xref: /linux/mm/filemap.c (revision cf30f6a5f0c60ec98a637b836bef6915f602c6ab)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/mm/filemap.c
4  *
5  * Copyright (C) 1994-1999  Linus Torvalds
6  */
7 
8 /*
9  * This file handles the generic file mmap semantics used by
10  * most "normal" filesystems (but you don't /have/ to use this:
11  * the NFS filesystem used to do this differently, for example)
12  */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/mman.h>
25 #include <linux/pagemap.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/error-injection.h>
29 #include <linux/hash.h>
30 #include <linux/writeback.h>
31 #include <linux/backing-dev.h>
32 #include <linux/pagevec.h>
33 #include <linux/security.h>
34 #include <linux/cpuset.h>
35 #include <linux/hugetlb.h>
36 #include <linux/memcontrol.h>
37 #include <linux/cleancache.h>
38 #include <linux/shmem_fs.h>
39 #include <linux/rmap.h>
40 #include <linux/delayacct.h>
41 #include <linux/psi.h>
42 #include <linux/ramfs.h>
43 #include <linux/page_idle.h>
44 #include <asm/pgalloc.h>
45 #include <asm/tlbflush.h>
46 #include "internal.h"
47 
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/filemap.h>
50 
51 /*
52  * FIXME: remove all knowledge of the buffer layer from the core VM
53  */
54 #include <linux/buffer_head.h> /* for try_to_free_buffers */
55 
56 #include <asm/mman.h>
57 
58 /*
59  * Shared mappings implemented 30.11.1994. It's not fully working yet,
60  * though.
61  *
62  * Shared mappings now work. 15.8.1995  Bruno.
63  *
64  * finished 'unifying' the page and buffer cache and SMP-threaded the
65  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
66  *
67  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
68  */
69 
70 /*
71  * Lock ordering:
72  *
73  *  ->i_mmap_rwsem		(truncate_pagecache)
74  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
75  *      ->swap_lock		(exclusive_swap_page, others)
76  *        ->i_pages lock
77  *
78  *  ->i_rwsem
79  *    ->invalidate_lock		(acquired by fs in truncate path)
80  *      ->i_mmap_rwsem		(truncate->unmap_mapping_range)
81  *
82  *  ->mmap_lock
83  *    ->i_mmap_rwsem
84  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
85  *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
86  *
87  *  ->mmap_lock
88  *    ->invalidate_lock		(filemap_fault)
89  *      ->lock_page		(filemap_fault, access_process_vm)
90  *
91  *  ->i_rwsem			(generic_perform_write)
92  *    ->mmap_lock		(fault_in_readable->do_page_fault)
93  *
94  *  bdi->wb.list_lock
95  *    sb_lock			(fs/fs-writeback.c)
96  *    ->i_pages lock		(__sync_single_inode)
97  *
98  *  ->i_mmap_rwsem
99  *    ->anon_vma.lock		(vma_adjust)
100  *
101  *  ->anon_vma.lock
102  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
103  *
104  *  ->page_table_lock or pte_lock
105  *    ->swap_lock		(try_to_unmap_one)
106  *    ->private_lock		(try_to_unmap_one)
107  *    ->i_pages lock		(try_to_unmap_one)
108  *    ->lruvec->lru_lock	(follow_page->mark_page_accessed)
109  *    ->lruvec->lru_lock	(check_pte_range->isolate_lru_page)
110  *    ->private_lock		(page_remove_rmap->set_page_dirty)
111  *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
112  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
113  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
114  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
115  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
116  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
117  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
118  *
119  * ->i_mmap_rwsem
120  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
121  */
122 
123 static void page_cache_delete(struct address_space *mapping,
124 				   struct page *page, void *shadow)
125 {
126 	XA_STATE(xas, &mapping->i_pages, page->index);
127 	unsigned int nr = 1;
128 
129 	mapping_set_update(&xas, mapping);
130 
131 	/* hugetlb pages are represented by a single entry in the xarray */
132 	if (!PageHuge(page)) {
133 		xas_set_order(&xas, page->index, compound_order(page));
134 		nr = compound_nr(page);
135 	}
136 
137 	VM_BUG_ON_PAGE(!PageLocked(page), page);
138 	VM_BUG_ON_PAGE(PageTail(page), page);
139 	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
140 
141 	xas_store(&xas, shadow);
142 	xas_init_marks(&xas);
143 
144 	page->mapping = NULL;
145 	/* Leave page->index set: truncation lookup relies upon it */
146 	mapping->nrpages -= nr;
147 }
148 
149 static void unaccount_page_cache_page(struct address_space *mapping,
150 				      struct page *page)
151 {
152 	int nr;
153 
154 	/*
155 	 * if we're uptodate, flush out into the cleancache, otherwise
156 	 * invalidate any existing cleancache entries.  We can't leave
157 	 * stale data around in the cleancache once our page is gone
158 	 */
159 	if (PageUptodate(page) && PageMappedToDisk(page))
160 		cleancache_put_page(page);
161 	else
162 		cleancache_invalidate_page(mapping, page);
163 
164 	VM_BUG_ON_PAGE(PageTail(page), page);
165 	VM_BUG_ON_PAGE(page_mapped(page), page);
166 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
167 		int mapcount;
168 
169 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
170 			 current->comm, page_to_pfn(page));
171 		dump_page(page, "still mapped when deleted");
172 		dump_stack();
173 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
174 
175 		mapcount = page_mapcount(page);
176 		if (mapping_exiting(mapping) &&
177 		    page_count(page) >= mapcount + 2) {
178 			/*
179 			 * All vmas have already been torn down, so it's
180 			 * a good bet that actually the page is unmapped,
181 			 * and we'd prefer not to leak it: if we're wrong,
182 			 * some other bad page check should catch it later.
183 			 */
184 			page_mapcount_reset(page);
185 			page_ref_sub(page, mapcount);
186 		}
187 	}
188 
189 	/* hugetlb pages do not participate in page cache accounting. */
190 	if (PageHuge(page))
191 		return;
192 
193 	nr = thp_nr_pages(page);
194 
195 	__mod_lruvec_page_state(page, NR_FILE_PAGES, -nr);
196 	if (PageSwapBacked(page)) {
197 		__mod_lruvec_page_state(page, NR_SHMEM, -nr);
198 		if (PageTransHuge(page))
199 			__mod_lruvec_page_state(page, NR_SHMEM_THPS, -nr);
200 	} else if (PageTransHuge(page)) {
201 		__mod_lruvec_page_state(page, NR_FILE_THPS, -nr);
202 		filemap_nr_thps_dec(mapping);
203 	}
204 
205 	/*
206 	 * At this point page must be either written or cleaned by
207 	 * truncate.  Dirty page here signals a bug and loss of
208 	 * unwritten data.
209 	 *
210 	 * This fixes dirty accounting after removing the page entirely
211 	 * but leaves PageDirty set: it has no effect for truncated
212 	 * page and anyway will be cleared before returning page into
213 	 * buddy allocator.
214 	 */
215 	if (WARN_ON_ONCE(PageDirty(page)))
216 		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
217 }
218 
219 /*
220  * Delete a page from the page cache and free it. Caller has to make
221  * sure the page is locked and that nobody else uses it - or that usage
222  * is safe.  The caller must hold the i_pages lock.
223  */
224 void __delete_from_page_cache(struct page *page, void *shadow)
225 {
226 	struct address_space *mapping = page->mapping;
227 
228 	trace_mm_filemap_delete_from_page_cache(page);
229 
230 	unaccount_page_cache_page(mapping, page);
231 	page_cache_delete(mapping, page, shadow);
232 }
233 
234 static void page_cache_free_page(struct address_space *mapping,
235 				struct page *page)
236 {
237 	void (*freepage)(struct page *);
238 
239 	freepage = mapping->a_ops->freepage;
240 	if (freepage)
241 		freepage(page);
242 
243 	if (PageTransHuge(page) && !PageHuge(page)) {
244 		page_ref_sub(page, thp_nr_pages(page));
245 		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
246 	} else {
247 		put_page(page);
248 	}
249 }
250 
251 /**
252  * delete_from_page_cache - delete page from page cache
253  * @page: the page which the kernel is trying to remove from page cache
254  *
255  * This must be called only on pages that have been verified to be in the page
256  * cache and locked.  It will never put the page into the free list, the caller
257  * has a reference on the page.
258  */
259 void delete_from_page_cache(struct page *page)
260 {
261 	struct address_space *mapping = page_mapping(page);
262 
263 	BUG_ON(!PageLocked(page));
264 	xa_lock_irq(&mapping->i_pages);
265 	__delete_from_page_cache(page, NULL);
266 	xa_unlock_irq(&mapping->i_pages);
267 
268 	page_cache_free_page(mapping, page);
269 }
270 EXPORT_SYMBOL(delete_from_page_cache);
271 
272 /*
273  * page_cache_delete_batch - delete several pages from page cache
274  * @mapping: the mapping to which pages belong
275  * @pvec: pagevec with pages to delete
276  *
277  * The function walks over mapping->i_pages and removes pages passed in @pvec
278  * from the mapping. The function expects @pvec to be sorted by page index
279  * and is optimised for it to be dense.
280  * It tolerates holes in @pvec (mapping entries at those indices are not
281  * modified). The function expects only THP head pages to be present in the
282  * @pvec.
283  *
284  * The function expects the i_pages lock to be held.
285  */
286 static void page_cache_delete_batch(struct address_space *mapping,
287 			     struct pagevec *pvec)
288 {
289 	XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
290 	int total_pages = 0;
291 	int i = 0;
292 	struct page *page;
293 
294 	mapping_set_update(&xas, mapping);
295 	xas_for_each(&xas, page, ULONG_MAX) {
296 		if (i >= pagevec_count(pvec))
297 			break;
298 
299 		/* A swap/dax/shadow entry got inserted? Skip it. */
300 		if (xa_is_value(page))
301 			continue;
302 		/*
303 		 * A page got inserted in our range? Skip it. We have our
304 		 * pages locked so they are protected from being removed.
305 		 * If we see a page whose index is higher than ours, it
306 		 * means our page has been removed, which shouldn't be
307 		 * possible because we're holding the PageLock.
308 		 */
309 		if (page != pvec->pages[i]) {
310 			VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
311 					page);
312 			continue;
313 		}
314 
315 		WARN_ON_ONCE(!PageLocked(page));
316 
317 		if (page->index == xas.xa_index)
318 			page->mapping = NULL;
319 		/* Leave page->index set: truncation lookup relies on it */
320 
321 		/*
322 		 * Move to the next page in the vector if this is a regular
323 		 * page or the index is of the last sub-page of this compound
324 		 * page.
325 		 */
326 		if (page->index + compound_nr(page) - 1 == xas.xa_index)
327 			i++;
328 		xas_store(&xas, NULL);
329 		total_pages++;
330 	}
331 	mapping->nrpages -= total_pages;
332 }
333 
334 void delete_from_page_cache_batch(struct address_space *mapping,
335 				  struct pagevec *pvec)
336 {
337 	int i;
338 
339 	if (!pagevec_count(pvec))
340 		return;
341 
342 	xa_lock_irq(&mapping->i_pages);
343 	for (i = 0; i < pagevec_count(pvec); i++) {
344 		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
345 
346 		unaccount_page_cache_page(mapping, pvec->pages[i]);
347 	}
348 	page_cache_delete_batch(mapping, pvec);
349 	xa_unlock_irq(&mapping->i_pages);
350 
351 	for (i = 0; i < pagevec_count(pvec); i++)
352 		page_cache_free_page(mapping, pvec->pages[i]);
353 }
354 
355 int filemap_check_errors(struct address_space *mapping)
356 {
357 	int ret = 0;
358 	/* Check for outstanding write errors */
359 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
360 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
361 		ret = -ENOSPC;
362 	if (test_bit(AS_EIO, &mapping->flags) &&
363 	    test_and_clear_bit(AS_EIO, &mapping->flags))
364 		ret = -EIO;
365 	return ret;
366 }
367 EXPORT_SYMBOL(filemap_check_errors);
368 
369 static int filemap_check_and_keep_errors(struct address_space *mapping)
370 {
371 	/* Check for outstanding write errors */
372 	if (test_bit(AS_EIO, &mapping->flags))
373 		return -EIO;
374 	if (test_bit(AS_ENOSPC, &mapping->flags))
375 		return -ENOSPC;
376 	return 0;
377 }
378 
379 /**
380  * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
381  * @mapping:	address space structure to write
382  * @wbc:	the writeback_control controlling the writeout
383  *
384  * Call writepages on the mapping using the provided wbc to control the
385  * writeout.
386  *
387  * Return: %0 on success, negative error code otherwise.
388  */
389 int filemap_fdatawrite_wbc(struct address_space *mapping,
390 			   struct writeback_control *wbc)
391 {
392 	int ret;
393 
394 	if (!mapping_can_writeback(mapping) ||
395 	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
396 		return 0;
397 
398 	wbc_attach_fdatawrite_inode(wbc, mapping->host);
399 	ret = do_writepages(mapping, wbc);
400 	wbc_detach_inode(wbc);
401 	return ret;
402 }
403 EXPORT_SYMBOL(filemap_fdatawrite_wbc);
404 
405 /**
406  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
407  * @mapping:	address space structure to write
408  * @start:	offset in bytes where the range starts
409  * @end:	offset in bytes where the range ends (inclusive)
410  * @sync_mode:	enable synchronous operation
411  *
412  * Start writeback against all of a mapping's dirty pages that lie
413  * within the byte offsets <start, end> inclusive.
414  *
415  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
416  * opposed to a regular memory cleansing writeback.  The difference between
417  * these two operations is that if a dirty page/buffer is encountered, it must
418  * be waited upon, and not just skipped over.
419  *
420  * Return: %0 on success, negative error code otherwise.
421  */
422 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
423 				loff_t end, int sync_mode)
424 {
425 	struct writeback_control wbc = {
426 		.sync_mode = sync_mode,
427 		.nr_to_write = LONG_MAX,
428 		.range_start = start,
429 		.range_end = end,
430 	};
431 
432 	return filemap_fdatawrite_wbc(mapping, &wbc);
433 }
434 
435 static inline int __filemap_fdatawrite(struct address_space *mapping,
436 	int sync_mode)
437 {
438 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
439 }
440 
441 int filemap_fdatawrite(struct address_space *mapping)
442 {
443 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
444 }
445 EXPORT_SYMBOL(filemap_fdatawrite);
446 
447 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
448 				loff_t end)
449 {
450 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
451 }
452 EXPORT_SYMBOL(filemap_fdatawrite_range);
453 
454 /**
455  * filemap_flush - mostly a non-blocking flush
456  * @mapping:	target address_space
457  *
458  * This is a mostly non-blocking flush.  Not suitable for data-integrity
459  * purposes - I/O may not be started against all dirty pages.
460  *
461  * Return: %0 on success, negative error code otherwise.
462  */
463 int filemap_flush(struct address_space *mapping)
464 {
465 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
466 }
467 EXPORT_SYMBOL(filemap_flush);
468 
469 /**
470  * filemap_range_has_page - check if a page exists in range.
471  * @mapping:           address space within which to check
472  * @start_byte:        offset in bytes where the range starts
473  * @end_byte:          offset in bytes where the range ends (inclusive)
474  *
475  * Find at least one page in the range supplied, usually used to check if
476  * direct writing in this range will trigger a writeback.
477  *
478  * Return: %true if at least one page exists in the specified range,
479  * %false otherwise.
480  */
481 bool filemap_range_has_page(struct address_space *mapping,
482 			   loff_t start_byte, loff_t end_byte)
483 {
484 	struct page *page;
485 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
486 	pgoff_t max = end_byte >> PAGE_SHIFT;
487 
488 	if (end_byte < start_byte)
489 		return false;
490 
491 	rcu_read_lock();
492 	for (;;) {
493 		page = xas_find(&xas, max);
494 		if (xas_retry(&xas, page))
495 			continue;
496 		/* Shadow entries don't count */
497 		if (xa_is_value(page))
498 			continue;
499 		/*
500 		 * We don't need to try to pin this page; we're about to
501 		 * release the RCU lock anyway.  It is enough to know that
502 		 * there was a page here recently.
