1 /* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12 #include <linux/module.h> 13 #include <linux/compiler.h> 14 #include <linux/fs.h> 15 #include <linux/uaccess.h> 16 #include <linux/aio.h> 17 #include <linux/capability.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/gfp.h> 20 #include <linux/mm.h> 21 #include <linux/swap.h> 22 #include <linux/mman.h> 23 #include <linux/pagemap.h> 24 #include <linux/file.h> 25 #include <linux/uio.h> 26 #include <linux/hash.h> 27 #include <linux/writeback.h> 28 #include <linux/backing-dev.h> 29 #include <linux/pagevec.h> 30 #include <linux/blkdev.h> 31 #include <linux/security.h> 32 #include <linux/syscalls.h> 33 #include <linux/cpuset.h> 34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */ 35 #include <linux/memcontrol.h> 36 #include <linux/mm_inline.h> /* for page_is_file_cache() */ 37 #include "internal.h" 38 39 /* 40 * FIXME: remove all knowledge of the buffer layer from the core VM 41 */ 42 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 43 44 #include <asm/mman.h> 45 46 /* 47 * Shared mappings implemented 30.11.1994. It's not fully working yet, 48 * though. 49 * 50 * Shared mappings now work. 15.8.1995 Bruno. 51 * 52 * finished 'unifying' the page and buffer cache and SMP-threaded the 53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 54 * 55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 56 */ 57 58 /* 59 * Lock ordering: 60 * 61 * ->i_mmap_lock (truncate_pagecache) 62 * ->private_lock (__free_pte->__set_page_dirty_buffers) 63 * ->swap_lock (exclusive_swap_page, others) 64 * ->mapping->tree_lock 65 * 66 * ->i_mutex 67 * ->i_mmap_lock (truncate->unmap_mapping_range) 68 * 69 * ->mmap_sem 70 * ->i_mmap_lock 71 * ->page_table_lock or pte_lock (various, mainly in memory.c) 72 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) 73 * 74 * ->mmap_sem 75 * ->lock_page (access_process_vm) 76 * 77 * ->i_mutex (generic_file_buffered_write) 78 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 79 * 80 * ->i_mutex 81 * ->i_alloc_sem (various) 82 * 83 * ->inode_lock 84 * ->sb_lock (fs/fs-writeback.c) 85 * ->mapping->tree_lock (__sync_single_inode) 86 * 87 * ->i_mmap_lock 88 * ->anon_vma.lock (vma_adjust) 89 * 90 * ->anon_vma.lock 91 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 92 * 93 * ->page_table_lock or pte_lock 94 * ->swap_lock (try_to_unmap_one) 95 * ->private_lock (try_to_unmap_one) 96 * ->tree_lock (try_to_unmap_one) 97 * ->zone.lru_lock (follow_page->mark_page_accessed) 98 * ->zone.lru_lock (check_pte_range->isolate_lru_page) 99 * ->private_lock (page_remove_rmap->set_page_dirty) 100 * ->tree_lock (page_remove_rmap->set_page_dirty) 101 * ->inode_lock (page_remove_rmap->set_page_dirty) 102 * ->inode_lock (zap_pte_range->set_page_dirty) 103 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 104 * 105 * ->task->proc_lock 106 * ->dcache_lock (proc_pid_lookup) 107 * 108 * (code doesn't rely on that order, so you could switch it around) 109 * ->tasklist_lock (memory_failure, collect_procs_ao) 110 * ->i_mmap_lock 111 */ 112 113 /* 114 * Remove a page from the page cache and free it. Caller has to make 115 * sure the page is locked and that nobody else uses it - or that usage 116 * is safe. The caller must hold the mapping's tree_lock. 117 */ 118 void __remove_from_page_cache(struct page *page) 119 { 120 struct address_space *mapping = page->mapping; 121 122 radix_tree_delete(&mapping->page_tree, page->index); 123 page->mapping = NULL; 124 mapping->nrpages--; 125 __dec_zone_page_state(page, NR_FILE_PAGES); 126 if (PageSwapBacked(page)) 127 __dec_zone_page_state(page, NR_SHMEM); 128 BUG_ON(page_mapped(page)); 129 130 /* 131 * Some filesystems seem to re-dirty the page even after 132 * the VM has canceled the dirty bit (eg ext3 journaling). 133 * 134 * Fix it up by doing a final dirty accounting check after 135 * having removed the page entirely. 136 */ 137 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) { 138 dec_zone_page_state(page, NR_FILE_DIRTY); 139 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); 140 } 141 } 142 143 void remove_from_page_cache(struct page *page) 144 { 145 struct address_space *mapping = page->mapping; 146 147 BUG_ON(!PageLocked(page)); 148 149 spin_lock_irq(&mapping->tree_lock); 150 __remove_from_page_cache(page); 151 spin_unlock_irq(&mapping->tree_lock); 152 mem_cgroup_uncharge_cache_page(page); 153 } 154 EXPORT_SYMBOL(remove_from_page_cache); 155 156 static int sync_page(void *word) 157 { 158 struct address_space *mapping; 159 struct page *page; 160 161 page = container_of((unsigned long *)word, struct page, flags); 162 163 /* 164 * page_mapping() is being called without PG_locked held. 165 * Some knowledge of the state and use of the page is used to 166 * reduce the requirements down to a memory barrier. 167 * The danger here is of a stale page_mapping() return value 168 * indicating a struct address_space different from the one it's 169 * associated with when it is associated with one. 170 * After smp_mb(), it's either the correct page_mapping() for 171 * the page, or an old page_mapping() and the page's own 172 * page_mapping() has gone NULL. 173 * The ->sync_page() address_space operation must tolerate 174 * page_mapping() going NULL. By an amazing coincidence, 175 * this comes about because none of the users of the page 176 * in the ->sync_page() methods make essential use of the 177 * page_mapping(), merely passing the page down to the backing 178 * device's unplug functions when it's non-NULL, which in turn 179 * ignore it for all cases but swap, where only page_private(page) is 180 * of interest. When page_mapping() does go NULL, the entire 181 * call stack gracefully ignores the page and returns. 182 * -- wli 183 */ 184 smp_mb(); 185 mapping = page_mapping(page); 186 if (mapping && mapping->a_ops && mapping->a_ops->sync_page) 187 mapping->a_ops->sync_page(page); 188 io_schedule(); 189 return 0; 190 } 191 192 static int sync_page_killable(void *word) 193 { 194 sync_page(word); 195 return fatal_signal_pending(current) ? -EINTR : 0; 196 } 197 198 /** 199 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 200 * @mapping: address space structure to write 201 * @start: offset in bytes where the range starts 202 * @end: offset in bytes where the range ends (inclusive) 203 * @sync_mode: enable synchronous operation 204 * 205 * Start writeback against all of a mapping's dirty pages that lie 206 * within the byte offsets <start, end> inclusive. 207 * 208 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 209 * opposed to a regular memory cleansing writeback. The difference between 210 * these two operations is that if a dirty page/buffer is encountered, it must 211 * be waited upon, and not just skipped over. 212 */ 213 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 214 loff_t end, int sync_mode) 215 { 216 int ret; 217 struct writeback_control wbc = { 218 .sync_mode = sync_mode, 219 .nr_to_write = LONG_MAX, 220 .range_start = start, 221 .range_end = end, 222 }; 223 224 if (!mapping_cap_writeback_dirty(mapping)) 225 return 0; 226 227 ret = do_writepages(mapping, &wbc); 228 return ret; 229 } 230 231 static inline int __filemap_fdatawrite(struct address_space *mapping, 232 int sync_mode) 233 { 234 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 235 } 236 237 int filemap_fdatawrite(struct address_space *mapping) 238 { 239 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 240 } 241 EXPORT_SYMBOL(filemap_fdatawrite); 242 243 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 244 loff_t end) 245 { 246 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 247 } 248 EXPORT_SYMBOL(filemap_fdatawrite_range); 249 250 /** 251 * filemap_flush - mostly a non-blocking flush 252 * @mapping: target address_space 253 * 254 * This is a mostly non-blocking flush. Not suitable for data-integrity 255 * purposes - I/O may not be started against all dirty pages. 