1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/filemap.c 4 * 5 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 7 8 /* 9 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differently, for example) 12 */ 13 #include <linux/export.h> 14 #include <linux/compiler.h> 15 #include <linux/dax.h> 16 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 19 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 22 #include <linux/mm.h> 23 #include <linux/swap.h> 24 #include <linux/mman.h> 25 #include <linux/pagemap.h> 26 #include <linux/file.h> 27 #include <linux/uio.h> 28 #include <linux/error-injection.h> 29 #include <linux/hash.h> 30 #include <linux/writeback.h> 31 #include <linux/backing-dev.h> 32 #include <linux/pagevec.h> 33 #include <linux/security.h> 34 #include <linux/cpuset.h> 35 #include <linux/hugetlb.h> 36 #include <linux/memcontrol.h> 37 #include <linux/cleancache.h> 38 #include <linux/shmem_fs.h> 39 #include <linux/rmap.h> 40 #include <linux/delayacct.h> 41 #include <linux/psi.h> 42 #include <linux/ramfs.h> 43 #include <linux/page_idle.h> 44 #include <asm/pgalloc.h> 45 #include <asm/tlbflush.h> 46 #include "internal.h" 47 48 #define CREATE_TRACE_POINTS 49 #include <trace/events/filemap.h> 50 51 /* 52 * FIXME: remove all knowledge of the buffer layer from the core VM 53 */ 54 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 55 56 #include <asm/mman.h> 57 58 /* 59 * Shared mappings implemented 30.11.1994. It's not fully working yet, 60 * though. 61 * 62 * Shared mappings now work. 15.8.1995 Bruno. 63 * 64 * finished 'unifying' the page and buffer cache and SMP-threaded the 65 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 66 * 67 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 68 */ 69 70 /* 71 * Lock ordering: 72 * 73 * ->i_mmap_rwsem (truncate_pagecache) 74 * ->private_lock (__free_pte->__set_page_dirty_buffers) 75 * ->swap_lock (exclusive_swap_page, others) 76 * ->i_pages lock 77 * 78 * ->i_rwsem 79 * ->invalidate_lock (acquired by fs in truncate path) 80 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 81 * 82 * ->mmap_lock 83 * ->i_mmap_rwsem 84 * ->page_table_lock or pte_lock (various, mainly in memory.c) 85 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 86 * 87 * ->mmap_lock 88 * ->invalidate_lock (filemap_fault) 89 * ->lock_page (filemap_fault, access_process_vm) 90 * 91 * ->i_rwsem (generic_perform_write) 92 * ->mmap_lock (fault_in_readable->do_page_fault) 93 * 94 * bdi->wb.list_lock 95 * sb_lock (fs/fs-writeback.c) 96 * ->i_pages lock (__sync_single_inode) 97 * 98 * ->i_mmap_rwsem 99 * ->anon_vma.lock (vma_adjust) 100 * 101 * ->anon_vma.lock 102 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 103 * 104 * ->page_table_lock or pte_lock 105 * ->swap_lock (try_to_unmap_one) 106 * ->private_lock (try_to_unmap_one) 107 * ->i_pages lock (try_to_unmap_one) 108 * ->lruvec->lru_lock (follow_page->mark_page_accessed) 109 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page) 110 * ->private_lock (page_remove_rmap->set_page_dirty) 111 * ->i_pages lock (page_remove_rmap->set_page_dirty) 112 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 113 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 114 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) 115 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 116 * ->inode->i_lock (zap_pte_range->set_page_dirty) 117 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 118 * 119 * ->i_mmap_rwsem 120 * ->tasklist_lock (memory_failure, collect_procs_ao) 121 */ 122 123 static void page_cache_delete(struct address_space *mapping, 124 struct page *page, void *shadow) 125 { 126 XA_STATE(xas, &mapping->i_pages, page->index); 127 unsigned int nr = 1; 128 129 mapping_set_update(&xas, mapping); 130 131 /* hugetlb pages are represented by a single entry in the xarray */ 132 if (!PageHuge(page)) { 133 xas_set_order(&xas, page->index, compound_order(page)); 134 nr = compound_nr(page); 135 } 136 137 VM_BUG_ON_PAGE(!PageLocked(page), page); 138 VM_BUG_ON_PAGE(PageTail(page), page); 139 VM_BUG_ON_PAGE(nr != 1 && shadow, page); 140 141 xas_store(&xas, shadow); 142 xas_init_marks(&xas); 143 144 page->mapping = NULL; 145 /* Leave page->index set: truncation lookup relies upon it */ 146 mapping->nrpages -= nr; 147 } 148 149 static void unaccount_page_cache_page(struct address_space *mapping, 150 struct page *page) 151 { 152 int nr; 153 154 /* 155 * if we're uptodate, flush out into the cleancache, otherwise 156 * invalidate any existing cleancache entries. We can't leave 157 * stale data around in the cleancache once our page is gone 158 */ 159 if (PageUptodate(page) && PageMappedToDisk(page)) 160 cleancache_put_page(page); 161 else 162 cleancache_invalidate_page(mapping, page); 163 164 VM_BUG_ON_PAGE(PageTail(page), page); 165 VM_BUG_ON_PAGE(page_mapped(page), page); 166 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) { 167 int mapcount; 168 169 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 170 current->comm, page_to_pfn(page)); 171 dump_page(page, "still mapped when deleted"); 172 dump_stack(); 173 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 174 175 mapcount = page_mapcount(page); 176 if (mapping_exiting(mapping) && 177 page_count(page) >= mapcount + 2) { 178 /* 179 * All vmas have already been torn down, so it's 180 * a good bet that actually the page is unmapped, 181 * and we'd prefer not to leak it: if we're wrong, 182 * some other bad page check should catch it later. 183 */ 184 page_mapcount_reset(page); 185 page_ref_sub(page, mapcount); 186 } 187 } 188 189 /* hugetlb pages do not participate in page cache accounting. */ 190 if (PageHuge(page)) 191 return; 192 193 nr = thp_nr_pages(page); 194 195 __mod_lruvec_page_state(page, NR_FILE_PAGES, -nr); 196 if (PageSwapBacked(page)) { 197 __mod_lruvec_page_state(page, NR_SHMEM, -nr); 198 if (PageTransHuge(page)) 199 __mod_lruvec_page_state(page, NR_SHMEM_THPS, -nr); 200 } else if (PageTransHuge(page)) { 201 __mod_lruvec_page_state(page, NR_FILE_THPS, -nr); 202 filemap_nr_thps_dec(mapping); 203 } 204 205 /* 206 * At this point page must be either written or cleaned by 207 * truncate. Dirty page here signals a bug and loss of 208 * unwritten data. 209 * 210 * This fixes dirty accounting after removing the page entirely 211 * but leaves PageDirty set: it has no effect for truncated 212 * page and anyway will be cleared before returning page into 213 * buddy allocator. 214 */ 215 if (WARN_ON_ONCE(PageDirty(page))) 216 account_page_cleaned(page, mapping, inode_to_wb(mapping->host)); 217 } 218 219 /* 220 * Delete a page from the page cache and free it. Caller has to make 221 * sure the page is locked and that nobody else uses it - or that usage 222 * is safe. The caller must hold the i_pages lock. 223 */ 224 void __delete_from_page_cache(struct page *page, void *shadow) 225 { 226 struct address_space *mapping = page->mapping; 227 228 trace_mm_filemap_delete_from_page_cache(page); 229 230 unaccount_page_cache_page(mapping, page); 231 page_cache_delete(mapping, page, shadow); 232 } 233 234 static void page_cache_free_page(struct address_space *mapping, 235 struct page *page) 236 { 237 void (*freepage)(struct page *); 238 239 freepage = mapping->a_ops->freepage; 240 if (freepage) 241 freepage(page); 242 243 if (PageTransHuge(page) && !PageHuge(page)) { 244 page_ref_sub(page, thp_nr_pages(page)); 245 VM_BUG_ON_PAGE(page_count(page) <= 0, page); 246 } else { 247 put_page(page); 248 } 249 } 250 251 /** 252 * delete_from_page_cache - delete page from page cache 253 * @page: the page which the kernel is trying to remove from page cache 254 * 255 * This must be called only on pages that have been verified to be in the page 256 * cache and locked. It will never put the page into the free list, the caller 257 * has a reference on the page. 258 */ 259 void delete_from_page_cache(struct page *page) 260 { 261 struct address_space *mapping = page_mapping(page); 262 263 BUG_ON(!PageLocked(page)); 264 xa_lock_irq(&mapping->i_pages); 265 __delete_from_page_cache(page, NULL); 266 xa_unlock_irq(&mapping->i_pages); 267 268 page_cache_free_page(mapping, page); 269 } 270 EXPORT_SYMBOL(delete_from_page_cache); 271 272 /* 273 * page_cache_delete_batch - delete several pages from page cache 274 * @mapping: the mapping to which pages belong 275 * @pvec: pagevec with pages to delete 276 * 277 * The function walks over mapping->i_pages and removes pages passed in @pvec 278 * from the mapping. The function expects @pvec to be sorted by page index 279 * and is optimised for it to be dense. 280 * It tolerates holes in @pvec (mapping entries at those indices are not 281 * modified). The function expects only THP head pages to be present in the 282 * @pvec. 283 * 284 * The function expects the i_pages lock to be held. 285 */ 286 static void page_cache_delete_batch(struct address_space *mapping, 287 struct pagevec *pvec) 288 { 289 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index); 290 int total_pages = 0; 291 int i = 0; 292 struct page *page; 293 294 mapping_set_update(&xas, mapping); 295 xas_for_each(&xas, page, ULONG_MAX) { 296 if (i >= pagevec_count(pvec)) 297 break; 298 299 /* A swap/dax/shadow entry got inserted? Skip it. */ 300 if (xa_is_value(page)) 301 continue; 302 /* 303 * A page got inserted in our range? Skip it. We have our 304 * pages locked so they are protected from being removed. 305 * If we see a page whose index is higher than ours, it 306 * means our page has been removed, which shouldn't be 307 * possible because we're holding the PageLock. 308 */ 309 if (page != pvec->pages[i]) { 310 VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index, 311 page); 312 continue; 313 } 314 315 WARN_ON_ONCE(!PageLocked(page)); 316 317 if (page->index == xas.xa_index) 318 page->mapping = NULL; 319 /* Leave page->index set: truncation lookup relies on it */ 320 321 /* 322 * Move to the next page in the vector if this is a regular 323 * page or the index is of the last sub-page of this compound 324 * page. 325 */ 326 if (page->index + compound_nr(page) - 1 == xas.xa_index) 327 i++; 328 xas_store(&xas, NULL); 329 total_pages++; 330 } 331 mapping->nrpages -= total_pages; 332 } 333 334 void delete_from_page_cache_batch(struct address_space *mapping, 335 struct pagevec *pvec) 336 { 337 int i; 338 339 if (!pagevec_count(pvec)) 340 return; 341 342 xa_lock_irq(&mapping->i_pages); 343 for (i = 0; i < pagevec_count(pvec); i++) { 344 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]); 345 346 unaccount_page_cache_page(mapping, pvec->pages[i]); 347 } 348 page_cache_delete_batch(mapping, pvec); 349 xa_unlock_irq(&mapping->i_pages); 350 351 for (i = 0; i < pagevec_count(pvec); i++) 352 page_cache_free_page(mapping, pvec->pages[i]); 353 } 354 355 int filemap_check_errors(struct address_space *mapping) 356 { 357 int ret = 0; 358 /* Check for outstanding write errors */ 359 if (test_bit(AS_ENOSPC, &mapping->flags) && 360 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 361 ret = -ENOSPC; 362 if (test_bit(AS_EIO, &mapping->flags) && 363 test_and_clear_bit(AS_EIO, &mapping->flags)) 364 ret = -EIO; 365 return ret; 366 } 367 EXPORT_SYMBOL(filemap_check_errors); 368 369 static int filemap_check_and_keep_errors(struct address_space *mapping) 370 { 371 /* Check for outstanding write errors */ 372 if (test_bit(AS_EIO, &mapping->flags)) 373 return -EIO; 374 if (test_bit(AS_ENOSPC, &mapping->flags)) 375 return -ENOSPC; 376 return 0; 377 } 378 379 /** 380 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range 381 * @mapping: address space structure to write 382 * @wbc: the writeback_control controlling the writeout 383 * 384 * Call writepages on the mapping using the provided wbc to control the 385 * writeout. 386 * 387 * Return: %0 on success, negative error code otherwise. 388 */ 389 int filemap_fdatawrite_wbc(struct address_space *mapping, 390 struct writeback_control *wbc) 391 { 392 int ret; 393 394 if (!mapping_can_writeback(mapping) || 395 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 396 return 0; 397 398 wbc_attach_fdatawrite_inode(wbc, mapping->host); 399 ret = do_writepages(mapping, wbc); 400 wbc_detach_inode(wbc); 401 return ret; 402 } 403 EXPORT_SYMBOL(filemap_fdatawrite_wbc); 404 405 /** 406 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 407 * @mapping: address space structure to write 408 * @start: offset in bytes where the range starts 409 * @end: offset in bytes where the range ends (inclusive) 410 * @sync_mode: enable synchronous operation 411 * 412 * Start writeback against all of a mapping's dirty pages that lie 413 * within the byte offsets <start, end> inclusive. 414 * 415 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 416 * opposed to a regular memory cleansing writeback. The difference between 417 * these two operations is that if a dirty page/buffer is encountered, it must 418 * be waited upon, and not just skipped over. 419 * 420 * Return: %0 on success, negative error code otherwise. 421 */ 422 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 423 loff_t end, int sync_mode) 424 { 425 struct writeback_control wbc = { 426 .sync_mode = sync_mode, 427 .nr_to_write = LONG_MAX, 428 .range_start = start, 429 .range_end = end, 430 }; 431 432 return filemap_fdatawrite_wbc(mapping, &wbc); 433 } 434 435 static inline int __filemap_fdatawrite(struct address_space *mapping, 436 int sync_mode) 437 { 438 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 439 } 440 441 int filemap_fdatawrite(struct address_space *mapping) 442 { 443 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 444 } 445 EXPORT_SYMBOL(filemap_fdatawrite); 446 447 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 448 loff_t end) 449 { 450 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 451 } 452 EXPORT_SYMBOL(filemap_fdatawrite_range); 453 454 /** 455 * filemap_flush - mostly a non-blocking flush 456 * @mapping: target address_space 457 * 458 * This is a mostly non-blocking flush. Not suitable for data-integrity 459 * purposes - I/O may not be started against all dirty pages. 460 * 461 * Return: %0 on success, negative error code otherwise. 462 */ 463 int filemap_flush(struct address_space *mapping) 464 { 465 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 466 } 467 EXPORT_SYMBOL(filemap_flush); 468 469 /** 470 * filemap_range_has_page - check if a page exists in range. 471 * @mapping: address space within which to check 472 * @start_byte: offset in bytes where the range starts 473 * @end_byte: offset in bytes where the range ends (inclusive) 474 * 475 * Find at least one page in the range supplied, usually used to check if 476 * direct writing in this range will trigger a writeback. 477 * 478 * Return: %true if at least one page exists in the specified range, 479 * %false otherwise. 480 */ 481 bool filemap_range_has_page(struct address_space *mapping, 482 loff_t start_byte, loff_t end_byte) 483 { 484 struct page *page; 485 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 486 pgoff_t max = end_byte >> PAGE_SHIFT; 487 488 if (end_byte < start_byte) 489 return false; 490 491 rcu_read_lock(); 492 for (;;) { 493 page = xas_find(&xas, max); 494 if (xas_retry(&xas, page)) 495 continue; 496 /* Shadow entries don't count */ 497 if (xa_is_value(page)) 498 continue; 499 /* 500 * We don't need to try to pin this page; we're about to 501 * release the RCU lock anyway. It is enough to know that 502 * there was a page here recently. 