1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/filemap.c 4 * 5 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 7 8 /* 9 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differently, for example) 12 */ 13 #include <linux/export.h> 14 #include <linux/compiler.h> 15 #include <linux/dax.h> 16 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 19 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 22 #include <linux/mm.h> 23 #include <linux/swap.h> 24 #include <linux/mman.h> 25 #include <linux/pagemap.h> 26 #include <linux/file.h> 27 #include <linux/uio.h> 28 #include <linux/error-injection.h> 29 #include <linux/hash.h> 30 #include <linux/writeback.h> 31 #include <linux/backing-dev.h> 32 #include <linux/pagevec.h> 33 #include <linux/blkdev.h> 34 #include <linux/security.h> 35 #include <linux/cpuset.h> 36 #include <linux/hugetlb.h> 37 #include <linux/memcontrol.h> 38 #include <linux/cleancache.h> 39 #include <linux/shmem_fs.h> 40 #include <linux/rmap.h> 41 #include <linux/delayacct.h> 42 #include <linux/psi.h> 43 #include <linux/ramfs.h> 44 #include "internal.h" 45 46 #define CREATE_TRACE_POINTS 47 #include <trace/events/filemap.h> 48 49 /* 50 * FIXME: remove all knowledge of the buffer layer from the core VM 51 */ 52 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 53 54 #include <asm/mman.h> 55 56 /* 57 * Shared mappings implemented 30.11.1994. It's not fully working yet, 58 * though. 59 * 60 * Shared mappings now work. 15.8.1995 Bruno. 61 * 62 * finished 'unifying' the page and buffer cache and SMP-threaded the 63 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 64 * 65 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 66 */ 67 68 /* 69 * Lock ordering: 70 * 71 * ->i_mmap_rwsem (truncate_pagecache) 72 * ->private_lock (__free_pte->__set_page_dirty_buffers) 73 * ->swap_lock (exclusive_swap_page, others) 74 * ->i_pages lock 75 * 76 * ->i_mutex 77 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 78 * 79 * ->mmap_sem 80 * ->i_mmap_rwsem 81 * ->page_table_lock or pte_lock (various, mainly in memory.c) 82 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 83 * 84 * ->mmap_sem 85 * ->lock_page (access_process_vm) 86 * 87 * ->i_mutex (generic_perform_write) 88 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 89 * 90 * bdi->wb.list_lock 91 * sb_lock (fs/fs-writeback.c) 92 * ->i_pages lock (__sync_single_inode) 93 * 94 * ->i_mmap_rwsem 95 * ->anon_vma.lock (vma_adjust) 96 * 97 * ->anon_vma.lock 98 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 99 * 100 * ->page_table_lock or pte_lock 101 * ->swap_lock (try_to_unmap_one) 102 * ->private_lock (try_to_unmap_one) 103 * ->i_pages lock (try_to_unmap_one) 104 * ->pgdat->lru_lock (follow_page->mark_page_accessed) 105 * ->pgdat->lru_lock (check_pte_range->isolate_lru_page) 106 * ->private_lock (page_remove_rmap->set_page_dirty) 107 * ->i_pages lock (page_remove_rmap->set_page_dirty) 108 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 109 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 110 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) 111 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 112 * ->inode->i_lock (zap_pte_range->set_page_dirty) 113 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 114 * 115 * ->i_mmap_rwsem 116 * ->tasklist_lock (memory_failure, collect_procs_ao) 117 */ 118 119 static void page_cache_delete(struct address_space *mapping, 120 struct page *page, void *shadow) 121 { 122 XA_STATE(xas, &mapping->i_pages, page->index); 123 unsigned int nr = 1; 124 125 mapping_set_update(&xas, mapping); 126 127 /* hugetlb pages are represented by a single entry in the xarray */ 128 if (!PageHuge(page)) { 129 xas_set_order(&xas, page->index, compound_order(page)); 130 nr = compound_nr(page); 131 } 132 133 VM_BUG_ON_PAGE(!PageLocked(page), page); 134 VM_BUG_ON_PAGE(PageTail(page), page); 135 VM_BUG_ON_PAGE(nr != 1 && shadow, page); 136 137 xas_store(&xas, shadow); 138 xas_init_marks(&xas); 139 140 page->mapping = NULL; 141 /* Leave page->index set: truncation lookup relies upon it */ 142 143 if (shadow) { 144 mapping->nrexceptional += nr; 145 /* 146 * Make sure the nrexceptional update is committed before 147 * the nrpages update so that final truncate racing 148 * with reclaim does not see both counters 0 at the 149 * same time and miss a shadow entry. 150 */ 151 smp_wmb(); 152 } 153 mapping->nrpages -= nr; 154 } 155 156 static void unaccount_page_cache_page(struct address_space *mapping, 157 struct page *page) 158 { 159 int nr; 160 161 /* 162 * if we're uptodate, flush out into the cleancache, otherwise 163 * invalidate any existing cleancache entries. We can't leave 164 * stale data around in the cleancache once our page is gone 165 */ 166 if (PageUptodate(page) && PageMappedToDisk(page)) 167 cleancache_put_page(page); 168 else 169 cleancache_invalidate_page(mapping, page); 170 171 VM_BUG_ON_PAGE(PageTail(page), page); 172 VM_BUG_ON_PAGE(page_mapped(page), page); 173 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) { 174 int mapcount; 175 176 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 177 current->comm, page_to_pfn(page)); 178 dump_page(page, "still mapped when deleted"); 179 dump_stack(); 180 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 181 182 mapcount = page_mapcount(page); 183 if (mapping_exiting(mapping) && 184 page_count(page) >= mapcount + 2) { 185 /* 186 * All vmas have already been torn down, so it's 187 * a good bet that actually the page is unmapped, 188 * and we'd prefer not to leak it: if we're wrong, 189 * some other bad page check should catch it later. 190 */ 191 page_mapcount_reset(page); 192 page_ref_sub(page, mapcount); 193 } 194 } 195 196 /* hugetlb pages do not participate in page cache accounting. */ 197 if (PageHuge(page)) 198 return; 199 200 nr = hpage_nr_pages(page); 201 202 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr); 203 if (PageSwapBacked(page)) { 204 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr); 205 if (PageTransHuge(page)) 206 __dec_node_page_state(page, NR_SHMEM_THPS); 207 } else if (PageTransHuge(page)) { 208 __dec_node_page_state(page, NR_FILE_THPS); 209 filemap_nr_thps_dec(mapping); 210 } 211 212 /* 213 * At this point page must be either written or cleaned by 214 * truncate. Dirty page here signals a bug and loss of 215 * unwritten data. 216 * 217 * This fixes dirty accounting after removing the page entirely 218 * but leaves PageDirty set: it has no effect for truncated 219 * page and anyway will be cleared before returning page into 220 * buddy allocator. 221 */ 222 if (WARN_ON_ONCE(PageDirty(page))) 223 account_page_cleaned(page, mapping, inode_to_wb(mapping->host)); 224 } 225 226 /* 227 * Delete a page from the page cache and free it. Caller has to make 228 * sure the page is locked and that nobody else uses it - or that usage 229 * is safe. The caller must hold the i_pages lock. 230 */ 231 void __delete_from_page_cache(struct page *page, void *shadow) 232 { 233 struct address_space *mapping = page->mapping; 234 235 trace_mm_filemap_delete_from_page_cache(page); 236 237 unaccount_page_cache_page(mapping, page); 238 page_cache_delete(mapping, page, shadow); 239 } 240 241 static void page_cache_free_page(struct address_space *mapping, 242 struct page *page) 243 { 244 void (*freepage)(struct page *); 245 246 freepage = mapping->a_ops->freepage; 247 if (freepage) 248 freepage(page); 249 250 if (PageTransHuge(page) && !PageHuge(page)) { 251 page_ref_sub(page, HPAGE_PMD_NR); 252 VM_BUG_ON_PAGE(page_count(page) <= 0, page); 253 } else { 254 put_page(page); 255 } 256 } 257 258 /** 259 * delete_from_page_cache - delete page from page cache 260 * @page: the page which the kernel is trying to remove from page cache 261 * 262 * This must be called only on pages that have been verified to be in the page 263 * cache and locked. It will never put the page into the free list, the caller 264 * has a reference on the page. 265 */ 266 void delete_from_page_cache(struct page *page) 267 { 268 struct address_space *mapping = page_mapping(page); 269 unsigned long flags; 270 271 BUG_ON(!PageLocked(page)); 272 xa_lock_irqsave(&mapping->i_pages, flags); 273 __delete_from_page_cache(page, NULL); 274 xa_unlock_irqrestore(&mapping->i_pages, flags); 275 276 page_cache_free_page(mapping, page); 277 } 278 EXPORT_SYMBOL(delete_from_page_cache); 279 280 /* 281 * page_cache_delete_batch - delete several pages from page cache 282 * @mapping: the mapping to which pages belong 283 * @pvec: pagevec with pages to delete 284 * 285 * The function walks over mapping->i_pages and removes pages passed in @pvec 286 * from the mapping. The function expects @pvec to be sorted by page index 287 * and is optimised for it to be dense. 288 * It tolerates holes in @pvec (mapping entries at those indices are not 289 * modified). The function expects only THP head pages to be present in the 290 * @pvec. 291 * 292 * The function expects the i_pages lock to be held. 293 */ 294 static void page_cache_delete_batch(struct address_space *mapping, 295 struct pagevec *pvec) 296 { 297 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index); 298 int total_pages = 0; 299 int i = 0; 300 struct page *page; 301 302 mapping_set_update(&xas, mapping); 303 xas_for_each(&xas, page, ULONG_MAX) { 304 if (i >= pagevec_count(pvec)) 305 break; 306 307 /* A swap/dax/shadow entry got inserted? Skip it. */ 308 if (xa_is_value(page)) 309 continue; 310 /* 311 * A page got inserted in our range? Skip it. We have our 312 * pages locked so they are protected from being removed. 313 * If we see a page whose index is higher than ours, it 314 * means our page has been removed, which shouldn't be 315 * possible because we're holding the PageLock. 316 */ 317 if (page != pvec->pages[i]) { 318 VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index, 319 page); 320 continue; 321 } 322 323 WARN_ON_ONCE(!PageLocked(page)); 324 325 if (page->index == xas.xa_index) 326 page->mapping = NULL; 327 /* Leave page->index set: truncation lookup relies on it */ 328 329 /* 330 * Move to the next page in the vector if this is a regular 331 * page or the index is of the last sub-page of this compound 332 * page. 333 */ 334 if (page->index + compound_nr(page) - 1 == xas.xa_index) 335 i++; 336 xas_store(&xas, NULL); 337 total_pages++; 338 } 339 mapping->nrpages -= total_pages; 340 } 341 342 void delete_from_page_cache_batch(struct address_space *mapping, 343 struct pagevec *pvec) 344 { 345 int i; 346 unsigned long flags; 347 348 if (!pagevec_count(pvec)) 349 return; 350 351 xa_lock_irqsave(&mapping->i_pages, flags); 352 for (i = 0; i < pagevec_count(pvec); i++) { 353 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]); 354 355 unaccount_page_cache_page(mapping, pvec->pages[i]); 356 } 357 page_cache_delete_batch(mapping, pvec); 358 xa_unlock_irqrestore(&mapping->i_pages, flags); 359 360 for (i = 0; i < pagevec_count(pvec); i++) 361 page_cache_free_page(mapping, pvec->pages[i]); 362 } 363 364 int filemap_check_errors(struct address_space *mapping) 365 { 366 int ret = 0; 367 /* Check for outstanding write errors */ 368 if (test_bit(AS_ENOSPC, &mapping->flags) && 369 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 370 ret = -ENOSPC; 371 if (test_bit(AS_EIO, &mapping->flags) && 372 test_and_clear_bit(AS_EIO, &mapping->flags)) 373 ret = -EIO; 374 return ret; 375 } 376 EXPORT_SYMBOL(filemap_check_errors); 377 378 static int filemap_check_and_keep_errors(struct address_space *mapping) 379 { 380 /* Check for outstanding write errors */ 381 if (test_bit(AS_EIO, &mapping->flags)) 382 return -EIO; 383 if (test_bit(AS_ENOSPC, &mapping->flags)) 384 return -ENOSPC; 385 return 0; 386 } 387 388 /** 389 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 390 * @mapping: address space structure to write 391 * @start: offset in bytes where the range starts 392 * @end: offset in bytes where the range ends (inclusive) 393 * @sync_mode: enable synchronous operation 394 * 395 * Start writeback against all of a mapping's dirty pages that lie 396 * within the byte offsets <start, end> inclusive. 397 * 398 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 399 * opposed to a regular memory cleansing writeback. The difference between 400 * these two operations is that if a dirty page/buffer is encountered, it must 401 * be waited upon, and not just skipped over. 402 * 403 * Return: %0 on success, negative error code otherwise. 404 */ 405 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 406 loff_t end, int sync_mode) 407 { 408 int ret; 409 struct writeback_control wbc = { 410 .sync_mode = sync_mode, 411 .nr_to_write = LONG_MAX, 412 .range_start = start, 413 .range_end = end, 414 }; 415 416 if (!mapping_cap_writeback_dirty(mapping) || 417 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 418 return 0; 419 420 wbc_attach_fdatawrite_inode(&wbc, mapping->host); 421 ret = do_writepages(mapping, &wbc); 422 wbc_detach_inode(&wbc); 423 return ret; 424 } 425 426 static inline int __filemap_fdatawrite(struct address_space *mapping, 427 int sync_mode) 428 { 429 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 430 } 431 432 int filemap_fdatawrite(struct address_space *mapping) 433 { 434 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 435 } 436 EXPORT_SYMBOL(filemap_fdatawrite); 437 438 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 439 loff_t end) 440 { 441 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 442 } 443 EXPORT_SYMBOL(filemap_fdatawrite_range); 444 445 /** 446 * filemap_flush - mostly a non-blocking flush 447 * @mapping: target address_space 448 * 449 * This is a mostly non-blocking flush. Not suitable for data-integrity 450 * purposes - I/O may not be started against all dirty pages. 