xref: /linux/mm/filemap.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/module.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include "internal.h"
38 
39 /*
40  * FIXME: remove all knowledge of the buffer layer from the core VM
41  */
42 #include <linux/buffer_head.h> /* for try_to_free_buffers */
43 
44 #include <asm/mman.h>
45 
46 /*
47  * Shared mappings implemented 30.11.1994. It's not fully working yet,
48  * though.
49  *
50  * Shared mappings now work. 15.8.1995  Bruno.
51  *
52  * finished 'unifying' the page and buffer cache and SMP-threaded the
53  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
54  *
55  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
56  */
57 
58 /*
59  * Lock ordering:
60  *
61  *  ->i_mmap_lock		(truncate_pagecache)
62  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
63  *      ->swap_lock		(exclusive_swap_page, others)
64  *        ->mapping->tree_lock
65  *
66  *  ->i_mutex
67  *    ->i_mmap_lock		(truncate->unmap_mapping_range)
68  *
69  *  ->mmap_sem
70  *    ->i_mmap_lock
71  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
72  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
73  *
74  *  ->mmap_sem
75  *    ->lock_page		(access_process_vm)
76  *
77  *  ->i_mutex			(generic_file_buffered_write)
78  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
79  *
80  *  ->i_mutex
81  *    ->i_alloc_sem             (various)
82  *
83  *  ->inode_lock
84  *    ->sb_lock			(fs/fs-writeback.c)
85  *    ->mapping->tree_lock	(__sync_single_inode)
86  *
87  *  ->i_mmap_lock
88  *    ->anon_vma.lock		(vma_adjust)
89  *
90  *  ->anon_vma.lock
91  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
92  *
93  *  ->page_table_lock or pte_lock
94  *    ->swap_lock		(try_to_unmap_one)
95  *    ->private_lock		(try_to_unmap_one)
96  *    ->tree_lock		(try_to_unmap_one)
97  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
98  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
99  *    ->private_lock		(page_remove_rmap->set_page_dirty)
100  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
101  *    ->inode_lock		(page_remove_rmap->set_page_dirty)
102  *    ->inode_lock		(zap_pte_range->set_page_dirty)
103  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
104  *
105  *  ->task->proc_lock
106  *    ->dcache_lock		(proc_pid_lookup)
107  *
108  *  (code doesn't rely on that order, so you could switch it around)
109  *  ->tasklist_lock             (memory_failure, collect_procs_ao)
110  *    ->i_mmap_lock
111  */
112 
113 /*
114  * Remove a page from the page cache and free it. Caller has to make
115  * sure the page is locked and that nobody else uses it - or that usage
116  * is safe.  The caller must hold the mapping's tree_lock.
117  */
118 void __remove_from_page_cache(struct page *page)
119 {
120 	struct address_space *mapping = page->mapping;
121 
122 	radix_tree_delete(&mapping->page_tree, page->index);
123 	page->mapping = NULL;
124 	mapping->nrpages--;
125 	__dec_zone_page_state(page, NR_FILE_PAGES);
126 	if (PageSwapBacked(page))
127 		__dec_zone_page_state(page, NR_SHMEM);
128 	BUG_ON(page_mapped(page));
129 
130 	/*
131 	 * Some filesystems seem to re-dirty the page even after
132 	 * the VM has canceled the dirty bit (eg ext3 journaling).
133 	 *
134 	 * Fix it up by doing a final dirty accounting check after
135 	 * having removed the page entirely.
136 	 */
137 	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
138 		dec_zone_page_state(page, NR_FILE_DIRTY);
139 		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
140 	}
141 }
142 
143 void remove_from_page_cache(struct page *page)
144 {
145 	struct address_space *mapping = page->mapping;
146 
147 	BUG_ON(!PageLocked(page));
148 
149 	spin_lock_irq(&mapping->tree_lock);
150 	__remove_from_page_cache(page);
151 	spin_unlock_irq(&mapping->tree_lock);
152 	mem_cgroup_uncharge_cache_page(page);
153 }
154 EXPORT_SYMBOL(remove_from_page_cache);
155 
156 static int sync_page(void *word)
157 {
158 	struct address_space *mapping;
159 	struct page *page;
160 
161 	page = container_of((unsigned long *)word, struct page, flags);
162 
163 	/*
164 	 * page_mapping() is being called without PG_locked held.
165 	 * Some knowledge of the state and use of the page is used to
166 	 * reduce the requirements down to a memory barrier.
167 	 * The danger here is of a stale page_mapping() return value
168 	 * indicating a struct address_space different from the one it's
169 	 * associated with when it is associated with one.
170 	 * After smp_mb(), it's either the correct page_mapping() for
171 	 * the page, or an old page_mapping() and the page's own
172 	 * page_mapping() has gone NULL.
173 	 * The ->sync_page() address_space operation must tolerate
174 	 * page_mapping() going NULL. By an amazing coincidence,
175 	 * this comes about because none of the users of the page
176 	 * in the ->sync_page() methods make essential use of the
177 	 * page_mapping(), merely passing the page down to the backing
178 	 * device's unplug functions when it's non-NULL, which in turn
179 	 * ignore it for all cases but swap, where only page_private(page) is
180 	 * of interest. When page_mapping() does go NULL, the entire
181 	 * call stack gracefully ignores the page and returns.
182 	 * -- wli
183 	 */
184 	smp_mb();
185 	mapping = page_mapping(page);
186 	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
187 		mapping->a_ops->sync_page(page);
188 	io_schedule();
189 	return 0;
190 }
191 
192 static int sync_page_killable(void *word)
193 {
194 	sync_page(word);
195 	return fatal_signal_pending(current) ? -EINTR : 0;
196 }
197 
198 /**
199  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
200  * @mapping:	address space structure to write
201  * @start:	offset in bytes where the range starts
202  * @end:	offset in bytes where the range ends (inclusive)
203  * @sync_mode:	enable synchronous operation
204  *
205  * Start writeback against all of a mapping's dirty pages that lie
206  * within the byte offsets <start, end> inclusive.
207  *
208  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
209  * opposed to a regular memory cleansing writeback.  The difference between
210  * these two operations is that if a dirty page/buffer is encountered, it must
211  * be waited upon, and not just skipped over.
212  */
213 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
214 				loff_t end, int sync_mode)
215 {
216 	int ret;
217 	struct writeback_control wbc = {
218 		.sync_mode = sync_mode,
219 		.nr_to_write = LONG_MAX,
220 		.range_start = start,
221 		.range_end = end,
222 	};
223 
224 	if (!mapping_cap_writeback_dirty(mapping))
225 		return 0;
226 
227 	ret = do_writepages(mapping, &wbc);
228 	return ret;
229 }
230 
231 static inline int __filemap_fdatawrite(struct address_space *mapping,
232 	int sync_mode)
233 {
234 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
235 }
236 
237 int filemap_fdatawrite(struct address_space *mapping)
238 {
239 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
240 }
241 EXPORT_SYMBOL(filemap_fdatawrite);
242 
243 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
244 				loff_t end)
245 {
246 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
247 }
248 EXPORT_SYMBOL(filemap_fdatawrite_range);
249 
250 /**
251  * filemap_flush - mostly a non-blocking flush
252  * @mapping:	target address_space
253  *
254  * This is a mostly non-blocking flush.  Not suitable for data-integrity
255  * purposes - I/O may not be started against all dirty pages.
256  */
257 int filemap_flush(struct address_space *mapping)
258 {
259 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
260 }
261 EXPORT_SYMBOL(filemap_flush);
262 
263 /**
264  * filemap_fdatawait_range - wait for writeback to complete
265  * @mapping:		address space structure to wait for
266  * @start_byte:		offset in bytes where the range starts
267  * @end_byte:		offset in bytes where the range ends (inclusive)
268  *
269  * Walk the list of under-writeback pages of the given address space
270  * in the given range and wait for all of them.
271  */
272 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
273 			    loff_t end_byte)
274 {
275 	pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
276 	pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
277 	struct pagevec pvec;
278 	int nr_pages;
279 	int ret = 0;
280 
281 	if (end_byte < start_byte)
282 		return 0;
283 
284 	pagevec_init(&pvec, 0);
285 	while ((index <= end) &&
286 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
287 			PAGECACHE_TAG_WRITEBACK,
288 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
289 		unsigned i;
290 
291 		for (i = 0; i < nr_pages; i++) {
292 			struct page *page = pvec.pages[i];
293 
294 			/* until radix tree lookup accepts end_index */
295 			if (page->index > end)
296 				continue;
297 
298 			wait_on_page_writeback(page);
299 			if (PageError(page))
300 				ret = -EIO;
301 		}
302 		pagevec_release(&pvec);
303 		cond_resched();
304 	}
305 
306 	/* Check for outstanding write errors */
307 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
308 		ret = -ENOSPC;
309 	if (test_and_clear_bit(AS_EIO, &mapping->flags))
310 		ret = -EIO;
311 
312 	return ret;
313 }
314 EXPORT_SYMBOL(filemap_fdatawait_range);
315 
316 /**
317  * filemap_fdatawait - wait for all under-writeback pages to complete
318  * @mapping: address space structure to wait for
319  *
320  * Walk the list of under-writeback pages of the given address space
321  * and wait for all of them.
322  */
323 int filemap_fdatawait(struct address_space *mapping)
324 {
325 	loff_t i_size = i_size_read(mapping->host);
326 
327 	if (i_size == 0)
328 		return 0;
329 
330 	return filemap_fdatawait_range(mapping, 0, i_size - 1);
331 }
332 EXPORT_SYMBOL(filemap_fdatawait);
333 
334 int filemap_write_and_wait(struct address_space *mapping)
335 {
336 	int err = 0;
337 
338 	if (mapping->nrpages) {
339 		err = filemap_fdatawrite(mapping);
340 		/*
341 		 * Even if the above returned error, the pages may be
342 		 * written partially (e.g. -ENOSPC), so we wait for it.
343 		 * But the -EIO is special case, it may indicate the worst
344 		 * thing (e.g. bug) happened, so we avoid waiting for it.