503 */ 504 break; 505 } 506 rcu_read_unlock(); 507 508 return page != NULL; 509 } 510 EXPORT_SYMBOL(filemap_range_has_page); 511 512 static void __filemap_fdatawait_range(struct address_space *mapping, 513 loff_t start_byte, loff_t end_byte) 514 { 515 pgoff_t index = start_byte >> PAGE_SHIFT; 516 pgoff_t end = end_byte >> PAGE_SHIFT; 517 struct pagevec pvec; 518 int nr_pages; 519 520 if (end_byte < start_byte) 521 return; 522 523 pagevec_init(&pvec); 524 while (index <= end) { 525 unsigned i; 526 527 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, 528 end, PAGECACHE_TAG_WRITEBACK); 529 if (!nr_pages) 530 break; 531 532 for (i = 0; i < nr_pages; i++) { 533 struct page *page = pvec.pages[i]; 534 535 wait_on_page_writeback(page); 536 ClearPageError(page); 537 } 538 pagevec_release(&pvec); 539 cond_resched(); 540 } 541 } 542 543 /** 544 * filemap_fdatawait_range - wait for writeback to complete 545 * @mapping: address space structure to wait for 546 * @start_byte: offset in bytes where the range starts 547 * @end_byte: offset in bytes where the range ends (inclusive) 548 * 549 * Walk the list of under-writeback pages of the given address space 550 * in the given range and wait for all of them. Check error status of 551 * the address space and return it. 552 * 553 * Since the error status of the address space is cleared by this function, 554 * callers are responsible for checking the return value and handling and/or 555 * reporting the error. 556 * 557 * Return: error status of the address space. 558 */ 559 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 560 loff_t end_byte) 561 { 562 __filemap_fdatawait_range(mapping, start_byte, end_byte); 563 return filemap_check_errors(mapping); 564 } 565 EXPORT_SYMBOL(filemap_fdatawait_range); 566 567 /** 568 * filemap_fdatawait_range_keep_errors - wait for writeback to complete 569 * @mapping: address space structure to wait for 570 * @start_byte: offset in bytes where the range starts 571 * @end_byte: offset in bytes where the range ends (inclusive) 572 * 573 * Walk the list of under-writeback pages of the given address space in the 574 * given range and wait for all of them. Unlike filemap_fdatawait_range(), 575 * this function does not clear error status of the address space. 576 * 577 * Use this function if callers don't handle errors themselves. Expected 578 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 579 * fsfreeze(8) 580 */ 581 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 582 loff_t start_byte, loff_t end_byte) 583 { 584 __filemap_fdatawait_range(mapping, start_byte, end_byte); 585 return filemap_check_and_keep_errors(mapping); 586 } 587 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); 588 589 /** 590 * file_fdatawait_range - wait for writeback to complete 591 * @file: file pointing to address space structure to wait for 592 * @start_byte: offset in bytes where the range starts 593 * @end_byte: offset in bytes where the range ends (inclusive) 594 * 595 * Walk the list of under-writeback pages of the address space that file 596 * refers to, in the given range and wait for all of them. Check error 597 * status of the address space vs. the file->f_wb_err cursor and return it. 598 * 599 * Since the error status of the file is advanced by this function, 600 * callers are responsible for checking the return value and handling and/or 601 * reporting the error. 602 * 603 * Return: error status of the address space vs. the file->f_wb_err cursor. 604 */ 605 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 606 { 607 struct address_space *mapping = file->f_mapping; 608 609 __filemap_fdatawait_range(mapping, start_byte, end_byte); 610 return file_check_and_advance_wb_err(file); 611 } 612 EXPORT_SYMBOL(file_fdatawait_range); 613 614 /** 615 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 616 * @mapping: address space structure to wait for 617 * 618 * Walk the list of under-writeback pages of the given address space 619 * and wait for all of them. Unlike filemap_fdatawait(), this function 620 * does not clear error status of the address space. 621 * 622 * Use this function if callers don't handle errors themselves. Expected 623 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 624 * fsfreeze(8) 625 * 626 * Return: error status of the address space. 627 */ 628 int filemap_fdatawait_keep_errors(struct address_space *mapping) 629 { 630 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 631 return filemap_check_and_keep_errors(mapping); 632 } 633 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 634 635 /* Returns true if writeback might be needed or already in progress. */ 636 static bool mapping_needs_writeback(struct address_space *mapping) 637 { 638 return mapping->nrpages; 639 } 640 641 static bool filemap_range_has_writeback(struct address_space *mapping, 642 loff_t start_byte, loff_t end_byte) 643 { 644 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 645 pgoff_t max = end_byte >> PAGE_SHIFT; 646 struct page *page; 647 648 if (end_byte < start_byte) 649 return false; 650 651 rcu_read_lock(); 652 xas_for_each(&xas, page, max) { 653 if (xas_retry(&xas, page)) 654 continue; 655 if (xa_is_value(page)) 656 continue; 657 if (PageDirty(page) || PageLocked(page) || PageWriteback(page)) 658 break; 659 } 660 rcu_read_unlock(); 661 return page != NULL; 662 663 } 664 665 /** 666 * filemap_range_needs_writeback - check if range potentially needs writeback 667 * @mapping: address space within which to check 668 * @start_byte: offset in bytes where the range starts 669 * @end_byte: offset in bytes where the range ends (inclusive) 670 * 671 * Find at least one page in the range supplied, usually used to check if 672 * direct writing in this range will trigger a writeback. Used by O_DIRECT 673 * read/write with IOCB_NOWAIT, to see if the caller needs to do 674 * filemap_write_and_wait_range() before proceeding. 675 * 676 * Return: %true if the caller should do filemap_write_and_wait_range() before 677 * doing O_DIRECT to a page in this range, %false otherwise. 678 */ 679 bool filemap_range_needs_writeback(struct address_space *mapping, 680 loff_t start_byte, loff_t end_byte) 681 { 682 if (!mapping_needs_writeback(mapping)) 683 return false; 684 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 685 !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) 686 return false; 687 return filemap_range_has_writeback(mapping, start_byte, end_byte); 688 } 689 EXPORT_SYMBOL_GPL(filemap_range_needs_writeback); 690 691 /** 692 * filemap_write_and_wait_range - write out & wait on a file range 693 * @mapping: the address_space for the pages 694 * @lstart: offset in bytes where the range starts 695 * @lend: offset in bytes where the range ends (inclusive) 696 * 697 * Write out and wait upon file offsets lstart->lend, inclusive. 698 * 699 * Note that @lend is inclusive (describes the last byte to be written) so 700 * that this function can be used to write to the very end-of-file (end = -1). 701 * 702 * Return: error status of the address space. 703 */ 704 int filemap_write_and_wait_range(struct address_space *mapping, 705 loff_t lstart, loff_t lend) 706 { 707 int err = 0; 708 709 if (mapping_needs_writeback(mapping)) { 710 err = __filemap_fdatawrite_range(mapping, lstart, lend, 711 WB_SYNC_ALL); 712 /* 713 * Even if the above returned error, the pages may be 714 * written partially (e.g. -ENOSPC), so we wait for it. 715 * But the -EIO is special case, it may indicate the worst 716 * thing (e.g. bug) happened, so we avoid waiting for it. 717 */ 718 if (err != -EIO) { 719 int err2 = filemap_fdatawait_range(mapping, 720 lstart, lend); 721 if (!err) 722 err = err2; 723 } else { 724 /* Clear any previously stored errors */ 725 filemap_check_errors(mapping); 726 } 727 } else { 728 err = filemap_check_errors(mapping); 729 } 730 return err; 731 } 732 EXPORT_SYMBOL(filemap_write_and_wait_range); 733 734 void __filemap_set_wb_err(struct address_space *mapping, int err) 735 { 736 errseq_t eseq = errseq_set(&mapping->wb_err, err); 737 738 trace_filemap_set_wb_err(mapping, eseq); 739 } 740 EXPORT_SYMBOL(__filemap_set_wb_err); 741 742 /** 743 * file_check_and_advance_wb_err - report wb error (if any) that was previously 744 * and advance wb_err to current one 745 * @file: struct file on which the error is being reported 746 * 747 * When userland calls fsync (or something like nfsd does the equivalent), we 748 * want to report any writeback errors that occurred since the last fsync (or 749 * since the file was opened if there haven't been any). 750 * 751 * Grab the wb_err from the mapping. If it matches what we have in the file, 752 * then just quickly return 0. The file is all caught up. 753 * 754 * If it doesn't match, then take the mapping value, set the "seen" flag in 755 * it and try to swap it into place. If it works, or another task beat us 756 * to it with the new value, then update the f_wb_err and return the error 757 * portion. The error at this point must be reported via proper channels 758 * (a'la fsync, or NFS COMMIT operation, etc.). 759 * 760 * While we handle mapping->wb_err with atomic operations, the f_wb_err 761 * value is protected by the f_lock since we must ensure that it reflects 762 * the latest value swapped in for this file descriptor. 763 * 764 * Return: %0 on success, negative error code otherwise. 765 */ 766 int file_check_and_advance_wb_err(struct file *file) 767 { 768 int err = 0; 769 errseq_t old = READ_ONCE(file->f_wb_err); 770 struct address_space *mapping = file->f_mapping; 771 772 /* Locklessly handle the common case where nothing has changed */ 773 if (errseq_check(&mapping->wb_err, old)) { 774 /* Something changed, must use slow path */ 775 spin_lock(&file->f_lock); 776 old = file->f_wb_err; 777 err = errseq_check_and_advance(&mapping->wb_err, 778 &file->f_wb_err); 779 trace_file_check_and_advance_wb_err(file, old); 780 spin_unlock(&file->f_lock); 781 } 782 783 /* 784 * We're mostly using this function as a drop in replacement for 785 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 786 * that the legacy code would have had on these flags. 787 */ 788 clear_bit(AS_EIO, &mapping->flags); 789 clear_bit(AS_ENOSPC, &mapping->flags); 790 return err; 791 } 792 EXPORT_SYMBOL(file_check_and_advance_wb_err); 793 794 /** 795 * file_write_and_wait_range - write out & wait on a file range 796 * @file: file pointing to address_space with pages 797 * @lstart: offset in bytes where the range starts 798 * @lend: offset in bytes where the range ends (inclusive) 799 * 800 * Write out and wait upon file offsets lstart->lend, inclusive. 801 * 802 * Note that @lend is inclusive (describes the last byte to be written) so 803 * that this function can be used to write to the very end-of-file (end = -1). 804 * 805 * After writing out and waiting on the data, we check and advance the 806 * f_wb_err cursor to the latest value, and return any errors detected there. 807 * 808 * Return: %0 on success, negative error code otherwise. 809 */ 810 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 811 { 812 int err = 0, err2; 813 struct address_space *mapping = file->f_mapping; 814 815 if (mapping_needs_writeback(mapping)) { 816 err = __filemap_fdatawrite_range(mapping, lstart, lend, 817 WB_SYNC_ALL); 818 /* See comment of filemap_write_and_wait() */ 819 if (err != -EIO) 820 __filemap_fdatawait_range(mapping, lstart, lend); 821 } 822 err2 = file_check_and_advance_wb_err(file); 823 if (!err) 824 err = err2; 825 return err; 826 } 827 EXPORT_SYMBOL(file_write_and_wait_range); 828 829 /** 830 * replace_page_cache_page - replace a pagecache page with a new one 831 * @old: page to be replaced 832 * @new: page to replace with 833 * 834 * This function replaces a page in the pagecache with a new one. On 835 * success it acquires the pagecache reference for the new page and 836 * drops it for the old page. Both the old and new pages must be 837 * locked. This function does not add the new page to the LRU, the 838 * caller must do that. 839 * 840 * The remove + add is atomic. This function cannot fail. 841 */ 842 void replace_page_cache_page(struct page *old, struct page *new) 843 { 844 struct folio *fold = page_folio(old); 845 struct folio *fnew = page_folio(new); 846 struct address_space *mapping = old->mapping; 847 void (*freepage)(struct page *) = mapping->a_ops->freepage; 848 pgoff_t offset = old->index; 849 XA_STATE(xas, &mapping->i_pages, offset); 850 851 VM_BUG_ON_PAGE(!PageLocked(old), old); 852 VM_BUG_ON_PAGE(!PageLocked(new), new); 853 VM_BUG_ON_PAGE(new->mapping, new); 854 855 get_page(new); 856 new->mapping = mapping; 857 new->index = offset; 858 859 mem_cgroup_migrate(fold, fnew); 860 861 xas_lock_irq(&xas); 862 xas_store(&xas, new); 863 864 old->mapping = NULL; 865 /* hugetlb pages do not participate in page cache accounting. */ 866 if (!PageHuge(old)) 867 __dec_lruvec_page_state(old, NR_FILE_PAGES); 868 if (!PageHuge(new)) 869 __inc_lruvec_page_state(new, NR_FILE_PAGES); 870 if (PageSwapBacked(old)) 871 __dec_lruvec_page_state(old, NR_SHMEM); 872 if (PageSwapBacked(new)) 873 __inc_lruvec_page_state(new, NR_SHMEM); 874 xas_unlock_irq(&xas); 875 if (freepage) 876 freepage(old); 877 put_page(old); 878 } 879 EXPORT_SYMBOL_GPL(replace_page_cache_page); 880 881 noinline int __filemap_add_folio(struct address_space *mapping, 882 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp) 883 { 884 XA_STATE(xas, &mapping->i_pages, index); 885 int huge = folio_test_hugetlb(folio); 886 int error; 887 bool charged = false; 888 889 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 890 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio); 891 mapping_set_update(&xas, mapping); 892 893 folio_get(folio); 894 folio->mapping = mapping; 895 folio->index = index; 896 897 if (!huge) { 898 error = mem_cgroup_charge(folio, NULL, gfp); 899 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio); 900 if (error) 901 goto error; 902 charged = true; 903 } 904 905 gfp &= GFP_RECLAIM_MASK; 906 907 do { 908 unsigned int order = xa_get_order(xas.xa, xas.xa_index); 909 void *entry, *old = NULL; 910 911 if (order > folio_order(folio)) 912 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index), 913 order, gfp); 914 xas_lock_irq(&xas); 915 xas_for_each_conflict(&xas, entry) { 916 old = entry; 917 if (!xa_is_value(entry)) { 918 xas_set_err(&xas, -EEXIST); 919 goto unlock; 920 } 921 } 922 923 if (old) { 924 if (shadowp) 925 *shadowp = old; 926 /* entry may have been split before we acquired lock */ 927 order = xa_get_order(xas.xa, xas.xa_index); 928 if (order > folio_order(folio)) { 929 xas_split(&xas, old, order); 930 xas_reset(&xas); 931 } 932 } 933 934 xas_store(&xas, folio); 935 if (xas_error(&xas)) 936 goto unlock; 937 938 mapping->nrpages++; 939 940 /* hugetlb pages do not participate in page cache accounting */ 941 if (!huge) 942 __lruvec_stat_add_folio(folio, NR_FILE_PAGES); 943 unlock: 944 xas_unlock_irq(&xas); 945 } while (xas_nomem(&xas, gfp)); 946 947 if (xas_error(&xas)) { 948 error = xas_error(&xas); 949 if (charged) 950 mem_cgroup_uncharge(folio); 951 goto error; 952 } 953 954 trace_mm_filemap_add_to_page_cache(&folio->page); 955 return 0; 956 error: 957 folio->mapping = NULL; 958 /* Leave page->index set: truncation relies upon it */ 959 folio_put(folio); 960 return error; 961 } 962 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO); 963 964 /** 965 * add_to_page_cache_locked - add a locked page to the pagecache 966 * @page: page to add 967 * @mapping: the page's address_space 968 * @offset: page index 969 * @gfp_mask: page allocation mode 970 * 971 * This function is used to add a page to the pagecache. It must be locked. 