1 /* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12 #include <linux/module.h> 13 #include <linux/compiler.h> 14 #include <linux/fs.h> 15 #include <linux/uaccess.h> 16 #include <linux/aio.h> 17 #include <linux/capability.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/gfp.h> 20 #include <linux/mm.h> 21 #include <linux/swap.h> 22 #include <linux/mman.h> 23 #include <linux/pagemap.h> 24 #include <linux/file.h> 25 #include <linux/uio.h> 26 #include <linux/hash.h> 27 #include <linux/writeback.h> 28 #include <linux/backing-dev.h> 29 #include <linux/pagevec.h> 30 #include <linux/blkdev.h> 31 #include <linux/security.h> 32 #include <linux/syscalls.h> 33 #include <linux/cpuset.h> 34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */ 35 #include <linux/memcontrol.h> 36 #include <linux/mm_inline.h> /* for page_is_file_cache() */ 37 #include "internal.h" 38 39 /* 40 * FIXME: remove all knowledge of the buffer layer from the core VM 41 */ 42 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 43 44 #include <asm/mman.h> 45 46 /* 47 * Shared mappings implemented 30.11.1994. It's not fully working yet, 48 * though. 49 * 50 * Shared mappings now work. 15.8.1995 Bruno. 51 * 52 * finished 'unifying' the page and buffer cache and SMP-threaded the 53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 54 * 55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 56 */ 57 58 /* 59 * Lock ordering: 60 * 61 * ->i_mmap_lock (truncate_pagecache) 62 * ->private_lock (__free_pte->__set_page_dirty_buffers) 63 * ->swap_lock (exclusive_swap_page, others) 64 * ->mapping->tree_lock 65 * 66 * ->i_mutex 67 * ->i_mmap_lock (truncate->unmap_mapping_range) 68 * 69 * ->mmap_sem 70 * ->i_mmap_lock 71 * ->page_table_lock or pte_lock (various, mainly in memory.c) 72 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) 73 * 74 * ->mmap_sem 75 * ->lock_page (access_process_vm) 76 * 77 * ->i_mutex (generic_file_buffered_write) 78 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 79 * 80 * ->i_mutex 81 * ->i_alloc_sem (various) 82 * 83 * ->inode_lock 84 * ->sb_lock (fs/fs-writeback.c) 85 * ->mapping->tree_lock (__sync_single_inode) 86 * 87 * ->i_mmap_lock 88 * ->anon_vma.lock (vma_adjust) 89 * 90 * ->anon_vma.lock 91 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 92 * 93 * ->page_table_lock or pte_lock 94 * ->swap_lock (try_to_unmap_one) 95 * ->private_lock (try_to_unmap_one) 96 * ->tree_lock (try_to_unmap_one) 97 * ->zone.lru_lock (follow_page->mark_page_accessed) 98 * ->zone.lru_lock (check_pte_range->isolate_lru_page) 99 * ->private_lock (page_remove_rmap->set_page_dirty) 100 * ->tree_lock (page_remove_rmap->set_page_dirty) 101 * ->inode_lock (page_remove_rmap->set_page_dirty) 102 * ->inode_lock (zap_pte_range->set_page_dirty) 103 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 104 * 105 * ->task->proc_lock 106 * ->dcache_lock (proc_pid_lookup) 107 * 108 * (code doesn't rely on that order, so you could switch it around) 109 * ->tasklist_lock (memory_failure, collect_procs_ao) 110 * ->i_mmap_lock 111 */ 112 113 /* 114 * Remove a page from the page cache and free it. Caller has to make 115 * sure the page is locked and that nobody else uses it - or that usage 116 * is safe. The caller must hold the mapping's tree_lock. 117 */ 118 void __remove_from_page_cache(struct page *page) 119 { 120 struct address_space *mapping = page->mapping; 121 122 radix_tree_delete(&mapping->page_tree, page->index); 123 page->mapping = NULL; 124 mapping->nrpages--; 125 __dec_zone_page_state(page, NR_FILE_PAGES); 126 if (PageSwapBacked(page)) 127 __dec_zone_page_state(page, NR_SHMEM); 128 BUG_ON(page_mapped(page)); 129 130 /* 131 * Some filesystems seem to re-dirty the page even after 132 * the VM has canceled the dirty bit (eg ext3 journaling). 133 * 134 * Fix it up by doing a final dirty accounting check after 135 * having removed the page entirely. 136 */ 137 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) { 138 dec_zone_page_state(page, NR_FILE_DIRTY); 139 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); 140 } 141 } 142 143 void remove_from_page_cache(struct page *page) 144 { 145 struct address_space *mapping = page->mapping; 146 147 BUG_ON(!PageLocked(page)); 148 149 spin_lock_irq(&mapping->tree_lock); 150 __remove_from_page_cache(page); 151 spin_unlock_irq(&mapping->tree_lock); 152 mem_cgroup_uncharge_cache_page(page); 153 } 154 EXPORT_SYMBOL(remove_from_page_cache); 155 156 static int sync_page(void *word) 157 { 158 struct address_space *mapping; 159 struct page *page; 160 161 page = container_of((unsigned long *)word, struct page, flags); 162 163 /* 164 * page_mapping() is being called without PG_locked held. 165 * Some knowledge of the state and use of the page is used to 166 * reduce the requirements down to a memory barrier. 167 * The danger here is of a stale page_mapping() return value 168 * indicating a struct address_space different from the one it's 169 * associated with when it is associated with one. 170 * After smp_mb(), it's either the correct page_mapping() for 171 * the page, or an old page_mapping() and the page's own 172 * page_mapping() has gone NULL. 173 * The ->sync_page() address_space operation must tolerate 174 * page_mapping() going NULL. By an amazing coincidence, 175 * this comes about because none of the users of the page 176 * in the ->sync_page() methods make essential use of the 177 * page_mapping(), merely passing the page down to the backing 178 * device's unplug functions when it's non-NULL, which in turn 179 * ignore it for all cases but swap, where only page_private(page) is 180 * of interest. When page_mapping() does go NULL, the entire 181 * call stack gracefully ignores the page and returns. 182 * -- wli 183 */ 184 smp_mb(); 185 mapping = page_mapping(page); 186 if (mapping && mapping->a_ops && mapping->a_ops->sync_page) 187 mapping->a_ops->sync_page(page); 188 io_schedule(); 189 return 0; 190 } 191 192 static int sync_page_killable(void *word) 193 { 194 sync_page(word); 195 return fatal_signal_pending(current) ? -EINTR : 0; 196 } 197 198 /** 199 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 200 * @mapping: address space structure to write 201 * @start: offset in bytes where the range starts 202 * @end: offset in bytes where the range ends (inclusive) 203 * @sync_mode: enable synchronous operation 204 * 205 * Start writeback against all of a mapping's dirty pages that lie 206 * within the byte offsets <start, end> inclusive. 207 * 208 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 209 * opposed to a regular memory cleansing writeback. The difference between 210 * these two operations is that if a dirty page/buffer is encountered, it must 211 * be waited upon, and not just skipped over. 212 */ 213 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 214 loff_t end, int sync_mode) 215 { 216 int ret; 217 struct writeback_control wbc = { 218 .sync_mode = sync_mode, 219 .nr_to_write = LONG_MAX, 220 .range_start = start, 221 .range_end = end, 222 }; 223 224 if (!mapping_cap_writeback_dirty(mapping)) 225 return 0; 226 227 ret = do_writepages(mapping, &wbc); 228 return ret; 229 } 230 231 static inline int __filemap_fdatawrite(struct address_space *mapping, 232 int sync_mode) 233 { 234 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 235 } 236 237 int filemap_fdatawrite(struct address_space *mapping) 238 { 239 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 240 } 241 EXPORT_SYMBOL(filemap_fdatawrite); 242 243 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 244 loff_t end) 245 { 246 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 247 } 248 EXPORT_SYMBOL(filemap_fdatawrite_range); 249 250 /** 251 * filemap_flush - mostly a non-blocking flush 252 * @mapping: target address_space 253 * 254 * This is a mostly non-blocking flush. Not suitable for data-integrity 255 * purposes - I/O may not be started against all dirty pages. 