345 		 */
346 		if (err != -EIO) {
347 			int err2 = filemap_fdatawait(mapping);
348 			if (!err)
349 				err = err2;
350 		}
351 	}
352 	return err;
353 }
354 EXPORT_SYMBOL(filemap_write_and_wait);
355 
356 /**
357  * filemap_write_and_wait_range - write out & wait on a file range
358  * @mapping:	the address_space for the pages
359  * @lstart:	offset in bytes where the range starts
360  * @lend:	offset in bytes where the range ends (inclusive)
361  *
362  * Write out and wait upon file offsets lstart->lend, inclusive.
363  *
364  * Note that `lend' is inclusive (describes the last byte to be written) so
365  * that this function can be used to write to the very end-of-file (end = -1).
366  */
367 int filemap_write_and_wait_range(struct address_space *mapping,
368 				 loff_t lstart, loff_t lend)
369 {
370 	int err = 0;
371 
372 	if (mapping->nrpages) {
373 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
374 						 WB_SYNC_ALL);
375 		/* See comment of filemap_write_and_wait() */
376 		if (err != -EIO) {
377 			int err2 = filemap_fdatawait_range(mapping,
378 						lstart, lend);
379 			if (!err)
380 				err = err2;
381 		}
382 	}
383 	return err;
384 }
385 EXPORT_SYMBOL(filemap_write_and_wait_range);
386 
387 /**
388  * add_to_page_cache_locked - add a locked page to the pagecache
389  * @page:	page to add
390  * @mapping:	the page's address_space
391  * @offset:	page index
392  * @gfp_mask:	page allocation mode
393  *
394  * This function is used to add a page to the pagecache. It must be locked.
395  * This function does not add the page to the LRU.  The caller must do that.
396  */
397 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
398 		pgoff_t offset, gfp_t gfp_mask)
399 {
400 	int error;
401 
402 	VM_BUG_ON(!PageLocked(page));
403 
404 	error = mem_cgroup_cache_charge(page, current->mm,
405 					gfp_mask & GFP_RECLAIM_MASK);
406 	if (error)
407 		goto out;
408 
409 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
410 	if (error == 0) {
411 		page_cache_get(page);
412 		page->mapping = mapping;
413 		page->index = offset;
414 
415 		spin_lock_irq(&mapping->tree_lock);
416 		error = radix_tree_insert(&mapping->page_tree, offset, page);
417 		if (likely(!error)) {
418 			mapping->nrpages++;
419 			__inc_zone_page_state(page, NR_FILE_PAGES);
420 			if (PageSwapBacked(page))
421 				__inc_zone_page_state(page, NR_SHMEM);
422 			spin_unlock_irq(&mapping->tree_lock);
423 		} else {
424 			page->mapping = NULL;
425 			spin_unlock_irq(&mapping->tree_lock);
426 			mem_cgroup_uncharge_cache_page(page);
427 			page_cache_release(page);
428 		}
429 		radix_tree_preload_end();
430 	} else
431 		mem_cgroup_uncharge_cache_page(page);
432 out:
433 	return error;
434 }
435 EXPORT_SYMBOL(add_to_page_cache_locked);
436 
437 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
438 				pgoff_t offset, gfp_t gfp_mask)
439 {
440 	int ret;
441 
442 	/*
443 	 * Splice_read and readahead add shmem/tmpfs pages into the page cache
444 	 * before shmem_readpage has a chance to mark them as SwapBacked: they
445 	 * need to go on the anon lru below, and mem_cgroup_cache_charge
446 	 * (called in add_to_page_cache) needs to know where they're going too.
447 	 */
448 	if (mapping_cap_swap_backed(mapping))
449 		SetPageSwapBacked(page);
450 
451 	ret = add_to_page_cache(page, mapping, offset, gfp_mask);
452 	if (ret == 0) {
453 		if (page_is_file_cache(page))
454 			lru_cache_add_file(page);
455 		else
456 			lru_cache_add_anon(page);
457 	}
458 	return ret;
459 }
460 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
461 
462 #ifdef CONFIG_NUMA
463 struct page *__page_cache_alloc(gfp_t gfp)
464 {
465 	int n;
466 	struct page *page;
467 
468 	if (cpuset_do_page_mem_spread()) {
469 		get_mems_allowed();
470 		n = cpuset_mem_spread_node();
471 		page = alloc_pages_exact_node(n, gfp, 0);
472 		put_mems_allowed();
473 		return page;
474 	}
475 	return alloc_pages(gfp, 0);
476 }
477 EXPORT_SYMBOL(__page_cache_alloc);
478 #endif
479 
480 static int __sleep_on_page_lock(void *word)
481 {
482 	io_schedule();
483 	return 0;
484 }
485 
486 /*
487  * In order to wait for pages to become available there must be
488  * waitqueues associated with pages. By using a hash table of
489  * waitqueues where the bucket discipline is to maintain all
490  * waiters on the same queue and wake all when any of the pages
491  * become available, and for the woken contexts to check to be
492  * sure the appropriate page became available, this saves space
493  * at a cost of "thundering herd" phenomena during rare hash
494  * collisions.
495  */
496 static wait_queue_head_t *page_waitqueue(struct page *page)
497 {
498 	const struct zone *zone = page_zone(page);
499 
500 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
501 }
502 
503 static inline void wake_up_page(struct page *page, int bit)
504 {
505 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
506 }
507 
508 void wait_on_page_bit(struct page *page, int bit_nr)
509 {
510 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
511 
512 	if (test_bit(bit_nr, &page->flags))
513 		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
514 							TASK_UNINTERRUPTIBLE);
515 }
516 EXPORT_SYMBOL(wait_on_page_bit);
517 
518 /**
519  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
520  * @page: Page defining the wait queue of interest
521  * @waiter: Waiter to add to the queue
522  *
523  * Add an arbitrary @waiter to the wait queue for the nominated @page.
524  */
525 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
526 {
527 	wait_queue_head_t *q = page_waitqueue(page);
528 	unsigned long flags;
529 
530 	spin_lock_irqsave(&q->lock, flags);
531 	__add_wait_queue(q, waiter);
532 	spin_unlock_irqrestore(&q->lock, flags);
533 }
534 EXPORT_SYMBOL_GPL(add_page_wait_queue);
535 
536 /**
537  * unlock_page - unlock a locked page
538  * @page: the page
539  *
540  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
541  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
542  * mechananism between PageLocked pages and PageWriteback pages is shared.
543  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
544  *
545  * The mb is necessary to enforce ordering between the clear_bit and the read
546  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
547  */
548 void unlock_page(struct page *page)
549 {
550 	VM_BUG_ON(!PageLocked(page));
551 	clear_bit_unlock(PG_locked, &page->flags);
552 	smp_mb__after_clear_bit();
553 	wake_up_page(page, PG_locked);
554 }
555 EXPORT_SYMBOL(unlock_page);
556 
557 /**
558  * end_page_writeback - end writeback against a page
559  * @page: the page
560  */
561 void end_page_writeback(struct page *page)
562 {
563 	if (TestClearPageReclaim(page))
564 		rotate_reclaimable_page(page);
565 
566 	if (!test_clear_page_writeback(page))
567 		BUG();
568 
569 	smp_mb__after_clear_bit();
570 	wake_up_page(page, PG_writeback);
571 }
572 EXPORT_SYMBOL(end_page_writeback);
573 
574 /**
575  * __lock_page - get a lock on the page, assuming we need to sleep to get it
576  * @page: the page to lock
577  *
578  * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
579  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
580  * chances are that on the second loop, the block layer's plug list is empty,
581  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
582  */
583 void __lock_page(struct page *page)
584 {
585 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
586 
587 	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
588 							TASK_UNINTERRUPTIBLE);
589 }
590 EXPORT_SYMBOL(__lock_page);
591 
592 int __lock_page_killable(struct page *page)
593 {
594 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
595 
596 	return __wait_on_bit_lock(page_waitqueue(page), &wait,
597 					sync_page_killable, TASK_KILLABLE);
598 }
599 EXPORT_SYMBOL_GPL(__lock_page_killable);
600 
601 /**
602  * __lock_page_nosync - get a lock on the page, without calling sync_page()
603  * @page: the page to lock
604  *
605  * Variant of lock_page that does not require the caller to hold a reference
606  * on the page's mapping.
607  */
608 void __lock_page_nosync(struct page *page)
609 {
610 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
611 	__wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
612 							TASK_UNINTERRUPTIBLE);
613 }
614 
615 /**
616  * find_get_page - find and get a page reference
617  * @mapping: the address_space to search
618  * @offset: the page index
619  *
620  * Is there a pagecache struct page at the given (mapping, offset) tuple?
621  * If yes, increment its refcount and return it; if no, return NULL.
622  */
623 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
624 {
625 	void **pagep;
626 	struct page *page;
627 
628 	rcu_read_lock();
629 repeat:
630 	page = NULL;
631 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
632 	if (pagep) {
633 		page = radix_tree_deref_slot(pagep);
634 		if (unlikely(!page || page == RADIX_TREE_RETRY))
635 			goto repeat;
636 
637 		if (!page_cache_get_speculative(page))
638 			goto repeat;
639 
640 		/*
641 		 * Has the page moved?
642 		 * This is part of the lockless pagecache protocol. See
643 		 * include/linux/pagemap.h for details.
644 		 */
645 		if (unlikely(page != *pagep)) {
646 			page_cache_release(page);
647 			goto repeat;
648 		}
649 	}
650 	rcu_read_unlock();
651 
652 	return page;
653 }
654 EXPORT_SYMBOL(find_get_page);
655 
656 /**
657  * find_lock_page - locate, pin and lock a pagecache page
658  * @mapping: the address_space to search
659  * @offset: the page index
660  *
661  * Locates the desired pagecache page, locks it, increments its reference
662  * count and returns its address.
663  *
664  * Returns zero if the page was not present. find_lock_page() may sleep.