972 * This function does not add the page to the LRU. The caller must do that. 973 * 974 * Return: %0 on success, negative error code otherwise. 975 */ 976 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 977 pgoff_t offset, gfp_t gfp_mask) 978 { 979 return __filemap_add_folio(mapping, page_folio(page), offset, 980 gfp_mask, NULL); 981 } 982 EXPORT_SYMBOL(add_to_page_cache_locked); 983 984 int filemap_add_folio(struct address_space *mapping, struct folio *folio, 985 pgoff_t index, gfp_t gfp) 986 { 987 void *shadow = NULL; 988 int ret; 989 990 __folio_set_locked(folio); 991 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow); 992 if (unlikely(ret)) 993 __folio_clear_locked(folio); 994 else { 995 /* 996 * The folio might have been evicted from cache only 997 * recently, in which case it should be activated like 998 * any other repeatedly accessed folio. 999 * The exception is folios getting rewritten; evicting other 1000 * data from the working set, only to cache data that will 1001 * get overwritten with something else, is a waste of memory. 1002 */ 1003 WARN_ON_ONCE(folio_test_active(folio)); 1004 if (!(gfp & __GFP_WRITE) && shadow) 1005 workingset_refault(folio, shadow); 1006 folio_add_lru(folio); 1007 } 1008 return ret; 1009 } 1010 EXPORT_SYMBOL_GPL(filemap_add_folio); 1011 1012 #ifdef CONFIG_NUMA 1013 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order) 1014 { 1015 int n; 1016 struct folio *folio; 1017 1018 if (cpuset_do_page_mem_spread()) { 1019 unsigned int cpuset_mems_cookie; 1020 do { 1021 cpuset_mems_cookie = read_mems_allowed_begin(); 1022 n = cpuset_mem_spread_node(); 1023 folio = __folio_alloc_node(gfp, order, n); 1024 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie)); 1025 1026 return folio; 1027 } 1028 return folio_alloc(gfp, order); 1029 } 1030 EXPORT_SYMBOL(filemap_alloc_folio); 1031 #endif 1032 1033 /* 1034 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings 1035 * 1036 * Lock exclusively invalidate_lock of any passed mapping that is not NULL. 1037 * 1038 * @mapping1: the first mapping to lock 1039 * @mapping2: the second mapping to lock 1040 */ 1041 void filemap_invalidate_lock_two(struct address_space *mapping1, 1042 struct address_space *mapping2) 1043 { 1044 if (mapping1 > mapping2) 1045 swap(mapping1, mapping2); 1046 if (mapping1) 1047 down_write(&mapping1->invalidate_lock); 1048 if (mapping2 && mapping1 != mapping2) 1049 down_write_nested(&mapping2->invalidate_lock, 1); 1050 } 1051 EXPORT_SYMBOL(filemap_invalidate_lock_two); 1052 1053 /* 1054 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings 1055 * 1056 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL. 1057 * 1058 * @mapping1: the first mapping to unlock 1059 * @mapping2: the second mapping to unlock 1060 */ 1061 void filemap_invalidate_unlock_two(struct address_space *mapping1, 1062 struct address_space *mapping2) 1063 { 1064 if (mapping1) 1065 up_write(&mapping1->invalidate_lock); 1066 if (mapping2 && mapping1 != mapping2) 1067 up_write(&mapping2->invalidate_lock); 1068 } 1069 EXPORT_SYMBOL(filemap_invalidate_unlock_two); 1070 1071 /* 1072 * In order to wait for pages to become available there must be 1073 * waitqueues associated with pages. By using a hash table of 1074 * waitqueues where the bucket discipline is to maintain all 1075 * waiters on the same queue and wake all when any of the pages 1076 * become available, and for the woken contexts to check to be 1077 * sure the appropriate page became available, this saves space 1078 * at a cost of "thundering herd" phenomena during rare hash 1079 * collisions. 1080 */ 1081 #define PAGE_WAIT_TABLE_BITS 8 1082 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 1083 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 1084 1085 static wait_queue_head_t *folio_waitqueue(struct folio *folio) 1086 { 1087 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)]; 1088 } 1089 1090 void __init pagecache_init(void) 1091 { 1092 int i; 1093 1094 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 1095 init_waitqueue_head(&folio_wait_table[i]); 1096 1097 page_writeback_init(); 1098 } 1099 1100 /* 1101 * The page wait code treats the "wait->flags" somewhat unusually, because 1102 * we have multiple different kinds of waits, not just the usual "exclusive" 1103 * one. 1104 * 1105 * We have: 1106 * 1107 * (a) no special bits set: 1108 * 1109 * We're just waiting for the bit to be released, and when a waker 1110 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up, 1111 * and remove it from the wait queue. 1112 * 1113 * Simple and straightforward. 1114 * 1115 * (b) WQ_FLAG_EXCLUSIVE: 1116 * 1117 * The waiter is waiting to get the lock, and only one waiter should 1118 * be woken up to avoid any thundering herd behavior. We'll set the 1119 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue. 1120 * 1121 * This is the traditional exclusive wait. 1122 * 1123 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM: 1124 * 1125 * The waiter is waiting to get the bit, and additionally wants the 1126 * lock to be transferred to it for fair lock behavior. If the lock 1127 * cannot be taken, we stop walking the wait queue without waking 1128 * the waiter. 1129 * 1130 * This is the "fair lock handoff" case, and in addition to setting 1131 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see 1132 * that it now has the lock. 1133 */ 1134 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 1135 { 1136 unsigned int flags; 1137 struct wait_page_key *key = arg; 1138 struct wait_page_queue *wait_page 1139 = container_of(wait, struct wait_page_queue, wait); 1140 1141 if (!wake_page_match(wait_page, key)) 1142 return 0; 1143 1144 /* 1145 * If it's a lock handoff wait, we get the bit for it, and 1146 * stop walking (and do not wake it up) if we can't. 1147 */ 1148 flags = wait->flags; 1149 if (flags & WQ_FLAG_EXCLUSIVE) { 1150 if (test_bit(key->bit_nr, &key->folio->flags)) 1151 return -1; 1152 if (flags & WQ_FLAG_CUSTOM) { 1153 if (test_and_set_bit(key->bit_nr, &key->folio->flags)) 1154 return -1; 1155 flags |= WQ_FLAG_DONE; 1156 } 1157 } 1158 1159 /* 1160 * We are holding the wait-queue lock, but the waiter that 1161 * is waiting for this will be checking the flags without 1162 * any locking. 1163 * 1164 * So update the flags atomically, and wake up the waiter 1165 * afterwards to avoid any races. This store-release pairs 1166 * with the load-acquire in folio_wait_bit_common(). 1167 */ 1168 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN); 1169 wake_up_state(wait->private, mode); 1170 1171 /* 1172 * Ok, we have successfully done what we're waiting for, 1173 * and we can unconditionally remove the wait entry. 1174 * 1175 * Note that this pairs with the "finish_wait()" in the 1176 * waiter, and has to be the absolute last thing we do. 1177 * After this list_del_init(&wait->entry) the wait entry 1178 * might be de-allocated and the process might even have 1179 * exited. 1180 */ 1181 list_del_init_careful(&wait->entry); 1182 return (flags & WQ_FLAG_EXCLUSIVE) != 0; 1183 } 1184 1185 static void folio_wake_bit(struct folio *folio, int bit_nr) 1186 { 1187 wait_queue_head_t *q = folio_waitqueue(folio); 1188 struct wait_page_key key; 1189 unsigned long flags; 1190 wait_queue_entry_t bookmark; 1191 1192 key.folio = folio; 1193 key.bit_nr = bit_nr; 1194 key.page_match = 0; 1195 1196 bookmark.flags = 0; 1197 bookmark.private = NULL; 1198 bookmark.func = NULL; 1199 INIT_LIST_HEAD(&bookmark.entry); 1200 1201 spin_lock_irqsave(&q->lock, flags); 1202 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1203 1204 while (bookmark.flags & WQ_FLAG_BOOKMARK) { 1205 /* 1206 * Take a breather from holding the lock, 1207 * allow pages that finish wake up asynchronously 1208 * to acquire the lock and remove themselves 1209 * from wait queue 1210 */ 1211 spin_unlock_irqrestore(&q->lock, flags); 1212 cpu_relax(); 1213 spin_lock_irqsave(&q->lock, flags); 1214 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1215 } 1216 1217 /* 1218 * It is possible for other pages to have collided on the waitqueue 1219 * hash, so in that case check for a page match. That prevents a long- 1220 * term waiter 1221 * 1222 * It is still possible to miss a case here, when we woke page waiters 1223 * and removed them from the waitqueue, but there are still other 1224 * page waiters. 1225 */ 1226 if (!waitqueue_active(q) || !key.page_match) { 1227 folio_clear_waiters(folio); 1228 /* 1229 * It's possible to miss clearing Waiters here, when we woke 1230 * our page waiters, but the hashed waitqueue has waiters for 1231 * other pages on it. 1232 * 1233 * That's okay, it's a rare case. The next waker will clear it. 1234 */ 1235 } 1236 spin_unlock_irqrestore(&q->lock, flags); 1237 } 1238 1239 static void folio_wake(struct folio *folio, int bit) 1240 { 1241 if (!folio_test_waiters(folio)) 1242 return; 1243 folio_wake_bit(folio, bit); 1244 } 1245 1246 /* 1247 * A choice of three behaviors for folio_wait_bit_common(): 1248 */ 1249 enum behavior { 1250 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1251 * __folio_lock() waiting on then setting PG_locked. 1252 */ 1253 SHARED, /* Hold ref to page and check the bit when woken, like 1254 * wait_on_page_writeback() waiting on PG_writeback. 1255 */ 1256 DROP, /* Drop ref to page before wait, no check when woken, 1257 * like put_and_wait_on_page_locked() on PG_locked. 1258 */ 1259 }; 1260 1261 /* 1262 * Attempt to check (or get) the folio flag, and mark us done 1263 * if successful. 1264 */ 1265 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr, 1266 struct wait_queue_entry *wait) 1267 { 1268 if (wait->flags & WQ_FLAG_EXCLUSIVE) { 1269 if (test_and_set_bit(bit_nr, &folio->flags)) 1270 return false; 1271 } else if (test_bit(bit_nr, &folio->flags)) 1272 return false; 1273 1274 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE; 1275 return true; 1276 } 1277 1278 /* How many times do we accept lock stealing from under a waiter? */ 1279 int sysctl_page_lock_unfairness = 5; 1280 1281 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr, 1282 int state, enum behavior behavior) 1283 { 1284 wait_queue_head_t *q = folio_waitqueue(folio); 1285 int unfairness = sysctl_page_lock_unfairness; 1286 struct wait_page_queue wait_page; 1287 wait_queue_entry_t *wait = &wait_page.wait; 1288 bool thrashing = false; 1289 bool delayacct = false; 1290 unsigned long pflags; 1291 1292 if (bit_nr == PG_locked && 1293 !folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1294 if (!folio_test_swapbacked(folio)) { 1295 delayacct_thrashing_start(); 1296 delayacct = true; 1297 } 1298 psi_memstall_enter(&pflags); 1299 thrashing = true; 1300 } 1301 1302 init_wait(wait); 1303 wait->func = wake_page_function; 1304 wait_page.folio = folio; 1305 wait_page.bit_nr = bit_nr; 1306 1307 repeat: 1308 wait->flags = 0; 1309 if (behavior == EXCLUSIVE) { 1310 wait->flags = WQ_FLAG_EXCLUSIVE; 1311 if (--unfairness < 0) 1312 wait->flags |= WQ_FLAG_CUSTOM; 1313 } 1314 1315 /* 1316 * Do one last check whether we can get the 1317 * page bit synchronously. 1318 * 1319 * Do the folio_set_waiters() marking before that 1320 * to let any waker we _just_ missed know they 1321 * need to wake us up (otherwise they'll never 1322 * even go to the slow case that looks at the 1323 * page queue), and add ourselves to the wait 1324 * queue if we need to sleep. 1325 * 1326 * This part needs to be done under the queue 1327 * lock to avoid races. 1328 */ 1329 spin_lock_irq(&q->lock); 1330 folio_set_waiters(folio); 1331 if (!folio_trylock_flag(folio, bit_nr, wait)) 1332 __add_wait_queue_entry_tail(q, wait); 1333 spin_unlock_irq(&q->lock); 1334 1335 /* 1336 * From now on, all the logic will be based on 1337 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to 1338 * see whether the page bit testing has already 1339 * been done by the wake function. 1340 * 1341 * We can drop our reference to the folio. 1342 */ 1343 if (behavior == DROP) 1344 folio_put(folio); 1345 1346 /* 1347 * Note that until the "finish_wait()", or until 1348 * we see the WQ_FLAG_WOKEN flag, we need to 1349 * be very careful with the 'wait->flags', because 1350 * we may race with a waker that sets them. 1351 */ 1352 for (;;) { 1353 unsigned int flags; 1354 1355 set_current_state(state); 1356 1357 /* Loop until we've been woken or interrupted */ 1358 flags = smp_load_acquire(&wait->flags); 1359 if (!(flags & WQ_FLAG_WOKEN)) { 1360 if (signal_pending_state(state, current)) 1361 break; 1362 1363 io_schedule(); 1364 continue; 1365 } 1366 1367 /* If we were non-exclusive, we're done */ 1368 if (behavior != EXCLUSIVE) 1369 break; 1370 1371 /* If the waker got the lock for us, we're done */ 1372 if (flags & WQ_FLAG_DONE) 1373 break; 1374 1375 /* 1376 * Otherwise, if we're getting the lock, we need to 1377 * try to get it ourselves. 1378 * 1379 * And if that fails, we'll have to retry this all. 1380 */ 1381 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0)))) 1382 goto repeat; 1383 1384 wait->flags |= WQ_FLAG_DONE; 1385 break; 1386 } 1387 1388 /* 1389 * If a signal happened, this 'finish_wait()' may remove the last 1390 * waiter from the wait-queues, but the folio waiters bit will remain 1391 * set. That's ok. The next wakeup will take care of it, and trying 1392 * to do it here would be difficult and prone to races. 1393 */ 1394 finish_wait(q, wait); 1395 1396 if (thrashing) { 1397 if (delayacct) 1398 delayacct_thrashing_end(); 1399 psi_memstall_leave(&pflags); 1400 } 1401 1402 /* 1403 * NOTE! The wait->flags weren't stable until we've done the 1404 * 'finish_wait()', and we could have exited the loop above due 1405 * to a signal, and had a wakeup event happen after the signal 1406 * test but before the 'finish_wait()'. 1407 * 1408 * So only after the finish_wait() can we reliably determine 1409 * if we got woken up or not, so we can now figure out the final 1410 * return value based on that state without races. 1411 * 1412 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive 1413 * waiter, but an exclusive one requires WQ_FLAG_DONE. 1414 */ 1415 if (behavior == EXCLUSIVE) 1416 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR; 1417 1418 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR; 1419 } 1420 1421 void folio_wait_bit(struct folio *folio, int bit_nr) 1422 { 1423 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1424 } 1425 EXPORT_SYMBOL(folio_wait_bit); 1426 1427 int folio_wait_bit_killable(struct folio *folio, int bit_nr) 1428 { 1429 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED); 1430 } 1431 EXPORT_SYMBOL(folio_wait_bit_killable); 1432 1433 /** 1434 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked 1435 * @page: The page to wait for. 1436 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc). 1437 * 1438 * The caller should hold a reference on @page. They expect the page to 1439 * become unlocked relatively soon, but do not wish to hold up migration 1440 * (for example) by holding the reference while waiting for the page to 1441 * come unlocked. After this function returns, the caller should not 1442 * dereference @page. 1443 * 1444 * Return: 0 if the page was unlocked or -EINTR if interrupted by a signal. 1445 */ 1446 int put_and_wait_on_page_locked(struct page *page, int state) 1447 { 1448 return folio_wait_bit_common(page_folio(page), PG_locked, state, 1449 DROP); 1450 } 1451 1452 /** 1453 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue 1454 * @folio: Folio defining the wait queue of interest 1455 * @waiter: Waiter to add to the queue 1456 * 1457 * Add an arbitrary @waiter to the wait queue for the nominated @folio. 