451 * 452 * Return: %0 on success, negative error code otherwise. 453 */ 454 int filemap_flush(struct address_space *mapping) 455 { 456 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 457 } 458 EXPORT_SYMBOL(filemap_flush); 459 460 /** 461 * filemap_range_has_page - check if a page exists in range. 462 * @mapping: address space within which to check 463 * @start_byte: offset in bytes where the range starts 464 * @end_byte: offset in bytes where the range ends (inclusive) 465 * 466 * Find at least one page in the range supplied, usually used to check if 467 * direct writing in this range will trigger a writeback. 468 * 469 * Return: %true if at least one page exists in the specified range, 470 * %false otherwise. 471 */ 472 bool filemap_range_has_page(struct address_space *mapping, 473 loff_t start_byte, loff_t end_byte) 474 { 475 struct page *page; 476 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 477 pgoff_t max = end_byte >> PAGE_SHIFT; 478 479 if (end_byte < start_byte) 480 return false; 481 482 rcu_read_lock(); 483 for (;;) { 484 page = xas_find(&xas, max); 485 if (xas_retry(&xas, page)) 486 continue; 487 /* Shadow entries don't count */ 488 if (xa_is_value(page)) 489 continue; 490 /* 491 * We don't need to try to pin this page; we're about to 492 * release the RCU lock anyway. It is enough to know that 493 * there was a page here recently. 494 */ 495 break; 496 } 497 rcu_read_unlock(); 498 499 return page != NULL; 500 } 501 EXPORT_SYMBOL(filemap_range_has_page); 502 503 static void __filemap_fdatawait_range(struct address_space *mapping, 504 loff_t start_byte, loff_t end_byte) 505 { 506 pgoff_t index = start_byte >> PAGE_SHIFT; 507 pgoff_t end = end_byte >> PAGE_SHIFT; 508 struct pagevec pvec; 509 int nr_pages; 510 511 if (end_byte < start_byte) 512 return; 513 514 pagevec_init(&pvec); 515 while (index <= end) { 516 unsigned i; 517 518 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, 519 end, PAGECACHE_TAG_WRITEBACK); 520 if (!nr_pages) 521 break; 522 523 for (i = 0; i < nr_pages; i++) { 524 struct page *page = pvec.pages[i]; 525 526 wait_on_page_writeback(page); 527 ClearPageError(page); 528 } 529 pagevec_release(&pvec); 530 cond_resched(); 531 } 532 } 533 534 /** 535 * filemap_fdatawait_range - wait for writeback to complete 536 * @mapping: address space structure to wait for 537 * @start_byte: offset in bytes where the range starts 538 * @end_byte: offset in bytes where the range ends (inclusive) 539 * 540 * Walk the list of under-writeback pages of the given address space 541 * in the given range and wait for all of them. Check error status of 542 * the address space and return it. 543 * 544 * Since the error status of the address space is cleared by this function, 545 * callers are responsible for checking the return value and handling and/or 546 * reporting the error. 547 * 548 * Return: error status of the address space. 549 */ 550 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 551 loff_t end_byte) 552 { 553 __filemap_fdatawait_range(mapping, start_byte, end_byte); 554 return filemap_check_errors(mapping); 555 } 556 EXPORT_SYMBOL(filemap_fdatawait_range); 557 558 /** 559 * filemap_fdatawait_range_keep_errors - wait for writeback to complete 560 * @mapping: address space structure to wait for 561 * @start_byte: offset in bytes where the range starts 562 * @end_byte: offset in bytes where the range ends (inclusive) 563 * 564 * Walk the list of under-writeback pages of the given address space in the 565 * given range and wait for all of them. Unlike filemap_fdatawait_range(), 566 * this function does not clear error status of the address space. 567 * 568 * Use this function if callers don't handle errors themselves. Expected 569 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 570 * fsfreeze(8) 571 */ 572 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 573 loff_t start_byte, loff_t end_byte) 574 { 575 __filemap_fdatawait_range(mapping, start_byte, end_byte); 576 return filemap_check_and_keep_errors(mapping); 577 } 578 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); 579 580 /** 581 * file_fdatawait_range - wait for writeback to complete 582 * @file: file pointing to address space structure to wait for 583 * @start_byte: offset in bytes where the range starts 584 * @end_byte: offset in bytes where the range ends (inclusive) 585 * 586 * Walk the list of under-writeback pages of the address space that file 587 * refers to, in the given range and wait for all of them. Check error 588 * status of the address space vs. the file->f_wb_err cursor and return it. 589 * 590 * Since the error status of the file is advanced by this function, 591 * callers are responsible for checking the return value and handling and/or 592 * reporting the error. 593 * 594 * Return: error status of the address space vs. the file->f_wb_err cursor. 595 */ 596 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 597 { 598 struct address_space *mapping = file->f_mapping; 599 600 __filemap_fdatawait_range(mapping, start_byte, end_byte); 601 return file_check_and_advance_wb_err(file); 602 } 603 EXPORT_SYMBOL(file_fdatawait_range); 604 605 /** 606 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 607 * @mapping: address space structure to wait for 608 * 609 * Walk the list of under-writeback pages of the given address space 610 * and wait for all of them. Unlike filemap_fdatawait(), this function 611 * does not clear error status of the address space. 612 * 613 * Use this function if callers don't handle errors themselves. Expected 614 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 615 * fsfreeze(8) 616 * 617 * Return: error status of the address space. 618 */ 619 int filemap_fdatawait_keep_errors(struct address_space *mapping) 620 { 621 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 622 return filemap_check_and_keep_errors(mapping); 623 } 624 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 625 626 /* Returns true if writeback might be needed or already in progress. */ 627 static bool mapping_needs_writeback(struct address_space *mapping) 628 { 629 if (dax_mapping(mapping)) 630 return mapping->nrexceptional; 631 632 return mapping->nrpages; 633 } 634 635 /** 636 * filemap_write_and_wait_range - write out & wait on a file range 637 * @mapping: the address_space for the pages 638 * @lstart: offset in bytes where the range starts 639 * @lend: offset in bytes where the range ends (inclusive) 640 * 641 * Write out and wait upon file offsets lstart->lend, inclusive. 642 * 643 * Note that @lend is inclusive (describes the last byte to be written) so 644 * that this function can be used to write to the very end-of-file (end = -1). 645 * 646 * Return: error status of the address space. 647 */ 648 int filemap_write_and_wait_range(struct address_space *mapping, 649 loff_t lstart, loff_t lend) 650 { 651 int err = 0; 652 653 if (mapping_needs_writeback(mapping)) { 654 err = __filemap_fdatawrite_range(mapping, lstart, lend, 655 WB_SYNC_ALL); 656 /* 657 * Even if the above returned error, the pages may be 658 * written partially (e.g. -ENOSPC), so we wait for it. 659 * But the -EIO is special case, it may indicate the worst 660 * thing (e.g. bug) happened, so we avoid waiting for it. 661 */ 662 if (err != -EIO) { 663 int err2 = filemap_fdatawait_range(mapping, 664 lstart, lend); 665 if (!err) 666 err = err2; 667 } else { 668 /* Clear any previously stored errors */ 669 filemap_check_errors(mapping); 670 } 671 } else { 672 err = filemap_check_errors(mapping); 673 } 674 return err; 675 } 676 EXPORT_SYMBOL(filemap_write_and_wait_range); 677 678 void __filemap_set_wb_err(struct address_space *mapping, int err) 679 { 680 errseq_t eseq = errseq_set(&mapping->wb_err, err); 681 682 trace_filemap_set_wb_err(mapping, eseq); 683 } 684 EXPORT_SYMBOL(__filemap_set_wb_err); 685 686 /** 687 * file_check_and_advance_wb_err - report wb error (if any) that was previously 688 * and advance wb_err to current one 689 * @file: struct file on which the error is being reported 690 * 691 * When userland calls fsync (or something like nfsd does the equivalent), we 692 * want to report any writeback errors that occurred since the last fsync (or 693 * since the file was opened if there haven't been any). 694 * 695 * Grab the wb_err from the mapping. If it matches what we have in the file, 696 * then just quickly return 0. The file is all caught up. 697 * 698 * If it doesn't match, then take the mapping value, set the "seen" flag in 699 * it and try to swap it into place. If it works, or another task beat us 700 * to it with the new value, then update the f_wb_err and return the error 701 * portion. The error at this point must be reported via proper channels 702 * (a'la fsync, or NFS COMMIT operation, etc.). 703 * 704 * While we handle mapping->wb_err with atomic operations, the f_wb_err 705 * value is protected by the f_lock since we must ensure that it reflects 706 * the latest value swapped in for this file descriptor. 707 * 708 * Return: %0 on success, negative error code otherwise. 709 */ 710 int file_check_and_advance_wb_err(struct file *file) 711 { 712 int err = 0; 713 errseq_t old = READ_ONCE(file->f_wb_err); 714 struct address_space *mapping = file->f_mapping; 715 716 /* Locklessly handle the common case where nothing has changed */ 717 if (errseq_check(&mapping->wb_err, old)) { 718 /* Something changed, must use slow path */ 719 spin_lock(&file->f_lock); 720 old = file->f_wb_err; 721 err = errseq_check_and_advance(&mapping->wb_err, 722 &file->f_wb_err); 723 trace_file_check_and_advance_wb_err(file, old); 724 spin_unlock(&file->f_lock); 725 } 726 727 /* 728 * We're mostly using this function as a drop in replacement for 729 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 730 * that the legacy code would have had on these flags. 731 */ 732 clear_bit(AS_EIO, &mapping->flags); 733 clear_bit(AS_ENOSPC, &mapping->flags); 734 return err; 735 } 736 EXPORT_SYMBOL(file_check_and_advance_wb_err); 737 738 /** 739 * file_write_and_wait_range - write out & wait on a file range 740 * @file: file pointing to address_space with pages 741 * @lstart: offset in bytes where the range starts 742 * @lend: offset in bytes where the range ends (inclusive) 743 * 744 * Write out and wait upon file offsets lstart->lend, inclusive. 745 * 746 * Note that @lend is inclusive (describes the last byte to be written) so 747 * that this function can be used to write to the very end-of-file (end = -1). 748 * 749 * After writing out and waiting on the data, we check and advance the 750 * f_wb_err cursor to the latest value, and return any errors detected there. 751 * 752 * Return: %0 on success, negative error code otherwise. 753 */ 754 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 755 { 756 int err = 0, err2; 757 struct address_space *mapping = file->f_mapping; 758 759 if (mapping_needs_writeback(mapping)) { 760 err = __filemap_fdatawrite_range(mapping, lstart, lend, 761 WB_SYNC_ALL); 762 /* See comment of filemap_write_and_wait() */ 763 if (err != -EIO) 764 __filemap_fdatawait_range(mapping, lstart, lend); 765 } 766 err2 = file_check_and_advance_wb_err(file); 767 if (!err) 768 err = err2; 769 return err; 770 } 771 EXPORT_SYMBOL(file_write_and_wait_range); 772 773 /** 774 * replace_page_cache_page - replace a pagecache page with a new one 775 * @old: page to be replaced 776 * @new: page to replace with 777 * @gfp_mask: allocation mode 778 * 779 * This function replaces a page in the pagecache with a new one. On 780 * success it acquires the pagecache reference for the new page and 781 * drops it for the old page. Both the old and new pages must be 782 * locked. This function does not add the new page to the LRU, the 783 * caller must do that. 784 * 785 * The remove + add is atomic. This function cannot fail. 786 * 787 * Return: %0 788 */ 789 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) 790 { 791 struct address_space *mapping = old->mapping; 792 void (*freepage)(struct page *) = mapping->a_ops->freepage; 793 pgoff_t offset = old->index; 794 XA_STATE(xas, &mapping->i_pages, offset); 795 unsigned long flags; 796 797 VM_BUG_ON_PAGE(!PageLocked(old), old); 798 VM_BUG_ON_PAGE(!PageLocked(new), new); 799 VM_BUG_ON_PAGE(new->mapping, new); 800 801 get_page(new); 802 new->mapping = mapping; 803 new->index = offset; 804 805 xas_lock_irqsave(&xas, flags); 806 xas_store(&xas, new); 807 808 old->mapping = NULL; 809 /* hugetlb pages do not participate in page cache accounting. */ 810 if (!PageHuge(old)) 811 __dec_node_page_state(new, NR_FILE_PAGES); 812 if (!PageHuge(new)) 813 __inc_node_page_state(new, NR_FILE_PAGES); 814 if (PageSwapBacked(old)) 815 __dec_node_page_state(new, NR_SHMEM); 816 if (PageSwapBacked(new)) 817 __inc_node_page_state(new, NR_SHMEM); 818 xas_unlock_irqrestore(&xas, flags); 819 mem_cgroup_migrate(old, new); 820 if (freepage) 821 freepage(old); 822 put_page(old); 823 824 return 0; 825 } 826 EXPORT_SYMBOL_GPL(replace_page_cache_page); 827 828 static int __add_to_page_cache_locked(struct page *page, 829 struct address_space *mapping, 830 pgoff_t offset, gfp_t gfp_mask, 831 void **shadowp) 832 { 833 XA_STATE(xas, &mapping->i_pages, offset); 834 int huge = PageHuge(page); 835 struct mem_cgroup *memcg; 836 int error; 837 void *old; 838 839 VM_BUG_ON_PAGE(!PageLocked(page), page); 840 VM_BUG_ON_PAGE(PageSwapBacked(page), page); 841 mapping_set_update(&xas, mapping); 842 843 if (!huge) { 844 error = mem_cgroup_try_charge(page, current->mm, 845 gfp_mask, &memcg, false); 846 if (error) 847 return error; 848 } 849 850 get_page(page); 851 page->mapping = mapping; 852 page->index = offset; 853 854 do { 855 xas_lock_irq(&xas); 856 old = xas_load(&xas); 857 if (old && !xa_is_value(old)) 858 xas_set_err(&xas, -EEXIST); 859 xas_store(&xas, page); 860 if (xas_error(&xas)) 861 goto unlock; 862 863 if (xa_is_value(old)) { 864 mapping->nrexceptional--; 865 if (shadowp) 866 *shadowp = old; 867 } 868 mapping->nrpages++; 869 870 /* hugetlb pages do not participate in page cache accounting */ 871 if (!huge) 872 __inc_node_page_state(page, NR_FILE_PAGES); 873 unlock: 874 xas_unlock_irq(&xas); 875 } while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK)); 876 877 if (xas_error(&xas)) 878 goto error; 879 880 if (!huge) 881 mem_cgroup_commit_charge(page, memcg, false, false); 882 trace_mm_filemap_add_to_page_cache(page); 883 return 0; 884 error: 885 page->mapping = NULL; 886 /* Leave page->index set: truncation relies upon it */ 887 if (!huge) 888 mem_cgroup_cancel_charge(page, memcg, false); 889 put_page(page); 890 return xas_error(&xas); 891 } 892 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO); 893 894 /** 895 * add_to_page_cache_locked - add a locked page to the pagecache 896 * @page: page to add 897 * @mapping: the page's address_space 898 * @offset: page index 899 * @gfp_mask: page allocation mode 900 * 901 * This function is used to add a page to the pagecache. It must be locked. 