665  */
666 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
667 {
668 	struct page *page;
669 
670 repeat:
671 	page = find_get_page(mapping, offset);
672 	if (page) {
673 		lock_page(page);
674 		/* Has the page been truncated? */
675 		if (unlikely(page->mapping != mapping)) {
676 			unlock_page(page);
677 			page_cache_release(page);
678 			goto repeat;
679 		}
680 		VM_BUG_ON(page->index != offset);
681 	}
682 	return page;
683 }
684 EXPORT_SYMBOL(find_lock_page);
685 
686 /**
687  * find_or_create_page - locate or add a pagecache page
688  * @mapping: the page's address_space
689  * @index: the page's index into the mapping
690  * @gfp_mask: page allocation mode
691  *
692  * Locates a page in the pagecache.  If the page is not present, a new page
693  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
694  * LRU list.  The returned page is locked and has its reference count
695  * incremented.
696  *
697  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
698  * allocation!
699  *
700  * find_or_create_page() returns the desired page's address, or zero on
701  * memory exhaustion.
702  */
703 struct page *find_or_create_page(struct address_space *mapping,
704 		pgoff_t index, gfp_t gfp_mask)
705 {
706 	struct page *page;
707 	int err;
708 repeat:
709 	page = find_lock_page(mapping, index);
710 	if (!page) {
711 		page = __page_cache_alloc(gfp_mask);
712 		if (!page)
713 			return NULL;
714 		/*
715 		 * We want a regular kernel memory (not highmem or DMA etc)
716 		 * allocation for the radix tree nodes, but we need to honour
717 		 * the context-specific requirements the caller has asked for.
718 		 * GFP_RECLAIM_MASK collects those requirements.
719 		 */
720 		err = add_to_page_cache_lru(page, mapping, index,
721 			(gfp_mask & GFP_RECLAIM_MASK));
722 		if (unlikely(err)) {
723 			page_cache_release(page);
724 			page = NULL;
725 			if (err == -EEXIST)
726 				goto repeat;
727 		}
728 	}
729 	return page;
730 }
731 EXPORT_SYMBOL(find_or_create_page);
732 
733 /**
734  * find_get_pages - gang pagecache lookup
735  * @mapping:	The address_space to search
736  * @start:	The starting page index
737  * @nr_pages:	The maximum number of pages
738  * @pages:	Where the resulting pages are placed
739  *
740  * find_get_pages() will search for and return a group of up to
741  * @nr_pages pages in the mapping.  The pages are placed at @pages.
742  * find_get_pages() takes a reference against the returned pages.
743  *
744  * The search returns a group of mapping-contiguous pages with ascending
745  * indexes.  There may be holes in the indices due to not-present pages.
746  *
747  * find_get_pages() returns the number of pages which were found.
748  */
749 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
750 			    unsigned int nr_pages, struct page **pages)
751 {
752 	unsigned int i;
753 	unsigned int ret;
754 	unsigned int nr_found;
755 
756 	rcu_read_lock();
757 restart:
758 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
759 				(void ***)pages, start, nr_pages);
760 	ret = 0;
761 	for (i = 0; i < nr_found; i++) {
762 		struct page *page;
763 repeat:
764 		page = radix_tree_deref_slot((void **)pages[i]);
765 		if (unlikely(!page))
766 			continue;
767 		/*
768 		 * this can only trigger if nr_found == 1, making livelock
769 		 * a non issue.
770 		 */
771 		if (unlikely(page == RADIX_TREE_RETRY))
772 			goto restart;
773 
774 		if (!page_cache_get_speculative(page))
775 			goto repeat;
776 
777 		/* Has the page moved? */
778 		if (unlikely(page != *((void **)pages[i]))) {
779 			page_cache_release(page);
780 			goto repeat;
781 		}
782 
783 		pages[ret] = page;
784 		ret++;
785 	}
786 	rcu_read_unlock();
787 	return ret;
788 }
789 
790 /**
791  * find_get_pages_contig - gang contiguous pagecache lookup
792  * @mapping:	The address_space to search
793  * @index:	The starting page index
794  * @nr_pages:	The maximum number of pages
795  * @pages:	Where the resulting pages are placed
796  *
797  * find_get_pages_contig() works exactly like find_get_pages(), except
798  * that the returned number of pages are guaranteed to be contiguous.
799  *
800  * find_get_pages_contig() returns the number of pages which were found.
801  */
802 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
803 			       unsigned int nr_pages, struct page **pages)
804 {
805 	unsigned int i;
806 	unsigned int ret;
807 	unsigned int nr_found;
808 
809 	rcu_read_lock();
810 restart:
811 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
812 				(void ***)pages, index, nr_pages);
813 	ret = 0;
814 	for (i = 0; i < nr_found; i++) {
815 		struct page *page;
816 repeat:
817 		page = radix_tree_deref_slot((void **)pages[i]);
818 		if (unlikely(!page))
819 			continue;
820 		/*
821 		 * this can only trigger if nr_found == 1, making livelock
822 		 * a non issue.
823 		 */
824 		if (unlikely(page == RADIX_TREE_RETRY))
825 			goto restart;
826 
827 		if (page->mapping == NULL || page->index != index)
828 			break;
829 
830 		if (!page_cache_get_speculative(page))
831 			goto repeat;
832 
833 		/* Has the page moved? */
834 		if (unlikely(page != *((void **)pages[i]))) {
835 			page_cache_release(page);
836 			goto repeat;
837 		}
838 
839 		pages[ret] = page;
840 		ret++;
841 		index++;
842 	}
843 	rcu_read_unlock();
844 	return ret;
845 }
846 EXPORT_SYMBOL(find_get_pages_contig);
847 
848 /**
849  * find_get_pages_tag - find and return pages that match @tag
850  * @mapping:	the address_space to search
851  * @index:	the starting page index
852  * @tag:	the tag index
853  * @nr_pages:	the maximum number of pages
854  * @pages:	where the resulting pages are placed
855  *
856  * Like find_get_pages, except we only return pages which are tagged with
857  * @tag.   We update @index to index the next page for the traversal.
858  */
859 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
860 			int tag, unsigned int nr_pages, struct page **pages)
861 {
862 	unsigned int i;
863 	unsigned int ret;
864 	unsigned int nr_found;
865 
866 	rcu_read_lock();
867 restart:
868 	nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
869 				(void ***)pages, *index, nr_pages, tag);
870 	ret = 0;
871 	for (i = 0; i < nr_found; i++) {
872 		struct page *page;
873 repeat:
874 		page = radix_tree_deref_slot((void **)pages[i]);
875 		if (unlikely(!page))
876 			continue;
877 		/*
878 		 * this can only trigger if nr_found == 1, making livelock
879 		 * a non issue.
880 		 */
881 		if (unlikely(page == RADIX_TREE_RETRY))
882 			goto restart;
883 
884 		if (!page_cache_get_speculative(page))
885 			goto repeat;
886 
887 		/* Has the page moved? */
888 		if (unlikely(page != *((void **)pages[i]))) {
889 			page_cache_release(page);
890 			goto repeat;
891 		}
892 
893 		pages[ret] = page;
894 		ret++;
895 	}
896 	rcu_read_unlock();
897 
898 	if (ret)
899 		*index = pages[ret - 1]->index + 1;
900 
901 	return ret;
902 }
903 EXPORT_SYMBOL(find_get_pages_tag);
904 
905 /**
906  * grab_cache_page_nowait - returns locked page at given index in given cache
907  * @mapping: target address_space
908  * @index: the page index
909  *
910  * Same as grab_cache_page(), but do not wait if the page is unavailable.
911  * This is intended for speculative data generators, where the data can
912  * be regenerated if the page couldn't be grabbed.  This routine should
913  * be safe to call while holding the lock for another page.
914  *
915  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
916  * and deadlock against the caller's locked page.
917  */
918 struct page *
919 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
920 {
921 	struct page *page = find_get_page(mapping, index);
922 
923 	if (page) {
924 		if (trylock_page(page))
925 			return page;
926 		page_cache_release(page);
927 		return NULL;
928 	}
929 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
930 	if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
931 		page_cache_release(page);
932 		page = NULL;
933 	}
934 	return page;
935 }
936 EXPORT_SYMBOL(grab_cache_page_nowait);
937 
938 /*
939  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
940  * a _large_ part of the i/o request. Imagine the worst scenario:
941  *
942  *      ---R__________________________________________B__________
943  *         ^ reading here                             ^ bad block(assume 4k)
944  *
945  * read(R) => miss => readahead(R...B) => media error => frustrating retries
946  * => failing the whole request => read(R) => read(R+1) =>
947  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
948  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
949  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
950  *
951  * It is going insane. Fix it by quickly scaling down the readahead size.
952  */
953 static void shrink_readahead_size_eio(struct file *filp,
954 					struct file_ra_state *ra)
955 {
956 	ra->ra_pages /= 4;
957 }
958 
959 /**
960  * do_generic_file_read - generic file read routine
961  * @filp:	the file to read
962  * @ppos:	current file position
963  * @desc:	read_descriptor
964  * @actor:	read method
965  *
966  * This is a generic file read routine, and uses the
967  * mapping->a_ops->readpage() function for the actual low-level stuff.
968  *
969  * This is really ugly. But the goto's actually try to clarify some
970  * of the logic when it comes to error handling etc.