1458 */ 1459 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter) 1460 { 1461 wait_queue_head_t *q = folio_waitqueue(folio); 1462 unsigned long flags; 1463 1464 spin_lock_irqsave(&q->lock, flags); 1465 __add_wait_queue_entry_tail(q, waiter); 1466 folio_set_waiters(folio); 1467 spin_unlock_irqrestore(&q->lock, flags); 1468 } 1469 EXPORT_SYMBOL_GPL(folio_add_wait_queue); 1470 1471 #ifndef clear_bit_unlock_is_negative_byte 1472 1473 /* 1474 * PG_waiters is the high bit in the same byte as PG_lock. 1475 * 1476 * On x86 (and on many other architectures), we can clear PG_lock and 1477 * test the sign bit at the same time. But if the architecture does 1478 * not support that special operation, we just do this all by hand 1479 * instead. 1480 * 1481 * The read of PG_waiters has to be after (or concurrently with) PG_locked 1482 * being cleared, but a memory barrier should be unnecessary since it is 1483 * in the same byte as PG_locked. 1484 */ 1485 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) 1486 { 1487 clear_bit_unlock(nr, mem); 1488 /* smp_mb__after_atomic(); */ 1489 return test_bit(PG_waiters, mem); 1490 } 1491 1492 #endif 1493 1494 /** 1495 * folio_unlock - Unlock a locked folio. 1496 * @folio: The folio. 1497 * 1498 * Unlocks the folio and wakes up any thread sleeping on the page lock. 1499 * 1500 * Context: May be called from interrupt or process context. May not be 1501 * called from NMI context. 1502 */ 1503 void folio_unlock(struct folio *folio) 1504 { 1505 /* Bit 7 allows x86 to check the byte's sign bit */ 1506 BUILD_BUG_ON(PG_waiters != 7); 1507 BUILD_BUG_ON(PG_locked > 7); 1508 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1509 if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0))) 1510 folio_wake_bit(folio, PG_locked); 1511 } 1512 EXPORT_SYMBOL(folio_unlock); 1513 1514 /** 1515 * folio_end_private_2 - Clear PG_private_2 and wake any waiters. 1516 * @folio: The folio. 1517 * 1518 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for 1519 * it. The folio reference held for PG_private_2 being set is released. 1520 * 1521 * This is, for example, used when a netfs folio is being written to a local 1522 * disk cache, thereby allowing writes to the cache for the same folio to be 1523 * serialised. 1524 */ 1525 void folio_end_private_2(struct folio *folio) 1526 { 1527 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio); 1528 clear_bit_unlock(PG_private_2, folio_flags(folio, 0)); 1529 folio_wake_bit(folio, PG_private_2); 1530 folio_put(folio); 1531 } 1532 EXPORT_SYMBOL(folio_end_private_2); 1533 1534 /** 1535 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio. 1536 * @folio: The folio to wait on. 1537 * 1538 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio. 1539 */ 1540 void folio_wait_private_2(struct folio *folio) 1541 { 1542 while (folio_test_private_2(folio)) 1543 folio_wait_bit(folio, PG_private_2); 1544 } 1545 EXPORT_SYMBOL(folio_wait_private_2); 1546 1547 /** 1548 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio. 1549 * @folio: The folio to wait on. 1550 * 1551 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a 1552 * fatal signal is received by the calling task. 1553 * 1554 * Return: 1555 * - 0 if successful. 1556 * - -EINTR if a fatal signal was encountered. 1557 */ 1558 int folio_wait_private_2_killable(struct folio *folio) 1559 { 1560 int ret = 0; 1561 1562 while (folio_test_private_2(folio)) { 1563 ret = folio_wait_bit_killable(folio, PG_private_2); 1564 if (ret < 0) 1565 break; 1566 } 1567 1568 return ret; 1569 } 1570 EXPORT_SYMBOL(folio_wait_private_2_killable); 1571 1572 /** 1573 * folio_end_writeback - End writeback against a folio. 1574 * @folio: The folio. 1575 */ 1576 void folio_end_writeback(struct folio *folio) 1577 { 1578 /* 1579 * folio_test_clear_reclaim() could be used here but it is an 1580 * atomic operation and overkill in this particular case. Failing 1581 * to shuffle a folio marked for immediate reclaim is too mild 1582 * a gain to justify taking an atomic operation penalty at the 1583 * end of every folio writeback. 1584 */ 1585 if (folio_test_reclaim(folio)) { 1586 folio_clear_reclaim(folio); 1587 folio_rotate_reclaimable(folio); 1588 } 1589 1590 /* 1591 * Writeback does not hold a folio reference of its own, relying 1592 * on truncation to wait for the clearing of PG_writeback. 1593 * But here we must make sure that the folio is not freed and 1594 * reused before the folio_wake(). 1595 */ 1596 folio_get(folio); 1597 if (!__folio_end_writeback(folio)) 1598 BUG(); 1599 1600 smp_mb__after_atomic(); 1601 folio_wake(folio, PG_writeback); 1602 acct_reclaim_writeback(folio); 1603 folio_put(folio); 1604 } 1605 EXPORT_SYMBOL(folio_end_writeback); 1606 1607 /* 1608 * After completing I/O on a page, call this routine to update the page 1609 * flags appropriately 1610 */ 1611 void page_endio(struct page *page, bool is_write, int err) 1612 { 1613 if (!is_write) { 1614 if (!err) { 1615 SetPageUptodate(page); 1616 } else { 1617 ClearPageUptodate(page); 1618 SetPageError(page); 1619 } 1620 unlock_page(page); 1621 } else { 1622 if (err) { 1623 struct address_space *mapping; 1624 1625 SetPageError(page); 1626 mapping = page_mapping(page); 1627 if (mapping) 1628 mapping_set_error(mapping, err); 1629 } 1630 end_page_writeback(page); 1631 } 1632 } 1633 EXPORT_SYMBOL_GPL(page_endio); 1634 1635 /** 1636 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it. 1637 * @folio: The folio to lock 1638 */ 1639 void __folio_lock(struct folio *folio) 1640 { 1641 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE, 1642 EXCLUSIVE); 1643 } 1644 EXPORT_SYMBOL(__folio_lock); 1645 1646 int __folio_lock_killable(struct folio *folio) 1647 { 1648 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE, 1649 EXCLUSIVE); 1650 } 1651 EXPORT_SYMBOL_GPL(__folio_lock_killable); 1652 1653 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait) 1654 { 1655 struct wait_queue_head *q = folio_waitqueue(folio); 1656 int ret = 0; 1657 1658 wait->folio = folio; 1659 wait->bit_nr = PG_locked; 1660 1661 spin_lock_irq(&q->lock); 1662 __add_wait_queue_entry_tail(q, &wait->wait); 1663 folio_set_waiters(folio); 1664 ret = !folio_trylock(folio); 1665 /* 1666 * If we were successful now, we know we're still on the 1667 * waitqueue as we're still under the lock. This means it's 1668 * safe to remove and return success, we know the callback 1669 * isn't going to trigger. 1670 */ 1671 if (!ret) 1672 __remove_wait_queue(q, &wait->wait); 1673 else 1674 ret = -EIOCBQUEUED; 1675 spin_unlock_irq(&q->lock); 1676 return ret; 1677 } 1678 1679 /* 1680 * Return values: 1681 * true - folio is locked; mmap_lock is still held. 1682 * false - folio is not locked. 1683 * mmap_lock has been released (mmap_read_unlock(), unless flags had both 1684 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 1685 * which case mmap_lock is still held. 1686 * 1687 * If neither ALLOW_RETRY nor KILLABLE are set, will always return true 1688 * with the folio locked and the mmap_lock unperturbed. 1689 */ 1690 bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm, 1691 unsigned int flags) 1692 { 1693 if (fault_flag_allow_retry_first(flags)) { 1694 /* 1695 * CAUTION! In this case, mmap_lock is not released 1696 * even though return 0. 1697 */ 1698 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1699 return false; 1700 1701 mmap_read_unlock(mm); 1702 if (flags & FAULT_FLAG_KILLABLE) 1703 folio_wait_locked_killable(folio); 1704 else 1705 folio_wait_locked(folio); 1706 return false; 1707 } 1708 if (flags & FAULT_FLAG_KILLABLE) { 1709 bool ret; 1710 1711 ret = __folio_lock_killable(folio); 1712 if (ret) { 1713 mmap_read_unlock(mm); 1714 return false; 1715 } 1716 } else { 1717 __folio_lock(folio); 1718 } 1719 1720 return true; 1721 } 1722 1723 /** 1724 * page_cache_next_miss() - Find the next gap in the page cache. 1725 * @mapping: Mapping. 1726 * @index: Index. 1727 * @max_scan: Maximum range to search. 1728 * 1729 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1730 * gap with the lowest index. 1731 * 1732 * This function may be called under the rcu_read_lock. However, this will 1733 * not atomically search a snapshot of the cache at a single point in time. 1734 * For example, if a gap is created at index 5, then subsequently a gap is 1735 * created at index 10, page_cache_next_miss covering both indices may 1736 * return 10 if called under the rcu_read_lock. 1737 * 1738 * Return: The index of the gap if found, otherwise an index outside the 1739 * range specified (in which case 'return - index >= max_scan' will be true). 1740 * In the rare case of index wrap-around, 0 will be returned. 1741 */ 1742 pgoff_t page_cache_next_miss(struct address_space *mapping, 1743 pgoff_t index, unsigned long max_scan) 1744 { 1745 XA_STATE(xas, &mapping->i_pages, index); 1746 1747 while (max_scan--) { 1748 void *entry = xas_next(&xas); 1749 if (!entry || xa_is_value(entry)) 1750 break; 1751 if (xas.xa_index == 0) 1752 break; 1753 } 1754 1755 return xas.xa_index; 1756 } 1757 EXPORT_SYMBOL(page_cache_next_miss); 1758 1759 /** 1760 * page_cache_prev_miss() - Find the previous gap in the page cache. 1761 * @mapping: Mapping. 1762 * @index: Index. 1763 * @max_scan: Maximum range to search. 1764 * 1765 * Search the range [max(index - max_scan + 1, 0), index] for the 1766 * gap with the highest index. 1767 * 1768 * This function may be called under the rcu_read_lock. However, this will 1769 * not atomically search a snapshot of the cache at a single point in time. 1770 * For example, if a gap is created at index 10, then subsequently a gap is 1771 * created at index 5, page_cache_prev_miss() covering both indices may 1772 * return 5 if called under the rcu_read_lock. 1773 * 1774 * Return: The index of the gap if found, otherwise an index outside the 1775 * range specified (in which case 'index - return >= max_scan' will be true). 1776 * In the rare case of wrap-around, ULONG_MAX will be returned. 1777 */ 1778 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1779 pgoff_t index, unsigned long max_scan) 1780 { 1781 XA_STATE(xas, &mapping->i_pages, index); 1782 1783 while (max_scan--) { 1784 void *entry = xas_prev(&xas); 1785 if (!entry || xa_is_value(entry)) 1786 break; 1787 if (xas.xa_index == ULONG_MAX) 1788 break; 1789 } 1790 1791 return xas.xa_index; 1792 } 1793 EXPORT_SYMBOL(page_cache_prev_miss); 1794 1795 /* 1796 * Lockless page cache protocol: 1797 * On the lookup side: 1798 * 1. Load the folio from i_pages 1799 * 2. Increment the refcount if it's not zero 1800 * 3. If the folio is not found by xas_reload(), put the refcount and retry 1801 * 1802 * On the removal side: 1803 * A. Freeze the page (by zeroing the refcount if nobody else has a reference) 1804 * B. Remove the page from i_pages 1805 * C. Return the page to the page allocator 1806 * 1807 * This means that any page may have its reference count temporarily 1808 * increased by a speculative page cache (or fast GUP) lookup as it can 1809 * be allocated by another user before the RCU grace period expires. 1810 * Because the refcount temporarily acquired here may end up being the 1811 * last refcount on the page, any page allocation must be freeable by 1812 * folio_put(). 1813 */ 1814 1815 /* 1816 * mapping_get_entry - Get a page cache entry. 1817 * @mapping: the address_space to search 1818 * @index: The page cache index. 1819 * 1820 * Looks up the page cache entry at @mapping & @index. If it is a folio, 1821 * it is returned with an increased refcount. If it is a shadow entry 1822 * of a previously evicted folio, or a swap entry from shmem/tmpfs, 1823 * it is returned without further action. 1824 * 1825 * Return: The folio, swap or shadow entry, %NULL if nothing is found. 1826 */ 1827 static void *mapping_get_entry(struct address_space *mapping, pgoff_t index) 1828 { 1829 XA_STATE(xas, &mapping->i_pages, index); 1830 struct folio *folio; 1831 1832 rcu_read_lock(); 1833 repeat: 1834 xas_reset(&xas); 1835 folio = xas_load(&xas); 1836 if (xas_retry(&xas, folio)) 1837 goto repeat; 1838 /* 1839 * A shadow entry of a recently evicted page, or a swap entry from 1840 * shmem/tmpfs. Return it without attempting to raise page count. 1841 */ 1842 if (!folio || xa_is_value(folio)) 1843 goto out; 1844 1845 if (!folio_try_get_rcu(folio)) 1846 goto repeat; 1847 1848 if (unlikely(folio != xas_reload(&xas))) { 1849 folio_put(folio); 1850 goto repeat; 1851 } 1852 out: 1853 rcu_read_unlock(); 1854 1855 return folio; 1856 } 1857 1858 /** 1859 * __filemap_get_folio - Find and get a reference to a folio. 1860 * @mapping: The address_space to search. 1861 * @index: The page index. 1862 * @fgp_flags: %FGP flags modify how the folio is returned. 1863 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified. 1864 * 1865 * Looks up the page cache entry at @mapping & @index. 1866 * 1867 * @fgp_flags can be zero or more of these flags: 1868 * 1869 * * %FGP_ACCESSED - The folio will be marked accessed. 1870 * * %FGP_LOCK - The folio is returned locked. 1871 * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it 1872 * instead of allocating a new folio to replace it. 1873 * * %FGP_CREAT - If no page is present then a new page is allocated using 1874 * @gfp and added to the page cache and the VM's LRU list. 1875 * The page is returned locked and with an increased refcount. 1876 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the 1877 * page is already in cache. If the page was allocated, unlock it before 1878 * returning so the caller can do the same dance. 1879 * * %FGP_WRITE - The page will be written to by the caller. 1880 * * %FGP_NOFS - __GFP_FS will get cleared in gfp. 1881 * * %FGP_NOWAIT - Don't get blocked by page lock. 1882 * * %FGP_STABLE - Wait for the folio to be stable (finished writeback) 1883 * 1884 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even 1885 * if the %GFP flags specified for %FGP_CREAT are atomic. 1886 * 1887 * If there is a page cache page, it is returned with an increased refcount. 1888 * 1889 * Return: The found folio or %NULL otherwise. 1890 */ 1891 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index, 1892 int fgp_flags, gfp_t gfp) 1893 { 1894 struct folio *folio; 1895 1896 repeat: 1897 folio = mapping_get_entry(mapping, index); 1898 if (xa_is_value(folio)) { 1899 if (fgp_flags & FGP_ENTRY) 1900 return folio; 1901 folio = NULL; 1902 } 1903 if (!folio) 1904 goto no_page; 1905 1906 if (fgp_flags & FGP_LOCK) { 1907 if (fgp_flags & FGP_NOWAIT) { 1908 if (!folio_trylock(folio)) { 1909 folio_put(folio); 1910 return NULL; 1911 } 1912 } else { 1913 folio_lock(folio); 1914 } 1915 1916 /* Has the page been truncated? */ 1917 if (unlikely(folio->mapping != mapping)) { 1918 folio_unlock(folio); 1919 folio_put(folio); 1920 goto repeat; 1921 } 1922 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 1923 } 1924 1925 if (fgp_flags & FGP_ACCESSED) 1926 folio_mark_accessed(folio); 1927 else if (fgp_flags & FGP_WRITE) { 1928 /* Clear idle flag for buffer write */ 1929 if (folio_test_idle(folio)) 1930 folio_clear_idle(folio); 1931 } 1932 1933 if (fgp_flags & FGP_STABLE) 1934 folio_wait_stable(folio); 1935 no_page: 1936 if (!folio && (fgp_flags & FGP_CREAT)) { 1937 int err; 1938 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping)) 1939 gfp |= __GFP_WRITE; 1940 if (fgp_flags & FGP_NOFS) 1941 gfp &= ~__GFP_FS; 1942 1943 folio = filemap_alloc_folio(gfp, 0); 1944 if (!folio) 1945 return NULL; 1946 1947 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 1948 fgp_flags |= FGP_LOCK; 1949 1950 /* Init accessed so avoid atomic mark_page_accessed later */ 1951 if (fgp_flags & FGP_ACCESSED) 1952 __folio_set_referenced(folio); 1953 1954 err = filemap_add_folio(mapping, folio, index, gfp); 1955 if (unlikely(err)) { 1956 folio_put(folio); 1957 folio = NULL; 1958 if (err == -EEXIST) 1959 goto repeat; 1960 } 1961 1962 /* 1963 * filemap_add_folio locks the page, and for mmap 1964 * we expect an unlocked page. 1965 */ 1966 if (folio && (fgp_flags & FGP_FOR_MMAP)) 1967 folio_unlock(folio); 1968 } 1969 1970 return folio; 1971 } 1972 EXPORT_SYMBOL(__filemap_get_folio); 1973 1974 static inline struct page *find_get_entry(struct xa_state *xas, pgoff_t max, 1975 xa_mark_t mark) 1976 { 1977 struct page *page; 1978 1979 retry: 1980 if (mark == XA_PRESENT) 1981 page = xas_find(xas, max); 1982 else 1983 page = xas_find_marked(xas, max, mark); 1984 1985 if (xas_retry(xas, page)) 1986 goto retry; 1987 /* 1988 * A shadow entry of a recently evicted page, a swap 1989 * entry from shmem/tmpfs or a DAX entry. Return it 1990 * without attempting to raise page count. 