256 */ 257 int filemap_flush(struct address_space *mapping) 258 { 259 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 260 } 261 EXPORT_SYMBOL(filemap_flush); 262 263 /** 264 * filemap_fdatawait_range - wait for writeback to complete 265 * @mapping: address space structure to wait for 266 * @start_byte: offset in bytes where the range starts 267 * @end_byte: offset in bytes where the range ends (inclusive) 268 * 269 * Walk the list of under-writeback pages of the given address space 270 * in the given range and wait for all of them. 271 */ 272 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 273 loff_t end_byte) 274 { 275 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT; 276 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT; 277 struct pagevec pvec; 278 int nr_pages; 279 int ret = 0; 280 281 if (end_byte < start_byte) 282 return 0; 283 284 pagevec_init(&pvec, 0); 285 while ((index <= end) && 286 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 287 PAGECACHE_TAG_WRITEBACK, 288 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { 289 unsigned i; 290 291 for (i = 0; i < nr_pages; i++) { 292 struct page *page = pvec.pages[i]; 293 294 /* until radix tree lookup accepts end_index */ 295 if (page->index > end) 296 continue; 297 298 wait_on_page_writeback(page); 299 if (PageError(page)) 300 ret = -EIO; 301 } 302 pagevec_release(&pvec); 303 cond_resched(); 304 } 305 306 /* Check for outstanding write errors */ 307 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 308 ret = -ENOSPC; 309 if (test_and_clear_bit(AS_EIO, &mapping->flags)) 310 ret = -EIO; 311 312 return ret; 313 } 314 EXPORT_SYMBOL(filemap_fdatawait_range); 315 316 /** 317 * filemap_fdatawait - wait for all under-writeback pages to complete 318 * @mapping: address space structure to wait for 319 * 320 * Walk the list of under-writeback pages of the given address space 321 * and wait for all of them. 322 */ 323 int filemap_fdatawait(struct address_space *mapping) 324 { 325 loff_t i_size = i_size_read(mapping->host); 326 327 if (i_size == 0) 328 return 0; 329 330 return filemap_fdatawait_range(mapping, 0, i_size - 1); 331 } 332 EXPORT_SYMBOL(filemap_fdatawait); 333 334 int filemap_write_and_wait(struct address_space *mapping) 335 { 336 int err = 0; 337 338 if (mapping->nrpages) { 339 err = filemap_fdatawrite(mapping); 340 /* 341 * Even if the above returned error, the pages may be 342 * written partially (e.g. -ENOSPC), so we wait for it. 343 * But the -EIO is special case, it may indicate the worst 344 * thing (e.g. bug) happened, so we avoid waiting for it. 345 */ 346 if (err != -EIO) { 347 int err2 = filemap_fdatawait(mapping); 348 if (!err) 349 err = err2; 350 } 351 } 352 return err; 353 } 354 EXPORT_SYMBOL(filemap_write_and_wait); 355 356 /** 357 * filemap_write_and_wait_range - write out & wait on a file range 358 * @mapping: the address_space for the pages 359 * @lstart: offset in bytes where the range starts 360 * @lend: offset in bytes where the range ends (inclusive) 361 * 362 * Write out and wait upon file offsets lstart->lend, inclusive. 363 * 364 * Note that `lend' is inclusive (describes the last byte to be written) so 365 * that this function can be used to write to the very end-of-file (end = -1). 366 */ 367 int filemap_write_and_wait_range(struct address_space *mapping, 368 loff_t lstart, loff_t lend) 369 { 370 int err = 0; 371 372 if (mapping->nrpages) { 373 err = __filemap_fdatawrite_range(mapping, lstart, lend, 374 WB_SYNC_ALL); 375 /* See comment of filemap_write_and_wait() */ 376 if (err != -EIO) { 377 int err2 = filemap_fdatawait_range(mapping, 378 lstart, lend); 379 if (!err) 380 err = err2; 381 } 382 } 383 return err; 384 } 385 EXPORT_SYMBOL(filemap_write_and_wait_range); 386 387 /** 388 * add_to_page_cache_locked - add a locked page to the pagecache 389 * @page: page to add 390 * @mapping: the page's address_space 391 * @offset: page index 392 * @gfp_mask: page allocation mode 393 * 394 * This function is used to add a page to the pagecache. It must be locked. 395 * This function does not add the page to the LRU. The caller must do that. 396 */ 397 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 398 pgoff_t offset, gfp_t gfp_mask) 399 { 400 int error; 401 402 VM_BUG_ON(!PageLocked(page)); 403 404 error = mem_cgroup_cache_charge(page, current->mm, 405 gfp_mask & GFP_RECLAIM_MASK); 406 if (error) 407 goto out; 408 409 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 410 if (error == 0) { 411 page_cache_get(page); 412 page->mapping = mapping; 413 page->index = offset; 414 415 spin_lock_irq(&mapping->tree_lock); 416 error = radix_tree_insert(&mapping->page_tree, offset, page); 417 if (likely(!error)) { 418 mapping->nrpages++; 419 __inc_zone_page_state(page, NR_FILE_PAGES); 420 if (PageSwapBacked(page)) 421 __inc_zone_page_state(page, NR_SHMEM); 422 spin_unlock_irq(&mapping->tree_lock); 423 } else { 424 page->mapping = NULL; 425 spin_unlock_irq(&mapping->tree_lock); 426 mem_cgroup_uncharge_cache_page(page); 427 page_cache_release(page); 428 } 429 radix_tree_preload_end(); 430 } else 431 mem_cgroup_uncharge_cache_page(page); 432 out: 433 return error; 434 } 435 EXPORT_SYMBOL(add_to_page_cache_locked); 436 437 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 438 pgoff_t offset, gfp_t gfp_mask) 439 { 440 int ret; 441 442 /* 443 * Splice_read and readahead add shmem/tmpfs pages into the page cache 444 * before shmem_readpage has a chance to mark them as SwapBacked: they 445 * need to go on the anon lru below, and mem_cgroup_cache_charge 446 * (called in add_to_page_cache) needs to know where they're going too. 447 */ 448 if (mapping_cap_swap_backed(mapping)) 449 SetPageSwapBacked(page); 450 451 ret = add_to_page_cache(page, mapping, offset, gfp_mask); 452 if (ret == 0) { 453 if (page_is_file_cache(page)) 454 lru_cache_add_file(page); 455 else 456 lru_cache_add_anon(page); 457 } 458 return ret; 459 } 460 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 461 462 #ifdef CONFIG_NUMA 463 struct page *__page_cache_alloc(gfp_t gfp) 464 { 465 int n; 466 struct page *page; 467 468 if (cpuset_do_page_mem_spread()) { 469 get_mems_allowed(); 470 n = cpuset_mem_spread_node(); 471 page = alloc_pages_exact_node(n, gfp, 0); 472 put_mems_allowed(); 473 return page; 474 } 475 return alloc_pages(gfp, 0); 476 } 477 EXPORT_SYMBOL(__page_cache_alloc); 478 #endif 479 480 static int __sleep_on_page_lock(void *word) 481 { 482 io_schedule(); 483 return 0; 484 } 485 486 /* 487 * In order to wait for pages to become available there must be 488 * waitqueues associated with pages. By using a hash table of 489 * waitqueues where the bucket discipline is to maintain all 490 * waiters on the same queue and wake all when any of the pages 491 * become available, and for the woken contexts to check to be 492 * sure the appropriate page became available, this saves space 493 * at a cost of "thundering herd" phenomena during rare hash 494 * collisions. 495 */ 496 static wait_queue_head_t *page_waitqueue(struct page *page) 497 { 498 const struct zone *zone = page_zone(page); 499 500 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)]; 501 } 502 503 static inline void wake_up_page(struct page *page, int bit) 504 { 505 __wake_up_bit(page_waitqueue(page), &page->flags, bit); 506 } 507 508 void wait_on_page_bit(struct page *page, int bit_nr) 509 { 510 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 511 512 if (test_bit(bit_nr, &page->flags)) 513 __wait_on_bit(page_waitqueue(page), &wait, sync_page, 514 TASK_UNINTERRUPTIBLE); 515 } 516 EXPORT_SYMBOL(wait_on_page_bit); 517 518 /** 519 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 520 * @page: Page defining the wait queue of interest 521 * @waiter: Waiter to add to the queue 522 * 523 * Add an arbitrary @waiter to the wait queue for the nominated @page. 524 */ 525 void add_page_wait_queue(struct page *page, wait_queue_t *waiter) 526 { 527 wait_queue_head_t *q = page_waitqueue(page); 528 unsigned long flags; 529 530 spin_lock_irqsave(&q->lock, flags); 531 __add_wait_queue(q, waiter); 532 spin_unlock_irqrestore(&q->lock, flags); 533 } 534 EXPORT_SYMBOL_GPL(add_page_wait_queue); 535 536 /** 537 * unlock_page - unlock a locked page 538 * @page: the page 539 * 540 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 541 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 542 * mechananism between PageLocked pages and PageWriteback pages is shared. 543 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 544 * 545 * The mb is necessary to enforce ordering between the clear_bit and the read 546 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()). 547 */ 548 void unlock_page(struct page *page) 549 { 550 VM_BUG_ON(!PageLocked(page)); 551 clear_bit_unlock(PG_locked, &page->flags); 552 smp_mb__after_clear_bit(); 553 wake_up_page(page, PG_locked); 554 } 555 EXPORT_SYMBOL(unlock_page); 556 557 /** 558 * end_page_writeback - end writeback against a page 559 * @page: the page 560 */ 561 void end_page_writeback(struct page *page) 562 { 563 if (TestClearPageReclaim(page)) 564 rotate_reclaimable_page(page); 565 566 if (!test_clear_page_writeback(page)) 567 BUG(); 568 569 smp_mb__after_clear_bit(); 570 wake_up_page(page, PG_writeback); 571 } 572 EXPORT_SYMBOL(end_page_writeback); 573 574 /** 575 * __lock_page - get a lock on the page, assuming we need to sleep to get it 576 * @page: the page to lock 577 * 578 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some 579 * random driver's requestfn sets TASK_RUNNING, we could busywait. However 580 * chances are that on the second loop, the block layer's plug list is empty, 581 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE. 582 */ 583 void __lock_page(struct page *page) 584 { 585 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 586 587 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page, 588 TASK_UNINTERRUPTIBLE); 589 } 590 EXPORT_SYMBOL(__lock_page); 591 592 int __lock_page_killable(struct page *page) 593 { 594 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 595 596 return __wait_on_bit_lock(page_waitqueue(page), &wait, 597 sync_page_killable, TASK_KILLABLE); 598 } 599 EXPORT_SYMBOL_GPL(__lock_page_killable); 600 601 /** 602 * __lock_page_nosync - get a lock on the page, without calling sync_page() 603 * @page: the page to lock 604 * 605 * Variant of lock_page that does not require the caller to hold a reference 606 * on the page's mapping. 607 */ 608 void __lock_page_nosync(struct page *page) 609 { 610 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 611 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock, 612 TASK_UNINTERRUPTIBLE); 613 } 614 615 int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 616 unsigned int flags) 617 { 618 if (!