXPORT_SYMBOL(__filemap_get_folio);
1998 
1999 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
2000 		xa_mark_t mark)
2001 {
2002 	struct folio *folio;
2003 
2004 retry:
2005 	if (mark == XA_PRESENT)
2006 		folio = xas_find(xas, max);
2007 	else
2008 		folio = xas_find_marked(xas, max, mark);
2009 
2010 	if (xas_retry(xas, folio))
2011 		goto retry;
2012 	/*
2013 	 * A shadow entry of a recently evicted page, a swap
2014 	 * entry from shmem/tmpfs or a DAX entry.  Return it
2015 	 * without attempting to raise page count.
2016 	 */
2017 	if (!folio || xa_is_value(folio))
2018 		return folio;
2019 
2020 	if (!folio_try_get_rcu(folio))
2021 		goto reset;
2022 
2023 	if (unlikely(folio != xas_reload(xas))) {
2024 		folio_put(folio);
2025 		goto reset;
2026 	}
2027 
2028 	return folio;
2029 reset:
2030 	xas_reset(xas);
2031 	goto retry;
2032 }
2033 
2034 /**
2035  * find_get_entries - gang pagecache lookup
2036  * @mapping:	The address_space to search
2037  * @start:	The starting page cache index
2038  * @end:	The final page index (inclusive).
2039  * @fbatch:	Where the resulting entries are placed.
2040  * @indices:	The cache indices corresponding to the entries in @entries
2041  *
2042  * find_get_entries() will search for and return a batch of entries in
2043  * the mapping.  The entries are placed in @fbatch.  find_get_entries()
2044  * takes a reference on any actual folios it returns.
2045  *
2046  * The entries have ascending indexes.  The indices may not be consecutive
2047  * due to not-present entries or large folios.
2048  *
2049  * Any shadow entries of evicted folios, or swap entries from
2050  * shmem/tmpfs, are included in the returned array.
2051  *
2052  * Return: The number of entries which were found.
2053  */
2054 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
2055 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2056 {
2057 	XA_STATE(xas, &mapping->i_pages, *start);
2058 	struct folio *folio;
2059 
2060 	rcu_read_lock();
2061 	while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2062 		indices[fbatch->nr] = xas.xa_index;
2063 		if (!folio_batch_add(fbatch, folio))
2064 			break;
2065 	}
2066 	rcu_read_unlock();
2067 
2068 	if (folio_batch_count(fbatch)) {
2069 		unsigned long nr = 1;
2070 		int idx = folio_batch_count(fbatch) - 1;
2071 
2072 		folio = fbatch->folios[idx];
2073 		if (!xa_is_value(folio) && !folio_test_hugetlb(folio))
2074 			nr = folio_nr_pages(folio);
2075 		*start = indices[idx] + nr;
2076 	}
2077 	return folio_batch_count(fbatch);
2078 }
2079 
2080 /**
2081  * find_lock_entries - Find a batch of pagecache entries.
2082  * @mapping:	The address_space to search.
2083  * @start:	The starting page cache index.
2084  * @end:	The final page index (inclusive).
2085  * @fbatch:	Where the resulting entries are placed.
2086  * @indices:	The cache indices of the entries in @fbatch.
2087  *
2088  * find_lock_entries() will return a batch of entries from @mapping.
2089  * Swap, shadow and DAX entries are included.  Folios are returned
2090  * locked and with an incremented refcount.  Folios which are locked
2091  * by somebody else or under writeback are skipped.  Folios which are
2092  * partially outside the range are not returned.
2093  *
2094  * The entries have ascending indexes.  The indices may not be consecutive
2095  * due to not-present entries, large folios, folios which could not be
2096  * locked or folios under writeback.
2097  *
2098  * Return: The number of entries which were found.
2099  */
2100 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
2101 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2102 {
2103 	XA_STATE(xas, &mapping->i_pages, *start);
2104 	struct folio *folio;
2105 
2106 	rcu_read_lock();
2107 	while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2108 		if (!xa_is_value(folio)) {
2109 			if (folio->index < *start)
2110 				goto put;
2111 			if (folio->index + folio_nr_pages(folio) - 1 > end)
2112 				goto put;
2113 			if (!folio_trylock(folio))
2114 				goto put;
2115 			if (folio->mapping != mapping ||
2116 			    folio_test_writeback(folio))
2117 				goto unlock;
2118 			VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2119 					folio);
2120 		}
2121 		indices[fbatch->nr] = xas.xa_index;
2122 		if (!folio_batch_add(fbatch, folio))
2123 			break;
2124 		continue;
2125 unlock:
2126 		folio_unlock(folio);
2127 put:
2128 		folio_put(folio);
2129 	}
2130 	rcu_read_unlock();
2131 
2132 	if (folio_batch_count(fbatch)) {
2133 		unsigned long nr = 1;
2134 		int idx = folio_batch_count(fbatch) - 1;
2135 
2136 		folio = fbatch->folios[idx];
2137 		if (!xa_is_value(folio) && !folio_test_hugetlb(folio))
2138 			nr = folio_nr_pages(folio);
2139 		*start = indices[idx] + nr;
2140 	}
2141 	return folio_batch_count(fbatch);
2142 }
2143 
2144 /**
2145  * filemap_get_folios - Get a batch of folios
2146  * @mapping:	The address_space to search
2147  * @start:	The starting page index
2148  * @end:	The final page index (inclusive)
2149  * @fbatch:	The batch to fill.
2150  *
2151  * Search for and return a batch of folios in the mapping starting at
2152  * index @start and up to index @end (inclusive).  The folios are returned
2153  * in @fbatch with an elevated reference count.
2154  *
2155  * The first folio may start before @start; if it does, it will contain
2156  * @start.  The final folio may extend beyond @end; if it does, it will
2157  * contain @end.  The folios have ascending indices.  There may be gaps
2158  * between the folios if there are indices which have no folio in the
2159  * page cache.  If folios are added to or removed from the page cache
2160  * while this is running, they may or may not be found by this call.
2161  *
2162  * Return: The number of folios which were found.
2163  * We also update @start to index the next folio for the traversal.
2164  */
2165 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2166 		pgoff_t end, struct folio_batch *fbatch)
2167 {
2168 	XA_STATE(xas, &mapping->i_pages, *start);
2169 	struct folio *folio;
2170 
2171 	rcu_read_lock();
2172 	while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2173 		/* Skip over shadow, swap and DAX entries */
2174 		if (xa_is_value(folio))
2175 			continue;
2176 		if (!folio_batch_add(fbatch, folio)) {
2177 			unsigned long nr = folio_nr_pages(folio);
2178 
2179 			if (folio_test_hugetlb(folio))
2180 				nr = 1;
2181 			*start = folio->index + nr;
2182 			goto out;
2183 		}
2184 	}
2185 
2186 	/*
2187 	 * We come here when there is no page beyond @end. We take care to not
2188 	 * overflow the index @start as it confuses some of the callers. This
2189 	 * breaks the iteration when there is a page at index -1 but that is
2190 	 * already broken anyway.
2191 	 */
2192 	if (end == (pgoff_t)-1)
2193 		*start = (pgoff_t)-1;
2194 	else
2195 		*start = end + 1;
2196 out:
2197 	rcu_read_unlock();
2198 
2199 	return folio_batch_count(fbatch);
2200 }
2201 EXPORT_SYMBOL(filemap_get_folios);
2202 
2203 static inline
2204 bool folio_more_pages(struct folio *folio, pgoff_t index, pgoff_t max)
2205 {
2206 	if (!folio_test_large(folio) || folio_test_hugetlb(folio))
2207 		return false;
2208 	if (index >= max)
2209 		return false;
2210 	return index < folio->index + folio_nr_pages(folio) - 1;
2211 }
2212 
2213 /**
2214  * filemap_get_folios_contig - Get a batch of contiguous folios
2215  * @mapping:	The address_space to search
2216  * @start:	The starting page index
2217  * @end:	The final page index (inclusive)
2218  * @fbatch:	The batch to fill
2219  *
2220  * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2221  * except the returned folios are guaranteed to be contiguous. This may
2222  * not return all contiguous folios if the batch gets filled up.
2223  *
2224  * Return: The number of folios found.
2225  * Also update @start to be positioned for traversal of the next folio.
2226  */
2227 
2228 unsigned filemap_get_folios_contig(struct address_space *mapping,
2229 		pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
2230 {
2231 	XA_STATE(xas, &mapping->i_pages, *start);
2232 	unsigned long nr;
2233 	struct folio *folio;
2234 
2235 	rcu_read_lock();
2236 
2237 	for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2238 			folio = xas_next(&xas)) {
2239 		if (xas_retry(&xas, folio))
2240 			continue;
2241 		/*
2242 		 * If the entry has been swapped out, we can stop looking.
2243 		 * No current caller is looking for DAX entries.