1991 */ 1992 if (!page || xa_is_value(page)) 1993 return page; 1994 1995 if (!page_cache_get_speculative(page)) 1996 goto reset; 1997 1998 /* Has the page moved or been split? */ 1999 if (unlikely(page != xas_reload(xas))) { 2000 put_page(page); 2001 goto reset; 2002 } 2003 2004 return page; 2005 reset: 2006 xas_reset(xas); 2007 goto retry; 2008 } 2009 2010 /** 2011 * find_get_entries - gang pagecache lookup 2012 * @mapping: The address_space to search 2013 * @start: The starting page cache index 2014 * @end: The final page index (inclusive). 2015 * @pvec: Where the resulting entries are placed. 2016 * @indices: The cache indices corresponding to the entries in @entries 2017 * 2018 * find_get_entries() will search for and return a batch of entries in 2019 * the mapping. The entries are placed in @pvec. find_get_entries() 2020 * takes a reference on any actual pages it returns. 2021 * 2022 * The search returns a group of mapping-contiguous page cache entries 2023 * with ascending indexes. There may be holes in the indices due to 2024 * not-present pages. 2025 * 2026 * Any shadow entries of evicted pages, or swap entries from 2027 * shmem/tmpfs, are included in the returned array. 2028 * 2029 * If it finds a Transparent Huge Page, head or tail, find_get_entries() 2030 * stops at that page: the caller is likely to have a better way to handle 2031 * the compound page as a whole, and then skip its extent, than repeatedly 2032 * calling find_get_entries() to return all its tails. 2033 * 2034 * Return: the number of pages and shadow entries which were found. 2035 */ 2036 unsigned find_get_entries(struct address_space *mapping, pgoff_t start, 2037 pgoff_t end, struct pagevec *pvec, pgoff_t *indices) 2038 { 2039 XA_STATE(xas, &mapping->i_pages, start); 2040 struct page *page; 2041 unsigned int ret = 0; 2042 unsigned nr_entries = PAGEVEC_SIZE; 2043 2044 rcu_read_lock(); 2045 while ((page = find_get_entry(&xas, end, XA_PRESENT))) { 2046 /* 2047 * Terminate early on finding a THP, to allow the caller to 2048 * handle it all at once; but continue if this is hugetlbfs. 2049 */ 2050 if (!xa_is_value(page) && PageTransHuge(page) && 2051 !PageHuge(page)) { 2052 page = find_subpage(page, xas.xa_index); 2053 nr_entries = ret + 1; 2054 } 2055 2056 indices[ret] = xas.xa_index; 2057 pvec->pages[ret] = page; 2058 if (++ret == nr_entries) 2059 break; 2060 } 2061 rcu_read_unlock(); 2062 2063 pvec->nr = ret; 2064 return ret; 2065 } 2066 2067 /** 2068 * find_lock_entries - Find a batch of pagecache entries. 2069 * @mapping: The address_space to search. 2070 * @start: The starting page cache index. 2071 * @end: The final page index (inclusive). 2072 * @pvec: Where the resulting entries are placed. 2073 * @indices: The cache indices of the entries in @pvec. 2074 * 2075 * find_lock_entries() will return a batch of entries from @mapping. 2076 * Swap, shadow and DAX entries are included. Pages are returned 2077 * locked and with an incremented refcount. Pages which are locked by 2078 * somebody else or under writeback are skipped. Only the head page of 2079 * a THP is returned. Pages which are partially outside the range are 2080 * not returned. 2081 * 2082 * The entries have ascending indexes. The indices may not be consecutive 2083 * due to not-present entries, THP pages, pages which could not be locked 2084 * or pages under writeback. 2085 * 2086 * Return: The number of entries which were found. 2087 */ 2088 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start, 2089 pgoff_t end, struct pagevec *pvec, pgoff_t *indices) 2090 { 2091 XA_STATE(xas, &mapping->i_pages, start); 2092 struct page *page; 2093 2094 rcu_read_lock(); 2095 while ((page = find_get_entry(&xas, end, XA_PRESENT))) { 2096 if (!xa_is_value(page)) { 2097 if (page->index < start) 2098 goto put; 2099 if (page->index + thp_nr_pages(page) - 1 > end) 2100 goto put; 2101 if (!trylock_page(page)) 2102 goto put; 2103 if (page->mapping != mapping || PageWriteback(page)) 2104 goto unlock; 2105 VM_BUG_ON_PAGE(!thp_contains(page, xas.xa_index), 2106 page); 2107 } 2108 indices[pvec->nr] = xas.xa_index; 2109 if (!pagevec_add(pvec, page)) 2110 break; 2111 goto next; 2112 unlock: 2113 unlock_page(page); 2114 put: 2115 put_page(page); 2116 next: 2117 if (!xa_is_value(page) && PageTransHuge(page)) { 2118 unsigned int nr_pages = thp_nr_pages(page); 2119 2120 /* Final THP may cross MAX_LFS_FILESIZE on 32-bit */ 2121 xas_set(&xas, page->index + nr_pages); 2122 if (xas.xa_index < nr_pages) 2123 break; 2124 } 2125 } 2126 rcu_read_unlock(); 2127 2128 return pagevec_count(pvec); 2129 } 2130 2131 /** 2132 * find_get_pages_range - gang pagecache lookup 2133 * @mapping: The address_space to search 2134 * @start: The starting page index 2135 * @end: The final page index (inclusive) 2136 * @nr_pages: The maximum number of pages 2137 * @pages: Where the resulting pages are placed 2138 * 2139 * find_get_pages_range() will search for and return a group of up to @nr_pages 2140 * pages in the mapping starting at index @start and up to index @end 2141 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes 2142 * a reference against the returned pages. 2143 * 2144 * The search returns a group of mapping-contiguous pages with ascending 2145 * indexes. There may be holes in the indices due to not-present pages. 2146 * We also update @start to index the next page for the traversal. 2147 * 2148 * Return: the number of pages which were found. If this number is 2149 * smaller than @nr_pages, the end of specified range has been 2150 * reached. 2151 */ 2152 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, 2153 pgoff_t end, unsigned int nr_pages, 2154 struct page **pages) 2155 { 2156 XA_STATE(xas, &mapping->i_pages, *start); 2157 struct page *page; 2158 unsigned ret = 0; 2159 2160 if (unlikely(!nr_pages)) 2161 return 0; 2162 2163 rcu_read_lock(); 2164 while ((page = find_get_entry(&xas, end, XA_PRESENT))) { 2165 /* Skip over shadow, swap and DAX entries */ 2166 if (xa_is_value(page)) 2167 continue; 2168 2169 pages[ret] = find_subpage(page, xas.xa_index); 2170 if (++ret == nr_pages) { 2171 *start = xas.xa_index + 1; 2172 goto out; 2173 } 2174 } 2175 2176 /* 2177 * We come here when there is no page beyond @end. We take care to not 2178 * overflow the index @start as it confuses some of the callers. This 2179 * breaks the iteration when there is a page at index -1 but that is 2180 * already broken anyway. 2181 */ 2182 if (end == (pgoff_t)-1) 2183 *start = (pgoff_t)-1; 2184 else 2185 *start = end + 1; 2186 out: 2187 rcu_read_unlock(); 2188 2189 return ret; 2190 } 2191 2192 /** 2193 * find_get_pages_contig - gang contiguous pagecache lookup 2194 * @mapping: The address_space to search 2195 * @index: The starting page index 2196 * @nr_pages: The maximum number of pages 2197 * @pages: Where the resulting pages are placed 2198 * 2199 * find_get_pages_contig() works exactly like find_get_pages(), except 2200 * that the returned number of pages are guaranteed to be contiguous. 2201 * 2202 * Return: the number of pages which were found. 2203 */ 2204 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 2205 unsigned int nr_pages, struct page **pages) 2206 { 2207 XA_STATE(xas, &mapping->i_pages, index); 2208 struct page *page; 2209 unsigned int ret = 0; 2210 2211 if (unlikely(!nr_pages)) 2212 return 0; 2213 2214 rcu_read_lock(); 2215 for (page = xas_load(&xas); page; page = xas_next(&xas)) { 2216 if (xas_retry(&xas, page)) 2217 continue; 2218 /* 2219 * If the entry has been swapped out, we can stop looking. 2220 * No current caller is looking for DAX entries. 2221 */ 2222 if (xa_is_value(page)) 2223 break; 2224 2225 if (!page_cache_get_speculative(page)) 2226 goto retry; 2227 2228 /* Has the page moved or been split? */ 2229 if (unlikely(page != xas_reload(&xas))) 2230 goto put_page; 2231 2232 pages[ret] = find_subpage(page, xas.xa_index); 2233 if (++ret == nr_pages) 2234 break; 2235 continue; 2236 put_page: 2237 put_page(page); 2238 retry: 2239 xas_reset(&xas); 2240 } 2241 rcu_read_unlock(); 2242 return ret; 2243 } 2244 EXPORT_SYMBOL(find_get_pages_contig); 2245 2246 /** 2247 * find_get_pages_range_tag - Find and return head pages matching @tag. 2248 * @mapping: the address_space to search 2249 * @index: the starting page index 2250 * @end: The final page index (inclusive) 2251 * @tag: the tag index 2252 * @nr_pages: the maximum number of pages 2253 * @pages: where the resulting pages are placed 2254 * 2255 * Like find_get_pages(), except we only return head pages which are tagged 2256 * with @tag. @index is updated to the index immediately after the last 2257 * page we return, ready for the next iteration. 2258 * 2259 * Return: the number of pages which were found. 2260 */ 2261 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, 2262 pgoff_t end, xa_mark_t tag, unsigned int nr_pages, 2263 struct page **pages) 2264 { 2265 XA_STATE(xas, &mapping->i_pages, *index); 2266 struct page *page; 2267 unsigned ret = 0; 2268 2269 if (unlikely(!nr_pages)) 2270 return 0; 2271 2272 rcu_read_lock(); 2273 while ((page = find_get_entry(&xas, end, tag))) { 2274 /* 2275 * Shadow entries should never be tagged, but this iteration 2276 * is lockless so there is a window for page reclaim to evict 2277 * a page we saw tagged. Skip over it. 2278 */ 2279 if (xa_is_value(page)) 2280 continue; 2281 2282 pages[ret] = page; 2283 if (++ret == nr_pages) { 2284 *index = page->index + thp_nr_pages(page); 2285 goto out; 2286 } 2287 } 2288 2289 /* 2290 * We come here when we got to @end. We take care to not overflow the 2291 * index @index as it confuses some of the callers. This breaks the 2292 * iteration when there is a page at index -1 but that is already 2293 * broken anyway. 2294 */ 2295 if (end == (pgoff_t)-1) 2296 *index = (pgoff_t)-1; 2297 else 2298 *index = end + 1; 2299 out: 2300 rcu_read_unlock(); 2301 2302 return ret; 2303 } 2304 EXPORT_SYMBOL(find_get_pages_range_tag); 2305 2306 /* 2307 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 2308 * a _large_ part of the i/o request. Imagine the worst scenario: 2309 * 2310 * ---R__________________________________________B__________ 2311 * ^ reading here ^ bad block(assume 4k) 2312 * 2313 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2314 * => failing the whole request => read(R) => read(R+1) => 2315 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2316 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2317 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2318 * 2319 * It is going insane. Fix it by quickly scaling down the readahead size. 2320 */ 2321 static void shrink_readahead_size_eio(struct file_ra_state *ra) 2322 { 2323 ra->ra_pages /= 4; 2324 } 2325 2326 /* 2327 * filemap_get_read_batch - Get a batch of pages for read 2328 * 2329 * Get a batch of pages which represent a contiguous range of bytes 2330 * in the file. No tail pages will be returned. If @index is in the 2331 * middle of a THP, the entire THP will be returned. The last page in 2332 * the batch may have Readahead set or be not Uptodate so that the 2333 * caller can take the appropriate action. 2334 */ 2335 static void filemap_get_read_batch(struct address_space *mapping, 2336 pgoff_t index, pgoff_t max, struct pagevec *pvec) 2337 { 2338 XA_STATE(xas, &mapping->i_pages, index); 2339 struct page *head; 2340 2341 rcu_read_lock(); 2342 for (head = xas_load(&xas); head; head = xas_next(&xas)) { 2343 if (xas_retry(&xas, head)) 2344 continue; 2345 if (xas.xa_index > max || xa_is_value(head)) 2346 break; 2347 if (!page_cache_get_speculative(head)) 2348 goto retry; 2349 2350 /* Has the page moved or been split? */ 2351 if (unlikely(head != xas_reload(&xas))) 2352 goto put_page; 2353 2354 if (!pagevec_add(pvec, head)) 2355 break; 2356 if (!PageUptodate(head)) 2357 break; 2358 if (PageReadahead(head)) 2359 break; 2360 xas.xa_index = head->index + thp_nr_pages(head) - 1; 2361 xas.xa_offset = (xas.xa_index >> xas.xa_shift) & XA_CHUNK_MASK; 2362 continue; 2363 put_page: 2364 put_page(head); 2365 retry: 2366 xas_reset(&xas); 2367 } 2368 rcu_read_unlock(); 2369 } 2370 2371 static int filemap_read_page(struct file *file, struct address_space *mapping, 2372 struct page *page) 2373 { 2374 int error; 2375 2376 /* 2377 * A previous I/O error may have been due to temporary failures, 2378 * eg. multipath errors. PG_error will be set again if readpage 2379 * fails. 2380 */ 2381 ClearPageError(page); 2382 /* Start the actual read. The read will unlock the page. */ 2383 error = mapping->a_ops->readpage(file, page); 2384 if (error) 2385 return error; 2386 2387 error = wait_on_page_locked_killable(page); 2388 if (error) 2389 return error; 2390 if (PageUptodate(page)) 2391 return 0; 2392 shrink_readahead_size_eio(&file->f_ra); 2393 return -EIO; 2394 } 2395 2396 static bool filemap_range_uptodate(struct address_space *mapping, 2397 loff_t pos, struct iov_iter *iter, struct page *page) 2398 { 2399 int count; 2400 2401 if (PageUptodate(page)) 2402 return true; 2403 /* pipes can't handle partially uptodate pages */ 2404 if (iov_iter_is_pipe(iter)) 2405 return false; 2406 if (!mapping->a_ops->is_partially_uptodate) 2407 return false; 2408 if (mapping->host->i_blkbits >= (PAGE_SHIFT + thp_order(page))) 2409 return false; 2410 2411 count = iter->count; 2412 if (page_offset(page) > pos) { 2413 count -= page_offset(page) - pos; 2414 pos = 0; 2415 } else { 2416 pos -= page_offset(page); 2417 } 2418 2419 return mapping->a_ops->is_partially_uptodate(page, pos, count); 2420 } 2421 2422 static int filemap_update_page(struct kiocb *iocb, 2423 struct address_space *mapping, struct iov_iter *iter, 2424 struct page *page) 2425 { 2426 struct folio *folio = page_folio(page); 2427 int error; 2428 2429 if (iocb->ki_flags & IOCB_NOWAIT) { 2430 if (!filemap_invalidate_trylock_shared(mapping)) 2431 return -EAGAIN; 2432 } else { 2433 filemap_invalidate_lock_shared(mapping); 2434 } 2435 2436 if (!folio_trylock(folio)) { 2437 error = -EAGAIN; 2438 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) 2439 goto unlock_mapping; 2440 if (!