902 * This function does not add the page to the LRU. The caller must do that. 903 * 904 * Return: %0 on success, negative error code otherwise. 905 */ 906 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 907 pgoff_t offset, gfp_t gfp_mask) 908 { 909 return __add_to_page_cache_locked(page, mapping, offset, 910 gfp_mask, NULL); 911 } 912 EXPORT_SYMBOL(add_to_page_cache_locked); 913 914 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 915 pgoff_t offset, gfp_t gfp_mask) 916 { 917 void *shadow = NULL; 918 int ret; 919 920 __SetPageLocked(page); 921 ret = __add_to_page_cache_locked(page, mapping, offset, 922 gfp_mask, &shadow); 923 if (unlikely(ret)) 924 __ClearPageLocked(page); 925 else { 926 /* 927 * The page might have been evicted from cache only 928 * recently, in which case it should be activated like 929 * any other repeatedly accessed page. 930 * The exception is pages getting rewritten; evicting other 931 * data from the working set, only to cache data that will 932 * get overwritten with something else, is a waste of memory. 933 */ 934 WARN_ON_ONCE(PageActive(page)); 935 if (!(gfp_mask & __GFP_WRITE) && shadow) 936 workingset_refault(page, shadow); 937 lru_cache_add(page); 938 } 939 return ret; 940 } 941 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 942 943 #ifdef CONFIG_NUMA 944 struct page *__page_cache_alloc(gfp_t gfp) 945 { 946 int n; 947 struct page *page; 948 949 if (cpuset_do_page_mem_spread()) { 950 unsigned int cpuset_mems_cookie; 951 do { 952 cpuset_mems_cookie = read_mems_allowed_begin(); 953 n = cpuset_mem_spread_node(); 954 page = __alloc_pages_node(n, gfp, 0); 955 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie)); 956 957 return page; 958 } 959 return alloc_pages(gfp, 0); 960 } 961 EXPORT_SYMBOL(__page_cache_alloc); 962 #endif 963 964 /* 965 * In order to wait for pages to become available there must be 966 * waitqueues associated with pages. By using a hash table of 967 * waitqueues where the bucket discipline is to maintain all 968 * waiters on the same queue and wake all when any of the pages 969 * become available, and for the woken contexts to check to be 970 * sure the appropriate page became available, this saves space 971 * at a cost of "thundering herd" phenomena during rare hash 972 * collisions. 973 */ 974 #define PAGE_WAIT_TABLE_BITS 8 975 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 976 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 977 978 static wait_queue_head_t *page_waitqueue(struct page *page) 979 { 980 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)]; 981 } 982 983 void __init pagecache_init(void) 984 { 985 int i; 986 987 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 988 init_waitqueue_head(&page_wait_table[i]); 989 990 page_writeback_init(); 991 } 992 993 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */ 994 struct wait_page_key { 995 struct page *page; 996 int bit_nr; 997 int page_match; 998 }; 999 1000 struct wait_page_queue { 1001 struct page *page; 1002 int bit_nr; 1003 wait_queue_entry_t wait; 1004 }; 1005 1006 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 1007 { 1008 struct wait_page_key *key = arg; 1009 struct wait_page_queue *wait_page 1010 = container_of(wait, struct wait_page_queue, wait); 1011 1012 if (wait_page->page != key->page) 1013 return 0; 1014 key->page_match = 1; 1015 1016 if (wait_page->bit_nr != key->bit_nr) 1017 return 0; 1018 1019 /* 1020 * Stop walking if it's locked. 1021 * Is this safe if put_and_wait_on_page_locked() is in use? 1022 * Yes: the waker must hold a reference to this page, and if PG_locked 1023 * has now already been set by another task, that task must also hold 1024 * a reference to the *same usage* of this page; so there is no need 1025 * to walk on to wake even the put_and_wait_on_page_locked() callers. 1026 */ 1027 if (test_bit(key->bit_nr, &key->page->flags)) 1028 return -1; 1029 1030 return autoremove_wake_function(wait, mode, sync, key); 1031 } 1032 1033 static void wake_up_page_bit(struct page *page, int bit_nr) 1034 { 1035 wait_queue_head_t *q = page_waitqueue(page); 1036 struct wait_page_key key; 1037 unsigned long flags; 1038 wait_queue_entry_t bookmark; 1039 1040 key.page = page; 1041 key.bit_nr = bit_nr; 1042 key.page_match = 0; 1043 1044 bookmark.flags = 0; 1045 bookmark.private = NULL; 1046 bookmark.func = NULL; 1047 INIT_LIST_HEAD(&bookmark.entry); 1048 1049 spin_lock_irqsave(&q->lock, flags); 1050 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1051 1052 while (bookmark.flags & WQ_FLAG_BOOKMARK) { 1053 /* 1054 * Take a breather from holding the lock, 1055 * allow pages that finish wake up asynchronously 1056 * to acquire the lock and remove themselves 1057 * from wait queue 1058 */ 1059 spin_unlock_irqrestore(&q->lock, flags); 1060 cpu_relax(); 1061 spin_lock_irqsave(&q->lock, flags); 1062 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1063 } 1064 1065 /* 1066 * It is possible for other pages to have collided on the waitqueue 1067 * hash, so in that case check for a page match. That prevents a long- 1068 * term waiter 1069 * 1070 * It is still possible to miss a case here, when we woke page waiters 1071 * and removed them from the waitqueue, but there are still other 1072 * page waiters. 1073 */ 1074 if (!waitqueue_active(q) || !key.page_match) { 1075 ClearPageWaiters(page); 1076 /* 1077 * It's possible to miss clearing Waiters here, when we woke 1078 * our page waiters, but the hashed waitqueue has waiters for 1079 * other pages on it. 1080 * 1081 * That's okay, it's a rare case. The next waker will clear it. 1082 */ 1083 } 1084 spin_unlock_irqrestore(&q->lock, flags); 1085 } 1086 1087 static void wake_up_page(struct page *page, int bit) 1088 { 1089 if (!PageWaiters(page)) 1090 return; 1091 wake_up_page_bit(page, bit); 1092 } 1093 1094 /* 1095 * A choice of three behaviors for wait_on_page_bit_common(): 1096 */ 1097 enum behavior { 1098 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1099 * __lock_page() waiting on then setting PG_locked. 1100 */ 1101 SHARED, /* Hold ref to page and check the bit when woken, like 1102 * wait_on_page_writeback() waiting on PG_writeback. 1103 */ 1104 DROP, /* Drop ref to page before wait, no check when woken, 1105 * like put_and_wait_on_page_locked() on PG_locked. 1106 */ 1107 }; 1108 1109 static inline int wait_on_page_bit_common(wait_queue_head_t *q, 1110 struct page *page, int bit_nr, int state, enum behavior behavior) 1111 { 1112 struct wait_page_queue wait_page; 1113 wait_queue_entry_t *wait = &wait_page.wait; 1114 bool bit_is_set; 1115 bool thrashing = false; 1116 bool delayacct = false; 1117 unsigned long pflags; 1118 int ret = 0; 1119 1120 if (bit_nr == PG_locked && 1121 !PageUptodate(page) && PageWorkingset(page)) { 1122 if (!PageSwapBacked(page)) { 1123 delayacct_thrashing_start(); 1124 delayacct = true; 1125 } 1126 psi_memstall_enter(&pflags); 1127 thrashing = true; 1128 } 1129 1130 init_wait(wait); 1131 wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0; 1132 wait->func = wake_page_function; 1133 wait_page.page = page; 1134 wait_page.bit_nr = bit_nr; 1135 1136 for (;;) { 1137 spin_lock_irq(&q->lock); 1138 1139 if (likely(list_empty(&wait->entry))) { 1140 __add_wait_queue_entry_tail(q, wait); 1141 SetPageWaiters(page); 1142 } 1143 1144 set_current_state(state); 1145 1146 spin_unlock_irq(&q->lock); 1147 1148 bit_is_set = test_bit(bit_nr, &page->flags); 1149 if (behavior == DROP) 1150 put_page(page); 1151 1152 if (likely(bit_is_set)) 1153 io_schedule(); 1154 1155 if (behavior == EXCLUSIVE) { 1156 if (!test_and_set_bit_lock(bit_nr, &page->flags)) 1157 break; 1158 } else if (behavior == SHARED) { 1159 if (!test_bit(bit_nr, &page->flags)) 1160 break; 1161 } 1162 1163 if (signal_pending_state(state, current)) { 1164 ret = -EINTR; 1165 break; 1166 } 1167 1168 if (behavior == DROP) { 1169 /* 1170 * We can no longer safely access page->flags: 1171 * even if CONFIG_MEMORY_HOTREMOVE is not enabled, 1172 * there is a risk of waiting forever on a page reused 1173 * for something that keeps it locked indefinitely. 1174 * But best check for -EINTR above before breaking. 1175 */ 1176 break; 1177 } 1178 } 1179 1180 finish_wait(q, wait); 1181 1182 if (thrashing) { 1183 if (delayacct) 1184 delayacct_thrashing_end(); 1185 psi_memstall_leave(&pflags); 1186 } 1187 1188 /* 1189 * A signal could leave PageWaiters set. Clearing it here if 1190 * !waitqueue_active would be possible (by open-coding finish_wait), 1191 * but still fail to catch it in the case of wait hash collision. We 1192 * already can fail to clear wait hash collision cases, so don't 1193 * bother with signals either. 1194 */ 1195 1196 return ret; 1197 } 1198 1199 void wait_on_page_bit(struct page *page, int bit_nr) 1200 { 1201 wait_queue_head_t *q = page_waitqueue(page); 1202 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1203 } 1204 EXPORT_SYMBOL(wait_on_page_bit); 1205 1206 int wait_on_page_bit_killable(struct page *page, int bit_nr) 1207 { 1208 wait_queue_head_t *q = page_waitqueue(page); 1209 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED); 1210 } 1211 EXPORT_SYMBOL(wait_on_page_bit_killable); 1212 1213 /** 1214 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked 1215 * @page: The page to wait for. 1216 * 1217 * The caller should hold a reference on @page. They expect the page to 1218 * become unlocked relatively soon, but do not wish to hold up migration 1219 * (for example) by holding the reference while waiting for the page to 1220 * come unlocked. After this function returns, the caller should not 1221 * dereference @page. 1222 */ 1223 void put_and_wait_on_page_locked(struct page *page) 1224 { 1225 wait_queue_head_t *q; 1226 1227 page = compound_head(page); 1228 q = page_waitqueue(page); 1229 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP); 1230 } 1231 1232 /** 1233 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 1234 * @page: Page defining the wait queue of interest 1235 * @waiter: Waiter to add to the queue 1236 * 1237 * Add an arbitrary @waiter to the wait queue for the nominated @page. 1238 */ 1239 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter) 1240 { 1241 wait_queue_head_t *q = page_waitqueue(page); 1242 unsigned long flags; 1243 1244 spin_lock_irqsave(&q->lock, flags); 1245 __add_wait_queue_entry_tail(q, waiter); 1246 SetPageWaiters(page); 1247 spin_unlock_irqrestore(&q->lock, flags); 1248 } 1249 EXPORT_SYMBOL_GPL(add_page_wait_queue); 1250 1251 #ifndef clear_bit_unlock_is_negative_byte 1252 1253 /* 1254 * PG_waiters is the high bit in the same byte as PG_lock. 1255 * 1256 * On x86 (and on many other architectures), we can clear PG_lock and 1257 * test the sign bit at the same time. But if the architecture does 1258 * not support that special operation, we just do this all by hand 1259 * instead. 1260 * 1261 * The read of PG_waiters has to be after (or concurrently with) PG_locked 1262 * being cleared, but a memory barrier should be unneccssary since it is 1263 * in the same byte as PG_locked. 1264 */ 1265 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) 1266 { 1267 clear_bit_unlock(nr, mem); 1268 /* smp_mb__after_atomic(); */ 1269 return test_bit(PG_waiters, mem); 1270 } 1271 1272 #endif 1273 1274 /** 1275 * unlock_page - unlock a locked page 1276 * @page: the page 1277 * 1278 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 1279 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 1280 * mechanism between PageLocked pages and PageWriteback pages is shared. 1281 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 1282 * 1283 * Note that this depends on PG_waiters being the sign bit in the byte 1284 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to 1285 * clear the PG_locked bit and test PG_waiters at the same time fairly 1286 * portably (architectures that do LL/SC can test any bit, while x86 can 1287 * test the sign bit). 