2244 		 */
2245 		if (xa_is_value(folio))
2246 			goto update_start;
2247 
2248 		if (!folio_try_get_rcu(folio))
2249 			goto retry;
2250 
2251 		if (unlikely(folio != xas_reload(&xas)))
2252 			goto put_folio;
2253 
2254 		if (!folio_batch_add(fbatch, folio)) {
2255 			nr = folio_nr_pages(folio);
2256 
2257 			if (folio_test_hugetlb(folio))
2258 				nr = 1;
2259 			*start = folio->index + nr;
2260 			goto out;
2261 		}
2262 		continue;
2263 put_folio:
2264 		folio_put(folio);
2265 
2266 retry:
2267 		xas_reset(&xas);
2268 	}
2269 
2270 update_start:
2271 	nr = folio_batch_count(fbatch);
2272 
2273 	if (nr) {
2274 		folio = fbatch->folios[nr - 1];
2275 		if (folio_test_hugetlb(folio))
2276 			*start = folio->index + 1;
2277 		else
2278 			*start = folio->index + folio_nr_pages(folio);
2279 	}
2280 out:
2281 	rcu_read_unlock();
2282 	return folio_batch_count(fbatch);
2283 }
2284 EXPORT_SYMBOL(filemap_get_folios_contig);
2285 
2286 /**
2287  * find_get_pages_range_tag - Find and return head pages matching @tag.
2288  * @mapping:	the address_space to search
2289  * @index:	the starting page index
2290  * @end:	The final page index (inclusive)
2291  * @tag:	the tag index
2292  * @nr_pages:	the maximum number of pages
2293  * @pages:	where the resulting pages are placed
2294  *
2295  * Like find_get_pages_range(), except we only return head pages which are
2296  * tagged with @tag.  @index is updated to the index immediately after the
2297  * last page we return, ready for the next iteration.
2298  *
2299  * Return: the number of pages which were found.
2300  */
2301 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
2302 			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
2303 			struct page **pages)
2304 {
2305 	XA_STATE(xas, &mapping->i_pages, *index);
2306 	struct folio *folio;
2307 	unsigned ret = 0;
2308 
2309 	if (unlikely(!nr_pages))
2310 		return 0;
2311 
2312 	rcu_read_lock();
2313 	while ((folio = find_get_entry(&xas, end, tag))) {
2314 		/*
2315 		 * Shadow entries should never be tagged, but this iteration
2316 		 * is lockless so there is a window for page reclaim to evict
2317 		 * a page we saw tagged.  Skip over it.
2318 		 */
2319 		if (xa_is_value(folio))
2320 			continue;
2321 
2322 		pages[ret] = &folio->page;
2323 		if (++ret == nr_pages) {
2324 			*index = folio->index + folio_nr_pages(folio);
2325 			goto out;
2326 		}
2327 	}
2328 
2329 	/*
2330 	 * We come here when we got to @end. We take care to not overflow the
2331 	 * index @index as it confuses some of the callers. This breaks the
2332 	 * iteration when there is a page at index -1 but that is already
2333 	 * broken anyway.
2334 	 */
2335 	if (end == (pgoff_t)-1)
2336 		*index = (pgoff_t)-1;
2337 	else
2338 		*index = end + 1;
2339 out:
2340 	rcu_read_unlock();
2341 
2342 	return ret;
2343 }
2344 EXPORT_SYMBOL(find_get_pages_range_tag);
2345 
2346 /*
2347  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2348  * a _large_ part of the i/o request. Imagine the worst scenario:
2349  *
2350  *      ---R__________________________________________B__________
2351  *         ^ reading here                             ^ bad block(assume 4k)
2352  *
2353  * read(R) => miss => readahead(R...B) => media error => frustrating retries
2354  * => failing the whole request => read(R) => read(R+1) =>
2355  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2356  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2357  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2358  *
2359  * It is going insane. Fix it by quickly scaling down the readahead size.
2360  */
2361 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2362 {
2363 	ra->ra_pages /= 4;
2364 }
2365 
2366 /*
2367  * filemap_get_read_batch - Get a batch of folios for read
2368  *
2369  * Get a batch of folios which represent a contiguous range of bytes in
2370  * the file.  No exceptional entries will be returned.  If @index is in
2371  * the middle of a folio, the entire folio will be returned.  The last
2372  * folio in the batch may have the readahead flag set or the uptodate flag
2373  * clear so that the caller can take the appropriate action.
2374  */
2375 static void filemap_get_read_batch(struct address_space *mapping,
2376 		pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2377 {
2378 	XA_STATE(xas, &mapping->i_pages, index);
2379 	struct folio *folio;
2380 
2381 	rcu_read_lock();
2382 	for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2383 		if (xas_retry(&xas, folio))
2384 			continue;
2385 		if (xas.xa_index > max || xa_is_value(folio))
2386 			break;
2387 		if (xa_is_sibling(folio))
2388 			break;
2389 		if (!folio_try_get_rcu(folio))
2390 			goto retry;
2391 
2392 		if (unlikely(folio != xas_reload(&xas)))
2393 			goto put_folio;
2394 
2395 		if (!folio_batch_add(fbatch, folio))
2396 			break;
2397 		if (!folio_test_uptodate(folio))
2398 			break;
2399 		if (folio_test_readahead(folio))
2400 			break;
2401 		xas_advance(&xas, folio->index + folio_nr_pages(folio) - 1);
2402 		continue;
2403 put_folio:
2404 		folio_put(folio);
2405 retry:
2406 		xas_reset(&xas);
2407 	}
2408 	rcu_read_unlock();
2409 }
2410 
2411 static int filemap_read_folio(struct file *file, filler_t filler,
2412 		struct folio *folio)
2413 {
2414 	bool workingset = folio_test_workingset(folio);
2415 	unsigned long pflags;
2416 	int error;
2417 
2418 	/*
2419 	 * A previous I/O error may have been due to temporary failures,
2420 	 * eg. multipath errors.  PG_error will be set again if read_folio
2421 	 * fails.
2422 	 */
2423 	folio_clear_error(folio);
2424 
2425 	/* Start the actual read. The read will unlock the page. */
2426 	if (unlikely(workingset))
2427 		psi_memstall_enter(&pflags);
2428 	error = filler(file, folio);
2429 	if (unlikely(workingset))
2430 		psi_memstall_leave(&pflags);
2431 	if (error)
2432 		return error;
2433 
2434 	error = folio_wait_locked_killable(folio);
2435 	if (error)
2436 		return error;
2437 	if (folio_test_uptodate(folio))
2438 		return 0;
2439 	if (file)
2440 		shrink_readahead_size_eio(&file->f_ra);
2441 	return -EIO;
2442 }
2443 
2444 static bool filemap_range_uptodate(struct address_space *mapping,
2445 		loff_t pos, size_t count, struct folio *folio,
2446 		bool need_uptodate)
2447 {
2448 	if (folio_test_uptodate(folio))
2449 		return true;
2450 	/* pipes can't handle partially uptodate pages */
2451 	if (need_uptodate)
2452 		return false;
2453 	if (!mapping->a_ops->is_partially_uptodate)
2454 		return false;
2455 	if (mapping->host->i_blkbits >= folio_shift(folio))
2456 		return false;
2457 
2458 	if (folio_pos(folio) > pos) {
2459 		count -= folio_pos(folio) - pos;
2460 		pos = 0;
2461 	} else {
2462 		pos -= folio_pos(folio);
2463 	}
2464 
2465 	return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2466 }
2467 
2468 static int filemap_update_page(struct kiocb *iocb,
2469 		struct address_space *mapping, size_t count,
2470 		struct folio *folio, bool need_uptodate)
2471 {
2472 	int error;
2473 
2474 	if (iocb->ki_flags & IOCB_NOWAIT) {
2475 		if (!filemap_invalidate_trylock_shared(mapping))
2476 			return -EAGAIN;
2477 	} else {
2478 		filemap_invalidate_lock_shared(mapping);
2479 	}
2480 
2481 	if (!folio_trylock(folio)) {
2482 		error = -EAGAIN;
2483 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2484 			goto unlock_mapping;
2485 		if (!(iocb->ki_flags & IOCB_WAITQ)) {
2486 			filemap_invalidate_unlock_shared(mapping);
2487 			/*
2488 			 * This is where we usually end up waiting for a
2489 			 * previously submitted readahead to finish.
2490 			 */
2491 			folio_put_wait_locked(folio, TASK_KILLABLE);
2492 			return AOP_TRUNCATED_PAGE;
2493 		}
2494 		error = __folio_lock_async(folio, iocb->ki_waitq);
2495 		if (error)
2496 			goto unlock_mapping;
2497 	}
2498 
2499 	error = AOP_TRUNCATED_PAGE;
2500 	if (!folio->mapping)
2501 		goto unlock;
2502 
2503 	error = 0;
2504 	if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio,
2505 				   need_uptodate))
2506 		goto unlock;
2507 
2508 	error = -EAGAIN;
2509 	if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2510 		goto unlock;
2511 
2512 	error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2513 			folio);
2514 	goto unlock_mapping;
2515 unlock:
2516 	folio_unlock(folio);
2517 unlock_mapping:
2518 	filemap_invalidate_unlock_shared(mapping);
2519 	if (error == AOP_TRUNCATED_PAGE)
2520 		folio_put(folio);
2521 	return error;
2522 }
2523 
2524 static int filemap_create_folio(struct file *file,
2525 		struct address_space *mapping, pgoff_t index,
2526 		struct folio_batch *fbatch)
2527 {
2528 	struct folio *folio;
2529 	int error;
2530 
2531 	folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2532 	if (!folio)
2533 		return -ENOMEM;
2534 
2535 	/*
2536 	 * Protect against truncate / hole punch. Grabbing invalidate_lock
2537 	 * here assures we cannot instantiate and bring uptodate new
2538 	 * pagecache folios after evicting page cache during truncate
2539 	 * and before actually freeing blocks.	Note that we could
2540 	 * release invalidate_lock after inserting the folio into
2541 	 * the page cache as the locked folio would then be enough to
2542 	 * synchronize with hole punching. But there are code paths
2543 	 * such as filemap_update_page() filling in partially uptodate
2544 	 * pages or ->readahead() that need to hold invalidate_lock
2545 	 * while mapping blocks for IO so let's hold the lock here as
2546 	 * well to keep locking rules simple.