(iocb->ki_flags & IOCB_WAITQ)) { 2441 filemap_invalidate_unlock_shared(mapping); 2442 put_and_wait_on_page_locked(&folio->page, TASK_KILLABLE); 2443 return AOP_TRUNCATED_PAGE; 2444 } 2445 error = __folio_lock_async(folio, iocb->ki_waitq); 2446 if (error) 2447 goto unlock_mapping; 2448 } 2449 2450 error = AOP_TRUNCATED_PAGE; 2451 if (!folio->mapping) 2452 goto unlock; 2453 2454 error = 0; 2455 if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, &folio->page)) 2456 goto unlock; 2457 2458 error = -EAGAIN; 2459 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ)) 2460 goto unlock; 2461 2462 error = filemap_read_page(iocb->ki_filp, mapping, &folio->page); 2463 goto unlock_mapping; 2464 unlock: 2465 folio_unlock(folio); 2466 unlock_mapping: 2467 filemap_invalidate_unlock_shared(mapping); 2468 if (error == AOP_TRUNCATED_PAGE) 2469 folio_put(folio); 2470 return error; 2471 } 2472 2473 static int filemap_create_page(struct file *file, 2474 struct address_space *mapping, pgoff_t index, 2475 struct pagevec *pvec) 2476 { 2477 struct page *page; 2478 int error; 2479 2480 page = page_cache_alloc(mapping); 2481 if (!page) 2482 return -ENOMEM; 2483 2484 /* 2485 * Protect against truncate / hole punch. Grabbing invalidate_lock here 2486 * assures we cannot instantiate and bring uptodate new pagecache pages 2487 * after evicting page cache during truncate and before actually 2488 * freeing blocks. Note that we could release invalidate_lock after 2489 * inserting the page into page cache as the locked page would then be 2490 * enough to synchronize with hole punching. But there are code paths 2491 * such as filemap_update_page() filling in partially uptodate pages or 2492 * ->readpages() that need to hold invalidate_lock while mapping blocks 2493 * for IO so let's hold the lock here as well to keep locking rules 2494 * simple. 2495 */ 2496 filemap_invalidate_lock_shared(mapping); 2497 error = add_to_page_cache_lru(page, mapping, index, 2498 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2499 if (error == -EEXIST) 2500 error = AOP_TRUNCATED_PAGE; 2501 if (error) 2502 goto error; 2503 2504 error = filemap_read_page(file, mapping, page); 2505 if (error) 2506 goto error; 2507 2508 filemap_invalidate_unlock_shared(mapping); 2509 pagevec_add(pvec, page); 2510 return 0; 2511 error: 2512 filemap_invalidate_unlock_shared(mapping); 2513 put_page(page); 2514 return error; 2515 } 2516 2517 static int filemap_readahead(struct kiocb *iocb, struct file *file, 2518 struct address_space *mapping, struct page *page, 2519 pgoff_t last_index) 2520 { 2521 if (iocb->ki_flags & IOCB_NOIO) 2522 return -EAGAIN; 2523 page_cache_async_readahead(mapping, &file->f_ra, file, page, 2524 page->index, last_index - page->index); 2525 return 0; 2526 } 2527 2528 static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter, 2529 struct pagevec *pvec) 2530 { 2531 struct file *filp = iocb->ki_filp; 2532 struct address_space *mapping = filp->f_mapping; 2533 struct file_ra_state *ra = &filp->f_ra; 2534 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT; 2535 pgoff_t last_index; 2536 struct page *page; 2537 int err = 0; 2538 2539 last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE); 2540 retry: 2541 if (fatal_signal_pending(current)) 2542 return -EINTR; 2543 2544 filemap_get_read_batch(mapping, index, last_index, pvec); 2545 if (!pagevec_count(pvec)) { 2546 if (iocb->ki_flags & IOCB_NOIO) 2547 return -EAGAIN; 2548 page_cache_sync_readahead(mapping, ra, filp, index, 2549 last_index - index); 2550 filemap_get_read_batch(mapping, index, last_index, pvec); 2551 } 2552 if (!pagevec_count(pvec)) { 2553 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ)) 2554 return -EAGAIN; 2555 err = filemap_create_page(filp, mapping, 2556 iocb->ki_pos >> PAGE_SHIFT, pvec); 2557 if (err == AOP_TRUNCATED_PAGE) 2558 goto retry; 2559 return err; 2560 } 2561 2562 page = pvec->pages[pagevec_count(pvec) - 1]; 2563 if (PageReadahead(page)) { 2564 err = filemap_readahead(iocb, filp, mapping, page, last_index); 2565 if (err) 2566 goto err; 2567 } 2568 if (!PageUptodate(page)) { 2569 if ((iocb->ki_flags & IOCB_WAITQ) && pagevec_count(pvec) > 1) 2570 iocb->ki_flags |= IOCB_NOWAIT; 2571 err = filemap_update_page(iocb, mapping, iter, page); 2572 if (err) 2573 goto err; 2574 } 2575 2576 return 0; 2577 err: 2578 if (err < 0) 2579 put_page(page); 2580 if (likely(--pvec->nr)) 2581 return 0; 2582 if (err == AOP_TRUNCATED_PAGE) 2583 goto retry; 2584 return err; 2585 } 2586 2587 /** 2588 * filemap_read - Read data from the page cache. 2589 * @iocb: The iocb to read. 2590 * @iter: Destination for the data. 2591 * @already_read: Number of bytes already read by the caller. 2592 * 2593 * Copies data from the page cache. If the data is not currently present, 2594 * uses the readahead and readpage address_space operations to fetch it. 2595 * 2596 * Return: Total number of bytes copied, including those already read by 2597 * the caller. If an error happens before any bytes are copied, returns 2598 * a negative error number. 2599 */ 2600 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter, 2601 ssize_t already_read) 2602 { 2603 struct file *filp = iocb->ki_filp; 2604 struct file_ra_state *ra = &filp->f_ra; 2605 struct address_space *mapping = filp->f_mapping; 2606 struct inode *inode = mapping->host; 2607 struct pagevec pvec; 2608 int i, error = 0; 2609 bool writably_mapped; 2610 loff_t isize, end_offset; 2611 2612 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes)) 2613 return 0; 2614 if (unlikely(!iov_iter_count(iter))) 2615 return 0; 2616 2617 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 2618 pagevec_init(&pvec); 2619 2620 do { 2621 cond_resched(); 2622 2623 /* 2624 * If we've already successfully copied some data, then we 2625 * can no longer safely return -EIOCBQUEUED. Hence mark 2626 * an async read NOWAIT at that point. 2627 */ 2628 if ((iocb->ki_flags & IOCB_WAITQ) && already_read) 2629 iocb->ki_flags |= IOCB_NOWAIT; 2630 2631 if (unlikely(iocb->ki_pos >= i_size_read(inode))) 2632 break; 2633 2634 error = filemap_get_pages(iocb, iter, &pvec); 2635 if (error < 0) 2636 break; 2637 2638 /* 2639 * i_size must be checked after we know the pages are Uptodate. 2640 * 2641 * Checking i_size after the check allows us to calculate 2642 * the correct value for "nr", which means the zero-filled 2643 * part of the page is not copied back to userspace (unless 2644 * another truncate extends the file - this is desired though). 2645 */ 2646 isize = i_size_read(inode); 2647 if (unlikely(iocb->ki_pos >= isize)) 2648 goto put_pages; 2649 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count); 2650 2651 /* 2652 * Once we start copying data, we don't want to be touching any 2653 * cachelines that might be contended: 2654 */ 2655 writably_mapped = mapping_writably_mapped(mapping); 2656 2657 /* 2658 * When a sequential read accesses a page several times, only 2659 * mark it as accessed the first time. 2660 */ 2661 if (iocb->ki_pos >> PAGE_SHIFT != 2662 ra->prev_pos >> PAGE_SHIFT) 2663 mark_page_accessed(pvec.pages[0]); 2664 2665 for (i = 0; i < pagevec_count(&pvec); i++) { 2666 struct page *page = pvec.pages[i]; 2667 size_t page_size = thp_size(page); 2668 size_t offset = iocb->ki_pos & (page_size - 1); 2669 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos, 2670 page_size - offset); 2671 size_t copied; 2672 2673 if (end_offset < page_offset(page)) 2674 break; 2675 if (i > 0) 2676 mark_page_accessed(page); 2677 /* 2678 * If users can be writing to this page using arbitrary 2679 * virtual addresses, take care about potential aliasing 2680 * before reading the page on the kernel side. 2681 */ 2682 if (writably_mapped) { 2683 int j; 2684 2685 for (j = 0; j < thp_nr_pages(page); j++) 2686 flush_dcache_page(page + j); 2687 } 2688 2689 copied = copy_page_to_iter(page, offset, bytes, iter); 2690 2691 already_read += copied; 2692 iocb->ki_pos += copied; 2693 ra->prev_pos = iocb->ki_pos; 2694 2695 if (copied < bytes) { 2696 error = -EFAULT; 2697 break; 2698 } 2699 } 2700 put_pages: 2701 for (i = 0; i < pagevec_count(&pvec); i++) 2702 put_page(pvec.pages[i]); 2703 pagevec_reinit(&pvec); 2704 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error); 2705 2706 file_accessed(filp); 2707 2708 return already_read ? already_read : error; 2709 } 2710 EXPORT_SYMBOL_GPL(filemap_read); 2711 2712 /** 2713 * generic_file_read_iter - generic filesystem read routine 2714 * @iocb: kernel I/O control block 2715 * @iter: destination for the data read 2716 * 2717 * This is the "read_iter()" routine for all filesystems 2718 * that can use the page cache directly. 2719 * 2720 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall 2721 * be returned when no data can be read without waiting for I/O requests 2722 * to complete; it doesn't prevent readahead. 2723 * 2724 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O 2725 * requests shall be made for the read or for readahead. When no data 2726 * can be read, -EAGAIN shall be returned. When readahead would be 2727 * triggered, a partial, possibly empty read shall be returned. 2728 * 2729 * Return: 2730 * * number of bytes copied, even for partial reads 2731 * * negative error code (or 0 if IOCB_NOIO) if nothing was read 2732 */ 2733 ssize_t 2734 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2735 { 2736 size_t count = iov_iter_count(iter); 2737 ssize_t retval = 0; 2738 2739 if (!count) 2740 return 0; /* skip atime */ 2741 2742 if (iocb->ki_flags & IOCB_DIRECT) { 2743 struct file *file = iocb->ki_filp; 2744 struct address_space *mapping = file->f_mapping; 2745 struct inode *inode = mapping->host; 2746 2747 if (iocb->ki_flags & IOCB_NOWAIT) { 2748 if (filemap_range_needs_writeback(mapping, iocb->ki_pos, 2749 iocb->ki_pos + count - 1)) 2750 return -EAGAIN; 2751 } else { 2752 retval = filemap_write_and_wait_range(mapping, 2753 iocb->ki_pos, 2754 iocb->ki_pos + count - 1); 2755 if (retval < 0) 2756 return retval; 2757 } 2758 2759 file_accessed(file); 2760 2761 retval = mapping->a_ops->direct_IO(iocb, iter); 2762 if (retval >= 0) { 2763 iocb->ki_pos += retval; 2764 count -= retval; 2765 } 2766 if (retval != -EIOCBQUEUED) 2767 iov_iter_revert(iter, count - iov_iter_count(iter)); 2768 2769 /* 2770 * Btrfs can have a short DIO read if we encounter 2771 * compressed extents, so if there was an error, or if 2772 * we've already read everything we wanted to, or if 2773 * there was a short read because we hit EOF, go ahead 2774 * and return. Otherwise fallthrough to buffered io for 2775 * the rest of the read. Buffered reads will not work for 2776 * DAX files, so don't bother trying. 2777 */ 2778 if (retval < 0 || !count || IS_DAX(inode)) 2779 return retval; 2780 if (iocb->ki_pos >= i_size_read(inode)) 2781 return retval; 2782 } 2783 2784 return filemap_read(iocb, iter, retval); 2785 } 2786 EXPORT_SYMBOL(generic_file_read_iter); 2787 2788 static inline loff_t page_seek_hole_data(struct xa_state *xas, 2789 struct address_space *mapping, struct page *page, 2790 loff_t start, loff_t end, bool seek_data) 2791 { 2792 const struct address_space_operations *ops = mapping->a_ops; 2793 size_t offset, bsz = i_blocksize(mapping->host); 2794 2795 if (xa_is_value(page) || PageUptodate(page)) 2796 return seek_data ? start : end; 2797 if (!ops->is_partially_uptodate) 2798 return seek_data ? end : start; 2799 2800 xas_pause(xas); 2801 rcu_read_unlock(); 2802 lock_page(page); 2803 if (unlikely(page->mapping != mapping)) 2804 goto unlock; 2805 2806 offset = offset_in_thp(page, start) & ~(bsz - 1); 2807 2808 do { 2809 if (ops->is_partially_uptodate(page, offset, bsz) == seek_data) 2810 break; 2811 start = (start + bsz) & ~(bsz - 1); 2812 offset += bsz; 2813 } while (offset < thp_size(page)); 2814 unlock: 2815 unlock_page(page); 2816 rcu_read_lock(); 2817 return start; 2818 } 2819 2820 static inline 2821 unsigned int seek_page_size(struct xa_state *xas, struct page *page) 2822 { 2823 if (xa_is_value(page)) 2824 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index); 2825 return thp_size(page); 2826 } 2827 2828 /** 2829 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache. 2830 * @mapping: Address space to search. 2831 * @start: First byte to consider. 2832 * @end: Limit of search (exclusive). 2833 * @whence: Either SEEK_HOLE or SEEK_DATA. 2834 * 2835 * If the page cache knows which blocks contain holes and which blocks 2836 * contain data, your filesystem can use this function to implement 2837 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are 2838 * entirely memory-based such as tmpfs, and filesystems which support 2839 * unwritten extents. 2840 * 2841 * Return: The requested offset on success, or -ENXIO if @whence specifies 2842 * SEEK_DATA and there is no data after @start. There is an implicit hole 2843 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start 2844 * and @end contain data. 2845 */ 2846 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start, 2847 loff_t end, int whence) 2848 { 2849 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT); 2850 pgoff_t max = (end - 1) >> PAGE_SHIFT; 2851 bool seek_data = (whence == SEEK_DATA); 2852 struct page *page; 2853 2854 if (end <= start) 2855 return -ENXIO; 2856 2857 rcu_read_lock(); 2858 while ((page = find_get_entry(&xas, max, XA_PRESENT))) { 2859 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT; 2860 unsigned int seek_size; 2861 2862 if (start < pos) { 2863 if (!seek_data) 2864 goto unlock; 2865 start = pos; 2866 } 2867 2868 seek_size = seek_page_size(&xas, page); 2869 pos = round_up(pos + 1, seek_size); 2870 start = page_seek_hole_data(&xas, mapping, page, start, pos, 2871 seek_data); 2872 if (start < pos) 2873 goto unlock; 2874 if (start >= end) 2875 break; 2876 if (seek_size > PAGE_SIZE) 2877 xas_set(&xas, pos >> PAGE_SHIFT); 2878 if (!xa_is_value(page)) 2879 put_page(page); 2880 } 2881 if (seek_data) 2882 start = -ENXIO; 2883 unlock: 2884 rcu_read_unlock(); 2885 if (page && !xa_is_value(page)) 2886 put_page(page); 2887 if (start > end) 2888 return end; 2889 return start; 2890 } 2891 2892 #ifdef CONFIG_MMU 2893 #define MMAP_LOTSAMISS (100) 2894 /* 2895 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock 2896 * @vmf - the vm_fault for this fault. 2897 * @page - the page to lock. 2898 * @fpin - the pointer to the file we may pin (or is already pinned). 2899 * 2900 * This works similar to lock_page_or_retry in that it can drop the mmap_lock. 2901 * It differs in that it actually returns the page locked if it returns 1 and 0 2902 * if it couldn't lock the page. If we did have to drop the mmap_lock then fpin 2903 * will point to the pinned file and needs to be fput()'ed at a later point. 2904 */ 2905 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page, 2906 struct file **fpin) 2907 { 2908 struct folio *folio = page_folio(page); 2909 2910 if (folio_trylock(folio)) 2911 return 1; 2912 2913 /* 2914 * NOTE! This will make us return with VM_FAULT_RETRY, but with 2915 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT 2916 * is supposed to work. We have way too many special cases.. 