503 		 */
504 		break;
505 	}
506 	rcu_read_unlock();
507 
508 	return page != NULL;
509 }
510 EXPORT_SYMBOL(filemap_range_has_page);
511 
512 static void __filemap_fdatawait_range(struct address_space *mapping,
513 				     loff_t start_byte, loff_t end_byte)
514 {
515 	pgoff_t index = start_byte >> PAGE_SHIFT;
516 	pgoff_t end = end_byte >> PAGE_SHIFT;
517 	struct pagevec pvec;
518 	int nr_pages;
519 
520 	if (end_byte < start_byte)
521 		return;
522 
523 	pagevec_init(&pvec);
524 	while (index <= end) {
525 		unsigned i;
526 
527 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
528 				end, PAGECACHE_TAG_WRITEBACK);
529 		if (!nr_pages)
530 			break;
531 
532 		for (i = 0; i < nr_pages; i++) {
533 			struct page *page = pvec.pages[i];
534 
535 			wait_on_page_writeback(page);
536 			ClearPageError(page);
537 		}
538 		pagevec_release(&pvec);
539 		cond_resched();
540 	}
541 }
542 
543 /**
544  * filemap_fdatawait_range - wait for writeback to complete
545  * @mapping:		address space structure to wait for
546  * @start_byte:		offset in bytes where the range starts
547  * @end_byte:		offset in bytes where the range ends (inclusive)
548  *
549  * Walk the list of under-writeback pages of the given address space
550  * in the given range and wait for all of them.  Check error status of
551  * the address space and return it.
552  *
553  * Since the error status of the address space is cleared by this function,
554  * callers are responsible for checking the return value and handling and/or
555  * reporting the error.
556  *
557  * Return: error status of the address space.
558  */
559 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
560 			    loff_t end_byte)
561 {
562 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
563 	return filemap_check_errors(mapping);
564 }
565 EXPORT_SYMBOL(filemap_fdatawait_range);
566 
567 /**
568  * filemap_fdatawait_range_keep_errors - wait for writeback to complete
569  * @mapping:		address space structure to wait for
570  * @start_byte:		offset in bytes where the range starts
571  * @end_byte:		offset in bytes where the range ends (inclusive)
572  *
573  * Walk the list of under-writeback pages of the given address space in the
574  * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
575  * this function does not clear error status of the address space.
576  *
577  * Use this function if callers don't handle errors themselves.  Expected
578  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
579  * fsfreeze(8)
580  */
581 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
582 		loff_t start_byte, loff_t end_byte)
583 {
584 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
585 	return filemap_check_and_keep_errors(mapping);
586 }
587 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
588 
589 /**
590  * file_fdatawait_range - wait for writeback to complete
591  * @file:		file pointing to address space structure to wait for
592  * @start_byte:		offset in bytes where the range starts
593  * @end_byte:		offset in bytes where the range ends (inclusive)
594  *
595  * Walk the list of under-writeback pages of the address space that file
596  * refers to, in the given range and wait for all of them.  Check error
597  * status of the address space vs. the file->f_wb_err cursor and return it.
598  *
599  * Since the error status of the file is advanced by this function,
600  * callers are responsible for checking the return value and handling and/or
601  * reporting the error.
602  *
603  * Return: error status of the address space vs. the file->f_wb_err cursor.
604  */
605 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
606 {
607 	struct address_space *mapping = file->f_mapping;
608 
609 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
610 	return file_check_and_advance_wb_err(file);
611 }
612 EXPORT_SYMBOL(file_fdatawait_range);
613 
614 /**
615  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
616  * @mapping: address space structure to wait for
617  *
618  * Walk the list of under-writeback pages of the given address space
619  * and wait for all of them.  Unlike filemap_fdatawait(), this function
620  * does not clear error status of the address space.
621  *
622  * Use this function if callers don't handle errors themselves.  Expected
623  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
624  * fsfreeze(8)
625  *
626  * Return: error status of the address space.
627  */
628 int filemap_fdatawait_keep_errors(struct address_space *mapping)
629 {
630 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
631 	return filemap_check_and_keep_errors(mapping);
632 }
633 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
634 
635 /* Returns true if writeback might be needed or already in progress. */
636 static bool mapping_needs_writeback(struct address_space *mapping)
637 {
638 	return mapping->nrpages;
639 }
640 
641 static bool filemap_range_has_writeback(struct address_space *mapping,
642 					loff_t start_byte, loff_t end_byte)
643 {
644 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
645 	pgoff_t max = end_byte >> PAGE_SHIFT;
646 	struct page *page;
647 
648 	if (end_byte < start_byte)
649 		return false;
650 
651 	rcu_read_lock();
652 	xas_for_each(&xas, page, max) {
653 		if (xas_retry(&xas, page))
654 			continue;
655 		if (xa_is_value(page))
656 			continue;
657 		if (PageDirty(page) || PageLocked(page) || PageWriteback(page))
658 			break;
659 	}
660 	rcu_read_unlock();
661 	return page != NULL;
662 
663 }
664 
665 /**
666  * filemap_range_needs_writeback - check if range potentially needs writeback
667  * @mapping:           address space within which to check
668  * @start_byte:        offset in bytes where the range starts
669  * @end_byte:          offset in bytes where the range ends (inclusive)
670  *
671  * Find at least one page in the range supplied, usually used to check if
672  * direct writing in this range will trigger a writeback. Used by O_DIRECT
673  * read/write with IOCB_NOWAIT, to see if the caller needs to do
674  * filemap_write_and_wait_range() before proceeding.
675  *
676  * Return: %true if the caller should do filemap_write_and_wait_range() before
677  * doing O_DIRECT to a page in this range, %false otherwise.
678  */
679 bool filemap_range_needs_writeback(struct address_space *mapping,
680 				   loff_t start_byte, loff_t end_byte)
681 {
682 	if (!mapping_needs_writeback(mapping))
683 		return false;
684 	if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
685 	    !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
686 		return false;
687 	return filemap_range_has_writeback(mapping, start_byte, end_byte);
688 }
689 EXPORT_SYMBOL_GPL(filemap_range_needs_writeback);
690 
691 /**
692  * filemap_write_and_wait_range - write out & wait on a file range
693  * @mapping:	the address_space for the pages
694  * @lstart:	offset in bytes where the range starts
695  * @lend:	offset in bytes where the range ends (inclusive)
696  *
697  * Write out and wait upon file offsets lstart->lend, inclusive.
698  *
699  * Note that @lend is inclusive (describes the last byte to be written) so
700  * that this function can be used to write to the very end-of-file (end = -1).
701  *
702  * Return: error status of the address space.
703  */
704 int filemap_write_and_wait_range(struct address_space *mapping,
705 				 loff_t lstart, loff_t lend)
706 {
707 	int err = 0;
708 
709 	if (mapping_needs_writeback(mapping)) {
710 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
711 						 WB_SYNC_ALL);
712 		/*
713 		 * Even if the above returned error, the pages may be
714 		 * written partially (e.g. -ENOSPC), so we wait for it.
715 		 * But the -EIO is special case, it may indicate the worst
716 		 * thing (e.g. bug) happened, so we avoid waiting for it.
717 		 */
718 		if (err != -EIO) {
719 			int err2 = filemap_fdatawait_range(mapping,
720 						lstart, lend);
721 			if (!err)
722 				err = err2;
723 		} else {
724 			/* Clear any previously stored errors */
725 			filemap_check_errors(mapping);
726 		}
727 	} else {
728 		err = filemap_check_errors(mapping);
729 	}
730 	return err;
731 }
732 EXPORT_SYMBOL(filemap_write_and_wait_range);
733 
734 void __filemap_set_wb_err(struct address_space *mapping, int err)
735 {
736 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
737 
738 	trace_filemap_set_wb_err(mapping, eseq);
739 }
740 EXPORT_SYMBOL(__filemap_set_wb_err);
741 
742 /**
743  * file_check_and_advance_wb_err - report wb error (if any) that was previously
744  * 				   and advance wb_err to current one
745  * @file: struct file on which the error is being reported
746  *
747  * When userland calls fsync (or something like nfsd does the equivalent), we
748  * want to report any writeback errors that occurred since the last fsync (or
749  * since the file was opened if there haven't been any).
750  *
751  * Grab the wb_err from the mapping. If it matches what we have in the file,
752  * then just quickly return 0. The file is all caught up.
753  *
754  * If it doesn't match, then take the mapping value, set the "seen" flag in
755  * it and try to swap it into place. If it works, or another task beat us
756  * to it with the new value, then update the f_wb_err and return the error
757  * portion. The error at this point must be reported via proper channels
758  * (a'la fsync, or NFS COMMIT operation, etc.).
759  *
760  * While we handle mapping->wb_err with atomic operations, the f_wb_err
761  * value is protected by the f_lock since we must ensure that it reflects
762  * the latest value swapped in for this file descriptor.
763  *
764  * Return: %0 on success, negative error code otherwise.
765  */
766 int file_check_and_advance_wb_err(struct file *file)
767 {
768 	int err = 0;
769 	errseq_t old = READ_ONCE(file->f_wb_err);
770 	struct address_space *mapping = file->f_mapping;
771 
772 	/* Locklessly handle the common case where nothing has changed */
773 	if (errseq_check(&mapping->wb_err, old)) {
774 		/* Something changed, must use slow path */
775 		spin_lock(&file->f_lock);
776 		old = file->f_wb_err;
777 		err = errseq_check_and_advance(&mapping->wb_err,
778 						&file->f_wb_err);
779 		trace_file_check_and_advance_wb_err(file, old);
780 		spin_unlock(&file->f_lock);
781 	}
782 
783 	/*
784 	 * We're mostly using this function as a drop in replacement for
785 	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
786 	 * that the legacy code would have had on these flags.
787 	 */
788 	clear_bit(AS_EIO, &mapping->flags);
789 	clear_bit(AS_ENOSPC, &mapping->flags);
790 	return err;
791 }
792 EXPORT_SYMBOL(file_check_and_advance_wb_err);
793 
794 /**
795  * file_write_and_wait_range - write out & wait on a file range
796  * @file:	file pointing to address_space with pages
797  * @lstart:	offset in bytes where the range starts
798  * @lend:	offset in bytes where the range ends (inclusive)
799  *
800  * Write out and wait upon file offsets lstart->lend, inclusive.
801  *
802  * Note that @lend is inclusive (describes the last byte to be written) so
803  * that this function can be used to write to the very end-of-file (end = -1).
804  *
805  * After writing out and waiting on the data, we check and advance the
806  * f_wb_err cursor to the latest value, and return any errors detected there.
807  *
808  * Return: %0 on success, negative error code otherwise.
809  */
810 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
811 {
812 	int err = 0, err2;
813 	struct address_space *mapping = file->f_mapping;
814 
815 	if (mapping_needs_writeback(mapping)) {
816 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
817 						 WB_SYNC_ALL);
818 		/* See comment of filemap_write_and_wait() */
819 		if (err != -EIO)
820 			__filemap_fdatawait_range(mapping, lstart, lend);
821 	}
822 	err2 = file_check_and_advance_wb_err(file);
823 	if (!err)
824 		err = err2;
825 	return err;
826 }
827 EXPORT_SYMBOL(file_write_and_wait_range);
828 
829 /**
830  * replace_page_cache_page - replace a pagecache page with a new one
831  * @old:	page to be replaced
832  * @new:	page to replace with
833  *
834  * This function replaces a page in the pagecache with a new one.  On
835  * success it acquires the pagecache reference for the new page and
836  * drops it for the old page.  Both the old and new pages must be
837  * locked.  This function does not add the new page to the LRU, the
838  * caller must do that.
839  *
840  * The remove + add is atomic.  This function cannot fail.
841  */
842 void replace_page_cache_page(struct page *old, struct page *new)
843 {
844 	struct folio *fold = page_folio(old);
845 	struct folio *fnew = page_folio(new);
846 	struct address_space *mapping = old->mapping;
847 	void (*freepage)(struct page *) = mapping->a_ops->freepage;
848 	pgoff_t offset = old->index;
849 	XA_STATE(xas, &mapping->i_pages, offset);
850 
851 	VM_BUG_ON_PAGE(!PageLocked(old), old);
852 	VM_BUG_ON_PAGE(!PageLocked(new), new);
853 	VM_BUG_ON_PAGE(new->mapping, new);
854 
855 	get_page(new);
856 	new->mapping = mapping;
857 	new->index = offset;
858 
859 	mem_cgroup_migrate(fold, fnew);
860 
861 	xas_lock_irq(&xas);
862 	xas_store(&xas, new);
863 
864 	old->mapping = NULL;
865 	/* hugetlb pages do not participate in page cache accounting. */
866 	if (!PageHuge(old))
867 		__dec_lruvec_page_state(old, NR_FILE_PAGES);
868 	if (!PageHuge(new))
869 		__inc_lruvec_page_state(new, NR_FILE_PAGES);
870 	if (PageSwapBacked(old))
871 		__dec_lruvec_page_state(old, NR_SHMEM);
872 	if (PageSwapBacked(new))
873 		__inc_lruvec_page_state(new, NR_SHMEM);
874 	xas_unlock_irq(&xas);
875 	if (freepage)
876 		freepage(old);
877 	put_page(old);
878 }
879 EXPORT_SYMBOL_GPL(replace_page_cache_page);
880 
881 noinline int __filemap_add_folio(struct address_space *mapping,
882 		struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
883 {
884 	XA_STATE(xas, &mapping->i_pages, index);
885 	int huge = folio_test_hugetlb(folio);
886 	int error;
887 	bool charged = false;
888 
889 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
890 	VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
891 	mapping_set_update(&xas, mapping);
892 
893 	folio_get(folio);
894 	folio->mapping = mapping;
895 	folio->index = index;
896 
897 	if (!huge) {
898 		error = mem_cgroup_charge(folio, NULL, gfp);
899 		VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
900 		if (error)
901 			goto error;
902 		charged = true;
903 	}
904 
905 	gfp &= GFP_RECLAIM_MASK;
906 
907 	do {
908 		unsigned int order = xa_get_order(xas.xa, xas.xa_index);
909 		void *entry, *old = NULL;
910 
911 		if (order > folio_order(folio))
912 			xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
913 					order, gfp);
914 		xas_lock_irq(&xas);
915 		xas_for_each_conflict(&xas, entry) {
916 			old = entry;
917 			if (!xa_is_value(entry)) {
918 				xas_set_err(&xas, -EEXIST);
919 				goto unlock;
920 			}
921 		}
922 
923 		if (old) {
924 			if (shadowp)
925 				*shadowp = old;
926 			/* entry may have been split before we acquired lock */
927 			order = xa_get_order(xas.xa, xas.xa_index);
928 			if (order > folio_order(folio)) {
929 				xas_split(&xas, old, order);
930 				xas_reset(&xas);
931 			}
932 		}
933 
934 		xas_store(&xas, folio);
935 		if (xas_error(&xas))
936 			goto unlock;
937 
938 		mapping->nrpages++;
939 
940 		/* hugetlb pages do not participate in page cache accounting */
941 		if (!huge)
942 			__lruvec_stat_add_folio(folio, NR_FILE_PAGES);
943 unlock:
944 		xas_unlock_irq(&xas);
945 	} while (xas_nomem(&xas, gfp));
946 
947 	if (xas_error(&xas)) {
948 		error = xas_error(&xas);
949 		if (charged)
950 			mem_cgroup_uncharge(folio);
951 		goto error;
952 	}
953 
954 	trace_mm_filemap_add_to_page_cache(&folio->page);
955 	return 0;
956 error:
957 	folio->mapping = NULL;
958 	/* Leave page->index set: truncation relies upon it */
959 	folio_put(folio);
960 	return error;
961 }
962 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
963 
964 /**
965  * add_to_page_cache_locked - add a locked page to the pagecache
966  * @page:	page to add
967  * @mapping:	the page's address_space
968  * @offset:	page index
969  * @gfp_mask:	page allocation mode
970  *
971  * This function is used to add a page to the pagecache. It must be locked.
972  * This function does not add the page to the LRU.  The caller must do that.
973  *
974  * Return: %0 on success, negative error code otherwise.
975  */
976 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
977 		pgoff_t offset, gfp_t gfp_mask)
978 {
979 	return __filemap_add_folio(mapping, page_folio(page), offset,
980 					  gfp_mask, NULL);
981 }
982 EXPORT_SYMBOL(add_to_page_cache_locked);
983 
984 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
985 				pgoff_t index, gfp_t gfp)
986 {
987 	void *shadow = NULL;
988 	int ret;
989 
990 	__folio_set_locked(folio);
991 	ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
992 	if (unlikely(ret))
993 		__folio_clear_locked(folio);
994 	else {
995 		/*
996 		 * The folio might have been evicted from cache only
997 		 * recently, in which case it should be activated like
998 		 * any other repeatedly accessed folio.
999 		 * The exception is folios getting rewritten; evicting other
1000 		 * data from the working set, only to cache data that will
1001 		 * get overwritten with something else, is a waste of memory.