256 */ 257 int filemap_flush(struct address_space *mapping) 258 { 259 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 260 } 261 EXPORT_SYMBOL(filemap_flush); 262 263 /** 264 * filemap_fdatawait_range - wait for writeback to complete 265 * @mapping: address space structure to wait for 266 * @start_byte: offset in bytes where the range starts 267 * @end_byte: offset in bytes where the range ends (inclusive) 268 * 269 * Walk the list of under-writeback pages of the given address space 270 * in the given range and wait for all of them. 271 */ 272 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 273 loff_t end_byte) 274 { 275 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT; 276 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT; 277 struct pagevec pvec; 278 int nr_pages; 279 int ret = 0; 280 281 if (end_byte < start_byte) 282 return 0; 283 284 pagevec_init(&pvec, 0); 285 while ((index <= end) && 286 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 287 PAGECACHE_TAG_WRITEBACK, 288 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { 289 unsigned i; 290 291 for (i = 0; i < nr_pages; i++) { 292 struct page *page = pvec.pages[i]; 293 294 /* until radix tree lookup accepts end_index */ 295 if (page->index > end) 296 continue; 297 298 wait_on_page_writeback(page); 299 if (PageError(page)) 300 ret = -EIO; 301 } 302 pagevec_release(&pvec); 303 cond_resched(); 304 } 305 306 /* Check for outstanding write errors */ 307 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 308 ret = -ENOSPC; 309 if (test_and_clear_bit(AS_EIO, &mapping->flags)) 310 ret = -EIO; 311 312 return ret; 313 } 314 EXPORT_SYMBOL(filemap_fdatawait_range); 315 316 /** 317 * filemap_fdatawait - wait for all under-writeback pages to complete 318 * @mapping: address space structure to wait for 319 * 320 * Walk the list of under-writeback pages of the given address space 321 * and wait for all of them. 322 */ 323 int filemap_fdatawait(struct address_space *mapping) 324 { 325 loff_t i_size = i_size_read(mapping->host); 326 327 if (i_size == 0) 328 return 0; 329 330 return filemap_fdatawait_range(mapping, 0, i_size - 1); 331 } 332 EXPORT_SYMBOL(filemap_fdatawait); 333 334 int filemap_write_and_wait(struct address_space *mapping) 335 { 336 int err = 0; 337 338 if (mapping->nrpages) { 339 err = filemap_fdatawrite(mapping); 340 /* 341 * Even if the above returned error, the pages may be 342 * written partially (e.g. -ENOSPC), so we wait for it. 343 * But the -EIO is special case, it may indicate the worst 344 * thing (e.g. bug) happened, so we avoid waiting for it. 345 */ 346 if (err != -EIO) { 347 int err2 = filemap_fdatawait(mapping); 348 if (!err) 349 err = err2; 350 } 351 } 352 return err; 353 } 354 EXPORT_SYMBOL(filemap_write_and_wait); 355 356 /** 357 * filemap_write_and_wait_range - write out & wait on a file range 358 * @mapping: the address_space for the pages 359 * @lstart: offset in bytes where the range starts 360 * @lend: offset in bytes where the range ends (inclusive) 361 * 362 * Write out and wait upon file offsets lstart->lend, inclusive. 363 * 364 * Note that `lend' is inclusive (describes the last byte to be written) so 365 * that this function can be used to write to the very end-of-file (end = -1). 366 */ 367 int filemap_write_and_wait_range(struct address_space *mapping, 368 loff_t lstart, loff_t lend) 369 { 370 int err = 0; 371 372 if (mapping->nrpages) { 373 err = __filemap_fdatawrite_range(mapping, lstart, lend, 374 WB_SYNC_ALL); 375 /* See comment of filemap_write_and_wait() */ 376 if (err != -EIO) { 377 int err2 = filemap_fdatawait_range(mapping, 378 lstart, lend); 379 if (!err) 380 err = err2; 381 } 382 } 383 return err; 384 } 385 EXPORT_SYMBOL(filemap_write_and_wait_range); 386 387 /** 388 * add_to_page_cache_locked - add a locked page to the pagecache 389 * @page: page to add 390 * @mapping: the page's address_space 391 * @offset: page index 392 * @gfp_mask: page allocation mode 393 * 394 * This function is used to add a page to the pagecache. It must be locked. 395 * This function does not add the page to the LRU. The caller must do that. 396 */ 397 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 398 pgoff_t offset, gfp_t gfp_mask) 399 { 400 int error; 401 402 VM_BUG_ON(!PageLocked(page)); 403 404 error = mem_cgroup_cache_charge(page, current->mm, 405 gfp_mask & GFP_RECLAIM_MASK); 406 if (error) 407 goto out; 408 409 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 410 if (error == 0) { 411 page_cache_get(page); 412 page->mapping = mapping; 413 page->index = offset; 414 415 spin_lock_irq(&mapping->tree_lock); 416 error = radix_tree_insert(&mapping->page_tree, offset, page); 417 if (likely(!error)) { 418 mapping->nrpages++; 419 __inc_zone_page_state(page, NR_FILE_PAGES); 420 if (PageSwapBacked(page)) 421 __inc_zone_page_state(page, NR_SHMEM); 422 spin_unlock_irq(&mapping->tree_lock); 423 } else { 424 page->mapping = NULL; 425 spin_unlock_irq(&mapping->tree_lock); 426 mem_cgroup_uncharge_cache_page(page); 427 page_cache_release(page); 428 } 429 radix_tree_preload_end(); 430 } else 431 mem_cgroup_uncharge_cache_page(page); 432 out: 433 return error; 434 } 435 EXPORT_SYMBOL(add_to_page_cache_locked); 436 437 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 438 pgoff_t offset, gfp_t gfp_mask) 439 { 440 int ret; 441 442 /* 443 * Splice_read and readahead add shmem/tmpfs pages into the page cache 444 * before shmem_readpage has a chance to mark them as SwapBacked: they 445 * need to go on the anon lru below, and mem_cgroup_cache_charge 446 * (called in add_to_page_cache) needs to know where they're going too. 447 */ 448 if (mapping_cap_swap_backed(mapping)) 449 SetPageSwapBacked(page); 450 451 ret = add_to_page_cache(page, mapping, offset, gfp_mask); 452 if (ret == 0) { 453 if (page_is_file_cache(page)) 454 lru_cache_add_file(page); 455 else 456 lru_cache_add_anon(page); 457 } 458 return ret; 459 } 460 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 461 462 #ifdef CONFIG_NUMA 463 struct page *__page_cache_alloc(gfp_t gfp) 464 { 465 int n; 466 struct page *page; 467 468 if (cpuset_do_page_mem_spread()) { 469 get_mems_allowed(); 470 n = cpuset_mem_spread_node(); 471 page = alloc_pages_exact_node(n, gfp, 0); 472 put_mems_allowed(); 473 return page; 474 } 475 return alloc_pages(gfp, 0); 476 } 477 EXPORT_SYMBOL(__page_cache_alloc); 478 #endif 479 480 static int __sleep_on_page_lock(void *word) 481 { 482 io_schedule(); 483 return 0; 484 } 485 486 /* 487 * In order to wait for pages to become available there must be 488 * waitqueues associated with pages. By using a hash table of 489 * waitqueues where the bucket discipline is to maintain all 490 * waiters on the same queue and wake all when any of the pages 491 * become available, and for the woken contexts to check to be 492 * sure the appropriate page became available, this saves space 493 * at a cost of "thundering herd" phenomena during rare hash 494 * collisions. 495 */ 496 static wait_queue_head_t *page_waitqueue(struct page *page) 497 { 498 const struct zone *zone = page_zone(page); 499 500 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)]; 501 } 502 503 static inline void wake_up_page(struct page *page, int bit) 504 { 505 __wake_up_bit(page_waitqueue(page), &page->flags, bit); 506 } 507 508 void wait_on_page_bit(struct page *page, int bit_nr) 509 { 510 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 511 512 if (test_bit(bit_nr, &page->flags)) 513 __wait_on_bit(page_waitqueue(page), &wait, sync_page, 514 TASK_UNINTERRUPTIBLE); 515 } 516 EXPORT_SYMBOL(wait_on_page_bit); 517 518 /** 519 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 520 * @page: Page defining the wait queue of interest 521 * @waiter: Waiter to add to the queue 522 * 523 * Add an arbitrary @waiter to the wait queue for the nominated @page. 524 */ 525 void add_page_wait_queue(struct page *page, wait_queue_t *waiter) 526 { 527 wait_queue_head_t *q = page_waitqueue(page); 528 unsigned long flags; 529 530 spin_lock_irqsave(&q->lock, flags); 531 __add_wait_queue(q, waiter); 532 spin_unlock_irqrestore(&q->lock, flags); 533 } 534 EXPORT_SYMBOL_GPL(add_page_wait_queue); 535 536 /** 537 * unlock_page - unlock a locked page 538 * @page: the page 539 * 540 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 541 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 542 * mechananism between PageLocked pages and PageWriteback pages is shared. 543 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 544 * 545 * The mb is necessary to enforce ordering between the clear_bit and the read 546 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()). 547 */ 548 void unlock_page(struct page *page) 549 { 550 VM_BUG_ON(!PageLocked(page)); 551 clear_bit_unlock(PG_locked, &page->flags); 552 smp_mb__after_clear_bit(); 553 wake_up_page(page, PG_locked); 554 } 555 EXPORT_SYMBOL(unlock_page); 556 557 /** 558 * end_page_writeback - end writeback against a page 559 * @page: the page 560 */ 561 void end_page_writeback(struct page *page) 562 { 563 if (TestClearPageReclaim(page)) 564 rotate_reclaimable_page(page); 565 566 if (!test_clear_page_writeback(page)) 567 BUG(); 568 569 smp_mb__after_clear_bit(); 570 wake_up_page(page, PG_writeback); 571 } 572 EXPORT_SYMBOL(end_page_writeback); 573 574 /** 575 * __lock_page - get a lock on the page, assuming we need to sleep to get it 576 * @page: the page to lock 577 * 578 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some 579 * random driver's requestfn sets TASK_RUNNING, we could busywait. However 580 * chances are that on the second loop, the block layer's plug list is empty, 581 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE. 582 */ 583 void __lock_page(struct page *page) 584 { 585 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 586 587 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page, 588 TASK_UNINTERRUPTIBLE); 589 } 590 EXPORT_SYMBOL(__lock_page); 591 592 int __lock_page_killable(struct page *page) 593 { 594 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 595 596 return __wait_on_bit_lock(page_waitqueue(page), &wait, 597 sync_page_killable, TASK_KILLABLE); 598 } 599 EXPORT_SYMBOL_GPL(__lock_page_killable); 600 601 /** 602 * __lock_page_nosync - get a lock on the page, without calling sync_page() 603 * @page: the page to lock 604 * 605 * Variant of lock_page that does not require the caller to hold a reference 606 * on the page's mapping. 