2917 */ 2918 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 2919 return 0; 2920 2921 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 2922 if (vmf->flags & FAULT_FLAG_KILLABLE) { 2923 if (__folio_lock_killable(folio)) { 2924 /* 2925 * We didn't have the right flags to drop the mmap_lock, 2926 * but all fault_handlers only check for fatal signals 2927 * if we return VM_FAULT_RETRY, so we need to drop the 2928 * mmap_lock here and return 0 if we don't have a fpin. 2929 */ 2930 if (*fpin == NULL) 2931 mmap_read_unlock(vmf->vma->vm_mm); 2932 return 0; 2933 } 2934 } else 2935 __folio_lock(folio); 2936 2937 return 1; 2938 } 2939 2940 /* 2941 * Synchronous readahead happens when we don't even find a page in the page 2942 * cache at all. We don't want to perform IO under the mmap sem, so if we have 2943 * to drop the mmap sem we return the file that was pinned in order for us to do 2944 * that. If we didn't pin a file then we return NULL. The file that is 2945 * returned needs to be fput()'ed when we're done with it. 2946 */ 2947 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 2948 { 2949 struct file *file = vmf->vma->vm_file; 2950 struct file_ra_state *ra = &file->f_ra; 2951 struct address_space *mapping = file->f_mapping; 2952 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff); 2953 struct file *fpin = NULL; 2954 unsigned int mmap_miss; 2955 2956 /* If we don't want any read-ahead, don't bother */ 2957 if (vmf->vma->vm_flags & VM_RAND_READ) 2958 return fpin; 2959 if (!ra->ra_pages) 2960 return fpin; 2961 2962 if (vmf->vma->vm_flags & VM_SEQ_READ) { 2963 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2964 page_cache_sync_ra(&ractl, ra->ra_pages); 2965 return fpin; 2966 } 2967 2968 /* Avoid banging the cache line if not needed */ 2969 mmap_miss = READ_ONCE(ra->mmap_miss); 2970 if (mmap_miss < MMAP_LOTSAMISS * 10) 2971 WRITE_ONCE(ra->mmap_miss, ++mmap_miss); 2972 2973 /* 2974 * Do we miss much more than hit in this file? If so, 2975 * stop bothering with read-ahead. It will only hurt. 2976 */ 2977 if (mmap_miss > MMAP_LOTSAMISS) 2978 return fpin; 2979 2980 /* 2981 * mmap read-around 2982 */ 2983 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2984 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2); 2985 ra->size = ra->ra_pages; 2986 ra->async_size = ra->ra_pages / 4; 2987 ractl._index = ra->start; 2988 do_page_cache_ra(&ractl, ra->size, ra->async_size); 2989 return fpin; 2990 } 2991 2992 /* 2993 * Asynchronous readahead happens when we find the page and PG_readahead, 2994 * so we want to possibly extend the readahead further. We return the file that 2995 * was pinned if we have to drop the mmap_lock in order to do IO. 2996 */ 2997 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 2998 struct page *page) 2999 { 3000 struct file *file = vmf->vma->vm_file; 3001 struct file_ra_state *ra = &file->f_ra; 3002 struct address_space *mapping = file->f_mapping; 3003 struct file *fpin = NULL; 3004 unsigned int mmap_miss; 3005 pgoff_t offset = vmf->pgoff; 3006 3007 /* If we don't want any read-ahead, don't bother */ 3008 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages) 3009 return fpin; 3010 mmap_miss = READ_ONCE(ra->mmap_miss); 3011 if (mmap_miss) 3012 WRITE_ONCE(ra->mmap_miss, --mmap_miss); 3013 if (PageReadahead(page)) { 3014 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3015 page_cache_async_readahead(mapping, ra, file, 3016 page, offset, ra->ra_pages); 3017 } 3018 return fpin; 3019 } 3020 3021 /** 3022 * filemap_fault - read in file data for page fault handling 3023 * @vmf: struct vm_fault containing details of the fault 3024 * 3025 * filemap_fault() is invoked via the vma operations vector for a 3026 * mapped memory region to read in file data during a page fault. 3027 * 3028 * The goto's are kind of ugly, but this streamlines the normal case of having 3029 * it in the page cache, and handles the special cases reasonably without 3030 * having a lot of duplicated code. 3031 * 3032 * vma->vm_mm->mmap_lock must be held on entry. 3033 * 3034 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock 3035 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap(). 3036 * 3037 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock 3038 * has not been released. 3039 * 3040 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 3041 * 3042 * Return: bitwise-OR of %VM_FAULT_ codes. 3043 */ 3044 vm_fault_t filemap_fault(struct vm_fault *vmf) 3045 { 3046 int error; 3047 struct file *file = vmf->vma->vm_file; 3048 struct file *fpin = NULL; 3049 struct address_space *mapping = file->f_mapping; 3050 struct inode *inode = mapping->host; 3051 pgoff_t offset = vmf->pgoff; 3052 pgoff_t max_off; 3053 struct page *page; 3054 vm_fault_t ret = 0; 3055 bool mapping_locked = false; 3056 3057 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3058 if (unlikely(offset >= max_off)) 3059 return VM_FAULT_SIGBUS; 3060 3061 /* 3062 * Do we have something in the page cache already? 3063 */ 3064 page = find_get_page(mapping, offset); 3065 if (likely(page)) { 3066 /* 3067 * We found the page, so try async readahead before waiting for 3068 * the lock. 3069 */ 3070 if (!(vmf->flags & FAULT_FLAG_TRIED)) 3071 fpin = do_async_mmap_readahead(vmf, page); 3072 if (unlikely(!PageUptodate(page))) { 3073 filemap_invalidate_lock_shared(mapping); 3074 mapping_locked = true; 3075 } 3076 } else { 3077 /* No page in the page cache at all */ 3078 count_vm_event(PGMAJFAULT); 3079 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 3080 ret = VM_FAULT_MAJOR; 3081 fpin = do_sync_mmap_readahead(vmf); 3082 retry_find: 3083 /* 3084 * See comment in filemap_create_page() why we need 3085 * invalidate_lock 3086 */ 3087 if (!mapping_locked) { 3088 filemap_invalidate_lock_shared(mapping); 3089 mapping_locked = true; 3090 } 3091 page = pagecache_get_page(mapping, offset, 3092 FGP_CREAT|FGP_FOR_MMAP, 3093 vmf->gfp_mask); 3094 if (!page) { 3095 if (fpin) 3096 goto out_retry; 3097 filemap_invalidate_unlock_shared(mapping); 3098 return VM_FAULT_OOM; 3099 } 3100 } 3101 3102 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin)) 3103 goto out_retry; 3104 3105 /* Did it get truncated? */ 3106 if (unlikely(compound_head(page)->mapping != mapping)) { 3107 unlock_page(page); 3108 put_page(page); 3109 goto retry_find; 3110 } 3111 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page); 3112 3113 /* 3114 * We have a locked page in the page cache, now we need to check 3115 * that it's up-to-date. If not, it is going to be due to an error. 3116 */ 3117 if (unlikely(!PageUptodate(page))) { 3118 /* 3119 * The page was in cache and uptodate and now it is not. 3120 * Strange but possible since we didn't hold the page lock all 3121 * the time. Let's drop everything get the invalidate lock and 3122 * try again. 3123 */ 3124 if (!mapping_locked) { 3125 unlock_page(page); 3126 put_page(page); 3127 goto retry_find; 3128 } 3129 goto page_not_uptodate; 3130 } 3131 3132 /* 3133 * We've made it this far and we had to drop our mmap_lock, now is the 3134 * time to return to the upper layer and have it re-find the vma and 3135 * redo the fault. 3136 */ 3137 if (fpin) { 3138 unlock_page(page); 3139 goto out_retry; 3140 } 3141 if (mapping_locked) 3142 filemap_invalidate_unlock_shared(mapping); 3143 3144 /* 3145 * Found the page and have a reference on it. 3146 * We must recheck i_size under page lock. 3147 */ 3148 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3149 if (unlikely(offset >= max_off)) { 3150 unlock_page(page); 3151 put_page(page); 3152 return VM_FAULT_SIGBUS; 3153 } 3154 3155 vmf->page = page; 3156 return ret | VM_FAULT_LOCKED; 3157 3158 page_not_uptodate: 3159 /* 3160 * Umm, take care of errors if the page isn't up-to-date. 3161 * Try to re-read it _once_. We do this synchronously, 3162 * because there really aren't any performance issues here 3163 * and we need to check for errors. 3164 */ 3165 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3166 error = filemap_read_page(file, mapping, page); 3167 if (fpin) 3168 goto out_retry; 3169 put_page(page); 3170 3171 if (!error || error == AOP_TRUNCATED_PAGE) 3172 goto retry_find; 3173 filemap_invalidate_unlock_shared(mapping); 3174 3175 return VM_FAULT_SIGBUS; 3176 3177 out_retry: 3178 /* 3179 * We dropped the mmap_lock, we need to return to the fault handler to 3180 * re-find the vma and come back and find our hopefully still populated 3181 * page. 3182 */ 3183 if (page) 3184 put_page(page); 3185 if (mapping_locked) 3186 filemap_invalidate_unlock_shared(mapping); 3187 if (fpin) 3188 fput(fpin); 3189 return ret | VM_FAULT_RETRY; 3190 } 3191 EXPORT_SYMBOL(filemap_fault); 3192 3193 static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page) 3194 { 3195 struct mm_struct *mm = vmf->vma->vm_mm; 3196 3197 /* Huge page is mapped? No need to proceed. */ 3198 if (pmd_trans_huge(*vmf->pmd)) { 3199 unlock_page(page); 3200 put_page(page); 3201 return true; 3202 } 3203 3204 if (pmd_none(*vmf->pmd) && PageTransHuge(page)) { 3205 vm_fault_t ret = do_set_pmd(vmf, page); 3206 if (!ret) { 3207 /* The page is mapped successfully, reference consumed. */ 3208 unlock_page(page); 3209 return true; 3210 } 3211 } 3212 3213 if (pmd_none(*vmf->pmd)) 3214 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte); 3215 3216 /* See comment in handle_pte_fault() */ 3217 if (pmd_devmap_trans_unstable(vmf->pmd)) { 3218 unlock_page(page); 3219 put_page(page); 3220 return true; 3221 } 3222 3223 return false; 3224 } 3225 3226 static struct page *next_uptodate_page(struct page *page, 3227 struct address_space *mapping, 3228 struct xa_state *xas, pgoff_t end_pgoff) 3229 { 3230 unsigned long max_idx; 3231 3232 do { 3233 if (!page) 3234 return NULL; 3235 if (xas_retry(xas, page)) 3236 continue; 3237 if (xa_is_value(page)) 3238 continue; 3239 if (PageLocked(page)) 3240 continue; 3241 if (!page_cache_get_speculative(page)) 3242 continue; 3243 /* Has the page moved or been split? */ 3244 if (unlikely(page != xas_reload(xas))) 3245 goto skip; 3246 if (!PageUptodate(page) || PageReadahead(page)) 3247 goto skip; 3248 if (PageHWPoison(page)) 3249 goto skip; 3250 if (!trylock_page(page)) 3251 goto skip; 3252 if (page->mapping != mapping) 3253 goto unlock; 3254 if (!PageUptodate(page)) 3255 goto unlock; 3256 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3257 if (xas->xa_index >= max_idx) 3258 goto unlock; 3259 return page; 3260 unlock: 3261 unlock_page(page); 3262 skip: 3263 put_page(page); 3264 } while ((page = xas_next_entry(xas, end_pgoff)) != NULL); 3265 3266 return NULL; 3267 } 3268 3269 static inline struct page *first_map_page(struct address_space *mapping, 3270 struct xa_state *xas, 3271 pgoff_t end_pgoff) 3272 { 3273 return next_uptodate_page(xas_find(xas, end_pgoff), 3274 mapping, xas, end_pgoff); 3275 } 3276 3277 static inline struct page *next_map_page(struct address_space *mapping, 3278 struct xa_state *xas, 3279 pgoff_t end_pgoff) 3280 { 3281 return next_uptodate_page(xas_next_entry(xas, end_pgoff), 3282 mapping, xas, end_pgoff); 3283 } 3284 3285 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3286 pgoff_t start_pgoff, pgoff_t end_pgoff) 3287 { 3288 struct vm_area_struct *vma = vmf->vma; 3289 struct file *file = vma->vm_file; 3290 struct address_space *mapping = file->f_mapping; 3291 pgoff_t last_pgoff = start_pgoff; 3292 unsigned long addr; 3293 XA_STATE(xas, &mapping->i_pages, start_pgoff); 3294 struct page *head, *page; 3295 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss); 3296 vm_fault_t ret = 0; 3297 3298 rcu_read_lock(); 3299 head = first_map_page(mapping, &xas, end_pgoff); 3300 if (!head) 3301 goto out; 3302 3303 if (filemap_map_pmd(vmf, head)) { 3304 ret = VM_FAULT_NOPAGE; 3305 goto out; 3306 } 3307 3308 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT); 3309 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 3310 do { 3311 page = find_subpage(head, xas.xa_index); 3312 if (PageHWPoison(page)) 3313 goto unlock; 3314 3315 if (mmap_miss > 0) 3316 mmap_miss--; 3317 3318 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 3319 vmf->pte += xas.xa_index - last_pgoff; 3320 last_pgoff = xas.xa_index; 3321 3322 if (!pte_none(*vmf->pte)) 3323 goto unlock; 3324 3325 /* We're about to handle the fault */ 3326 if (vmf->address == addr) 3327 ret = VM_FAULT_NOPAGE; 3328 3329 do_set_pte(vmf, page, addr); 3330 /* no need to invalidate: a not-present page won't be cached */ 3331 update_mmu_cache(vma, addr, vmf->pte); 3332 unlock_page(head); 3333 continue; 3334 unlock: 3335 unlock_page(head); 3336 put_page(head); 3337 } while ((head = next_map_page(mapping, &xas, end_pgoff)) != NULL); 3338 pte_unmap_unlock(vmf->pte, vmf->ptl); 3339 out: 3340 rcu_read_unlock(); 3341 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss); 3342 return ret; 3343 } 3344 EXPORT_SYMBOL(filemap_map_pages); 3345 3346 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3347 { 3348 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 3349 struct page *page = vmf->page; 3350 vm_fault_t ret = VM_FAULT_LOCKED; 3351 3352 sb_start_pagefault(mapping->host->i_sb); 3353 file_update_time(vmf->vma->vm_file); 3354 lock_page(page); 3355 if (page->mapping != mapping) { 3356 unlock_page(page); 3357 ret = VM_FAULT_NOPAGE; 3358 goto out; 3359 } 3360 /* 3361 * We mark the page dirty already here so that when freeze is in 3362 * progress, we are guaranteed that writeback during freezing will 3363 * see the dirty page and writeprotect it again. 3364 */ 3365 set_page_dirty(page); 3366 wait_for_stable_page(page); 3367 out: 3368 sb_end_pagefault(mapping->host->i_sb); 3369 return ret; 3370 } 3371 3372 const struct vm_operations_struct generic_file_vm_ops = { 3373 .fault = filemap_fault, 3374 .map_pages = filemap_map_pages, 3375 .page_mkwrite = filemap_page_mkwrite, 3376 }; 3377 3378 /* This is used for a general mmap of a disk file */ 3379 3380 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3381 { 3382 struct address_space *mapping = file->f_mapping; 3383 3384 if (!mapping->a_ops->readpage) 3385 return -ENOEXEC; 3386 file_accessed(file); 3387 vma->vm_ops = &generic_file_vm_ops; 3388 return 0; 3389 } 3390 3391 /* 3392 * This is for filesystems which do not implement ->writepage. 3393 */ 3394 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3395 { 3396 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 3397 return -EINVAL; 3398 return generic_file_mmap(file, vma); 3399 } 3400 #else 3401 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3402 { 3403 return VM_FAULT_SIGBUS; 3404 } 3405 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3406 { 3407 return -ENOSYS; 3408 } 3409 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3410 { 3411 return -ENOSYS; 3412 } 3413 #endif /* CONFIG_MMU */ 3414 3415 EXPORT_SYMBOL(filemap_page_mkwrite); 3416 EXPORT_SYMBOL(generic_file_mmap); 3417 EXPORT_SYMBOL(generic_file_readonly_mmap); 3418 3419 static struct page *wait_on_page_read(struct page *page) 3420 { 3421 if (!IS_ERR(page)) { 3422 wait_on_page_locked(page); 3423 if (!PageUptodate(page)) { 3424 put_page(page); 3425 page = ERR_PTR(-EIO); 3426 } 3427 } 3428 return page; 3429 } 3430 3431 static struct page *do_read_cache_page(struct address_space *mapping, 3432 pgoff_t index, 3433 int (*filler)(void *, struct page *), 3434 void *data, 3435 gfp_t gfp) 3436 { 3437 struct page *page; 3438 int err; 3439 repeat: 3440 page = find_get_page(mapping, index); 3441 if (!page) { 3442 page = __page_cache_alloc(gfp); 3443 if (!page) 3444 return ERR_PTR(-ENOMEM); 3445 err = add_to_page_cache_lru(page, mapping, index, gfp); 3446 if (unlikely(err)) { 3447 put_page(page); 3448 if (err == -EEXIST) 3449 goto repeat; 3450 /* Presumably ENOMEM for xarray node */ 3451 return ERR_PTR(err); 3452 } 3453 3454 filler: 3455 if (filler) 3456 err = filler(data, page); 3457 else 3458 err = mapping->a_ops->readpage(data, page); 3459 3460 if (err < 0) { 3461 put_page(page); 3462 return ERR_PTR(err); 3463 } 3464 3465 page = wait_on_page_read(page); 3466 if (IS_ERR(page)) 3467 return page; 3468 goto out; 3469 } 3470 if (PageUptodate(page)) 3471 goto out; 3472 3473 /* 3474 * Page is not up to date and may be locked due to one of the following 3475 * case a: Page is being filled and the page lock is held 3476 * case b: Read/write error clearing the page uptodate status 3477 * case c: Truncation in progress (page locked) 3478 * case d: Reclaim in progress 3479 * 3480 * Case a, the page will be up to date when the page is unlocked. 