1002 		 */
1003 		WARN_ON_ONCE(folio_test_active(folio));
1004 		if (!(gfp & __GFP_WRITE) && shadow)
1005 			workingset_refault(folio, shadow);
1006 		folio_add_lru(folio);
1007 	}
1008 	return ret;
1009 }
1010 EXPORT_SYMBOL_GPL(filemap_add_folio);
1011 
1012 #ifdef CONFIG_NUMA
1013 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
1014 {
1015 	int n;
1016 	struct folio *folio;
1017 
1018 	if (cpuset_do_page_mem_spread()) {
1019 		unsigned int cpuset_mems_cookie;
1020 		do {
1021 			cpuset_mems_cookie = read_mems_allowed_begin();
1022 			n = cpuset_mem_spread_node();
1023 			folio = __folio_alloc_node(gfp, order, n);
1024 		} while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
1025 
1026 		return folio;
1027 	}
1028 	return folio_alloc(gfp, order);
1029 }
1030 EXPORT_SYMBOL(filemap_alloc_folio);
1031 #endif
1032 
1033 /*
1034  * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
1035  *
1036  * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
1037  *
1038  * @mapping1: the first mapping to lock
1039  * @mapping2: the second mapping to lock
1040  */
1041 void filemap_invalidate_lock_two(struct address_space *mapping1,
1042 				 struct address_space *mapping2)
1043 {
1044 	if (mapping1 > mapping2)
1045 		swap(mapping1, mapping2);
1046 	if (mapping1)
1047 		down_write(&mapping1->invalidate_lock);
1048 	if (mapping2 && mapping1 != mapping2)
1049 		down_write_nested(&mapping2->invalidate_lock, 1);
1050 }
1051 EXPORT_SYMBOL(filemap_invalidate_lock_two);
1052 
1053 /*
1054  * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1055  *
1056  * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1057  *
1058  * @mapping1: the first mapping to unlock
1059  * @mapping2: the second mapping to unlock
1060  */
1061 void filemap_invalidate_unlock_two(struct address_space *mapping1,
1062 				   struct address_space *mapping2)
1063 {
1064 	if (mapping1)
1065 		up_write(&mapping1->invalidate_lock);
1066 	if (mapping2 && mapping1 != mapping2)
1067 		up_write(&mapping2->invalidate_lock);
1068 }
1069 EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1070 
1071 /*
1072  * In order to wait for pages to become available there must be
1073  * waitqueues associated with pages. By using a hash table of
1074  * waitqueues where the bucket discipline is to maintain all
1075  * waiters on the same queue and wake all when any of the pages
1076  * become available, and for the woken contexts to check to be
1077  * sure the appropriate page became available, this saves space
1078  * at a cost of "thundering herd" phenomena during rare hash
1079  * collisions.
1080  */
1081 #define PAGE_WAIT_TABLE_BITS 8
1082 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1083 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1084 
1085 static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1086 {
1087 	return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1088 }
1089 
1090 void __init pagecache_init(void)
1091 {
1092 	int i;
1093 
1094 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1095 		init_waitqueue_head(&folio_wait_table[i]);
1096 
1097 	page_writeback_init();
1098 }
1099 
1100 /*
1101  * The page wait code treats the "wait->flags" somewhat unusually, because
1102  * we have multiple different kinds of waits, not just the usual "exclusive"
1103  * one.
1104  *
1105  * We have:
1106  *
1107  *  (a) no special bits set:
1108  *
1109  *	We're just waiting for the bit to be released, and when a waker
1110  *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1111  *	and remove it from the wait queue.
1112  *
1113  *	Simple and straightforward.
1114  *
1115  *  (b) WQ_FLAG_EXCLUSIVE:
1116  *
1117  *	The waiter is waiting to get the lock, and only one waiter should
1118  *	be woken up to avoid any thundering herd behavior. We'll set the
1119  *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1120  *
1121  *	This is the traditional exclusive wait.
1122  *
1123  *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1124  *
1125  *	The waiter is waiting to get the bit, and additionally wants the
1126  *	lock to be transferred to it for fair lock behavior. If the lock
1127  *	cannot be taken, we stop walking the wait queue without waking
1128  *	the waiter.
1129  *
1130  *	This is the "fair lock handoff" case, and in addition to setting
1131  *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1132  *	that it now has the lock.
1133  */
1134 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1135 {
1136 	unsigned int flags;
1137 	struct wait_page_key *key = arg;
1138 	struct wait_page_queue *wait_page
1139 		= container_of(wait, struct wait_page_queue, wait);
1140 
1141 	if (!wake_page_match(wait_page, key))
1142 		return 0;
1143 
1144 	/*
1145 	 * If it's a lock handoff wait, we get the bit for it, and
1146 	 * stop walking (and do not wake it up) if we can't.
1147 	 */
1148 	flags = wait->flags;
1149 	if (flags & WQ_FLAG_EXCLUSIVE) {
1150 		if (test_bit(key->bit_nr, &key->folio->flags))
1151 			return -1;
1152 		if (flags & WQ_FLAG_CUSTOM) {
1153 			if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1154 				return -1;
1155 			flags |= WQ_FLAG_DONE;
1156 		}
1157 	}
1158 
1159 	/*
1160 	 * We are holding the wait-queue lock, but the waiter that
1161 	 * is waiting for this will be checking the flags without
1162 	 * any locking.
1163 	 *
1164 	 * So update the flags atomically, and wake up the waiter
1165 	 * afterwards to avoid any races. This store-release pairs
1166 	 * with the load-acquire in folio_wait_bit_common().
1167 	 */
1168 	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1169 	wake_up_state(wait->private, mode);
1170 
1171 	/*
1172 	 * Ok, we have successfully done what we're waiting for,
1173 	 * and we can unconditionally remove the wait entry.
1174 	 *
1175 	 * Note that this pairs with the "finish_wait()" in the
1176 	 * waiter, and has to be the absolute last thing we do.
1177 	 * After this list_del_init(&wait->entry) the wait entry
1178 	 * might be de-allocated and the process might even have
1179 	 * exited.
1180 	 */
1181 	list_del_init_careful(&wait->entry);
1182 	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1183 }
1184 
1185 static void folio_wake_bit(struct folio *folio, int bit_nr)
1186 {
1187 	wait_queue_head_t *q = folio_waitqueue(folio);
1188 	struct wait_page_key key;
1189 	unsigned long flags;
1190 	wait_queue_entry_t bookmark;
1191 
1192 	key.folio = folio;
1193 	key.bit_nr = bit_nr;
1194 	key.page_match = 0;
1195 
1196 	bookmark.flags = 0;
1197 	bookmark.private = NULL;
1198 	bookmark.func = NULL;
1199 	INIT_LIST_HEAD(&bookmark.entry);
1200 
1201 	spin_lock_irqsave(&q->lock, flags);
1202 	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1203 
1204 	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1205 		/*
1206 		 * Take a breather from holding the lock,
1207 		 * allow pages that finish wake up asynchronously
1208 		 * to acquire the lock and remove themselves
1209 		 * from wait queue
1210 		 */
1211 		spin_unlock_irqrestore(&q->lock, flags);
1212 		cpu_relax();
1213 		spin_lock_irqsave(&q->lock, flags);
1214 		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1215 	}
1216 
1217 	/*
1218 	 * It is possible for other pages to have collided on the waitqueue
1219 	 * hash, so in that case check for a page match. That prevents a long-
1220 	 * term waiter
1221 	 *
1222 	 * It is still possible to miss a case here, when we woke page waiters
1223 	 * and removed them from the waitqueue, but there are still other
1224 	 * page waiters.
1225 	 */
1226 	if (!waitqueue_active(q) || !key.page_match) {
1227 		folio_clear_waiters(folio);
1228 		/*
1229 		 * It's possible to miss clearing Waiters here, when we woke
1230 		 * our page waiters, but the hashed waitqueue has waiters for
1231 		 * other pages on it.
1232 		 *
1233 		 * That's okay, it's a rare case. The next waker will clear it.
1234 		 */
1235 	}
1236 	spin_unlock_irqrestore(&q->lock, flags);
1237 }
1238 
1239 static void folio_wake(struct folio *folio, int bit)
1240 {
1241 	if (!folio_test_waiters(folio))
1242 		return;
1243 	folio_wake_bit(folio, bit);
1244 }
1245 
1246 /*
1247  * A choice of three behaviors for folio_wait_bit_common():
1248  */
1249 enum behavior {
1250 	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1251 			 * __folio_lock() waiting on then setting PG_locked.
1252 			 */
1253 	SHARED,		/* Hold ref to page and check the bit when woken, like
1254 			 * wait_on_page_writeback() waiting on PG_writeback.
1255 			 */
1256 	DROP,		/* Drop ref to page before wait, no check when woken,
1257 			 * like put_and_wait_on_page_locked() on PG_locked.
1258 			 */
1259 };
1260 
1261 /*
1262  * Attempt to check (or get) the folio flag, and mark us done
1263  * if successful.
1264  */
1265 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1266 					struct wait_queue_entry *wait)
1267 {
1268 	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1269 		if (test_and_set_bit(bit_nr, &folio->flags))
1270 			return false;
1271 	} else if (test_bit(bit_nr, &folio->flags))
1272 		return false;
1273 
1274 	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1275 	return true;
1276 }
1277 
1278 /* How many times do we accept lock stealing from under a waiter? */
1279 int sysctl_page_lock_unfairness = 5;
1280 
1281 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1282 		int state, enum behavior behavior)
1283 {
1284 	wait_queue_head_t *q = folio_waitqueue(folio);
1285 	int unfairness = sysctl_page_lock_unfairness;
1286 	struct wait_page_queue wait_page;
1287 	wait_queue_entry_t *wait = &wait_page.wait;
1288 	bool thrashing = false;
1289 	bool delayacct = false;
1290 	unsigned long pflags;
1291 
1292 	if (bit_nr == PG_locked &&
1293 	    !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1294 		if (!folio_test_swapbacked(folio)) {
1295 			delayacct_thrashing_start();
1296 			delayacct = true;
1297 		}
1298 		psi_memstall_enter(&pflags);
1299 		thrashing = true;
1300 	}
1301 
1302 	init_wait(wait);
1303 	wait->func = wake_page_function;
1304 	wait_page.folio = folio;
1305 	wait_page.bit_nr = bit_nr;
1306 
1307 repeat:
1308 	wait->flags = 0;
1309 	if (behavior == EXCLUSIVE) {
1310 		wait->flags = WQ_FLAG_EXCLUSIVE;
1311 		if (--unfairness < 0)
1312 			wait->flags |= WQ_FLAG_CUSTOM;
1313 	}
1314 
1315 	/*
1316 	 * Do one last check whether we can get the
1317 	 * page bit synchronously.
1318 	 *
1319 	 * Do the folio_set_waiters() marking before that
1320 	 * to let any waker we _just_ missed know they
1321 	 * need to wake us up (otherwise they'll never
1322 	 * even go to the slow case that looks at the
1323 	 * page queue), and add ourselves to the wait
1324 	 * queue if we need to sleep.
1325 	 *
1326 	 * This part needs to be done under the queue
1327 	 * lock to avoid races.
1328 	 */
1329 	spin_lock_irq(&q->lock);
1330 	folio_set_waiters(folio);
1331 	if (!folio_trylock_flag(folio, bit_nr, wait))
1332 		__add_wait_queue_entry_tail(q, wait);
1333 	spin_unlock_irq(&q->lock);
1334 
1335 	/*
1336 	 * From now on, all the logic will be based on
1337 	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1338 	 * see whether the page bit testing has already
1339 	 * been done by the wake function.
1340 	 *
1341 	 * We can drop our reference to the folio.
1342 	 */
1343 	if (behavior == DROP)
1344 		folio_put(folio);
1345 
1346 	/*
1347 	 * Note that until the "finish_wait()", or until
1348 	 * we see the WQ_FLAG_WOKEN flag, we need to
1349 	 * be very careful with the 'wait->flags', because
1350 	 * we may race with a waker that sets them.
1351 	 */
1352 	for (;;) {
1353 		unsigned int flags;
1354 
1355 		set_current_state(state);
1356 
1357 		/* Loop until we've been woken or interrupted */
1358 		flags = smp_load_acquire(&wait->flags);
1359 		if (!(flags & WQ_FLAG_WOKEN)) {
1360 			if (signal_pending_state(state, current))
1361 				break;
1362 
1363 			io_schedule();
1364 			continue;
1365 		}
1366 
1367 		/* If we were non-exclusive, we're done */
1368 		if (behavior != EXCLUSIVE)
1369 			break;
1370 
1371 		/* If the waker got the lock for us, we're done */
1372 		if (flags & WQ_FLAG_DONE)
1373 			break;
1374 
1375 		/*
1376 		 * Otherwise, if we're getting the lock, we need to
1377 		 * try to get it ourselves.
1378 		 *
1379 		 * And if that fails, we'll have to retry this all.
1380 		 */
1381 		if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1382 			goto repeat;
1383 
1384 		wait->flags |= WQ_FLAG_DONE;
1385 		break;
1386 	}
1387 
1388 	/*
1389 	 * If a signal happened, this 'finish_wait()' may remove the last
1390 	 * waiter from the wait-queues, but the folio waiters bit will remain
1391 	 * set. That's ok. The next wakeup will take care of it, and trying
1392 	 * to do it here would be difficult and prone to races.
1393 	 */
1394 	finish_wait(q, wait);
1395 
1396 	if (thrashing) {
1397 		if (delayacct)
1398 			delayacct_thrashing_end();
1399 		psi_memstall_leave(&pflags);
1400 	}
1401 
1402 	/*
1403 	 * NOTE! The wait->flags weren't stable until we've done the
1404 	 * 'finish_wait()', and we could have exited the loop above due
1405 	 * to a signal, and had a wakeup event happen after the signal
1406 	 * test but before the 'finish_wait()'.
1407 	 *
1408 	 * So only after the finish_wait() can we reliably determine
1409 	 * if we got woken up or not, so we can now figure out the final
1410 	 * return value based on that state without races.
1411 	 *
1412 	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1413 	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1414 	 */
1415 	if (behavior == EXCLUSIVE)
1416 		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1417 
1418 	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1419 }
1420 
1421 void folio_wait_bit(struct folio *folio, int bit_nr)
1422 {
1423 	folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1424 }
1425 EXPORT_SYMBOL(folio_wait_bit);
1426 
1427 int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1428 {
1429 	return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1430 }
1431 EXPORT_SYMBOL(folio_wait_bit_killable);
1432 
1433 /**
1434  * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1435  * @page: The page to wait for.
1436  * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1437  *
1438  * The caller should hold a reference on @page.  They expect the page to
1439  * become unlocked relatively soon, but do not wish to hold up migration
1440  * (for example) by holding the reference while waiting for the page to
1441  * come unlocked.  After this function returns, the caller should not
1442  * dereference @page.
1443  *
1444  * Return: 0 if the page was unlocked or -EINTR if interrupted by a signal.
1445  */
1446 int put_and_wait_on_page_locked(struct page *page, int state)
1447 {
1448 	return folio_wait_bit_common(page_folio(page), PG_locked, state,
1449 			DROP);
1450 }
1451 
1452 /**
1453  * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1454  * @folio: Folio defining the wait queue of interest
1455  * @waiter: Waiter to add to the queue
1456  *
1457  * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1458  */
1459 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1460 {
1461 	wait_queue_head_t *q = folio_waitqueue(folio);
1462 	unsigned long flags;
1463 
1464 	spin_lock_irqsave(&q->lock, flags);
1465 	__add_wait_queue_entry_tail(q, waiter);
1466 	folio_set_waiters(folio);
1467 	spin_unlock_irqrestore(&q->lock, flags);
1468 }
1469 EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1470 
1471 #ifndef clear_bit_unlock_is_negative_byte
1472 
1473 /*
1474  * PG_waiters is the high bit in the same byte as PG_lock.
1475  *
1476  * On x86 (and on many other architectures), we can clear PG_lock and
1477  * test the sign bit at the same time. But if the architecture does
1478  * not support that special operation, we just do this all by hand
1479  * instead.
1480  *
1481  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1482  * being cleared, but a memory barrier should be unnecessary since it is
1483  * in the same byte as PG_locked.
1484  */
1485 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1486 {
1487 	clear_bit_unlock(nr, mem);
1488 	/* smp_mb__after_atomic(); */
1489 	return test_bit(PG_waiters, mem);
1490 }
1491 
1492 #endif
1493 
1494 /**
1495  * folio_unlock - Unlock a locked folio.
1496  * @folio: The folio.
1497  *
1498  * Unlocks the folio and wakes up any thread sleeping on the page lock.
1499  *
1500  * Context: May be called from interrupt or process context.  May not be
1501  * called from NMI context.
1502  */
1503 void folio_unlock(struct folio *folio)
1504 {
1505 	/* Bit 7 allows x86 to check the byte's sign bit */
1506 	BUILD_BUG_ON(PG_waiters != 7);
1507 	BUILD_BUG_ON(PG_locked > 7);
1508 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1509 	if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0)))
1510 		folio_wake_bit(folio, PG_locked);
1511 }
1512 EXPORT_SYMBOL(folio_unlock);
1513 
1514 /**
1515  * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1516  * @folio: The folio.
1517  *
1518  * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1519  * it.  The folio reference held for PG_private_2 being set is released.
1520  *
1521  * This is, for example, used when a netfs folio is being written to a local
1522  * disk cache, thereby allowing writes to the cache for the same folio to be
1523  * serialised.