971  */
972 static void do_generic_file_read(struct file *filp, loff_t *ppos,
973 		read_descriptor_t *desc, read_actor_t actor)
974 {
975 	struct address_space *mapping = filp->f_mapping;
976 	struct inode *inode = mapping->host;
977 	struct file_ra_state *ra = &filp->f_ra;
978 	pgoff_t index;
979 	pgoff_t last_index;
980 	pgoff_t prev_index;
981 	unsigned long offset;      /* offset into pagecache page */
982 	unsigned int prev_offset;
983 	int error;
984 
985 	index = *ppos >> PAGE_CACHE_SHIFT;
986 	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
987 	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
988 	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
989 	offset = *ppos & ~PAGE_CACHE_MASK;
990 
991 	for (;;) {
992 		struct page *page;
993 		pgoff_t end_index;
994 		loff_t isize;
995 		unsigned long nr, ret;
996 
997 		cond_resched();
998 find_page:
999 		page = find_get_page(mapping, index);
1000 		if (!page) {
1001 			page_cache_sync_readahead(mapping,
1002 					ra, filp,
1003 					index, last_index - index);
1004 			page = find_get_page(mapping, index);
1005 			if (unlikely(page == NULL))
1006 				goto no_cached_page;
1007 		}
1008 		if (PageReadahead(page)) {
1009 			page_cache_async_readahead(mapping,
1010 					ra, filp, page,
1011 					index, last_index - index);
1012 		}
1013 		if (!PageUptodate(page)) {
1014 			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1015 					!mapping->a_ops->is_partially_uptodate)
1016 				goto page_not_up_to_date;
1017 			if (!trylock_page(page))
1018 				goto page_not_up_to_date;
1019 			if (!mapping->a_ops->is_partially_uptodate(page,
1020 								desc, offset))
1021 				goto page_not_up_to_date_locked;
1022 			unlock_page(page);
1023 		}
1024 page_ok:
1025 		/*
1026 		 * i_size must be checked after we know the page is Uptodate.
1027 		 *
1028 		 * Checking i_size after the check allows us to calculate
1029 		 * the correct value for "nr", which means the zero-filled
1030 		 * part of the page is not copied back to userspace (unless
1031 		 * another truncate extends the file - this is desired though).
1032 		 */
1033 
1034 		isize = i_size_read(inode);
1035 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1036 		if (unlikely(!isize || index > end_index)) {
1037 			page_cache_release(page);
1038 			goto out;
1039 		}
1040 
1041 		/* nr is the maximum number of bytes to copy from this page */
1042 		nr = PAGE_CACHE_SIZE;
1043 		if (index == end_index) {
1044 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1045 			if (nr <= offset) {
1046 				page_cache_release(page);
1047 				goto out;
1048 			}
1049 		}
1050 		nr = nr - offset;
1051 
1052 		/* If users can be writing to this page using arbitrary
1053 		 * virtual addresses, take care about potential aliasing
1054 		 * before reading the page on the kernel side.
1055 		 */
1056 		if (mapping_writably_mapped(mapping))
1057 			flush_dcache_page(page);
1058 
1059 		/*
1060 		 * When a sequential read accesses a page several times,
1061 		 * only mark it as accessed the first time.
1062 		 */
1063 		if (prev_index != index || offset != prev_offset)
1064 			mark_page_accessed(page);
1065 		prev_index = index;
1066 
1067 		/*
1068 		 * Ok, we have the page, and it's up-to-date, so
1069 		 * now we can copy it to user space...
1070 		 *
1071 		 * The actor routine returns how many bytes were actually used..
1072 		 * NOTE! This may not be the same as how much of a user buffer
1073 		 * we filled up (we may be padding etc), so we can only update
1074 		 * "pos" here (the actor routine has to update the user buffer
1075 		 * pointers and the remaining count).
1076 		 */
1077 		ret = actor(desc, page, offset, nr);
1078 		offset += ret;
1079 		index += offset >> PAGE_CACHE_SHIFT;
1080 		offset &= ~PAGE_CACHE_MASK;
1081 		prev_offset = offset;
1082 
1083 		page_cache_release(page);
1084 		if (ret == nr && desc->count)
1085 			continue;
1086 		goto out;
1087 
1088 page_not_up_to_date:
1089 		/* Get exclusive access to the page ... */
1090 		error = lock_page_killable(page);
1091 		if (unlikely(error))
1092 			goto readpage_error;
1093 
1094 page_not_up_to_date_locked:
1095 		/* Did it get truncated before we got the lock? */
1096 		if (!page->mapping) {
1097 			unlock_page(page);
1098 			page_cache_release(page);
1099 			continue;
1100 		}
1101 
1102 		/* Did somebody else fill it already? */
1103 		if (PageUptodate(page)) {
1104 			unlock_page(page);
1105 			goto page_ok;
1106 		}
1107 
1108 readpage:
1109 		/*
1110 		 * A previous I/O error may have been due to temporary
1111 		 * failures, eg. multipath errors.
1112 		 * PG_error will be set again if readpage fails.
1113 		 */
1114 		ClearPageError(page);
1115 		/* Start the actual read. The read will unlock the page. */
1116 		error = mapping->a_ops->readpage(filp, page);
1117 
1118 		if (unlikely(error)) {
1119 			if (error == AOP_TRUNCATED_PAGE) {
1120 				page_cache_release(page);
1121 				goto find_page;
1122 			}
1123 			goto readpage_error;
1124 		}
1125 
1126 		if (!PageUptodate(page)) {
1127 			error = lock_page_killable(page);
1128 			if (unlikely(error))
1129 				goto readpage_error;
1130 			if (!PageUptodate(page)) {
1131 				if (page->mapping == NULL) {
1132 					/*
1133 					 * invalidate_mapping_pages got it
1134 					 */
1135 					unlock_page(page);
1136 					page_cache_release(page);
1137 					goto find_page;
1138 				}
1139 				unlock_page(page);
1140 				shrink_readahead_size_eio(filp, ra);
1141 				error = -EIO;
1142 				goto readpage_error;
1143 			}
1144 			unlock_page(page);
1145 		}
1146 
1147 		goto page_ok;
1148 
1149 readpage_error:
1150 		/* UHHUH! A synchronous read error occurred. Report it */
1151 		desc->error = error;
1152 		page_cache_release(page);
1153 		goto out;
1154 
1155 no_cached_page:
1156 		/*
1157 		 * Ok, it wasn't cached, so we need to create a new
1158 		 * page..
1159 		 */
1160 		page = page_cache_alloc_cold(mapping);
1161 		if (!page) {
1162 			desc->error = -ENOMEM;
1163 			goto out;
1164 		}
1165 		error = add_to_page_cache_lru(page, mapping,
1166 						index, GFP_KERNEL);
1167 		if (error) {
1168 			page_cache_release(page);
1169 			if (error == -EEXIST)
1170 				goto find_page;
1171 			desc->error = error;
1172 			goto out;
1173 		}
1174 		goto readpage;
1175 	}
1176 
1177 out:
1178 	ra->prev_pos = prev_index;
1179 	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1180 	ra->prev_pos |= prev_offset;
1181 
1182 	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1183 	file_accessed(filp);
1184 }
1185 
1186 int file_read_actor(read_descriptor_t *desc, struct page *page,
1187 			unsigned long offset, unsigned long size)
1188 {
1189 	char *kaddr;
1190 	unsigned long left, count = desc->count;
1191 
1192 	if (size > count)
1193 		size = count;
1194 
1195 	/*
1196 	 * Faults on the destination of a read are common, so do it before
1197 	 * taking the kmap.
1198 	 */
1199 	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1200 		kaddr = kmap_atomic(page, KM_USER0);
1201 		left = __copy_to_user_inatomic(desc->arg.buf,
1202 						kaddr + offset, size);
1203 		kunmap_atomic(kaddr, KM_USER0);
1204 		if (left == 0)
1205 			goto success;
1206 	}
1207 
1208 	/* Do it the slow way */
1209 	kaddr = kmap(page);
1210 	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1211 	kunmap(page);
1212 
1213 	if (left) {
1214 		size -= left;
1215 		desc->error = -EFAULT;
1216 	}
1217 success:
1218 	desc->count = count - size;
1219 	desc->written += size;
1220 	desc->arg.buf += size;
1221 	return size;
1222 }
1223 
1224 /*
1225  * Performs necessary checks before doing a write
1226  * @iov:	io vector request
1227  * @nr_segs:	number of segments in the iovec
1228  * @count:	number of bytes to write
1229  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1230  *
1231  * Adjust number of segments and amount of bytes to write (nr_segs should be
1232  * properly initialized first). Returns appropriate error code that caller
1233  * should return or zero in case that write should be allowed.
1234  */
1235 int generic_segment_checks(const struct iovec *iov,
1236 			unsigned long *nr_segs, size_t *count, int access_flags)
1237 {
1238 	unsigned long   seg;
1239 	size_t cnt = 0;
1240 	for (seg = 0; seg < *nr_segs; seg++) {
1241 		const struct iovec *iv = &iov[seg];
1242 
1243 		/*
1244 		 * If any segment has a negative length, or the cumulative
1245 		 * length ever wraps negative then return -EINVAL.
1246 		 */
1247 		cnt += iv->iov_len;
1248 		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1249 			return -EINVAL;
1250 		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1251 			continue;
1252 		if (seg == 0)
1253 			return -EFAULT;
1254 		*nr_segs = seg;
1255 		cnt -= iv->iov_len;	/* This segment is no good */
1256 		break;
1257 	}
1258 	*count = cnt;
1259 	return 0;
1260 }
1261 EXPORT_SYMBOL(generic_segment_checks);
1262 
1263 /**
1264  * generic_file_aio_read - generic filesystem read routine
1265  * @iocb:	kernel I/O control block
1266  * @iov:	io vector request
1267  * @nr_segs:	number of segments in the iovec
1268  * @pos:	current file position
1269  *
1270  * This is the "read()" routine for all filesystems
1271  * that can use the page cache directly.
