xref: /linux/mm/filemap.c (revision ca64d84e93762f4e587e040a44ad9f6089afc777)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/mm/filemap.c
4  *
5  * Copyright (C) 1994-1999  Linus Torvalds
6  */
7 
8 /*
9  * This file handles the generic file mmap semantics used by
10  * most "normal" filesystems (but you don't /have/ to use this:
11  * the NFS filesystem used to do this differently, for example)
12  */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/mman.h>
25 #include <linux/pagemap.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/error-injection.h>
29 #include <linux/hash.h>
30 #include <linux/writeback.h>
31 #include <linux/backing-dev.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/cleancache.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include "internal.h"
45 
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/filemap.h>
48 
49 /*
50  * FIXME: remove all knowledge of the buffer layer from the core VM
51  */
52 #include <linux/buffer_head.h> /* for try_to_free_buffers */
53 
54 #include <asm/mman.h>
55 
56 /*
57  * Shared mappings implemented 30.11.1994. It's not fully working yet,
58  * though.
59  *
60  * Shared mappings now work. 15.8.1995  Bruno.
61  *
62  * finished 'unifying' the page and buffer cache and SMP-threaded the
63  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
64  *
65  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
66  */
67 
68 /*
69  * Lock ordering:
70  *
71  *  ->i_mmap_rwsem		(truncate_pagecache)
72  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
73  *      ->swap_lock		(exclusive_swap_page, others)
74  *        ->i_pages lock
75  *
76  *  ->i_mutex
77  *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
78  *
79  *  ->mmap_sem
80  *    ->i_mmap_rwsem
81  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
82  *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
83  *
84  *  ->mmap_sem
85  *    ->lock_page		(access_process_vm)
86  *
87  *  ->i_mutex			(generic_perform_write)
88  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
89  *
90  *  bdi->wb.list_lock
91  *    sb_lock			(fs/fs-writeback.c)
92  *    ->i_pages lock		(__sync_single_inode)
93  *
94  *  ->i_mmap_rwsem
95  *    ->anon_vma.lock		(vma_adjust)
96  *
97  *  ->anon_vma.lock
98  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
99  *
100  *  ->page_table_lock or pte_lock
101  *    ->swap_lock		(try_to_unmap_one)
102  *    ->private_lock		(try_to_unmap_one)
103  *    ->i_pages lock		(try_to_unmap_one)
104  *    ->pgdat->lru_lock		(follow_page->mark_page_accessed)
105  *    ->pgdat->lru_lock		(check_pte_range->isolate_lru_page)
106  *    ->private_lock		(page_remove_rmap->set_page_dirty)
107  *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
108  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
109  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
110  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
111  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
112  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
113  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
114  *
115  * ->i_mmap_rwsem
116  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
117  */
118 
119 static void page_cache_delete(struct address_space *mapping,
120 				   struct page *page, void *shadow)
121 {
122 	XA_STATE(xas, &mapping->i_pages, page->index);
123 	unsigned int nr = 1;
124 
125 	mapping_set_update(&xas, mapping);
126 
127 	/* hugetlb pages are represented by a single entry in the xarray */
128 	if (!PageHuge(page)) {
129 		xas_set_order(&xas, page->index, compound_order(page));
130 		nr = compound_nr(page);
131 	}
132 
133 	VM_BUG_ON_PAGE(!PageLocked(page), page);
134 	VM_BUG_ON_PAGE(PageTail(page), page);
135 	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
136 
137 	xas_store(&xas, shadow);
138 	xas_init_marks(&xas);
139 
140 	page->mapping = NULL;
141 	/* Leave page->index set: truncation lookup relies upon it */
142 
143 	if (shadow) {
144 		mapping->nrexceptional += nr;
145 		/*
146 		 * Make sure the nrexceptional update is committed before
147 		 * the nrpages update so that final truncate racing
148 		 * with reclaim does not see both counters 0 at the
149 		 * same time and miss a shadow entry.
150 		 */
151 		smp_wmb();
152 	}
153 	mapping->nrpages -= nr;
154 }
155 
156 static void unaccount_page_cache_page(struct address_space *mapping,
157 				      struct page *page)
158 {
159 	int nr;
160 
161 	/*
162 	 * if we're uptodate, flush out into the cleancache, otherwise
163 	 * invalidate any existing cleancache entries.  We can't leave
164 	 * stale data around in the cleancache once our page is gone
165 	 */
166 	if (PageUptodate(page) && PageMappedToDisk(page))
167 		cleancache_put_page(page);
168 	else
169 		cleancache_invalidate_page(mapping, page);
170 
171 	VM_BUG_ON_PAGE(PageTail(page), page);
172 	VM_BUG_ON_PAGE(page_mapped(page), page);
173 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
174 		int mapcount;
175 
176 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
177 			 current->comm, page_to_pfn(page));
178 		dump_page(page, "still mapped when deleted");
179 		dump_stack();
180 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
181 
182 		mapcount = page_mapcount(page);
183 		if (mapping_exiting(mapping) &&
184 		    page_count(page) >= mapcount + 2) {
185 			/*
186 			 * All vmas have already been torn down, so it's
187 			 * a good bet that actually the page is unmapped,
188 			 * and we'd prefer not to leak it: if we're wrong,
189 			 * some other bad page check should catch it later.
190 			 */
191 			page_mapcount_reset(page);
192 			page_ref_sub(page, mapcount);
193 		}
194 	}
195 
196 	/* hugetlb pages do not participate in page cache accounting. */
197 	if (PageHuge(page))
198 		return;
199 
200 	nr = hpage_nr_pages(page);
201 
202 	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
203 	if (PageSwapBacked(page)) {
204 		__mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
205 		if (PageTransHuge(page))
206 			__dec_node_page_state(page, NR_SHMEM_THPS);
207 	} else if (PageTransHuge(page)) {
208 		__dec_node_page_state(page, NR_FILE_THPS);
209 		filemap_nr_thps_dec(mapping);
210 	}
211 
212 	/*
213 	 * At this point page must be either written or cleaned by
214 	 * truncate.  Dirty page here signals a bug and loss of
215 	 * unwritten data.
216 	 *
217 	 * This fixes dirty accounting after removing the page entirely
218 	 * but leaves PageDirty set: it has no effect for truncated
219 	 * page and anyway will be cleared before returning page into
220 	 * buddy allocator.
221 	 */
222 	if (WARN_ON_ONCE(PageDirty(page)))
223 		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
224 }
225 
226 /*
227  * Delete a page from the page cache and free it. Caller has to make
228  * sure the page is locked and that nobody else uses it - or that usage
229  * is safe.  The caller must hold the i_pages lock.
230  */
231 void __delete_from_page_cache(struct page *page, void *shadow)
232 {
233 	struct address_space *mapping = page->mapping;
234 
235 	trace_mm_filemap_delete_from_page_cache(page);
236 
237 	unaccount_page_cache_page(mapping, page);
238 	page_cache_delete(mapping, page, shadow);
239 }
240 
241 static void page_cache_free_page(struct address_space *mapping,
242 				struct page *page)
243 {
244 	void (*freepage)(struct page *);
245 
246 	freepage = mapping->a_ops->freepage;
247 	if (freepage)
248 		freepage(page);
249 
250 	if (PageTransHuge(page) && !PageHuge(page)) {
251 		page_ref_sub(page, HPAGE_PMD_NR);
252 		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
253 	} else {
254 		put_page(page);
255 	}
256 }
257 
258 /**
259  * delete_from_page_cache - delete page from page cache
260  * @page: the page which the kernel is trying to remove from page cache
261  *
262  * This must be called only on pages that have been verified to be in the page
263  * cache and locked.  It will never put the page into the free list, the caller
264  * has a reference on the page.
265  */
266 void delete_from_page_cache(struct page *page)
267 {
268 	struct address_space *mapping = page_mapping(page);
269 	unsigned long flags;
270 
271 	BUG_ON(!PageLocked(page));
272 	xa_lock_irqsave(&mapping->i_pages, flags);
273 	__delete_from_page_cache(page, NULL);
274 	xa_unlock_irqrestore(&mapping->i_pages, flags);
275 
276 	page_cache_free_page(mapping, page);
277 }
278 EXPORT_SYMBOL(delete_from_page_cache);
279 
280 /*
281  * page_cache_delete_batch - delete several pages from page cache
282  * @mapping: the mapping to which pages belong
283  * @pvec: pagevec with pages to delete
284  *
285  * The function walks over mapping->i_pages and removes pages passed in @pvec
286  * from the mapping. The function expects @pvec to be sorted by page index
287  * and is optimised for it to be dense.
288  * It tolerates holes in @pvec (mapping entries at those indices are not
289  * modified). The function expects only THP head pages to be present in the
290  * @pvec.
291  *
292  * The function expects the i_pages lock to be held.
293  */
294 static void page_cache_delete_batch(struct address_space *mapping,
295 			     struct pagevec *pvec)
296 {
297 	XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
298 	int total_pages = 0;
299 	int i = 0;
300 	struct page *page;
301 
302 	mapping_set_update(&xas, mapping);
303 	xas_for_each(&xas, page, ULONG_MAX) {
304 		if (i >= pagevec_count(pvec))
305 			break;
306 
307 		/* A swap/dax/shadow entry got inserted? Skip it. */
308 		if (xa_is_value(page))
309 			continue;
310 		/*
311 		 * A page got inserted in our range? Skip it. We have our
312 		 * pages locked so they are protected from being removed.
313 		 * If we see a page whose index is higher than ours, it
314 		 * means our page has been removed, which shouldn't be
315 		 * possible because we're holding the PageLock.
316 		 */
317 		if (page != pvec->pages[i]) {
318 			VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
319 					page);
320 			continue;
321 		}
322 
323 		WARN_ON_ONCE(!PageLocked(page));
324 
325 		if (page->index == xas.xa_index)
326 			page->mapping = NULL;
327 		/* Leave page->index set: truncation lookup relies on it */
328 
329 		/*
330 		 * Move to the next page in the vector if this is a regular
331 		 * page or the index is of the last sub-page of this compound
332 		 * page.