1524  */
1525 void folio_end_private_2(struct folio *folio)
1526 {
1527 	VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1528 	clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1529 	folio_wake_bit(folio, PG_private_2);
1530 	folio_put(folio);
1531 }
1532 EXPORT_SYMBOL(folio_end_private_2);
1533 
1534 /**
1535  * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1536  * @folio: The folio to wait on.
1537  *
1538  * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
1539  */
1540 void folio_wait_private_2(struct folio *folio)
1541 {
1542 	while (folio_test_private_2(folio))
1543 		folio_wait_bit(folio, PG_private_2);
1544 }
1545 EXPORT_SYMBOL(folio_wait_private_2);
1546 
1547 /**
1548  * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1549  * @folio: The folio to wait on.
1550  *
1551  * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
1552  * fatal signal is received by the calling task.
1553  *
1554  * Return:
1555  * - 0 if successful.
1556  * - -EINTR if a fatal signal was encountered.
1557  */
1558 int folio_wait_private_2_killable(struct folio *folio)
1559 {
1560 	int ret = 0;
1561 
1562 	while (folio_test_private_2(folio)) {
1563 		ret = folio_wait_bit_killable(folio, PG_private_2);
1564 		if (ret < 0)
1565 			break;
1566 	}
1567 
1568 	return ret;
1569 }
1570 EXPORT_SYMBOL(folio_wait_private_2_killable);
1571 
1572 /**
1573  * folio_end_writeback - End writeback against a folio.
1574  * @folio: The folio.
1575  */
1576 void folio_end_writeback(struct folio *folio)
1577 {
1578 	/*
1579 	 * folio_test_clear_reclaim() could be used here but it is an
1580 	 * atomic operation and overkill in this particular case. Failing
1581 	 * to shuffle a folio marked for immediate reclaim is too mild
1582 	 * a gain to justify taking an atomic operation penalty at the
1583 	 * end of every folio writeback.
1584 	 */
1585 	if (folio_test_reclaim(folio)) {
1586 		folio_clear_reclaim(folio);
1587 		folio_rotate_reclaimable(folio);
1588 	}
1589 
1590 	/*
1591 	 * Writeback does not hold a folio reference of its own, relying
1592 	 * on truncation to wait for the clearing of PG_writeback.
1593 	 * But here we must make sure that the folio is not freed and
1594 	 * reused before the folio_wake().
1595 	 */
1596 	folio_get(folio);
1597 	if (!__folio_end_writeback(folio))
1598 		BUG();
1599 
1600 	smp_mb__after_atomic();
1601 	folio_wake(folio, PG_writeback);
1602 	acct_reclaim_writeback(folio);
1603 	folio_put(folio);
1604 }
1605 EXPORT_SYMBOL(folio_end_writeback);
1606 
1607 /*
1608  * After completing I/O on a page, call this routine to update the page
1609  * flags appropriately
1610  */
1611 void page_endio(struct page *page, bool is_write, int err)
1612 {
1613 	if (!is_write) {
1614 		if (!err) {
1615 			SetPageUptodate(page);
1616 		} else {
1617 			ClearPageUptodate(page);
1618 			SetPageError(page);
1619 		}
1620 		unlock_page(page);
1621 	} else {
1622 		if (err) {
1623 			struct address_space *mapping;
1624 
1625 			SetPageError(page);
1626 			mapping = page_mapping(page);
1627 			if (mapping)
1628 				mapping_set_error(mapping, err);
1629 		}
1630 		end_page_writeback(page);
1631 	}
1632 }
1633 EXPORT_SYMBOL_GPL(page_endio);
1634 
1635 /**
1636  * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1637  * @folio: The folio to lock
1638  */
1639 void __folio_lock(struct folio *folio)
1640 {
1641 	folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1642 				EXCLUSIVE);
1643 }
1644 EXPORT_SYMBOL(__folio_lock);
1645 
1646 int __folio_lock_killable(struct folio *folio)
1647 {
1648 	return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1649 					EXCLUSIVE);
1650 }
1651 EXPORT_SYMBOL_GPL(__folio_lock_killable);
1652 
1653 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1654 {
1655 	struct wait_queue_head *q = folio_waitqueue(folio);
1656 	int ret = 0;
1657 
1658 	wait->folio = folio;
1659 	wait->bit_nr = PG_locked;
1660 
1661 	spin_lock_irq(&q->lock);
1662 	__add_wait_queue_entry_tail(q, &wait->wait);
1663 	folio_set_waiters(folio);
1664 	ret = !folio_trylock(folio);
1665 	/*
1666 	 * If we were successful now, we know we're still on the
1667 	 * waitqueue as we're still under the lock. This means it's
1668 	 * safe to remove and return success, we know the callback
1669 	 * isn't going to trigger.
1670 	 */
1671 	if (!ret)
1672 		__remove_wait_queue(q, &wait->wait);
1673 	else
1674 		ret = -EIOCBQUEUED;
1675 	spin_unlock_irq(&q->lock);
1676 	return ret;
1677 }
1678 
1679 /*
1680  * Return values:
1681  * true - folio is locked; mmap_lock is still held.
1682  * false - folio is not locked.
1683  *     mmap_lock has been released (mmap_read_unlock(), unless flags had both
1684  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1685  *     which case mmap_lock is still held.
1686  *
1687  * If neither ALLOW_RETRY nor KILLABLE are set, will always return true
1688  * with the folio locked and the mmap_lock unperturbed.
1689  */
1690 bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm,
1691 			 unsigned int flags)
1692 {
1693 	if (fault_flag_allow_retry_first(flags)) {
1694 		/*
1695 		 * CAUTION! In this case, mmap_lock is not released
1696 		 * even though return 0.
1697 		 */
1698 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1699 			return false;
1700 
1701 		mmap_read_unlock(mm);
1702 		if (flags & FAULT_FLAG_KILLABLE)
1703 			folio_wait_locked_killable(folio);
1704 		else
1705 			folio_wait_locked(folio);
1706 		return false;
1707 	}
1708 	if (flags & FAULT_FLAG_KILLABLE) {
1709 		bool ret;
1710 
1711 		ret = __folio_lock_killable(folio);
1712 		if (ret) {
1713 			mmap_read_unlock(mm);
1714 			return false;
1715 		}
1716 	} else {
1717 		__folio_lock(folio);
1718 	}
1719 
1720 	return true;
1721 }
1722 
1723 /**
1724  * page_cache_next_miss() - Find the next gap in the page cache.
1725  * @mapping: Mapping.
1726  * @index: Index.
1727  * @max_scan: Maximum range to search.
1728  *
1729  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1730  * gap with the lowest index.
1731  *
1732  * This function may be called under the rcu_read_lock.  However, this will
1733  * not atomically search a snapshot of the cache at a single point in time.
1734  * For example, if a gap is created at index 5, then subsequently a gap is
1735  * created at index 10, page_cache_next_miss covering both indices may
1736  * return 10 if called under the rcu_read_lock.
1737  *
1738  * Return: The index of the gap if found, otherwise an index outside the
1739  * range specified (in which case 'return - index >= max_scan' will be true).
1740  * In the rare case of index wrap-around, 0 will be returned.
1741  */
1742 pgoff_t page_cache_next_miss(struct address_space *mapping,
1743 			     pgoff_t index, unsigned long max_scan)
1744 {
1745 	XA_STATE(xas, &mapping->i_pages, index);
1746 
1747 	while (max_scan--) {
1748 		void *entry = xas_next(&xas);
1749 		if (!entry || xa_is_value(entry))
1750 			break;
1751 		if (xas.xa_index == 0)
1752 			break;
1753 	}
1754 
1755 	return xas.xa_index;
1756 }
1757 EXPORT_SYMBOL(page_cache_next_miss);
1758 
1759 /**
1760  * page_cache_prev_miss() - Find the previous gap in the page cache.
1761  * @mapping: Mapping.
1762  * @index: Index.
1763  * @max_scan: Maximum range to search.
1764  *
1765  * Search the range [max(index - max_scan + 1, 0), index] for the
1766  * gap with the highest index.
1767  *
1768  * This function may be called under the rcu_read_lock.  However, this will
1769  * not atomically search a snapshot of the cache at a single point in time.
1770  * For example, if a gap is created at index 10, then subsequently a gap is
1771  * created at index 5, page_cache_prev_miss() covering both indices may
1772  * return 5 if called under the rcu_read_lock.
1773  *
1774  * Return: The index of the gap if found, otherwise an index outside the
1775  * range specified (in which case 'index - return >= max_scan' will be true).
1776  * In the rare case of wrap-around, ULONG_MAX will be returned.
1777  */
1778 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1779 			     pgoff_t index, unsigned long max_scan)
1780 {
1781 	XA_STATE(xas, &mapping->i_pages, index);
1782 
1783 	while (max_scan--) {
1784 		void *entry = xas_prev(&xas);
1785 		if (!entry || xa_is_value(entry))
1786 			break;
1787 		if (xas.xa_index == ULONG_MAX)
1788 			break;
1789 	}
1790 
1791 	return xas.xa_index;
1792 }
1793 EXPORT_SYMBOL(page_cache_prev_miss);
1794 
1795 /*
1796  * Lockless page cache protocol:
1797  * On the lookup side:
1798  * 1. Load the folio from i_pages
1799  * 2. Increment the refcount if it's not zero
1800  * 3. If the folio is not found by xas_reload(), put the refcount and retry
1801  *
1802  * On the removal side:
1803  * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1804  * B. Remove the page from i_pages
1805  * C. Return the page to the page allocator
1806  *
1807  * This means that any page may have its reference count temporarily
1808  * increased by a speculative page cache (or fast GUP) lookup as it can
1809  * be allocated by another user before the RCU grace period expires.
1810  * Because the refcount temporarily acquired here may end up being the
1811  * last refcount on the page, any page allocation must be freeable by
1812  * folio_put().
1813  */
1814 
1815 /*
1816  * mapping_get_entry - Get a page cache entry.
1817  * @mapping: the address_space to search
1818  * @index: The page cache index.
1819  *
1820  * Looks up the page cache entry at @mapping & @index.  If it is a folio,
1821  * it is returned with an increased refcount.  If it is a shadow entry
1822  * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1823  * it is returned without further action.
1824  *
1825  * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1826  */
1827 static void *mapping_get_entry(struct address_space *mapping, pgoff_t index)
1828 {
1829 	XA_STATE(xas, &mapping->i_pages, index);
1830 	struct folio *folio;
1831 
1832 	rcu_read_lock();
1833 repeat:
1834 	xas_reset(&xas);
1835 	folio = xas_load(&xas);
1836 	if (xas_retry(&xas, folio))
1837 		goto repeat;
1838 	/*
1839 	 * A shadow entry of a recently evicted page, or a swap entry from
1840 	 * shmem/tmpfs.  Return it without attempting to raise page count.
1841 	 */
1842 	if (!folio || xa_is_value(folio))
1843 		goto out;
1844 
1845 	if (!folio_try_get_rcu(folio))
1846 		goto repeat;
1847 
1848 	if (unlikely(folio != xas_reload(&xas))) {
1849 		folio_put(folio);
1850 		goto repeat;
1851 	}
1852 out:
1853 	rcu_read_unlock();
1854 
1855 	return folio;
1856 }
1857 
1858 /**
1859  * __filemap_get_folio - Find and get a reference to a folio.
1860  * @mapping: The address_space to search.
1861  * @index: The page index.
1862  * @fgp_flags: %FGP flags modify how the folio is returned.
1863  * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1864  *
1865  * Looks up the page cache entry at @mapping & @index.
1866  *
1867  * @fgp_flags can be zero or more of these flags:
1868  *
1869  * * %FGP_ACCESSED - The folio will be marked accessed.
1870  * * %FGP_LOCK - The folio is returned locked.
1871  * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it
1872  *   instead of allocating a new folio to replace it.
1873  * * %FGP_CREAT - If no page is present then a new page is allocated using
1874  *   @gfp and added to the page cache and the VM's LRU list.
1875  *   The page is returned locked and with an increased refcount.
1876  * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1877  *   page is already in cache.  If the page was allocated, unlock it before
1878  *   returning so the caller can do the same dance.
1879  * * %FGP_WRITE - The page will be written to by the caller.
1880  * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
1881  * * %FGP_NOWAIT - Don't get blocked by page lock.
1882  * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
1883  *
1884  * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1885  * if the %GFP flags specified for %FGP_CREAT are atomic.
1886  *
1887  * If there is a page cache page, it is returned with an increased refcount.
1888  *
1889  * Return: The found folio or %NULL otherwise.
1890  */
1891 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1892 		int fgp_flags, gfp_t gfp)
1893 {
1894 	struct folio *folio;
1895 
1896 repeat:
1897 	folio = mapping_get_entry(mapping, index);
1898 	if (xa_is_value(folio)) {
1899 		if (fgp_flags & FGP_ENTRY)
1900 			return folio;
1901 		folio = NULL;
1902 	}
1903 	if (!folio)
1904 		goto no_page;
1905 
1906 	if (fgp_flags & FGP_LOCK) {
1907 		if (fgp_flags & FGP_NOWAIT) {
1908 			if (!folio_trylock(folio)) {
1909 				folio_put(folio);
1910 				return NULL;
1911 			}
1912 		} else {
1913 			folio_lock(folio);
1914 		}
1915 
1916 		/* Has the page been truncated? */
1917 		if (unlikely(folio->mapping != mapping)) {
1918 			folio_unlock(folio);
1919 			folio_put(folio);
1920 			goto repeat;
1921 		}
1922 		VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1923 	}
1924 
1925 	if (fgp_flags & FGP_ACCESSED)
1926 		folio_mark_accessed(folio);
1927 	else if (fgp_flags & FGP_WRITE) {
1928 		/* Clear idle flag for buffer write */
1929 		if (folio_test_idle(folio))
1930 			folio_clear_idle(folio);
1931 	}
1932 
1933 	if (fgp_flags & FGP_STABLE)
1934 		folio_wait_stable(folio);
1935 no_page:
1936 	if (!folio && (fgp_flags & FGP_CREAT)) {
1937 		int err;
1938 		if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1939 			gfp |= __GFP_WRITE;
1940 		if (fgp_flags & FGP_NOFS)
1941 			gfp &= ~__GFP_FS;
1942 
1943 		folio = filemap_alloc_folio(gfp, 0);
1944 		if (!folio)
1945 			return NULL;
1946 
1947 		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1948 			fgp_flags |= FGP_LOCK;
1949 
1950 		/* Init accessed so avoid atomic mark_page_accessed later */
1951 		if (fgp_flags & FGP_ACCESSED)
1952 			__folio_set_referenced(folio);
1953 
1954 		err = filemap_add_folio(mapping, folio, index, gfp);
1955 		if (unlikely(err)) {
1956 			folio_put(folio);
1957 			folio = NULL;
1958 			if (err == -EEXIST)
1959 				goto repeat;
1960 		}
1961 
1962 		/*
1963 		 * filemap_add_folio locks the page, and for mmap
1964 		 * we expect an unlocked page.
1965 		 */
1966 		if (folio && (fgp_flags & FGP_FOR_MMAP))
1967 			folio_unlock(folio);
1968 	}
1969 
1970 	return folio;
1971 }
1972 EXPORT_SYMBOL(__filemap_get_folio);
1973 
1974 static inline struct page *find_get_entry(struct xa_state *xas, pgoff_t max,
1975 		xa_mark_t mark)
1976 {
1977 	struct page *page;
1978 
1979 retry:
1980 	if (mark == XA_PRESENT)
1981 		page = xas_find(xas, max);
1982 	else
1983 		page = xas_find_marked(xas, max, mark);
1984 
1985 	if (xas_retry(xas, page))
1986 		goto retry;
1987 	/*
1988 	 * A shadow entry of a recently evicted page, a swap
1989 	 * entry from shmem/tmpfs or a DAX entry.  Return it
1990 	 * without attempting to raise page count.
1991 	 */
1992 	if (!page || xa_is_value(page))
1993 		return page;
1994 
1995 	if (!page_cache_get_speculative(page))
1996 		goto reset;
1997 
1998 	/* Has the page moved or been split? */
1999 	if (unlikely(page != xas_reload(xas))) {
2000 		put_page(page);
2001 		goto reset;
2002 	}
2003 
2004 	return page;
2005 reset:
2006 	xas_reset(xas);
2007 	goto retry;
2008 }
2009 
2010 /**
2011  * find_get_entries - gang pagecache lookup
2012  * @mapping:	The address_space to search
2013  * @start:	The starting page cache index
2014  * @end:	The final page index (inclusive).
2015  * @pvec:	Where the resulting entries are placed.
2016  * @indices:	The cache indices corresponding to the entries in @entries
2017  *
2018  * find_get_entries() will search for and return a batch of entries in
2019  * the mapping.  The entries are placed in @pvec.  find_get_entries()
2020  * takes a reference on any actual pages it returns.