1272  */
1273 ssize_t
1274 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1275 		unsigned long nr_segs, loff_t pos)
1276 {
1277 	struct file *filp = iocb->ki_filp;
1278 	ssize_t retval;
1279 	unsigned long seg = 0;
1280 	size_t count;
1281 	loff_t *ppos = &iocb->ki_pos;
1282 
1283 	count = 0;
1284 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1285 	if (retval)
1286 		return retval;
1287 
1288 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1289 	if (filp->f_flags & O_DIRECT) {
1290 		loff_t size;
1291 		struct address_space *mapping;
1292 		struct inode *inode;
1293 
1294 		mapping = filp->f_mapping;
1295 		inode = mapping->host;
1296 		if (!count)
1297 			goto out; /* skip atime */
1298 		size = i_size_read(inode);
1299 		if (pos < size) {
1300 			retval = filemap_write_and_wait_range(mapping, pos,
1301 					pos + iov_length(iov, nr_segs) - 1);
1302 			if (!retval) {
1303 				retval = mapping->a_ops->direct_IO(READ, iocb,
1304 							iov, pos, nr_segs);
1305 			}
1306 			if (retval > 0) {
1307 				*ppos = pos + retval;
1308 				count -= retval;
1309 			}
1310 
1311 			/*
1312 			 * Btrfs can have a short DIO read if we encounter
1313 			 * compressed extents, so if there was an error, or if
1314 			 * we've already read everything we wanted to, or if
1315 			 * there was a short read because we hit EOF, go ahead
1316 			 * and return.  Otherwise fallthrough to buffered io for
1317 			 * the rest of the read.
1318 			 */
1319 			if (retval < 0 || !count || *ppos >= size) {
1320 				file_accessed(filp);
1321 				goto out;
1322 			}
1323 		}
1324 	}
1325 
1326 	count = retval;
1327 	for (seg = 0; seg < nr_segs; seg++) {
1328 		read_descriptor_t desc;
1329 		loff_t offset = 0;
1330 
1331 		/*
1332 		 * If we did a short DIO read we need to skip the section of the
1333 		 * iov that we've already read data into.
1334 		 */
1335 		if (count) {
1336 			if (count > iov[seg].iov_len) {
1337 				count -= iov[seg].iov_len;
1338 				continue;
1339 			}
1340 			offset = count;
1341 			count = 0;
1342 		}
1343 
1344 		desc.written = 0;
1345 		desc.arg.buf = iov[seg].iov_base + offset;
1346 		desc.count = iov[seg].iov_len - offset;
1347 		if (desc.count == 0)
1348 			continue;
1349 		desc.error = 0;
1350 		do_generic_file_read(filp, ppos, &desc, file_read_actor);
1351 		retval += desc.written;
1352 		if (desc.error) {
1353 			retval = retval ?: desc.error;
1354 			break;
1355 		}
1356 		if (desc.count > 0)
1357 			break;
1358 	}
1359 out:
1360 	return retval;
1361 }
1362 EXPORT_SYMBOL(generic_file_aio_read);
1363 
1364 static ssize_t
1365 do_readahead(struct address_space *mapping, struct file *filp,
1366 	     pgoff_t index, unsigned long nr)
1367 {
1368 	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1369 		return -EINVAL;
1370 
1371 	force_page_cache_readahead(mapping, filp, index, nr);
1372 	return 0;
1373 }
1374 
1375 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1376 {
1377 	ssize_t ret;
1378 	struct file *file;
1379 
1380 	ret = -EBADF;
1381 	file = fget(fd);
1382 	if (file) {
1383 		if (file->f_mode & FMODE_READ) {
1384 			struct address_space *mapping = file->f_mapping;
1385 			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1386 			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1387 			unsigned long len = end - start + 1;
1388 			ret = do_readahead(mapping, file, start, len);
1389 		}
1390 		fput(file);
1391 	}
1392 	return ret;
1393 }
1394 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1395 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1396 {
1397 	return SYSC_readahead((int) fd, offset, (size_t) count);
1398 }
1399 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1400 #endif
1401 
1402 #ifdef CONFIG_MMU
1403 /**
1404  * page_cache_read - adds requested page to the page cache if not already there
1405  * @file:	file to read
1406  * @offset:	page index
1407  *
1408  * This adds the requested page to the page cache if it isn't already there,
1409  * and schedules an I/O to read in its contents from disk.
1410  */
1411 static int page_cache_read(struct file *file, pgoff_t offset)
1412 {
1413 	struct address_space *mapping = file->f_mapping;
1414 	struct page *page;
1415 	int ret;
1416 
1417 	do {
1418 		page = page_cache_alloc_cold(mapping);
1419 		if (!page)
1420 			return -ENOMEM;
1421 
1422 		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1423 		if (ret == 0)
1424 			ret = mapping->a_ops->readpage(file, page);
1425 		else if (ret == -EEXIST)
1426 			ret = 0; /* losing race to add is OK */
1427 
1428 		page_cache_release(page);
1429 
1430 	} while (ret == AOP_TRUNCATED_PAGE);
1431 
1432 	return ret;
1433 }
1434 
1435 #define MMAP_LOTSAMISS  (100)
1436 
1437 /*
1438  * Synchronous readahead happens when we don't even find
1439  * a page in the page cache at all.
1440  */
1441 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1442 				   struct file_ra_state *ra,
1443 				   struct file *file,
1444 				   pgoff_t offset)
1445 {
1446 	unsigned long ra_pages;
1447 	struct address_space *mapping = file->f_mapping;
1448 
1449 	/* If we don't want any read-ahead, don't bother */
1450 	if (VM_RandomReadHint(vma))
1451 		return;
1452 
1453 	if (VM_SequentialReadHint(vma) ||
1454 			offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) {
1455 		page_cache_sync_readahead(mapping, ra, file, offset,
1456 					  ra->ra_pages);
1457 		return;
1458 	}
1459 
1460 	if (ra->mmap_miss < INT_MAX)
1461 		ra->mmap_miss++;
1462 
1463 	/*
1464 	 * Do we miss much more than hit in this file? If so,
1465 	 * stop bothering with read-ahead. It will only hurt.
1466 	 */
1467 	if (ra->mmap_miss > MMAP_LOTSAMISS)
1468 		return;
1469 
1470 	/*
1471 	 * mmap read-around
1472 	 */
1473 	ra_pages = max_sane_readahead(ra->ra_pages);
1474 	if (ra_pages) {
1475 		ra->start = max_t(long, 0, offset - ra_pages/2);
1476 		ra->size = ra_pages;
1477 		ra->async_size = 0;
1478 		ra_submit(ra, mapping, file);
1479 	}
1480 }
1481 
1482 /*
1483  * Asynchronous readahead happens when we find the page and PG_readahead,
1484  * so we want to possibly extend the readahead further..
1485  */
1486 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1487 				    struct file_ra_state *ra,
1488 				    struct file *file,
1489 				    struct page *page,
1490 				    pgoff_t offset)
1491 {
1492 	struct address_space *mapping = file->f_mapping;
1493 
1494 	/* If we don't want any read-ahead, don't bother */
1495 	if (VM_RandomReadHint(vma))
1496 		return;
1497 	if (ra->mmap_miss > 0)
1498 		ra->mmap_miss--;
1499 	if (PageReadahead(page))
1500 		page_cache_async_readahead(mapping, ra, file,
1501 					   page, offset, ra->ra_pages);
1502 }
1503 
1504 /**
1505  * filemap_fault - read in file data for page fault handling
1506  * @vma:	vma in which the fault was taken
1507  * @vmf:	struct vm_fault containing details of the fault
1508  *
1509  * filemap_fault() is invoked via the vma operations vector for a
1510  * mapped memory region to read in file data during a page fault.
1511  *
1512  * The goto's are kind of ugly, but this streamlines the normal case of having
1513  * it in the page cache, and handles the special cases reasonably without
1514  * having a lot of duplicated code.
1515  */
1516 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1517 {
1518 	int error;
1519 	struct file *file = vma->vm_file;
1520 	struct address_space *mapping = file->f_mapping;
1521 	struct file_ra_state *ra = &file->f_ra;
1522 	struct inode *inode = mapping->host;
1523 	pgoff_t offset = vmf->pgoff;
1524 	struct page *page;
1525 	pgoff_t size;
1526 	int ret = 0;
1527 
1528 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1529 	if (offset >= size)
1530 		return VM_FAULT_SIGBUS;
1531 
1532 	/*
1533 	 * Do we have something in the page cache already?
1534 	 */
1535 	page = find_get_page(mapping, offset);
1536 	if (likely(page)) {
1537 		/*
1538 		 * We found the page, so try async readahead before
1539 		 * waiting for the lock.
1540 		 */
1541 		do_async_mmap_readahead(vma, ra, file, page, offset);
1542 		lock_page(page);
1543 
1544 		/* Did it get truncated? */
1545 		if (unlikely(page->mapping != mapping)) {
1546 			unlock_page(page);
1547 			put_page(page);
1548 			goto no_cached_page;
1549 		}
1550 	} else {
1551 		/* No page in the page cache at all */
1552 		do_sync_mmap_readahead(vma, ra, file, offset);
1553 		count_vm_event(PGMAJFAULT);
1554 		ret = VM_FAULT_MAJOR;
1555 retry_find:
1556 		page = find_lock_page(mapping, offset);
1557 		if (!page)
1558 			goto no_cached_page;
1559 	}
1560 
1561 	/*
1562 	 * We have a locked page in the page cache, now we need to check
1563 	 * that it's up-to-date. If not, it is going to be due to an error.
1564 	 */
1565 	if (unlikely(!PageUptodate(page)))
1566 		goto page_not_uptodate;
1567 
1568 	/*
1569 	 * Found the page and have a reference on it.
1570 	 * We must recheck i_size under page lock.
1571 	 */
1572 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1573 	if (unlikely(offset >= size)) {
1574 		unlock_page(page);
1575 		page_cache_release(page);
1576 		return VM_FAULT_SIGBUS;
1577 	}
1578 
1579 	ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT;
1580 	vmf->page = page;
1581 	return ret | VM_FAULT_LOCKED;
1582 
1583 no_cached_page:
1584 	/*
1585 	 * We're only likely to ever get here if MADV_RANDOM is in
1586 	 * effect.
1587 	 */
1588 	error = page_cache_read(file, offset);
1589 
1590 	/*
1591 	 * The page we want has now been added to the page cache.
1592 	 * In the unlikely event that someone removed it in the
1593 	 * meantime, we'll just come back here and read it again.
1594 	 */
1595 	if (error >= 0)
1596 		goto retry_find;
1597 
1598 	/*
1599 	 * An error return from page_cache_read can result if the
1600 	 * system is low on memory, or a problem occurs while trying
1601 	 * to schedule I/O.