333 		 */
334 		if (page->index + compound_nr(page) - 1 == xas.xa_index)
335 			i++;
336 		xas_store(&xas, NULL);
337 		total_pages++;
338 	}
339 	mapping->nrpages -= total_pages;
340 }
341 
342 void delete_from_page_cache_batch(struct address_space *mapping,
343 				  struct pagevec *pvec)
344 {
345 	int i;
346 	unsigned long flags;
347 
348 	if (!pagevec_count(pvec))
349 		return;
350 
351 	xa_lock_irqsave(&mapping->i_pages, flags);
352 	for (i = 0; i < pagevec_count(pvec); i++) {
353 		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
354 
355 		unaccount_page_cache_page(mapping, pvec->pages[i]);
356 	}
357 	page_cache_delete_batch(mapping, pvec);
358 	xa_unlock_irqrestore(&mapping->i_pages, flags);
359 
360 	for (i = 0; i < pagevec_count(pvec); i++)
361 		page_cache_free_page(mapping, pvec->pages[i]);
362 }
363 
364 int filemap_check_errors(struct address_space *mapping)
365 {
366 	int ret = 0;
367 	/* Check for outstanding write errors */
368 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
369 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
370 		ret = -ENOSPC;
371 	if (test_bit(AS_EIO, &mapping->flags) &&
372 	    test_and_clear_bit(AS_EIO, &mapping->flags))
373 		ret = -EIO;
374 	return ret;
375 }
376 EXPORT_SYMBOL(filemap_check_errors);
377 
378 static int filemap_check_and_keep_errors(struct address_space *mapping)
379 {
380 	/* Check for outstanding write errors */
381 	if (test_bit(AS_EIO, &mapping->flags))
382 		return -EIO;
383 	if (test_bit(AS_ENOSPC, &mapping->flags))
384 		return -ENOSPC;
385 	return 0;
386 }
387 
388 /**
389  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
390  * @mapping:	address space structure to write
391  * @start:	offset in bytes where the range starts
392  * @end:	offset in bytes where the range ends (inclusive)
393  * @sync_mode:	enable synchronous operation
394  *
395  * Start writeback against all of a mapping's dirty pages that lie
396  * within the byte offsets <start, end> inclusive.
397  *
398  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
399  * opposed to a regular memory cleansing writeback.  The difference between
400  * these two operations is that if a dirty page/buffer is encountered, it must
401  * be waited upon, and not just skipped over.
402  *
403  * Return: %0 on success, negative error code otherwise.
404  */
405 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
406 				loff_t end, int sync_mode)
407 {
408 	int ret;
409 	struct writeback_control wbc = {
410 		.sync_mode = sync_mode,
411 		.nr_to_write = LONG_MAX,
412 		.range_start = start,
413 		.range_end = end,
414 	};
415 
416 	if (!mapping_cap_writeback_dirty(mapping) ||
417 	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
418 		return 0;
419 
420 	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
421 	ret = do_writepages(mapping, &wbc);
422 	wbc_detach_inode(&wbc);
423 	return ret;
424 }
425 
426 static inline int __filemap_fdatawrite(struct address_space *mapping,
427 	int sync_mode)
428 {
429 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
430 }
431 
432 int filemap_fdatawrite(struct address_space *mapping)
433 {
434 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
435 }
436 EXPORT_SYMBOL(filemap_fdatawrite);
437 
438 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
439 				loff_t end)
440 {
441 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
442 }
443 EXPORT_SYMBOL(filemap_fdatawrite_range);
444 
445 /**
446  * filemap_flush - mostly a non-blocking flush
447  * @mapping:	target address_space
448  *
449  * This is a mostly non-blocking flush.  Not suitable for data-integrity
450  * purposes - I/O may not be started against all dirty pages.
451  *
452  * Return: %0 on success, negative error code otherwise.
453  */
454 int filemap_flush(struct address_space *mapping)
455 {
456 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
457 }
458 EXPORT_SYMBOL(filemap_flush);
459 
460 /**
461  * filemap_range_has_page - check if a page exists in range.
462  * @mapping:           address space within which to check
463  * @start_byte:        offset in bytes where the range starts
464  * @end_byte:          offset in bytes where the range ends (inclusive)
465  *
466  * Find at least one page in the range supplied, usually used to check if
467  * direct writing in this range will trigger a writeback.
468  *
469  * Return: %true if at least one page exists in the specified range,
470  * %false otherwise.
471  */
472 bool filemap_range_has_page(struct address_space *mapping,
473 			   loff_t start_byte, loff_t end_byte)
474 {
475 	struct page *page;
476 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
477 	pgoff_t max = end_byte >> PAGE_SHIFT;
478 
479 	if (end_byte < start_byte)
480 		return false;
481 
482 	rcu_read_lock();
483 	for (;;) {
484 		page = xas_find(&xas, max);
485 		if (xas_retry(&xas, page))
486 			continue;
487 		/* Shadow entries don't count */
488 		if (xa_is_value(page))
489 			continue;
490 		/*
491 		 * We don't need to try to pin this page; we're about to
492 		 * release the RCU lock anyway.  It is enough to know that
493 		 * there was a page here recently.
494 		 */
495 		break;
496 	}
497 	rcu_read_unlock();
498 
499 	return page != NULL;
500 }
501 EXPORT_SYMBOL(filemap_range_has_page);
502 
503 static void __filemap_fdatawait_range(struct address_space *mapping,
504 				     loff_t start_byte, loff_t end_byte)
505 {
506 	pgoff_t index = start_byte >> PAGE_SHIFT;
507 	pgoff_t end = end_byte >> PAGE_SHIFT;
508 	struct pagevec pvec;
509 	int nr_pages;
510 
511 	if (end_byte < start_byte)
512 		return;
513 
514 	pagevec_init(&pvec);
515 	while (index <= end) {
516 		unsigned i;
517 
518 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
519 				end, PAGECACHE_TAG_WRITEBACK);
520 		if (!nr_pages)
521 			break;
522 
523 		for (i = 0; i < nr_pages; i++) {
524 			struct page *page = pvec.pages[i];
525 
526 			wait_on_page_writeback(page);
527 			ClearPageError(page);
528 		}
529 		pagevec_release(&pvec);
530 		cond_resched();
531 	}
532 }
533 
534 /**
535  * filemap_fdatawait_range - wait for writeback to complete
536  * @mapping:		address space structure to wait for
537  * @start_byte:		offset in bytes where the range starts
538  * @end_byte:		offset in bytes where the range ends (inclusive)
539  *
540  * Walk the list of under-writeback pages of the given address space
541  * in the given range and wait for all of them.  Check error status of
542  * the address space and return it.
543  *
544  * Since the error status of the address space is cleared by this function,
545  * callers are responsible for checking the return value and handling and/or
546  * reporting the error.
547  *
548  * Return: error status of the address space.
549  */
550 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
551 			    loff_t end_byte)
552 {
553 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
554 	return filemap_check_errors(mapping);
555 }
556 EXPORT_SYMBOL(filemap_fdatawait_range);
557 
558 /**
559  * filemap_fdatawait_range_keep_errors - wait for writeback to complete
560  * @mapping:		address space structure to wait for
561  * @start_byte:		offset in bytes where the range starts
562  * @end_byte:		offset in bytes where the range ends (inclusive)
563  *
564  * Walk the list of under-writeback pages of the given address space in the
565  * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
566  * this function does not clear error status of the address space.
567  *
568  * Use this function if callers don't handle errors themselves.  Expected
569  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
570  * fsfreeze(8)
571  */
572 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
573 		loff_t start_byte, loff_t end_byte)
574 {
575 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
576 	return filemap_check_and_keep_errors(mapping);
577 }
578 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
579 
580 /**
581  * file_fdatawait_range - wait for writeback to complete
582  * @file:		file pointing to address space structure to wait for
583  * @start_byte:		offset in bytes where the range starts
584  * @end_byte:		offset in bytes where the range ends (inclusive)
585  *
586  * Walk the list of under-writeback pages of the address space that file
587  * refers to, in the given range and wait for all of them.  Check error
588  * status of the address space vs. the file->f_wb_err cursor and return it.
589  *
590  * Since the error status of the file is advanced by this function,
591  * callers are responsible for checking the return value and handling and/or
592  * reporting the error.
593  *
594  * Return: error status of the address space vs. the file->f_wb_err cursor.
595  */
596 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
597 {
598 	struct address_space *mapping = file->f_mapping;
599 
600 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
601 	return file_check_and_advance_wb_err(file);
602 }
603 EXPORT_SYMBOL(file_fdatawait_range);
604 
605 /**
606  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
607  * @mapping: address space structure to wait for
608  *
609  * Walk the list of under-writeback pages of the given address space
610  * and wait for all of them.  Unlike filemap_fdatawait(), this function
611  * does not clear error status of the address space.
612  *
613  * Use this function if callers don't handle errors themselves.  Expected
614  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
615  * fsfreeze(8)
616  *
617  * Return: error status of the address space.
618  */
619 int filemap_fdatawait_keep_errors(struct address_space *mapping)
620 {
621 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
622 	return filemap_check_and_keep_errors(mapping);
623 }
624 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
625 
626 /* Returns true if writeback might be needed or already in progress. */
627 static bool mapping_needs_writeback(struct address_space *mapping)
628 {
629 	if (dax_mapping(mapping))
630 		return mapping->nrexceptional;
631 
632 	return mapping->nrpages;
633 }
634 
635 /**
636  * filemap_write_and_wait_range - write out & wait on a file range
637  * @mapping:	the address_space for the pages
638  * @lstart:	offset in bytes where the range starts
639  * @lend:	offset in bytes where the range ends (inclusive)
640  *
641  * Write out and wait upon file offsets lstart->lend, inclusive.
642  *
643  * Note that @lend is inclusive (describes the last byte to be written) so
644  * that this function can be used to write to the very end-of-file (end = -1).
645  *
646  * Return: error status of the address space.
647  */
648 int filemap_write_and_wait_range(struct address_space *mapping,
649 				 loff_t lstart, loff_t lend)
650 {
651 	int err = 0;
652 
653 	if (mapping_needs_writeback(mapping)) {
654 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
655 						 WB_SYNC_ALL);
656 		/*
657 		 * Even if the above returned error, the pages may be
658 		 * written partially (e.g. -ENOSPC), so we wait for it.
659 		 * But the -EIO is special case, it may indicate the worst
660 		 * thing (e.g. bug) happened, so we avoid waiting for it.
661 		 */
662 		if (err != -EIO) {
663 			int err2 = filemap_fdatawait_range(mapping,
664 						lstart, lend);
665 			if (!err)
666 				err = err2;
667 		} else {
668 			/* Clear any previously stored errors */
669 			filemap_check_errors(mapping);
670 		}
671 	} else {
672 		err = filemap_check_errors(mapping);
673 	}
674 	return err;
675 }
676 EXPORT_SYMBOL(filemap_write_and_wait_range);
677 
678 void __filemap_set_wb_err(struct address_space *mapping, int err)
679 {
680 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
681 
682 	trace_filemap_set_wb_err(mapping, eseq);
683 }
684 EXPORT_SYMBOL(__filemap_set_wb_err);
685 
686 /**
687  * file_check_and_advance_wb_err - report wb error (if any) that was previously
688  * 				   and advance wb_err to current one
689  * @file: struct file on which the error is being reported
690  *
691  * When userland calls fsync (or something like nfsd does the equivalent), we
692  * want to report any writeback errors that occurred since the last fsync (or
693  * since the file was opened if there haven't been any).