607 */ 608 void __lock_page_nosync(struct page *page) 609 { 610 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 611 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock, 612 TASK_UNINTERRUPTIBLE); 613 } 614 615 /** 616 * find_get_page - find and get a page reference 617 * @mapping: the address_space to search 618 * @offset: the page index 619 * 620 * Is there a pagecache struct page at the given (mapping, offset) tuple? 621 * If yes, increment its refcount and return it; if no, return NULL. 622 */ 623 struct page *find_get_page(struct address_space *mapping, pgoff_t offset) 624 { 625 void **pagep; 626 struct page *page; 627 628 rcu_read_lock(); 629 repeat: 630 page = NULL; 631 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset); 632 if (pagep) { 633 page = radix_tree_deref_slot(pagep); 634 if (unlikely(!page || page == RADIX_TREE_RETRY)) 635 goto repeat; 636 637 if (!page_cache_get_speculative(page)) 638 goto repeat; 639 640 /* 641 * Has the page moved? 642 * This is part of the lockless pagecache protocol. See 643 * include/linux/pagemap.h for details. 644 */ 645 if (unlikely(page != *pagep)) { 646 page_cache_release(page); 647 goto repeat; 648 } 649 } 650 rcu_read_unlock(); 651 652 return page; 653 } 654 EXPORT_SYMBOL(find_get_page); 655 656 /** 657 * find_lock_page - locate, pin and lock a pagecache page 658 * @mapping: the address_space to search 659 * @offset: the page index 660 * 661 * Locates the desired pagecache page, locks it, increments its reference 662 * count and returns its address. 663 * 664 * Returns zero if the page was not present. find_lock_page() may sleep. 665 */ 666 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset) 667 { 668 struct page *page; 669 670 repeat: 671 page = find_get_page(mapping, offset); 672 if (page) { 673 lock_page(page); 674 /* Has the page been truncated? */ 675 if (unlikely(page->mapping != mapping)) { 676 unlock_page(page); 677 page_cache_release(page); 678 goto repeat; 679 } 680 VM_BUG_ON(page->index != offset); 681 } 682 return page; 683 } 684 EXPORT_SYMBOL(find_lock_page); 685 686 /** 687 * find_or_create_page - locate or add a pagecache page 688 * @mapping: the page's address_space 689 * @index: the page's index into the mapping 690 * @gfp_mask: page allocation mode 691 * 692 * Locates a page in the pagecache. If the page is not present, a new page 693 * is allocated using @gfp_mask and is added to the pagecache and to the VM's 694 * LRU list. The returned page is locked and has its reference count 695 * incremented. 696 * 697 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic 698 * allocation! 699 * 700 * find_or_create_page() returns the desired page's address, or zero on 701 * memory exhaustion. 702 */ 703 struct page *find_or_create_page(struct address_space *mapping, 704 pgoff_t index, gfp_t gfp_mask) 705 { 706 struct page *page; 707 int err; 708 repeat: 709 page = find_lock_page(mapping, index); 710 if (!page) { 711 page = __page_cache_alloc(gfp_mask); 712 if (!page) 713 return NULL; 714 /* 715 * We want a regular kernel memory (not highmem or DMA etc) 716 * allocation for the radix tree nodes, but we need to honour 717 * the context-specific requirements the caller has asked for. 718 * GFP_RECLAIM_MASK collects those requirements. 719 */ 720 err = add_to_page_cache_lru(page, mapping, index, 721 (gfp_mask & GFP_RECLAIM_MASK)); 722 if (unlikely(err)) { 723 page_cache_release(page); 724 page = NULL; 725 if (err == -EEXIST) 726 goto repeat; 727 } 728 } 729 return page; 730 } 731 EXPORT_SYMBOL(find_or_create_page); 732 733 /** 734 * find_get_pages - gang pagecache lookup 735 * @mapping: The address_space to search 736 * @start: The starting page index 737 * @nr_pages: The maximum number of pages 738 * @pages: Where the resulting pages are placed 739 * 740 * find_get_pages() will search for and return a group of up to 741 * @nr_pages pages in the mapping. The pages are placed at @pages. 742 * find_get_pages() takes a reference against the returned pages. 743 * 744 * The search returns a group of mapping-contiguous pages with ascending 745 * indexes. There may be holes in the indices due to not-present pages. 746 * 747 * find_get_pages() returns the number of pages which were found. 748 */ 749 unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 750 unsigned int nr_pages, struct page **pages) 751 { 752 unsigned int i; 753 unsigned int ret; 754 unsigned int nr_found; 755 756 rcu_read_lock(); 757 restart: 758 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree, 759 (void ***)pages, start, nr_pages); 760 ret = 0; 761 for (i = 0; i < nr_found; i++) { 762 struct page *page; 763 repeat: 764 page = radix_tree_deref_slot((void **)pages[i]); 765 if (unlikely(!page)) 766 continue; 767 /* 768 * this can only trigger if nr_found == 1, making livelock 769 * a non issue. 770 */ 771 if (unlikely(page == RADIX_TREE_RETRY)) 772 goto restart; 773 774 if (!page_cache_get_speculative(page)) 775 goto repeat; 776 777 /* Has the page moved? */ 778 if (unlikely(page != *((void **)pages[i]))) { 779 page_cache_release(page); 780 goto repeat; 781 } 782 783 pages[ret] = page; 784 ret++; 785 } 786 rcu_read_unlock(); 787 return ret; 788 } 789 790 /** 791 * find_get_pages_contig - gang contiguous pagecache lookup 792 * @mapping: The address_space to search 793 * @index: The starting page index 794 * @nr_pages: The maximum number of pages 795 * @pages: Where the resulting pages are placed 796 * 797 * find_get_pages_contig() works exactly like find_get_pages(), except 798 * that the returned number of pages are guaranteed to be contiguous. 799 * 800 * find_get_pages_contig() returns the number of pages which were found. 801 */ 802 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 803 unsigned int nr_pages, struct page **pages) 804 { 805 unsigned int i; 806 unsigned int ret; 807 unsigned int nr_found; 808 809 rcu_read_lock(); 810 restart: 811 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree, 812 (void ***)pages, index, nr_pages); 813 ret = 0; 814 for (i = 0; i < nr_found; i++) { 815 struct page *page; 816 repeat: 817 page = radix_tree_deref_slot((void **)pages[i]); 818 if (unlikely(!page)) 819 continue; 820 /* 821 * this can only trigger if nr_found == 1, making livelock 822 * a non issue. 823 */ 824 if (unlikely(page == RADIX_TREE_RETRY)) 825 goto restart; 826 827 if (page->mapping == NULL || page->index != index) 828 break; 829 830 if (!page_cache_get_speculative(page)) 831 goto repeat; 832 833 /* Has the page moved? */ 834 if (unlikely(page != *((void **)pages[i]))) { 835 page_cache_release(page); 836 goto repeat; 837 } 838 839 pages[ret] = page; 840 ret++; 841 index++; 842 } 843 rcu_read_unlock(); 844 return ret; 845 } 846 EXPORT_SYMBOL(find_get_pages_contig); 847 848 /** 849 * find_get_pages_tag - find and return pages that match @tag 850 * @mapping: the address_space to search 851 * @index: the starting page index 852 * @tag: the tag index 853 * @nr_pages: the maximum number of pages 854 * @pages: where the resulting pages are placed 855 * 856 * Like find_get_pages, except we only return pages which are tagged with 857 * @tag. We update @index to index the next page for the traversal. 858 */ 859 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 860 int tag, unsigned int nr_pages, struct page **pages) 861 { 862 unsigned int i; 863 unsigned int ret; 864 unsigned int nr_found; 865 866 rcu_read_lock(); 867 restart: 868 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree, 869 (void ***)pages, *index, nr_pages, tag); 870 ret = 0; 871 for (i = 0; i < nr_found; i++) { 872 struct page *page; 873 repeat: 874 page = radix_tree_deref_slot((void **)pages[i]); 875 if (unlikely(!page)) 876 continue; 877 /* 878 * this can only trigger if nr_found == 1, making livelock 879 * a non issue. 880 */ 881 if (unlikely(page == RADIX_TREE_RETRY)) 882 goto restart; 883 884 if (!page_cache_get_speculative(page)) 885 goto repeat; 886 887 /* Has the page moved? */ 888 if (unlikely(page != *((void **)pages[i]))) { 889 page_cache_release(page); 890 goto repeat; 891 } 892 893 pages[ret] = page; 894 ret++; 895 } 896 rcu_read_unlock(); 897 898 if (ret) 899 *index = pages[ret - 1]->index + 1; 900 901 return ret; 902 } 903 EXPORT_SYMBOL(find_get_pages_tag); 904 905 /** 906 * grab_cache_page_nowait - returns locked page at given index in given cache 907 * @mapping: target address_space 908 * @index: the page index 909 * 910 * Same as grab_cache_page(), but do not wait if the page is unavailable. 