2547 	 */
2548 	filemap_invalidate_lock_shared(mapping);
2549 	error = filemap_add_folio(mapping, folio, index,
2550 			mapping_gfp_constraint(mapping, GFP_KERNEL));
2551 	if (error == -EEXIST)
2552 		error = AOP_TRUNCATED_PAGE;
2553 	if (error)
2554 		goto error;
2555 
2556 	error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
2557 	if (error)
2558 		goto error;
2559 
2560 	filemap_invalidate_unlock_shared(mapping);
2561 	folio_batch_add(fbatch, folio);
2562 	return 0;
2563 error:
2564 	filemap_invalidate_unlock_shared(mapping);
2565 	folio_put(folio);
2566 	return error;
2567 }
2568 
2569 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2570 		struct address_space *mapping, struct folio *folio,
2571 		pgoff_t last_index)
2572 {
2573 	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2574 
2575 	if (iocb->ki_flags & IOCB_NOIO)
2576 		return -EAGAIN;
2577 	page_cache_async_ra(&ractl, folio, last_index - folio->index);
2578 	return 0;
2579 }
2580 
2581 static int filemap_get_pages(struct kiocb *iocb, size_t count,
2582 		struct folio_batch *fbatch, bool need_uptodate)
2583 {
2584 	struct file *filp = iocb->ki_filp;
2585 	struct address_space *mapping = filp->f_mapping;
2586 	struct file_ra_state *ra = &filp->f_ra;
2587 	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2588 	pgoff_t last_index;
2589 	struct folio *folio;
2590 	int err = 0;
2591 
2592 	/* "last_index" is the index of the page beyond the end of the read */
2593 	last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE);
2594 retry:
2595 	if (fatal_signal_pending(current))
2596 		return -EINTR;
2597 
2598 	filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2599 	if (!folio_batch_count(fbatch)) {
2600 		if (iocb->ki_flags & IOCB_NOIO)
2601 			return -EAGAIN;
2602 		page_cache_sync_readahead(mapping, ra, filp, index,
2603 				last_index - index);
2604 		filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2605 	}
2606 	if (!folio_batch_count(fbatch)) {
2607 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2608 			return -EAGAIN;
2609 		err = filemap_create_folio(filp, mapping,
2610 				iocb->ki_pos >> PAGE_SHIFT, fbatch);
2611 		if (err == AOP_TRUNCATED_PAGE)
2612 			goto retry;
2613 		return err;
2614 	}
2615 
2616 	folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2617 	if (folio_test_readahead(folio)) {
2618 		err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2619 		if (err)
2620 			goto err;
2621 	}
2622 	if (!folio_test_uptodate(folio)) {
2623 		if ((iocb->ki_flags & IOCB_WAITQ) &&
2624 		    folio_batch_count(fbatch) > 1)
2625 			iocb->ki_flags |= IOCB_NOWAIT;
2626 		err = filemap_update_page(iocb, mapping, count, folio,
2627 					  need_uptodate);
2628 		if (err)
2629 			goto err;
2630 	}
2631 
2632 	return 0;
2633 err:
2634 	if (err < 0)
2635 		folio_put(folio);
2636 	if (likely(--fbatch->nr))
2637 		return 0;
2638 	if (err == AOP_TRUNCATED_PAGE)
2639 		goto retry;
2640 	return err;
2641 }
2642 
2643 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2644 {
2645 	unsigned int shift = folio_shift(folio);
2646 
2647 	return (pos1 >> shift == pos2 >> shift);
2648 }
2649 
2650 /**
2651  * filemap_read - Read data from the page cache.
2652  * @iocb: The iocb to read.
2653  * @iter: Destination for the data.
2654  * @already_read: Number of bytes already read by the caller.
2655  *
2656  * Copies data from the page cache.  If the data is not currently present,
2657  * uses the readahead and read_folio address_space operations to fetch it.
2658  *
2659  * Return: Total number of bytes copied, including those already read by
2660  * the caller.  If an error happens before any bytes are copied, returns
2661  * a negative error number.
2662  */
2663 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2664 		ssize_t already_read)
2665 {
2666 	struct file *filp = iocb->ki_filp;
2667 	struct file_ra_state *ra = &filp->f_ra;
2668 	struct address_space *mapping = filp->f_mapping;
2669 	struct inode *inode = mapping->host;
2670 	struct folio_batch fbatch;
2671 	int i, error = 0;
2672 	bool writably_mapped;
2673 	loff_t isize, end_offset;
2674 
2675 	if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2676 		return 0;
2677 	if (unlikely(!iov_iter_count(iter)))
2678 		return 0;
2679 
2680 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2681 	folio_batch_init(&fbatch);
2682 
2683 	do {
2684 		cond_resched();
2685 
2686 		/*
2687 		 * If we've already successfully copied some data, then we
2688 		 * can no longer safely return -EIOCBQUEUED. Hence mark
2689 		 * an async read NOWAIT at that point.
2690 		 */
2691 		if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2692 			iocb->ki_flags |= IOCB_NOWAIT;
2693 
2694 		if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2695 			break;
2696 
2697 		error = filemap_get_pages(iocb, iter->count, &fbatch,
2698 					  iov_iter_is_pipe(iter));
2699 		if (error < 0)
2700 			break;
2701 
2702 		/*
2703 		 * i_size must be checked after we know the pages are Uptodate.
2704 		 *
2705 		 * Checking i_size after the check allows us to calculate
2706 		 * the correct value for "nr", which means the zero-filled
2707 		 * part of the page is not copied back to userspace (unless
2708 		 * another truncate extends the file - this is desired though).
2709 		 */
2710 		isize = i_size_read(inode);
2711 		if (unlikely(iocb->ki_pos >= isize))
2712 			goto put_folios;
2713 		end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2714 
2715 		/*
2716 		 * Once we start copying data, we don't want to be touching any
2717 		 * cachelines that might be contended:
2718 		 */
2719 		writably_mapped = mapping_writably_mapped(mapping);
2720 
2721 		/*
2722 		 * When a read accesses the same folio several times, only
2723 		 * mark it as accessed the first time.
2724 		 */
2725 		if (!pos_same_folio(iocb->ki_pos, ra->prev_pos - 1,
2726 							fbatch.folios[0]))
2727 			folio_mark_accessed(fbatch.folios[0]);
2728 
2729 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2730 			struct folio *folio = fbatch.folios[i];
2731 			size_t fsize = folio_size(folio);
2732 			size_t offset = iocb->ki_pos & (fsize - 1);
2733 			size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2734 					     fsize - offset);
2735 			size_t copied;
2736 
2737 			if (end_offset < folio_pos(folio))
2738 				break;
2739 			if (i > 0)
2740 				folio_mark_accessed(folio);
2741 			/*
2742 			 * If users can be writing to this folio using arbitrary
2743 			 * virtual addresses, take care of potential aliasing
2744 			 * before reading the folio on the kernel side.
2745 			 */
2746 			if (writably_mapped)
2747 				flush_dcache_folio(folio);
2748 
2749 			copied = copy_folio_to_iter(folio, offset, bytes, iter);
2750 
2751 			already_read += copied;
2752 			iocb->ki_pos += copied;
2753 			ra->prev_pos = iocb->ki_pos;
2754 
2755 			if (copied < bytes) {
2756 				error = -EFAULT;
2757 				break;
2758 			}
2759 		}
2760 put_folios:
2761 		for (i = 0; i < folio_batch_count(&fbatch); i++)
2762 			folio_put(fbatch.folios[i]);
2763 		folio_batch_init(&fbatch);
2764 	} while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2765 
2766 	file_accessed(filp);
2767 
2768 	return already_read ? already_read : error;
2769 }
2770 EXPORT_SYMBOL_GPL(filemap_read);
2771 
2772 /**
2773  * generic_file_read_iter - generic filesystem read routine
2774  * @iocb:	kernel I/O control block
2775  * @iter:	destination for the data read
2776  *
2777  * This is the "read_iter()" routine for all filesystems
2778  * that can use the page cache directly.
2779  *
2780  * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2781  * be returned when no data can be read without waiting for I/O requests
2782  * to complete; it doesn't prevent readahead.
2783  *
2784  * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2785  * requests shall be made for the read or for readahead.  When no data
2786  * can be read, -EAGAIN shall be returned.  When readahead would be
2787  * triggered, a partial, possibly empty read shall be returned.