694  *
695  * Grab the wb_err from the mapping. If it matches what we have in the file,
696  * then just quickly return 0. The file is all caught up.
697  *
698  * If it doesn't match, then take the mapping value, set the "seen" flag in
699  * it and try to swap it into place. If it works, or another task beat us
700  * to it with the new value, then update the f_wb_err and return the error
701  * portion. The error at this point must be reported via proper channels
702  * (a'la fsync, or NFS COMMIT operation, etc.).
703  *
704  * While we handle mapping->wb_err with atomic operations, the f_wb_err
705  * value is protected by the f_lock since we must ensure that it reflects
706  * the latest value swapped in for this file descriptor.
707  *
708  * Return: %0 on success, negative error code otherwise.
709  */
710 int file_check_and_advance_wb_err(struct file *file)
711 {
712 	int err = 0;
713 	errseq_t old = READ_ONCE(file->f_wb_err);
714 	struct address_space *mapping = file->f_mapping;
715 
716 	/* Locklessly handle the common case where nothing has changed */
717 	if (errseq_check(&mapping->wb_err, old)) {
718 		/* Something changed, must use slow path */
719 		spin_lock(&file->f_lock);
720 		old = file->f_wb_err;
721 		err = errseq_check_and_advance(&mapping->wb_err,
722 						&file->f_wb_err);
723 		trace_file_check_and_advance_wb_err(file, old);
724 		spin_unlock(&file->f_lock);
725 	}
726 
727 	/*
728 	 * We're mostly using this function as a drop in replacement for
729 	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
730 	 * that the legacy code would have had on these flags.
731 	 */
732 	clear_bit(AS_EIO, &mapping->flags);
733 	clear_bit(AS_ENOSPC, &mapping->flags);
734 	return err;
735 }
736 EXPORT_SYMBOL(file_check_and_advance_wb_err);
737 
738 /**
739  * file_write_and_wait_range - write out & wait on a file range
740  * @file:	file pointing to address_space with pages
741  * @lstart:	offset in bytes where the range starts
742  * @lend:	offset in bytes where the range ends (inclusive)
743  *
744  * Write out and wait upon file offsets lstart->lend, inclusive.
745  *
746  * Note that @lend is inclusive (describes the last byte to be written) so
747  * that this function can be used to write to the very end-of-file (end = -1).
748  *
749  * After writing out and waiting on the data, we check and advance the
750  * f_wb_err cursor to the latest value, and return any errors detected there.
751  *
752  * Return: %0 on success, negative error code otherwise.
753  */
754 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
755 {
756 	int err = 0, err2;
757 	struct address_space *mapping = file->f_mapping;
758 
759 	if (mapping_needs_writeback(mapping)) {
760 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
761 						 WB_SYNC_ALL);
762 		/* See comment of filemap_write_and_wait() */
763 		if (err != -EIO)
764 			__filemap_fdatawait_range(mapping, lstart, lend);
765 	}
766 	err2 = file_check_and_advance_wb_err(file);
767 	if (!err)
768 		err = err2;
769 	return err;
770 }
771 EXPORT_SYMBOL(file_write_and_wait_range);
772 
773 /**
774  * replace_page_cache_page - replace a pagecache page with a new one
775  * @old:	page to be replaced
776  * @new:	page to replace with
777  * @gfp_mask:	allocation mode
778  *
779  * This function replaces a page in the pagecache with a new one.  On
780  * success it acquires the pagecache reference for the new page and
781  * drops it for the old page.  Both the old and new pages must be
782  * locked.  This function does not add the new page to the LRU, the
783  * caller must do that.
784  *
785  * The remove + add is atomic.  This function cannot fail.
786  *
787  * Return: %0
788  */
789 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
790 {
791 	struct address_space *mapping = old->mapping;
792 	void (*freepage)(struct page *) = mapping->a_ops->freepage;
793 	pgoff_t offset = old->index;
794 	XA_STATE(xas, &mapping->i_pages, offset);
795 	unsigned long flags;
796 
797 	VM_BUG_ON_PAGE(!PageLocked(old), old);
798 	VM_BUG_ON_PAGE(!PageLocked(new), new);
799 	VM_BUG_ON_PAGE(new->mapping, new);
800 
801 	get_page(new);
802 	new->mapping = mapping;
803 	new->index = offset;
804 
805 	xas_lock_irqsave(&xas, flags);
806 	xas_store(&xas, new);
807 
808 	old->mapping = NULL;
809 	/* hugetlb pages do not participate in page cache accounting. */
810 	if (!PageHuge(old))
811 		__dec_node_page_state(new, NR_FILE_PAGES);
812 	if (!PageHuge(new))
813 		__inc_node_page_state(new, NR_FILE_PAGES);
814 	if (PageSwapBacked(old))
815 		__dec_node_page_state(new, NR_SHMEM);
816 	if (PageSwapBacked(new))
817 		__inc_node_page_state(new, NR_SHMEM);
818 	xas_unlock_irqrestore(&xas, flags);
819 	mem_cgroup_migrate(old, new);
820 	if (freepage)
821 		freepage(old);
822 	put_page(old);
823 
824 	return 0;
825 }
826 EXPORT_SYMBOL_GPL(replace_page_cache_page);
827 
828 static int __add_to_page_cache_locked(struct page *page,
829 				      struct address_space *mapping,
830 				      pgoff_t offset, gfp_t gfp_mask,
831 				      void **shadowp)
832 {
833 	XA_STATE(xas, &mapping->i_pages, offset);
834 	int huge = PageHuge(page);
835 	struct mem_cgroup *memcg;
836 	int error;
837 	void *old;
838 
839 	VM_BUG_ON_PAGE(!PageLocked(page), page);
840 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
841 	mapping_set_update(&xas, mapping);
842 
843 	if (!huge) {
844 		error = mem_cgroup_try_charge(page, current->mm,
845 					      gfp_mask, &memcg, false);
846 		if (error)
847 			return error;
848 	}
849 
850 	get_page(page);
851 	page->mapping = mapping;
852 	page->index = offset;
853 
854 	do {
855 		xas_lock_irq(&xas);
856 		old = xas_load(&xas);
857 		if (old && !xa_is_value(old))
858 			xas_set_err(&xas, -EEXIST);
859 		xas_store(&xas, page);
860 		if (xas_error(&xas))
861 			goto unlock;
862 
863 		if (xa_is_value(old)) {
864 			mapping->nrexceptional--;
865 			if (shadowp)
866 				*shadowp = old;
867 		}
868 		mapping->nrpages++;
869 
870 		/* hugetlb pages do not participate in page cache accounting */
871 		if (!huge)
872 			__inc_node_page_state(page, NR_FILE_PAGES);
873 unlock:
874 		xas_unlock_irq(&xas);
875 	} while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));
876 
877 	if (xas_error(&xas))
878 		goto error;
879 
880 	if (!huge)
881 		mem_cgroup_commit_charge(page, memcg, false, false);
882 	trace_mm_filemap_add_to_page_cache(page);
883 	return 0;
884 error:
885 	page->mapping = NULL;
886 	/* Leave page->index set: truncation relies upon it */
887 	if (!huge)
888 		mem_cgroup_cancel_charge(page, memcg, false);
889 	put_page(page);
890 	return xas_error(&xas);
891 }
892 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
893 
894 /**
895  * add_to_page_cache_locked - add a locked page to the pagecache
896  * @page:	page to add
897  * @mapping:	the page's address_space
898  * @offset:	page index
899  * @gfp_mask:	page allocation mode
900  *
901  * This function is used to add a page to the pagecache. It must be locked.
902  * This function does not add the page to the LRU.  The caller must do that.
903  *
904  * Return: %0 on success, negative error code otherwise.
905  */
906 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
907 		pgoff_t offset, gfp_t gfp_mask)
908 {
909 	return __add_to_page_cache_locked(page, mapping, offset,
910 					  gfp_mask, NULL);
911 }
912 EXPORT_SYMBOL(add_to_page_cache_locked);
913 
914 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
915 				pgoff_t offset, gfp_t gfp_mask)
916 {
917 	void *shadow = NULL;
918 	int ret;
919 
920 	__SetPageLocked(page);
921 	ret = __add_to_page_cache_locked(page, mapping, offset,
922 					 gfp_mask, &shadow);
923 	if (unlikely(ret))
924 		__ClearPageLocked(page);
925 	else {
926 		/*
927 		 * The page might have been evicted from cache only
928 		 * recently, in which case it should be activated like
929 		 * any other repeatedly accessed page.
930 		 * The exception is pages getting rewritten; evicting other
931 		 * data from the working set, only to cache data that will
932 		 * get overwritten with something else, is a waste of memory.
933 		 */
934 		WARN_ON_ONCE(PageActive(page));
935 		if (!(gfp_mask & __GFP_WRITE) && shadow)
936 			workingset_refault(page, shadow);
937 		lru_cache_add(page);
938 	}
939 	return ret;
940 }
941 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
942 
943 #ifdef CONFIG_NUMA
944 struct page *__page_cache_alloc(gfp_t gfp)
945 {
946 	int n;
947 	struct page *page;
948 
949 	if (cpuset_do_page_mem_spread()) {
950 		unsigned int cpuset_mems_cookie;
951 		do {
952 			cpuset_mems_cookie = read_mems_allowed_begin();
953 			n = cpuset_mem_spread_node();
954 			page = __alloc_pages_node(n, gfp, 0);
955 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
956 
957 		return page;
958 	}
959 	return alloc_pages(gfp, 0);
960 }
961 EXPORT_SYMBOL(__page_cache_alloc);
962 #endif
963 
964 /*
965  * In order to wait for pages to become available there must be
966  * waitqueues associated with pages. By using a hash table of
967  * waitqueues where the bucket discipline is to maintain all
968  * waiters on the same queue and wake all when any of the pages
969  * become available, and for the woken contexts to check to be
970  * sure the appropriate page became available, this saves space
971  * at a cost of "thundering herd" phenomena during rare hash
972  * collisions.
973  */
974 #define PAGE_WAIT_TABLE_BITS 8
975 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
976 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
977 
978 static wait_queue_head_t *page_waitqueue(struct page *page)
979 {
980 	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
981 }
982 
983 void __init pagecache_init(void)
984 {
985 	int i;
986 
987 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
988 		init_waitqueue_head(&page_wait_table[i]);
989 
990 	page_writeback_init();
991 }
992 
993 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
994 struct wait_page_key {
995 	struct page *page;
996 	int bit_nr;
997 	int page_match;
998 };
999 
1000 struct wait_page_queue {
1001 	struct page *page;
1002 	int bit_nr;
1003 	wait_queue_entry_t wait;
1004 };
1005 
1006 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1007 {
1008 	struct wait_page_key *key = arg;
1009 	struct wait_page_queue *wait_page
1010 		= container_of(wait, struct wait_page_queue, wait);
1011 
1012 	if (wait_page->page != key->page)
1013 	       return 0;
1014 	key->page_match = 1;
1015 
1016 	if (wait_page->bit_nr != key->bit_nr)
1017 		return 0;
1018 
1019 	/*
1020 	 * Stop walking if it's locked.