911 * This is intended for speculative data generators, where the data can 912 * be regenerated if the page couldn't be grabbed. This routine should 913 * be safe to call while holding the lock for another page. 914 * 915 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 916 * and deadlock against the caller's locked page. 917 */ 918 struct page * 919 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index) 920 { 921 struct page *page = find_get_page(mapping, index); 922 923 if (page) { 924 if (trylock_page(page)) 925 return page; 926 page_cache_release(page); 927 return NULL; 928 } 929 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS); 930 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) { 931 page_cache_release(page); 932 page = NULL; 933 } 934 return page; 935 } 936 EXPORT_SYMBOL(grab_cache_page_nowait); 937 938 /* 939 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 940 * a _large_ part of the i/o request. Imagine the worst scenario: 941 * 942 * ---R__________________________________________B__________ 943 * ^ reading here ^ bad block(assume 4k) 944 * 945 * read(R) => miss => readahead(R...B) => media error => frustrating retries 946 * => failing the whole request => read(R) => read(R+1) => 947 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 948 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 949 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 950 * 951 * It is going insane. Fix it by quickly scaling down the readahead size. 952 */ 953 static void shrink_readahead_size_eio(struct file *filp, 954 struct file_ra_state *ra) 955 { 956 ra->ra_pages /= 4; 957 } 958 959 /** 960 * do_generic_file_read - generic file read routine 961 * @filp: the file to read 962 * @ppos: current file position 963 * @desc: read_descriptor 964 * @actor: read method 965 * 966 * This is a generic file read routine, and uses the 967 * mapping->a_ops->readpage() function for the actual low-level stuff. 968 * 969 * This is really ugly. But the goto's actually try to clarify some 970 * of the logic when it comes to error handling etc. 971 */ 972 static void do_generic_file_read(struct file *filp, loff_t *ppos, 973 read_descriptor_t *desc, read_actor_t actor) 974 { 975 struct address_space *mapping = filp->f_mapping; 976 struct inode *inode = mapping->host; 977 struct file_ra_state *ra = &filp->f_ra; 978 pgoff_t index; 979 pgoff_t last_index; 980 pgoff_t prev_index; 981 unsigned long offset; /* offset into pagecache page */ 982 unsigned int prev_offset; 983 int error; 984 985 index = *ppos >> PAGE_CACHE_SHIFT; 986 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT; 987 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1); 988 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; 989 offset = *ppos & ~PAGE_CACHE_MASK; 990 991 for (;;) { 992 struct page *page; 993 pgoff_t end_index; 994 loff_t isize; 995 unsigned long nr, ret; 996 997 cond_resched(); 998 find_page: 999 page = find_get_page(mapping, index); 1000 if (!page) { 1001 page_cache_sync_readahead(mapping, 1002 ra, filp, 1003 index, last_index - index); 1004 page = find_get_page(mapping, index); 1005 if (unlikely(page == NULL)) 1006 goto no_cached_page; 1007 } 1008 if (PageReadahead(page)) { 1009 page_cache_async_readahead(mapping, 1010 ra, filp, page, 1011 index, last_index - index); 1012 } 1013 if (!PageUptodate(page)) { 1014 if (inode->i_blkbits == PAGE_CACHE_SHIFT || 1015 !mapping->a_ops->is_partially_uptodate) 1016 goto page_not_up_to_date; 1017 if (!trylock_page(page)) 1018 goto page_not_up_to_date; 1019 if (!mapping->a_ops->is_partially_uptodate(page, 1020 desc, offset)) 1021 goto page_not_up_to_date_locked; 1022 unlock_page(page); 1023 } 1024 page_ok: 1025 /* 1026 * i_size must be checked after we know the page is Uptodate. 1027 * 1028 * Checking i_size after the check allows us to calculate 1029 * the correct value for "nr", which means the zero-filled 1030 * part of the page is not copied back to userspace (unless 1031 * another truncate extends the file - this is desired though). 1032 */ 1033 1034 isize = i_size_read(inode); 1035 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1036 if (unlikely(!isize || index > end_index)) { 1037 page_cache_release(page); 1038 goto out; 1039 } 1040 1041 /* nr is the maximum number of bytes to copy from this page */ 1042 nr = PAGE_CACHE_SIZE; 1043 if (index == end_index) { 1044 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 1045 if (nr <= offset) { 1046 page_cache_release(page); 1047 goto out; 1048 } 1049 } 1050 nr = nr - offset; 1051 1052 /* If users can be writing to this page using arbitrary 1053 * virtual addresses, take care about potential aliasing 1054 * before reading the page on the kernel side. 1055 */ 1056 if (mapping_writably_mapped(mapping)) 1057 flush_dcache_page(page); 1058 1059 /* 1060 * When a sequential read accesses a page several times, 1061 * only mark it as accessed the first time. 1062 */ 1063 if (prev_index != index || offset != prev_offset) 1064 mark_page_accessed(page); 1065 prev_index = index; 1066 1067 /* 1068 * Ok, we have the page, and it's up-to-date, so 1069 * now we can copy it to user space... 1070 * 1071 * The actor routine returns how many bytes were actually used.. 1072 * NOTE! This may not be the same as how much of a user buffer 1073 * we filled up (we may be padding etc), so we can only update 1074 * "pos" here (the actor routine has to update the user buffer 1075 * pointers and the remaining count). 1076 */ 1077 ret = actor(desc, page, offset, nr); 1078 offset += ret; 1079 index += offset >> PAGE_CACHE_SHIFT; 1080 offset &= ~PAGE_CACHE_MASK; 1081 prev_offset = offset; 1082 1083 page_cache_release(page); 1084 if (ret == nr && desc->count) 1085 continue; 1086 goto out; 1087 1088 page_not_up_to_date: 1089 /* Get exclusive access to the page ... */ 1090 error = lock_page_killable(page); 1091 if (unlikely(error)) 1092 goto readpage_error; 1093 1094 page_not_up_to_date_locked: 1095 /* Did it get truncated before we got the lock? */ 1096 if (!page->mapping) { 1097 unlock_page(page); 1098 page_cache_release(page); 1099 continue; 1100 } 1101 1102 /* Did somebody else fill it already? */ 1103 if (PageUptodate(page)) { 1104 unlock_page(page); 1105 goto page_ok; 1106 } 1107 1108 readpage: 1109 /* 1110 * A previous I/O error may have been due to temporary 1111 * failures, eg. multipath errors. 1112 * PG_error will be set again if readpage fails. 1113 */ 1114 ClearPageError(page); 1115 /* Start the actual read. The read will unlock the page. */ 1116 error = mapping->a_ops->readpage(filp, page); 1117 1118 if (unlikely(error)) { 1119 if (error == AOP_TRUNCATED_PAGE) { 1120 page_cache_release(page); 1121 goto find_page; 1122 } 1123 goto readpage_error; 1124 } 1125 1126 if (!PageUptodate(page)) { 1127 error = lock_page_killable(page); 1128 if (unlikely(error)) 1129 goto readpage_error; 1130 if (!PageUptodate(page)) { 1131 if (page->mapping == NULL) { 1132 /* 1133 * invalidate_mapping_pages got it 1134 */ 1135 unlock_page(page); 1136 page_cache_release(page); 1137 goto find_page; 1138 } 1139 unlock_page(page); 1140 shrink_readahead_size_eio(filp, ra); 1141 error = -EIO; 1142 goto readpage_error; 1143 } 1144 unlock_page(page); 1145 } 1146 1147 goto page_ok; 1148 1149 readpage_error: 1150 /* UHHUH! A synchronous read error occurred. Report it */ 1151 desc->error = error; 1152 page_cache_release(page); 1153 goto out; 1154 1155 no_cached_page: 1156 /* 1157 * Ok, it wasn't cached, so we need to create a new 1158 * page.. 1159 */ 1160 page = page_cache_alloc_cold(mapping); 1161 if (!page) { 1162 desc->error = -ENOMEM; 1163 goto out; 1164 } 1165 error = add_to_page_cache_lru(page, mapping, 1166 index, GFP_KERNEL); 1167 if (error) { 1168 page_cache_release(page); 1169 if (error == -EEXIST) 1170 goto find_page; 1171 desc->error = error; 1172 goto out; 1173 } 1174 goto readpage; 1175 } 1176 1177 out: 1178 ra->prev_pos = prev_index; 1179 ra->prev_pos <<= PAGE_CACHE_SHIFT; 1180 ra->prev_pos |= prev_offset; 1181 1182 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset; 1183 file_accessed(filp); 1184 } 1185 1186 int file_read_actor(read_descriptor_t *desc, struct page *page, 1187 unsigned long offset, unsigned long size) 1188 { 1189 char *kaddr; 1190 unsigned long left, count = desc->count; 1191 1192 if (size > count) 1193 size = count; 1194 1195 /* 1196 * Faults on the destination of a read are common, so do it before 1197 * taking the kmap. 1198 */ 1199 if (!fault_in_pages_writeable(desc->arg.buf, size)) { 1200 kaddr = kmap_atomic(page, KM_USER0); 1201 left = __copy_to_user_inatomic(desc->arg.buf, 1202 kaddr + offset, size); 1203 kunmap_atomic(kaddr, KM_USER0); 1204 if (left == 0) 1205 goto success; 1206 } 1207 1208 /* Do it the slow way */ 1209 kaddr = kmap(page); 1210 left = __copy_to_user(desc->arg.buf, kaddr + offset, size); 1211 kunmap(page); 1212 1213 if (left) { 1214 size -= left; 1215 desc->error = -EFAULT; 1216 } 1217 success: 1218 desc->count = count - size; 1219 desc->written += size; 1220 desc->arg.buf += size; 1221 return size; 1222 } 1223 1224 /* 1225 * Performs necessary checks before doing a write 1226 * @iov: io vector request 1227 * @nr_segs: number of segments in the iovec 1228 * @count: number of bytes to write 1229 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE 1230 * 1231 * Adjust number of segments and amount of bytes to write (nr_segs should be 1232 * properly initialized first). Returns appropriate error code that caller 1233 * should return or zero in case that write should be allowed. 1234 */ 1235 int generic_segment_checks(const struct iovec *iov, 1236 unsigned long *nr_segs, size_t *count, int access_flags) 1237 { 1238 unsigned long seg; 1239 size_t cnt = 0; 1240 for (seg = 0; seg < *nr_segs; seg++) { 1241 const struct iovec *iv = &iov[seg]; 1242 1243 /* 1244 * If any segment has a negative length, or the cumulative 1245 * length ever wraps negative then return -EINVAL. 