(flags & FAULT_FLAG_ALLOW_RETRY)) { 619 __lock_page(page); 620 return 1; 621 } else { 622 up_read(&mm->mmap_sem); 623 wait_on_page_locked(page); 624 return 0; 625 } 626 } 627 628 /** 629 * find_get_page - find and get a page reference 630 * @mapping: the address_space to search 631 * @offset: the page index 632 * 633 * Is there a pagecache struct page at the given (mapping, offset) tuple? 634 * If yes, increment its refcount and return it; if no, return NULL. 635 */ 636 struct page *find_get_page(struct address_space *mapping, pgoff_t offset) 637 { 638 void **pagep; 639 struct page *page; 640 641 rcu_read_lock(); 642 repeat: 643 page = NULL; 644 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset); 645 if (pagep) { 646 page = radix_tree_deref_slot(pagep); 647 if (unlikely(!page || page == RADIX_TREE_RETRY)) 648 goto repeat; 649 650 if (!page_cache_get_speculative(page)) 651 goto repeat; 652 653 /* 654 * Has the page moved? 655 * This is part of the lockless pagecache protocol. See 656 * include/linux/pagemap.h for details. 657 */ 658 if (unlikely(page != *pagep)) { 659 page_cache_release(page); 660 goto repeat; 661 } 662 } 663 rcu_read_unlock(); 664 665 return page; 666 } 667 EXPORT_SYMBOL(find_get_page); 668 669 /** 670 * find_lock_page - locate, pin and lock a pagecache page 671 * @mapping: the address_space to search 672 * @offset: the page index 673 * 674 * Locates the desired pagecache page, locks it, increments its reference 675 * count and returns its address. 676 * 677 * Returns zero if the page was not present. find_lock_page() may sleep. 678 */ 679 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset) 680 { 681 struct page *page; 682 683 repeat: 684 page = find_get_page(mapping, offset); 685 if (page) { 686 lock_page(page); 687 /* Has the page been truncated? */ 688 if (unlikely(page->mapping != mapping)) { 689 unlock_page(page); 690 page_cache_release(page); 691 goto repeat; 692 } 693 VM_BUG_ON(page->index != offset); 694 } 695 return page; 696 } 697 EXPORT_SYMBOL(find_lock_page); 698 699 /** 700 * find_or_create_page - locate or add a pagecache page 701 * @mapping: the page's address_space 702 * @index: the page's index into the mapping 703 * @gfp_mask: page allocation mode 704 * 705 * Locates a page in the pagecache. If the page is not present, a new page 706 * is allocated using @gfp_mask and is added to the pagecache and to the VM's 707 * LRU list. The returned page is locked and has its reference count 708 * incremented. 709 * 710 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic 711 * allocation! 712 * 713 * find_or_create_page() returns the desired page's address, or zero on 714 * memory exhaustion. 715 */ 716 struct page *find_or_create_page(struct address_space *mapping, 717 pgoff_t index, gfp_t gfp_mask) 718 { 719 struct page *page; 720 int err; 721 repeat: 722 page = find_lock_page(mapping, index); 723 if (!page) { 724 page = __page_cache_alloc(gfp_mask); 725 if (!page) 726 return NULL; 727 /* 728 * We want a regular kernel memory (not highmem or DMA etc) 729 * allocation for the radix tree nodes, but we need to honour 730 * the context-specific requirements the caller has asked for. 731 * GFP_RECLAIM_MASK collects those requirements. 732 */ 733 err = add_to_page_cache_lru(page, mapping, index, 734 (gfp_mask & GFP_RECLAIM_MASK)); 735 if (unlikely(err)) { 736 page_cache_release(page); 737 page = NULL; 738 if (err == -EEXIST) 739 goto repeat; 740 } 741 } 742 return page; 743 } 744 EXPORT_SYMBOL(find_or_create_page); 745 746 /** 747 * find_get_pages - gang pagecache lookup 748 * @mapping: The address_space to search 749 * @start: The starting page index 750 * @nr_pages: The maximum number of pages 751 * @pages: Where the resulting pages are placed 752 * 753 * find_get_pages() will search for and return a group of up to 754 * @nr_pages pages in the mapping. The pages are placed at @pages. 755 * find_get_pages() takes a reference against the returned pages. 756 * 757 * The search returns a group of mapping-contiguous pages with ascending 758 * indexes. There may be holes in the indices due to not-present pages. 759 * 760 * find_get_pages() returns the number of pages which were found. 761 */ 762 unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 763 unsigned int nr_pages, struct page **pages) 764 { 765 unsigned int i; 766 unsigned int ret; 767 unsigned int nr_found; 768 769 rcu_read_lock(); 770 restart: 771 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree, 772 (void ***)pages, start, nr_pages); 773 ret = 0; 774 for (i = 0; i < nr_found; i++) { 775 struct page *page; 776 repeat: 777 page = radix_tree_deref_slot((void **)pages[i]); 778 if (unlikely(!page)) 779 continue; 780 /* 781 * this can only trigger if nr_found == 1, making livelock 782 * a non issue. 783 */ 784 if (unlikely(page == RADIX_TREE_RETRY)) 785 goto restart; 786 787 if (!page_cache_get_speculative(page)) 788 goto repeat; 789 790 /* Has the page moved? */ 791 if (unlikely(page != *((void **)pages[i]))) { 792 page_cache_release(page); 793 goto repeat; 794 } 795 796 pages[ret] = page; 797 ret++; 798 } 799 rcu_read_unlock(); 800 return ret; 801 } 802 803 /** 804 * find_get_pages_contig - gang contiguous pagecache lookup 805 * @mapping: The address_space to search 806 * @index: The starting page index 807 * @nr_pages: The maximum number of pages 808 * @pages: Where the resulting pages are placed 809 * 810 * find_get_pages_contig() works exactly like find_get_pages(), except 811 * that the returned number of pages are guaranteed to be contiguous. 812 * 813 * find_get_pages_contig() returns the number of pages which were found. 814 */ 815 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 816 unsigned int nr_pages, struct page **pages) 817 { 818 unsigned int i; 819 unsigned int ret; 820 unsigned int nr_found; 821 822 rcu_read_lock(); 823 restart: 824 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree, 825 (void ***)pages, index, nr_pages); 826 ret = 0; 827 for (i = 0; i < nr_found; i++) { 828 struct page *page; 829 repeat: 830 page = radix_tree_deref_slot((void **)pages[i]); 831 if (unlikely(!page)) 832 continue; 833 /* 834 * this can only trigger if nr_found == 1, making livelock 835 * a non issue. 836 */ 837 if (unlikely(page == RADIX_TREE_RETRY)) 838 goto restart; 839 840 if (page->mapping == NULL || page->index != index) 841 break; 842 843 if (!page_cache_get_speculative(page)) 844 goto repeat; 845 846 /* Has the page moved? */ 847 if (unlikely(page != *((void **)pages[i]))) { 848 page_cache_release(page); 849 goto repeat; 850 } 851 852 pages[ret] = page; 853 ret++; 854 index++; 855 } 856 rcu_read_unlock(); 857 return ret; 858 } 859 EXPORT_SYMBOL(find_get_pages_contig); 860 861 /** 862 * find_get_pages_tag - find and return pages that match @tag 863 * @mapping: the address_space to search 864 * @index: the starting page index 865 * @tag: the tag index 866 * @nr_pages: the maximum number of pages 867 * @pages: where the resulting pages are placed 868 * 869 * Like find_get_pages, except we only return pages which are tagged with 870 * @tag. We update @index to index the next page for the traversal. 871 */ 872 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 873 int tag, unsigned int nr_pages, struct page **pages) 874 { 875 unsigned int i; 876 unsigned int ret; 877 unsigned int nr_found; 878 879 rcu_read_lock(); 880 restart: 881 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree, 882 (void ***)pages, *index, nr_pages, tag); 883 ret = 0; 884 for (i = 0; i < nr_found; i++) { 885 struct page *page; 886 repeat: 887 page = radix_tree_deref_slot((void **)pages[i]); 888 if (unlikely(!page)) 889 continue; 890 /* 891 * this can only trigger if nr_found == 1, making livelock 892 * a non issue. 893 */ 894 if (unlikely(page == RADIX_TREE_RETRY)) 895 goto restart; 896 897 if (!page_cache_get_speculative(page)) 898 goto repeat; 899 900 /* Has the page moved? */ 901 if (unlikely(page != *((void **)pages[i]))) { 902 page_cache_release(page); 903 goto repeat; 904 } 905 906 pages[ret] = page; 907 ret++; 908 } 909 rcu_read_unlock(); 910 911 if (ret) 912 *index = pages[ret - 1]->index + 1; 913 914 return ret; 915 } 916 EXPORT_SYMBOL(find_get_pages_tag); 917 918 /** 919 * grab_cache_page_nowait - returns locked page at given index in given cache 920 * @mapping: target address_space 921 * @index: the page index 922 * 923 * Same as grab_cache_page(), but do not wait if the page is unavailable. 