1021 	 * Is this safe if put_and_wait_on_page_locked() is in use?
1022 	 * Yes: the waker must hold a reference to this page, and if PG_locked
1023 	 * has now already been set by another task, that task must also hold
1024 	 * a reference to the *same usage* of this page; so there is no need
1025 	 * to walk on to wake even the put_and_wait_on_page_locked() callers.
1026 	 */
1027 	if (test_bit(key->bit_nr, &key->page->flags))
1028 		return -1;
1029 
1030 	return autoremove_wake_function(wait, mode, sync, key);
1031 }
1032 
1033 static void wake_up_page_bit(struct page *page, int bit_nr)
1034 {
1035 	wait_queue_head_t *q = page_waitqueue(page);
1036 	struct wait_page_key key;
1037 	unsigned long flags;
1038 	wait_queue_entry_t bookmark;
1039 
1040 	key.page = page;
1041 	key.bit_nr = bit_nr;
1042 	key.page_match = 0;
1043 
1044 	bookmark.flags = 0;
1045 	bookmark.private = NULL;
1046 	bookmark.func = NULL;
1047 	INIT_LIST_HEAD(&bookmark.entry);
1048 
1049 	spin_lock_irqsave(&q->lock, flags);
1050 	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1051 
1052 	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1053 		/*
1054 		 * Take a breather from holding the lock,
1055 		 * allow pages that finish wake up asynchronously
1056 		 * to acquire the lock and remove themselves
1057 		 * from wait queue
1058 		 */
1059 		spin_unlock_irqrestore(&q->lock, flags);
1060 		cpu_relax();
1061 		spin_lock_irqsave(&q->lock, flags);
1062 		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1063 	}
1064 
1065 	/*
1066 	 * It is possible for other pages to have collided on the waitqueue
1067 	 * hash, so in that case check for a page match. That prevents a long-
1068 	 * term waiter
1069 	 *
1070 	 * It is still possible to miss a case here, when we woke page waiters
1071 	 * and removed them from the waitqueue, but there are still other
1072 	 * page waiters.
1073 	 */
1074 	if (!waitqueue_active(q) || !key.page_match) {
1075 		ClearPageWaiters(page);
1076 		/*
1077 		 * It's possible to miss clearing Waiters here, when we woke
1078 		 * our page waiters, but the hashed waitqueue has waiters for
1079 		 * other pages on it.
1080 		 *
1081 		 * That's okay, it's a rare case. The next waker will clear it.
1082 		 */
1083 	}
1084 	spin_unlock_irqrestore(&q->lock, flags);
1085 }
1086 
1087 static void wake_up_page(struct page *page, int bit)
1088 {
1089 	if (!PageWaiters(page))
1090 		return;
1091 	wake_up_page_bit(page, bit);
1092 }
1093 
1094 /*
1095  * A choice of three behaviors for wait_on_page_bit_common():
1096  */
1097 enum behavior {
1098 	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1099 			 * __lock_page() waiting on then setting PG_locked.
1100 			 */
1101 	SHARED,		/* Hold ref to page and check the bit when woken, like
1102 			 * wait_on_page_writeback() waiting on PG_writeback.
1103 			 */
1104 	DROP,		/* Drop ref to page before wait, no check when woken,
1105 			 * like put_and_wait_on_page_locked() on PG_locked.
1106 			 */
1107 };
1108 
1109 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1110 	struct page *page, int bit_nr, int state, enum behavior behavior)
1111 {
1112 	struct wait_page_queue wait_page;
1113 	wait_queue_entry_t *wait = &wait_page.wait;
1114 	bool bit_is_set;
1115 	bool thrashing = false;
1116 	bool delayacct = false;
1117 	unsigned long pflags;
1118 	int ret = 0;
1119 
1120 	if (bit_nr == PG_locked &&
1121 	    !PageUptodate(page) && PageWorkingset(page)) {
1122 		if (!PageSwapBacked(page)) {
1123 			delayacct_thrashing_start();
1124 			delayacct = true;
1125 		}
1126 		psi_memstall_enter(&pflags);
1127 		thrashing = true;
1128 	}
1129 
1130 	init_wait(wait);
1131 	wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0;
1132 	wait->func = wake_page_function;
1133 	wait_page.page = page;
1134 	wait_page.bit_nr = bit_nr;
1135 
1136 	for (;;) {
1137 		spin_lock_irq(&q->lock);
1138 
1139 		if (likely(list_empty(&wait->entry))) {
1140 			__add_wait_queue_entry_tail(q, wait);
1141 			SetPageWaiters(page);
1142 		}
1143 
1144 		set_current_state(state);
1145 
1146 		spin_unlock_irq(&q->lock);
1147 
1148 		bit_is_set = test_bit(bit_nr, &page->flags);
1149 		if (behavior == DROP)
1150 			put_page(page);
1151 
1152 		if (likely(bit_is_set))
1153 			io_schedule();
1154 
1155 		if (behavior == EXCLUSIVE) {
1156 			if (!test_and_set_bit_lock(bit_nr, &page->flags))
1157 				break;
1158 		} else if (behavior == SHARED) {
1159 			if (!test_bit(bit_nr, &page->flags))
1160 				break;
1161 		}
1162 
1163 		if (signal_pending_state(state, current)) {
1164 			ret = -EINTR;
1165 			break;
1166 		}
1167 
1168 		if (behavior == DROP) {
1169 			/*
1170 			 * We can no longer safely access page->flags:
1171 			 * even if CONFIG_MEMORY_HOTREMOVE is not enabled,
1172 			 * there is a risk of waiting forever on a page reused
1173 			 * for something that keeps it locked indefinitely.
1174 			 * But best check for -EINTR above before breaking.
1175 			 */
1176 			break;
1177 		}
1178 	}
1179 
1180 	finish_wait(q, wait);
1181 
1182 	if (thrashing) {
1183 		if (delayacct)
1184 			delayacct_thrashing_end();
1185 		psi_memstall_leave(&pflags);
1186 	}
1187 
1188 	/*
1189 	 * A signal could leave PageWaiters set. Clearing it here if
1190 	 * !waitqueue_active would be possible (by open-coding finish_wait),
1191 	 * but still fail to catch it in the case of wait hash collision. We
1192 	 * already can fail to clear wait hash collision cases, so don't
1193 	 * bother with signals either.
1194 	 */
1195 
1196 	return ret;
1197 }
1198 
1199 void wait_on_page_bit(struct page *page, int bit_nr)
1200 {
1201 	wait_queue_head_t *q = page_waitqueue(page);
1202 	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1203 }
1204 EXPORT_SYMBOL(wait_on_page_bit);
1205 
1206 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1207 {
1208 	wait_queue_head_t *q = page_waitqueue(page);
1209 	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1210 }
1211 EXPORT_SYMBOL(wait_on_page_bit_killable);
1212 
1213 /**
1214  * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1215  * @page: The page to wait for.
1216  *
1217  * The caller should hold a reference on @page.  They expect the page to
1218  * become unlocked relatively soon, but do not wish to hold up migration
1219  * (for example) by holding the reference while waiting for the page to
1220  * come unlocked.  After this function returns, the caller should not
1221  * dereference @page.
1222  */
1223 void put_and_wait_on_page_locked(struct page *page)
1224 {
1225 	wait_queue_head_t *q;
1226 
1227 	page = compound_head(page);
1228 	q = page_waitqueue(page);
1229 	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
1230 }
1231 
1232 /**
1233  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1234  * @page: Page defining the wait queue of interest
1235  * @waiter: Waiter to add to the queue
1236  *
1237  * Add an arbitrary @waiter to the wait queue for the nominated @page.
1238  */
1239 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1240 {
1241 	wait_queue_head_t *q = page_waitqueue(page);
1242 	unsigned long flags;
1243 
1244 	spin_lock_irqsave(&q->lock, flags);
1245 	__add_wait_queue_entry_tail(q, waiter);
1246 	SetPageWaiters(page);
1247 	spin_unlock_irqrestore(&q->lock, flags);
1248 }
1249 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1250 
1251 #ifndef clear_bit_unlock_is_negative_byte
1252 
1253 /*
1254  * PG_waiters is the high bit in the same byte as PG_lock.
1255  *
1256  * On x86 (and on many other architectures), we can clear PG_lock and
1257  * test the sign bit at the same time. But if the architecture does
1258  * not support that special operation, we just do this all by hand
1259  * instead.
1260  *
1261  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1262  * being cleared, but a memory barrier should be unneccssary since it is
1263  * in the same byte as PG_locked.
1264  */
1265 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1266 {
1267 	clear_bit_unlock(nr, mem);
1268 	/* smp_mb__after_atomic(); */
1269 	return test_bit(PG_waiters, mem);
1270 }
1271 
1272 #endif
1273 
1274 /**
1275  * unlock_page - unlock a locked page
1276  * @page: the page
1277  *
1278  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1279  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1280  * mechanism between PageLocked pages and PageWriteback pages is shared.
1281  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1282  *
1283  * Note that this depends on PG_waiters being the sign bit in the byte
1284  * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1285  * clear the PG_locked bit and test PG_waiters at the same time fairly
1286  * portably (architectures that do LL/SC can test any bit, while x86 can
1287  * test the sign bit).
1288  */
1289 void unlock_page(struct page *page)
1290 {
1291 	BUILD_BUG_ON(PG_waiters != 7);
1292 	page = compound_head(page);
1293 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1294 	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1295 		wake_up_page_bit(page, PG_locked);
1296 }
1297 EXPORT_SYMBOL(unlock_page);
1298 
1299 /**
1300  * end_page_writeback - end writeback against a page
1301  * @page: the page
1302  */
1303 void end_page_writeback(struct page *page)
1304 {
1305 	/*
1306 	 * TestClearPageReclaim could be used here but it is an atomic
1307 	 * operation and overkill in this particular case. Failing to
1308 	 * shuffle a page marked for immediate reclaim is too mild to
1309 	 * justify taking an atomic operation penalty at the end of
1310 	 * ever page writeback.