2788  *
2789  * Return:
2790  * * number of bytes copied, even for partial reads
2791  * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2792  */
2793 ssize_t
2794 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2795 {
2796 	size_t count = iov_iter_count(iter);
2797 	ssize_t retval = 0;
2798 
2799 	if (!count)
2800 		return 0; /* skip atime */
2801 
2802 	if (iocb->ki_flags & IOCB_DIRECT) {
2803 		struct file *file = iocb->ki_filp;
2804 		struct address_space *mapping = file->f_mapping;
2805 		struct inode *inode = mapping->host;
2806 
2807 		if (iocb->ki_flags & IOCB_NOWAIT) {
2808 			if (filemap_range_needs_writeback(mapping, iocb->ki_pos,
2809 						iocb->ki_pos + count - 1))
2810 				return -EAGAIN;
2811 		} else {
2812 			retval = filemap_write_and_wait_range(mapping,
2813 						iocb->ki_pos,
2814 					        iocb->ki_pos + count - 1);
2815 			if (retval < 0)
2816 				return retval;
2817 		}
2818 
2819 		file_accessed(file);
2820 
2821 		retval = mapping->a_ops->direct_IO(iocb, iter);
2822 		if (retval >= 0) {
2823 			iocb->ki_pos += retval;
2824 			count -= retval;
2825 		}
2826 		if (retval != -EIOCBQUEUED)
2827 			iov_iter_revert(iter, count - iov_iter_count(iter));
2828 
2829 		/*
2830 		 * Btrfs can have a short DIO read if we encounter
2831 		 * compressed extents, so if there was an error, or if
2832 		 * we've already read everything we wanted to, or if
2833 		 * there was a short read because we hit EOF, go ahead
2834 		 * and return.  Otherwise fallthrough to buffered io for
2835 		 * the rest of the read.  Buffered reads will not work for
2836 		 * DAX files, so don't bother trying.
2837 		 */
2838 		if (retval < 0 || !count || IS_DAX(inode))
2839 			return retval;
2840 		if (iocb->ki_pos >= i_size_read(inode))
2841 			return retval;
2842 	}
2843 
2844 	return filemap_read(iocb, iter, retval);
2845 }
2846 EXPORT_SYMBOL(generic_file_read_iter);
2847 
2848 /*
2849  * Splice subpages from a folio into a pipe.
2850  */
2851 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
2852 			      struct folio *folio, loff_t fpos, size_t size)
2853 {
2854 	struct page *page;
2855 	size_t spliced = 0, offset = offset_in_folio(folio, fpos);
2856 
2857 	page = folio_page(folio, offset / PAGE_SIZE);
2858 	size = min(size, folio_size(folio) - offset);
2859 	offset %= PAGE_SIZE;
2860 
2861 	while (spliced < size &&
2862 	       !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2863 		struct pipe_buffer *buf = pipe_head_buf(pipe);
2864 		size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
2865 
2866 		*buf = (struct pipe_buffer) {
2867 			.ops	= &page_cache_pipe_buf_ops,
2868 			.page	= page,
2869 			.offset	= offset,
2870 			.len	= part,
2871 		};
2872 		folio_get(folio);
2873 		pipe->head++;
2874 		page++;
2875 		spliced += part;
2876 		offset = 0;
2877 	}
2878 
2879 	return spliced;
2880 }
2881 
2882 /*
2883  * Splice folios from the pagecache of a buffered (ie. non-O_DIRECT) file into
2884  * a pipe.
2885  */
2886 ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
2887 			    struct pipe_inode_info *pipe,
2888 			    size_t len, unsigned int flags)
2889 {
2890 	struct folio_batch fbatch;
2891 	struct kiocb iocb;
2892 	size_t total_spliced = 0, used, npages;
2893 	loff_t isize, end_offset;
2894 	bool writably_mapped;
2895 	int i, error = 0;
2896 
2897 	init_sync_kiocb(&iocb, in);
2898 	iocb.ki_pos = *ppos;
2899 
2900 	/* Work out how much data we can actually add into the pipe */
2901 	used = pipe_occupancy(pipe->head, pipe->tail);
2902 	npages = max_t(ssize_t, pipe->max_usage - used, 0);
2903 	len = min_t(size_t, len, npages * PAGE_SIZE);
2904 
2905 	folio_batch_init(&fbatch);
2906 
2907 	do {
2908 		cond_resched();
2909 
2910 		if (*ppos >= i_size_read(file_inode(in)))
2911 			break;
2912 
2913 		iocb.ki_pos = *ppos;
2914 		error = filemap_get_pages(&iocb, len, &fbatch, true);
2915 		if (error < 0)
2916 			break;
2917 
2918 		/*
2919 		 * i_size must be checked after we know the pages are Uptodate.
2920 		 *
2921 		 * Checking i_size after the check allows us to calculate
2922 		 * the correct value for "nr", which means the zero-filled
2923 		 * part of the page is not copied back to userspace (unless
2924 		 * another truncate extends the file - this is desired though).
2925 		 */
2926 		isize = i_size_read(file_inode(in));
2927 		if (unlikely(*ppos >= isize))
2928 			break;
2929 		end_offset = min_t(loff_t, isize, *ppos + len);
2930 
2931 		/*
2932 		 * Once we start copying data, we don't want to be touching any
2933 		 * cachelines that might be contended:
2934 		 */
2935 		writably_mapped = mapping_writably_mapped(in->f_mapping);
2936 
2937 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2938 			struct folio *folio = fbatch.folios[i];
2939 			size_t n;
2940 
2941 			if (folio_pos(folio) >= end_offset)
2942 				goto out;
2943 			folio_mark_accessed(folio);
2944 
2945 			/*
2946 			 * If users can be writing to this folio using arbitrary
2947 			 * virtual addresses, take care of potential aliasing
2948 			 * before reading the folio on the kernel side.
2949 			 */
2950 			if (writably_mapped)
2951 				flush_dcache_folio(folio);
2952 
2953 			n = min_t(loff_t, len, isize - *ppos);
2954 			n = splice_folio_into_pipe(pipe, folio, *ppos, n);
2955 			if (!n)
2956 				goto out;
2957 			len -= n;
2958 			total_spliced += n;
2959 			*ppos += n;
2960 			in->f_ra.prev_pos = *ppos;
2961 			if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
2962 				goto out;
2963 		}
2964 
2965 		folio_batch_release(&fbatch);
2966 	} while (len);
2967 
2968 out:
2969 	folio_batch_release(&fbatch);
2970 	file_accessed(in);
2971 
2972 	return total_spliced ? total_spliced : error;
2973 }
2974 EXPORT_SYMBOL(filemap_splice_read);
2975 
2976 static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2977 		struct address_space *mapping, struct folio *folio,
2978 		loff_t start, loff_t end, bool seek_data)
2979 {
2980 	const struct address_space_operations *ops = mapping->a_ops;
2981 	size_t offset, bsz = i_blocksize(mapping->host);
2982 
2983 	if (xa_is_value(folio) || folio_test_uptodate(folio))
2984 		return seek_data ? start : end;
2985 	if (!ops->is_partially_uptodate)
2986 		return seek_data ? end : start;
2987 
2988 	xas_pause(xas);
2989 	rcu_read_unlock();
2990 	folio_lock(folio);
2991 	if (unlikely(folio->mapping != mapping))
2992 		goto unlock;
2993 
2994 	offset = offset_in_folio(folio, start) & ~(bsz - 1);
2995 
2996 	do {
2997 		if (ops->is_partially_uptodate(folio, offset, bsz) ==
2998 							seek_data)
2999 			break;
3000 		start = (start + bsz) & ~(bsz - 1);
3001 		offset += bsz;
3002 	} while (offset < folio_size(folio));
3003 unlock:
3004 	folio_unlock(folio);
3005 	rcu_read_lock();
3006 	return start;
3007 }
3008 
3009 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
3010 {
3011 	if (xa_is_value(folio))
3012 		return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
3013 	return folio_size(folio);
3014 }
3015 
3016 /**
3017  * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3018  * @mapping: Address space to search.
3019  * @start: First byte to consider.
3020  * @end: Limit of search (exclusive).
3021  * @whence: Either SEEK_HOLE or SEEK_DATA.
3022  *
3023  * If the page cache knows which blocks contain holes and which blocks
3024  * contain data, your filesystem can use this function to implement
3025  * SEEK_HOLE and SEEK_DATA.  This is useful for filesystems which are
3026  * entirely memory-based such as tmpfs, and filesystems which support
3027  * unwritten extents.
3028  *
3029  * Return: The requested offset on success, or -ENXIO if @whence specifies
3030  * SEEK_DATA and there is no data after @start.  There is an implicit hole
3031  * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
3032  * and @end contain data.