1246 */ 1247 cnt += iv->iov_len; 1248 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0)) 1249 return -EINVAL; 1250 if (access_ok(access_flags, iv->iov_base, iv->iov_len)) 1251 continue; 1252 if (seg == 0) 1253 return -EFAULT; 1254 *nr_segs = seg; 1255 cnt -= iv->iov_len; /* This segment is no good */ 1256 break; 1257 } 1258 *count = cnt; 1259 return 0; 1260 } 1261 EXPORT_SYMBOL(generic_segment_checks); 1262 1263 /** 1264 * generic_file_aio_read - generic filesystem read routine 1265 * @iocb: kernel I/O control block 1266 * @iov: io vector request 1267 * @nr_segs: number of segments in the iovec 1268 * @pos: current file position 1269 * 1270 * This is the "read()" routine for all filesystems 1271 * that can use the page cache directly. 1272 */ 1273 ssize_t 1274 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov, 1275 unsigned long nr_segs, loff_t pos) 1276 { 1277 struct file *filp = iocb->ki_filp; 1278 ssize_t retval; 1279 unsigned long seg = 0; 1280 size_t count; 1281 loff_t *ppos = &iocb->ki_pos; 1282 1283 count = 0; 1284 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE); 1285 if (retval) 1286 return retval; 1287 1288 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 1289 if (filp->f_flags & O_DIRECT) { 1290 loff_t size; 1291 struct address_space *mapping; 1292 struct inode *inode; 1293 1294 mapping = filp->f_mapping; 1295 inode = mapping->host; 1296 if (!count) 1297 goto out; /* skip atime */ 1298 size = i_size_read(inode); 1299 if (pos < size) { 1300 retval = filemap_write_and_wait_range(mapping, pos, 1301 pos + iov_length(iov, nr_segs) - 1); 1302 if (!retval) { 1303 retval = mapping->a_ops->direct_IO(READ, iocb, 1304 iov, pos, nr_segs); 1305 } 1306 if (retval > 0) { 1307 *ppos = pos + retval; 1308 count -= retval; 1309 } 1310 1311 /* 1312 * Btrfs can have a short DIO read if we encounter 1313 * compressed extents, so if there was an error, or if 1314 * we've already read everything we wanted to, or if 1315 * there was a short read because we hit EOF, go ahead 1316 * and return. Otherwise fallthrough to buffered io for 1317 * the rest of the read. 1318 */ 1319 if (retval < 0 || !count || *ppos >= size) { 1320 file_accessed(filp); 1321 goto out; 1322 } 1323 } 1324 } 1325 1326 count = retval; 1327 for (seg = 0; seg < nr_segs; seg++) { 1328 read_descriptor_t desc; 1329 loff_t offset = 0; 1330 1331 /* 1332 * If we did a short DIO read we need to skip the section of the 1333 * iov that we've already read data into. 1334 */ 1335 if (count) { 1336 if (count > iov[seg].iov_len) { 1337 count -= iov[seg].iov_len; 1338 continue; 1339 } 1340 offset = count; 1341 count = 0; 1342 } 1343 1344 desc.written = 0; 1345 desc.arg.buf = iov[seg].iov_base + offset; 1346 desc.count = iov[seg].iov_len - offset; 1347 if (desc.count == 0) 1348 continue; 1349 desc.error = 0; 1350 do_generic_file_read(filp, ppos, &desc, file_read_actor); 1351 retval += desc.written; 1352 if (desc.error) { 1353 retval = retval ?: desc.error; 1354 break; 1355 } 1356 if (desc.count > 0) 1357 break; 1358 } 1359 out: 1360 return retval; 1361 } 1362 EXPORT_SYMBOL(generic_file_aio_read); 1363 1364 static ssize_t 1365 do_readahead(struct address_space *mapping, struct file *filp, 1366 pgoff_t index, unsigned long nr) 1367 { 1368 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage) 1369 return -EINVAL; 1370 1371 force_page_cache_readahead(mapping, filp, index, nr); 1372 return 0; 1373 } 1374 1375 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count) 1376 { 1377 ssize_t ret; 1378 struct file *file; 1379 1380 ret = -EBADF; 1381 file = fget(fd); 1382 if (file) { 1383 if (file->f_mode & FMODE_READ) { 1384 struct address_space *mapping = file->f_mapping; 1385 pgoff_t start = offset >> PAGE_CACHE_SHIFT; 1386 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT; 1387 unsigned long len = end - start + 1; 1388 ret = do_readahead(mapping, file, start, len); 1389 } 1390 fput(file); 1391 } 1392 return ret; 1393 } 1394 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS 1395 asmlinkage long SyS_readahead(long fd, loff_t offset, long count) 1396 { 1397 return SYSC_readahead((int) fd, offset, (size_t) count); 1398 } 1399 SYSCALL_ALIAS(sys_readahead, SyS_readahead); 1400 #endif 1401 1402 #ifdef CONFIG_MMU 1403 /** 1404 * page_cache_read - adds requested page to the page cache if not already there 1405 * @file: file to read 1406 * @offset: page index 1407 * 1408 * This adds the requested page to the page cache if it isn't already there, 1409 * and schedules an I/O to read in its contents from disk. 1410 */ 1411 static int page_cache_read(struct file *file, pgoff_t offset) 1412 { 1413 struct address_space *mapping = file->f_mapping; 1414 struct page *page; 1415 int ret; 1416 1417 do { 1418 page = page_cache_alloc_cold(mapping); 1419 if (!page) 1420 return -ENOMEM; 1421 1422 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL); 1423 if (ret == 0) 1424 ret = mapping->a_ops->readpage(file, page); 1425 else if (ret == -EEXIST) 1426 ret = 0; /* losing race to add is OK */ 1427 1428 page_cache_release(page); 1429 1430 } while (ret == AOP_TRUNCATED_PAGE); 1431 1432 return ret; 1433 } 1434 1435 #define MMAP_LOTSAMISS (100) 1436 1437 /* 1438 * Synchronous readahead happens when we don't even find 1439 * a page in the page cache at all. 1440 */ 1441 static void do_sync_mmap_readahead(struct vm_area_struct *vma, 1442 struct file_ra_state *ra, 1443 struct file *file, 1444 pgoff_t offset) 1445 { 1446 unsigned long ra_pages; 1447 struct address_space *mapping = file->f_mapping; 1448 1449 /* If we don't want any read-ahead, don't bother */ 1450 if (VM_RandomReadHint(vma)) 1451 return; 1452 1453 if (VM_SequentialReadHint(vma) || 1454 offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) { 1455 page_cache_sync_readahead(mapping, ra, file, offset, 1456 ra->ra_pages); 1457 return; 1458 } 1459 1460 if (ra->mmap_miss < INT_MAX) 1461 ra->mmap_miss++; 1462 1463 /* 1464 * Do we miss much more than hit in this file? If so, 1465 * stop bothering with read-ahead. It will only hurt. 1466 */ 1467 if (ra->mmap_miss > MMAP_LOTSAMISS) 1468 return; 1469 1470 /* 1471 * mmap read-around 1472 */ 1473 ra_pages = max_sane_readahead(ra->ra_pages); 1474 if (ra_pages) { 1475 ra->start = max_t(long, 0, offset - ra_pages/2); 1476 ra->size = ra_pages; 1477 ra->async_size = 0; 1478 ra_submit(ra, mapping, file); 1479 } 1480 } 1481 1482 /* 1483 * Asynchronous readahead happens when we find the page and PG_readahead, 1484 * so we want to possibly extend the readahead further.. 1485 */ 1486 static void do_async_mmap_readahead(struct vm_area_struct *vma, 1487 struct file_ra_state *ra, 1488 struct file *file, 1489 struct page *page, 1490 pgoff_t offset) 1491 { 1492 struct address_space *mapping = file->f_mapping; 1493 1494 /* If we don't want any read-ahead, don't bother */ 1495 if (VM_RandomReadHint(vma)) 1496 return; 1497 if (ra->mmap_miss > 0) 1498 ra->mmap_miss--; 1499 if (PageReadahead(page)) 1500 page_cache_async_readahead(mapping, ra, file, 1501 page, offset, ra->ra_pages); 1502 } 1503 1504 /** 1505 * filemap_fault - read in file data for page fault handling 1506 * @vma: vma in which the fault was taken 1507 * @vmf: struct vm_fault containing details of the fault 1508 * 1509 * filemap_fault() is invoked via the vma operations vector for a 1510 * mapped memory region to read in file data during a page fault. 1511 * 1512 * The goto's are kind of ugly, but this streamlines the normal case of having 1513 * it in the page cache, and handles the special cases reasonably without 1514 * having a lot of duplicated code. 1515 */ 1516 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1517 { 1518 int error; 1519 struct file *file = vma->vm_file; 1520 struct address_space *mapping = file->f_mapping; 1521 struct file_ra_state *ra = &file->f_ra; 1522 struct inode *inode = mapping->host; 1523 pgoff_t offset = vmf->pgoff; 1524 struct page *page; 1525 pgoff_t size; 1526 int ret = 0; 1527 1528 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1529 if (offset >= size) 1530 return VM_FAULT_SIGBUS; 1531 1532 /* 1533 * Do we have something in the page cache already? 1534 */ 1535 page = find_get_page(mapping, offset); 1536 if (likely(page)) { 1537 /* 1538 * We found the page, so try async readahead before 1539 * waiting for the lock. 1540 */ 1541 do_async_mmap_readahead(vma, ra, file, page, offset); 1542 lock_page(page); 1543 1544 /* Did it get truncated? */ 1545 if (unlikely(page->mapping != mapping)) { 1546 unlock_page(page); 1547 put_page(page); 1548 goto no_cached_page; 1549 } 1550 } else { 1551 /* No page in the page cache at all */ 1552 do_sync_mmap_readahead(vma, ra, file, offset); 1553 count_vm_event(PGMAJFAULT); 1554 ret = VM_FAULT_MAJOR; 1555 retry_find: 1556 page = find_lock_page(mapping, offset); 1557 if (!page) 1558 goto no_cached_page; 1559 } 1560 1561 /* 1562 * We have a locked page in the page cache, now we need to check 1563 * that it's up-to-date. If not, it is going to be due to an error. 1564 */ 1565 if (unlikely(!PageUptodate(page))) 1566 goto page_not_uptodate; 1567 1568 /* 1569 * Found the page and have a reference on it. 1570 * We must recheck i_size under page lock. 1571 */ 1572 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1573 if (unlikely(offset >= size)) { 1574 unlock_page(page); 1575 page_cache_release(page); 1576 return VM_FAULT_SIGBUS; 1577 } 1578 1579 ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT; 1580 vmf->page = page; 1581 return ret | VM_FAULT_LOCKED; 1582 1583 no_cached_page: 1584 /* 1585 * We're only likely to ever get here if MADV_RANDOM is in 1586 * effect. 