1311 	 */
1312 	if (PageReclaim(page)) {
1313 		ClearPageReclaim(page);
1314 		rotate_reclaimable_page(page);
1315 	}
1316 
1317 	if (!test_clear_page_writeback(page))
1318 		BUG();
1319 
1320 	smp_mb__after_atomic();
1321 	wake_up_page(page, PG_writeback);
1322 }
1323 EXPORT_SYMBOL(end_page_writeback);
1324 
1325 /*
1326  * After completing I/O on a page, call this routine to update the page
1327  * flags appropriately
1328  */
1329 void page_endio(struct page *page, bool is_write, int err)
1330 {
1331 	if (!is_write) {
1332 		if (!err) {
1333 			SetPageUptodate(page);
1334 		} else {
1335 			ClearPageUptodate(page);
1336 			SetPageError(page);
1337 		}
1338 		unlock_page(page);
1339 	} else {
1340 		if (err) {
1341 			struct address_space *mapping;
1342 
1343 			SetPageError(page);
1344 			mapping = page_mapping(page);
1345 			if (mapping)
1346 				mapping_set_error(mapping, err);
1347 		}
1348 		end_page_writeback(page);
1349 	}
1350 }
1351 EXPORT_SYMBOL_GPL(page_endio);
1352 
1353 /**
1354  * __lock_page - get a lock on the page, assuming we need to sleep to get it
1355  * @__page: the page to lock
1356  */
1357 void __lock_page(struct page *__page)
1358 {
1359 	struct page *page = compound_head(__page);
1360 	wait_queue_head_t *q = page_waitqueue(page);
1361 	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1362 				EXCLUSIVE);
1363 }
1364 EXPORT_SYMBOL(__lock_page);
1365 
1366 int __lock_page_killable(struct page *__page)
1367 {
1368 	struct page *page = compound_head(__page);
1369 	wait_queue_head_t *q = page_waitqueue(page);
1370 	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1371 					EXCLUSIVE);
1372 }
1373 EXPORT_SYMBOL_GPL(__lock_page_killable);
1374 
1375 /*
1376  * Return values:
1377  * 1 - page is locked; mmap_sem is still held.
1378  * 0 - page is not locked.
1379  *     mmap_sem has been released (up_read()), unless flags had both
1380  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1381  *     which case mmap_sem is still held.
1382  *
1383  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1384  * with the page locked and the mmap_sem unperturbed.
1385  */
1386 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1387 			 unsigned int flags)
1388 {
1389 	if (fault_flag_allow_retry_first(flags)) {
1390 		/*
1391 		 * CAUTION! In this case, mmap_sem is not released
1392 		 * even though return 0.
1393 		 */
1394 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1395 			return 0;
1396 
1397 		up_read(&mm->mmap_sem);
1398 		if (flags & FAULT_FLAG_KILLABLE)
1399 			wait_on_page_locked_killable(page);
1400 		else
1401 			wait_on_page_locked(page);
1402 		return 0;
1403 	} else {
1404 		if (flags & FAULT_FLAG_KILLABLE) {
1405 			int ret;
1406 
1407 			ret = __lock_page_killable(page);
1408 			if (ret) {
1409 				up_read(&mm->mmap_sem);
1410 				return 0;
1411 			}
1412 		} else
1413 			__lock_page(page);
1414 		return 1;
1415 	}
1416 }
1417 
1418 /**
1419  * page_cache_next_miss() - Find the next gap in the page cache.
1420  * @mapping: Mapping.
1421  * @index: Index.
1422  * @max_scan: Maximum range to search.
1423  *
1424  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1425  * gap with the lowest index.
1426  *
1427  * This function may be called under the rcu_read_lock.  However, this will
1428  * not atomically search a snapshot of the cache at a single point in time.
1429  * For example, if a gap is created at index 5, then subsequently a gap is
1430  * created at index 10, page_cache_next_miss covering both indices may
1431  * return 10 if called under the rcu_read_lock.
1432  *
1433  * Return: The index of the gap if found, otherwise an index outside the
1434  * range specified (in which case 'return - index >= max_scan' will be true).
1435  * In the rare case of index wrap-around, 0 will be returned.
1436  */
1437 pgoff_t page_cache_next_miss(struct address_space *mapping,
1438 			     pgoff_t index, unsigned long max_scan)
1439 {
1440 	XA_STATE(xas, &mapping->i_pages, index);
1441 
1442 	while (max_scan--) {
1443 		void *entry = xas_next(&xas);
1444 		if (!entry || xa_is_value(entry))
1445 			break;
1446 		if (xas.xa_index == 0)
1447 			break;
1448 	}
1449 
1450 	return xas.xa_index;
1451 }
1452 EXPORT_SYMBOL(page_cache_next_miss);
1453 
1454 /**
1455  * page_cache_prev_miss() - Find the previous gap in the page cache.
1456  * @mapping: Mapping.
1457  * @index: Index.
1458  * @max_scan: Maximum range to search.
1459  *
1460  * Search the range [max(index - max_scan + 1, 0), index] for the
1461  * gap with the highest index.
1462  *
1463  * This function may be called under the rcu_read_lock.  However, this will
1464  * not atomically search a snapshot of the cache at a single point in time.
1465  * For example, if a gap is created at index 10, then subsequently a gap is
1466  * created at index 5, page_cache_prev_miss() covering both indices may
1467  * return 5 if called under the rcu_read_lock.
1468  *
1469  * Return: The index of the gap if found, otherwise an index outside the
1470  * range specified (in which case 'index - return >= max_scan' will be true).
1471  * In the rare case of wrap-around, ULONG_MAX will be returned.
1472  */
1473 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1474 			     pgoff_t index, unsigned long max_scan)
1475 {
1476 	XA_STATE(xas, &mapping->i_pages, index);
1477 
1478 	while (max_scan--) {
1479 		void *entry = xas_prev(&xas);
1480 		if (!entry || xa_is_value(entry))
1481 			break;
1482 		if (xas.xa_index == ULONG_MAX)
1483 			break;
1484 	}
1485 
1486 	return xas.xa_index;
1487 }
1488 EXPORT_SYMBOL(page_cache_prev_miss);
1489 
1490 /**
1491  * find_get_entry - find and get a page cache entry
1492  * @mapping: the address_space to search
1493  * @offset: the page cache index
1494  *
1495  * Looks up the page cache slot at @mapping & @offset.  If there is a
1496  * page cache page, it is returned with an increased refcount.
1497  *
1498  * If the slot holds a shadow entry of a previously evicted page, or a
1499  * swap entry from shmem/tmpfs, it is returned.
1500  *
1501  * Return: the found page or shadow entry, %NULL if nothing is found.
1502  */
1503 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1504 {
1505 	XA_STATE(xas, &mapping->i_pages, offset);
1506 	struct page *page;
1507 
1508 	rcu_read_lock();
1509 repeat:
1510 	xas_reset(&xas);
1511 	page = xas_load(&xas);
1512 	if (xas_retry(&xas, page))
1513 		goto repeat;
1514 	/*
1515 	 * A shadow entry of a recently evicted page, or a swap entry from
1516 	 * shmem/tmpfs.  Return it without attempting to raise page count.
1517 	 */
1518 	if (!page || xa_is_value(page))
1519 		goto out;
1520 
1521 	if (!page_cache_get_speculative(page))
1522 		goto repeat;
1523 
1524 	/*
1525 	 * Has the page moved or been split?
1526 	 * This is part of the lockless pagecache protocol. See
1527 	 * include/linux/pagemap.h for details.
1528 	 */
1529 	if (unlikely(page != xas_reload(&xas))) {
1530 		put_page(page);
1531 		goto repeat;
1532 	}
1533 	page = find_subpage(page, offset);
1534 out:
1535 	rcu_read_unlock();
1536 
1537 	return page;
1538 }
1539 
1540 /**
1541  * find_lock_entry - locate, pin and lock a page cache entry
1542  * @mapping: the address_space to search
1543  * @offset: the page cache index
1544  *
1545  * Looks up the page cache slot at @mapping & @offset.  If there is a
1546  * page cache page, it is returned locked and with an increased
1547  * refcount.
1548  *
1549  * If the slot holds a shadow entry of a previously evicted page, or a
1550  * swap entry from shmem/tmpfs, it is returned.
1551  *
1552  * find_lock_entry() may sleep.
1553  *
1554  * Return: the found page or shadow entry, %NULL if nothing is found.
1555  */
1556 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1557 {
1558 	struct page *page;
1559 
1560 repeat:
1561 	page = find_get_entry(mapping, offset);
1562 	if (page && !xa_is_value(page)) {
1563 		lock_page(page);
1564 		/* Has the page been truncated? */
1565 		if (unlikely(page_mapping(page) != mapping)) {
1566 			unlock_page(page);
1567 			put_page(page);
1568 			goto repeat;
1569 		}
1570 		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1571 	}
1572 	return page;
1573 }
1574 EXPORT_SYMBOL(find_lock_entry);
1575 
1576 /**
1577  * pagecache_get_page - Find and get a reference to a page.
1578  * @mapping: The address_space to search.
1579  * @index: The page index.
1580  * @fgp_flags: %FGP flags modify how the page is returned.
1581  * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified.
1582  *
1583  * Looks up the page cache entry at @mapping & @index.
1584  *
1585  * @fgp_flags can be zero or more of these flags:
1586  *
1587  * * %FGP_ACCESSED - The page will be marked accessed.
1588  * * %FGP_LOCK - The page is returned locked.
1589  * * %FGP_CREAT - If no page is present then a new page is allocated using
1590  *   @gfp_mask and added to the page cache and the VM's LRU list.
1591  *   The page is returned locked and with an increased refcount.
1592  * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1593  *   page is already in cache.  If the page was allocated, unlock it before
1594  *   returning so the caller can do the same dance.
1595  *
1596  * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1597  * if the %GFP flags specified for %FGP_CREAT are atomic.
1598  *
1599  * If there is a page cache page, it is returned with an increased refcount.
1600  *
1601  * Return: The found page or %NULL otherwise.
1602  */
1603 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
1604 		int fgp_flags, gfp_t gfp_mask)
1605 {
1606 	struct page *page;
1607 
1608 repeat:
1609 	page = find_get_entry(mapping, index);
1610 	if (xa_is_value(page))
1611 		page = NULL;
1612 	if (!page)
1613 		goto no_page;
1614 
1615 	if (fgp_flags & FGP_LOCK) {
1616 		if (fgp_flags & FGP_NOWAIT) {
1617 			if (!trylock_page(page)) {
1618 				put_page(page);
1619 				return NULL;
1620 			}
1621 		} else {
1622 			lock_page(page);
1623 		}
1624 
1625 		/* Has the page been truncated? */
1626 		if (unlikely(compound_head(page)->mapping != mapping)) {
1627 			unlock_page(page);
1628 			put_page(page);
1629 			goto repeat;
1630 		}
1631 		VM_BUG_ON_PAGE(page->index != index, page);
1632 	}
1633 
1634 	if (fgp_flags & FGP_ACCESSED)
1635 		mark_page_accessed(page);
1636 
1637 no_page:
1638 	if (!page && (fgp_flags & FGP_CREAT)) {
1639 		int err;
1640 		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1641 			gfp_mask |= __GFP_WRITE;
1642 		if (fgp_flags & FGP_NOFS)
1643 			gfp_mask &= ~__GFP_FS;
1644 
1645 		page = __page_cache_alloc(gfp_mask);
1646 		if (!page)
1647 			return NULL;
1648 
1649 		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1650 			fgp_flags |= FGP_LOCK;
1651 
1652 		/* Init accessed so avoid atomic mark_page_accessed later */
1653 		if (fgp_flags & FGP_ACCESSED)
1654 			__SetPageReferenced(page);
1655 
1656 		err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
1657 		if (unlikely(err)) {
1658 			put_page(page);
1659 			page = NULL;
1660 			if (err == -EEXIST)
1661 				goto repeat;
1662 		}
1663 
1664 		/*
1665 		 * add_to_page_cache_lru locks the page, and for mmap we expect
1666 		 * an unlocked page.