924 * This is intended for speculative data generators, where the data can 925 * be regenerated if the page couldn't be grabbed. This routine should 926 * be safe to call while holding the lock for another page. 927 * 928 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 929 * and deadlock against the caller's locked page. 930 */ 931 struct page * 932 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index) 933 { 934 struct page *page = find_get_page(mapping, index); 935 936 if (page) { 937 if (trylock_page(page)) 938 return page; 939 page_cache_release(page); 940 return NULL; 941 } 942 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS); 943 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) { 944 page_cache_release(page); 945 page = NULL; 946 } 947 return page; 948 } 949 EXPORT_SYMBOL(grab_cache_page_nowait); 950 951 /* 952 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 953 * a _large_ part of the i/o request. Imagine the worst scenario: 954 * 955 * ---R__________________________________________B__________ 956 * ^ reading here ^ bad block(assume 4k) 957 * 958 * read(R) => miss => readahead(R...B) => media error => frustrating retries 959 * => failing the whole request => read(R) => read(R+1) => 960 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 961 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 962 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 963 * 964 * It is going insane. Fix it by quickly scaling down the readahead size. 965 */ 966 static void shrink_readahead_size_eio(struct file *filp, 967 struct file_ra_state *ra) 968 { 969 ra->ra_pages /= 4; 970 } 971 972 /** 973 * do_generic_file_read - generic file read routine 974 * @filp: the file to read 975 * @ppos: current file position 976 * @desc: read_descriptor 977 * @actor: read method 978 * 979 * This is a generic file read routine, and uses the 980 * mapping->a_ops->readpage() function for the actual low-level stuff. 981 * 982 * This is really ugly. But the goto's actually try to clarify some 983 * of the logic when it comes to error handling etc. 984 */ 985 static void do_generic_file_read(struct file *filp, loff_t *ppos, 986 read_descriptor_t *desc, read_actor_t actor) 987 { 988 struct address_space *mapping = filp->f_mapping; 989 struct inode *inode = mapping->host; 990 struct file_ra_state *ra = &filp->f_ra; 991 pgoff_t index; 992 pgoff_t last_index; 993 pgoff_t prev_index; 994 unsigned long offset; /* offset into pagecache page */ 995 unsigned int prev_offset; 996 int error; 997 998 index = *ppos >> PAGE_CACHE_SHIFT; 999 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT; 1000 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1); 1001 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; 1002 offset = *ppos & ~PAGE_CACHE_MASK; 1003 1004 for (;;) { 1005 struct page *page; 1006 pgoff_t end_index; 1007 loff_t isize; 1008 unsigned long nr, ret; 1009 1010 cond_resched(); 1011 find_page: 1012 page = find_get_page(mapping, index); 1013 if (!page) { 1014 page_cache_sync_readahead(mapping, 1015 ra, filp, 1016 index, last_index - index); 1017 page = find_get_page(mapping, index); 1018 if (unlikely(page == NULL)) 1019 goto no_cached_page; 1020 } 1021 if (PageReadahead(page)) { 1022 page_cache_async_readahead(mapping, 1023 ra, filp, page, 1024 index, last_index - index); 1025 } 1026 if (!PageUptodate(page)) { 1027 if (inode->i_blkbits == PAGE_CACHE_SHIFT || 1028 !mapping->a_ops->is_partially_uptodate) 1029 goto page_not_up_to_date; 1030 if (!trylock_page(page)) 1031 goto page_not_up_to_date; 1032 if (!mapping->a_ops->is_partially_uptodate(page, 1033 desc, offset)) 1034 goto page_not_up_to_date_locked; 1035 unlock_page(page); 1036 } 1037 page_ok: 1038 /* 1039 * i_size must be checked after we know the page is Uptodate. 1040 * 1041 * Checking i_size after the check allows us to calculate 1042 * the correct value for "nr", which means the zero-filled 1043 * part of the page is not copied back to userspace (unless 1044 * another truncate extends the file - this is desired though). 1045 */ 1046 1047 isize = i_size_read(inode); 1048 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1049 if (unlikely(!isize || index > end_index)) { 1050 page_cache_release(page); 1051 goto out; 1052 } 1053 1054 /* nr is the maximum number of bytes to copy from this page */ 1055 nr = PAGE_CACHE_SIZE; 1056 if (index == end_index) { 1057 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 1058 if (nr <= offset) { 1059 page_cache_release(page); 1060 goto out; 1061 } 1062 } 1063 nr = nr - offset; 1064 1065 /* If users can be writing to this page using arbitrary 1066 * virtual addresses, take care about potential aliasing 1067 * before reading the page on the kernel side. 1068 */ 1069 if (mapping_writably_mapped(mapping)) 1070 flush_dcache_page(page); 1071 1072 /* 1073 * When a sequential read accesses a page several times, 1074 * only mark it as accessed the first time. 1075 */ 1076 if (prev_index != index || offset != prev_offset) 1077 mark_page_accessed(page); 1078 prev_index = index; 1079 1080 /* 1081 * Ok, we have the page, and it's up-to-date, so 1082 * now we can copy it to user space... 1083 * 1084 * The actor routine returns how many bytes were actually used.. 1085 * NOTE! This may not be the same as how much of a user buffer 1086 * we filled up (we may be padding etc), so we can only update 1087 * "pos" here (the actor routine has to update the user buffer 1088 * pointers and the remaining count). 1089 */ 1090 ret = actor(desc, page, offset, nr); 1091 offset += ret; 1092 index += offset >> PAGE_CACHE_SHIFT; 1093 offset &= ~PAGE_CACHE_MASK; 1094 prev_offset = offset; 1095 1096 page_cache_release(page); 1097 if (ret == nr && desc->count) 1098 continue; 1099 goto out; 1100 1101 page_not_up_to_date: 1102 /* Get exclusive access to the page ... */ 1103 error = lock_page_killable(page); 1104 if (unlikely(error)) 1105 goto readpage_error; 1106 1107 page_not_up_to_date_locked: 1108 /* Did it get truncated before we got the lock? */ 1109 if (!page->mapping) { 1110 unlock_page(page); 1111 page_cache_release(page); 1112 continue; 1113 } 1114 1115 /* Did somebody else fill it already? */ 1116 if (PageUptodate(page)) { 1117 unlock_page(page); 1118 goto page_ok; 1119 } 1120 1121 readpage: 1122 /* 1123 * A previous I/O error may have been due to temporary 1124 * failures, eg. multipath errors. 1125 * PG_error will be set again if readpage fails. 1126 */ 1127 ClearPageError(page); 1128 /* Start the actual read. The read will unlock the page. */ 1129 error = mapping->a_ops->readpage(filp, page); 1130 1131 if (unlikely(error)) { 1132 if (error == AOP_TRUNCATED_PAGE) { 1133 page_cache_release(page); 1134 goto find_page; 1135 } 1136 goto readpage_error; 1137 } 1138 1139 if (!PageUptodate(page)) { 1140 error = lock_page_killable(page); 1141 if (unlikely(error)) 1142 goto readpage_error; 1143 if (!PageUptodate(page)) { 1144 if (page->mapping == NULL) { 1145 /* 1146 * invalidate_mapping_pages got it 1147 */ 1148 unlock_page(page); 1149 page_cache_release(page); 1150 goto find_page; 1151 } 1152 unlock_page(page); 1153 shrink_readahead_size_eio(filp, ra); 1154 error = -EIO; 1155 goto readpage_error; 1156 } 1157 unlock_page(page); 1158 } 1159 1160 goto page_ok; 1161 1162 readpage_error: 1163 /* UHHUH! A synchronous read error occurred. Report it */ 1164 desc->error = error; 1165 page_cache_release(page); 1166 goto out; 1167 1168 no_cached_page: 1169 /* 1170 * Ok, it wasn't cached, so we need to create a new 1171 * page.. 1172 */ 1173 page = page_cache_alloc_cold(mapping); 1174 if (!page) { 1175 desc->error = -ENOMEM; 1176 goto out; 1177 } 1178 error = add_to_page_cache_lru(page, mapping, 1179 index, GFP_KERNEL); 1180 if (error) { 1181 page_cache_release(page); 1182 if (error == -EEXIST) 1183 goto find_page; 1184 desc->error = error; 1185 goto out; 1186 } 1187 goto readpage; 1188 } 1189 1190 out: 1191 ra->prev_pos = prev_index; 1192 ra->prev_pos <<= PAGE_CACHE_SHIFT; 1193 ra->prev_pos |= prev_offset; 1194 1195 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset; 1196 file_accessed(filp); 1197 } 1198 1199 int file_read_actor(read_descriptor_t *desc, struct page *page, 1200 unsigned long offset, unsigned long size) 1201 { 1202 char *kaddr; 1203 unsigned long left, count = desc->count; 1204 1205 if (size > count) 1206 size = count; 1207 1208 /* 1209 * Faults on the destination of a read are common, so do it before 1210 * taking the kmap. 1211 */ 1212 if (!fault_in_pages_writeable(desc->arg.buf, size)) { 1213 kaddr = kmap_atomic(page, KM_USER0); 1214 left = __copy_to_user_inatomic(desc->arg.buf, 1215 kaddr + offset, size); 1216 kunmap_atomic(kaddr, KM_USER0); 1217 if (left == 0) 1218 goto success; 1219 } 1220 1221 /* Do it the slow way */ 1222 kaddr = kmap(page); 1223 left = __copy_to_user(desc->arg.buf, kaddr + offset, size); 1224 kunmap(page); 1225 1226 if (left) { 1227 size -= left; 1228 desc->error = -EFAULT; 1229 } 1230 success: 1231 desc->count = count - size; 1232 desc->written += size; 1233 desc->arg.buf += size; 1234 return size; 1235 } 1236 1237 /* 1238 * Performs necessary checks before doing a write 1239 * @iov: io vector request 1240 * @nr_segs: number of segments in the iovec 1241 * @count: number of bytes to write 1242 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE 1243 * 1244 * Adjust number of segments and amount of bytes to write (nr_segs should be 1245 * properly initialized first). Returns appropriate error code that caller 1246 * should return or zero in case that write should be allowed. 1247 */ 1248 int generic_segment_checks(const struct iovec *iov, 1249 unsigned long *nr_segs, size_t *count, int access_flags) 1250 { 1251 unsigned long seg; 1252 size_t cnt = 0; 1253 for (seg = 0; seg < *nr_segs; seg++) { 1254 const struct iovec *iv = &iov[seg]; 1255 1256 /* 1257 * If any segment has a negative length, or the cumulative 1258 * length ever wraps negative then return -EINVAL. 