1587 */ 1588 error = page_cache_read(file, offset); 1589 1590 /* 1591 * The page we want has now been added to the page cache. 1592 * In the unlikely event that someone removed it in the 1593 * meantime, we'll just come back here and read it again. 1594 */ 1595 if (error >= 0) 1596 goto retry_find; 1597 1598 /* 1599 * An error return from page_cache_read can result if the 1600 * system is low on memory, or a problem occurs while trying 1601 * to schedule I/O. 1602 */ 1603 if (error == -ENOMEM) 1604 return VM_FAULT_OOM; 1605 return VM_FAULT_SIGBUS; 1606 1607 page_not_uptodate: 1608 /* 1609 * Umm, take care of errors if the page isn't up-to-date. 1610 * Try to re-read it _once_. We do this synchronously, 1611 * because there really aren't any performance issues here 1612 * and we need to check for errors. 1613 */ 1614 ClearPageError(page); 1615 error = mapping->a_ops->readpage(file, page); 1616 if (!error) { 1617 wait_on_page_locked(page); 1618 if (!PageUptodate(page)) 1619 error = -EIO; 1620 } 1621 page_cache_release(page); 1622 1623 if (!error || error == AOP_TRUNCATED_PAGE) 1624 goto retry_find; 1625 1626 /* Things didn't work out. Return zero to tell the mm layer so. */ 1627 shrink_readahead_size_eio(file, ra); 1628 return VM_FAULT_SIGBUS; 1629 } 1630 EXPORT_SYMBOL(filemap_fault); 1631 1632 const struct vm_operations_struct generic_file_vm_ops = { 1633 .fault = filemap_fault, 1634 }; 1635 1636 /* This is used for a general mmap of a disk file */ 1637 1638 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1639 { 1640 struct address_space *mapping = file->f_mapping; 1641 1642 if (!mapping->a_ops->readpage) 1643 return -ENOEXEC; 1644 file_accessed(file); 1645 vma->vm_ops = &generic_file_vm_ops; 1646 vma->vm_flags |= VM_CAN_NONLINEAR; 1647 return 0; 1648 } 1649 1650 /* 1651 * This is for filesystems which do not implement ->writepage. 1652 */ 1653 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 1654 { 1655 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 1656 return -EINVAL; 1657 return generic_file_mmap(file, vma); 1658 } 1659 #else 1660 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1661 { 1662 return -ENOSYS; 1663 } 1664 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 1665 { 1666 return -ENOSYS; 1667 } 1668 #endif /* CONFIG_MMU */ 1669 1670 EXPORT_SYMBOL(generic_file_mmap); 1671 EXPORT_SYMBOL(generic_file_readonly_mmap); 1672 1673 static struct page *__read_cache_page(struct address_space *mapping, 1674 pgoff_t index, 1675 int (*filler)(void *,struct page*), 1676 void *data, 1677 gfp_t gfp) 1678 { 1679 struct page *page; 1680 int err; 1681 repeat: 1682 page = find_get_page(mapping, index); 1683 if (!page) { 1684 page = __page_cache_alloc(gfp | __GFP_COLD); 1685 if (!page) 1686 return ERR_PTR(-ENOMEM); 1687 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL); 1688 if (unlikely(err)) { 1689 page_cache_release(page); 1690 if (err == -EEXIST) 1691 goto repeat; 1692 /* Presumably ENOMEM for radix tree node */ 1693 return ERR_PTR(err); 1694 } 1695 err = filler(data, page); 1696 if (err < 0) { 1697 page_cache_release(page); 1698 page = ERR_PTR(err); 1699 } 1700 } 1701 return page; 1702 } 1703 1704 static struct page *do_read_cache_page(struct address_space *mapping, 1705 pgoff_t index, 1706 int (*filler)(void *,struct page*), 1707 void *data, 1708 gfp_t gfp) 1709 1710 { 1711 struct page *page; 1712 int err; 1713 1714 retry: 1715 page = __read_cache_page(mapping, index, filler, data, gfp); 1716 if (IS_ERR(page)) 1717 return page; 1718 if (PageUptodate(page)) 1719 goto out; 1720 1721 lock_page(page); 1722 if (!page->mapping) { 1723 unlock_page(page); 1724 page_cache_release(page); 1725 goto retry; 1726 } 1727 if (PageUptodate(page)) { 1728 unlock_page(page); 1729 goto out; 1730 } 1731 err = filler(data, page); 1732 if (err < 0) { 1733 page_cache_release(page); 1734 return ERR_PTR(err); 1735 } 1736 out: 1737 mark_page_accessed(page); 1738 return page; 1739 } 1740 1741 /** 1742 * read_cache_page_async - read into page cache, fill it if needed 1743 * @mapping: the page's address_space 1744 * @index: the page index 1745 * @filler: function to perform the read 1746 * @data: destination for read data 1747 * 1748 * Same as read_cache_page, but don't wait for page to become unlocked 1749 * after submitting it to the filler. 1750 * 1751 * Read into the page cache. If a page already exists, and PageUptodate() is 1752 * not set, try to fill the page but don't wait for it to become unlocked. 1753 * 1754 * If the page does not get brought uptodate, return -EIO. 1755 */ 1756 struct page *read_cache_page_async(struct address_space *mapping, 1757 pgoff_t index, 1758 int (*filler)(void *,struct page*), 1759 void *data) 1760 { 1761 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping)); 1762 } 1763 EXPORT_SYMBOL(read_cache_page_async); 1764 1765 static struct page *wait_on_page_read(struct page *page) 1766 { 1767 if (!IS_ERR(page)) { 1768 wait_on_page_locked(page); 1769 if (!PageUptodate(page)) { 1770 page_cache_release(page); 1771 page = ERR_PTR(-EIO); 1772 } 1773 } 1774 return page; 1775 } 1776 1777 /** 1778 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 1779 * @mapping: the page's address_space 1780 * @index: the page index 1781 * @gfp: the page allocator flags to use if allocating 1782 * 1783 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 1784 * any new page allocations done using the specified allocation flags. Note 1785 * that the Radix tree operations will still use GFP_KERNEL, so you can't 1786 * expect to do this atomically or anything like that - but you can pass in 1787 * other page requirements. 1788 * 1789 * If the page does not get brought uptodate, return -EIO. 1790 */ 1791 struct page *read_cache_page_gfp(struct address_space *mapping, 1792 pgoff_t index, 1793 gfp_t gfp) 1794 { 1795 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 1796 1797 return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp)); 1798 } 1799 EXPORT_SYMBOL(read_cache_page_gfp); 1800 1801 /** 1802 * read_cache_page - read into page cache, fill it if needed 1803 * @mapping: the page's address_space 1804 * @index: the page index 1805 * @filler: function to perform the read 1806 * @data: destination for read data 1807 * 1808 * Read into the page cache. If a page already exists, and PageUptodate() is 1809 * not set, try to fill the page then wait for it to become unlocked. 1810 * 1811 * If the page does not get brought uptodate, return -EIO. 1812 */ 1813 struct page *read_cache_page(struct address_space *mapping, 1814 pgoff_t index, 1815 int (*filler)(void *,struct page*), 1816 void *data) 1817 { 1818 return wait_on_page_read(read_cache_page_async(mapping, index, filler, data)); 1819 } 1820 EXPORT_SYMBOL(read_cache_page); 1821 1822 /* 1823 * The logic we want is 1824 * 1825 * if suid or (sgid and xgrp) 1826 * remove privs 1827 */ 1828 int should_remove_suid(struct dentry *dentry) 1829 { 1830 mode_t mode = dentry->d_inode->i_mode; 1831 int kill = 0; 1832 1833 /* suid always must be killed */ 1834 if (unlikely(mode & S_ISUID)) 1835 kill = ATTR_KILL_SUID; 1836 1837 /* 1838 * sgid without any exec bits is just a mandatory locking mark; leave 1839 * it alone. If some exec bits are set, it's a real sgid; kill it. 1840 */ 1841 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1842 kill |= ATTR_KILL_SGID; 1843 1844 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode))) 1845 return kill; 1846 1847 return 0; 1848 } 1849 EXPORT_SYMBOL(should_remove_suid); 1850 1851 static int __remove_suid(struct dentry *dentry, int kill) 1852 { 1853 struct iattr newattrs; 1854 1855 newattrs.ia_valid = ATTR_FORCE | kill; 1856 return notify_change(dentry, &newattrs); 1857 } 1858 1859 int file_remove_suid(struct file *file) 1860 { 1861 struct dentry *dentry = file->f_path.dentry; 1862 int killsuid = should_remove_suid(dentry); 1863 int killpriv = security_inode_need_killpriv(dentry); 1864 int error = 0; 1865 1866 if (killpriv < 0) 1867 return killpriv; 1868 if (killpriv) 1869 error = security_inode_killpriv(dentry); 1870 if (!error && killsuid) 1871 error = __remove_suid(dentry, killsuid); 1872 1873 return error; 1874 } 1875 EXPORT_SYMBOL(file_remove_suid); 1876 1877 static size_t __iovec_copy_from_user_inatomic(char *vaddr, 1878 const struct iovec *iov, size_t base, size_t bytes) 1879 { 1880 size_t copied = 0, left = 0; 1881 1882 while (bytes) { 1883 char __user *buf = iov->iov_base + base; 1884 int copy = min(bytes, iov->iov_len - base); 1885 1886 base = 0; 1887 left = __copy_from_user_inatomic(vaddr, buf, copy); 1888 copied += copy; 1889 bytes -= copy; 1890 vaddr += copy; 1891 iov++; 1892 1893 if (unlikely(left)) 1894 break; 1895 } 1896 return copied - left; 1897 } 1898 1899 /* 1900 * Copy as much as we can into the page and return the number of bytes which 1901 * were successfully copied. If a fault is encountered then return the number of 1902 * bytes which were copied. 