1288 */ 1289 void unlock_page(struct page *page) 1290 { 1291 BUILD_BUG_ON(PG_waiters != 7); 1292 page = compound_head(page); 1293 VM_BUG_ON_PAGE(!PageLocked(page), page); 1294 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags)) 1295 wake_up_page_bit(page, PG_locked); 1296 } 1297 EXPORT_SYMBOL(unlock_page); 1298 1299 /** 1300 * end_page_writeback - end writeback against a page 1301 * @page: the page 1302 */ 1303 void end_page_writeback(struct page *page) 1304 { 1305 /* 1306 * TestClearPageReclaim could be used here but it is an atomic 1307 * operation and overkill in this particular case. Failing to 1308 * shuffle a page marked for immediate reclaim is too mild to 1309 * justify taking an atomic operation penalty at the end of 1310 * ever page writeback. 1311 */ 1312 if (PageReclaim(page)) { 1313 ClearPageReclaim(page); 1314 rotate_reclaimable_page(page); 1315 } 1316 1317 if (!test_clear_page_writeback(page)) 1318 BUG(); 1319 1320 smp_mb__after_atomic(); 1321 wake_up_page(page, PG_writeback); 1322 } 1323 EXPORT_SYMBOL(end_page_writeback); 1324 1325 /* 1326 * After completing I/O on a page, call this routine to update the page 1327 * flags appropriately 1328 */ 1329 void page_endio(struct page *page, bool is_write, int err) 1330 { 1331 if (!is_write) { 1332 if (!err) { 1333 SetPageUptodate(page); 1334 } else { 1335 ClearPageUptodate(page); 1336 SetPageError(page); 1337 } 1338 unlock_page(page); 1339 } else { 1340 if (err) { 1341 struct address_space *mapping; 1342 1343 SetPageError(page); 1344 mapping = page_mapping(page); 1345 if (mapping) 1346 mapping_set_error(mapping, err); 1347 } 1348 end_page_writeback(page); 1349 } 1350 } 1351 EXPORT_SYMBOL_GPL(page_endio); 1352 1353 /** 1354 * __lock_page - get a lock on the page, assuming we need to sleep to get it 1355 * @__page: the page to lock 1356 */ 1357 void __lock_page(struct page *__page) 1358 { 1359 struct page *page = compound_head(__page); 1360 wait_queue_head_t *q = page_waitqueue(page); 1361 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, 1362 EXCLUSIVE); 1363 } 1364 EXPORT_SYMBOL(__lock_page); 1365 1366 int __lock_page_killable(struct page *__page) 1367 { 1368 struct page *page = compound_head(__page); 1369 wait_queue_head_t *q = page_waitqueue(page); 1370 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, 1371 EXCLUSIVE); 1372 } 1373 EXPORT_SYMBOL_GPL(__lock_page_killable); 1374 1375 /* 1376 * Return values: 1377 * 1 - page is locked; mmap_sem is still held. 1378 * 0 - page is not locked. 1379 * mmap_sem has been released (up_read()), unless flags had both 1380 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 1381 * which case mmap_sem is still held. 1382 * 1383 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1 1384 * with the page locked and the mmap_sem unperturbed. 1385 */ 1386 int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 1387 unsigned int flags) 1388 { 1389 if (fault_flag_allow_retry_first(flags)) { 1390 /* 1391 * CAUTION! In this case, mmap_sem is not released 1392 * even though return 0. 1393 */ 1394 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1395 return 0; 1396 1397 up_read(&mm->mmap_sem); 1398 if (flags & FAULT_FLAG_KILLABLE) 1399 wait_on_page_locked_killable(page); 1400 else 1401 wait_on_page_locked(page); 1402 return 0; 1403 } else { 1404 if (flags & FAULT_FLAG_KILLABLE) { 1405 int ret; 1406 1407 ret = __lock_page_killable(page); 1408 if (ret) { 1409 up_read(&mm->mmap_sem); 1410 return 0; 1411 } 1412 } else 1413 __lock_page(page); 1414 return 1; 1415 } 1416 } 1417 1418 /** 1419 * page_cache_next_miss() - Find the next gap in the page cache. 1420 * @mapping: Mapping. 1421 * @index: Index. 1422 * @max_scan: Maximum range to search. 1423 * 1424 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1425 * gap with the lowest index. 1426 * 1427 * This function may be called under the rcu_read_lock. However, this will 1428 * not atomically search a snapshot of the cache at a single point in time. 1429 * For example, if a gap is created at index 5, then subsequently a gap is 1430 * created at index 10, page_cache_next_miss covering both indices may 1431 * return 10 if called under the rcu_read_lock. 1432 * 1433 * Return: The index of the gap if found, otherwise an index outside the 1434 * range specified (in which case 'return - index >= max_scan' will be true). 1435 * In the rare case of index wrap-around, 0 will be returned. 1436 */ 1437 pgoff_t page_cache_next_miss(struct address_space *mapping, 1438 pgoff_t index, unsigned long max_scan) 1439 { 1440 XA_STATE(xas, &mapping->i_pages, index); 1441 1442 while (max_scan--) { 1443 void *entry = xas_next(&xas); 1444 if (!entry || xa_is_value(entry)) 1445 break; 1446 if (xas.xa_index == 0) 1447 break; 1448 } 1449 1450 return xas.xa_index; 1451 } 1452 EXPORT_SYMBOL(page_cache_next_miss); 1453 1454 /** 1455 * page_cache_prev_miss() - Find the previous gap in the page cache. 1456 * @mapping: Mapping. 1457 * @index: Index. 1458 * @max_scan: Maximum range to search. 1459 * 1460 * Search the range [max(index - max_scan + 1, 0), index] for the 1461 * gap with the highest index. 1462 * 1463 * This function may be called under the rcu_read_lock. However, this will 1464 * not atomically search a snapshot of the cache at a single point in time. 1465 * For example, if a gap is created at index 10, then subsequently a gap is 1466 * created at index 5, page_cache_prev_miss() covering both indices may 1467 * return 5 if called under the rcu_read_lock. 1468 * 1469 * Return: The index of the gap if found, otherwise an index outside the 1470 * range specified (in which case 'index - return >= max_scan' will be true). 1471 * In the rare case of wrap-around, ULONG_MAX will be returned. 1472 */ 1473 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1474 pgoff_t index, unsigned long max_scan) 1475 { 1476 XA_STATE(xas, &mapping->i_pages, index); 1477 1478 while (max_scan--) { 1479 void *entry = xas_prev(&xas); 1480 if (!entry || xa_is_value(entry)) 1481 break; 1482 if (xas.xa_index == ULONG_MAX) 1483 break; 1484 } 1485 1486 return xas.xa_index; 1487 } 1488 EXPORT_SYMBOL(page_cache_prev_miss); 1489 1490 /** 1491 * find_get_entry - find and get a page cache entry 1492 * @mapping: the address_space to search 1493 * @offset: the page cache index 1494 * 1495 * Looks up the page cache slot at @mapping & @offset. If there is a 1496 * page cache page, it is returned with an increased refcount. 1497 * 1498 * If the slot holds a shadow entry of a previously evicted page, or a 1499 * swap entry from shmem/tmpfs, it is returned. 1500 * 1501 * Return: the found page or shadow entry, %NULL if nothing is found. 1502 */ 1503 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset) 1504 { 1505 XA_STATE(xas, &mapping->i_pages, offset); 1506 struct page *page; 1507 1508 rcu_read_lock(); 1509 repeat: 1510 xas_reset(&xas); 1511 page = xas_load(&xas); 1512 if (xas_retry(&xas, page)) 1513 goto repeat; 1514 /* 1515 * A shadow entry of a recently evicted page, or a swap entry from 1516 * shmem/tmpfs. Return it without attempting to raise page count. 1517 */ 1518 if (!page || xa_is_value(page)) 1519 goto out; 1520 1521 if (!page_cache_get_speculative(page)) 1522 goto repeat; 1523 1524 /* 1525 * Has the page moved or been split? 1526 * This is part of the lockless pagecache protocol. See 1527 * include/linux/pagemap.h for details. 1528 */ 1529 if (unlikely(page != xas_reload(&xas))) { 1530 put_page(page); 1531 goto repeat; 1532 } 1533 page = find_subpage(page, offset); 1534 out: 1535 rcu_read_unlock(); 1536 1537 return page; 1538 } 1539 1540 /** 1541 * find_lock_entry - locate, pin and lock a page cache entry 1542 * @mapping: the address_space to search 1543 * @offset: the page cache index 1544 * 1545 * Looks up the page cache slot at @mapping & @offset. If there is a 1546 * page cache page, it is returned locked and with an increased 1547 * refcount. 1548 * 1549 * If the slot holds a shadow entry of a previously evicted page, or a 1550 * swap entry from shmem/tmpfs, it is returned. 1551 * 1552 * find_lock_entry() may sleep. 1553 * 1554 * Return: the found page or shadow entry, %NULL if nothing is found. 1555 */ 1556 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset) 1557 { 1558 struct page *page; 1559 1560 repeat: 1561 page = find_get_entry(mapping, offset); 1562 if (page && !xa_is_value(page)) { 1563 lock_page(page); 1564 /* Has the page been truncated? */ 1565 if (unlikely(page_mapping(page) != mapping)) { 1566 unlock_page(page); 1567 put_page(page); 1568 goto repeat; 1569 } 1570 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page); 1571 } 1572 return page; 1573 } 1574 EXPORT_SYMBOL(find_lock_entry); 1575 1576 /** 1577 * pagecache_get_page - Find and get a reference to a page. 1578 * @mapping: The address_space to search. 1579 * @index: The page index. 1580 * @fgp_flags: %FGP flags modify how the page is returned. 1581 * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified. 1582 * 1583 * Looks up the page cache entry at @mapping & @index. 1584 * 1585 * @fgp_flags can be zero or more of these flags: 1586 * 1587 * * %FGP_ACCESSED - The page will be marked accessed. 1588 * * %FGP_LOCK - The page is returned locked. 1589 * * %FGP_CREAT - If no page is present then a new page is allocated using 1590 * @gfp_mask and added to the page cache and the VM's LRU list. 1591 * The page is returned locked and with an increased refcount. 1592 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the 1593 * page is already in cache. If the page was allocated, unlock it before 1594 * returning so the caller can do the same dance. 1595 * 1596 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even 1597 * if the %GFP flags specified for %FGP_CREAT are atomic. 1598 * 1599 * If there is a page cache page, it is returned with an increased refcount. 1600 * 1601 * Return: The found page or %NULL otherwise. 1602 */ 1603 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index, 1604 int fgp_flags, gfp_t gfp_mask) 1605 { 1606 struct page *page; 1607 1608 repeat: 1609 page = find_get_entry(mapping, index); 1610 if (xa_is_value(page)) 1611 page = NULL; 1612 if (!page) 1613 goto no_page; 1614 1615 if (fgp_flags & FGP_LOCK) { 1616 if (fgp_flags & FGP_NOWAIT) { 1617 if (!trylock_page(page)) { 1618 put_page(page); 1619 return NULL; 1620 } 1621 } else { 1622 lock_page(page); 1623 } 1624 1625 /* Has the page been truncated? */ 1626 if (unlikely(compound_head(page)->mapping != mapping)) { 1627 unlock_page(page); 1628 put_page(page); 1629 goto repeat; 1630 } 1631 VM_BUG_ON_PAGE(page->index != index, page); 1632 } 1633 1634 if (fgp_flags & FGP_ACCESSED) 1635 mark_page_accessed(page); 1636 1637 no_page: 1638 if (!page && (fgp_flags & FGP_CREAT)) { 1639 int err; 1640 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping)) 1641 gfp_mask |= __GFP_WRITE; 1642 if (fgp_flags & FGP_NOFS) 1643 gfp_mask &= ~__GFP_FS; 1644 1645 page = __page_cache_alloc(gfp_mask); 1646 if (!page) 1647 return NULL; 1648 1649 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 1650 fgp_flags |= FGP_LOCK; 1651 1652 /* Init accessed so avoid atomic mark_page_accessed later */ 1653 if (fgp_flags & FGP_ACCESSED) 1654 __SetPageReferenced(page); 1655 1656 err = add_to_page_cache_lru(page, mapping, index, gfp_mask); 1657 if (unlikely(err)) { 1658 put_page(page); 1659 page = NULL; 1660 if (err == -EEXIST) 1661 goto repeat; 1662 } 1663 1664 /* 1665 * add_to_page_cache_lru locks the page, and for mmap we expect 1666 * an unlocked page. 1667 */ 1668 if (page && (fgp_flags & FGP_FOR_MMAP)) 1669 unlock_page(page); 1670 } 1671 1672 return page; 1673 } 1674 EXPORT_SYMBOL(pagecache_get_page); 1675 1676 /** 1677 * find_get_entries - gang pagecache lookup 1678 * @mapping: The address_space to search 1679 * @start: The starting page cache index 1680 * @nr_entries: The maximum number of entries 1681 * @entries: Where the resulting entries are placed 1682 * @indices: The cache indices corresponding to the entries in @entries 1683 * 1684 * find_get_entries() will search for and return a group of up to 1685 * @nr_entries entries in the mapping. The entries are placed at 1686 * @entries. find_get_entries() takes a reference against any actual 1687 * pages it returns. 1688 * 1689 * The search returns a group of mapping-contiguous page cache entries 1690 * with ascending indexes. There may be holes in the indices due to 1691 * not-present pages. 1692 * 1693 * Any shadow entries of evicted pages, or swap entries from 1694 * shmem/tmpfs, are included in the returned array. 1695 * 1696 * If it finds a Transparent Huge Page, head or tail, find_get_entries() 1697 * stops at that page: the caller is likely to have a better way to handle 1698 * the compound page as a whole, and then skip its extent, than repeatedly 1699 * calling find_get_entries() to return all its tails. 1700 * 1701 * Return: the number of pages and shadow entries which were found. 1702 */ 1703 unsigned find_get_entries(struct address_space *mapping, 1704 pgoff_t start, unsigned int nr_entries, 1705 struct page **entries, pgoff_t *indices) 1706 { 1707 XA_STATE(xas, &mapping->i_pages, start); 1708 struct page *page; 1709 unsigned int ret = 0; 1710 1711 if (!nr_entries) 1712 return 0; 1713 1714 rcu_read_lock(); 1715 xas_for_each(&xas, page, ULONG_MAX) { 1716 if (xas_retry(&xas, page)) 1717 continue; 1718 /* 1719 * A shadow entry of a recently evicted page, a swap 1720 * entry from shmem/tmpfs or a DAX entry. Return it 1721 * without attempting to raise page count. 