1259 */ 1260 cnt += iv->iov_len; 1261 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0)) 1262 return -EINVAL; 1263 if (access_ok(access_flags, iv->iov_base, iv->iov_len)) 1264 continue; 1265 if (seg == 0) 1266 return -EFAULT; 1267 *nr_segs = seg; 1268 cnt -= iv->iov_len; /* This segment is no good */ 1269 break; 1270 } 1271 *count = cnt; 1272 return 0; 1273 } 1274 EXPORT_SYMBOL(generic_segment_checks); 1275 1276 /** 1277 * generic_file_aio_read - generic filesystem read routine 1278 * @iocb: kernel I/O control block 1279 * @iov: io vector request 1280 * @nr_segs: number of segments in the iovec 1281 * @pos: current file position 1282 * 1283 * This is the "read()" routine for all filesystems 1284 * that can use the page cache directly. 1285 */ 1286 ssize_t 1287 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov, 1288 unsigned long nr_segs, loff_t pos) 1289 { 1290 struct file *filp = iocb->ki_filp; 1291 ssize_t retval; 1292 unsigned long seg = 0; 1293 size_t count; 1294 loff_t *ppos = &iocb->ki_pos; 1295 1296 count = 0; 1297 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE); 1298 if (retval) 1299 return retval; 1300 1301 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 1302 if (filp->f_flags & O_DIRECT) { 1303 loff_t size; 1304 struct address_space *mapping; 1305 struct inode *inode; 1306 1307 mapping = filp->f_mapping; 1308 inode = mapping->host; 1309 if (!count) 1310 goto out; /* skip atime */ 1311 size = i_size_read(inode); 1312 if (pos < size) { 1313 retval = filemap_write_and_wait_range(mapping, pos, 1314 pos + iov_length(iov, nr_segs) - 1); 1315 if (!retval) { 1316 retval = mapping->a_ops->direct_IO(READ, iocb, 1317 iov, pos, nr_segs); 1318 } 1319 if (retval > 0) { 1320 *ppos = pos + retval; 1321 count -= retval; 1322 } 1323 1324 /* 1325 * Btrfs can have a short DIO read if we encounter 1326 * compressed extents, so if there was an error, or if 1327 * we've already read everything we wanted to, or if 1328 * there was a short read because we hit EOF, go ahead 1329 * and return. Otherwise fallthrough to buffered io for 1330 * the rest of the read. 1331 */ 1332 if (retval < 0 || !count || *ppos >= size) { 1333 file_accessed(filp); 1334 goto out; 1335 } 1336 } 1337 } 1338 1339 count = retval; 1340 for (seg = 0; seg < nr_segs; seg++) { 1341 read_descriptor_t desc; 1342 loff_t offset = 0; 1343 1344 /* 1345 * If we did a short DIO read we need to skip the section of the 1346 * iov that we've already read data into. 1347 */ 1348 if (count) { 1349 if (count > iov[seg].iov_len) { 1350 count -= iov[seg].iov_len; 1351 continue; 1352 } 1353 offset = count; 1354 count = 0; 1355 } 1356 1357 desc.written = 0; 1358 desc.arg.buf = iov[seg].iov_base + offset; 1359 desc.count = iov[seg].iov_len - offset; 1360 if (desc.count == 0) 1361 continue; 1362 desc.error = 0; 1363 do_generic_file_read(filp, ppos, &desc, file_read_actor); 1364 retval += desc.written; 1365 if (desc.error) { 1366 retval = retval ?: desc.error; 1367 break; 1368 } 1369 if (desc.count > 0) 1370 break; 1371 } 1372 out: 1373 return retval; 1374 } 1375 EXPORT_SYMBOL(generic_file_aio_read); 1376 1377 static ssize_t 1378 do_readahead(struct address_space *mapping, struct file *filp, 1379 pgoff_t index, unsigned long nr) 1380 { 1381 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage) 1382 return -EINVAL; 1383 1384 force_page_cache_readahead(mapping, filp, index, nr); 1385 return 0; 1386 } 1387 1388 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count) 1389 { 1390 ssize_t ret; 1391 struct file *file; 1392 1393 ret = -EBADF; 1394 file = fget(fd); 1395 if (file) { 1396 if (file->f_mode & FMODE_READ) { 1397 struct address_space *mapping = file->f_mapping; 1398 pgoff_t start = offset >> PAGE_CACHE_SHIFT; 1399 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT; 1400 unsigned long len = end - start + 1; 1401 ret = do_readahead(mapping, file, start, len); 1402 } 1403 fput(file); 1404 } 1405 return ret; 1406 } 1407 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS 1408 asmlinkage long SyS_readahead(long fd, loff_t offset, long count) 1409 { 1410 return SYSC_readahead((int) fd, offset, (size_t) count); 1411 } 1412 SYSCALL_ALIAS(sys_readahead, SyS_readahead); 1413 #endif 1414 1415 #ifdef CONFIG_MMU 1416 /** 1417 * page_cache_read - adds requested page to the page cache if not already there 1418 * @file: file to read 1419 * @offset: page index 1420 * 1421 * This adds the requested page to the page cache if it isn't already there, 1422 * and schedules an I/O to read in its contents from disk. 1423 */ 1424 static int page_cache_read(struct file *file, pgoff_t offset) 1425 { 1426 struct address_space *mapping = file->f_mapping; 1427 struct page *page; 1428 int ret; 1429 1430 do { 1431 page = page_cache_alloc_cold(mapping); 1432 if (!page) 1433 return -ENOMEM; 1434 1435 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL); 1436 if (ret == 0) 1437 ret = mapping->a_ops->readpage(file, page); 1438 else if (ret == -EEXIST) 1439 ret = 0; /* losing race to add is OK */ 1440 1441 page_cache_release(page); 1442 1443 } while (ret == AOP_TRUNCATED_PAGE); 1444 1445 return ret; 1446 } 1447 1448 #define MMAP_LOTSAMISS (100) 1449 1450 /* 1451 * Synchronous readahead happens when we don't even find 1452 * a page in the page cache at all. 1453 */ 1454 static void do_sync_mmap_readahead(struct vm_area_struct *vma, 1455 struct file_ra_state *ra, 1456 struct file *file, 1457 pgoff_t offset) 1458 { 1459 unsigned long ra_pages; 1460 struct address_space *mapping = file->f_mapping; 1461 1462 /* If we don't want any read-ahead, don't bother */ 1463 if (VM_RandomReadHint(vma)) 1464 return; 1465 1466 if (VM_SequentialReadHint(vma) || 1467 offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) { 1468 page_cache_sync_readahead(mapping, ra, file, offset, 1469 ra->ra_pages); 1470 return; 1471 } 1472 1473 if (ra->mmap_miss < INT_MAX) 1474 ra->mmap_miss++; 1475 1476 /* 1477 * Do we miss much more than hit in this file? If so, 1478 * stop bothering with read-ahead. It will only hurt. 1479 */ 1480 if (ra->mmap_miss > MMAP_LOTSAMISS) 1481 return; 1482 1483 /* 1484 * mmap read-around 1485 */ 1486 ra_pages = max_sane_readahead(ra->ra_pages); 1487 if (ra_pages) { 1488 ra->start = max_t(long, 0, offset - ra_pages/2); 1489 ra->size = ra_pages; 1490 ra->async_size = 0; 1491 ra_submit(ra, mapping, file); 1492 } 1493 } 1494 1495 /* 1496 * Asynchronous readahead happens when we find the page and PG_readahead, 1497 * so we want to possibly extend the readahead further.. 1498 */ 1499 static void do_async_mmap_readahead(struct vm_area_struct *vma, 1500 struct file_ra_state *ra, 1501 struct file *file, 1502 struct page *page, 1503 pgoff_t offset) 1504 { 1505 struct address_space *mapping = file->f_mapping; 1506 1507 /* If we don't want any read-ahead, don't bother */ 1508 if (VM_RandomReadHint(vma)) 1509 return; 1510 if (ra->mmap_miss > 0) 1511 ra->mmap_miss--; 1512 if (PageReadahead(page)) 1513 page_cache_async_readahead(mapping, ra, file, 1514 page, offset, ra->ra_pages); 1515 } 1516 1517 /** 1518 * filemap_fault - read in file data for page fault handling 1519 * @vma: vma in which the fault was taken 1520 * @vmf: struct vm_fault containing details of the fault 1521 * 1522 * filemap_fault() is invoked via the vma operations vector for a 1523 * mapped memory region to read in file data during a page fault. 1524 * 1525 * The goto's are kind of ugly, but this streamlines the normal case of having 1526 * it in the page cache, and handles the special cases reasonably without 1527 * having a lot of duplicated code. 1528 */ 1529 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1530 { 1531 int error; 1532 struct file *file = vma->vm_file; 1533 struct address_space *mapping = file->f_mapping; 1534 struct file_ra_state *ra = &file->f_ra; 1535 struct inode *inode = mapping->host; 1536 pgoff_t offset = vmf->pgoff; 1537 struct page *page; 1538 pgoff_t size; 1539 int ret = 0; 1540 1541 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1542 if (offset >= size) 1543 return VM_FAULT_SIGBUS; 1544 1545 /* 1546 * Do we have something in the page cache already? 1547 */ 1548 page = find_get_page(mapping, offset); 1549 if (likely(page)) { 1550 /* 1551 * We found the page, so try async readahead before 1552 * waiting for the lock. 1553 */ 1554 do_async_mmap_readahead(vma, ra, file, page, offset); 1555 } else { 1556 /* No page in the page cache at all */ 1557 do_sync_mmap_readahead(vma, ra, file, offset); 1558 count_vm_event(PGMAJFAULT); 1559 ret = VM_FAULT_MAJOR; 1560 retry_find: 1561 page = find_get_page(mapping, offset); 1562 if (!page) 1563 goto no_cached_page; 1564 } 1565 1566 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) 1567 return ret | VM_FAULT_RETRY; 1568 1569 /* Did it get truncated? */ 1570 if (unlikely(page->mapping != mapping)) { 1571 unlock_page(page); 1572 put_page(page); 1573 goto retry_find; 1574 } 1575 VM_BUG_ON(page->index != offset); 1576 1577 /* 1578 * We have a locked page in the page cache, now we need to check 1579 * that it's up-to-date. If not, it is going to be due to an error. 