3481 * There is no need to serialise on the page lock here as the page 3482 * is pinned so the lock gives no additional protection. Even if the 3483 * page is truncated, the data is still valid if PageUptodate as 3484 * it's a race vs truncate race. 3485 * Case b, the page will not be up to date 3486 * Case c, the page may be truncated but in itself, the data may still 3487 * be valid after IO completes as it's a read vs truncate race. The 3488 * operation must restart if the page is not uptodate on unlock but 3489 * otherwise serialising on page lock to stabilise the mapping gives 3490 * no additional guarantees to the caller as the page lock is 3491 * released before return. 3492 * Case d, similar to truncation. If reclaim holds the page lock, it 3493 * will be a race with remove_mapping that determines if the mapping 3494 * is valid on unlock but otherwise the data is valid and there is 3495 * no need to serialise with page lock. 3496 * 3497 * As the page lock gives no additional guarantee, we optimistically 3498 * wait on the page to be unlocked and check if it's up to date and 3499 * use the page if it is. Otherwise, the page lock is required to 3500 * distinguish between the different cases. The motivation is that we 3501 * avoid spurious serialisations and wakeups when multiple processes 3502 * wait on the same page for IO to complete. 3503 */ 3504 wait_on_page_locked(page); 3505 if (PageUptodate(page)) 3506 goto out; 3507 3508 /* Distinguish between all the cases under the safety of the lock */ 3509 lock_page(page); 3510 3511 /* Case c or d, restart the operation */ 3512 if (!page->mapping) { 3513 unlock_page(page); 3514 put_page(page); 3515 goto repeat; 3516 } 3517 3518 /* Someone else locked and filled the page in a very small window */ 3519 if (PageUptodate(page)) { 3520 unlock_page(page); 3521 goto out; 3522 } 3523 3524 /* 3525 * A previous I/O error may have been due to temporary 3526 * failures. 3527 * Clear page error before actual read, PG_error will be 3528 * set again if read page fails. 3529 */ 3530 ClearPageError(page); 3531 goto filler; 3532 3533 out: 3534 mark_page_accessed(page); 3535 return page; 3536 } 3537 3538 /** 3539 * read_cache_page - read into page cache, fill it if needed 3540 * @mapping: the page's address_space 3541 * @index: the page index 3542 * @filler: function to perform the read 3543 * @data: first arg to filler(data, page) function, often left as NULL 3544 * 3545 * Read into the page cache. If a page already exists, and PageUptodate() is 3546 * not set, try to fill the page and wait for it to become unlocked. 3547 * 3548 * If the page does not get brought uptodate, return -EIO. 3549 * 3550 * The function expects mapping->invalidate_lock to be already held. 3551 * 3552 * Return: up to date page on success, ERR_PTR() on failure. 3553 */ 3554 struct page *read_cache_page(struct address_space *mapping, 3555 pgoff_t index, 3556 int (*filler)(void *, struct page *), 3557 void *data) 3558 { 3559 return do_read_cache_page(mapping, index, filler, data, 3560 mapping_gfp_mask(mapping)); 3561 } 3562 EXPORT_SYMBOL(read_cache_page); 3563 3564 /** 3565 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 3566 * @mapping: the page's address_space 3567 * @index: the page index 3568 * @gfp: the page allocator flags to use if allocating 3569 * 3570 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 3571 * any new page allocations done using the specified allocation flags. 3572 * 3573 * If the page does not get brought uptodate, return -EIO. 3574 * 3575 * The function expects mapping->invalidate_lock to be already held. 3576 * 3577 * Return: up to date page on success, ERR_PTR() on failure. 3578 */ 3579 struct page *read_cache_page_gfp(struct address_space *mapping, 3580 pgoff_t index, 3581 gfp_t gfp) 3582 { 3583 return do_read_cache_page(mapping, index, NULL, NULL, gfp); 3584 } 3585 EXPORT_SYMBOL(read_cache_page_gfp); 3586 3587 int pagecache_write_begin(struct file *file, struct address_space *mapping, 3588 loff_t pos, unsigned len, unsigned flags, 3589 struct page **pagep, void **fsdata) 3590 { 3591 const struct address_space_operations *aops = mapping->a_ops; 3592 3593 return aops->write_begin(file, mapping, pos, len, flags, 3594 pagep, fsdata); 3595 } 3596 EXPORT_SYMBOL(pagecache_write_begin); 3597 3598 int pagecache_write_end(struct file *file, struct address_space *mapping, 3599 loff_t pos, unsigned len, unsigned copied, 3600 struct page *page, void *fsdata) 3601 { 3602 const struct address_space_operations *aops = mapping->a_ops; 3603 3604 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 3605 } 3606 EXPORT_SYMBOL(pagecache_write_end); 3607 3608 /* 3609 * Warn about a page cache invalidation failure during a direct I/O write. 3610 */ 3611 void dio_warn_stale_pagecache(struct file *filp) 3612 { 3613 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 3614 char pathname[128]; 3615 char *path; 3616 3617 errseq_set(&filp->f_mapping->wb_err, -EIO); 3618 if (__ratelimit(&_rs)) { 3619 path = file_path(filp, pathname, sizeof(pathname)); 3620 if (IS_ERR(path)) 3621 path = "(unknown)"; 3622 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); 3623 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, 3624 current->comm); 3625 } 3626 } 3627 3628 ssize_t 3629 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 3630 { 3631 struct file *file = iocb->ki_filp; 3632 struct address_space *mapping = file->f_mapping; 3633 struct inode *inode = mapping->host; 3634 loff_t pos = iocb->ki_pos; 3635 ssize_t written; 3636 size_t write_len; 3637 pgoff_t end; 3638 3639 write_len = iov_iter_count(from); 3640 end = (pos + write_len - 1) >> PAGE_SHIFT; 3641 3642 if (iocb->ki_flags & IOCB_NOWAIT) { 3643 /* If there are pages to writeback, return */ 3644 if (filemap_range_has_page(file->f_mapping, pos, 3645 pos + write_len - 1)) 3646 return -EAGAIN; 3647 } else { 3648 written = filemap_write_and_wait_range(mapping, pos, 3649 pos + write_len - 1); 3650 if (written) 3651 goto out; 3652 } 3653 3654 /* 3655 * After a write we want buffered reads to be sure to go to disk to get 3656 * the new data. We invalidate clean cached page from the region we're 3657 * about to write. We do this *before* the write so that we can return 3658 * without clobbering -EIOCBQUEUED from ->direct_IO(). 3659 */ 3660 written = invalidate_inode_pages2_range(mapping, 3661 pos >> PAGE_SHIFT, end); 3662 /* 3663 * If a page can not be invalidated, return 0 to fall back 3664 * to buffered write. 3665 */ 3666 if (written) { 3667 if (written == -EBUSY) 3668 return 0; 3669 goto out; 3670 } 3671 3672 written = mapping->a_ops->direct_IO(iocb, from); 3673 3674 /* 3675 * Finally, try again to invalidate clean pages which might have been 3676 * cached by non-direct readahead, or faulted in by get_user_pages() 3677 * if the source of the write was an mmap'ed region of the file 3678 * we're writing. Either one is a pretty crazy thing to do, 3679 * so we don't support it 100%. If this invalidation 3680 * fails, tough, the write still worked... 3681 * 3682 * Most of the time we do not need this since dio_complete() will do 3683 * the invalidation for us. However there are some file systems that 3684 * do not end up with dio_complete() being called, so let's not break 3685 * them by removing it completely. 3686 * 3687 * Noticeable example is a blkdev_direct_IO(). 3688 * 3689 * Skip invalidation for async writes or if mapping has no pages. 3690 */ 3691 if (written > 0 && mapping->nrpages && 3692 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end)) 3693 dio_warn_stale_pagecache(file); 3694 3695 if (written > 0) { 3696 pos += written; 3697 write_len -= written; 3698 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 3699 i_size_write(inode, pos); 3700 mark_inode_dirty(inode); 3701 } 3702 iocb->ki_pos = pos; 3703 } 3704 if (written != -EIOCBQUEUED) 3705 iov_iter_revert(from, write_len - iov_iter_count(from)); 3706 out: 3707 return written; 3708 } 3709 EXPORT_SYMBOL(generic_file_direct_write); 3710 3711 ssize_t generic_perform_write(struct file *file, 3712 struct iov_iter *i, loff_t pos) 3713 { 3714 struct address_space *mapping = file->f_mapping; 3715 const struct address_space_operations *a_ops = mapping->a_ops; 3716 long status = 0; 3717 ssize_t written = 0; 3718 unsigned int flags = 0; 3719 3720 do { 3721 struct page *page; 3722 unsigned long offset; /* Offset into pagecache page */ 3723 unsigned long bytes; /* Bytes to write to page */ 3724 size_t copied; /* Bytes copied from user */ 3725 void *fsdata; 3726 3727 offset = (pos & (PAGE_SIZE - 1)); 3728 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3729 iov_iter_count(i)); 3730 3731 again: 3732 /* 3733 * Bring in the user page that we will copy from _first_. 3734 * Otherwise there's a nasty deadlock on copying from the 3735 * same page as we're writing to, without it being marked 3736 * up-to-date. 3737 */ 3738 if (unlikely(fault_in_iov_iter_readable(i, bytes))) { 3739 status = -EFAULT; 3740 break; 3741 } 3742 3743 if (fatal_signal_pending(current)) { 3744 status = -EINTR; 3745 break; 3746 } 3747 3748 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 3749 &page, &fsdata); 3750 if (unlikely(status < 0)) 3751 break; 3752 3753 if (mapping_writably_mapped(mapping)) 3754 flush_dcache_page(page); 3755 3756 copied = copy_page_from_iter_atomic(page, offset, bytes, i); 3757 flush_dcache_page(page); 3758 3759 status = a_ops->write_end(file, mapping, pos, bytes, copied, 3760 page, fsdata); 3761 if (unlikely(status != copied)) { 3762 iov_iter_revert(i, copied - max(status, 0L)); 3763 if (unlikely(status < 0)) 3764 break; 3765 } 3766 cond_resched(); 3767 3768 if (unlikely(status == 0)) { 3769 /* 3770 * A short copy made ->write_end() reject the 3771 * thing entirely. Might be memory poisoning 3772 * halfway through, might be a race with munmap, 3773 * might be severe memory pressure. 3774 */ 3775 if (copied) 3776 bytes = copied; 3777 goto again; 3778 } 3779 pos += status; 3780 written += status; 3781 3782 balance_dirty_pages_ratelimited(mapping); 3783 } while (iov_iter_count(i)); 3784 3785 return written ? written : status; 3786 } 3787 EXPORT_SYMBOL(generic_perform_write); 3788 3789 /** 3790 * __generic_file_write_iter - write data to a file 3791 * @iocb: IO state structure (file, offset, etc.) 3792 * @from: iov_iter with data to write 3793 * 3794 * This function does all the work needed for actually writing data to a 3795 * file. It does all basic checks, removes SUID from the file, updates 3796 * modification times and calls proper subroutines depending on whether we 3797 * do direct IO or a standard buffered write. 3798 * 3799 * It expects i_rwsem to be grabbed unless we work on a block device or similar 3800 * object which does not need locking at all. 3801 * 3802 * This function does *not* take care of syncing data in case of O_SYNC write. 3803 * A caller has to handle it. This is mainly due to the fact that we want to 3804 * avoid syncing under i_rwsem. 3805 * 3806 * Return: 3807 * * number of bytes written, even for truncated writes 3808 * * negative error code if no data has been written at all 3809 */ 3810 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3811 { 3812 struct file *file = iocb->ki_filp; 3813 struct address_space *mapping = file->f_mapping; 3814 struct inode *inode = mapping->host; 3815 ssize_t written = 0; 3816 ssize_t err; 3817 ssize_t status; 3818 3819 /* We can write back this queue in page reclaim */ 3820 current->backing_dev_info = inode_to_bdi(inode); 3821 err = file_remove_privs(file); 3822 if (err) 3823 goto out; 3824 3825 err = file_update_time(file); 3826 if (err) 3827 goto out; 3828 3829 if (iocb->ki_flags & IOCB_DIRECT) { 3830 loff_t pos, endbyte; 3831 3832 written = generic_file_direct_write(iocb, from); 3833 /* 3834 * If the write stopped short of completing, fall back to 3835 * buffered writes. Some filesystems do this for writes to 3836 * holes, for example. For DAX files, a buffered write will 3837 * not succeed (even if it did, DAX does not handle dirty 3838 * page-cache pages correctly). 3839 */ 3840 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) 3841 goto out; 3842 3843 status = generic_perform_write(file, from, pos = iocb->ki_pos); 3844 /* 3845 * If generic_perform_write() returned a synchronous error 3846 * then we want to return the number of bytes which were 3847 * direct-written, or the error code if that was zero. Note 3848 * that this differs from normal direct-io semantics, which 3849 * will return -EFOO even if some bytes were written. 3850 */ 3851 if (unlikely(status < 0)) { 3852 err = status; 3853 goto out; 3854 } 3855 /* 3856 * We need to ensure that the page cache pages are written to 3857 * disk and invalidated to preserve the expected O_DIRECT 3858 * semantics. 3859 */ 3860 endbyte = pos + status - 1; 3861 err = filemap_write_and_wait_range(mapping, pos, endbyte); 3862 if (err == 0) { 3863 iocb->ki_pos = endbyte + 1; 3864 written += status; 3865 invalidate_mapping_pages(mapping, 3866 pos >> PAGE_SHIFT, 3867 endbyte >> PAGE_SHIFT); 3868 } else { 3869 /* 3870 * We don't know how much we wrote, so just return 3871 * the number of bytes which were direct-written 3872 */ 3873 } 3874 } else { 3875 written = generic_perform_write(file, from, iocb->ki_pos); 3876 if (likely(written > 0)) 3877 iocb->ki_pos += written; 3878 } 3879 out: 3880 current->backing_dev_info = NULL; 3881 return written ? written : err; 3882 } 3883 EXPORT_SYMBOL(__generic_file_write_iter); 3884 3885 /** 3886 * generic_file_write_iter - write data to a file 3887 * @iocb: IO state structure 3888 * @from: iov_iter with data to write 3889 * 3890 * This is a wrapper around __generic_file_write_iter() to be used by most 3891 * filesystems. It takes care of syncing the file in case of O_SYNC file 3892 * and acquires i_rwsem as needed. 3893 * Return: 3894 * * negative error code if no data has been written at all of 3895 * vfs_fsync_range() failed for a synchronous write 3896 * * number of bytes written, even for truncated writes 3897 */ 3898 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3899 { 3900 struct file *file = iocb->ki_filp; 3901 struct inode *inode = file->f_mapping->host; 3902 ssize_t ret; 3903 3904 inode_lock(inode); 3905 ret = generic_write_checks(iocb, from); 3906 if (ret > 0) 3907 ret = __generic_file_write_iter(iocb, from); 3908 inode_unlock(inode); 3909 3910 if (ret > 0) 3911 ret = generic_write_sync(iocb, ret); 3912 return ret; 3913 } 3914 EXPORT_SYMBOL(generic_file_write_iter); 3915 3916 /** 3917 * try_to_release_page() - release old fs-specific metadata on a page 3918 * 3919 * @page: the page which the kernel is trying to free 3920 * @gfp_mask: memory allocation flags (and I/O mode) 3921 * 3922 * The address_space is to try to release any data against the page 3923 * (presumably at page->private). 3924 * 3925 * This may also be called if PG_fscache is set on a page, indicating that the 3926 * page is known to the local caching routines. 3927 * 3928 * The @gfp_mask argument specifies whether I/O may be performed to release 3929 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS). 3930 * 3931 * Return: %1 if the release was successful, otherwise return zero. 3932 */ 3933 int try_to_release_page(struct page *page, gfp_t gfp_mask) 3934 { 3935 struct address_space * const mapping = page->mapping; 3936 3937 BUG_ON(!PageLocked(page)); 3938 if (PageWriteback(page)) 3939 return 0; 3940 3941 if (mapping && mapping->a_ops->releasepage) 3942 return mapping->a_ops->releasepage(page, gfp_mask); 3943 return try_to_free_buffers(page); 3944 } 3945 3946 EXPORT_SYMBOL(try_to_release_page); 3947