1722 */ 1723 if (xa_is_value(page)) 1724 goto export; 1725 1726 if (!page_cache_get_speculative(page)) 1727 goto retry; 1728 1729 /* Has the page moved or been split? */ 1730 if (unlikely(page != xas_reload(&xas))) 1731 goto put_page; 1732 1733 /* 1734 * Terminate early on finding a THP, to allow the caller to 1735 * handle it all at once; but continue if this is hugetlbfs. 1736 */ 1737 if (PageTransHuge(page) && !PageHuge(page)) { 1738 page = find_subpage(page, xas.xa_index); 1739 nr_entries = ret + 1; 1740 } 1741 export: 1742 indices[ret] = xas.xa_index; 1743 entries[ret] = page; 1744 if (++ret == nr_entries) 1745 break; 1746 continue; 1747 put_page: 1748 put_page(page); 1749 retry: 1750 xas_reset(&xas); 1751 } 1752 rcu_read_unlock(); 1753 return ret; 1754 } 1755 1756 /** 1757 * find_get_pages_range - gang pagecache lookup 1758 * @mapping: The address_space to search 1759 * @start: The starting page index 1760 * @end: The final page index (inclusive) 1761 * @nr_pages: The maximum number of pages 1762 * @pages: Where the resulting pages are placed 1763 * 1764 * find_get_pages_range() will search for and return a group of up to @nr_pages 1765 * pages in the mapping starting at index @start and up to index @end 1766 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes 1767 * a reference against the returned pages. 1768 * 1769 * The search returns a group of mapping-contiguous pages with ascending 1770 * indexes. There may be holes in the indices due to not-present pages. 1771 * We also update @start to index the next page for the traversal. 1772 * 1773 * Return: the number of pages which were found. If this number is 1774 * smaller than @nr_pages, the end of specified range has been 1775 * reached. 1776 */ 1777 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, 1778 pgoff_t end, unsigned int nr_pages, 1779 struct page **pages) 1780 { 1781 XA_STATE(xas, &mapping->i_pages, *start); 1782 struct page *page; 1783 unsigned ret = 0; 1784 1785 if (unlikely(!nr_pages)) 1786 return 0; 1787 1788 rcu_read_lock(); 1789 xas_for_each(&xas, page, end) { 1790 if (xas_retry(&xas, page)) 1791 continue; 1792 /* Skip over shadow, swap and DAX entries */ 1793 if (xa_is_value(page)) 1794 continue; 1795 1796 if (!page_cache_get_speculative(page)) 1797 goto retry; 1798 1799 /* Has the page moved or been split? */ 1800 if (unlikely(page != xas_reload(&xas))) 1801 goto put_page; 1802 1803 pages[ret] = find_subpage(page, xas.xa_index); 1804 if (++ret == nr_pages) { 1805 *start = xas.xa_index + 1; 1806 goto out; 1807 } 1808 continue; 1809 put_page: 1810 put_page(page); 1811 retry: 1812 xas_reset(&xas); 1813 } 1814 1815 /* 1816 * We come here when there is no page beyond @end. We take care to not 1817 * overflow the index @start as it confuses some of the callers. This 1818 * breaks the iteration when there is a page at index -1 but that is 1819 * already broken anyway. 1820 */ 1821 if (end == (pgoff_t)-1) 1822 *start = (pgoff_t)-1; 1823 else 1824 *start = end + 1; 1825 out: 1826 rcu_read_unlock(); 1827 1828 return ret; 1829 } 1830 1831 /** 1832 * find_get_pages_contig - gang contiguous pagecache lookup 1833 * @mapping: The address_space to search 1834 * @index: The starting page index 1835 * @nr_pages: The maximum number of pages 1836 * @pages: Where the resulting pages are placed 1837 * 1838 * find_get_pages_contig() works exactly like find_get_pages(), except 1839 * that the returned number of pages are guaranteed to be contiguous. 1840 * 1841 * Return: the number of pages which were found. 1842 */ 1843 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 1844 unsigned int nr_pages, struct page **pages) 1845 { 1846 XA_STATE(xas, &mapping->i_pages, index); 1847 struct page *page; 1848 unsigned int ret = 0; 1849 1850 if (unlikely(!nr_pages)) 1851 return 0; 1852 1853 rcu_read_lock(); 1854 for (page = xas_load(&xas); page; page = xas_next(&xas)) { 1855 if (xas_retry(&xas, page)) 1856 continue; 1857 /* 1858 * If the entry has been swapped out, we can stop looking. 1859 * No current caller is looking for DAX entries. 1860 */ 1861 if (xa_is_value(page)) 1862 break; 1863 1864 if (!page_cache_get_speculative(page)) 1865 goto retry; 1866 1867 /* Has the page moved or been split? */ 1868 if (unlikely(page != xas_reload(&xas))) 1869 goto put_page; 1870 1871 pages[ret] = find_subpage(page, xas.xa_index); 1872 if (++ret == nr_pages) 1873 break; 1874 continue; 1875 put_page: 1876 put_page(page); 1877 retry: 1878 xas_reset(&xas); 1879 } 1880 rcu_read_unlock(); 1881 return ret; 1882 } 1883 EXPORT_SYMBOL(find_get_pages_contig); 1884 1885 /** 1886 * find_get_pages_range_tag - find and return pages in given range matching @tag 1887 * @mapping: the address_space to search 1888 * @index: the starting page index 1889 * @end: The final page index (inclusive) 1890 * @tag: the tag index 1891 * @nr_pages: the maximum number of pages 1892 * @pages: where the resulting pages are placed 1893 * 1894 * Like find_get_pages, except we only return pages which are tagged with 1895 * @tag. We update @index to index the next page for the traversal. 1896 * 1897 * Return: the number of pages which were found. 1898 */ 1899 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, 1900 pgoff_t end, xa_mark_t tag, unsigned int nr_pages, 1901 struct page **pages) 1902 { 1903 XA_STATE(xas, &mapping->i_pages, *index); 1904 struct page *page; 1905 unsigned ret = 0; 1906 1907 if (unlikely(!nr_pages)) 1908 return 0; 1909 1910 rcu_read_lock(); 1911 xas_for_each_marked(&xas, page, end, tag) { 1912 if (xas_retry(&xas, page)) 1913 continue; 1914 /* 1915 * Shadow entries should never be tagged, but this iteration 1916 * is lockless so there is a window for page reclaim to evict 1917 * a page we saw tagged. Skip over it. 1918 */ 1919 if (xa_is_value(page)) 1920 continue; 1921 1922 if (!page_cache_get_speculative(page)) 1923 goto retry; 1924 1925 /* Has the page moved or been split? */ 1926 if (unlikely(page != xas_reload(&xas))) 1927 goto put_page; 1928 1929 pages[ret] = find_subpage(page, xas.xa_index); 1930 if (++ret == nr_pages) { 1931 *index = xas.xa_index + 1; 1932 goto out; 1933 } 1934 continue; 1935 put_page: 1936 put_page(page); 1937 retry: 1938 xas_reset(&xas); 1939 } 1940 1941 /* 1942 * We come here when we got to @end. We take care to not overflow the 1943 * index @index as it confuses some of the callers. This breaks the 1944 * iteration when there is a page at index -1 but that is already 1945 * broken anyway. 1946 */ 1947 if (end == (pgoff_t)-1) 1948 *index = (pgoff_t)-1; 1949 else 1950 *index = end + 1; 1951 out: 1952 rcu_read_unlock(); 1953 1954 return ret; 1955 } 1956 EXPORT_SYMBOL(find_get_pages_range_tag); 1957 1958 /* 1959 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 1960 * a _large_ part of the i/o request. Imagine the worst scenario: 1961 * 1962 * ---R__________________________________________B__________ 1963 * ^ reading here ^ bad block(assume 4k) 1964 * 1965 * read(R) => miss => readahead(R...B) => media error => frustrating retries 1966 * => failing the whole request => read(R) => read(R+1) => 1967 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 1968 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 1969 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 1970 * 1971 * It is going insane. Fix it by quickly scaling down the readahead size. 1972 */ 1973 static void shrink_readahead_size_eio(struct file_ra_state *ra) 1974 { 1975 ra->ra_pages /= 4; 1976 } 1977 1978 /** 1979 * generic_file_buffered_read - generic file read routine 1980 * @iocb: the iocb to read 1981 * @iter: data destination 1982 * @written: already copied 1983 * 1984 * This is a generic file read routine, and uses the 1985 * mapping->a_ops->readpage() function for the actual low-level stuff. 1986 * 1987 * This is really ugly. But the goto's actually try to clarify some 1988 * of the logic when it comes to error handling etc. 1989 * 1990 * Return: 1991 * * total number of bytes copied, including those the were already @written 1992 * * negative error code if nothing was copied 1993 */ 1994 static ssize_t generic_file_buffered_read(struct kiocb *iocb, 1995 struct iov_iter *iter, ssize_t written) 1996 { 1997 struct file *filp = iocb->ki_filp; 1998 struct address_space *mapping = filp->f_mapping; 1999 struct inode *inode = mapping->host; 2000 struct file_ra_state *ra = &filp->f_ra; 2001 loff_t *ppos = &iocb->ki_pos; 2002 pgoff_t index; 2003 pgoff_t last_index; 2004 pgoff_t prev_index; 2005 unsigned long offset; /* offset into pagecache page */ 2006 unsigned int prev_offset; 2007 int error = 0; 2008 2009 if (unlikely(*ppos >= inode->i_sb->s_maxbytes)) 2010 return 0; 2011 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 2012 2013 index = *ppos >> PAGE_SHIFT; 2014 prev_index = ra->prev_pos >> PAGE_SHIFT; 2015 prev_offset = ra->prev_pos & (PAGE_SIZE-1); 2016 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT; 2017 offset = *ppos & ~PAGE_MASK; 2018 2019 for (;;) { 2020 struct page *page; 2021 pgoff_t end_index; 2022 loff_t isize; 2023 unsigned long nr, ret; 2024 2025 cond_resched(); 2026 find_page: 2027 if (fatal_signal_pending(current)) { 2028 error = -EINTR; 2029 goto out; 2030 } 2031 2032 page = find_get_page(mapping, index); 2033 if (!page) { 2034 if (iocb->ki_flags & IOCB_NOWAIT) 2035 goto would_block; 2036 page_cache_sync_readahead(mapping, 2037 ra, filp, 2038 index, last_index - index); 2039 page = find_get_page(mapping, index); 2040 if (unlikely(page == NULL)) 2041 goto no_cached_page; 2042 } 2043 if (PageReadahead(page)) { 2044 page_cache_async_readahead(mapping, 2045 ra, filp, page, 2046 index, last_index - index); 2047 } 2048 if (!PageUptodate(page)) { 2049 if (iocb->ki_flags & IOCB_NOWAIT) { 2050 put_page(page); 2051 goto would_block; 2052 } 2053 2054 /* 2055 * See comment in do_read_cache_page on why 2056 * wait_on_page_locked is used to avoid unnecessarily 2057 * serialisations and why it's safe. 2058 */ 2059 error = wait_on_page_locked_killable(page); 2060 if (unlikely(error)) 2061 goto readpage_error; 2062 if (PageUptodate(page)) 2063 goto page_ok; 2064 2065 if (inode->i_blkbits == PAGE_SHIFT || 2066 !mapping->a_ops->is_partially_uptodate) 2067 goto page_not_up_to_date; 2068 /* pipes can't handle partially uptodate pages */ 2069 if (unlikely(iov_iter_is_pipe(iter))) 2070 goto page_not_up_to_date; 2071 if (!trylock_page(page)) 2072 goto page_not_up_to_date; 2073 /* Did it get truncated before we got the lock? */ 2074 if (!page->mapping) 2075 goto page_not_up_to_date_locked; 2076 if (!mapping->a_ops->is_partially_uptodate(page, 2077 offset, iter->count)) 2078 goto page_not_up_to_date_locked; 2079 unlock_page(page); 2080 } 2081 page_ok: 2082 /* 2083 * i_size must be checked after we know the page is Uptodate. 2084 * 2085 * Checking i_size after the check allows us to calculate 2086 * the correct value for "nr", which means the zero-filled 2087 * part of the page is not copied back to userspace (unless 2088 * another truncate extends the file - this is desired though). 2089 */ 2090 2091 isize = i_size_read(inode); 2092 end_index = (isize - 1) >> PAGE_SHIFT; 2093 if (unlikely(!isize || index > end_index)) { 2094 put_page(page); 2095 goto out; 2096 } 2097 2098 /* nr is the maximum number of bytes to copy from this page */ 2099 nr = PAGE_SIZE; 2100 if (index == end_index) { 2101 nr = ((isize - 1) & ~PAGE_MASK) + 1; 2102 if (nr <= offset) { 2103 put_page(page); 2104 goto out; 2105 } 2106 } 2107 nr = nr - offset; 2108 2109 /* If users can be writing to this page using arbitrary 2110 * virtual addresses, take care about potential aliasing 2111 * before reading the page on the kernel side. 2112 */ 2113 if (mapping_writably_mapped(mapping)) 2114 flush_dcache_page(page); 2115 2116 /* 2117 * When a sequential read accesses a page several times, 2118 * only mark it as accessed the first time. 2119 */ 2120 if (prev_index != index || offset != prev_offset) 2121 mark_page_accessed(page); 2122 prev_index = index; 2123 2124 /* 2125 * Ok, we have the page, and it's up-to-date, so 2126 * now we can copy it to user space... 2127 */ 2128 2129 ret = copy_page_to_iter(page, offset, nr, iter); 2130 offset += ret; 2131 index += offset >> PAGE_SHIFT; 2132 offset &= ~PAGE_MASK; 2133 prev_offset = offset; 2134 2135 put_page(page); 2136 written += ret; 2137 if (!iov_iter_count(iter)) 2138 goto out; 2139 if (ret < nr) { 2140 error = -EFAULT; 2141 goto out; 2142 } 2143 continue; 2144 2145 page_not_up_to_date: 2146 /* Get exclusive access to the page ... */ 2147 error = lock_page_killable(page); 2148 if (unlikely(error)) 2149 goto readpage_error; 2150 2151 page_not_up_to_date_locked: 2152 /* Did it get truncated before we got the lock? */ 2153 if (!page->mapping) { 2154 unlock_page(page); 2155 put_page(page); 2156 continue; 2157 } 2158 2159 /* Did somebody else fill it already? */ 2160 if (PageUptodate(page)) { 2161 unlock_page(page); 2162 goto page_ok; 2163 } 2164 2165 readpage: 2166 /* 2167 * A previous I/O error may have been due to temporary 2168 * failures, eg. multipath errors. 2169 * PG_error will be set again if readpage fails. 