1602 	 */
1603 	if (error == -ENOMEM)
1604 		return VM_FAULT_OOM;
1605 	return VM_FAULT_SIGBUS;
1606 
1607 page_not_uptodate:
1608 	/*
1609 	 * Umm, take care of errors if the page isn't up-to-date.
1610 	 * Try to re-read it _once_. We do this synchronously,
1611 	 * because there really aren't any performance issues here
1612 	 * and we need to check for errors.
1613 	 */
1614 	ClearPageError(page);
1615 	error = mapping->a_ops->readpage(file, page);
1616 	if (!error) {
1617 		wait_on_page_locked(page);
1618 		if (!PageUptodate(page))
1619 			error = -EIO;
1620 	}
1621 	page_cache_release(page);
1622 
1623 	if (!error || error == AOP_TRUNCATED_PAGE)
1624 		goto retry_find;
1625 
1626 	/* Things didn't work out. Return zero to tell the mm layer so. */
1627 	shrink_readahead_size_eio(file, ra);
1628 	return VM_FAULT_SIGBUS;
1629 }
1630 EXPORT_SYMBOL(filemap_fault);
1631 
1632 const struct vm_operations_struct generic_file_vm_ops = {
1633 	.fault		= filemap_fault,
1634 };
1635 
1636 /* This is used for a general mmap of a disk file */
1637 
1638 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1639 {
1640 	struct address_space *mapping = file->f_mapping;
1641 
1642 	if (!mapping->a_ops->readpage)
1643 		return -ENOEXEC;
1644 	file_accessed(file);
1645 	vma->vm_ops = &generic_file_vm_ops;
1646 	vma->vm_flags |= VM_CAN_NONLINEAR;
1647 	return 0;
1648 }
1649 
1650 /*
1651  * This is for filesystems which do not implement ->writepage.
1652  */
1653 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1654 {
1655 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1656 		return -EINVAL;
1657 	return generic_file_mmap(file, vma);
1658 }
1659 #else
1660 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1661 {
1662 	return -ENOSYS;
1663 }
1664 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1665 {
1666 	return -ENOSYS;
1667 }
1668 #endif /* CONFIG_MMU */
1669 
1670 EXPORT_SYMBOL(generic_file_mmap);
1671 EXPORT_SYMBOL(generic_file_readonly_mmap);
1672 
1673 static struct page *__read_cache_page(struct address_space *mapping,
1674 				pgoff_t index,
1675 				int (*filler)(void *,struct page*),
1676 				void *data,
1677 				gfp_t gfp)
1678 {
1679 	struct page *page;
1680 	int err;
1681 repeat:
1682 	page = find_get_page(mapping, index);
1683 	if (!page) {
1684 		page = __page_cache_alloc(gfp | __GFP_COLD);
1685 		if (!page)
1686 			return ERR_PTR(-ENOMEM);
1687 		err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1688 		if (unlikely(err)) {
1689 			page_cache_release(page);
1690 			if (err == -EEXIST)
1691 				goto repeat;
1692 			/* Presumably ENOMEM for radix tree node */
1693 			return ERR_PTR(err);
1694 		}
1695 		err = filler(data, page);
1696 		if (err < 0) {
1697 			page_cache_release(page);
1698 			page = ERR_PTR(err);
1699 		}
1700 	}
1701 	return page;
1702 }
1703 
1704 static struct page *do_read_cache_page(struct address_space *mapping,
1705 				pgoff_t index,
1706 				int (*filler)(void *,struct page*),
1707 				void *data,
1708 				gfp_t gfp)
1709 
1710 {
1711 	struct page *page;
1712 	int err;
1713 
1714 retry:
1715 	page = __read_cache_page(mapping, index, filler, data, gfp);
1716 	if (IS_ERR(page))
1717 		return page;
1718 	if (PageUptodate(page))
1719 		goto out;
1720 
1721 	lock_page(page);
1722 	if (!page->mapping) {
1723 		unlock_page(page);
1724 		page_cache_release(page);
1725 		goto retry;
1726 	}
1727 	if (PageUptodate(page)) {
1728 		unlock_page(page);
1729 		goto out;
1730 	}
1731 	err = filler(data, page);
1732 	if (err < 0) {
1733 		page_cache_release(page);
1734 		return ERR_PTR(err);
1735 	}
1736 out:
1737 	mark_page_accessed(page);
1738 	return page;
1739 }
1740 
1741 /**
1742  * read_cache_page_async - read into page cache, fill it if needed
1743  * @mapping:	the page's address_space
1744  * @index:	the page index
1745  * @filler:	function to perform the read
1746  * @data:	destination for read data
1747  *
1748  * Same as read_cache_page, but don't wait for page to become unlocked
1749  * after submitting it to the filler.
1750  *
1751  * Read into the page cache. If a page already exists, and PageUptodate() is
1752  * not set, try to fill the page but don't wait for it to become unlocked.
1753  *
1754  * If the page does not get brought uptodate, return -EIO.
1755  */
1756 struct page *read_cache_page_async(struct address_space *mapping,
1757 				pgoff_t index,
1758 				int (*filler)(void *,struct page*),
1759 				void *data)
1760 {
1761 	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1762 }
1763 EXPORT_SYMBOL(read_cache_page_async);
1764 
1765 static struct page *wait_on_page_read(struct page *page)
1766 {
1767 	if (!IS_ERR(page)) {
1768 		wait_on_page_locked(page);
1769 		if (!PageUptodate(page)) {
1770 			page_cache_release(page);
1771 			page = ERR_PTR(-EIO);
1772 		}
1773 	}
1774 	return page;
1775 }
1776 
1777 /**
1778  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1779  * @mapping:	the page's address_space
1780  * @index:	the page index
1781  * @gfp:	the page allocator flags to use if allocating
1782  *
1783  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1784  * any new page allocations done using the specified allocation flags. Note
1785  * that the Radix tree operations will still use GFP_KERNEL, so you can't
1786  * expect to do this atomically or anything like that - but you can pass in
1787  * other page requirements.
1788  *
1789  * If the page does not get brought uptodate, return -EIO.
1790  */
1791 struct page *read_cache_page_gfp(struct address_space *mapping,
1792 				pgoff_t index,
1793 				gfp_t gfp)
1794 {
1795 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1796 
1797 	return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1798 }
1799 EXPORT_SYMBOL(read_cache_page_gfp);
1800 
1801 /**
1802  * read_cache_page - read into page cache, fill it if needed
1803  * @mapping:	the page's address_space
1804  * @index:	the page index
1805  * @filler:	function to perform the read
1806  * @data:	destination for read data
1807  *
1808  * Read into the page cache. If a page already exists, and PageUptodate() is
1809  * not set, try to fill the page then wait for it to become unlocked.
1810  *
1811  * If the page does not get brought uptodate, return -EIO.
1812  */
1813 struct page *read_cache_page(struct address_space *mapping,
1814 				pgoff_t index,
1815 				int (*filler)(void *,struct page*),
1816 				void *data)
1817 {
1818 	return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1819 }
1820 EXPORT_SYMBOL(read_cache_page);
1821 
1822 /*
1823  * The logic we want is
1824  *
1825  *	if suid or (sgid and xgrp)
1826  *		remove privs
1827  */
1828 int should_remove_suid(struct dentry *dentry)
1829 {
1830 	mode_t mode = dentry->d_inode->i_mode;
1831 	int kill = 0;
1832 
1833 	/* suid always must be killed */
1834 	if (unlikely(mode & S_ISUID))
1835 		kill = ATTR_KILL_SUID;
1836 
1837 	/*
1838 	 * sgid without any exec bits is just a mandatory locking mark; leave
1839 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1840 	 */
1841 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1842 		kill |= ATTR_KILL_SGID;
1843 
1844 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1845 		return kill;
1846 
1847 	return 0;
1848 }
1849 EXPORT_SYMBOL(should_remove_suid);
1850 
1851 static int __remove_suid(struct dentry *dentry, int kill)
1852 {
1853 	struct iattr newattrs;
1854 
1855 	newattrs.ia_valid = ATTR_FORCE | kill;
1856 	return notify_change(dentry, &newattrs);
1857 }
1858 
1859 int file_remove_suid(struct file *file)
1860 {
1861 	struct dentry *dentry = file->f_path.dentry;
1862 	int killsuid = should_remove_suid(dentry);
1863 	int killpriv = security_inode_need_killpriv(dentry);
1864 	int error = 0;
1865 
1866 	if (killpriv < 0)
1867 		return killpriv;
1868 	if (killpriv)
1869 		error = security_inode_killpriv(dentry);
1870 	if (!error && killsuid)
1871 		error = __remove_suid(dentry, killsuid);
1872 
1873 	return error;
1874 }
1875 EXPORT_SYMBOL(file_remove_suid);
1876 
1877 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1878 			const struct iovec *iov, size_t base, size_t bytes)
1879 {
1880 	size_t copied = 0, left = 0;
1881 
1882 	while (bytes) {
1883 		char __user *buf = iov->iov_base + base;
1884 		int copy = min(bytes, iov->iov_len - base);
1885 
1886 		base = 0;
1887 		left = __copy_from_user_inatomic(vaddr, buf, copy);
1888 		copied += copy;
1889 		bytes -= copy;
1890 		vaddr += copy;
1891 		iov++;
1892 
1893 		if (unlikely(left))
1894 			break;
1895 	}
1896 	return copied - left;
1897 }
1898 
1899 /*
1900  * Copy as much as we can into the page and return the number of bytes which
1901  * were successfully copied.  If a fault is encountered then return the number of
1902  * bytes which were copied.