1903 */ 1904 size_t iov_iter_copy_from_user_atomic(struct page *page, 1905 struct iov_iter *i, unsigned long offset, size_t bytes) 1906 { 1907 char *kaddr; 1908 size_t copied; 1909 1910 BUG_ON(!in_atomic()); 1911 kaddr = kmap_atomic(page, KM_USER0); 1912 if (likely(i->nr_segs == 1)) { 1913 int left; 1914 char __user *buf = i->iov->iov_base + i->iov_offset; 1915 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes); 1916 copied = bytes - left; 1917 } else { 1918 copied = __iovec_copy_from_user_inatomic(kaddr + offset, 1919 i->iov, i->iov_offset, bytes); 1920 } 1921 kunmap_atomic(kaddr, KM_USER0); 1922 1923 return copied; 1924 } 1925 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic); 1926 1927 /* 1928 * This has the same sideeffects and return value as 1929 * iov_iter_copy_from_user_atomic(). 1930 * The difference is that it attempts to resolve faults. 1931 * Page must not be locked. 1932 */ 1933 size_t iov_iter_copy_from_user(struct page *page, 1934 struct iov_iter *i, unsigned long offset, size_t bytes) 1935 { 1936 char *kaddr; 1937 size_t copied; 1938 1939 kaddr = kmap(page); 1940 if (likely(i->nr_segs == 1)) { 1941 int left; 1942 char __user *buf = i->iov->iov_base + i->iov_offset; 1943 left = __copy_from_user(kaddr + offset, buf, bytes); 1944 copied = bytes - left; 1945 } else { 1946 copied = __iovec_copy_from_user_inatomic(kaddr + offset, 1947 i->iov, i->iov_offset, bytes); 1948 } 1949 kunmap(page); 1950 return copied; 1951 } 1952 EXPORT_SYMBOL(iov_iter_copy_from_user); 1953 1954 void iov_iter_advance(struct iov_iter *i, size_t bytes) 1955 { 1956 BUG_ON(i->count < bytes); 1957 1958 if (likely(i->nr_segs == 1)) { 1959 i->iov_offset += bytes; 1960 i->count -= bytes; 1961 } else { 1962 const struct iovec *iov = i->iov; 1963 size_t base = i->iov_offset; 1964 1965 /* 1966 * The !iov->iov_len check ensures we skip over unlikely 1967 * zero-length segments (without overruning the iovec). 1968 */ 1969 while (bytes || unlikely(i->count && !iov->iov_len)) { 1970 int copy; 1971 1972 copy = min(bytes, iov->iov_len - base); 1973 BUG_ON(!i->count || i->count < copy); 1974 i->count -= copy; 1975 bytes -= copy; 1976 base += copy; 1977 if (iov->iov_len == base) { 1978 iov++; 1979 base = 0; 1980 } 1981 } 1982 i->iov = iov; 1983 i->iov_offset = base; 1984 } 1985 } 1986 EXPORT_SYMBOL(iov_iter_advance); 1987 1988 /* 1989 * Fault in the first iovec of the given iov_iter, to a maximum length 1990 * of bytes. Returns 0 on success, or non-zero if the memory could not be 1991 * accessed (ie. because it is an invalid address). 1992 * 1993 * writev-intensive code may want this to prefault several iovecs -- that 1994 * would be possible (callers must not rely on the fact that _only_ the 1995 * first iovec will be faulted with the current implementation). 1996 */ 1997 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes) 1998 { 1999 char __user *buf = i->iov->iov_base + i->iov_offset; 2000 bytes = min(bytes, i->iov->iov_len - i->iov_offset); 2001 return fault_in_pages_readable(buf, bytes); 2002 } 2003 EXPORT_SYMBOL(iov_iter_fault_in_readable); 2004 2005 /* 2006 * Return the count of just the current iov_iter segment. 2007 */ 2008 size_t iov_iter_single_seg_count(struct iov_iter *i) 2009 { 2010 const struct iovec *iov = i->iov; 2011 if (i->nr_segs == 1) 2012 return i->count; 2013 else 2014 return min(i->count, iov->iov_len - i->iov_offset); 2015 } 2016 EXPORT_SYMBOL(iov_iter_single_seg_count); 2017 2018 /* 2019 * Performs necessary checks before doing a write 2020 * 2021 * Can adjust writing position or amount of bytes to write. 2022 * Returns appropriate error code that caller should return or 2023 * zero in case that write should be allowed. 2024 */ 2025 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk) 2026 { 2027 struct inode *inode = file->f_mapping->host; 2028 unsigned long limit = rlimit(RLIMIT_FSIZE); 2029 2030 if (unlikely(*pos < 0)) 2031 return -EINVAL; 2032 2033 if (!isblk) { 2034 /* FIXME: this is for backwards compatibility with 2.4 */ 2035 if (file->f_flags & O_APPEND) 2036 *pos = i_size_read(inode); 2037 2038 if (limit != RLIM_INFINITY) { 2039 if (*pos >= limit) { 2040 send_sig(SIGXFSZ, current, 0); 2041 return -EFBIG; 2042 } 2043 if (*count > limit - (typeof(limit))*pos) { 2044 *count = limit - (typeof(limit))*pos; 2045 } 2046 } 2047 } 2048 2049 /* 2050 * LFS rule 2051 */ 2052 if (unlikely(*pos + *count > MAX_NON_LFS && 2053 !(file->f_flags & O_LARGEFILE))) { 2054 if (*pos >= MAX_NON_LFS) { 2055 return -EFBIG; 2056 } 2057 if (*count > MAX_NON_LFS - (unsigned long)*pos) { 2058 *count = MAX_NON_LFS - (unsigned long)*pos; 2059 } 2060 } 2061 2062 /* 2063 * Are we about to exceed the fs block limit ? 2064 * 2065 * If we have written data it becomes a short write. If we have 2066 * exceeded without writing data we send a signal and return EFBIG. 2067 * Linus frestrict idea will clean these up nicely.. 2068 */ 2069 if (likely(!isblk)) { 2070 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) { 2071 if (*count || *pos > inode->i_sb->s_maxbytes) { 2072 return -EFBIG; 2073 } 2074 /* zero-length writes at ->s_maxbytes are OK */ 2075 } 2076 2077 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes)) 2078 *count = inode->i_sb->s_maxbytes - *pos; 2079 } else { 2080 #ifdef CONFIG_BLOCK 2081 loff_t isize; 2082 if (bdev_read_only(I_BDEV(inode))) 2083 return -EPERM; 2084 isize = i_size_read(inode); 2085 if (*pos >= isize) { 2086 if (*count || *pos > isize) 2087 return -ENOSPC; 2088 } 2089 2090 if (*pos + *count > isize) 2091 *count = isize - *pos; 2092 #else 2093 return -EPERM; 2094 #endif 2095 } 2096 return 0; 2097 } 2098 EXPORT_SYMBOL(generic_write_checks); 2099 2100 int pagecache_write_begin(struct file *file, struct address_space *mapping, 2101 loff_t pos, unsigned len, unsigned flags, 2102 struct page **pagep, void **fsdata) 2103 { 2104 const struct address_space_operations *aops = mapping->a_ops; 2105 2106 return aops->write_begin(file, mapping, pos, len, flags, 2107 pagep, fsdata); 2108 } 2109 EXPORT_SYMBOL(pagecache_write_begin); 2110 2111 int pagecache_write_end(struct file *file, struct address_space *mapping, 2112 loff_t pos, unsigned len, unsigned copied, 2113 struct page *page, void *fsdata) 2114 { 2115 const struct address_space_operations *aops = mapping->a_ops; 2116 2117 mark_page_accessed(page); 2118 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 2119 } 2120 EXPORT_SYMBOL(pagecache_write_end); 2121 2122 ssize_t 2123 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov, 2124 unsigned long *nr_segs, loff_t pos, loff_t *ppos, 2125 size_t count, size_t ocount) 2126 { 2127 struct file *file = iocb->ki_filp; 2128 struct address_space *mapping = file->f_mapping; 2129 struct inode *inode = mapping->host; 2130 ssize_t written; 2131 size_t write_len; 2132 pgoff_t end; 2133 2134 if (count != ocount) 2135 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count); 2136 2137 write_len = iov_length(iov, *nr_segs); 2138 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT; 2139 2140 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1); 2141 if (written) 2142 goto out; 2143 2144 /* 2145 * After a write we want buffered reads to be sure to go to disk to get 2146 * the new data. We invalidate clean cached page from the region we're 2147 * about to write. We do this *before* the write so that we can return 2148 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2149 */ 2150 if (mapping->nrpages) { 2151 written = invalidate_inode_pages2_range(mapping, 2152 pos >> PAGE_CACHE_SHIFT, end); 2153 /* 2154 * If a page can not be invalidated, return 0 to fall back 2155 * to buffered write. 2156 */ 2157 if (written) { 2158 if (written == -EBUSY) 2159 return 0; 2160 goto out; 2161 } 2162 } 2163 2164 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs); 2165 2166 /* 2167 * Finally, try again to invalidate clean pages which might have been 2168 * cached by non-direct readahead, or faulted in by get_user_pages() 2169 * if the source of the write was an mmap'ed region of the file 2170 * we're writing. Either one is a pretty crazy thing to do, 2171 * so we don't support it 100%. If this invalidation 2172 * fails, tough, the write still worked... 2173 */ 2174 if (mapping->nrpages) { 2175 invalidate_inode_pages2_range(mapping, 2176 pos >> PAGE_CACHE_SHIFT, end); 2177 } 2178 2179 if (written > 0) { 2180 loff_t end = pos + written; 2181 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 2182 i_size_write(inode, end); 2183 mark_inode_dirty(inode); 2184 } 2185 *ppos = end; 2186 } 2187 out: 2188 return written; 2189 } 2190 EXPORT_SYMBOL(generic_file_direct_write); 2191 2192 /* 2193 * Find or create a page at the given pagecache position. Return the locked 2194 * page. This function is specifically for buffered writes. 2195 */ 2196 struct page *grab_cache_page_write_begin(struct address_space *mapping, 2197 pgoff_t index, unsigned flags) 2198 { 2199 int status; 2200 struct page *page; 2201 gfp_t gfp_notmask = 0; 2202 if (flags & AOP_FLAG_NOFS) 2203 gfp_notmask = __GFP_FS; 2204 repeat: 2205 page = find_lock_page(mapping, index); 2206 if (likely(page)) 2207 return page; 2208 2209 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask); 2210 if (!page) 2211 return NULL; 2212 status = add_to_page_cache_lru(page, mapping, index, 2213 GFP_KERNEL & ~gfp_notmask); 2214 if (unlikely(status)) { 2215 page_cache_release(page); 2216 if (status == -EEXIST) 2217 goto repeat; 2218 return NULL; 2219 } 2220 return page; 2221 } 2222 EXPORT_SYMBOL(grab_cache_page_write_begin); 2223 2224 static ssize_t generic_perform_write(struct file *file, 2225 struct iov_iter *i, loff_t pos) 2226 { 2227 struct address_space *mapping = file->f_mapping; 2228 const struct address_space_operations *a_ops = mapping->a_ops; 2229 long status = 0; 2230 ssize_t written = 0; 2231 unsigned int flags = 0; 2232 2233 /* 2234 * Copies from kernel address space cannot fail (NFSD is a big user). 