3033  */
3034 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
3035 		loff_t end, int whence)
3036 {
3037 	XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
3038 	pgoff_t max = (end - 1) >> PAGE_SHIFT;
3039 	bool seek_data = (whence == SEEK_DATA);
3040 	struct folio *folio;
3041 
3042 	if (end <= start)
3043 		return -ENXIO;
3044 
3045 	rcu_read_lock();
3046 	while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
3047 		loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
3048 		size_t seek_size;
3049 
3050 		if (start < pos) {
3051 			if (!seek_data)
3052 				goto unlock;
3053 			start = pos;
3054 		}
3055 
3056 		seek_size = seek_folio_size(&xas, folio);
3057 		pos = round_up((u64)pos + 1, seek_size);
3058 		start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
3059 				seek_data);
3060 		if (start < pos)
3061 			goto unlock;
3062 		if (start >= end)
3063 			break;
3064 		if (seek_size > PAGE_SIZE)
3065 			xas_set(&xas, pos >> PAGE_SHIFT);
3066 		if (!xa_is_value(folio))
3067 			folio_put(folio);
3068 	}
3069 	if (seek_data)
3070 		start = -ENXIO;
3071 unlock:
3072 	rcu_read_unlock();
3073 	if (folio && !xa_is_value(folio))
3074 		folio_put(folio);
3075 	if (start > end)
3076 		return end;
3077 	return start;
3078 }
3079 
3080 #ifdef CONFIG_MMU
3081 #define MMAP_LOTSAMISS  (100)
3082 /*
3083  * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
3084  * @vmf - the vm_fault for this fault.
3085  * @folio - the folio to lock.
3086  * @fpin - the pointer to the file we may pin (or is already pinned).
3087  *
3088  * This works similar to lock_folio_or_retry in that it can drop the
3089  * mmap_lock.  It differs in that it actually returns the folio locked
3090  * if it returns 1 and 0 if it couldn't lock the folio.  If we did have
3091  * to drop the mmap_lock then fpin will point to the pinned file and
3092  * needs to be fput()'ed at a later point.
3093  */
3094 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
3095 				     struct file **fpin)
3096 {
3097 	if (folio_trylock(folio))
3098 		return 1;
3099 
3100 	/*
3101 	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
3102 	 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
3103 	 * is supposed to work. We have way too many special cases..
3104 	 */
3105 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3106 		return 0;
3107 
3108 	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
3109 	if (vmf->flags & FAULT_FLAG_KILLABLE) {
3110 		if (__folio_lock_killable(folio)) {
3111 			/*
3112 			 * We didn't have the right flags to drop the mmap_lock,
3113 			 * but all fault_handlers only check for fatal signals
3114 			 * if we return VM_FAULT_RETRY, so we need to drop the
3115 			 * mmap_lock here and return 0 if we don't have a fpin.
3116 			 */
3117 			if (*fpin == NULL)
3118 				mmap_read_unlock(vmf->vma->vm_mm);
3119 			return 0;
3120 		}
3121 	} else
3122 		__folio_lock(folio);
3123 
3124 	return 1;
3125 }
3126 
3127 /*
3128  * Synchronous readahead happens when we don't even find a page in the page
3129  * cache at all.  We don't want to perform IO under the mmap sem, so if we have
3130  * to drop the mmap sem we return the file that was pinned in order for us to do
3131  * that.  If we didn't pin a file then we return NULL.  The file that is
3132  * returned needs to be fput()'ed when we're done with it.
3133  */
3134 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
3135 {
3136 	struct file *file = vmf->vma->vm_file;
3137 	struct file_ra_state *ra = &file->f_ra;
3138 	struct address_space *mapping = file->f_mapping;
3139 	DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
3140 	struct file *fpin = NULL;
3141 	unsigned long vm_flags = vmf->vma->vm_flags;
3142 	unsigned int mmap_miss;
3143 
3144 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3145 	/* Use the readahead code, even if readahead is disabled */
3146 	if (vm_flags & VM_HUGEPAGE) {
3147 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3148 		ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3149 		ra->size = HPAGE_PMD_NR;
3150 		/*
3151 		 * Fetch two PMD folios, so we get the chance to actually
3152 		 * readahead, unless we've been told not to.
3153 		 */
3154 		if (!(vm_flags & VM_RAND_READ))
3155 			ra->size *= 2;
3156 		ra->async_size = HPAGE_PMD_NR;
3157 		page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3158 		return fpin;
3159 	}
3160 #endif
3161 
3162 	/* If we don't want any read-ahead, don't bother */
3163 	if (vm_flags & VM_RAND_READ)
3164 		return fpin;
3165 	if (!ra->ra_pages)
3166 		return fpin;
3167 
3168 	if (vm_flags & VM_SEQ_READ) {
3169 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3170 		page_cache_sync_ra(&ractl, ra->ra_pages);
3171 		return fpin;
3172 	}
3173 
3174 	/* Avoid banging the cache line if not needed */
3175 	mmap_miss = READ_ONCE(ra->mmap_miss);
3176 	if (mmap_miss < MMAP_LOTSAMISS * 10)
3177 		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3178 
3179 	/*
3180 	 * Do we miss much more than hit in this file? If so,
3181 	 * stop bothering with read-ahead. It will only hurt.
3182 	 */
3183 	if (mmap_miss > MMAP_LOTSAMISS)
3184 		return fpin;
3185 
3186 	/*
3187 	 * mmap read-around
3188 	 */
3189 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3190 	ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3191 	ra->size = ra->ra_pages;
3192 	ra->async_size = ra->ra_pages / 4;
3193 	ractl._index = ra->start;
3194 	page_cache_ra_order(&ractl, ra, 0);
3195 	return fpin;
3196 }
3197 
3198 /*
3199  * Asynchronous readahead happens when we find the page and PG_readahead,
3200  * so we want to possibly extend the readahead further.  We return the file that
3201  * was pinned if we have to drop the mmap_lock in order to do IO.
3202  */
3203 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3204 					    struct folio *folio)
3205 {
3206 	struct file *file = vmf->vma->vm_file;
3207 	struct file_ra_state *ra = &file->f_ra;
3208 	DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3209 	struct file *fpin = NULL;
3210 	unsigned int mmap_miss;
3211 
3212 	/* If we don't want any read-ahead, don't bother */
3213 	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3214 		return fpin;
3215 
3216 	mmap_miss = READ_ONCE(ra->mmap_miss);
3217 	if (mmap_miss)
3218 		WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3219 
3220 	if (folio_test_readahead(folio)) {
3221 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3222 		page_cache_async_ra(&ractl, folio, ra->ra_pages);
3223 	}
3224 	return fpin;
3225 }
3226 
3227 /**
3228  * filemap_fault - read in file data for page fault handling
3229  * @vmf:	struct vm_fault containing details of the fault
3230  *
3231  * filemap_fault() is invoked via the vma operations vector for a
3232  * mapped memory region to read in file data during a page fault.
3233  *
3234  * The goto's are kind of ugly, but this streamlines the normal case of having
3235  * it in the page cache, and handles the special cases reasonably without
3236  * having a lot of duplicated code.
3237  *
3238  * vma->vm_mm->mmap_lock must be held on entry.
3239  *
3240  * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3241  * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3242  *
3243  * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3244  * has not been released.
3245  *
3246  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3247  *
3248  * Return: bitwise-OR of %VM_FAULT_ codes.
3249  */
3250 vm_fault_t filemap_fault(struct vm_fault *vmf)
3251 {
3252 	int error;
3253 	struct file *file = vmf->vma->vm_file;
3254 	struct file *fpin = NULL;
3255 	struct address_space *mapping = file->f_mapping;
3256 	struct inode *inode = mapping->host;
3257 	pgoff_t max_idx, index = vmf->pgoff;
3258 	struct folio *folio;
3259 	vm_fault_t ret = 0;
3260 	bool mapping_locked = false;
3261 
3262 	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3263 	if (unlikely(index >= max_idx))
3264 		return VM_FAULT_SIGBUS;
3265 
3266 	/*
3267 	 * Do we have something in the page cache already?
3268 	 */
3269 	folio = filemap_get_folio(mapping, index);
3270 	if (likely(folio)) {
3271 		/*
3272 		 * We found the page, so try async readahead before waiting for
3273 		 * the lock.
3274 		 */
3275 		if (!(vmf->flags & FAULT_FLAG_TRIED))
3276 			fpin = do_async_mmap_readahead(vmf, folio);
3277 		if (unlikely(!folio_test_uptodate(folio))) {
3278 			filemap_invalidate_lock_shared(mapping);
3279 			mapping_locked = true;
3280 		}
3281 	} else {
3282 		/* No page in the page cache at all */
3283 		count_vm_event(PGMAJFAULT);
3284 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3285 		ret = VM_FAULT_MAJOR;
3286 		fpin = do_sync_mmap_readahead(vmf);
3287 retry_find:
3288 		/*
3289 		 * See comment in filemap_create_folio() why we need
3290 		 * invalidate_lock
3291 		 */
3292 		if (!mapping_locked) {
3293 			filemap_invalidate_lock_shared(mapping);
3294 			mapping_locked = true;
3295 		}
3296 		folio = __filemap_get_folio(mapping, index,
3297 					  FGP_CREAT|FGP_FOR_MMAP,
3298 					  vmf->gfp_mask);
3299 		if (!folio) {
3300 			if (fpin)
3301 				goto out_retry;
3302 			filemap_invalidate_unlock_shared(mapping);
3303 			return VM_FAULT_OOM;
3304 		}
3305 	}
3306 
3307 	if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3308 		goto out_retry;
3309 
3310 	/* Did it get truncated? */
3311 	if (unlikely(folio->mapping != mapping)) {
3312 		folio_unlock(folio);
3313 		folio_put(folio);
3314 		goto retry_find;
3315 	}
3316 	VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3317 
3318 	/*
3319 	 * We have a locked page in the page cache, now we need to check
3320 	 * that it's up-to-date. If not, it is going to be due to an error.