2170 */ 2171 ClearPageError(page); 2172 /* Start the actual read. The read will unlock the page. */ 2173 error = mapping->a_ops->readpage(filp, page); 2174 2175 if (unlikely(error)) { 2176 if (error == AOP_TRUNCATED_PAGE) { 2177 put_page(page); 2178 error = 0; 2179 goto find_page; 2180 } 2181 goto readpage_error; 2182 } 2183 2184 if (!PageUptodate(page)) { 2185 error = lock_page_killable(page); 2186 if (unlikely(error)) 2187 goto readpage_error; 2188 if (!PageUptodate(page)) { 2189 if (page->mapping == NULL) { 2190 /* 2191 * invalidate_mapping_pages got it 2192 */ 2193 unlock_page(page); 2194 put_page(page); 2195 goto find_page; 2196 } 2197 unlock_page(page); 2198 shrink_readahead_size_eio(ra); 2199 error = -EIO; 2200 goto readpage_error; 2201 } 2202 unlock_page(page); 2203 } 2204 2205 goto page_ok; 2206 2207 readpage_error: 2208 /* UHHUH! A synchronous read error occurred. Report it */ 2209 put_page(page); 2210 goto out; 2211 2212 no_cached_page: 2213 /* 2214 * Ok, it wasn't cached, so we need to create a new 2215 * page.. 2216 */ 2217 page = page_cache_alloc(mapping); 2218 if (!page) { 2219 error = -ENOMEM; 2220 goto out; 2221 } 2222 error = add_to_page_cache_lru(page, mapping, index, 2223 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2224 if (error) { 2225 put_page(page); 2226 if (error == -EEXIST) { 2227 error = 0; 2228 goto find_page; 2229 } 2230 goto out; 2231 } 2232 goto readpage; 2233 } 2234 2235 would_block: 2236 error = -EAGAIN; 2237 out: 2238 ra->prev_pos = prev_index; 2239 ra->prev_pos <<= PAGE_SHIFT; 2240 ra->prev_pos |= prev_offset; 2241 2242 *ppos = ((loff_t)index << PAGE_SHIFT) + offset; 2243 file_accessed(filp); 2244 return written ? written : error; 2245 } 2246 2247 /** 2248 * generic_file_read_iter - generic filesystem read routine 2249 * @iocb: kernel I/O control block 2250 * @iter: destination for the data read 2251 * 2252 * This is the "read_iter()" routine for all filesystems 2253 * that can use the page cache directly. 2254 * Return: 2255 * * number of bytes copied, even for partial reads 2256 * * negative error code if nothing was read 2257 */ 2258 ssize_t 2259 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2260 { 2261 size_t count = iov_iter_count(iter); 2262 ssize_t retval = 0; 2263 2264 if (!count) 2265 goto out; /* skip atime */ 2266 2267 if (iocb->ki_flags & IOCB_DIRECT) { 2268 struct file *file = iocb->ki_filp; 2269 struct address_space *mapping = file->f_mapping; 2270 struct inode *inode = mapping->host; 2271 loff_t size; 2272 2273 size = i_size_read(inode); 2274 if (iocb->ki_flags & IOCB_NOWAIT) { 2275 if (filemap_range_has_page(mapping, iocb->ki_pos, 2276 iocb->ki_pos + count - 1)) 2277 return -EAGAIN; 2278 } else { 2279 retval = filemap_write_and_wait_range(mapping, 2280 iocb->ki_pos, 2281 iocb->ki_pos + count - 1); 2282 if (retval < 0) 2283 goto out; 2284 } 2285 2286 file_accessed(file); 2287 2288 retval = mapping->a_ops->direct_IO(iocb, iter); 2289 if (retval >= 0) { 2290 iocb->ki_pos += retval; 2291 count -= retval; 2292 } 2293 iov_iter_revert(iter, count - iov_iter_count(iter)); 2294 2295 /* 2296 * Btrfs can have a short DIO read if we encounter 2297 * compressed extents, so if there was an error, or if 2298 * we've already read everything we wanted to, or if 2299 * there was a short read because we hit EOF, go ahead 2300 * and return. Otherwise fallthrough to buffered io for 2301 * the rest of the read. Buffered reads will not work for 2302 * DAX files, so don't bother trying. 2303 */ 2304 if (retval < 0 || !count || iocb->ki_pos >= size || 2305 IS_DAX(inode)) 2306 goto out; 2307 } 2308 2309 retval = generic_file_buffered_read(iocb, iter, retval); 2310 out: 2311 return retval; 2312 } 2313 EXPORT_SYMBOL(generic_file_read_iter); 2314 2315 #ifdef CONFIG_MMU 2316 #define MMAP_LOTSAMISS (100) 2317 /* 2318 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_sem 2319 * @vmf - the vm_fault for this fault. 2320 * @page - the page to lock. 2321 * @fpin - the pointer to the file we may pin (or is already pinned). 2322 * 2323 * This works similar to lock_page_or_retry in that it can drop the mmap_sem. 2324 * It differs in that it actually returns the page locked if it returns 1 and 0 2325 * if it couldn't lock the page. If we did have to drop the mmap_sem then fpin 2326 * will point to the pinned file and needs to be fput()'ed at a later point. 2327 */ 2328 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page, 2329 struct file **fpin) 2330 { 2331 if (trylock_page(page)) 2332 return 1; 2333 2334 /* 2335 * NOTE! This will make us return with VM_FAULT_RETRY, but with 2336 * the mmap_sem still held. That's how FAULT_FLAG_RETRY_NOWAIT 2337 * is supposed to work. We have way too many special cases.. 2338 */ 2339 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 2340 return 0; 2341 2342 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 2343 if (vmf->flags & FAULT_FLAG_KILLABLE) { 2344 if (__lock_page_killable(page)) { 2345 /* 2346 * We didn't have the right flags to drop the mmap_sem, 2347 * but all fault_handlers only check for fatal signals 2348 * if we return VM_FAULT_RETRY, so we need to drop the 2349 * mmap_sem here and return 0 if we don't have a fpin. 2350 */ 2351 if (*fpin == NULL) 2352 up_read(&vmf->vma->vm_mm->mmap_sem); 2353 return 0; 2354 } 2355 } else 2356 __lock_page(page); 2357 return 1; 2358 } 2359 2360 2361 /* 2362 * Synchronous readahead happens when we don't even find a page in the page 2363 * cache at all. We don't want to perform IO under the mmap sem, so if we have 2364 * to drop the mmap sem we return the file that was pinned in order for us to do 2365 * that. If we didn't pin a file then we return NULL. The file that is 2366 * returned needs to be fput()'ed when we're done with it. 2367 */ 2368 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 2369 { 2370 struct file *file = vmf->vma->vm_file; 2371 struct file_ra_state *ra = &file->f_ra; 2372 struct address_space *mapping = file->f_mapping; 2373 struct file *fpin = NULL; 2374 pgoff_t offset = vmf->pgoff; 2375 2376 /* If we don't want any read-ahead, don't bother */ 2377 if (vmf->vma->vm_flags & VM_RAND_READ) 2378 return fpin; 2379 if (!ra->ra_pages) 2380 return fpin; 2381 2382 if (vmf->vma->vm_flags & VM_SEQ_READ) { 2383 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2384 page_cache_sync_readahead(mapping, ra, file, offset, 2385 ra->ra_pages); 2386 return fpin; 2387 } 2388 2389 /* Avoid banging the cache line if not needed */ 2390 if (ra->mmap_miss < MMAP_LOTSAMISS * 10) 2391 ra->mmap_miss++; 2392 2393 /* 2394 * Do we miss much more than hit in this file? If so, 2395 * stop bothering with read-ahead. It will only hurt. 2396 */ 2397 if (ra->mmap_miss > MMAP_LOTSAMISS) 2398 return fpin; 2399 2400 /* 2401 * mmap read-around 2402 */ 2403 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2404 ra->start = max_t(long, 0, offset - ra->ra_pages / 2); 2405 ra->size = ra->ra_pages; 2406 ra->async_size = ra->ra_pages / 4; 2407 ra_submit(ra, mapping, file); 2408 return fpin; 2409 } 2410 2411 /* 2412 * Asynchronous readahead happens when we find the page and PG_readahead, 2413 * so we want to possibly extend the readahead further. We return the file that 2414 * was pinned if we have to drop the mmap_sem in order to do IO. 2415 */ 2416 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 2417 struct page *page) 2418 { 2419 struct file *file = vmf->vma->vm_file; 2420 struct file_ra_state *ra = &file->f_ra; 2421 struct address_space *mapping = file->f_mapping; 2422 struct file *fpin = NULL; 2423 pgoff_t offset = vmf->pgoff; 2424 2425 /* If we don't want any read-ahead, don't bother */ 2426 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages) 2427 return fpin; 2428 if (ra->mmap_miss > 0) 2429 ra->mmap_miss--; 2430 if (PageReadahead(page)) { 2431 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2432 page_cache_async_readahead(mapping, ra, file, 2433 page, offset, ra->ra_pages); 2434 } 2435 return fpin; 2436 } 2437 2438 /** 2439 * filemap_fault - read in file data for page fault handling 2440 * @vmf: struct vm_fault containing details of the fault 2441 * 2442 * filemap_fault() is invoked via the vma operations vector for a 2443 * mapped memory region to read in file data during a page fault. 2444 * 2445 * The goto's are kind of ugly, but this streamlines the normal case of having 2446 * it in the page cache, and handles the special cases reasonably without 2447 * having a lot of duplicated code. 2448 * 2449 * vma->vm_mm->mmap_sem must be held on entry. 2450 * 2451 * If our return value has VM_FAULT_RETRY set, it's because the mmap_sem 2452 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap(). 2453 * 2454 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem 2455 * has not been released. 2456 * 2457 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 2458 * 2459 * Return: bitwise-OR of %VM_FAULT_ codes. 2460 */ 2461 vm_fault_t filemap_fault(struct vm_fault *vmf) 2462 { 2463 int error; 2464 struct file *file = vmf->vma->vm_file; 2465 struct file *fpin = NULL; 2466 struct address_space *mapping = file->f_mapping; 2467 struct file_ra_state *ra = &file->f_ra; 2468 struct inode *inode = mapping->host; 2469 pgoff_t offset = vmf->pgoff; 2470 pgoff_t max_off; 2471 struct page *page; 2472 vm_fault_t ret = 0; 2473 2474 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2475 if (unlikely(offset >= max_off)) 2476 return VM_FAULT_SIGBUS; 2477 2478 /* 2479 * Do we have something in the page cache already? 2480 */ 2481 page = find_get_page(mapping, offset); 2482 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { 2483 /* 2484 * We found the page, so try async readahead before 2485 * waiting for the lock. 2486 */ 2487 fpin = do_async_mmap_readahead(vmf, page); 2488 } else if (!page) { 2489 /* No page in the page cache at all */ 2490 count_vm_event(PGMAJFAULT); 2491 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 2492 ret = VM_FAULT_MAJOR; 2493 fpin = do_sync_mmap_readahead(vmf); 2494 retry_find: 2495 page = pagecache_get_page(mapping, offset, 2496 FGP_CREAT|FGP_FOR_MMAP, 2497 vmf->gfp_mask); 2498 if (!page) { 2499 if (fpin) 2500 goto out_retry; 2501 return VM_FAULT_OOM; 2502 } 2503 } 2504 2505 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin)) 2506 goto out_retry; 2507 2508 /* Did it get truncated? */ 2509 if (unlikely(compound_head(page)->mapping != mapping)) { 2510 unlock_page(page); 2511 put_page(page); 2512 goto retry_find; 2513 } 2514 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page); 2515 2516 /* 2517 * We have a locked page in the page cache, now we need to check 2518 * that it's up-to-date. If not, it is going to be due to an error. 2519 */ 2520 if (unlikely(!PageUptodate(page))) 2521 goto page_not_uptodate; 2522 2523 /* 2524 * We've made it this far and we had to drop our mmap_sem, now is the 2525 * time to return to the upper layer and have it re-find the vma and 2526 * redo the fault. 2527 */ 2528 if (fpin) { 2529 unlock_page(page); 2530 goto out_retry; 2531 } 2532 2533 /* 2534 * Found the page and have a reference on it. 2535 * We must recheck i_size under page lock. 2536 */ 2537 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2538 if (unlikely(offset >= max_off)) { 2539 unlock_page(page); 2540 put_page(page); 2541 return VM_FAULT_SIGBUS; 2542 } 2543 2544 vmf->page = page; 2545 return ret | VM_FAULT_LOCKED; 2546 2547 page_not_uptodate: 2548 /* 2549 * Umm, take care of errors if the page isn't up-to-date. 2550 * Try to re-read it _once_. We do this synchronously, 2551 * because there really aren't any performance issues here 2552 * and we need to check for errors. 2553 */ 2554 ClearPageError(page); 2555 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2556 error = mapping->a_ops->readpage(file, page); 2557 if (!error) { 2558 wait_on_page_locked(page); 2559 if (!PageUptodate(page)) 2560 error = -EIO; 2561 } 2562 if (fpin) 2563 goto out_retry; 2564 put_page(page); 2565 2566 if (!error || error == AOP_TRUNCATED_PAGE) 2567 goto retry_find; 2568 2569 /* Things didn't work out. Return zero to tell the mm layer so. */ 2570 shrink_readahead_size_eio(ra); 2571 return VM_FAULT_SIGBUS; 2572 2573 out_retry: 2574 /* 2575 * We dropped the mmap_sem, we need to return to the fault handler to 2576 * re-find the vma and come back and find our hopefully still populated 2577 * page. 2578 */ 2579 if (page) 2580 put_page(page); 2581 if (fpin) 2582 fput(fpin); 2583 return ret | VM_FAULT_RETRY; 2584 } 2585 EXPORT_SYMBOL(filemap_fault); 2586 2587 void filemap_map_pages(struct vm_fault *vmf, 2588 pgoff_t start_pgoff, pgoff_t end_pgoff) 2589 { 2590 struct file *file = vmf->vma->vm_file; 2591 struct address_space *mapping = file->f_mapping; 2592 pgoff_t last_pgoff = start_pgoff; 2593 unsigned long max_idx; 2594 XA_STATE(xas, &mapping->i_pages, start_pgoff); 2595 struct page *page; 2596 2597 rcu_read_lock(); 2598 xas_for_each(&xas, page, end_pgoff) { 2599 if (xas_retry(&xas, page)) 2600 continue; 2601 if (xa_is_value(page)) 2602 goto next; 2603 2604 /* 2605 * Check for a locked page first, as a speculative 2606 * reference may adversely influence page migration. 