2021  *
2022  * The search returns a group of mapping-contiguous page cache entries
2023  * with ascending indexes.  There may be holes in the indices due to
2024  * not-present pages.
2025  *
2026  * Any shadow entries of evicted pages, or swap entries from
2027  * shmem/tmpfs, are included in the returned array.
2028  *
2029  * If it finds a Transparent Huge Page, head or tail, find_get_entries()
2030  * stops at that page: the caller is likely to have a better way to handle
2031  * the compound page as a whole, and then skip its extent, than repeatedly
2032  * calling find_get_entries() to return all its tails.
2033  *
2034  * Return: the number of pages and shadow entries which were found.
2035  */
2036 unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
2037 		pgoff_t end, struct pagevec *pvec, pgoff_t *indices)
2038 {
2039 	XA_STATE(xas, &mapping->i_pages, start);
2040 	struct page *page;
2041 	unsigned int ret = 0;
2042 	unsigned nr_entries = PAGEVEC_SIZE;
2043 
2044 	rcu_read_lock();
2045 	while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
2046 		/*
2047 		 * Terminate early on finding a THP, to allow the caller to
2048 		 * handle it all at once; but continue if this is hugetlbfs.
2049 		 */
2050 		if (!xa_is_value(page) && PageTransHuge(page) &&
2051 				!PageHuge(page)) {
2052 			page = find_subpage(page, xas.xa_index);
2053 			nr_entries = ret + 1;
2054 		}
2055 
2056 		indices[ret] = xas.xa_index;
2057 		pvec->pages[ret] = page;
2058 		if (++ret == nr_entries)
2059 			break;
2060 	}
2061 	rcu_read_unlock();
2062 
2063 	pvec->nr = ret;
2064 	return ret;
2065 }
2066 
2067 /**
2068  * find_lock_entries - Find a batch of pagecache entries.
2069  * @mapping:	The address_space to search.
2070  * @start:	The starting page cache index.
2071  * @end:	The final page index (inclusive).
2072  * @pvec:	Where the resulting entries are placed.
2073  * @indices:	The cache indices of the entries in @pvec.
2074  *
2075  * find_lock_entries() will return a batch of entries from @mapping.
2076  * Swap, shadow and DAX entries are included.  Pages are returned
2077  * locked and with an incremented refcount.  Pages which are locked by
2078  * somebody else or under writeback are skipped.  Only the head page of
2079  * a THP is returned.  Pages which are partially outside the range are
2080  * not returned.
2081  *
2082  * The entries have ascending indexes.  The indices may not be consecutive
2083  * due to not-present entries, THP pages, pages which could not be locked
2084  * or pages under writeback.
2085  *
2086  * Return: The number of entries which were found.
2087  */
2088 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
2089 		pgoff_t end, struct pagevec *pvec, pgoff_t *indices)
2090 {
2091 	XA_STATE(xas, &mapping->i_pages, start);
2092 	struct page *page;
2093 
2094 	rcu_read_lock();
2095 	while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
2096 		if (!xa_is_value(page)) {
2097 			if (page->index < start)
2098 				goto put;
2099 			if (page->index + thp_nr_pages(page) - 1 > end)
2100 				goto put;
2101 			if (!trylock_page(page))
2102 				goto put;
2103 			if (page->mapping != mapping || PageWriteback(page))
2104 				goto unlock;
2105 			VM_BUG_ON_PAGE(!thp_contains(page, xas.xa_index),
2106 					page);
2107 		}
2108 		indices[pvec->nr] = xas.xa_index;
2109 		if (!pagevec_add(pvec, page))
2110 			break;
2111 		goto next;
2112 unlock:
2113 		unlock_page(page);
2114 put:
2115 		put_page(page);
2116 next:
2117 		if (!xa_is_value(page) && PageTransHuge(page)) {
2118 			unsigned int nr_pages = thp_nr_pages(page);
2119 
2120 			/* Final THP may cross MAX_LFS_FILESIZE on 32-bit */
2121 			xas_set(&xas, page->index + nr_pages);
2122 			if (xas.xa_index < nr_pages)
2123 				break;
2124 		}
2125 	}
2126 	rcu_read_unlock();
2127 
2128 	return pagevec_count(pvec);
2129 }
2130 
2131 /**
2132  * find_get_pages_range - gang pagecache lookup
2133  * @mapping:	The address_space to search
2134  * @start:	The starting page index
2135  * @end:	The final page index (inclusive)
2136  * @nr_pages:	The maximum number of pages
2137  * @pages:	Where the resulting pages are placed
2138  *
2139  * find_get_pages_range() will search for and return a group of up to @nr_pages
2140  * pages in the mapping starting at index @start and up to index @end
2141  * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
2142  * a reference against the returned pages.
2143  *
2144  * The search returns a group of mapping-contiguous pages with ascending
2145  * indexes.  There may be holes in the indices due to not-present pages.
2146  * We also update @start to index the next page for the traversal.
2147  *
2148  * Return: the number of pages which were found. If this number is
2149  * smaller than @nr_pages, the end of specified range has been
2150  * reached.
2151  */
2152 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
2153 			      pgoff_t end, unsigned int nr_pages,
2154 			      struct page **pages)
2155 {
2156 	XA_STATE(xas, &mapping->i_pages, *start);
2157 	struct page *page;
2158 	unsigned ret = 0;
2159 
2160 	if (unlikely(!nr_pages))
2161 		return 0;
2162 
2163 	rcu_read_lock();
2164 	while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
2165 		/* Skip over shadow, swap and DAX entries */
2166 		if (xa_is_value(page))
2167 			continue;
2168 
2169 		pages[ret] = find_subpage(page, xas.xa_index);
2170 		if (++ret == nr_pages) {
2171 			*start = xas.xa_index + 1;
2172 			goto out;
2173 		}
2174 	}
2175 
2176 	/*
2177 	 * We come here when there is no page beyond @end. We take care to not
2178 	 * overflow the index @start as it confuses some of the callers. This
2179 	 * breaks the iteration when there is a page at index -1 but that is
2180 	 * already broken anyway.
2181 	 */
2182 	if (end == (pgoff_t)-1)
2183 		*start = (pgoff_t)-1;
2184 	else
2185 		*start = end + 1;
2186 out:
2187 	rcu_read_unlock();
2188 
2189 	return ret;
2190 }
2191 
2192 /**
2193  * find_get_pages_contig - gang contiguous pagecache lookup
2194  * @mapping:	The address_space to search
2195  * @index:	The starting page index
2196  * @nr_pages:	The maximum number of pages
2197  * @pages:	Where the resulting pages are placed
2198  *
2199  * find_get_pages_contig() works exactly like find_get_pages(), except
2200  * that the returned number of pages are guaranteed to be contiguous.
2201  *
2202  * Return: the number of pages which were found.
2203  */
2204 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
2205 			       unsigned int nr_pages, struct page **pages)
2206 {
2207 	XA_STATE(xas, &mapping->i_pages, index);
2208 	struct page *page;
2209 	unsigned int ret = 0;
2210 
2211 	if (unlikely(!nr_pages))
2212 		return 0;
2213 
2214 	rcu_read_lock();
2215 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
2216 		if (xas_retry(&xas, page))
2217 			continue;
2218 		/*
2219 		 * If the entry has been swapped out, we can stop looking.
2220 		 * No current caller is looking for DAX entries.
2221 		 */
2222 		if (xa_is_value(page))
2223 			break;
2224 
2225 		if (!page_cache_get_speculative(page))
2226 			goto retry;
2227 
2228 		/* Has the page moved or been split? */
2229 		if (unlikely(page != xas_reload(&xas)))
2230 			goto put_page;
2231 
2232 		pages[ret] = find_subpage(page, xas.xa_index);
2233 		if (++ret == nr_pages)
2234 			break;
2235 		continue;
2236 put_page:
2237 		put_page(page);
2238 retry:
2239 		xas_reset(&xas);
2240 	}
2241 	rcu_read_unlock();
2242 	return ret;
2243 }
2244 EXPORT_SYMBOL(find_get_pages_contig);
2245 
2246 /**
2247  * find_get_pages_range_tag - Find and return head pages matching @tag.
2248  * @mapping:	the address_space to search
2249  * @index:	the starting page index
2250  * @end:	The final page index (inclusive)
2251  * @tag:	the tag index
2252  * @nr_pages:	the maximum number of pages
2253  * @pages:	where the resulting pages are placed
2254  *
2255  * Like find_get_pages(), except we only return head pages which are tagged
2256  * with @tag.  @index is updated to the index immediately after the last
2257  * page we return, ready for the next iteration.
2258  *
2259  * Return: the number of pages which were found.
2260  */
2261 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
2262 			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
2263 			struct page **pages)
2264 {
2265 	XA_STATE(xas, &mapping->i_pages, *index);
2266 	struct page *page;
2267 	unsigned ret = 0;
2268 
2269 	if (unlikely(!nr_pages))
2270 		return 0;
2271 
2272 	rcu_read_lock();
2273 	while ((page = find_get_entry(&xas, end, tag))) {
2274 		/*
2275 		 * Shadow entries should never be tagged, but this iteration
2276 		 * is lockless so there is a window for page reclaim to evict
2277 		 * a page we saw tagged.  Skip over it.
2278 		 */
2279 		if (xa_is_value(page))
2280 			continue;
2281 
2282 		pages[ret] = page;
2283 		if (++ret == nr_pages) {
2284 			*index = page->index + thp_nr_pages(page);
2285 			goto out;
2286 		}
2287 	}
2288 
2289 	/*
2290 	 * We come here when we got to @end. We take care to not overflow the
2291 	 * index @index as it confuses some of the callers. This breaks the
2292 	 * iteration when there is a page at index -1 but that is already
2293 	 * broken anyway.
2294 	 */
2295 	if (end == (pgoff_t)-1)
2296 		*index = (pgoff_t)-1;
2297 	else
2298 		*index = end + 1;
2299 out:
2300 	rcu_read_unlock();
2301 
2302 	return ret;
2303 }
2304 EXPORT_SYMBOL(find_get_pages_range_tag);
2305 
2306 /*
2307  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2308  * a _large_ part of the i/o request. Imagine the worst scenario:
2309  *
2310  *      ---R__________________________________________B__________
2311  *         ^ reading here                             ^ bad block(assume 4k)
2312  *
2313  * read(R) => miss => readahead(R...B) => media error => frustrating retries
2314  * => failing the whole request => read(R) => read(R+1) =>
2315  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2316  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2317  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2318  *
2319  * It is going insane. Fix it by quickly scaling down the readahead size.
2320  */
2321 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2322 {
2323 	ra->ra_pages /= 4;
2324 }
2325 
2326 /*
2327  * filemap_get_read_batch - Get a batch of pages for read
2328  *
2329  * Get a batch of pages which represent a contiguous range of bytes
2330  * in the file.  No tail pages will be returned.  If @index is in the
2331  * middle of a THP, the entire THP will be returned.  The last page in
2332  * the batch may have Readahead set or be not Uptodate so that the
2333  * caller can take the appropriate action.
2334  */
2335 static void filemap_get_read_batch(struct address_space *mapping,
2336 		pgoff_t index, pgoff_t max, struct pagevec *pvec)
2337 {
2338 	XA_STATE(xas, &mapping->i_pages, index);
2339 	struct page *head;
2340 
2341 	rcu_read_lock();
2342 	for (head = xas_load(&xas); head; head = xas_next(&xas)) {
2343 		if (xas_retry(&xas, head))
2344 			continue;
2345 		if (xas.xa_index > max || xa_is_value(head))
2346 			break;
2347 		if (!page_cache_get_speculative(head))
2348 			goto retry;
2349 
2350 		/* Has the page moved or been split? */
2351 		if (unlikely(head != xas_reload(&xas)))
2352 			goto put_page;
2353 
2354 		if (!pagevec_add(pvec, head))
2355 			break;
2356 		if (!PageUptodate(head))
2357 			break;
2358 		if (PageReadahead(head))
2359 			break;
2360 		xas.xa_index = head->index + thp_nr_pages(head) - 1;
2361 		xas.xa_offset = (xas.xa_index >> xas.xa_shift) & XA_CHUNK_MASK;
2362 		continue;
2363 put_page:
2364 		put_page(head);
2365 retry:
2366 		xas_reset(&xas);
2367 	}
2368 	rcu_read_unlock();
2369 }
2370 
2371 static int filemap_read_page(struct file *file, struct address_space *mapping,
2372 		struct page *page)
2373 {
2374 	int error;
2375 
2376 	/*
2377 	 * A previous I/O error may have been due to temporary failures,
2378 	 * eg. multipath errors.  PG_error will be set again if readpage
2379 	 * fails.
2380 	 */
2381 	ClearPageError(page);
2382 	/* Start the actual read. The read will unlock the page. */
2383 	error = mapping->a_ops->readpage(file, page);
2384 	if (error)
2385 		return error;
2386 
2387 	error = wait_on_page_locked_killable(page);
2388 	if (error)
2389 		return error;
2390 	if (PageUptodate(page))
2391 		return 0;
2392 	shrink_readahead_size_eio(&file->f_ra);
2393 	return -EIO;
2394 }
2395 
2396 static bool filemap_range_uptodate(struct address_space *mapping,
2397 		loff_t pos, struct iov_iter *iter, struct page *page)
2398 {
2399 	int count;
2400 
2401 	if (PageUptodate(page))
2402 		return true;
2403 	/* pipes can't handle partially uptodate pages */
2404 	if (iov_iter_is_pipe(iter))
2405 		return false;
2406 	if (!mapping->a_ops->is_partially_uptodate)
2407 		return false;
2408 	if (mapping->host->i_blkbits >= (PAGE_SHIFT + thp_order(page)))
2409 		return false;
2410 
2411 	count = iter->count;
2412 	if (page_offset(page) > pos) {
2413 		count -= page_offset(page) - pos;
2414 		pos = 0;
2415 	} else {
2416 		pos -= page_offset(page);
2417 	}
2418 
2419 	return mapping->a_ops->is_partially_uptodate(page, pos, count);
2420 }
2421 
2422 static int filemap_update_page(struct kiocb *iocb,
2423 		struct address_space *mapping, struct iov_iter *iter,
2424 		struct page *page)
2425 {
2426 	struct folio *folio = page_folio(page);
2427 	int error;
2428 
2429 	if (iocb->ki_flags & IOCB_NOWAIT) {
2430 		if (!filemap_invalidate_trylock_shared(mapping))
2431 			return -EAGAIN;
2432 	} else {
2433 		filemap_invalidate_lock_shared(mapping);
2434 	}
2435 
2436 	if (!folio_trylock(folio)) {
2437 		error = -EAGAIN;
2438 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2439 			goto unlock_mapping;
2440 		if (!(iocb->ki_flags & IOCB_WAITQ)) {
2441 			filemap_invalidate_unlock_shared(mapping);
2442 			put_and_wait_on_page_locked(&folio->page, TASK_KILLABLE);
2443 			return AOP_TRUNCATED_PAGE;
2444 		}
2445 		error = __folio_lock_async(folio, iocb->ki_waitq);
2446 		if (error)
2447 			goto unlock_mapping;
2448 	}
2449 
2450 	error = AOP_TRUNCATED_PAGE;
2451 	if (!folio->mapping)
2452 		goto unlock;
2453 
2454 	error = 0;
2455 	if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, &folio->page))
2456 		goto unlock;
2457 
2458 	error = -EAGAIN;
2459 	if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2460 		goto unlock;
2461 
2462 	error = filemap_read_page(iocb->ki_filp, mapping, &folio->page);
2463 	goto unlock_mapping;
2464 unlock:
2465 	folio_unlock(folio);
2466 unlock_mapping:
2467 	filemap_invalidate_unlock_shared(mapping);
2468 	if (error == AOP_TRUNCATED_PAGE)
2469 		folio_put(folio);
2470 	return error;
2471 }
2472 
2473 static int filemap_create_page(struct file *file,
2474 		struct address_space *mapping, pgoff_t index,
2475 		struct pagevec *pvec)
2476 {
2477 	struct page *page;
2478 	int error;
2479 
2480 	page = page_cache_alloc(mapping);
2481 	if (!page)
2482 		return -ENOMEM;
2483 
2484 	/*
2485 	 * Protect against truncate / hole punch. Grabbing invalidate_lock here
2486 	 * assures we cannot instantiate and bring uptodate new pagecache pages
2487 	 * after evicting page cache during truncate and before actually
2488 	 * freeing blocks.  Note that we could release invalidate_lock after
2489 	 * inserting the page into page cache as the locked page would then be
2490 	 * enough to synchronize with hole punching. But there are code paths
2491 	 * such as filemap_update_page() filling in partially uptodate pages or
2492 	 * ->readpages() that need to hold invalidate_lock while mapping blocks
2493 	 * for IO so let's hold the lock here as well to keep locking rules
2494 	 * simple.