1667 		 */
1668 		if (page && (fgp_flags & FGP_FOR_MMAP))
1669 			unlock_page(page);
1670 	}
1671 
1672 	return page;
1673 }
1674 EXPORT_SYMBOL(pagecache_get_page);
1675 
1676 /**
1677  * find_get_entries - gang pagecache lookup
1678  * @mapping:	The address_space to search
1679  * @start:	The starting page cache index
1680  * @nr_entries:	The maximum number of entries
1681  * @entries:	Where the resulting entries are placed
1682  * @indices:	The cache indices corresponding to the entries in @entries
1683  *
1684  * find_get_entries() will search for and return a group of up to
1685  * @nr_entries entries in the mapping.  The entries are placed at
1686  * @entries.  find_get_entries() takes a reference against any actual
1687  * pages it returns.
1688  *
1689  * The search returns a group of mapping-contiguous page cache entries
1690  * with ascending indexes.  There may be holes in the indices due to
1691  * not-present pages.
1692  *
1693  * Any shadow entries of evicted pages, or swap entries from
1694  * shmem/tmpfs, are included in the returned array.
1695  *
1696  * If it finds a Transparent Huge Page, head or tail, find_get_entries()
1697  * stops at that page: the caller is likely to have a better way to handle
1698  * the compound page as a whole, and then skip its extent, than repeatedly
1699  * calling find_get_entries() to return all its tails.
1700  *
1701  * Return: the number of pages and shadow entries which were found.
1702  */
1703 unsigned find_get_entries(struct address_space *mapping,
1704 			  pgoff_t start, unsigned int nr_entries,
1705 			  struct page **entries, pgoff_t *indices)
1706 {
1707 	XA_STATE(xas, &mapping->i_pages, start);
1708 	struct page *page;
1709 	unsigned int ret = 0;
1710 
1711 	if (!nr_entries)
1712 		return 0;
1713 
1714 	rcu_read_lock();
1715 	xas_for_each(&xas, page, ULONG_MAX) {
1716 		if (xas_retry(&xas, page))
1717 			continue;
1718 		/*
1719 		 * A shadow entry of a recently evicted page, a swap
1720 		 * entry from shmem/tmpfs or a DAX entry.  Return it
1721 		 * without attempting to raise page count.
1722 		 */
1723 		if (xa_is_value(page))
1724 			goto export;
1725 
1726 		if (!page_cache_get_speculative(page))
1727 			goto retry;
1728 
1729 		/* Has the page moved or been split? */
1730 		if (unlikely(page != xas_reload(&xas)))
1731 			goto put_page;
1732 
1733 		/*
1734 		 * Terminate early on finding a THP, to allow the caller to
1735 		 * handle it all at once; but continue if this is hugetlbfs.
1736 		 */
1737 		if (PageTransHuge(page) && !PageHuge(page)) {
1738 			page = find_subpage(page, xas.xa_index);
1739 			nr_entries = ret + 1;
1740 		}
1741 export:
1742 		indices[ret] = xas.xa_index;
1743 		entries[ret] = page;
1744 		if (++ret == nr_entries)
1745 			break;
1746 		continue;
1747 put_page:
1748 		put_page(page);
1749 retry:
1750 		xas_reset(&xas);
1751 	}
1752 	rcu_read_unlock();
1753 	return ret;
1754 }
1755 
1756 /**
1757  * find_get_pages_range - gang pagecache lookup
1758  * @mapping:	The address_space to search
1759  * @start:	The starting page index
1760  * @end:	The final page index (inclusive)
1761  * @nr_pages:	The maximum number of pages
1762  * @pages:	Where the resulting pages are placed
1763  *
1764  * find_get_pages_range() will search for and return a group of up to @nr_pages
1765  * pages in the mapping starting at index @start and up to index @end
1766  * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
1767  * a reference against the returned pages.
1768  *
1769  * The search returns a group of mapping-contiguous pages with ascending
1770  * indexes.  There may be holes in the indices due to not-present pages.
1771  * We also update @start to index the next page for the traversal.
1772  *
1773  * Return: the number of pages which were found. If this number is
1774  * smaller than @nr_pages, the end of specified range has been
1775  * reached.
1776  */
1777 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1778 			      pgoff_t end, unsigned int nr_pages,
1779 			      struct page **pages)
1780 {
1781 	XA_STATE(xas, &mapping->i_pages, *start);
1782 	struct page *page;
1783 	unsigned ret = 0;
1784 
1785 	if (unlikely(!nr_pages))
1786 		return 0;
1787 
1788 	rcu_read_lock();
1789 	xas_for_each(&xas, page, end) {
1790 		if (xas_retry(&xas, page))
1791 			continue;
1792 		/* Skip over shadow, swap and DAX entries */
1793 		if (xa_is_value(page))
1794 			continue;
1795 
1796 		if (!page_cache_get_speculative(page))
1797 			goto retry;
1798 
1799 		/* Has the page moved or been split? */
1800 		if (unlikely(page != xas_reload(&xas)))
1801 			goto put_page;
1802 
1803 		pages[ret] = find_subpage(page, xas.xa_index);
1804 		if (++ret == nr_pages) {
1805 			*start = xas.xa_index + 1;
1806 			goto out;
1807 		}
1808 		continue;
1809 put_page:
1810 		put_page(page);
1811 retry:
1812 		xas_reset(&xas);
1813 	}
1814 
1815 	/*
1816 	 * We come here when there is no page beyond @end. We take care to not
1817 	 * overflow the index @start as it confuses some of the callers. This
1818 	 * breaks the iteration when there is a page at index -1 but that is
1819 	 * already broken anyway.
1820 	 */
1821 	if (end == (pgoff_t)-1)
1822 		*start = (pgoff_t)-1;
1823 	else
1824 		*start = end + 1;
1825 out:
1826 	rcu_read_unlock();
1827 
1828 	return ret;
1829 }
1830 
1831 /**
1832  * find_get_pages_contig - gang contiguous pagecache lookup
1833  * @mapping:	The address_space to search
1834  * @index:	The starting page index
1835  * @nr_pages:	The maximum number of pages
1836  * @pages:	Where the resulting pages are placed
1837  *
1838  * find_get_pages_contig() works exactly like find_get_pages(), except
1839  * that the returned number of pages are guaranteed to be contiguous.
1840  *
1841  * Return: the number of pages which were found.
1842  */
1843 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1844 			       unsigned int nr_pages, struct page **pages)
1845 {
1846 	XA_STATE(xas, &mapping->i_pages, index);
1847 	struct page *page;
1848 	unsigned int ret = 0;
1849 
1850 	if (unlikely(!nr_pages))
1851 		return 0;
1852 
1853 	rcu_read_lock();
1854 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1855 		if (xas_retry(&xas, page))
1856 			continue;
1857 		/*
1858 		 * If the entry has been swapped out, we can stop looking.
1859 		 * No current caller is looking for DAX entries.
1860 		 */
1861 		if (xa_is_value(page))
1862 			break;
1863 
1864 		if (!page_cache_get_speculative(page))
1865 			goto retry;
1866 
1867 		/* Has the page moved or been split? */
1868 		if (unlikely(page != xas_reload(&xas)))
1869 			goto put_page;
1870 
1871 		pages[ret] = find_subpage(page, xas.xa_index);
1872 		if (++ret == nr_pages)
1873 			break;
1874 		continue;
1875 put_page:
1876 		put_page(page);
1877 retry:
1878 		xas_reset(&xas);
1879 	}
1880 	rcu_read_unlock();
1881 	return ret;
1882 }
1883 EXPORT_SYMBOL(find_get_pages_contig);
1884 
1885 /**
1886  * find_get_pages_range_tag - find and return pages in given range matching @tag
1887  * @mapping:	the address_space to search
1888  * @index:	the starting page index
1889  * @end:	The final page index (inclusive)
1890  * @tag:	the tag index
1891  * @nr_pages:	the maximum number of pages
1892  * @pages:	where the resulting pages are placed
1893  *
1894  * Like find_get_pages, except we only return pages which are tagged with
1895  * @tag.   We update @index to index the next page for the traversal.
1896  *
1897  * Return: the number of pages which were found.
1898  */
1899 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1900 			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
1901 			struct page **pages)
1902 {
1903 	XA_STATE(xas, &mapping->i_pages, *index);
1904 	struct page *page;
1905 	unsigned ret = 0;
1906 
1907 	if (unlikely(!nr_pages))
1908 		return 0;
1909 
1910 	rcu_read_lock();
1911 	xas_for_each_marked(&xas, page, end, tag) {
1912 		if (xas_retry(&xas, page))
1913 			continue;
1914 		/*
1915 		 * Shadow entries should never be tagged, but this iteration
1916 		 * is lockless so there is a window for page reclaim to evict
1917 		 * a page we saw tagged.  Skip over it.
1918 		 */
1919 		if (xa_is_value(page))
1920 			continue;
1921 
1922 		if (!page_cache_get_speculative(page))
1923 			goto retry;
1924 
1925 		/* Has the page moved or been split? */
1926 		if (unlikely(page != xas_reload(&xas)))
1927 			goto put_page;
1928 
1929 		pages[ret] = find_subpage(page, xas.xa_index);
1930 		if (++ret == nr_pages) {
1931 			*index = xas.xa_index + 1;
1932 			goto out;
1933 		}
1934 		continue;
1935 put_page:
1936 		put_page(page);
1937 retry:
1938 		xas_reset(&xas);
1939 	}
1940 
1941 	/*
1942 	 * We come here when we got to @end. We take care to not overflow the
1943 	 * index @index as it confuses some of the callers. This breaks the
1944 	 * iteration when there is a page at index -1 but that is already
1945 	 * broken anyway.
1946 	 */
1947 	if (end == (pgoff_t)-1)
1948 		*index = (pgoff_t)-1;
1949 	else
1950 		*index = end + 1;
1951 out:
1952 	rcu_read_unlock();
1953 
1954 	return ret;
1955 }
1956 EXPORT_SYMBOL(find_get_pages_range_tag);
1957 
1958 /*
1959  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1960  * a _large_ part of the i/o request. Imagine the worst scenario:
1961  *
1962  *      ---R__________________________________________B__________
1963  *         ^ reading here                             ^ bad block(assume 4k)
1964  *
1965  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1966  * => failing the whole request => read(R) => read(R+1) =>
1967  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1968  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1969  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1970  *
1971  * It is going insane. Fix it by quickly scaling down the readahead size.