2607 */ 2608 if (PageLocked(page)) 2609 goto next; 2610 if (!page_cache_get_speculative(page)) 2611 goto next; 2612 2613 /* Has the page moved or been split? */ 2614 if (unlikely(page != xas_reload(&xas))) 2615 goto skip; 2616 page = find_subpage(page, xas.xa_index); 2617 2618 if (!PageUptodate(page) || 2619 PageReadahead(page) || 2620 PageHWPoison(page)) 2621 goto skip; 2622 if (!trylock_page(page)) 2623 goto skip; 2624 2625 if (page->mapping != mapping || !PageUptodate(page)) 2626 goto unlock; 2627 2628 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 2629 if (page->index >= max_idx) 2630 goto unlock; 2631 2632 if (file->f_ra.mmap_miss > 0) 2633 file->f_ra.mmap_miss--; 2634 2635 vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 2636 if (vmf->pte) 2637 vmf->pte += xas.xa_index - last_pgoff; 2638 last_pgoff = xas.xa_index; 2639 if (alloc_set_pte(vmf, NULL, page)) 2640 goto unlock; 2641 unlock_page(page); 2642 goto next; 2643 unlock: 2644 unlock_page(page); 2645 skip: 2646 put_page(page); 2647 next: 2648 /* Huge page is mapped? No need to proceed. */ 2649 if (pmd_trans_huge(*vmf->pmd)) 2650 break; 2651 } 2652 rcu_read_unlock(); 2653 } 2654 EXPORT_SYMBOL(filemap_map_pages); 2655 2656 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 2657 { 2658 struct page *page = vmf->page; 2659 struct inode *inode = file_inode(vmf->vma->vm_file); 2660 vm_fault_t ret = VM_FAULT_LOCKED; 2661 2662 sb_start_pagefault(inode->i_sb); 2663 file_update_time(vmf->vma->vm_file); 2664 lock_page(page); 2665 if (page->mapping != inode->i_mapping) { 2666 unlock_page(page); 2667 ret = VM_FAULT_NOPAGE; 2668 goto out; 2669 } 2670 /* 2671 * We mark the page dirty already here so that when freeze is in 2672 * progress, we are guaranteed that writeback during freezing will 2673 * see the dirty page and writeprotect it again. 2674 */ 2675 set_page_dirty(page); 2676 wait_for_stable_page(page); 2677 out: 2678 sb_end_pagefault(inode->i_sb); 2679 return ret; 2680 } 2681 2682 const struct vm_operations_struct generic_file_vm_ops = { 2683 .fault = filemap_fault, 2684 .map_pages = filemap_map_pages, 2685 .page_mkwrite = filemap_page_mkwrite, 2686 }; 2687 2688 /* This is used for a general mmap of a disk file */ 2689 2690 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2691 { 2692 struct address_space *mapping = file->f_mapping; 2693 2694 if (!mapping->a_ops->readpage) 2695 return -ENOEXEC; 2696 file_accessed(file); 2697 vma->vm_ops = &generic_file_vm_ops; 2698 return 0; 2699 } 2700 2701 /* 2702 * This is for filesystems which do not implement ->writepage. 2703 */ 2704 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 2705 { 2706 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 2707 return -EINVAL; 2708 return generic_file_mmap(file, vma); 2709 } 2710 #else 2711 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 2712 { 2713 return VM_FAULT_SIGBUS; 2714 } 2715 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2716 { 2717 return -ENOSYS; 2718 } 2719 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 2720 { 2721 return -ENOSYS; 2722 } 2723 #endif /* CONFIG_MMU */ 2724 2725 EXPORT_SYMBOL(filemap_page_mkwrite); 2726 EXPORT_SYMBOL(generic_file_mmap); 2727 EXPORT_SYMBOL(generic_file_readonly_mmap); 2728 2729 static struct page *wait_on_page_read(struct page *page) 2730 { 2731 if (!IS_ERR(page)) { 2732 wait_on_page_locked(page); 2733 if (!PageUptodate(page)) { 2734 put_page(page); 2735 page = ERR_PTR(-EIO); 2736 } 2737 } 2738 return page; 2739 } 2740 2741 static struct page *do_read_cache_page(struct address_space *mapping, 2742 pgoff_t index, 2743 int (*filler)(void *, struct page *), 2744 void *data, 2745 gfp_t gfp) 2746 { 2747 struct page *page; 2748 int err; 2749 repeat: 2750 page = find_get_page(mapping, index); 2751 if (!page) { 2752 page = __page_cache_alloc(gfp); 2753 if (!page) 2754 return ERR_PTR(-ENOMEM); 2755 err = add_to_page_cache_lru(page, mapping, index, gfp); 2756 if (unlikely(err)) { 2757 put_page(page); 2758 if (err == -EEXIST) 2759 goto repeat; 2760 /* Presumably ENOMEM for xarray node */ 2761 return ERR_PTR(err); 2762 } 2763 2764 filler: 2765 if (filler) 2766 err = filler(data, page); 2767 else 2768 err = mapping->a_ops->readpage(data, page); 2769 2770 if (err < 0) { 2771 put_page(page); 2772 return ERR_PTR(err); 2773 } 2774 2775 page = wait_on_page_read(page); 2776 if (IS_ERR(page)) 2777 return page; 2778 goto out; 2779 } 2780 if (PageUptodate(page)) 2781 goto out; 2782 2783 /* 2784 * Page is not up to date and may be locked due one of the following 2785 * case a: Page is being filled and the page lock is held 2786 * case b: Read/write error clearing the page uptodate status 2787 * case c: Truncation in progress (page locked) 2788 * case d: Reclaim in progress 2789 * 2790 * Case a, the page will be up to date when the page is unlocked. 2791 * There is no need to serialise on the page lock here as the page 2792 * is pinned so the lock gives no additional protection. Even if the 2793 * the page is truncated, the data is still valid if PageUptodate as 2794 * it's a race vs truncate race. 2795 * Case b, the page will not be up to date 2796 * Case c, the page may be truncated but in itself, the data may still 2797 * be valid after IO completes as it's a read vs truncate race. The 2798 * operation must restart if the page is not uptodate on unlock but 2799 * otherwise serialising on page lock to stabilise the mapping gives 2800 * no additional guarantees to the caller as the page lock is 2801 * released before return. 2802 * Case d, similar to truncation. If reclaim holds the page lock, it 2803 * will be a race with remove_mapping that determines if the mapping 2804 * is valid on unlock but otherwise the data is valid and there is 2805 * no need to serialise with page lock. 2806 * 2807 * As the page lock gives no additional guarantee, we optimistically 2808 * wait on the page to be unlocked and check if it's up to date and 2809 * use the page if it is. Otherwise, the page lock is required to 2810 * distinguish between the different cases. The motivation is that we 2811 * avoid spurious serialisations and wakeups when multiple processes 2812 * wait on the same page for IO to complete. 2813 */ 2814 wait_on_page_locked(page); 2815 if (PageUptodate(page)) 2816 goto out; 2817 2818 /* Distinguish between all the cases under the safety of the lock */ 2819 lock_page(page); 2820 2821 /* Case c or d, restart the operation */ 2822 if (!page->mapping) { 2823 unlock_page(page); 2824 put_page(page); 2825 goto repeat; 2826 } 2827 2828 /* Someone else locked and filled the page in a very small window */ 2829 if (PageUptodate(page)) { 2830 unlock_page(page); 2831 goto out; 2832 } 2833 2834 /* 2835 * A previous I/O error may have been due to temporary 2836 * failures. 2837 * Clear page error before actual read, PG_error will be 2838 * set again if read page fails. 2839 */ 2840 ClearPageError(page); 2841 goto filler; 2842 2843 out: 2844 mark_page_accessed(page); 2845 return page; 2846 } 2847 2848 /** 2849 * read_cache_page - read into page cache, fill it if needed 2850 * @mapping: the page's address_space 2851 * @index: the page index 2852 * @filler: function to perform the read 2853 * @data: first arg to filler(data, page) function, often left as NULL 2854 * 2855 * Read into the page cache. If a page already exists, and PageUptodate() is 2856 * not set, try to fill the page and wait for it to become unlocked. 2857 * 2858 * If the page does not get brought uptodate, return -EIO. 2859 * 2860 * Return: up to date page on success, ERR_PTR() on failure. 2861 */ 2862 struct page *read_cache_page(struct address_space *mapping, 2863 pgoff_t index, 2864 int (*filler)(void *, struct page *), 2865 void *data) 2866 { 2867 return do_read_cache_page(mapping, index, filler, data, 2868 mapping_gfp_mask(mapping)); 2869 } 2870 EXPORT_SYMBOL(read_cache_page); 2871 2872 /** 2873 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 2874 * @mapping: the page's address_space 2875 * @index: the page index 2876 * @gfp: the page allocator flags to use if allocating 2877 * 2878 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 2879 * any new page allocations done using the specified allocation flags. 2880 * 2881 * If the page does not get brought uptodate, return -EIO. 2882 * 2883 * Return: up to date page on success, ERR_PTR() on failure. 2884 */ 2885 struct page *read_cache_page_gfp(struct address_space *mapping, 2886 pgoff_t index, 2887 gfp_t gfp) 2888 { 2889 return do_read_cache_page(mapping, index, NULL, NULL, gfp); 2890 } 2891 EXPORT_SYMBOL(read_cache_page_gfp); 2892 2893 /* 2894 * Don't operate on ranges the page cache doesn't support, and don't exceed the 2895 * LFS limits. If pos is under the limit it becomes a short access. If it 2896 * exceeds the limit we return -EFBIG. 2897 */ 2898 static int generic_write_check_limits(struct file *file, loff_t pos, 2899 loff_t *count) 2900 { 2901 struct inode *inode = file->f_mapping->host; 2902 loff_t max_size = inode->i_sb->s_maxbytes; 2903 loff_t limit = rlimit(RLIMIT_FSIZE); 2904 2905 if (limit != RLIM_INFINITY) { 2906 if (pos >= limit) { 2907 send_sig(SIGXFSZ, current, 0); 2908 return -EFBIG; 2909 } 2910 *count = min(*count, limit - pos); 2911 } 2912 2913 if (!(file->f_flags & O_LARGEFILE)) 2914 max_size = MAX_NON_LFS; 2915 2916 if (unlikely(pos >= max_size)) 2917 return -EFBIG; 2918 2919 *count = min(*count, max_size - pos); 2920 2921 return 0; 2922 } 2923 2924 /* 2925 * Performs necessary checks before doing a write 2926 * 2927 * Can adjust writing position or amount of bytes to write. 2928 * Returns appropriate error code that caller should return or 2929 * zero in case that write should be allowed. 2930 */ 2931 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from) 2932 { 2933 struct file *file = iocb->ki_filp; 2934 struct inode *inode = file->f_mapping->host; 2935 loff_t count; 2936 int ret; 2937 2938 if (IS_SWAPFILE(inode)) 2939 return -ETXTBSY; 2940 2941 if (!iov_iter_count(from)) 2942 return 0; 2943 2944 /* FIXME: this is for backwards compatibility with 2.4 */ 2945 if (iocb->ki_flags & IOCB_APPEND) 2946 iocb->ki_pos = i_size_read(inode); 2947 2948 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT)) 2949 return -EINVAL; 2950 2951 count = iov_iter_count(from); 2952 ret = generic_write_check_limits(file, iocb->ki_pos, &count); 2953 if (ret) 2954 return ret; 2955 2956 iov_iter_truncate(from, count); 2957 return iov_iter_count(from); 2958 } 2959 EXPORT_SYMBOL(generic_write_checks); 2960 2961 /* 2962 * Performs necessary checks before doing a clone. 2963 * 2964 * Can adjust amount of bytes to clone via @req_count argument. 2965 * Returns appropriate error code that caller should return or 2966 * zero in case the clone should be allowed. 2967 */ 2968 int generic_remap_checks(struct file *file_in, loff_t pos_in, 2969 struct file *file_out, loff_t pos_out, 2970 loff_t *req_count, unsigned int remap_flags) 2971 { 2972 struct inode *inode_in = file_in->f_mapping->host; 2973 struct inode *inode_out = file_out->f_mapping->host; 2974 uint64_t count = *req_count; 2975 uint64_t bcount; 2976 loff_t size_in, size_out; 2977 loff_t bs = inode_out->i_sb->s_blocksize; 2978 int ret; 2979 2980 /* The start of both ranges must be aligned to an fs block. */ 2981 if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs)) 2982 return -EINVAL; 2983 2984 /* Ensure offsets don't wrap. */ 2985 if (pos_in + count < pos_in || pos_out + count < pos_out) 2986 return -EINVAL; 2987 2988 size_in = i_size_read(inode_in); 2989 size_out = i_size_read(inode_out); 2990 2991 /* Dedupe requires both ranges to be within EOF. */ 2992 if ((remap_flags & REMAP_FILE_DEDUP) && 2993 (pos_in >= size_in || pos_in + count > size_in || 2994 pos_out >= size_out || pos_out + count > size_out)) 2995 return -EINVAL; 2996 2997 /* Ensure the infile range is within the infile. */ 2998 if (pos_in >= size_in) 2999 return -EINVAL; 3000 count = min(count, size_in - (uint64_t)pos_in); 3001 3002 ret = generic_write_check_limits(file_out, pos_out, &count); 3003 if (ret) 3004 return ret; 3005 3006 /* 3007 * If the user wanted us to link to the infile's EOF, round up to the 3008 * next block boundary for this check. 3009 * 3010 * Otherwise, make sure the count is also block-aligned, having 3011 * already confirmed the starting offsets' block alignment. 3012 */ 3013 if (pos_in + count == size_in) { 3014 bcount = ALIGN(size_in, bs) - pos_in; 3015 } else { 3016 if (!IS_ALIGNED(count, bs)) 3017 count = ALIGN_DOWN(count, bs); 3018 bcount = count; 3019 } 3020 3021 /* Don't allow overlapped cloning within the same file. */ 3022 if (inode_in == inode_out && 3023 pos_out + bcount > pos_in && 3024 pos_out < pos_in + bcount) 3025 return -EINVAL; 3026 3027 /* 3028 * We shortened the request but the caller can't deal with that, so 3029 * bounce the request back to userspace. 3030 */ 3031 if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN)) 3032 return -EINVAL; 3033 3034 *req_count = count; 3035 return 0; 3036 } 3037 3038 3039 /* 3040 * Performs common checks before doing a file copy/clone 3041 * from @file_in to @file_out. 3042 */ 3043 int generic_file_rw_checks(struct file *file_in, struct file *file_out) 3044 { 3045 struct inode *inode_in = file_inode(file_in); 3046 struct inode *inode_out = file_inode(file_out); 3047 3048 /* Don't copy dirs, pipes, sockets... */ 3049 if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode)) 3050 return -EISDIR; 3051 if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode)) 3052 return -EINVAL; 3053 3054 if (!(file_in->f_mode & FMODE_READ) || 3055 !(file_out->f_mode & FMODE_WRITE) || 3056 (file_out->f_flags & O_APPEND)) 3057 return -EBADF; 3058 3059 return 0; 3060 } 3061 3062 /* 3063 * Performs necessary checks before doing a file copy 3064 * 3065 * Can adjust amount of bytes to copy via @req_count argument. 3066 * Returns appropriate error code that caller should return or 3067 * zero in case the copy should be allowed. 