1580 */ 1581 if (unlikely(!PageUptodate(page))) 1582 goto page_not_uptodate; 1583 1584 /* 1585 * Found the page and have a reference on it. 1586 * We must recheck i_size under page lock. 1587 */ 1588 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1589 if (unlikely(offset >= size)) { 1590 unlock_page(page); 1591 page_cache_release(page); 1592 return VM_FAULT_SIGBUS; 1593 } 1594 1595 ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT; 1596 vmf->page = page; 1597 return ret | VM_FAULT_LOCKED; 1598 1599 no_cached_page: 1600 /* 1601 * We're only likely to ever get here if MADV_RANDOM is in 1602 * effect. 1603 */ 1604 error = page_cache_read(file, offset); 1605 1606 /* 1607 * The page we want has now been added to the page cache. 1608 * In the unlikely event that someone removed it in the 1609 * meantime, we'll just come back here and read it again. 1610 */ 1611 if (error >= 0) 1612 goto retry_find; 1613 1614 /* 1615 * An error return from page_cache_read can result if the 1616 * system is low on memory, or a problem occurs while trying 1617 * to schedule I/O. 1618 */ 1619 if (error == -ENOMEM) 1620 return VM_FAULT_OOM; 1621 return VM_FAULT_SIGBUS; 1622 1623 page_not_uptodate: 1624 /* 1625 * Umm, take care of errors if the page isn't up-to-date. 1626 * Try to re-read it _once_. We do this synchronously, 1627 * because there really aren't any performance issues here 1628 * and we need to check for errors. 1629 */ 1630 ClearPageError(page); 1631 error = mapping->a_ops->readpage(file, page); 1632 if (!error) { 1633 wait_on_page_locked(page); 1634 if (!PageUptodate(page)) 1635 error = -EIO; 1636 } 1637 page_cache_release(page); 1638 1639 if (!error || error == AOP_TRUNCATED_PAGE) 1640 goto retry_find; 1641 1642 /* Things didn't work out. Return zero to tell the mm layer so. */ 1643 shrink_readahead_size_eio(file, ra); 1644 return VM_FAULT_SIGBUS; 1645 } 1646 EXPORT_SYMBOL(filemap_fault); 1647 1648 const struct vm_operations_struct generic_file_vm_ops = { 1649 .fault = filemap_fault, 1650 }; 1651 1652 /* This is used for a general mmap of a disk file */ 1653 1654 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1655 { 1656 struct address_space *mapping = file->f_mapping; 1657 1658 if (!mapping->a_ops->readpage) 1659 return -ENOEXEC; 1660 file_accessed(file); 1661 vma->vm_ops = &generic_file_vm_ops; 1662 vma->vm_flags |= VM_CAN_NONLINEAR; 1663 return 0; 1664 } 1665 1666 /* 1667 * This is for filesystems which do not implement ->writepage. 1668 */ 1669 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 1670 { 1671 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 1672 return -EINVAL; 1673 return generic_file_mmap(file, vma); 1674 } 1675 #else 1676 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1677 { 1678 return -ENOSYS; 1679 } 1680 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 1681 { 1682 return -ENOSYS; 1683 } 1684 #endif /* CONFIG_MMU */ 1685 1686 EXPORT_SYMBOL(generic_file_mmap); 1687 EXPORT_SYMBOL(generic_file_readonly_mmap); 1688 1689 static struct page *__read_cache_page(struct address_space *mapping, 1690 pgoff_t index, 1691 int (*filler)(void *,struct page*), 1692 void *data, 1693 gfp_t gfp) 1694 { 1695 struct page *page; 1696 int err; 1697 repeat: 1698 page = find_get_page(mapping, index); 1699 if (!page) { 1700 page = __page_cache_alloc(gfp | __GFP_COLD); 1701 if (!page) 1702 return ERR_PTR(-ENOMEM); 1703 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL); 1704 if (unlikely(err)) { 1705 page_cache_release(page); 1706 if (err == -EEXIST) 1707 goto repeat; 1708 /* Presumably ENOMEM for radix tree node */ 1709 return ERR_PTR(err); 1710 } 1711 err = filler(data, page); 1712 if (err < 0) { 1713 page_cache_release(page); 1714 page = ERR_PTR(err); 1715 } 1716 } 1717 return page; 1718 } 1719 1720 static struct page *do_read_cache_page(struct address_space *mapping, 1721 pgoff_t index, 1722 int (*filler)(void *,struct page*), 1723 void *data, 1724 gfp_t gfp) 1725 1726 { 1727 struct page *page; 1728 int err; 1729 1730 retry: 1731 page = __read_cache_page(mapping, index, filler, data, gfp); 1732 if (IS_ERR(page)) 1733 return page; 1734 if (PageUptodate(page)) 1735 goto out; 1736 1737 lock_page(page); 1738 if (!page->mapping) { 1739 unlock_page(page); 1740 page_cache_release(page); 1741 goto retry; 1742 } 1743 if (PageUptodate(page)) { 1744 unlock_page(page); 1745 goto out; 1746 } 1747 err = filler(data, page); 1748 if (err < 0) { 1749 page_cache_release(page); 1750 return ERR_PTR(err); 1751 } 1752 out: 1753 mark_page_accessed(page); 1754 return page; 1755 } 1756 1757 /** 1758 * read_cache_page_async - read into page cache, fill it if needed 1759 * @mapping: the page's address_space 1760 * @index: the page index 1761 * @filler: function to perform the read 1762 * @data: destination for read data 1763 * 1764 * Same as read_cache_page, but don't wait for page to become unlocked 1765 * after submitting it to the filler. 1766 * 1767 * Read into the page cache. If a page already exists, and PageUptodate() is 1768 * not set, try to fill the page but don't wait for it to become unlocked. 1769 * 1770 * If the page does not get brought uptodate, return -EIO. 1771 */ 1772 struct page *read_cache_page_async(struct address_space *mapping, 1773 pgoff_t index, 1774 int (*filler)(void *,struct page*), 1775 void *data) 1776 { 1777 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping)); 1778 } 1779 EXPORT_SYMBOL(read_cache_page_async); 1780 1781 static struct page *wait_on_page_read(struct page *page) 1782 { 1783 if (!IS_ERR(page)) { 1784 wait_on_page_locked(page); 1785 if (!PageUptodate(page)) { 1786 page_cache_release(page); 1787 page = ERR_PTR(-EIO); 1788 } 1789 } 1790 return page; 1791 } 1792 1793 /** 1794 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 1795 * @mapping: the page's address_space 1796 * @index: the page index 1797 * @gfp: the page allocator flags to use if allocating 1798 * 1799 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 1800 * any new page allocations done using the specified allocation flags. Note 1801 * that the Radix tree operations will still use GFP_KERNEL, so you can't 1802 * expect to do this atomically or anything like that - but you can pass in 1803 * other page requirements. 1804 * 1805 * If the page does not get brought uptodate, return -EIO. 1806 */ 1807 struct page *read_cache_page_gfp(struct address_space *mapping, 1808 pgoff_t index, 1809 gfp_t gfp) 1810 { 1811 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 1812 1813 return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp)); 1814 } 1815 EXPORT_SYMBOL(read_cache_page_gfp); 1816 1817 /** 1818 * read_cache_page - read into page cache, fill it if needed 1819 * @mapping: the page's address_space 1820 * @index: the page index 1821 * @filler: function to perform the read 1822 * @data: destination for read data 1823 * 1824 * Read into the page cache. If a page already exists, and PageUptodate() is 1825 * not set, try to fill the page then wait for it to become unlocked. 1826 * 1827 * If the page does not get brought uptodate, return -EIO. 1828 */ 1829 struct page *read_cache_page(struct address_space *mapping, 1830 pgoff_t index, 1831 int (*filler)(void *,struct page*), 1832 void *data) 1833 { 1834 return wait_on_page_read(read_cache_page_async(mapping, index, filler, data)); 1835 } 1836 EXPORT_SYMBOL(read_cache_page); 1837 1838 /* 1839 * The logic we want is 1840 * 1841 * if suid or (sgid and xgrp) 1842 * remove privs 1843 */ 1844 int should_remove_suid(struct dentry *dentry) 1845 { 1846 mode_t mode = dentry->d_inode->i_mode; 1847 int kill = 0; 1848 1849 /* suid always must be killed */ 1850 if (unlikely(mode & S_ISUID)) 1851 kill = ATTR_KILL_SUID; 1852 1853 /* 1854 * sgid without any exec bits is just a mandatory locking mark; leave 1855 * it alone. If some exec bits are set, it's a real sgid; kill it. 1856 */ 1857 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1858 kill |= ATTR_KILL_SGID; 1859 1860 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode))) 1861 return kill; 1862 1863 return 0; 1864 } 1865 EXPORT_SYMBOL(should_remove_suid); 1866 1867 static int __remove_suid(struct dentry *dentry, int kill) 1868 { 1869 struct iattr newattrs; 1870 1871 newattrs.ia_valid = ATTR_FORCE | kill; 1872 return notify_change(dentry, &newattrs); 1873 } 1874 1875 int file_remove_suid(struct file *file) 1876 { 1877 struct dentry *dentry = file->f_path.dentry; 1878 int killsuid = should_remove_suid(dentry); 1879 int killpriv = security_inode_need_killpriv(dentry); 1880 int error = 0; 1881 1882 if (killpriv < 0) 1883 return killpriv; 1884 if (killpriv) 1885 error = security_inode_killpriv(dentry); 1886 if (!error && killsuid) 1887 error = __remove_suid(dentry, killsuid); 1888 1889 return error; 1890 } 1891 EXPORT_SYMBOL(file_remove_suid); 1892 1893 static size_t __iovec_copy_from_user_inatomic(char *vaddr, 1894 const struct iovec *iov, size_t base, size_t bytes) 1895 { 1896 size_t copied = 0, left = 0; 1897 1898 while (bytes) { 1899 char __user *buf = iov->iov_base + base; 1900 int copy = min(bytes, iov->iov_len - base); 1901 1902 base = 0; 1903 left = __copy_from_user_inatomic(vaddr, buf, copy); 1904 copied += copy; 1905 bytes -= copy; 1906 vaddr += copy; 1907 iov++; 1908 1909 if (unlikely(left)) 1910 break; 1911 } 1912 return copied - left; 1913 } 1914 1915 /* 1916 * Copy as much as we can into the page and return the number of bytes which 1917 * were successfully copied. If a fault is encountered then return the number of 1918 * bytes which were copied. 