1903  */
1904 size_t iov_iter_copy_from_user_atomic(struct page *page,
1905 		struct iov_iter *i, unsigned long offset, size_t bytes)
1906 {
1907 	char *kaddr;
1908 	size_t copied;
1909 
1910 	BUG_ON(!in_atomic());
1911 	kaddr = kmap_atomic(page, KM_USER0);
1912 	if (likely(i->nr_segs == 1)) {
1913 		int left;
1914 		char __user *buf = i->iov->iov_base + i->iov_offset;
1915 		left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
1916 		copied = bytes - left;
1917 	} else {
1918 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1919 						i->iov, i->iov_offset, bytes);
1920 	}
1921 	kunmap_atomic(kaddr, KM_USER0);
1922 
1923 	return copied;
1924 }
1925 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1926 
1927 /*
1928  * This has the same sideeffects and return value as
1929  * iov_iter_copy_from_user_atomic().
1930  * The difference is that it attempts to resolve faults.
1931  * Page must not be locked.
1932  */
1933 size_t iov_iter_copy_from_user(struct page *page,
1934 		struct iov_iter *i, unsigned long offset, size_t bytes)
1935 {
1936 	char *kaddr;
1937 	size_t copied;
1938 
1939 	kaddr = kmap(page);
1940 	if (likely(i->nr_segs == 1)) {
1941 		int left;
1942 		char __user *buf = i->iov->iov_base + i->iov_offset;
1943 		left = __copy_from_user(kaddr + offset, buf, bytes);
1944 		copied = bytes - left;
1945 	} else {
1946 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1947 						i->iov, i->iov_offset, bytes);
1948 	}
1949 	kunmap(page);
1950 	return copied;
1951 }
1952 EXPORT_SYMBOL(iov_iter_copy_from_user);
1953 
1954 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1955 {
1956 	BUG_ON(i->count < bytes);
1957 
1958 	if (likely(i->nr_segs == 1)) {
1959 		i->iov_offset += bytes;
1960 		i->count -= bytes;
1961 	} else {
1962 		const struct iovec *iov = i->iov;
1963 		size_t base = i->iov_offset;
1964 
1965 		/*
1966 		 * The !iov->iov_len check ensures we skip over unlikely
1967 		 * zero-length segments (without overruning the iovec).
1968 		 */
1969 		while (bytes || unlikely(i->count && !iov->iov_len)) {
1970 			int copy;
1971 
1972 			copy = min(bytes, iov->iov_len - base);
1973 			BUG_ON(!i->count || i->count < copy);
1974 			i->count -= copy;
1975 			bytes -= copy;
1976 			base += copy;
1977 			if (iov->iov_len == base) {
1978 				iov++;
1979 				base = 0;
1980 			}
1981 		}
1982 		i->iov = iov;
1983 		i->iov_offset = base;
1984 	}
1985 }
1986 EXPORT_SYMBOL(iov_iter_advance);
1987 
1988 /*
1989  * Fault in the first iovec of the given iov_iter, to a maximum length
1990  * of bytes. Returns 0 on success, or non-zero if the memory could not be
1991  * accessed (ie. because it is an invalid address).
1992  *
1993  * writev-intensive code may want this to prefault several iovecs -- that
1994  * would be possible (callers must not rely on the fact that _only_ the
1995  * first iovec will be faulted with the current implementation).
1996  */
1997 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1998 {
1999 	char __user *buf = i->iov->iov_base + i->iov_offset;
2000 	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2001 	return fault_in_pages_readable(buf, bytes);
2002 }
2003 EXPORT_SYMBOL(iov_iter_fault_in_readable);
2004 
2005 /*
2006  * Return the count of just the current iov_iter segment.
2007  */
2008 size_t iov_iter_single_seg_count(struct iov_iter *i)
2009 {
2010 	const struct iovec *iov = i->iov;
2011 	if (i->nr_segs == 1)
2012 		return i->count;
2013 	else
2014 		return min(i->count, iov->iov_len - i->iov_offset);
2015 }
2016 EXPORT_SYMBOL(iov_iter_single_seg_count);
2017 
2018 /*
2019  * Performs necessary checks before doing a write
2020  *
2021  * Can adjust writing position or amount of bytes to write.
2022  * Returns appropriate error code that caller should return or
2023  * zero in case that write should be allowed.
2024  */
2025 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2026 {
2027 	struct inode *inode = file->f_mapping->host;
2028 	unsigned long limit = rlimit(RLIMIT_FSIZE);
2029 
2030         if (unlikely(*pos < 0))
2031                 return -EINVAL;
2032 
2033 	if (!isblk) {
2034 		/* FIXME: this is for backwards compatibility with 2.4 */
2035 		if (file->f_flags & O_APPEND)
2036                         *pos = i_size_read(inode);
2037 
2038 		if (limit != RLIM_INFINITY) {
2039 			if (*pos >= limit) {
2040 				send_sig(SIGXFSZ, current, 0);
2041 				return -EFBIG;
2042 			}
2043 			if (*count > limit - (typeof(limit))*pos) {
2044 				*count = limit - (typeof(limit))*pos;
2045 			}
2046 		}
2047 	}
2048 
2049 	/*
2050 	 * LFS rule
2051 	 */
2052 	if (unlikely(*pos + *count > MAX_NON_LFS &&
2053 				!(file->f_flags & O_LARGEFILE))) {
2054 		if (*pos >= MAX_NON_LFS) {
2055 			return -EFBIG;
2056 		}
2057 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2058 			*count = MAX_NON_LFS - (unsigned long)*pos;
2059 		}
2060 	}
2061 
2062 	/*
2063 	 * Are we about to exceed the fs block limit ?
2064 	 *
2065 	 * If we have written data it becomes a short write.  If we have
2066 	 * exceeded without writing data we send a signal and return EFBIG.
2067 	 * Linus frestrict idea will clean these up nicely..
2068 	 */
2069 	if (likely(!isblk)) {
2070 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2071 			if (*count || *pos > inode->i_sb->s_maxbytes) {
2072 				return -EFBIG;
2073 			}
2074 			/* zero-length writes at ->s_maxbytes are OK */
2075 		}
2076 
2077 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2078 			*count = inode->i_sb->s_maxbytes - *pos;
2079 	} else {
2080 #ifdef CONFIG_BLOCK
2081 		loff_t isize;
2082 		if (bdev_read_only(I_BDEV(inode)))
2083 			return -EPERM;
2084 		isize = i_size_read(inode);
2085 		if (*pos >= isize) {
2086 			if (*count || *pos > isize)
2087 				return -ENOSPC;
2088 		}
2089 
2090 		if (*pos + *count > isize)
2091 			*count = isize - *pos;
2092 #else
2093 		return -EPERM;
2094 #endif
2095 	}
2096 	return 0;
2097 }
2098 EXPORT_SYMBOL(generic_write_checks);
2099 
2100 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2101 				loff_t pos, unsigned len, unsigned flags,
2102 				struct page **pagep, void **fsdata)
2103 {
2104 	const struct address_space_operations *aops = mapping->a_ops;
2105 
2106 	return aops->write_begin(file, mapping, pos, len, flags,
2107 							pagep, fsdata);
2108 }
2109 EXPORT_SYMBOL(pagecache_write_begin);
2110 
2111 int pagecache_write_end(struct file *file, struct address_space *mapping,
2112 				loff_t pos, unsigned len, unsigned copied,
2113 				struct page *page, void *fsdata)
2114 {
2115 	const struct address_space_operations *aops = mapping->a_ops;
2116 
2117 	mark_page_accessed(page);
2118 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2119 }
2120 EXPORT_SYMBOL(pagecache_write_end);
2121 
2122 ssize_t
2123 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2124 		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2125 		size_t count, size_t ocount)
2126 {
2127 	struct file	*file = iocb->ki_filp;
2128 	struct address_space *mapping = file->f_mapping;
2129 	struct inode	*inode = mapping->host;
2130 	ssize_t		written;
2131 	size_t		write_len;
2132 	pgoff_t		end;
2133 
2134 	if (count != ocount)
2135 		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2136 
2137 	write_len = iov_length(iov, *nr_segs);
2138 	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2139 
2140 	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2141 	if (written)
2142 		goto out;
2143 
2144 	/*
2145 	 * After a write we want buffered reads to be sure to go to disk to get
2146 	 * the new data.  We invalidate clean cached page from the region we're
2147 	 * about to write.  We do this *before* the write so that we can return
2148 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2149 	 */
2150 	if (mapping->nrpages) {
2151 		written = invalidate_inode_pages2_range(mapping,
2152 					pos >> PAGE_CACHE_SHIFT, end);
2153 		/*
2154 		 * If a page can not be invalidated, return 0 to fall back
2155 		 * to buffered write.
2156 		 */
2157 		if (written) {
2158 			if (written == -EBUSY)
2159 				return 0;
2160 			goto out;
2161 		}
2162 	}
2163 
2164 	written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2165 
2166 	/*
2167 	 * Finally, try again to invalidate clean pages which might have been
2168 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2169 	 * if the source of the write was an mmap'ed region of the file
2170 	 * we're writing.  Either one is a pretty crazy thing to do,
2171 	 * so we don't support it 100%.  If this invalidation
2172 	 * fails, tough, the write still worked...
2173 	 */
2174 	if (mapping->nrpages) {
2175 		invalidate_inode_pages2_range(mapping,
2176 					      pos >> PAGE_CACHE_SHIFT, end);
2177 	}
2178 
2179 	if (written > 0) {
2180 		loff_t end = pos + written;
2181 		if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2182 			i_size_write(inode,  end);
2183 			mark_inode_dirty(inode);
2184 		}
2185 		*ppos = end;
2186 	}
2187 out:
2188 	return written;
2189 }
2190 EXPORT_SYMBOL(generic_file_direct_write);
2191 
2192 /*
2193  * Find or create a page at the given pagecache position. Return the locked
2194  * page. This function is specifically for buffered writes.