2495 	 */
2496 	filemap_invalidate_lock_shared(mapping);
2497 	error = add_to_page_cache_lru(page, mapping, index,
2498 			mapping_gfp_constraint(mapping, GFP_KERNEL));
2499 	if (error == -EEXIST)
2500 		error = AOP_TRUNCATED_PAGE;
2501 	if (error)
2502 		goto error;
2503 
2504 	error = filemap_read_page(file, mapping, page);
2505 	if (error)
2506 		goto error;
2507 
2508 	filemap_invalidate_unlock_shared(mapping);
2509 	pagevec_add(pvec, page);
2510 	return 0;
2511 error:
2512 	filemap_invalidate_unlock_shared(mapping);
2513 	put_page(page);
2514 	return error;
2515 }
2516 
2517 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2518 		struct address_space *mapping, struct page *page,
2519 		pgoff_t last_index)
2520 {
2521 	if (iocb->ki_flags & IOCB_NOIO)
2522 		return -EAGAIN;
2523 	page_cache_async_readahead(mapping, &file->f_ra, file, page,
2524 			page->index, last_index - page->index);
2525 	return 0;
2526 }
2527 
2528 static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter,
2529 		struct pagevec *pvec)
2530 {
2531 	struct file *filp = iocb->ki_filp;
2532 	struct address_space *mapping = filp->f_mapping;
2533 	struct file_ra_state *ra = &filp->f_ra;
2534 	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2535 	pgoff_t last_index;
2536 	struct page *page;
2537 	int err = 0;
2538 
2539 	last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE);
2540 retry:
2541 	if (fatal_signal_pending(current))
2542 		return -EINTR;
2543 
2544 	filemap_get_read_batch(mapping, index, last_index, pvec);
2545 	if (!pagevec_count(pvec)) {
2546 		if (iocb->ki_flags & IOCB_NOIO)
2547 			return -EAGAIN;
2548 		page_cache_sync_readahead(mapping, ra, filp, index,
2549 				last_index - index);
2550 		filemap_get_read_batch(mapping, index, last_index, pvec);
2551 	}
2552 	if (!pagevec_count(pvec)) {
2553 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2554 			return -EAGAIN;
2555 		err = filemap_create_page(filp, mapping,
2556 				iocb->ki_pos >> PAGE_SHIFT, pvec);
2557 		if (err == AOP_TRUNCATED_PAGE)
2558 			goto retry;
2559 		return err;
2560 	}
2561 
2562 	page = pvec->pages[pagevec_count(pvec) - 1];
2563 	if (PageReadahead(page)) {
2564 		err = filemap_readahead(iocb, filp, mapping, page, last_index);
2565 		if (err)
2566 			goto err;
2567 	}
2568 	if (!PageUptodate(page)) {
2569 		if ((iocb->ki_flags & IOCB_WAITQ) && pagevec_count(pvec) > 1)
2570 			iocb->ki_flags |= IOCB_NOWAIT;
2571 		err = filemap_update_page(iocb, mapping, iter, page);
2572 		if (err)
2573 			goto err;
2574 	}
2575 
2576 	return 0;
2577 err:
2578 	if (err < 0)
2579 		put_page(page);
2580 	if (likely(--pvec->nr))
2581 		return 0;
2582 	if (err == AOP_TRUNCATED_PAGE)
2583 		goto retry;
2584 	return err;
2585 }
2586 
2587 /**
2588  * filemap_read - Read data from the page cache.
2589  * @iocb: The iocb to read.
2590  * @iter: Destination for the data.
2591  * @already_read: Number of bytes already read by the caller.
2592  *
2593  * Copies data from the page cache.  If the data is not currently present,
2594  * uses the readahead and readpage address_space operations to fetch it.
2595  *
2596  * Return: Total number of bytes copied, including those already read by
2597  * the caller.  If an error happens before any bytes are copied, returns
2598  * a negative error number.
2599  */
2600 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2601 		ssize_t already_read)
2602 {
2603 	struct file *filp = iocb->ki_filp;
2604 	struct file_ra_state *ra = &filp->f_ra;
2605 	struct address_space *mapping = filp->f_mapping;
2606 	struct inode *inode = mapping->host;
2607 	struct pagevec pvec;
2608 	int i, error = 0;
2609 	bool writably_mapped;
2610 	loff_t isize, end_offset;
2611 
2612 	if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2613 		return 0;
2614 	if (unlikely(!iov_iter_count(iter)))
2615 		return 0;
2616 
2617 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2618 	pagevec_init(&pvec);
2619 
2620 	do {
2621 		cond_resched();
2622 
2623 		/*
2624 		 * If we've already successfully copied some data, then we
2625 		 * can no longer safely return -EIOCBQUEUED. Hence mark
2626 		 * an async read NOWAIT at that point.
2627 		 */
2628 		if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2629 			iocb->ki_flags |= IOCB_NOWAIT;
2630 
2631 		if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2632 			break;
2633 
2634 		error = filemap_get_pages(iocb, iter, &pvec);
2635 		if (error < 0)
2636 			break;
2637 
2638 		/*
2639 		 * i_size must be checked after we know the pages are Uptodate.
2640 		 *
2641 		 * Checking i_size after the check allows us to calculate
2642 		 * the correct value for "nr", which means the zero-filled
2643 		 * part of the page is not copied back to userspace (unless
2644 		 * another truncate extends the file - this is desired though).
2645 		 */
2646 		isize = i_size_read(inode);
2647 		if (unlikely(iocb->ki_pos >= isize))
2648 			goto put_pages;
2649 		end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2650 
2651 		/*
2652 		 * Once we start copying data, we don't want to be touching any
2653 		 * cachelines that might be contended:
2654 		 */
2655 		writably_mapped = mapping_writably_mapped(mapping);
2656 
2657 		/*
2658 		 * When a sequential read accesses a page several times, only
2659 		 * mark it as accessed the first time.
2660 		 */
2661 		if (iocb->ki_pos >> PAGE_SHIFT !=
2662 		    ra->prev_pos >> PAGE_SHIFT)
2663 			mark_page_accessed(pvec.pages[0]);
2664 
2665 		for (i = 0; i < pagevec_count(&pvec); i++) {
2666 			struct page *page = pvec.pages[i];
2667 			size_t page_size = thp_size(page);
2668 			size_t offset = iocb->ki_pos & (page_size - 1);
2669 			size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2670 					     page_size - offset);
2671 			size_t copied;
2672 
2673 			if (end_offset < page_offset(page))
2674 				break;
2675 			if (i > 0)
2676 				mark_page_accessed(page);
2677 			/*
2678 			 * If users can be writing to this page using arbitrary
2679 			 * virtual addresses, take care about potential aliasing
2680 			 * before reading the page on the kernel side.
2681 			 */
2682 			if (writably_mapped) {
2683 				int j;
2684 
2685 				for (j = 0; j < thp_nr_pages(page); j++)
2686 					flush_dcache_page(page + j);
2687 			}
2688 
2689 			copied = copy_page_to_iter(page, offset, bytes, iter);
2690 
2691 			already_read += copied;
2692 			iocb->ki_pos += copied;
2693 			ra->prev_pos = iocb->ki_pos;
2694 
2695 			if (copied < bytes) {
2696 				error = -EFAULT;
2697 				break;
2698 			}
2699 		}
2700 put_pages:
2701 		for (i = 0; i < pagevec_count(&pvec); i++)
2702 			put_page(pvec.pages[i]);
2703 		pagevec_reinit(&pvec);
2704 	} while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2705 
2706 	file_accessed(filp);
2707 
2708 	return already_read ? already_read : error;
2709 }
2710 EXPORT_SYMBOL_GPL(filemap_read);
2711 
2712 /**
2713  * generic_file_read_iter - generic filesystem read routine
2714  * @iocb:	kernel I/O control block
2715  * @iter:	destination for the data read
2716  *
2717  * This is the "read_iter()" routine for all filesystems
2718  * that can use the page cache directly.
2719  *
2720  * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2721  * be returned when no data can be read without waiting for I/O requests
2722  * to complete; it doesn't prevent readahead.
2723  *
2724  * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2725  * requests shall be made for the read or for readahead.  When no data
2726  * can be read, -EAGAIN shall be returned.  When readahead would be
2727  * triggered, a partial, possibly empty read shall be returned.
2728  *
2729  * Return:
2730  * * number of bytes copied, even for partial reads
2731  * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2732  */
2733 ssize_t
2734 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2735 {
2736 	size_t count = iov_iter_count(iter);
2737 	ssize_t retval = 0;
2738 
2739 	if (!count)
2740 		return 0; /* skip atime */
2741 
2742 	if (iocb->ki_flags & IOCB_DIRECT) {
2743 		struct file *file = iocb->ki_filp;
2744 		struct address_space *mapping = file->f_mapping;
2745 		struct inode *inode = mapping->host;
2746 
2747 		if (iocb->ki_flags & IOCB_NOWAIT) {
2748 			if (filemap_range_needs_writeback(mapping, iocb->ki_pos,
2749 						iocb->ki_pos + count - 1))
2750 				return -EAGAIN;
2751 		} else {
2752 			retval = filemap_write_and_wait_range(mapping,
2753 						iocb->ki_pos,
2754 					        iocb->ki_pos + count - 1);
2755 			if (retval < 0)
2756 				return retval;
2757 		}
2758 
2759 		file_accessed(file);
2760 
2761 		retval = mapping->a_ops->direct_IO(iocb, iter);
2762 		if (retval >= 0) {
2763 			iocb->ki_pos += retval;
2764 			count -= retval;
2765 		}
2766 		if (retval != -EIOCBQUEUED)
2767 			iov_iter_revert(iter, count - iov_iter_count(iter));
2768 
2769 		/*
2770 		 * Btrfs can have a short DIO read if we encounter
2771 		 * compressed extents, so if there was an error, or if
2772 		 * we've already read everything we wanted to, or if
2773 		 * there was a short read because we hit EOF, go ahead
2774 		 * and return.  Otherwise fallthrough to buffered io for
2775 		 * the rest of the read.  Buffered reads will not work for
2776 		 * DAX files, so don't bother trying.
2777 		 */
2778 		if (retval < 0 || !count || IS_DAX(inode))
2779 			return retval;
2780 		if (iocb->ki_pos >= i_size_read(inode))
2781 			return retval;
2782 	}
2783 
2784 	return filemap_read(iocb, iter, retval);
2785 }
2786 EXPORT_SYMBOL(generic_file_read_iter);
2787 
2788 static inline loff_t page_seek_hole_data(struct xa_state *xas,
2789 		struct address_space *mapping, struct page *page,
2790 		loff_t start, loff_t end, bool seek_data)
2791 {
2792 	const struct address_space_operations *ops = mapping->a_ops;
2793 	size_t offset, bsz = i_blocksize(mapping->host);
2794 
2795 	if (xa_is_value(page) || PageUptodate(page))
2796 		return seek_data ? start : end;
2797 	if (!ops->is_partially_uptodate)
2798 		return seek_data ? end : start;
2799 
2800 	xas_pause(xas);
2801 	rcu_read_unlock();
2802 	lock_page(page);
2803 	if (unlikely(page->mapping != mapping))
2804 		goto unlock;
2805 
2806 	offset = offset_in_thp(page, start) & ~(bsz - 1);
2807 
2808 	do {
2809 		if (ops->is_partially_uptodate(page, offset, bsz) == seek_data)
2810 			break;
2811 		start = (start + bsz) & ~(bsz - 1);
2812 		offset += bsz;
2813 	} while (offset < thp_size(page));
2814 unlock:
2815 	unlock_page(page);
2816 	rcu_read_lock();
2817 	return start;
2818 }
2819 
2820 static inline
2821 unsigned int seek_page_size(struct xa_state *xas, struct page *page)
2822 {
2823 	if (xa_is_value(page))
2824 		return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2825 	return thp_size(page);
2826 }
2827 
2828 /**
2829  * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2830  * @mapping: Address space to search.
2831  * @start: First byte to consider.
2832  * @end: Limit of search (exclusive).
2833  * @whence: Either SEEK_HOLE or SEEK_DATA.
2834  *
2835  * If the page cache knows which blocks contain holes and which blocks
2836  * contain data, your filesystem can use this function to implement
2837  * SEEK_HOLE and SEEK_DATA.  This is useful for filesystems which are
2838  * entirely memory-based such as tmpfs, and filesystems which support
2839  * unwritten extents.
2840  *
2841  * Return: The requested offset on success, or -ENXIO if @whence specifies
2842  * SEEK_DATA and there is no data after @start.  There is an implicit hole
2843  * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2844  * and @end contain data.
2845  */
2846 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2847 		loff_t end, int whence)
2848 {
2849 	XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
2850 	pgoff_t max = (end - 1) >> PAGE_SHIFT;
2851 	bool seek_data = (whence == SEEK_DATA);
2852 	struct page *page;
2853 
2854 	if (end <= start)
2855 		return -ENXIO;
2856 
2857 	rcu_read_lock();
2858 	while ((page = find_get_entry(&xas, max, XA_PRESENT))) {
2859 		loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
2860 		unsigned int seek_size;
2861 
2862 		if (start < pos) {
2863 			if (!seek_data)
2864 				goto unlock;
2865 			start = pos;
2866 		}
2867 
2868 		seek_size = seek_page_size(&xas, page);
2869 		pos = round_up(pos + 1, seek_size);
2870 		start = page_seek_hole_data(&xas, mapping, page, start, pos,
2871 				seek_data);
2872 		if (start < pos)
2873 			goto unlock;
2874 		if (start >= end)
2875 			break;
2876 		if (seek_size > PAGE_SIZE)
2877 			xas_set(&xas, pos >> PAGE_SHIFT);
2878 		if (!xa_is_value(page))
2879 			put_page(page);
2880 	}
2881 	if (seek_data)
2882 		start = -ENXIO;
2883 unlock:
2884 	rcu_read_unlock();
2885 	if (page && !xa_is_value(page))
2886 		put_page(page);
2887 	if (start > end)
2888 		return end;
2889 	return start;
2890 }
2891 
2892 #ifdef CONFIG_MMU
2893 #define MMAP_LOTSAMISS  (100)
2894 /*
2895  * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2896  * @vmf - the vm_fault for this fault.
2897  * @page - the page to lock.
2898  * @fpin - the pointer to the file we may pin (or is already pinned).
2899  *
2900  * This works similar to lock_page_or_retry in that it can drop the mmap_lock.
2901  * It differs in that it actually returns the page locked if it returns 1 and 0
2902  * if it couldn't lock the page.  If we did have to drop the mmap_lock then fpin
2903  * will point to the pinned file and needs to be fput()'ed at a later point.
2904  */
2905 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2906 				     struct file **fpin)
2907 {
2908 	struct folio *folio = page_folio(page);
2909 
2910 	if (folio_trylock(folio))
2911 		return 1;
2912 
2913 	/*
2914 	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2915 	 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2916 	 * is supposed to work. We have way too many special cases..
2917 	 */
2918 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2919 		return 0;
2920 
2921 	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2922 	if (vmf->flags & FAULT_FLAG_KILLABLE) {
2923 		if (__folio_lock_killable(folio)) {
2924 			/*
2925 			 * We didn't have the right flags to drop the mmap_lock,
2926 			 * but all fault_handlers only check for fatal signals
2927 			 * if we return VM_FAULT_RETRY, so we need to drop the
2928 			 * mmap_lock here and return 0 if we don't have a fpin.
2929 			 */
2930 			if (*fpin == NULL)
2931 				mmap_read_unlock(vmf->vma->vm_mm);
2932 			return 0;
2933 		}
2934 	} else
2935 		__folio_lock(folio);
2936 
2937 	return 1;
2938 }
2939 
2940 /*
2941  * Synchronous readahead happens when we don't even find a page in the page
2942  * cache at all.  We don't want to perform IO under the mmap sem, so if we have
2943  * to drop the mmap sem we return the file that was pinned in order for us to do
2944  * that.  If we didn't pin a file then we return NULL.  The file that is
2945  * returned needs to be fput()'ed when we're done with it.
2946  */
2947 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2948 {
2949 	struct file *file = vmf->vma->vm_file;
2950 	struct file_ra_state *ra = &file->f_ra;
2951 	struct address_space *mapping = file->f_mapping;
2952 	DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
2953 	struct file *fpin = NULL;
2954 	unsigned int mmap_miss;
2955 
2956 	/* If we don't want any read-ahead, don't bother */
2957 	if (vmf->vma->vm_flags & VM_RAND_READ)
2958 		return fpin;
2959 	if (!ra->ra_pages)
2960 		return fpin;
2961 
2962 	if (vmf->vma->vm_flags & VM_SEQ_READ) {
2963 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2964 		page_cache_sync_ra(&ractl, ra->ra_pages);
2965 		return fpin;
2966 	}
2967 
2968 	/* Avoid banging the cache line if not needed */
2969 	mmap_miss = READ_ONCE(ra->mmap_miss);
2970 	if (mmap_miss < MMAP_LOTSAMISS * 10)
2971 		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
2972 
2973 	/*
2974 	 * Do we miss much more than hit in this file? If so,
2975 	 * stop bothering with read-ahead. It will only hurt.