3068 */ 3069 int generic_copy_file_checks(struct file *file_in, loff_t pos_in, 3070 struct file *file_out, loff_t pos_out, 3071 size_t *req_count, unsigned int flags) 3072 { 3073 struct inode *inode_in = file_inode(file_in); 3074 struct inode *inode_out = file_inode(file_out); 3075 uint64_t count = *req_count; 3076 loff_t size_in; 3077 int ret; 3078 3079 ret = generic_file_rw_checks(file_in, file_out); 3080 if (ret) 3081 return ret; 3082 3083 /* Don't touch certain kinds of inodes */ 3084 if (IS_IMMUTABLE(inode_out)) 3085 return -EPERM; 3086 3087 if (IS_SWAPFILE(inode_in) || IS_SWAPFILE(inode_out)) 3088 return -ETXTBSY; 3089 3090 /* Ensure offsets don't wrap. */ 3091 if (pos_in + count < pos_in || pos_out + count < pos_out) 3092 return -EOVERFLOW; 3093 3094 /* Shorten the copy to EOF */ 3095 size_in = i_size_read(inode_in); 3096 if (pos_in >= size_in) 3097 count = 0; 3098 else 3099 count = min(count, size_in - (uint64_t)pos_in); 3100 3101 ret = generic_write_check_limits(file_out, pos_out, &count); 3102 if (ret) 3103 return ret; 3104 3105 /* Don't allow overlapped copying within the same file. */ 3106 if (inode_in == inode_out && 3107 pos_out + count > pos_in && 3108 pos_out < pos_in + count) 3109 return -EINVAL; 3110 3111 *req_count = count; 3112 return 0; 3113 } 3114 3115 int pagecache_write_begin(struct file *file, struct address_space *mapping, 3116 loff_t pos, unsigned len, unsigned flags, 3117 struct page **pagep, void **fsdata) 3118 { 3119 const struct address_space_operations *aops = mapping->a_ops; 3120 3121 return aops->write_begin(file, mapping, pos, len, flags, 3122 pagep, fsdata); 3123 } 3124 EXPORT_SYMBOL(pagecache_write_begin); 3125 3126 int pagecache_write_end(struct file *file, struct address_space *mapping, 3127 loff_t pos, unsigned len, unsigned copied, 3128 struct page *page, void *fsdata) 3129 { 3130 const struct address_space_operations *aops = mapping->a_ops; 3131 3132 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 3133 } 3134 EXPORT_SYMBOL(pagecache_write_end); 3135 3136 /* 3137 * Warn about a page cache invalidation failure during a direct I/O write. 3138 */ 3139 void dio_warn_stale_pagecache(struct file *filp) 3140 { 3141 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 3142 char pathname[128]; 3143 struct inode *inode = file_inode(filp); 3144 char *path; 3145 3146 errseq_set(&inode->i_mapping->wb_err, -EIO); 3147 if (__ratelimit(&_rs)) { 3148 path = file_path(filp, pathname, sizeof(pathname)); 3149 if (IS_ERR(path)) 3150 path = "(unknown)"; 3151 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); 3152 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, 3153 current->comm); 3154 } 3155 } 3156 3157 ssize_t 3158 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 3159 { 3160 struct file *file = iocb->ki_filp; 3161 struct address_space *mapping = file->f_mapping; 3162 struct inode *inode = mapping->host; 3163 loff_t pos = iocb->ki_pos; 3164 ssize_t written; 3165 size_t write_len; 3166 pgoff_t end; 3167 3168 write_len = iov_iter_count(from); 3169 end = (pos + write_len - 1) >> PAGE_SHIFT; 3170 3171 if (iocb->ki_flags & IOCB_NOWAIT) { 3172 /* If there are pages to writeback, return */ 3173 if (filemap_range_has_page(inode->i_mapping, pos, 3174 pos + write_len - 1)) 3175 return -EAGAIN; 3176 } else { 3177 written = filemap_write_and_wait_range(mapping, pos, 3178 pos + write_len - 1); 3179 if (written) 3180 goto out; 3181 } 3182 3183 /* 3184 * After a write we want buffered reads to be sure to go to disk to get 3185 * the new data. We invalidate clean cached page from the region we're 3186 * about to write. We do this *before* the write so that we can return 3187 * without clobbering -EIOCBQUEUED from ->direct_IO(). 3188 */ 3189 written = invalidate_inode_pages2_range(mapping, 3190 pos >> PAGE_SHIFT, end); 3191 /* 3192 * If a page can not be invalidated, return 0 to fall back 3193 * to buffered write. 3194 */ 3195 if (written) { 3196 if (written == -EBUSY) 3197 return 0; 3198 goto out; 3199 } 3200 3201 written = mapping->a_ops->direct_IO(iocb, from); 3202 3203 /* 3204 * Finally, try again to invalidate clean pages which might have been 3205 * cached by non-direct readahead, or faulted in by get_user_pages() 3206 * if the source of the write was an mmap'ed region of the file 3207 * we're writing. Either one is a pretty crazy thing to do, 3208 * so we don't support it 100%. If this invalidation 3209 * fails, tough, the write still worked... 3210 * 3211 * Most of the time we do not need this since dio_complete() will do 3212 * the invalidation for us. However there are some file systems that 3213 * do not end up with dio_complete() being called, so let's not break 3214 * them by removing it completely. 3215 * 3216 * Noticeable example is a blkdev_direct_IO(). 3217 * 3218 * Skip invalidation for async writes or if mapping has no pages. 3219 */ 3220 if (written > 0 && mapping->nrpages && 3221 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end)) 3222 dio_warn_stale_pagecache(file); 3223 3224 if (written > 0) { 3225 pos += written; 3226 write_len -= written; 3227 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 3228 i_size_write(inode, pos); 3229 mark_inode_dirty(inode); 3230 } 3231 iocb->ki_pos = pos; 3232 } 3233 iov_iter_revert(from, write_len - iov_iter_count(from)); 3234 out: 3235 return written; 3236 } 3237 EXPORT_SYMBOL(generic_file_direct_write); 3238 3239 /* 3240 * Find or create a page at the given pagecache position. Return the locked 3241 * page. This function is specifically for buffered writes. 3242 */ 3243 struct page *grab_cache_page_write_begin(struct address_space *mapping, 3244 pgoff_t index, unsigned flags) 3245 { 3246 struct page *page; 3247 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT; 3248 3249 if (flags & AOP_FLAG_NOFS) 3250 fgp_flags |= FGP_NOFS; 3251 3252 page = pagecache_get_page(mapping, index, fgp_flags, 3253 mapping_gfp_mask(mapping)); 3254 if (page) 3255 wait_for_stable_page(page); 3256 3257 return page; 3258 } 3259 EXPORT_SYMBOL(grab_cache_page_write_begin); 3260 3261 ssize_t generic_perform_write(struct file *file, 3262 struct iov_iter *i, loff_t pos) 3263 { 3264 struct address_space *mapping = file->f_mapping; 3265 const struct address_space_operations *a_ops = mapping->a_ops; 3266 long status = 0; 3267 ssize_t written = 0; 3268 unsigned int flags = 0; 3269 3270 do { 3271 struct page *page; 3272 unsigned long offset; /* Offset into pagecache page */ 3273 unsigned long bytes; /* Bytes to write to page */ 3274 size_t copied; /* Bytes copied from user */ 3275 void *fsdata; 3276 3277 offset = (pos & (PAGE_SIZE - 1)); 3278 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3279 iov_iter_count(i)); 3280 3281 again: 3282 /* 3283 * Bring in the user page that we will copy from _first_. 3284 * Otherwise there's a nasty deadlock on copying from the 3285 * same page as we're writing to, without it being marked 3286 * up-to-date. 3287 * 3288 * Not only is this an optimisation, but it is also required 3289 * to check that the address is actually valid, when atomic 3290 * usercopies are used, below. 3291 */ 3292 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 3293 status = -EFAULT; 3294 break; 3295 } 3296 3297 if (fatal_signal_pending(current)) { 3298 status = -EINTR; 3299 break; 3300 } 3301 3302 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 3303 &page, &fsdata); 3304 if (unlikely(status < 0)) 3305 break; 3306 3307 if (mapping_writably_mapped(mapping)) 3308 flush_dcache_page(page); 3309 3310 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 3311 flush_dcache_page(page); 3312 3313 status = a_ops->write_end(file, mapping, pos, bytes, copied, 3314 page, fsdata); 3315 if (unlikely(status < 0)) 3316 break; 3317 copied = status; 3318 3319 cond_resched(); 3320 3321 iov_iter_advance(i, copied); 3322 if (unlikely(copied == 0)) { 3323 /* 3324 * If we were unable to copy any data at all, we must 3325 * fall back to a single segment length write. 3326 * 3327 * If we didn't fallback here, we could livelock 3328 * because not all segments in the iov can be copied at 3329 * once without a pagefault. 3330 */ 3331 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3332 iov_iter_single_seg_count(i)); 3333 goto again; 3334 } 3335 pos += copied; 3336 written += copied; 3337 3338 balance_dirty_pages_ratelimited(mapping); 3339 } while (iov_iter_count(i)); 3340 3341 return written ? written : status; 3342 } 3343 EXPORT_SYMBOL(generic_perform_write); 3344 3345 /** 3346 * __generic_file_write_iter - write data to a file 3347 * @iocb: IO state structure (file, offset, etc.) 3348 * @from: iov_iter with data to write 3349 * 3350 * This function does all the work needed for actually writing data to a 3351 * file. It does all basic checks, removes SUID from the file, updates 3352 * modification times and calls proper subroutines depending on whether we 3353 * do direct IO or a standard buffered write. 3354 * 3355 * It expects i_mutex to be grabbed unless we work on a block device or similar 3356 * object which does not need locking at all. 3357 * 3358 * This function does *not* take care of syncing data in case of O_SYNC write. 3359 * A caller has to handle it. This is mainly due to the fact that we want to 3360 * avoid syncing under i_mutex. 3361 * 3362 * Return: 3363 * * number of bytes written, even for truncated writes 3364 * * negative error code if no data has been written at all 3365 */ 3366 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3367 { 3368 struct file *file = iocb->ki_filp; 3369 struct address_space * mapping = file->f_mapping; 3370 struct inode *inode = mapping->host; 3371 ssize_t written = 0; 3372 ssize_t err; 3373 ssize_t status; 3374 3375 /* We can write back this queue in page reclaim */ 3376 current->backing_dev_info = inode_to_bdi(inode); 3377 err = file_remove_privs(file); 3378 if (err) 3379 goto out; 3380 3381 err = file_update_time(file); 3382 if (err) 3383 goto out; 3384 3385 if (iocb->ki_flags & IOCB_DIRECT) { 3386 loff_t pos, endbyte; 3387 3388 written = generic_file_direct_write(iocb, from); 3389 /* 3390 * If the write stopped short of completing, fall back to 3391 * buffered writes. Some filesystems do this for writes to 3392 * holes, for example. For DAX files, a buffered write will 3393 * not succeed (even if it did, DAX does not handle dirty 3394 * page-cache pages correctly). 3395 */ 3396 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) 3397 goto out; 3398 3399 status = generic_perform_write(file, from, pos = iocb->ki_pos); 3400 /* 3401 * If generic_perform_write() returned a synchronous error 3402 * then we want to return the number of bytes which were 3403 * direct-written, or the error code if that was zero. Note 3404 * that this differs from normal direct-io semantics, which 3405 * will return -EFOO even if some bytes were written. 3406 */ 3407 if (unlikely(status < 0)) { 3408 err = status; 3409 goto out; 3410 } 3411 /* 3412 * We need to ensure that the page cache pages are written to 3413 * disk and invalidated to preserve the expected O_DIRECT 3414 * semantics. 3415 */ 3416 endbyte = pos + status - 1; 3417 err = filemap_write_and_wait_range(mapping, pos, endbyte); 3418 if (err == 0) { 3419 iocb->ki_pos = endbyte + 1; 3420 written += status; 3421 invalidate_mapping_pages(mapping, 3422 pos >> PAGE_SHIFT, 3423 endbyte >> PAGE_SHIFT); 3424 } else { 3425 /* 3426 * We don't know how much we wrote, so just return 3427 * the number of bytes which were direct-written 3428 */ 3429 } 3430 } else { 3431 written = generic_perform_write(file, from, iocb->ki_pos); 3432 if (likely(written > 0)) 3433 iocb->ki_pos += written; 3434 } 3435 out: 3436 current->backing_dev_info = NULL; 3437 return written ? written : err; 3438 } 3439 EXPORT_SYMBOL(__generic_file_write_iter); 3440 3441 /** 3442 * generic_file_write_iter - write data to a file 3443 * @iocb: IO state structure 3444 * @from: iov_iter with data to write 3445 * 3446 * This is a wrapper around __generic_file_write_iter() to be used by most 3447 * filesystems. It takes care of syncing the file in case of O_SYNC file 3448 * and acquires i_mutex as needed. 3449 * Return: 3450 * * negative error code if no data has been written at all of 3451 * vfs_fsync_range() failed for a synchronous write 3452 * * number of bytes written, even for truncated writes 3453 */ 3454 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3455 { 3456 struct file *file = iocb->ki_filp; 3457 struct inode *inode = file->f_mapping->host; 3458 ssize_t ret; 3459 3460 inode_lock(inode); 3461 ret = generic_write_checks(iocb, from); 3462 if (ret > 0) 3463 ret = __generic_file_write_iter(iocb, from); 3464 inode_unlock(inode); 3465 3466 if (ret > 0) 3467 ret = generic_write_sync(iocb, ret); 3468 return ret; 3469 } 3470 EXPORT_SYMBOL(generic_file_write_iter); 3471 3472 /** 3473 * try_to_release_page() - release old fs-specific metadata on a page 3474 * 3475 * @page: the page which the kernel is trying to free 3476 * @gfp_mask: memory allocation flags (and I/O mode) 3477 * 3478 * The address_space is to try to release any data against the page 3479 * (presumably at page->private). 3480 * 3481 * This may also be called if PG_fscache is set on a page, indicating that the 3482 * page is known to the local caching routines. 3483 * 3484 * The @gfp_mask argument specifies whether I/O may be performed to release 3485 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS). 3486 * 3487 * Return: %1 if the release was successful, otherwise return zero. 3488 */ 3489 int try_to_release_page(struct page *page, gfp_t gfp_mask) 3490 { 3491 struct address_space * const mapping = page->mapping; 3492 3493 BUG_ON(!PageLocked(page)); 3494 if (PageWriteback(page)) 3495 return 0; 3496 3497 if (mapping && mapping->a_ops->releasepage) 3498 return mapping->a_ops->releasepage(page, gfp_mask); 3499 return try_to_free_buffers(page); 3500 } 3501 3502 EXPORT_SYMBOL(try_to_release_page); 3503