1919 */ 1920 size_t iov_iter_copy_from_user_atomic(struct page *page, 1921 struct iov_iter *i, unsigned long offset, size_t bytes) 1922 { 1923 char *kaddr; 1924 size_t copied; 1925 1926 BUG_ON(!in_atomic()); 1927 kaddr = kmap_atomic(page, KM_USER0); 1928 if (likely(i->nr_segs == 1)) { 1929 int left; 1930 char __user *buf = i->iov->iov_base + i->iov_offset; 1931 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes); 1932 copied = bytes - left; 1933 } else { 1934 copied = __iovec_copy_from_user_inatomic(kaddr + offset, 1935 i->iov, i->iov_offset, bytes); 1936 } 1937 kunmap_atomic(kaddr, KM_USER0); 1938 1939 return copied; 1940 } 1941 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic); 1942 1943 /* 1944 * This has the same sideeffects and return value as 1945 * iov_iter_copy_from_user_atomic(). 1946 * The difference is that it attempts to resolve faults. 1947 * Page must not be locked. 1948 */ 1949 size_t iov_iter_copy_from_user(struct page *page, 1950 struct iov_iter *i, unsigned long offset, size_t bytes) 1951 { 1952 char *kaddr; 1953 size_t copied; 1954 1955 kaddr = kmap(page); 1956 if (likely(i->nr_segs == 1)) { 1957 int left; 1958 char __user *buf = i->iov->iov_base + i->iov_offset; 1959 left = __copy_from_user(kaddr + offset, buf, bytes); 1960 copied = bytes - left; 1961 } else { 1962 copied = __iovec_copy_from_user_inatomic(kaddr + offset, 1963 i->iov, i->iov_offset, bytes); 1964 } 1965 kunmap(page); 1966 return copied; 1967 } 1968 EXPORT_SYMBOL(iov_iter_copy_from_user); 1969 1970 void iov_iter_advance(struct iov_iter *i, size_t bytes) 1971 { 1972 BUG_ON(i->count < bytes); 1973 1974 if (likely(i->nr_segs == 1)) { 1975 i->iov_offset += bytes; 1976 i->count -= bytes; 1977 } else { 1978 const struct iovec *iov = i->iov; 1979 size_t base = i->iov_offset; 1980 1981 /* 1982 * The !iov->iov_len check ensures we skip over unlikely 1983 * zero-length segments (without overruning the iovec). 1984 */ 1985 while (bytes || unlikely(i->count && !iov->iov_len)) { 1986 int copy; 1987 1988 copy = min(bytes, iov->iov_len - base); 1989 BUG_ON(!i->count || i->count < copy); 1990 i->count -= copy; 1991 bytes -= copy; 1992 base += copy; 1993 if (iov->iov_len == base) { 1994 iov++; 1995 base = 0; 1996 } 1997 } 1998 i->iov = iov; 1999 i->iov_offset = base; 2000 } 2001 } 2002 EXPORT_SYMBOL(iov_iter_advance); 2003 2004 /* 2005 * Fault in the first iovec of the given iov_iter, to a maximum length 2006 * of bytes. Returns 0 on success, or non-zero if the memory could not be 2007 * accessed (ie. because it is an invalid address). 2008 * 2009 * writev-intensive code may want this to prefault several iovecs -- that 2010 * would be possible (callers must not rely on the fact that _only_ the 2011 * first iovec will be faulted with the current implementation). 2012 */ 2013 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes) 2014 { 2015 char __user *buf = i->iov->iov_base + i->iov_offset; 2016 bytes = min(bytes, i->iov->iov_len - i->iov_offset); 2017 return fault_in_pages_readable(buf, bytes); 2018 } 2019 EXPORT_SYMBOL(iov_iter_fault_in_readable); 2020 2021 /* 2022 * Return the count of just the current iov_iter segment. 2023 */ 2024 size_t iov_iter_single_seg_count(struct iov_iter *i) 2025 { 2026 const struct iovec *iov = i->iov; 2027 if (i->nr_segs == 1) 2028 return i->count; 2029 else 2030 return min(i->count, iov->iov_len - i->iov_offset); 2031 } 2032 EXPORT_SYMBOL(iov_iter_single_seg_count); 2033 2034 /* 2035 * Performs necessary checks before doing a write 2036 * 2037 * Can adjust writing position or amount of bytes to write. 2038 * Returns appropriate error code that caller should return or 2039 * zero in case that write should be allowed. 2040 */ 2041 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk) 2042 { 2043 struct inode *inode = file->f_mapping->host; 2044 unsigned long limit = rlimit(RLIMIT_FSIZE); 2045 2046 if (unlikely(*pos < 0)) 2047 return -EINVAL; 2048 2049 if (!isblk) { 2050 /* FIXME: this is for backwards compatibility with 2.4 */ 2051 if (file->f_flags & O_APPEND) 2052 *pos = i_size_read(inode); 2053 2054 if (limit != RLIM_INFINITY) { 2055 if (*pos >= limit) { 2056 send_sig(SIGXFSZ, current, 0); 2057 return -EFBIG; 2058 } 2059 if (*count > limit - (typeof(limit))*pos) { 2060 *count = limit - (typeof(limit))*pos; 2061 } 2062 } 2063 } 2064 2065 /* 2066 * LFS rule 2067 */ 2068 if (unlikely(*pos + *count > MAX_NON_LFS && 2069 !(file->f_flags & O_LARGEFILE))) { 2070 if (*pos >= MAX_NON_LFS) { 2071 return -EFBIG; 2072 } 2073 if (*count > MAX_NON_LFS - (unsigned long)*pos) { 2074 *count = MAX_NON_LFS - (unsigned long)*pos; 2075 } 2076 } 2077 2078 /* 2079 * Are we about to exceed the fs block limit ? 2080 * 2081 * If we have written data it becomes a short write. If we have 2082 * exceeded without writing data we send a signal and return EFBIG. 2083 * Linus frestrict idea will clean these up nicely.. 2084 */ 2085 if (likely(!isblk)) { 2086 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) { 2087 if (*count || *pos > inode->i_sb->s_maxbytes) { 2088 return -EFBIG; 2089 } 2090 /* zero-length writes at ->s_maxbytes are OK */ 2091 } 2092 2093 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes)) 2094 *count = inode->i_sb->s_maxbytes - *pos; 2095 } else { 2096 #ifdef CONFIG_BLOCK 2097 loff_t isize; 2098 if (bdev_read_only(I_BDEV(inode))) 2099 return -EPERM; 2100 isize = i_size_read(inode); 2101 if (*pos >= isize) { 2102 if (*count || *pos > isize) 2103 return -ENOSPC; 2104 } 2105 2106 if (*pos + *count > isize) 2107 *count = isize - *pos; 2108 #else 2109 return -EPERM; 2110 #endif 2111 } 2112 return 0; 2113 } 2114 EXPORT_SYMBOL(generic_write_checks); 2115 2116 int pagecache_write_begin(struct file *file, struct address_space *mapping, 2117 loff_t pos, unsigned len, unsigned flags, 2118 struct page **pagep, void **fsdata) 2119 { 2120 const struct address_space_operations *aops = mapping->a_ops; 2121 2122 return aops->write_begin(file, mapping, pos, len, flags, 2123 pagep, fsdata); 2124 } 2125 EXPORT_SYMBOL(pagecache_write_begin); 2126 2127 int pagecache_write_end(struct file *file, struct address_space *mapping, 2128 loff_t pos, unsigned len, unsigned copied, 2129 struct page *page, void *fsdata) 2130 { 2131 const struct address_space_operations *aops = mapping->a_ops; 2132 2133 mark_page_accessed(page); 2134 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 2135 } 2136 EXPORT_SYMBOL(pagecache_write_end); 2137 2138 ssize_t 2139 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov, 2140 unsigned long *nr_segs, loff_t pos, loff_t *ppos, 2141 size_t count, size_t ocount) 2142 { 2143 struct file *file = iocb->ki_filp; 2144 struct address_space *mapping = file->f_mapping; 2145 struct inode *inode = mapping->host; 2146 ssize_t written; 2147 size_t write_len; 2148 pgoff_t end; 2149 2150 if (count != ocount) 2151 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count); 2152 2153 write_len = iov_length(iov, *nr_segs); 2154 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT; 2155 2156 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1); 2157 if (written) 2158 goto out; 2159 2160 /* 2161 * After a write we want buffered reads to be sure to go to disk to get 2162 * the new data. We invalidate clean cached page from the region we're 2163 * about to write. We do this *before* the write so that we can return 2164 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2165 */ 2166 if (mapping->nrpages) { 2167 written = invalidate_inode_pages2_range(mapping, 2168 pos >> PAGE_CACHE_SHIFT, end); 2169 /* 2170 * If a page can not be invalidated, return 0 to fall back 2171 * to buffered write. 2172 */ 2173 if (written) { 2174 if (written == -EBUSY) 2175 return 0; 2176 goto out; 2177 } 2178 } 2179 2180 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs); 2181 2182 /* 2183 * Finally, try again to invalidate clean pages which might have been 2184 * cached by non-direct readahead, or faulted in by get_user_pages() 2185 * if the source of the write was an mmap'ed region of the file 2186 * we're writing. Either one is a pretty crazy thing to do, 2187 * so we don't support it 100%. If this invalidation 2188 * fails, tough, the write still worked... 2189 */ 2190 if (mapping->nrpages) { 2191 invalidate_inode_pages2_range(mapping, 2192 pos >> PAGE_CACHE_SHIFT, end); 2193 } 2194 2195 if (written > 0) { 2196 pos += written; 2197 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 2198 i_size_write(inode, pos); 2199 mark_inode_dirty(inode); 2200 } 2201 *ppos = pos; 2202 } 2203 out: 2204 return written; 2205 } 2206 EXPORT_SYMBOL(generic_file_direct_write); 2207 2208 /* 2209 * Find or create a page at the given pagecache position. Return the locked 2210 * page. This function is specifically for buffered writes. 