2235 */ 2236 if (segment_eq(get_fs(), KERNEL_DS)) 2237 flags |= AOP_FLAG_UNINTERRUPTIBLE; 2238 2239 do { 2240 struct page *page; 2241 unsigned long offset; /* Offset into pagecache page */ 2242 unsigned long bytes; /* Bytes to write to page */ 2243 size_t copied; /* Bytes copied from user */ 2244 void *fsdata; 2245 2246 offset = (pos & (PAGE_CACHE_SIZE - 1)); 2247 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2248 iov_iter_count(i)); 2249 2250 again: 2251 2252 /* 2253 * Bring in the user page that we will copy from _first_. 2254 * Otherwise there's a nasty deadlock on copying from the 2255 * same page as we're writing to, without it being marked 2256 * up-to-date. 2257 * 2258 * Not only is this an optimisation, but it is also required 2259 * to check that the address is actually valid, when atomic 2260 * usercopies are used, below. 2261 */ 2262 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 2263 status = -EFAULT; 2264 break; 2265 } 2266 2267 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 2268 &page, &fsdata); 2269 if (unlikely(status)) 2270 break; 2271 2272 if (mapping_writably_mapped(mapping)) 2273 flush_dcache_page(page); 2274 2275 pagefault_disable(); 2276 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 2277 pagefault_enable(); 2278 flush_dcache_page(page); 2279 2280 mark_page_accessed(page); 2281 status = a_ops->write_end(file, mapping, pos, bytes, copied, 2282 page, fsdata); 2283 if (unlikely(status < 0)) 2284 break; 2285 copied = status; 2286 2287 cond_resched(); 2288 2289 iov_iter_advance(i, copied); 2290 if (unlikely(copied == 0)) { 2291 /* 2292 * If we were unable to copy any data at all, we must 2293 * fall back to a single segment length write. 2294 * 2295 * If we didn't fallback here, we could livelock 2296 * because not all segments in the iov can be copied at 2297 * once without a pagefault. 2298 */ 2299 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2300 iov_iter_single_seg_count(i)); 2301 goto again; 2302 } 2303 pos += copied; 2304 written += copied; 2305 2306 balance_dirty_pages_ratelimited(mapping); 2307 2308 } while (iov_iter_count(i)); 2309 2310 return written ? written : status; 2311 } 2312 2313 ssize_t 2314 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov, 2315 unsigned long nr_segs, loff_t pos, loff_t *ppos, 2316 size_t count, ssize_t written) 2317 { 2318 struct file *file = iocb->ki_filp; 2319 ssize_t status; 2320 struct iov_iter i; 2321 2322 iov_iter_init(&i, iov, nr_segs, count, written); 2323 status = generic_perform_write(file, &i, pos); 2324 2325 if (likely(status >= 0)) { 2326 written += status; 2327 *ppos = pos + status; 2328 } 2329 2330 return written ? written : status; 2331 } 2332 EXPORT_SYMBOL(generic_file_buffered_write); 2333 2334 /** 2335 * __generic_file_aio_write - write data to a file 2336 * @iocb: IO state structure (file, offset, etc.) 2337 * @iov: vector with data to write 2338 * @nr_segs: number of segments in the vector 2339 * @ppos: position where to write 2340 * 2341 * This function does all the work needed for actually writing data to a 2342 * file. It does all basic checks, removes SUID from the file, updates 2343 * modification times and calls proper subroutines depending on whether we 2344 * do direct IO or a standard buffered write. 2345 * 2346 * It expects i_mutex to be grabbed unless we work on a block device or similar 2347 * object which does not need locking at all. 2348 * 2349 * This function does *not* take care of syncing data in case of O_SYNC write. 2350 * A caller has to handle it. This is mainly due to the fact that we want to 2351 * avoid syncing under i_mutex. 2352 */ 2353 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, 2354 unsigned long nr_segs, loff_t *ppos) 2355 { 2356 struct file *file = iocb->ki_filp; 2357 struct address_space * mapping = file->f_mapping; 2358 size_t ocount; /* original count */ 2359 size_t count; /* after file limit checks */ 2360 struct inode *inode = mapping->host; 2361 loff_t pos; 2362 ssize_t written; 2363 ssize_t err; 2364 2365 ocount = 0; 2366 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ); 2367 if (err) 2368 return err; 2369 2370 count = ocount; 2371 pos = *ppos; 2372 2373 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); 2374 2375 /* We can write back this queue in page reclaim */ 2376 current->backing_dev_info = mapping->backing_dev_info; 2377 written = 0; 2378 2379 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 2380 if (err) 2381 goto out; 2382 2383 if (count == 0) 2384 goto out; 2385 2386 err = file_remove_suid(file); 2387 if (err) 2388 goto out; 2389 2390 file_update_time(file); 2391 2392 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 2393 if (unlikely(file->f_flags & O_DIRECT)) { 2394 loff_t endbyte; 2395 ssize_t written_buffered; 2396 2397 written = generic_file_direct_write(iocb, iov, &nr_segs, pos, 2398 ppos, count, ocount); 2399 if (written < 0 || written == count) 2400 goto out; 2401 /* 2402 * direct-io write to a hole: fall through to buffered I/O 2403 * for completing the rest of the request. 2404 */ 2405 pos += written; 2406 count -= written; 2407 written_buffered = generic_file_buffered_write(iocb, iov, 2408 nr_segs, pos, ppos, count, 2409 written); 2410 /* 2411 * If generic_file_buffered_write() retuned a synchronous error 2412 * then we want to return the number of bytes which were 2413 * direct-written, or the error code if that was zero. Note 2414 * that this differs from normal direct-io semantics, which 2415 * will return -EFOO even if some bytes were written. 2416 */ 2417 if (written_buffered < 0) { 2418 err = written_buffered; 2419 goto out; 2420 } 2421 2422 /* 2423 * We need to ensure that the page cache pages are written to 2424 * disk and invalidated to preserve the expected O_DIRECT 2425 * semantics. 2426 */ 2427 endbyte = pos + written_buffered - written - 1; 2428 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte); 2429 if (err == 0) { 2430 written = written_buffered; 2431 invalidate_mapping_pages(mapping, 2432 pos >> PAGE_CACHE_SHIFT, 2433 endbyte >> PAGE_CACHE_SHIFT); 2434 } else { 2435 /* 2436 * We don't know how much we wrote, so just return 2437 * the number of bytes which were direct-written 2438 */ 2439 } 2440 } else { 2441 written = generic_file_buffered_write(iocb, iov, nr_segs, 2442 pos, ppos, count, written); 2443 } 2444 out: 2445 current->backing_dev_info = NULL; 2446 return written ? written : err; 2447 } 2448 EXPORT_SYMBOL(__generic_file_aio_write); 2449 2450 /** 2451 * generic_file_aio_write - write data to a file 2452 * @iocb: IO state structure 2453 * @iov: vector with data to write 2454 * @nr_segs: number of segments in the vector 2455 * @pos: position in file where to write 2456 * 2457 * This is a wrapper around __generic_file_aio_write() to be used by most 2458 * filesystems. It takes care of syncing the file in case of O_SYNC file 2459 * and acquires i_mutex as needed. 2460 */ 2461 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, 2462 unsigned long nr_segs, loff_t pos) 2463 { 2464 struct file *file = iocb->ki_filp; 2465 struct inode *inode = file->f_mapping->host; 2466 ssize_t ret; 2467 2468 BUG_ON(iocb->ki_pos != pos); 2469 2470 mutex_lock(&inode->i_mutex); 2471 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos); 2472 mutex_unlock(&inode->i_mutex); 2473 2474 if (ret > 0 || ret == -EIOCBQUEUED) { 2475 ssize_t err; 2476 2477 err = generic_write_sync(file, pos, ret); 2478 if (err < 0 && ret > 0) 2479 ret = err; 2480 } 2481 return ret; 2482 } 2483 EXPORT_SYMBOL(generic_file_aio_write); 2484 2485 /** 2486 * try_to_release_page() - release old fs-specific metadata on a page 2487 * 2488 * @page: the page which the kernel is trying to free 2489 * @gfp_mask: memory allocation flags (and I/O mode) 2490 * 2491 * The address_space is to try to release any data against the page 2492 * (presumably at page->private). If the release was successful, return `1'. 2493 * Otherwise return zero. 2494 * 2495 * This may also be called if PG_fscache is set on a page, indicating that the 2496 * page is known to the local caching routines. 2497 * 2498 * The @gfp_mask argument specifies whether I/O may be performed to release 2499 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS). 2500 * 2501 */ 2502 int try_to_release_page(struct page *page, gfp_t gfp_mask) 2503 { 2504 struct address_space * const mapping = page->mapping; 2505 2506 BUG_ON(!PageLocked(page)); 2507 if (PageWriteback(page)) 2508 return 0; 2509 2510 if (mapping && mapping->a_ops->releasepage) 2511 return mapping->a_ops->releasepage(page, gfp_mask); 2512 return try_to_free_buffers(page); 2513 } 2514 2515 EXPORT_SYMBOL(try_to_release_page); 2516