3321 	 */
3322 	if (unlikely(!folio_test_uptodate(folio))) {
3323 		/*
3324 		 * The page was in cache and uptodate and now it is not.
3325 		 * Strange but possible since we didn't hold the page lock all
3326 		 * the time. Let's drop everything get the invalidate lock and
3327 		 * try again.
3328 		 */
3329 		if (!mapping_locked) {
3330 			folio_unlock(folio);
3331 			folio_put(folio);
3332 			goto retry_find;
3333 		}
3334 		goto page_not_uptodate;
3335 	}
3336 
3337 	/*
3338 	 * We've made it this far and we had to drop our mmap_lock, now is the
3339 	 * time to return to the upper layer and have it re-find the vma and
3340 	 * redo the fault.
3341 	 */
3342 	if (fpin) {
3343 		folio_unlock(folio);
3344 		goto out_retry;
3345 	}
3346 	if (mapping_locked)
3347 		filemap_invalidate_unlock_shared(mapping);
3348 
3349 	/*
3350 	 * Found the page and have a reference on it.
3351 	 * We must recheck i_size under page lock.
3352 	 */
3353 	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3354 	if (unlikely(index >= max_idx)) {
3355 		folio_unlock(folio);
3356 		folio_put(folio);
3357 		return VM_FAULT_SIGBUS;
3358 	}
3359 
3360 	vmf->page = folio_file_page(folio, index);
3361 	return ret | VM_FAULT_LOCKED;
3362 
3363 page_not_uptodate:
3364 	/*
3365 	 * Umm, take care of errors if the page isn't up-to-date.
3366 	 * Try to re-read it _once_. We do this synchronously,
3367 	 * because there really aren't any performance issues here
3368 	 * and we need to check for errors.
3369 	 */
3370 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3371 	error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
3372 	if (fpin)
3373 		goto out_retry;
3374 	folio_put(folio);
3375 
3376 	if (!error || error == AOP_TRUNCATED_PAGE)
3377 		goto retry_find;
3378 	filemap_invalidate_unlock_shared(mapping);
3379 
3380 	return VM_FAULT_SIGBUS;
3381 
3382 out_retry:
3383 	/*
3384 	 * We dropped the mmap_lock, we need to return to the fault handler to
3385 	 * re-find the vma and come back and find our hopefully still populated
3386 	 * page.
3387 	 */
3388 	if (folio)
3389 		folio_put(folio);
3390 	if (mapping_locked)
3391 		filemap_invalidate_unlock_shared(mapping);
3392 	if (fpin)
3393 		fput(fpin);
3394 	return ret | VM_FAULT_RETRY;
3395 }
3396 EXPORT_SYMBOL(filemap_fault);
3397 
3398 static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
3399 {
3400 	struct mm_struct *mm = vmf->vma->vm_mm;
3401 
3402 	/* Huge page is mapped? No need to proceed. */
3403 	if (pmd_trans_huge(*vmf->pmd)) {
3404 		unlock_page(page);
3405 		put_page(page);
3406 		return true;
3407 	}
3408 
3409 	if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
3410 		vm_fault_t ret = do_set_pmd(vmf, page);
3411 		if (!ret) {
3412 			/* The page is mapped successfully, reference consumed. */
3413 			unlock_page(page);
3414 			return true;
3415 		}
3416 	}
3417 
3418 	if (pmd_none(*vmf->pmd))
3419 		pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3420 
3421 	/* See comment in handle_pte_fault() */
3422 	if (pmd_devmap_trans_unstable(vmf->pmd)) {
3423 		unlock_page(page);
3424 		put_page(page);
3425 		return true;
3426 	}
3427 
3428 	return false;
3429 }
3430 
3431 static struct folio *next_uptodate_page(struct folio *folio,
3432 				       struct address_space *mapping,
3433 				       struct xa_state *xas, pgoff_t end_pgoff)
3434 {
3435 	unsigned long max_idx;
3436 
3437 	do {
3438 		if (!folio)
3439 			return NULL;
3440 		if (xas_retry(xas, folio))
3441 			continue;
3442 		if (xa_is_value(folio))
3443 			continue;
3444 		if (folio_test_locked(folio))
3445 			continue;
3446 		if (!folio_try_get_rcu(folio))
3447 			continue;
3448 		/* Has the page moved or been split? */
3449 		if (unlikely(folio != xas_reload(xas)))
3450 			goto skip;
3451 		if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3452 			goto skip;
3453 		if (!folio_trylock(folio))
3454 			goto skip;
3455 		if (folio->mapping != mapping)
3456 			goto unlock;
3457 		if (!folio_test_uptodate(folio))
3458 			goto unlock;
3459 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3460 		if (xas->xa_index >= max_idx)
3461 			goto unlock;
3462 		return folio;
3463 unlock:
3464 		folio_unlock(folio);
3465 skip:
3466 		folio_put(folio);
3467 	} while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3468 
3469 	return NULL;
3470 }
3471 
3472 static inline struct folio *first_map_page(struct address_space *mapping,
3473 					  struct xa_state *xas,
3474 					  pgoff_t end_pgoff)
3475 {
3476 	return next_uptodate_page(xas_find(xas, end_pgoff),
3477 				  mapping, xas, end_pgoff);
3478 }
3479 
3480 static inline struct folio *next_map_page(struct address_space *mapping,
3481 					 struct xa_state *xas,
3482 					 pgoff_t end_pgoff)
3483 {
3484 	return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3485 				  mapping, xas, end_pgoff);
3486 }
3487 
3488 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3489 			     pgoff_t start_pgoff, pgoff_t end_pgoff)
3490 {
3491 	struct vm_area_struct *vma = vmf->vma;
3492 	struct file *file = vma->vm_file;
3493 	struct address_space *mapping = file->f_mapping;
3494 	pgoff_t last_pgoff = start_pgoff;
3495 	unsigned long addr;
3496 	XA_STATE(xas, &mapping->i_pages, start_pgoff);
3497 	struct folio *folio;
3498 	struct page *page;
3499 	unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
3500 	vm_fault_t ret = 0;
3501 
3502 	rcu_read_lock();
3503 	folio = first_map_page(mapping, &xas, end_pgoff);
3504 	if (!folio)
3505 		goto out;
3506 
3507 	if (filemap_map_pmd(vmf, &folio->page)) {
3508 		ret = VM_FAULT_NOPAGE;
3509 		goto out;
3510 	}
3511 
3512 	addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3513 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3514 	do {
3515 again:
3516 		page = folio_file_page(folio, xas.xa_index);
3517 		if (PageHWPoison(page))
3518 			goto unlock;
3519 
3520 		if (mmap_miss > 0)
3521 			mmap_miss--;
3522 
3523 		addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3524 		vmf->pte += xas.xa_index - last_pgoff;
3525 		last_pgoff = xas.xa_index;
3526 
3527 		/*
3528 		 * NOTE: If there're PTE markers, we'll leave them to be
3529 		 * handled in the specific fault path, and it'll prohibit the
3530 		 * fault-around logic.
3531 		 */
3532 		if (!pte_none(*vmf->pte))
3533 			goto unlock;
3534 
3535 		/* We're about to handle the fault */
3536 		if (vmf->address == addr)
3537 			ret = VM_FAULT_NOPAGE;
3538 
3539 		do_set_pte(vmf, page, addr);
3540 		/* no need to invalidate: a not-present page won't be cached */
3541 		update_mmu_cache(vma, addr, vmf->pte);
3542 		if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3543 			xas.xa_index++;
3544 			folio_ref_inc(folio);
3545 			goto again;
3546 		}
3547 		folio_unlock(folio);
3548 		continue;
3549 unlock:
3550 		if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3551 			xas.xa_index++;
3552 			goto again;
3553 		}
3554 		folio_unlock(folio);
3555 		folio_put(folio);
3556 	} while ((folio = next_map_page(mapping, &xas, end_pgoff)) != NULL);
3557 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3558 out:
3559 	rcu_read_unlock();
3560 	WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
3561 	return ret;
3562 }
3563 EXPORT_SYMBOL(filemap_map_pages);
3564 
3565 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3566 {
3567 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3568 	struct folio *folio = page_folio(vmf->page);
3569 	vm_fault_t ret = VM_FAULT_LOCKED;
3570 
3571 	sb_start_pagefault(mapping->host->i_sb);
3572 	file_update_time(vmf->vma->vm_file);
3573 	folio_lock(folio);
3574 	if (folio->mapping != mapping) {
3575 		folio_unlock(folio);
3576 		ret = VM_FAULT_NOPAGE;
3577 		goto out;
3578 	}
3579 	/*
3580 	 * We mark the folio dirty already here so that when freeze is in
3581 	 * progress, we are guaranteed that writeback during freezing will
3582 	 * see the dirty folio and writeprotect it again.