2195  */
2196 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2197 					pgoff_t index, unsigned flags)
2198 {
2199 	int status;
2200 	struct page *page;
2201 	gfp_t gfp_notmask = 0;
2202 	if (flags & AOP_FLAG_NOFS)
2203 		gfp_notmask = __GFP_FS;
2204 repeat:
2205 	page = find_lock_page(mapping, index);
2206 	if (likely(page))
2207 		return page;
2208 
2209 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2210 	if (!page)
2211 		return NULL;
2212 	status = add_to_page_cache_lru(page, mapping, index,
2213 						GFP_KERNEL & ~gfp_notmask);
2214 	if (unlikely(status)) {
2215 		page_cache_release(page);
2216 		if (status == -EEXIST)
2217 			goto repeat;
2218 		return NULL;
2219 	}
2220 	return page;
2221 }
2222 EXPORT_SYMBOL(grab_cache_page_write_begin);
2223 
2224 static ssize_t generic_perform_write(struct file *file,
2225 				struct iov_iter *i, loff_t pos)
2226 {
2227 	struct address_space *mapping = file->f_mapping;
2228 	const struct address_space_operations *a_ops = mapping->a_ops;
2229 	long status = 0;
2230 	ssize_t written = 0;
2231 	unsigned int flags = 0;
2232 
2233 	/*
2234 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2235 	 */
2236 	if (segment_eq(get_fs(), KERNEL_DS))
2237 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2238 
2239 	do {
2240 		struct page *page;
2241 		unsigned long offset;	/* Offset into pagecache page */
2242 		unsigned long bytes;	/* Bytes to write to page */
2243 		size_t copied;		/* Bytes copied from user */
2244 		void *fsdata;
2245 
2246 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2247 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2248 						iov_iter_count(i));
2249 
2250 again:
2251 
2252 		/*
2253 		 * Bring in the user page that we will copy from _first_.
2254 		 * Otherwise there's a nasty deadlock on copying from the
2255 		 * same page as we're writing to, without it being marked
2256 		 * up-to-date.
2257 		 *
2258 		 * Not only is this an optimisation, but it is also required
2259 		 * to check that the address is actually valid, when atomic
2260 		 * usercopies are used, below.
2261 		 */
2262 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2263 			status = -EFAULT;
2264 			break;
2265 		}
2266 
2267 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2268 						&page, &fsdata);
2269 		if (unlikely(status))
2270 			break;
2271 
2272 		if (mapping_writably_mapped(mapping))
2273 			flush_dcache_page(page);
2274 
2275 		pagefault_disable();
2276 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2277 		pagefault_enable();
2278 		flush_dcache_page(page);
2279 
2280 		mark_page_accessed(page);
2281 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2282 						page, fsdata);
2283 		if (unlikely(status < 0))
2284 			break;
2285 		copied = status;
2286 
2287 		cond_resched();
2288 
2289 		iov_iter_advance(i, copied);
2290 		if (unlikely(copied == 0)) {
2291 			/*
2292 			 * If we were unable to copy any data at all, we must
2293 			 * fall back to a single segment length write.
2294 			 *
2295 			 * If we didn't fallback here, we could livelock
2296 			 * because not all segments in the iov can be copied at
2297 			 * once without a pagefault.
2298 			 */
2299 			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2300 						iov_iter_single_seg_count(i));
2301 			goto again;
2302 		}
2303 		pos += copied;
2304 		written += copied;
2305 
2306 		balance_dirty_pages_ratelimited(mapping);
2307 
2308 	} while (iov_iter_count(i));
2309 
2310 	return written ? written : status;
2311 }
2312 
2313 ssize_t
2314 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2315 		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2316 		size_t count, ssize_t written)
2317 {
2318 	struct file *file = iocb->ki_filp;
2319 	ssize_t status;
2320 	struct iov_iter i;
2321 
2322 	iov_iter_init(&i, iov, nr_segs, count, written);
2323 	status = generic_perform_write(file, &i, pos);
2324 
2325 	if (likely(status >= 0)) {
2326 		written += status;
2327 		*ppos = pos + status;
2328   	}
2329 
2330 	return written ? written : status;
2331 }
2332 EXPORT_SYMBOL(generic_file_buffered_write);
2333 
2334 /**
2335  * __generic_file_aio_write - write data to a file
2336  * @iocb:	IO state structure (file, offset, etc.)
2337  * @iov:	vector with data to write
2338  * @nr_segs:	number of segments in the vector
2339  * @ppos:	position where to write
2340  *
2341  * This function does all the work needed for actually writing data to a
2342  * file. It does all basic checks, removes SUID from the file, updates
2343  * modification times and calls proper subroutines depending on whether we
2344  * do direct IO or a standard buffered write.
2345  *
2346  * It expects i_mutex to be grabbed unless we work on a block device or similar
2347  * object which does not need locking at all.
2348  *
2349  * This function does *not* take care of syncing data in case of O_SYNC write.
2350  * A caller has to handle it. This is mainly due to the fact that we want to
2351  * avoid syncing under i_mutex.
2352  */
2353 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2354 				 unsigned long nr_segs, loff_t *ppos)
2355 {
2356 	struct file *file = iocb->ki_filp;
2357 	struct address_space * mapping = file->f_mapping;
2358 	size_t ocount;		/* original count */
2359 	size_t count;		/* after file limit checks */
2360 	struct inode 	*inode = mapping->host;
2361 	loff_t		pos;
2362 	ssize_t		written;
2363 	ssize_t		err;
2364 
2365 	ocount = 0;
2366 	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2367 	if (err)
2368 		return err;
2369 
2370 	count = ocount;
2371 	pos = *ppos;
2372 
2373 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2374 
2375 	/* We can write back this queue in page reclaim */
2376 	current->backing_dev_info = mapping->backing_dev_info;
2377 	written = 0;
2378 
2379 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2380 	if (err)
2381 		goto out;
2382 
2383 	if (count == 0)
2384 		goto out;
2385 
2386 	err = file_remove_suid(file);
2387 	if (err)
2388 		goto out;
2389 
2390 	file_update_time(file);
2391 
2392 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2393 	if (unlikely(file->f_flags & O_DIRECT)) {
2394 		loff_t endbyte;
2395 		ssize_t written_buffered;
2396 
2397 		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2398 							ppos, count, ocount);
2399 		if (written < 0 || written == count)
2400 			goto out;
2401 		/*
2402 		 * direct-io write to a hole: fall through to buffered I/O
2403 		 * for completing the rest of the request.
2404 		 */
2405 		pos += written;
2406 		count -= written;
2407 		written_buffered = generic_file_buffered_write(iocb, iov,
2408 						nr_segs, pos, ppos, count,
2409 						written);
2410 		/*
2411 		 * If generic_file_buffered_write() retuned a synchronous error
2412 		 * then we want to return the number of bytes which were
2413 		 * direct-written, or the error code if that was zero.  Note
2414 		 * that this differs from normal direct-io semantics, which
2415 		 * will return -EFOO even if some bytes were written.
2416 		 */
2417 		if (written_buffered < 0) {
2418 			err = written_buffered;
2419 			goto out;
2420 		}
2421 
2422 		/*
2423 		 * We need to ensure that the page cache pages are written to
2424 		 * disk and invalidated to preserve the expected O_DIRECT
2425 		 * semantics.
2426 		 */
2427 		endbyte = pos + written_buffered - written - 1;
2428 		err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2429 		if (err == 0) {
2430 			written = written_buffered;
2431 			invalidate_mapping_pages(mapping,
2432 						 pos >> PAGE_CACHE_SHIFT,
2433 						 endbyte >> PAGE_CACHE_SHIFT);
2434 		} else {
2435 			/*
2436 			 * We don't know how much we wrote, so just return
2437 			 * the number of bytes which were direct-written
2438 			 */
2439 		}
2440 	} else {
2441 		written = generic_file_buffered_write(iocb, iov, nr_segs,
2442 				pos, ppos, count, written);
2443 	}
2444 out:
2445 	current->backing_dev_info = NULL;
2446 	return written ? written : err;
2447 }
2448 EXPORT_SYMBOL(__generic_file_aio_write);
2449 
2450 /**
2451  * generic_file_aio_write - write data to a file
2452  * @iocb:	IO state structure
2453  * @iov:	vector with data to write
2454  * @nr_segs:	number of segments in the vector
2455  * @pos:	position in file where to write
2456  *
2457  * This is a wrapper around __generic_file_aio_write() to be used by most
2458  * filesystems. It takes care of syncing the file in case of O_SYNC file
2459  * and acquires i_mutex as needed.
2460  */
2461 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2462 		unsigned long nr_segs, loff_t pos)
2463 {
2464 	struct file *file = iocb->ki_filp;
2465 	struct inode *inode = file->f_mapping->host;
2466 	ssize_t ret;
2467 
2468 	BUG_ON(iocb->ki_pos != pos);
2469 
2470 	mutex_lock(&inode->i_mutex);
2471 	ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2472 	mutex_unlock(&inode->i_mutex);
2473 
2474 	if (ret > 0 || ret == -EIOCBQUEUED) {
2475 		ssize_t err;
2476 
2477 		err = generic_write_sync(file, pos, ret);
2478 		if (err < 0 && ret > 0)
2479 			ret = err;
2480 	}
2481 	return ret;
2482 }
2483 EXPORT_SYMBOL(generic_file_aio_write);
2484 
2485 /**
2486  * try_to_release_page() - release old fs-specific metadata on a page
2487  *
2488  * @page: the page which the kernel is trying to free
2489  * @gfp_mask: memory allocation flags (and I/O mode)
2490  *
2491  * The address_space is to try to release any data against the page
2492  * (presumably at page->private).  If the release was successful, return `1'.
2493  * Otherwise return zero.
2494  *
2495  * This may also be called if PG_fscache is set on a page, indicating that the
2496  * page is known to the local caching routines.
2497  *
2498  * The @gfp_mask argument specifies whether I/O may be performed to release
2499  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2500  *
2501  */
2502 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2503 {
2504 	struct address_space * const mapping = page->mapping;
2505 
2506 	BUG_ON(!PageLocked(page));
2507 	if (PageWriteback(page))
2508 		return 0;
2509 
2510 	if (mapping && mapping->a_ops->releasepage)
2511 		return mapping->a_ops->releasepage(page, gfp_mask);
2512 	return try_to_free_buffers(page);
2513 }
2514 
2515 EXPORT_SYMBOL(try_to_release_page);
2516