1972  */
1973 static void shrink_readahead_size_eio(struct file_ra_state *ra)
1974 {
1975 	ra->ra_pages /= 4;
1976 }
1977 
1978 /**
1979  * generic_file_buffered_read - generic file read routine
1980  * @iocb:	the iocb to read
1981  * @iter:	data destination
1982  * @written:	already copied
1983  *
1984  * This is a generic file read routine, and uses the
1985  * mapping->a_ops->readpage() function for the actual low-level stuff.
1986  *
1987  * This is really ugly. But the goto's actually try to clarify some
1988  * of the logic when it comes to error handling etc.
1989  *
1990  * Return:
1991  * * total number of bytes copied, including those the were already @written
1992  * * negative error code if nothing was copied
1993  */
1994 static ssize_t generic_file_buffered_read(struct kiocb *iocb,
1995 		struct iov_iter *iter, ssize_t written)
1996 {
1997 	struct file *filp = iocb->ki_filp;
1998 	struct address_space *mapping = filp->f_mapping;
1999 	struct inode *inode = mapping->host;
2000 	struct file_ra_state *ra = &filp->f_ra;
2001 	loff_t *ppos = &iocb->ki_pos;
2002 	pgoff_t index;
2003 	pgoff_t last_index;
2004 	pgoff_t prev_index;
2005 	unsigned long offset;      /* offset into pagecache page */
2006 	unsigned int prev_offset;
2007 	int error = 0;
2008 
2009 	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2010 		return 0;
2011 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2012 
2013 	index = *ppos >> PAGE_SHIFT;
2014 	prev_index = ra->prev_pos >> PAGE_SHIFT;
2015 	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2016 	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2017 	offset = *ppos & ~PAGE_MASK;
2018 
2019 	for (;;) {
2020 		struct page *page;
2021 		pgoff_t end_index;
2022 		loff_t isize;
2023 		unsigned long nr, ret;
2024 
2025 		cond_resched();
2026 find_page:
2027 		if (fatal_signal_pending(current)) {
2028 			error = -EINTR;
2029 			goto out;
2030 		}
2031 
2032 		page = find_get_page(mapping, index);
2033 		if (!page) {
2034 			if (iocb->ki_flags & IOCB_NOWAIT)
2035 				goto would_block;
2036 			page_cache_sync_readahead(mapping,
2037 					ra, filp,
2038 					index, last_index - index);
2039 			page = find_get_page(mapping, index);
2040 			if (unlikely(page == NULL))
2041 				goto no_cached_page;
2042 		}
2043 		if (PageReadahead(page)) {
2044 			page_cache_async_readahead(mapping,
2045 					ra, filp, page,
2046 					index, last_index - index);
2047 		}
2048 		if (!PageUptodate(page)) {
2049 			if (iocb->ki_flags & IOCB_NOWAIT) {
2050 				put_page(page);
2051 				goto would_block;
2052 			}
2053 
2054 			/*
2055 			 * See comment in do_read_cache_page on why
2056 			 * wait_on_page_locked is used to avoid unnecessarily
2057 			 * serialisations and why it's safe.
2058 			 */
2059 			error = wait_on_page_locked_killable(page);
2060 			if (unlikely(error))
2061 				goto readpage_error;
2062 			if (PageUptodate(page))
2063 				goto page_ok;
2064 
2065 			if (inode->i_blkbits == PAGE_SHIFT ||
2066 					!mapping->a_ops->is_partially_uptodate)
2067 				goto page_not_up_to_date;
2068 			/* pipes can't handle partially uptodate pages */
2069 			if (unlikely(iov_iter_is_pipe(iter)))
2070 				goto page_not_up_to_date;
2071 			if (!trylock_page(page))
2072 				goto page_not_up_to_date;
2073 			/* Did it get truncated before we got the lock? */
2074 			if (!page->mapping)
2075 				goto page_not_up_to_date_locked;
2076 			if (!mapping->a_ops->is_partially_uptodate(page,
2077 							offset, iter->count))
2078 				goto page_not_up_to_date_locked;
2079 			unlock_page(page);
2080 		}
2081 page_ok:
2082 		/*
2083 		 * i_size must be checked after we know the page is Uptodate.
2084 		 *
2085 		 * Checking i_size after the check allows us to calculate
2086 		 * the correct value for "nr", which means the zero-filled
2087 		 * part of the page is not copied back to userspace (unless
2088 		 * another truncate extends the file - this is desired though).
2089 		 */
2090 
2091 		isize = i_size_read(inode);
2092 		end_index = (isize - 1) >> PAGE_SHIFT;
2093 		if (unlikely(!isize || index > end_index)) {
2094 			put_page(page);
2095 			goto out;
2096 		}
2097 
2098 		/* nr is the maximum number of bytes to copy from this page */
2099 		nr = PAGE_SIZE;
2100 		if (index == end_index) {
2101 			nr = ((isize - 1) & ~PAGE_MASK) + 1;
2102 			if (nr <= offset) {
2103 				put_page(page);
2104 				goto out;
2105 			}
2106 		}
2107 		nr = nr - offset;
2108 
2109 		/* If users can be writing to this page using arbitrary
2110 		 * virtual addresses, take care about potential aliasing
2111 		 * before reading the page on the kernel side.
2112 		 */
2113 		if (mapping_writably_mapped(mapping))
2114 			flush_dcache_page(page);
2115 
2116 		/*
2117 		 * When a sequential read accesses a page several times,
2118 		 * only mark it as accessed the first time.
2119 		 */
2120 		if (prev_index != index || offset != prev_offset)
2121 			mark_page_accessed(page);
2122 		prev_index = index;
2123 
2124 		/*
2125 		 * Ok, we have the page, and it's up-to-date, so
2126 		 * now we can copy it to user space...
2127 		 */
2128 
2129 		ret = copy_page_to_iter(page, offset, nr, iter);
2130 		offset += ret;
2131 		index += offset >> PAGE_SHIFT;
2132 		offset &= ~PAGE_MASK;
2133 		prev_offset = offset;
2134 
2135 		put_page(page);
2136 		written += ret;
2137 		if (!iov_iter_count(iter))
2138 			goto out;
2139 		if (ret < nr) {
2140 			error = -EFAULT;
2141 			goto out;
2142 		}
2143 		continue;
2144 
2145 page_not_up_to_date:
2146 		/* Get exclusive access to the page ... */
2147 		error = lock_page_killable(page);
2148 		if (unlikely(error))
2149 			goto readpage_error;
2150 
2151 page_not_up_to_date_locked:
2152 		/* Did it get truncated before we got the lock? */
2153 		if (!page->mapping) {
2154 			unlock_page(page);
2155 			put_page(page);
2156 			continue;
2157 		}
2158 
2159 		/* Did somebody else fill it already? */
2160 		if (PageUptodate(page)) {
2161 			unlock_page(page);
2162 			goto page_ok;
2163 		}
2164 
2165 readpage:
2166 		/*
2167 		 * A previous I/O error may have been due to temporary
2168 		 * failures, eg. multipath errors.
2169 		 * PG_error will be set again if readpage fails.
2170 		 */
2171 		ClearPageError(page);
2172 		/* Start the actual read. The read will unlock the page. */
2173 		error = mapping->a_ops->readpage(filp, page);
2174 
2175 		if (unlikely(error)) {
2176 			if (error == AOP_TRUNCATED_PAGE) {
2177 				put_page(page);
2178 				error = 0;
2179 				goto find_page;
2180 			}
2181 			goto readpage_error;
2182 		}
2183 
2184 		if (!PageUptodate(page)) {
2185 			error = lock_page_killable(page);
2186 			if (unlikely(error))
2187 				goto readpage_error;
2188 			if (!PageUptodate(page)) {
2189 				if (page->mapping == NULL) {
2190 					/*
2191 					 * invalidate_mapping_pages got it
2192 					 */
2193 					unlock_page(page);
2194 					put_page(page);
2195 					goto find_page;
2196 				}
2197 				unlock_page(page);
2198 				shrink_readahead_size_eio(ra);
2199 				error = -EIO;
2200 				goto readpage_error;
2201 			}
2202 			unlock_page(page);
2203 		}
2204 
2205 		goto page_ok;
2206 
2207 readpage_error:
2208 		/* UHHUH! A synchronous read error occurred. Report it */
2209 		put_page(page);
2210 		goto out;
2211 
2212 no_cached_page:
2213 		/*
2214 		 * Ok, it wasn't cached, so we need to create a new
2215 		 * page..
2216 		 */
2217 		page = page_cache_alloc(mapping);
2218 		if (!page) {
2219 			error = -ENOMEM;
2220 			goto out;
2221 		}
2222 		error = add_to_page_cache_lru(page, mapping, index,
2223 				mapping_gfp_constraint(mapping, GFP_KERNEL));
2224 		if (error) {
2225 			put_page(page);
2226 			if (error == -EEXIST) {
2227 				error = 0;
2228 				goto find_page;
2229 			}
2230 			goto out;
2231 		}
2232 		goto readpage;
2233 	}
2234 
2235 would_block:
2236 	error = -EAGAIN;
2237 out:
2238 	ra->prev_pos = prev_index;
2239 	ra->prev_pos <<= PAGE_SHIFT;
2240 	ra->prev_pos |= prev_offset;
2241 
2242 	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2243 	file_accessed(filp);
2244 	return written ? written : error;
2245 }
2246 
2247 /**
2248  * generic_file_read_iter - generic filesystem read routine
2249  * @iocb:	kernel I/O control block
2250  * @iter:	destination for the data read
2251  *
2252  * This is the "read_iter()" routine for all filesystems
2253  * that can use the page cache directly.