3583 	 */
3584 	folio_mark_dirty(folio);
3585 	folio_wait_stable(folio);
3586 out:
3587 	sb_end_pagefault(mapping->host->i_sb);
3588 	return ret;
3589 }
3590 
3591 const struct vm_operations_struct generic_file_vm_ops = {
3592 	.fault		= filemap_fault,
3593 	.map_pages	= filemap_map_pages,
3594 	.page_mkwrite	= filemap_page_mkwrite,
3595 };
3596 
3597 /* This is used for a general mmap of a disk file */
3598 
3599 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3600 {
3601 	struct address_space *mapping = file->f_mapping;
3602 
3603 	if (!mapping->a_ops->read_folio)
3604 		return -ENOEXEC;
3605 	file_accessed(file);
3606 	vma->vm_ops = &generic_file_vm_ops;
3607 	return 0;
3608 }
3609 
3610 /*
3611  * This is for filesystems which do not implement ->writepage.
3612  */
3613 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3614 {
3615 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3616 		return -EINVAL;
3617 	return generic_file_mmap(file, vma);
3618 }
3619 #else
3620 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3621 {
3622 	return VM_FAULT_SIGBUS;
3623 }
3624 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3625 {
3626 	return -ENOSYS;
3627 }
3628 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3629 {
3630 	return -ENOSYS;
3631 }
3632 #endif /* CONFIG_MMU */
3633 
3634 EXPORT_SYMBOL(filemap_page_mkwrite);
3635 EXPORT_SYMBOL(generic_file_mmap);
3636 EXPORT_SYMBOL(generic_file_readonly_mmap);
3637 
3638 static struct folio *do_read_cache_folio(struct address_space *mapping,
3639 		pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
3640 {
3641 	struct folio *folio;
3642 	int err;
3643 
3644 	if (!filler)
3645 		filler = mapping->a_ops->read_folio;
3646 repeat:
3647 	folio = filemap_get_folio(mapping, index);
3648 	if (!folio) {
3649 		folio = filemap_alloc_folio(gfp, 0);
3650 		if (!folio)
3651 			return ERR_PTR(-ENOMEM);
3652 		err = filemap_add_folio(mapping, folio, index, gfp);
3653 		if (unlikely(err)) {
3654 			folio_put(folio);
3655 			if (err == -EEXIST)
3656 				goto repeat;
3657 			/* Presumably ENOMEM for xarray node */
3658 			return ERR_PTR(err);
3659 		}
3660 
3661 		goto filler;
3662 	}
3663 	if (folio_test_uptodate(folio))
3664 		goto out;
3665 
3666 	if (!folio_trylock(folio)) {
3667 		folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3668 		goto repeat;
3669 	}
3670 
3671 	/* Folio was truncated from mapping */
3672 	if (!folio->mapping) {
3673 		folio_unlock(folio);
3674 		folio_put(folio);
3675 		goto repeat;
3676 	}
3677 
3678 	/* Someone else locked and filled the page in a very small window */
3679 	if (folio_test_uptodate(folio)) {
3680 		folio_unlock(folio);
3681 		goto out;
3682 	}
3683 
3684 filler:
3685 	err = filemap_read_folio(file, filler, folio);
3686 	if (err) {
3687 		folio_put(folio);
3688 		if (err == AOP_TRUNCATED_PAGE)
3689 			goto repeat;
3690 		return ERR_PTR(err);
3691 	}
3692 
3693 out:
3694 	folio_mark_accessed(folio);
3695 	return folio;
3696 }
3697 
3698 /**
3699  * read_cache_folio - Read into page cache, fill it if needed.
3700  * @mapping: The address_space to read from.
3701  * @index: The index to read.
3702  * @filler: Function to perform the read, or NULL to use aops->read_folio().
3703  * @file: Passed to filler function, may be NULL if not required.
3704  *
3705  * Read one page into the page cache.  If it succeeds, the folio returned
3706  * will contain @index, but it may not be the first page of the folio.
3707  *
3708  * If the filler function returns an error, it will be returned to the
3709  * caller.
3710  *
3711  * Context: May sleep.  Expects mapping->invalidate_lock to be held.
3712  * Return: An uptodate folio on success, ERR_PTR() on failure.
3713  */
3714 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3715 		filler_t filler, struct file *file)
3716 {
3717 	return do_read_cache_folio(mapping, index, filler, file,
3718 			mapping_gfp_mask(mapping));
3719 }
3720 EXPORT_SYMBOL(read_cache_folio);
3721 
3722 static struct page *do_read_cache_page(struct address_space *mapping,
3723 		pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
3724 {
3725 	struct folio *folio;
3726 
3727 	folio = do_read_cache_folio(mapping, index, filler, file, gfp);
3728 	if (IS_ERR(folio))
3729 		return &folio->page;
3730 	return folio_file_page(folio, index);
3731 }
3732 
3733 struct page *read_cache_page(struct address_space *mapping,
3734 			pgoff_t index, filler_t *filler, struct file *file)
3735 {
3736 	return do_read_cache_page(mapping, index, filler, file,
3737 			mapping_gfp_mask(mapping));
3738 }
3739 EXPORT_SYMBOL(read_cache_page);
3740 
3741 /**
3742  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3743  * @mapping:	the page's address_space
3744  * @index:	the page index
3745  * @gfp:	the page allocator flags to use if allocating
3746  *
3747  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3748  * any new page allocations done using the specified allocation flags.
3749  *
3750  * If the page does not get brought uptodate, return -EIO.
3751  *
3752  * The function expects mapping->invalidate_lock to be already held.
3753  *
3754  * Return: up to date page on success, ERR_PTR() on failure.
3755  */
3756 struct page *read_cache_page_gfp(struct address_space *mapping,
3757 				pgoff_t index,
3758 				gfp_t gfp)
3759 {
3760 	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3761 }
3762 EXPORT_SYMBOL(read_cache_page_gfp);
3763 
3764 /*
3765  * Warn about a page cache invalidation failure during a direct I/O write.
3766  */
3767 void dio_warn_stale_pagecache(struct file *filp)
3768 {
3769 	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3770 	char pathname[128];
3771 	char *path;
3772 
3773 	errseq_set(&filp->f_mapping->wb_err, -EIO);
3774 	if (__ratelimit(&_rs)) {
3775 		path = file_path(filp, pathname, sizeof(pathname));
3776 		if (IS_ERR(path))
3777 			path = "(unknown)";
3778 		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3779 		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3780 			current->comm);
3781 	}
3782 }
3783 
3784 ssize_t
3785 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3786 {
3787 	struct file	*file = iocb->ki_filp;
3788 	struct address_space *mapping = file->f_mapping;
3789 	struct inode	*inode = mapping->host;
3790 	loff_t		pos = iocb->ki_pos;
3791 	ssize_t		written;
3792 	size_t		write_len;
3793 	pgoff_t		end;
3794 
3795 	write_len = iov_iter_count(from);
3796 	end = (pos + write_len - 1) >> PAGE_SHIFT;
3797 
3798 	if (iocb->ki_flags & IOCB_NOWAIT) {
3799 		/* If there are pages to writeback, return */
3800 		if (filemap_range_has_page(file->f_mapping, pos,
3801 					   pos + write_len - 1))
3802 			return -EAGAIN;
3803 	} else {
3804 		written = filemap_write_and_wait_range(mapping, pos,
3805 							pos + write_len - 1);
3806 		if (written)
3807 			goto out;
3808 	}
3809 
3810 	/*
3811 	 * After a write we want buffered reads to be sure to go to disk to get
3812 	 * the new data.  We invalidate clean cached page from the region we're
3813 	 * about to write.  We do this *before* the write so that we can return
3814 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3815 	 */
3816 	written = invalidate_inode_pages2_range(mapping,
3817 					pos >> PAGE_SHIFT, end);
3818 	/*
3819 	 * If a page can not be invalidated, return 0 to fall back
3820 	 * to buffered write.
3821 	 */
3822 	if (written) {
3823 		if (written == -EBUSY)
3824 			return 0;
3825 		goto out;
3826 	}
3827 
3828 	written = mapping->a_ops->direct_IO(iocb, from);
3829 
3830 	/*
3831 	 * Finally, try again to invalidate clean pages which might have been
3832 	 * cached by non-direct readahead, or faulted in by get_user_pages()
3833 	 * if the source of the write was an mmap'ed region of the file
3834 	 * we're writing.  Either one is a pretty crazy thing to do,
3835 	 * so we don't support it 100%.  If this invalidation
3836 	 * fails, tough, the write still worked...
3837 	 *
3838 	 * Most of the time we do not need this since dio_complete() will do
3839 	 * the invalidation for us. However there are some file systems that
3840 	 * do not end up with dio_complete() being called, so let's not break
3841 	 * them by removing it completely.
3842 	 *
3843 	 * Noticeable example is a blkdev_direct_IO().
3844 	 *
3845 	 * Skip invalidation for async writes or if mapping has no pages.