2976 	 */
2977 	if (mmap_miss > MMAP_LOTSAMISS)
2978 		return fpin;
2979 
2980 	/*
2981 	 * mmap read-around
2982 	 */
2983 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2984 	ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
2985 	ra->size = ra->ra_pages;
2986 	ra->async_size = ra->ra_pages / 4;
2987 	ractl._index = ra->start;
2988 	do_page_cache_ra(&ractl, ra->size, ra->async_size);
2989 	return fpin;
2990 }
2991 
2992 /*
2993  * Asynchronous readahead happens when we find the page and PG_readahead,
2994  * so we want to possibly extend the readahead further.  We return the file that
2995  * was pinned if we have to drop the mmap_lock in order to do IO.
2996  */
2997 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2998 					    struct page *page)
2999 {
3000 	struct file *file = vmf->vma->vm_file;
3001 	struct file_ra_state *ra = &file->f_ra;
3002 	struct address_space *mapping = file->f_mapping;
3003 	struct file *fpin = NULL;
3004 	unsigned int mmap_miss;
3005 	pgoff_t offset = vmf->pgoff;
3006 
3007 	/* If we don't want any read-ahead, don't bother */
3008 	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3009 		return fpin;
3010 	mmap_miss = READ_ONCE(ra->mmap_miss);
3011 	if (mmap_miss)
3012 		WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3013 	if (PageReadahead(page)) {
3014 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3015 		page_cache_async_readahead(mapping, ra, file,
3016 					   page, offset, ra->ra_pages);
3017 	}
3018 	return fpin;
3019 }
3020 
3021 /**
3022  * filemap_fault - read in file data for page fault handling
3023  * @vmf:	struct vm_fault containing details of the fault
3024  *
3025  * filemap_fault() is invoked via the vma operations vector for a
3026  * mapped memory region to read in file data during a page fault.
3027  *
3028  * The goto's are kind of ugly, but this streamlines the normal case of having
3029  * it in the page cache, and handles the special cases reasonably without
3030  * having a lot of duplicated code.
3031  *
3032  * vma->vm_mm->mmap_lock must be held on entry.
3033  *
3034  * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3035  * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
3036  *
3037  * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3038  * has not been released.
3039  *
3040  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3041  *
3042  * Return: bitwise-OR of %VM_FAULT_ codes.
3043  */
3044 vm_fault_t filemap_fault(struct vm_fault *vmf)
3045 {
3046 	int error;
3047 	struct file *file = vmf->vma->vm_file;
3048 	struct file *fpin = NULL;
3049 	struct address_space *mapping = file->f_mapping;
3050 	struct inode *inode = mapping->host;
3051 	pgoff_t offset = vmf->pgoff;
3052 	pgoff_t max_off;
3053 	struct page *page;
3054 	vm_fault_t ret = 0;
3055 	bool mapping_locked = false;
3056 
3057 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3058 	if (unlikely(offset >= max_off))
3059 		return VM_FAULT_SIGBUS;
3060 
3061 	/*
3062 	 * Do we have something in the page cache already?
3063 	 */
3064 	page = find_get_page(mapping, offset);
3065 	if (likely(page)) {
3066 		/*
3067 		 * We found the page, so try async readahead before waiting for
3068 		 * the lock.
3069 		 */
3070 		if (!(vmf->flags & FAULT_FLAG_TRIED))
3071 			fpin = do_async_mmap_readahead(vmf, page);
3072 		if (unlikely(!PageUptodate(page))) {
3073 			filemap_invalidate_lock_shared(mapping);
3074 			mapping_locked = true;
3075 		}
3076 	} else {
3077 		/* No page in the page cache at all */
3078 		count_vm_event(PGMAJFAULT);
3079 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3080 		ret = VM_FAULT_MAJOR;
3081 		fpin = do_sync_mmap_readahead(vmf);
3082 retry_find:
3083 		/*
3084 		 * See comment in filemap_create_page() why we need
3085 		 * invalidate_lock
3086 		 */
3087 		if (!mapping_locked) {
3088 			filemap_invalidate_lock_shared(mapping);
3089 			mapping_locked = true;
3090 		}
3091 		page = pagecache_get_page(mapping, offset,
3092 					  FGP_CREAT|FGP_FOR_MMAP,
3093 					  vmf->gfp_mask);
3094 		if (!page) {
3095 			if (fpin)
3096 				goto out_retry;
3097 			filemap_invalidate_unlock_shared(mapping);
3098 			return VM_FAULT_OOM;
3099 		}
3100 	}
3101 
3102 	if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
3103 		goto out_retry;
3104 
3105 	/* Did it get truncated? */
3106 	if (unlikely(compound_head(page)->mapping != mapping)) {
3107 		unlock_page(page);
3108 		put_page(page);
3109 		goto retry_find;
3110 	}
3111 	VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
3112 
3113 	/*
3114 	 * We have a locked page in the page cache, now we need to check
3115 	 * that it's up-to-date. If not, it is going to be due to an error.
3116 	 */
3117 	if (unlikely(!PageUptodate(page))) {
3118 		/*
3119 		 * The page was in cache and uptodate and now it is not.
3120 		 * Strange but possible since we didn't hold the page lock all
3121 		 * the time. Let's drop everything get the invalidate lock and
3122 		 * try again.
3123 		 */
3124 		if (!mapping_locked) {
3125 			unlock_page(page);
3126 			put_page(page);
3127 			goto retry_find;
3128 		}
3129 		goto page_not_uptodate;
3130 	}
3131 
3132 	/*
3133 	 * We've made it this far and we had to drop our mmap_lock, now is the
3134 	 * time to return to the upper layer and have it re-find the vma and
3135 	 * redo the fault.
3136 	 */
3137 	if (fpin) {
3138 		unlock_page(page);
3139 		goto out_retry;
3140 	}
3141 	if (mapping_locked)
3142 		filemap_invalidate_unlock_shared(mapping);
3143 
3144 	/*
3145 	 * Found the page and have a reference on it.
3146 	 * We must recheck i_size under page lock.
3147 	 */
3148 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3149 	if (unlikely(offset >= max_off)) {
3150 		unlock_page(page);
3151 		put_page(page);
3152 		return VM_FAULT_SIGBUS;
3153 	}
3154 
3155 	vmf->page = page;
3156 	return ret | VM_FAULT_LOCKED;
3157 
3158 page_not_uptodate:
3159 	/*
3160 	 * Umm, take care of errors if the page isn't up-to-date.
3161 	 * Try to re-read it _once_. We do this synchronously,
3162 	 * because there really aren't any performance issues here
3163 	 * and we need to check for errors.
3164 	 */
3165 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3166 	error = filemap_read_page(file, mapping, page);
3167 	if (fpin)
3168 		goto out_retry;
3169 	put_page(page);
3170 
3171 	if (!error || error == AOP_TRUNCATED_PAGE)
3172 		goto retry_find;
3173 	filemap_invalidate_unlock_shared(mapping);
3174 
3175 	return VM_FAULT_SIGBUS;
3176 
3177 out_retry:
3178 	/*
3179 	 * We dropped the mmap_lock, we need to return to the fault handler to
3180 	 * re-find the vma and come back and find our hopefully still populated
3181 	 * page.
3182 	 */
3183 	if (page)
3184 		put_page(page);
3185 	if (mapping_locked)
3186 		filemap_invalidate_unlock_shared(mapping);
3187 	if (fpin)
3188 		fput(fpin);
3189 	return ret | VM_FAULT_RETRY;
3190 }
3191 EXPORT_SYMBOL(filemap_fault);
3192 
3193 static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
3194 {
3195 	struct mm_struct *mm = vmf->vma->vm_mm;
3196 
3197 	/* Huge page is mapped? No need to proceed. */
3198 	if (pmd_trans_huge(*vmf->pmd)) {
3199 		unlock_page(page);
3200 		put_page(page);
3201 		return true;
3202 	}
3203 
3204 	if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
3205 		vm_fault_t ret = do_set_pmd(vmf, page);
3206 		if (!ret) {
3207 			/* The page is mapped successfully, reference consumed. */
3208 			unlock_page(page);
3209 			return true;
3210 		}
3211 	}
3212 
3213 	if (pmd_none(*vmf->pmd))
3214 		pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3215 
3216 	/* See comment in handle_pte_fault() */
3217 	if (pmd_devmap_trans_unstable(vmf->pmd)) {
3218 		unlock_page(page);
3219 		put_page(page);
3220 		return true;
3221 	}
3222 
3223 	return false;
3224 }
3225 
3226 static struct page *next_uptodate_page(struct page *page,
3227 				       struct address_space *mapping,
3228 				       struct xa_state *xas, pgoff_t end_pgoff)
3229 {
3230 	unsigned long max_idx;
3231 
3232 	do {
3233 		if (!page)
3234 			return NULL;
3235 		if (xas_retry(xas, page))
3236 			continue;
3237 		if (xa_is_value(page))
3238 			continue;
3239 		if (PageLocked(page))
3240 			continue;
3241 		if (!page_cache_get_speculative(page))
3242 			continue;
3243 		/* Has the page moved or been split? */
3244 		if (unlikely(page != xas_reload(xas)))
3245 			goto skip;
3246 		if (!PageUptodate(page) || PageReadahead(page))
3247 			goto skip;
3248 		if (PageHWPoison(page))
3249 			goto skip;
3250 		if (!trylock_page(page))
3251 			goto skip;
3252 		if (page->mapping != mapping)
3253 			goto unlock;
3254 		if (!PageUptodate(page))
3255 			goto unlock;
3256 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3257 		if (xas->xa_index >= max_idx)
3258 			goto unlock;
3259 		return page;
3260 unlock:
3261 		unlock_page(page);
3262 skip:
3263 		put_page(page);
3264 	} while ((page = xas_next_entry(xas, end_pgoff)) != NULL);
3265 
3266 	return NULL;
3267 }
3268 
3269 static inline struct page *first_map_page(struct address_space *mapping,
3270 					  struct xa_state *xas,
3271 					  pgoff_t end_pgoff)
3272 {
3273 	return next_uptodate_page(xas_find(xas, end_pgoff),
3274 				  mapping, xas, end_pgoff);
3275 }
3276 
3277 static inline struct page *next_map_page(struct address_space *mapping,
3278 					 struct xa_state *xas,
3279 					 pgoff_t end_pgoff)
3280 {
3281 	return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3282 				  mapping, xas, end_pgoff);
3283 }
3284 
3285 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3286 			     pgoff_t start_pgoff, pgoff_t end_pgoff)
3287 {
3288 	struct vm_area_struct *vma = vmf->vma;
3289 	struct file *file = vma->vm_file;
3290 	struct address_space *mapping = file->f_mapping;
3291 	pgoff_t last_pgoff = start_pgoff;
3292 	unsigned long addr;
3293 	XA_STATE(xas, &mapping->i_pages, start_pgoff);
3294 	struct page *head, *page;
3295 	unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
3296 	vm_fault_t ret = 0;
3297 
3298 	rcu_read_lock();
3299 	head = first_map_page(mapping, &xas, end_pgoff);
3300 	if (!head)
3301 		goto out;
3302 
3303 	if (filemap_map_pmd(vmf, head)) {
3304 		ret = VM_FAULT_NOPAGE;
3305 		goto out;
3306 	}
3307 
3308 	addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3309 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3310 	do {
3311 		page = find_subpage(head, xas.xa_index);
3312 		if (PageHWPoison(page))
3313 			goto unlock;
3314 
3315 		if (mmap_miss > 0)
3316 			mmap_miss--;
3317 
3318 		addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3319 		vmf->pte += xas.xa_index - last_pgoff;
3320 		last_pgoff = xas.xa_index;
3321 
3322 		if (!pte_none(*vmf->pte))
3323 			goto unlock;
3324 
3325 		/* We're about to handle the fault */
3326 		if (vmf->address == addr)
3327 			ret = VM_FAULT_NOPAGE;
3328 
3329 		do_set_pte(vmf, page, addr);
3330 		/* no need to invalidate: a not-present page won't be cached */
3331 		update_mmu_cache(vma, addr, vmf->pte);
3332 		unlock_page(head);
3333 		continue;
3334 unlock:
3335 		unlock_page(head);
3336 		put_page(head);
3337 	} while ((head = next_map_page(mapping, &xas, end_pgoff)) != NULL);
3338 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3339 out:
3340 	rcu_read_unlock();
3341 	WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
3342 	return ret;
3343 }
3344 EXPORT_SYMBOL(filemap_map_pages);
3345 
3346 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3347 {
3348 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3349 	struct page *page = vmf->page;
3350 	vm_fault_t ret = VM_FAULT_LOCKED;
3351 
3352 	sb_start_pagefault(mapping->host->i_sb);
3353 	file_update_time(vmf->vma->vm_file);
3354 	lock_page(page);
3355 	if (page->mapping != mapping) {
3356 		unlock_page(page);
3357 		ret = VM_FAULT_NOPAGE;
3358 		goto out;
3359 	}
3360 	/*
3361 	 * We mark the page dirty already here so that when freeze is in
3362 	 * progress, we are guaranteed that writeback during freezing will
3363 	 * see the dirty page and writeprotect it again.
3364 	 */
3365 	set_page_dirty(page);
3366 	wait_for_stable_page(page);
3367 out:
3368 	sb_end_pagefault(mapping->host->i_sb);
3369 	return ret;
3370 }
3371 
3372 const struct vm_operations_struct generic_file_vm_ops = {
3373 	.fault		= filemap_fault,
3374 	.map_pages	= filemap_map_pages,
3375 	.page_mkwrite	= filemap_page_mkwrite,
3376 };
3377 
3378 /* This is used for a general mmap of a disk file */
3379 
3380 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3381 {
3382 	struct address_space *mapping = file->f_mapping;
3383 
3384 	if (!mapping->a_ops->readpage)
3385 		return -ENOEXEC;
3386 	file_accessed(file);
3387 	vma->vm_ops = &generic_file_vm_ops;
3388 	return 0;
3389 }
3390 
3391 /*
3392  * This is for filesystems which do not implement ->writepage.
3393  */
3394 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3395 {
3396 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3397 		return -EINVAL;
3398 	return generic_file_mmap(file, vma);
3399 }
3400 #else
3401 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3402 {
3403 	return VM_FAULT_SIGBUS;
3404 }
3405 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3406 {
3407 	return -ENOSYS;
3408 }
3409 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3410 {
3411 	return -ENOSYS;
3412 }
3413 #endif /* CONFIG_MMU */
3414 
3415 EXPORT_SYMBOL(filemap_page_mkwrite);
3416 EXPORT_SYMBOL(generic_file_mmap);
3417 EXPORT_SYMBOL(generic_file_readonly_mmap);
3418 
3419 static struct page *wait_on_page_read(struct page *page)
3420 {
3421 	if (!IS_ERR(page)) {
3422 		wait_on_page_locked(page);
3423 		if (!PageUptodate(page)) {
3424 			put_page(page);
3425 			page = ERR_PTR(-EIO);
3426 		}
3427 	}
3428 	return page;
3429 }
3430 
3431 static struct page *do_read_cache_page(struct address_space *mapping,
3432 				pgoff_t index,
3433 				int (*filler)(void *, struct page *),
3434 				void *data,
3435 				gfp_t gfp)
3436 {
3437 	struct page *page;
3438 	int err;
3439 repeat:
3440 	page = find_get_page(mapping, index);
3441 	if (!page) {
3442 		page = __page_cache_alloc(gfp);
3443 		if (!page)
3444 			return ERR_PTR(-ENOMEM);
3445 		err = add_to_page_cache_lru(page, mapping, index, gfp);
3446 		if (unlikely(err)) {
3447 			put_page(page);
3448 			if (err == -EEXIST)
3449 				goto repeat;
3450 			/* Presumably ENOMEM for xarray node */
3451 			return ERR_PTR(err);
3452 		}
3453 
3454 filler:
3455 		if (filler)
3456 			err = filler(data, page);
3457 		else
3458 			err = mapping->a_ops->readpage(data, page);
3459 
3460 		if (err < 0) {
3461 			put_page(page);
3462 			return ERR_PTR(err);
3463 		}
3464 
3465 		page = wait_on_page_read(page);
3466 		if (IS_ERR(page))
3467 			return page;
3468 		goto out;
3469 	}
3470 	if (PageUptodate(page))
3471 		goto out;
3472 
3473 	/*
3474 	 * Page is not up to date and may be locked due to one of the following
3475 	 * case a: Page is being filled and the page lock is held
3476 	 * case b: Read/write error clearing the page uptodate status
3477 	 * case c: Truncation in progress (page locked)
3478 	 * case d: Reclaim in progress
3479 	 *
3480 	 * Case a, the page will be up to date when the page is unlocked.