2211 */ 2212 struct page *grab_cache_page_write_begin(struct address_space *mapping, 2213 pgoff_t index, unsigned flags) 2214 { 2215 int status; 2216 struct page *page; 2217 gfp_t gfp_notmask = 0; 2218 if (flags & AOP_FLAG_NOFS) 2219 gfp_notmask = __GFP_FS; 2220 repeat: 2221 page = find_lock_page(mapping, index); 2222 if (likely(page)) 2223 return page; 2224 2225 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask); 2226 if (!page) 2227 return NULL; 2228 status = add_to_page_cache_lru(page, mapping, index, 2229 GFP_KERNEL & ~gfp_notmask); 2230 if (unlikely(status)) { 2231 page_cache_release(page); 2232 if (status == -EEXIST) 2233 goto repeat; 2234 return NULL; 2235 } 2236 return page; 2237 } 2238 EXPORT_SYMBOL(grab_cache_page_write_begin); 2239 2240 static ssize_t generic_perform_write(struct file *file, 2241 struct iov_iter *i, loff_t pos) 2242 { 2243 struct address_space *mapping = file->f_mapping; 2244 const struct address_space_operations *a_ops = mapping->a_ops; 2245 long status = 0; 2246 ssize_t written = 0; 2247 unsigned int flags = 0; 2248 2249 /* 2250 * Copies from kernel address space cannot fail (NFSD is a big user). 2251 */ 2252 if (segment_eq(get_fs(), KERNEL_DS)) 2253 flags |= AOP_FLAG_UNINTERRUPTIBLE; 2254 2255 do { 2256 struct page *page; 2257 unsigned long offset; /* Offset into pagecache page */ 2258 unsigned long bytes; /* Bytes to write to page */ 2259 size_t copied; /* Bytes copied from user */ 2260 void *fsdata; 2261 2262 offset = (pos & (PAGE_CACHE_SIZE - 1)); 2263 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2264 iov_iter_count(i)); 2265 2266 again: 2267 2268 /* 2269 * Bring in the user page that we will copy from _first_. 2270 * Otherwise there's a nasty deadlock on copying from the 2271 * same page as we're writing to, without it being marked 2272 * up-to-date. 2273 * 2274 * Not only is this an optimisation, but it is also required 2275 * to check that the address is actually valid, when atomic 2276 * usercopies are used, below. 2277 */ 2278 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 2279 status = -EFAULT; 2280 break; 2281 } 2282 2283 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 2284 &page, &fsdata); 2285 if (unlikely(status)) 2286 break; 2287 2288 if (mapping_writably_mapped(mapping)) 2289 flush_dcache_page(page); 2290 2291 pagefault_disable(); 2292 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 2293 pagefault_enable(); 2294 flush_dcache_page(page); 2295 2296 mark_page_accessed(page); 2297 status = a_ops->write_end(file, mapping, pos, bytes, copied, 2298 page, fsdata); 2299 if (unlikely(status < 0)) 2300 break; 2301 copied = status; 2302 2303 cond_resched(); 2304 2305 iov_iter_advance(i, copied); 2306 if (unlikely(copied == 0)) { 2307 /* 2308 * If we were unable to copy any data at all, we must 2309 * fall back to a single segment length write. 2310 * 2311 * If we didn't fallback here, we could livelock 2312 * because not all segments in the iov can be copied at 2313 * once without a pagefault. 2314 */ 2315 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2316 iov_iter_single_seg_count(i)); 2317 goto again; 2318 } 2319 pos += copied; 2320 written += copied; 2321 2322 balance_dirty_pages_ratelimited(mapping); 2323 2324 } while (iov_iter_count(i)); 2325 2326 return written ? written : status; 2327 } 2328 2329 ssize_t 2330 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov, 2331 unsigned long nr_segs, loff_t pos, loff_t *ppos, 2332 size_t count, ssize_t written) 2333 { 2334 struct file *file = iocb->ki_filp; 2335 ssize_t status; 2336 struct iov_iter i; 2337 2338 iov_iter_init(&i, iov, nr_segs, count, written); 2339 status = generic_perform_write(file, &i, pos); 2340 2341 if (likely(status >= 0)) { 2342 written += status; 2343 *ppos = pos + status; 2344 } 2345 2346 return written ? written : status; 2347 } 2348 EXPORT_SYMBOL(generic_file_buffered_write); 2349 2350 /** 2351 * __generic_file_aio_write - write data to a file 2352 * @iocb: IO state structure (file, offset, etc.) 2353 * @iov: vector with data to write 2354 * @nr_segs: number of segments in the vector 2355 * @ppos: position where to write 2356 * 2357 * This function does all the work needed for actually writing data to a 2358 * file. It does all basic checks, removes SUID from the file, updates 2359 * modification times and calls proper subroutines depending on whether we 2360 * do direct IO or a standard buffered write. 2361 * 2362 * It expects i_mutex to be grabbed unless we work on a block device or similar 2363 * object which does not need locking at all. 2364 * 2365 * This function does *not* take care of syncing data in case of O_SYNC write. 2366 * A caller has to handle it. This is mainly due to the fact that we want to 2367 * avoid syncing under i_mutex. 2368 */ 2369 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, 2370 unsigned long nr_segs, loff_t *ppos) 2371 { 2372 struct file *file = iocb->ki_filp; 2373 struct address_space * mapping = file->f_mapping; 2374 size_t ocount; /* original count */ 2375 size_t count; /* after file limit checks */ 2376 struct inode *inode = mapping->host; 2377 loff_t pos; 2378 ssize_t written; 2379 ssize_t err; 2380 2381 ocount = 0; 2382 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ); 2383 if (err) 2384 return err; 2385 2386 count = ocount; 2387 pos = *ppos; 2388 2389 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); 2390 2391 /* We can write back this queue in page reclaim */ 2392 current->backing_dev_info = mapping->backing_dev_info; 2393 written = 0; 2394 2395 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 2396 if (err) 2397 goto out; 2398 2399 if (count == 0) 2400 goto out; 2401 2402 err = file_remove_suid(file); 2403 if (err) 2404 goto out; 2405 2406 file_update_time(file); 2407 2408 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 2409 if (unlikely(file->f_flags & O_DIRECT)) { 2410 loff_t endbyte; 2411 ssize_t written_buffered; 2412 2413 written = generic_file_direct_write(iocb, iov, &nr_segs, pos, 2414 ppos, count, ocount); 2415 if (written < 0 || written == count) 2416 goto out; 2417 /* 2418 * direct-io write to a hole: fall through to buffered I/O 2419 * for completing the rest of the request. 2420 */ 2421 pos += written; 2422 count -= written; 2423 written_buffered = generic_file_buffered_write(iocb, iov, 2424 nr_segs, pos, ppos, count, 2425 written); 2426 /* 2427 * If generic_file_buffered_write() retuned a synchronous error 2428 * then we want to return the number of bytes which were 2429 * direct-written, or the error code if that was zero. Note 2430 * that this differs from normal direct-io semantics, which 2431 * will return -EFOO even if some bytes were written. 2432 */ 2433 if (written_buffered < 0) { 2434 err = written_buffered; 2435 goto out; 2436 } 2437 2438 /* 2439 * We need to ensure that the page cache pages are written to 2440 * disk and invalidated to preserve the expected O_DIRECT 2441 * semantics. 2442 */ 2443 endbyte = pos + written_buffered - written - 1; 2444 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte); 2445 if (err == 0) { 2446 written = written_buffered; 2447 invalidate_mapping_pages(mapping, 2448 pos >> PAGE_CACHE_SHIFT, 2449 endbyte >> PAGE_CACHE_SHIFT); 2450 } else { 2451 /* 2452 * We don't know how much we wrote, so just return 2453 * the number of bytes which were direct-written 2454 */ 2455 } 2456 } else { 2457 written = generic_file_buffered_write(iocb, iov, nr_segs, 2458 pos, ppos, count, written); 2459 } 2460 out: 2461 current->backing_dev_info = NULL; 2462 return written ? written : err; 2463 } 2464 EXPORT_SYMBOL(__generic_file_aio_write); 2465 2466 /** 2467 * generic_file_aio_write - write data to a file 2468 * @iocb: IO state structure 2469 * @iov: vector with data to write 2470 * @nr_segs: number of segments in the vector 2471 * @pos: position in file where to write 2472 * 2473 * This is a wrapper around __generic_file_aio_write() to be used by most 2474 * filesystems. It takes care of syncing the file in case of O_SYNC file 2475 * and acquires i_mutex as needed. 2476 */ 2477 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, 2478 unsigned long nr_segs, loff_t pos) 2479 { 2480 struct file *file = iocb->ki_filp; 2481 struct inode *inode = file->f_mapping->host; 2482 ssize_t ret; 2483 2484 BUG_ON(iocb->ki_pos != pos); 2485 2486 mutex_lock(&inode->i_mutex); 2487 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos); 2488 mutex_unlock(&inode->i_mutex); 2489 2490 if (ret > 0 || ret == -EIOCBQUEUED) { 2491 ssize_t err; 2492 2493 err = generic_write_sync(file, pos, ret); 2494 if (err < 0 && ret > 0) 2495 ret = err; 2496 } 2497 return ret; 2498 } 2499 EXPORT_SYMBOL(generic_file_aio_write); 2500 2501 /** 2502 * try_to_release_page() - release old fs-specific metadata on a page 2503 * 2504 * @page: the page which the kernel is trying to free 2505 * @gfp_mask: memory allocation flags (and I/O mode) 2506 * 2507 * The address_space is to try to release any data against the page 2508 * (presumably at page->private). If the release was successful, return `1'. 2509 * Otherwise return zero. 2510 * 2511 * This may also be called if PG_fscache is set on a page, indicating that the 2512 * page is known to the local caching routines. 2513 * 2514 * The @gfp_mask argument specifies whether I/O may be performed to release 2515 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS). 2516 * 2517 */ 2518 int try_to_release_page(struct page *page, gfp_t gfp_mask) 2519 { 2520 struct address_space * const mapping = page->mapping; 2521 2522 BUG_ON(!PageLocked(page)); 2523 if (PageWriteback(page)) 2524 return 0; 2525 2526 if (mapping && mapping->a_ops->releasepage) 2527 return mapping->a_ops->releasepage(page, gfp_mask); 2528 return try_to_free_buffers(page); 2529 } 2530 2531 EXPORT_SYMBOL(try_to_release_page); 2532