3846 	 */
3847 	if (written > 0 && mapping->nrpages &&
3848 	    invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3849 		dio_warn_stale_pagecache(file);
3850 
3851 	if (written > 0) {
3852 		pos += written;
3853 		write_len -= written;
3854 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3855 			i_size_write(inode, pos);
3856 			mark_inode_dirty(inode);
3857 		}
3858 		iocb->ki_pos = pos;
3859 	}
3860 	if (written != -EIOCBQUEUED)
3861 		iov_iter_revert(from, write_len - iov_iter_count(from));
3862 out:
3863 	return written;
3864 }
3865 EXPORT_SYMBOL(generic_file_direct_write);
3866 
3867 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
3868 {
3869 	struct file *file = iocb->ki_filp;
3870 	loff_t pos = iocb->ki_pos;
3871 	struct address_space *mapping = file->f_mapping;
3872 	const struct address_space_operations *a_ops = mapping->a_ops;
3873 	long status = 0;
3874 	ssize_t written = 0;
3875 
3876 	do {
3877 		struct page *page;
3878 		unsigned long offset;	/* Offset into pagecache page */
3879 		unsigned long bytes;	/* Bytes to write to page */
3880 		size_t copied;		/* Bytes copied from user */
3881 		void *fsdata = NULL;
3882 
3883 		offset = (pos & (PAGE_SIZE - 1));
3884 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3885 						iov_iter_count(i));
3886 
3887 again:
3888 		/*
3889 		 * Bring in the user page that we will copy from _first_.
3890 		 * Otherwise there's a nasty deadlock on copying from the
3891 		 * same page as we're writing to, without it being marked
3892 		 * up-to-date.
3893 		 */
3894 		if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
3895 			status = -EFAULT;
3896 			break;
3897 		}
3898 
3899 		if (fatal_signal_pending(current)) {
3900 			status = -EINTR;
3901 			break;
3902 		}
3903 
3904 		status = a_ops->write_begin(file, mapping, pos, bytes,
3905 						&page, &fsdata);
3906 		if (unlikely(status < 0))
3907 			break;
3908 
3909 		if (mapping_writably_mapped(mapping))
3910 			flush_dcache_page(page);
3911 
3912 		copied = copy_page_from_iter_atomic(page, offset, bytes, i);
3913 		flush_dcache_page(page);
3914 
3915 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3916 						page, fsdata);
3917 		if (unlikely(status != copied)) {
3918 			iov_iter_revert(i, copied - max(status, 0L));
3919 			if (unlikely(status < 0))
3920 				break;
3921 		}
3922 		cond_resched();
3923 
3924 		if (unlikely(status == 0)) {
3925 			/*
3926 			 * A short copy made ->write_end() reject the
3927 			 * thing entirely.  Might be memory poisoning
3928 			 * halfway through, might be a race with munmap,
3929 			 * might be severe memory pressure.
3930 			 */
3931 			if (copied)
3932 				bytes = copied;
3933 			goto again;
3934 		}
3935 		pos += status;
3936 		written += status;
3937 
3938 		balance_dirty_pages_ratelimited(mapping);
3939 	} while (iov_iter_count(i));
3940 
3941 	return written ? written : status;
3942 }
3943 EXPORT_SYMBOL(generic_perform_write);
3944 
3945 /**
3946  * __generic_file_write_iter - write data to a file
3947  * @iocb:	IO state structure (file, offset, etc.)
3948  * @from:	iov_iter with data to write
3949  *
3950  * This function does all the work needed for actually writing data to a
3951  * file. It does all basic checks, removes SUID from the file, updates
3952  * modification times and calls proper subroutines depending on whether we
3953  * do direct IO or a standard buffered write.
3954  *
3955  * It expects i_rwsem to be grabbed unless we work on a block device or similar
3956  * object which does not need locking at all.
3957  *
3958  * This function does *not* take care of syncing data in case of O_SYNC write.
3959  * A caller has to handle it. This is mainly due to the fact that we want to
3960  * avoid syncing under i_rwsem.
3961  *
3962  * Return:
3963  * * number of bytes written, even for truncated writes
3964  * * negative error code if no data has been written at all
3965  */
3966 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3967 {
3968 	struct file *file = iocb->ki_filp;
3969 	struct address_space *mapping = file->f_mapping;
3970 	struct inode 	*inode = mapping->host;
3971 	ssize_t		written = 0;
3972 	ssize_t		err;
3973 	ssize_t		status;
3974 
3975 	/* We can write back this queue in page reclaim */
3976 	current->backing_dev_info = inode_to_bdi(inode);
3977 	err = file_remove_privs(file);
3978 	if (err)
3979 		goto out;
3980 
3981 	err = file_update_time(file);
3982 	if (err)
3983 		goto out;
3984 
3985 	if (iocb->ki_flags & IOCB_DIRECT) {
3986 		loff_t pos, endbyte;
3987 
3988 		written = generic_file_direct_write(iocb, from);
3989 		/*
3990 		 * If the write stopped short of completing, fall back to
3991 		 * buffered writes.  Some filesystems do this for writes to
3992 		 * holes, for example.  For DAX files, a buffered write will
3993 		 * not succeed (even if it did, DAX does not handle dirty
3994 		 * page-cache pages correctly).
3995 		 */
3996 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3997 			goto out;
3998 
3999 		pos = iocb->ki_pos;
4000 		status = generic_perform_write(iocb, from);
4001 		/*
4002 		 * If generic_perform_write() returned a synchronous error
4003 		 * then we want to return the number of bytes which were
4004 		 * direct-written, or the error code if that was zero.  Note
4005 		 * that this differs from normal direct-io semantics, which
4006 		 * will return -EFOO even if some bytes were written.
4007 		 */
4008 		if (unlikely(status < 0)) {
4009 			err = status;
4010 			goto out;
4011 		}
4012 		/*
4013 		 * We need to ensure that the page cache pages are written to
4014 		 * disk and invalidated to preserve the expected O_DIRECT
4015 		 * semantics.
4016 		 */
4017 		endbyte = pos + status - 1;
4018 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
4019 		if (err == 0) {
4020 			iocb->ki_pos = endbyte + 1;
4021 			written += status;
4022 			invalidate_mapping_pages(mapping,
4023 						 pos >> PAGE_SHIFT,
4024 						 endbyte >> PAGE_SHIFT);
4025 		} else {
4026 			/*
4027 			 * We don't know how much we wrote, so just return
4028 			 * the number of bytes which were direct-written
4029 			 */
4030 		}
4031 	} else {
4032 		written = generic_perform_write(iocb, from);
4033 		if (likely(written > 0))
4034 			iocb->ki_pos += written;
4035 	}
4036 out:
4037 	current->backing_dev_info = NULL;
4038 	return written ? written : err;
4039 }
4040 EXPORT_SYMBOL(__generic_file_write_iter);
4041 
4042 /**
4043  * generic_file_write_iter - write data to a file
4044  * @iocb:	IO state structure
4045  * @from:	iov_iter with data to write
4046  *
4047  * This is a wrapper around __generic_file_write_iter() to be used by most
4048  * filesystems. It takes care of syncing the file in case of O_SYNC file
4049  * and acquires i_rwsem as needed.
4050  * Return:
4051  * * negative error code if no data has been written at all of
4052  *   vfs_fsync_range() failed for a synchronous write
4053  * * number of bytes written, even for truncated writes
4054  */
4055 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4056 {
4057 	struct file *file = iocb->ki_filp;
4058 	struct inode *inode = file->f_mapping->host;
4059 	ssize_t ret;
4060 
4061 	inode_lock(inode);
4062 	ret = generic_write_checks(iocb, from);
4063 	if (ret > 0)
4064 		ret = __generic_file_write_iter(iocb, from);
4065 	inode_unlock(inode);
4066 
4067 	if (ret > 0)
4068 		ret = generic_write_sync(iocb, ret);
4069 	return ret;
4070 }
4071 EXPORT_SYMBOL(generic_file_write_iter);
4072 
4073 /**
4074  * filemap_release_folio() - Release fs-specific metadata on a folio.
4075  * @folio: The folio which the kernel is trying to free.
4076  * @gfp: Memory allocation flags (and I/O mode).
4077  *
4078  * The address_space is trying to release any data attached to a folio
4079  * (presumably at folio->private).
4080  *
4081  * This will also be called if the private_2 flag is set on a page,
4082  * indicating that the folio has other metadata associated with it.
4083  *
4084  * The @gfp argument specifies whether I/O may be performed to release
4085  * this page (__GFP_IO), and whether the call may block
4086  * (__GFP_RECLAIM & __GFP_FS).
4087  *
4088  * Return: %true if the release was successful, otherwise %false.
4089  */
4090 bool filemap_release_folio(struct folio *folio, gfp_t gfp)
4091 {
4092 	struct address_space * const mapping = folio->mapping;
4093 
4094 	BUG_ON(!folio_test_locked(folio));
4095 	if (folio_test_writeback(folio))
4096 		return false;
4097 
4098 	if (mapping && mapping->a_ops->release_folio)
4099 		return mapping->a_ops->release_folio(folio, gfp);
4100 	return try_to_free_buffers(folio);
4101 }
4102 EXPORT_SYMBOL(filemap_release_folio);
4103