3481 	 *    There is no need to serialise on the page lock here as the page
3482 	 *    is pinned so the lock gives no additional protection. Even if the
3483 	 *    page is truncated, the data is still valid if PageUptodate as
3484 	 *    it's a race vs truncate race.
3485 	 * Case b, the page will not be up to date
3486 	 * Case c, the page may be truncated but in itself, the data may still
3487 	 *    be valid after IO completes as it's a read vs truncate race. The
3488 	 *    operation must restart if the page is not uptodate on unlock but
3489 	 *    otherwise serialising on page lock to stabilise the mapping gives
3490 	 *    no additional guarantees to the caller as the page lock is
3491 	 *    released before return.
3492 	 * Case d, similar to truncation. If reclaim holds the page lock, it
3493 	 *    will be a race with remove_mapping that determines if the mapping
3494 	 *    is valid on unlock but otherwise the data is valid and there is
3495 	 *    no need to serialise with page lock.
3496 	 *
3497 	 * As the page lock gives no additional guarantee, we optimistically
3498 	 * wait on the page to be unlocked and check if it's up to date and
3499 	 * use the page if it is. Otherwise, the page lock is required to
3500 	 * distinguish between the different cases. The motivation is that we
3501 	 * avoid spurious serialisations and wakeups when multiple processes
3502 	 * wait on the same page for IO to complete.
3503 	 */
3504 	wait_on_page_locked(page);
3505 	if (PageUptodate(page))
3506 		goto out;
3507 
3508 	/* Distinguish between all the cases under the safety of the lock */
3509 	lock_page(page);
3510 
3511 	/* Case c or d, restart the operation */
3512 	if (!page->mapping) {
3513 		unlock_page(page);
3514 		put_page(page);
3515 		goto repeat;
3516 	}
3517 
3518 	/* Someone else locked and filled the page in a very small window */
3519 	if (PageUptodate(page)) {
3520 		unlock_page(page);
3521 		goto out;
3522 	}
3523 
3524 	/*
3525 	 * A previous I/O error may have been due to temporary
3526 	 * failures.
3527 	 * Clear page error before actual read, PG_error will be
3528 	 * set again if read page fails.
3529 	 */
3530 	ClearPageError(page);
3531 	goto filler;
3532 
3533 out:
3534 	mark_page_accessed(page);
3535 	return page;
3536 }
3537 
3538 /**
3539  * read_cache_page - read into page cache, fill it if needed
3540  * @mapping:	the page's address_space
3541  * @index:	the page index
3542  * @filler:	function to perform the read
3543  * @data:	first arg to filler(data, page) function, often left as NULL
3544  *
3545  * Read into the page cache. If a page already exists, and PageUptodate() is
3546  * not set, try to fill the page and wait for it to become unlocked.
3547  *
3548  * If the page does not get brought uptodate, return -EIO.
3549  *
3550  * The function expects mapping->invalidate_lock to be already held.
3551  *
3552  * Return: up to date page on success, ERR_PTR() on failure.
3553  */
3554 struct page *read_cache_page(struct address_space *mapping,
3555 				pgoff_t index,
3556 				int (*filler)(void *, struct page *),
3557 				void *data)
3558 {
3559 	return do_read_cache_page(mapping, index, filler, data,
3560 			mapping_gfp_mask(mapping));
3561 }
3562 EXPORT_SYMBOL(read_cache_page);
3563 
3564 /**
3565  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3566  * @mapping:	the page's address_space
3567  * @index:	the page index
3568  * @gfp:	the page allocator flags to use if allocating
3569  *
3570  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3571  * any new page allocations done using the specified allocation flags.
3572  *
3573  * If the page does not get brought uptodate, return -EIO.
3574  *
3575  * The function expects mapping->invalidate_lock to be already held.
3576  *
3577  * Return: up to date page on success, ERR_PTR() on failure.
3578  */
3579 struct page *read_cache_page_gfp(struct address_space *mapping,
3580 				pgoff_t index,
3581 				gfp_t gfp)
3582 {
3583 	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3584 }
3585 EXPORT_SYMBOL(read_cache_page_gfp);
3586 
3587 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3588 				loff_t pos, unsigned len, unsigned flags,
3589 				struct page **pagep, void **fsdata)
3590 {
3591 	const struct address_space_operations *aops = mapping->a_ops;
3592 
3593 	return aops->write_begin(file, mapping, pos, len, flags,
3594 							pagep, fsdata);
3595 }
3596 EXPORT_SYMBOL(pagecache_write_begin);
3597 
3598 int pagecache_write_end(struct file *file, struct address_space *mapping,
3599 				loff_t pos, unsigned len, unsigned copied,
3600 				struct page *page, void *fsdata)
3601 {
3602 	const struct address_space_operations *aops = mapping->a_ops;
3603 
3604 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3605 }
3606 EXPORT_SYMBOL(pagecache_write_end);
3607 
3608 /*
3609  * Warn about a page cache invalidation failure during a direct I/O write.
3610  */
3611 void dio_warn_stale_pagecache(struct file *filp)
3612 {
3613 	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3614 	char pathname[128];
3615 	char *path;
3616 
3617 	errseq_set(&filp->f_mapping->wb_err, -EIO);
3618 	if (__ratelimit(&_rs)) {
3619 		path = file_path(filp, pathname, sizeof(pathname));
3620 		if (IS_ERR(path))
3621 			path = "(unknown)";
3622 		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3623 		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3624 			current->comm);
3625 	}
3626 }
3627 
3628 ssize_t
3629 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3630 {
3631 	struct file	*file = iocb->ki_filp;
3632 	struct address_space *mapping = file->f_mapping;
3633 	struct inode	*inode = mapping->host;
3634 	loff_t		pos = iocb->ki_pos;
3635 	ssize_t		written;
3636 	size_t		write_len;
3637 	pgoff_t		end;
3638 
3639 	write_len = iov_iter_count(from);
3640 	end = (pos + write_len - 1) >> PAGE_SHIFT;
3641 
3642 	if (iocb->ki_flags & IOCB_NOWAIT) {
3643 		/* If there are pages to writeback, return */
3644 		if (filemap_range_has_page(file->f_mapping, pos,
3645 					   pos + write_len - 1))
3646 			return -EAGAIN;
3647 	} else {
3648 		written = filemap_write_and_wait_range(mapping, pos,
3649 							pos + write_len - 1);
3650 		if (written)
3651 			goto out;
3652 	}
3653 
3654 	/*
3655 	 * After a write we want buffered reads to be sure to go to disk to get
3656 	 * the new data.  We invalidate clean cached page from the region we're
3657 	 * about to write.  We do this *before* the write so that we can return
3658 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3659 	 */
3660 	written = invalidate_inode_pages2_range(mapping,
3661 					pos >> PAGE_SHIFT, end);
3662 	/*
3663 	 * If a page can not be invalidated, return 0 to fall back
3664 	 * to buffered write.
3665 	 */
3666 	if (written) {
3667 		if (written == -EBUSY)
3668 			return 0;
3669 		goto out;
3670 	}
3671 
3672 	written = mapping->a_ops->direct_IO(iocb, from);
3673 
3674 	/*
3675 	 * Finally, try again to invalidate clean pages which might have been
3676 	 * cached by non-direct readahead, or faulted in by get_user_pages()
3677 	 * if the source of the write was an mmap'ed region of the file
3678 	 * we're writing.  Either one is a pretty crazy thing to do,
3679 	 * so we don't support it 100%.  If this invalidation
3680 	 * fails, tough, the write still worked...
3681 	 *
3682 	 * Most of the time we do not need this since dio_complete() will do
3683 	 * the invalidation for us. However there are some file systems that
3684 	 * do not end up with dio_complete() being called, so let's not break
3685 	 * them by removing it completely.
3686 	 *
3687 	 * Noticeable example is a blkdev_direct_IO().
3688 	 *
3689 	 * Skip invalidation for async writes or if mapping has no pages.
3690 	 */
3691 	if (written > 0 && mapping->nrpages &&
3692 	    invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3693 		dio_warn_stale_pagecache(file);
3694 
3695 	if (written > 0) {
3696 		pos += written;
3697 		write_len -= written;
3698 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3699 			i_size_write(inode, pos);
3700 			mark_inode_dirty(inode);
3701 		}
3702 		iocb->ki_pos = pos;
3703 	}
3704 	if (written != -EIOCBQUEUED)
3705 		iov_iter_revert(from, write_len - iov_iter_count(from));
3706 out:
3707 	return written;
3708 }
3709 EXPORT_SYMBOL(generic_file_direct_write);
3710 
3711 ssize_t generic_perform_write(struct file *file,
3712 				struct iov_iter *i, loff_t pos)
3713 {
3714 	struct address_space *mapping = file->f_mapping;
3715 	const struct address_space_operations *a_ops = mapping->a_ops;
3716 	long status = 0;
3717 	ssize_t written = 0;
3718 	unsigned int flags = 0;
3719 
3720 	do {
3721 		struct page *page;
3722 		unsigned long offset;	/* Offset into pagecache page */
3723 		unsigned long bytes;	/* Bytes to write to page */
3724 		size_t copied;		/* Bytes copied from user */
3725 		void *fsdata;
3726 
3727 		offset = (pos & (PAGE_SIZE - 1));
3728 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3729 						iov_iter_count(i));
3730 
3731 again:
3732 		/*
3733 		 * Bring in the user page that we will copy from _first_.
3734 		 * Otherwise there's a nasty deadlock on copying from the
3735 		 * same page as we're writing to, without it being marked
3736 		 * up-to-date.
3737 		 */
3738 		if (unlikely(fault_in_iov_iter_readable(i, bytes))) {
3739 			status = -EFAULT;
3740 			break;
3741 		}
3742 
3743 		if (fatal_signal_pending(current)) {
3744 			status = -EINTR;
3745 			break;
3746 		}
3747 
3748 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3749 						&page, &fsdata);
3750 		if (unlikely(status < 0))
3751 			break;
3752 
3753 		if (mapping_writably_mapped(mapping))
3754 			flush_dcache_page(page);
3755 
3756 		copied = copy_page_from_iter_atomic(page, offset, bytes, i);
3757 		flush_dcache_page(page);
3758 
3759 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3760 						page, fsdata);
3761 		if (unlikely(status != copied)) {
3762 			iov_iter_revert(i, copied - max(status, 0L));
3763 			if (unlikely(status < 0))
3764 				break;
3765 		}
3766 		cond_resched();
3767 
3768 		if (unlikely(status == 0)) {
3769 			/*
3770 			 * A short copy made ->write_end() reject the
3771 			 * thing entirely.  Might be memory poisoning
3772 			 * halfway through, might be a race with munmap,
3773 			 * might be severe memory pressure.
3774 			 */
3775 			if (copied)
3776 				bytes = copied;
3777 			goto again;
3778 		}
3779 		pos += status;
3780 		written += status;
3781 
3782 		balance_dirty_pages_ratelimited(mapping);
3783 	} while (iov_iter_count(i));
3784 
3785 	return written ? written : status;
3786 }
3787 EXPORT_SYMBOL(generic_perform_write);
3788 
3789 /**
3790  * __generic_file_write_iter - write data to a file
3791  * @iocb:	IO state structure (file, offset, etc.)
3792  * @from:	iov_iter with data to write
3793  *
3794  * This function does all the work needed for actually writing data to a
3795  * file. It does all basic checks, removes SUID from the file, updates
3796  * modification times and calls proper subroutines depending on whether we
3797  * do direct IO or a standard buffered write.
3798  *
3799  * It expects i_rwsem to be grabbed unless we work on a block device or similar
3800  * object which does not need locking at all.
3801  *
3802  * This function does *not* take care of syncing data in case of O_SYNC write.
3803  * A caller has to handle it. This is mainly due to the fact that we want to
3804  * avoid syncing under i_rwsem.
3805  *
3806  * Return:
3807  * * number of bytes written, even for truncated writes
3808  * * negative error code if no data has been written at all
3809  */
3810 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3811 {
3812 	struct file *file = iocb->ki_filp;
3813 	struct address_space *mapping = file->f_mapping;
3814 	struct inode 	*inode = mapping->host;
3815 	ssize_t		written = 0;
3816 	ssize_t		err;
3817 	ssize_t		status;
3818 
3819 	/* We can write back this queue in page reclaim */
3820 	current->backing_dev_info = inode_to_bdi(inode);
3821 	err = file_remove_privs(file);
3822 	if (err)
3823 		goto out;
3824 
3825 	err = file_update_time(file);
3826 	if (err)
3827 		goto out;
3828 
3829 	if (iocb->ki_flags & IOCB_DIRECT) {
3830 		loff_t pos, endbyte;
3831 
3832 		written = generic_file_direct_write(iocb, from);
3833 		/*
3834 		 * If the write stopped short of completing, fall back to
3835 		 * buffered writes.  Some filesystems do this for writes to
3836 		 * holes, for example.  For DAX files, a buffered write will
3837 		 * not succeed (even if it did, DAX does not handle dirty
3838 		 * page-cache pages correctly).
3839 		 */
3840 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3841 			goto out;
3842 
3843 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3844 		/*
3845 		 * If generic_perform_write() returned a synchronous error
3846 		 * then we want to return the number of bytes which were
3847 		 * direct-written, or the error code if that was zero.  Note
3848 		 * that this differs from normal direct-io semantics, which
3849 		 * will return -EFOO even if some bytes were written.
3850 		 */
3851 		if (unlikely(status < 0)) {
3852 			err = status;
3853 			goto out;
3854 		}
3855 		/*
3856 		 * We need to ensure that the page cache pages are written to
3857 		 * disk and invalidated to preserve the expected O_DIRECT
3858 		 * semantics.
3859 		 */
3860 		endbyte = pos + status - 1;
3861 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3862 		if (err == 0) {
3863 			iocb->ki_pos = endbyte + 1;
3864 			written += status;
3865 			invalidate_mapping_pages(mapping,
3866 						 pos >> PAGE_SHIFT,
3867 						 endbyte >> PAGE_SHIFT);
3868 		} else {
3869 			/*
3870 			 * We don't know how much we wrote, so just return
3871 			 * the number of bytes which were direct-written
3872 			 */
3873 		}
3874 	} else {
3875 		written = generic_perform_write(file, from, iocb->ki_pos);
3876 		if (likely(written > 0))
3877 			iocb->ki_pos += written;
3878 	}
3879 out:
3880 	current->backing_dev_info = NULL;
3881 	return written ? written : err;
3882 }
3883 EXPORT_SYMBOL(__generic_file_write_iter);
3884 
3885 /**
3886  * generic_file_write_iter - write data to a file
3887  * @iocb:	IO state structure
3888  * @from:	iov_iter with data to write
3889  *
3890  * This is a wrapper around __generic_file_write_iter() to be used by most
3891  * filesystems. It takes care of syncing the file in case of O_SYNC file
3892  * and acquires i_rwsem as needed.
3893  * Return:
3894  * * negative error code if no data has been written at all of
3895  *   vfs_fsync_range() failed for a synchronous write
3896  * * number of bytes written, even for truncated writes
3897  */
3898 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3899 {
3900 	struct file *file = iocb->ki_filp;
3901 	struct inode *inode = file->f_mapping->host;
3902 	ssize_t ret;
3903 
3904 	inode_lock(inode);
3905 	ret = generic_write_checks(iocb, from);
3906 	if (ret > 0)
3907 		ret = __generic_file_write_iter(iocb, from);
3908 	inode_unlock(inode);
3909 
3910 	if (ret > 0)
3911 		ret = generic_write_sync(iocb, ret);
3912 	return ret;
3913 }
3914 EXPORT_SYMBOL(generic_file_write_iter);
3915 
3916 /**
3917  * try_to_release_page() - release old fs-specific metadata on a page
3918  *
3919  * @page: the page which the kernel is trying to free
3920  * @gfp_mask: memory allocation flags (and I/O mode)
3921  *
3922  * The address_space is to try to release any data against the page
3923  * (presumably at page->private).
3924  *
3925  * This may also be called if PG_fscache is set on a page, indicating that the
3926  * page is known to the local caching routines.
3927  *
3928  * The @gfp_mask argument specifies whether I/O may be performed to release
3929  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3930  *
3931  * Return: %1 if the release was successful, otherwise return zero.
3932  */
3933 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3934 {
3935 	struct address_space * const mapping = page->mapping;
3936 
3937 	BUG_ON(!PageLocked(page));
3938 	if (PageWriteback(page))
3939 		return 0;
3940 
3941 	if (mapping && mapping->a_ops->releasepage)
3942 		return mapping->a_ops->releasepage(page, gfp_mask);
3943 	return try_to_free_buffers(page);
3944 }
3945 
3946 EXPORT_SYMBOL(try_to_release_page);
3947