2254  * Return:
2255  * * number of bytes copied, even for partial reads
2256  * * negative error code if nothing was read
2257  */
2258 ssize_t
2259 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2260 {
2261 	size_t count = iov_iter_count(iter);
2262 	ssize_t retval = 0;
2263 
2264 	if (!count)
2265 		goto out; /* skip atime */
2266 
2267 	if (iocb->ki_flags & IOCB_DIRECT) {
2268 		struct file *file = iocb->ki_filp;
2269 		struct address_space *mapping = file->f_mapping;
2270 		struct inode *inode = mapping->host;
2271 		loff_t size;
2272 
2273 		size = i_size_read(inode);
2274 		if (iocb->ki_flags & IOCB_NOWAIT) {
2275 			if (filemap_range_has_page(mapping, iocb->ki_pos,
2276 						   iocb->ki_pos + count - 1))
2277 				return -EAGAIN;
2278 		} else {
2279 			retval = filemap_write_and_wait_range(mapping,
2280 						iocb->ki_pos,
2281 					        iocb->ki_pos + count - 1);
2282 			if (retval < 0)
2283 				goto out;
2284 		}
2285 
2286 		file_accessed(file);
2287 
2288 		retval = mapping->a_ops->direct_IO(iocb, iter);
2289 		if (retval >= 0) {
2290 			iocb->ki_pos += retval;
2291 			count -= retval;
2292 		}
2293 		iov_iter_revert(iter, count - iov_iter_count(iter));
2294 
2295 		/*
2296 		 * Btrfs can have a short DIO read if we encounter
2297 		 * compressed extents, so if there was an error, or if
2298 		 * we've already read everything we wanted to, or if
2299 		 * there was a short read because we hit EOF, go ahead
2300 		 * and return.  Otherwise fallthrough to buffered io for
2301 		 * the rest of the read.  Buffered reads will not work for
2302 		 * DAX files, so don't bother trying.
2303 		 */
2304 		if (retval < 0 || !count || iocb->ki_pos >= size ||
2305 		    IS_DAX(inode))
2306 			goto out;
2307 	}
2308 
2309 	retval = generic_file_buffered_read(iocb, iter, retval);
2310 out:
2311 	return retval;
2312 }
2313 EXPORT_SYMBOL(generic_file_read_iter);
2314 
2315 #ifdef CONFIG_MMU
2316 #define MMAP_LOTSAMISS  (100)
2317 /*
2318  * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_sem
2319  * @vmf - the vm_fault for this fault.
2320  * @page - the page to lock.
2321  * @fpin - the pointer to the file we may pin (or is already pinned).
2322  *
2323  * This works similar to lock_page_or_retry in that it can drop the mmap_sem.
2324  * It differs in that it actually returns the page locked if it returns 1 and 0
2325  * if it couldn't lock the page.  If we did have to drop the mmap_sem then fpin
2326  * will point to the pinned file and needs to be fput()'ed at a later point.
2327  */
2328 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2329 				     struct file **fpin)
2330 {
2331 	if (trylock_page(page))
2332 		return 1;
2333 
2334 	/*
2335 	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2336 	 * the mmap_sem still held. That's how FAULT_FLAG_RETRY_NOWAIT
2337 	 * is supposed to work. We have way too many special cases..
2338 	 */
2339 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2340 		return 0;
2341 
2342 	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2343 	if (vmf->flags & FAULT_FLAG_KILLABLE) {
2344 		if (__lock_page_killable(page)) {
2345 			/*
2346 			 * We didn't have the right flags to drop the mmap_sem,
2347 			 * but all fault_handlers only check for fatal signals
2348 			 * if we return VM_FAULT_RETRY, so we need to drop the
2349 			 * mmap_sem here and return 0 if we don't have a fpin.
2350 			 */
2351 			if (*fpin == NULL)
2352 				up_read(&vmf->vma->vm_mm->mmap_sem);
2353 			return 0;
2354 		}
2355 	} else
2356 		__lock_page(page);
2357 	return 1;
2358 }
2359 
2360 
2361 /*
2362  * Synchronous readahead happens when we don't even find a page in the page
2363  * cache at all.  We don't want to perform IO under the mmap sem, so if we have
2364  * to drop the mmap sem we return the file that was pinned in order for us to do
2365  * that.  If we didn't pin a file then we return NULL.  The file that is
2366  * returned needs to be fput()'ed when we're done with it.
2367  */
2368 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2369 {
2370 	struct file *file = vmf->vma->vm_file;
2371 	struct file_ra_state *ra = &file->f_ra;
2372 	struct address_space *mapping = file->f_mapping;
2373 	struct file *fpin = NULL;
2374 	pgoff_t offset = vmf->pgoff;
2375 
2376 	/* If we don't want any read-ahead, don't bother */
2377 	if (vmf->vma->vm_flags & VM_RAND_READ)
2378 		return fpin;
2379 	if (!ra->ra_pages)
2380 		return fpin;
2381 
2382 	if (vmf->vma->vm_flags & VM_SEQ_READ) {
2383 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2384 		page_cache_sync_readahead(mapping, ra, file, offset,
2385 					  ra->ra_pages);
2386 		return fpin;
2387 	}
2388 
2389 	/* Avoid banging the cache line if not needed */
2390 	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2391 		ra->mmap_miss++;
2392 
2393 	/*
2394 	 * Do we miss much more than hit in this file? If so,
2395 	 * stop bothering with read-ahead. It will only hurt.
2396 	 */
2397 	if (ra->mmap_miss > MMAP_LOTSAMISS)
2398 		return fpin;
2399 
2400 	/*
2401 	 * mmap read-around
2402 	 */
2403 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2404 	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2405 	ra->size = ra->ra_pages;
2406 	ra->async_size = ra->ra_pages / 4;
2407 	ra_submit(ra, mapping, file);
2408 	return fpin;
2409 }
2410 
2411 /*
2412  * Asynchronous readahead happens when we find the page and PG_readahead,
2413  * so we want to possibly extend the readahead further.  We return the file that
2414  * was pinned if we have to drop the mmap_sem in order to do IO.
2415  */
2416 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2417 					    struct page *page)
2418 {
2419 	struct file *file = vmf->vma->vm_file;
2420 	struct file_ra_state *ra = &file->f_ra;
2421 	struct address_space *mapping = file->f_mapping;
2422 	struct file *fpin = NULL;
2423 	pgoff_t offset = vmf->pgoff;
2424 
2425 	/* If we don't want any read-ahead, don't bother */
2426 	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
2427 		return fpin;
2428 	if (ra->mmap_miss > 0)
2429 		ra->mmap_miss--;
2430 	if (PageReadahead(page)) {
2431 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2432 		page_cache_async_readahead(mapping, ra, file,
2433 					   page, offset, ra->ra_pages);
2434 	}
2435 	return fpin;
2436 }
2437 
2438 /**
2439  * filemap_fault - read in file data for page fault handling
2440  * @vmf:	struct vm_fault containing details of the fault
2441  *
2442  * filemap_fault() is invoked via the vma operations vector for a
2443  * mapped memory region to read in file data during a page fault.
2444  *
2445  * The goto's are kind of ugly, but this streamlines the normal case of having
2446  * it in the page cache, and handles the special cases reasonably without
2447  * having a lot of duplicated code.
2448  *
2449  * vma->vm_mm->mmap_sem must be held on entry.
2450  *
2451  * If our return value has VM_FAULT_RETRY set, it's because the mmap_sem
2452  * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
2453  *
2454  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2455  * has not been released.
2456  *
2457  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2458  *
2459  * Return: bitwise-OR of %VM_FAULT_ codes.
2460  */
2461 vm_fault_t filemap_fault(struct vm_fault *vmf)
2462 {
2463 	int error;
2464 	struct file *file = vmf->vma->vm_file;
2465 	struct file *fpin = NULL;
2466 	struct address_space *mapping = file->f_mapping;
2467 	struct file_ra_state *ra = &file->f_ra;
2468 	struct inode *inode = mapping->host;
2469 	pgoff_t offset = vmf->pgoff;
2470 	pgoff_t max_off;
2471 	struct page *page;
2472 	vm_fault_t ret = 0;
2473 
2474 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2475 	if (unlikely(offset >= max_off))
2476 		return VM_FAULT_SIGBUS;
2477 
2478 	/*
2479 	 * Do we have something in the page cache already?
2480 	 */
2481 	page = find_get_page(mapping, offset);
2482 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2483 		/*
2484 		 * We found the page, so try async readahead before
2485 		 * waiting for the lock.
2486 		 */
2487 		fpin = do_async_mmap_readahead(vmf, page);
2488 	} else if (!page) {
2489 		/* No page in the page cache at all */
2490 		count_vm_event(PGMAJFAULT);
2491 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2492 		ret = VM_FAULT_MAJOR;
2493 		fpin = do_sync_mmap_readahead(vmf);
2494 retry_find:
2495 		page = pagecache_get_page(mapping, offset,
2496 					  FGP_CREAT|FGP_FOR_MMAP,
2497 					  vmf->gfp_mask);
2498 		if (!page) {
2499 			if (fpin)
2500 				goto out_retry;
2501 			return VM_FAULT_OOM;
2502 		}
2503 	}
2504 
2505 	if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2506 		goto out_retry;
2507 
2508 	/* Did it get truncated? */
2509 	if (unlikely(compound_head(page)->mapping != mapping)) {
2510 		unlock_page(page);
2511 		put_page(page);
2512 		goto retry_find;
2513 	}
2514 	VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
2515 
2516 	/*
2517 	 * We have a locked page in the page cache, now we need to check
2518 	 * that it's up-to-date. If not, it is going to be due to an error.
2519 	 */
2520 	if (unlikely(!PageUptodate(page)))
2521 		goto page_not_uptodate;
2522 
2523 	/*
2524 	 * We've made it this far and we had to drop our mmap_sem, now is the
2525 	 * time to return to the upper layer and have it re-find the vma and
2526 	 * redo the fault.
2527 	 */
2528 	if (fpin) {
2529 		unlock_page(page);
2530 		goto out_retry;
2531 	}
2532 
2533 	/*
2534 	 * Found the page and have a reference on it.
2535 	 * We must recheck i_size under page lock.
2536 	 */
2537 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2538 	if (unlikely(offset >= max_off)) {
2539 		unlock_page(page);
2540 		put_page(page);
2541 		return VM_FAULT_SIGBUS;
2542 	}
2543 
2544 	vmf->page = page;
2545 	return ret | VM_FAULT_LOCKED;
2546 
2547 page_not_uptodate:
2548 	/*
2549 	 * Umm, take care of errors if the page isn't up-to-date.
2550 	 * Try to re-read it _once_. We do this synchronously,
2551 	 * because there really aren't any performance issues here
2552 	 * and we need to check for errors.
2553 	 */
2554 	ClearPageError(page);
2555 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2556 	error = mapping->a_ops->readpage(file, page);
2557 	if (!error) {
2558 		wait_on_page_locked(page);
2559 		if (!PageUptodate(page))
2560 			error = -EIO;
2561 	}
2562 	if (fpin)
2563 		goto out_retry;
2564 	put_page(page);
2565 
2566 	if (!error || error == AOP_TRUNCATED_PAGE)
2567 		goto retry_find;
2568 
2569 	/* Things didn't work out. Return zero to tell the mm layer so. */
2570 	shrink_readahead_size_eio(ra);
2571 	return VM_FAULT_SIGBUS;
2572 
2573 out_retry:
2574 	/*
2575 	 * We dropped the mmap_sem, we need to return to the fault handler to
2576 	 * re-find the vma and come back and find our hopefully still populated
2577 	 * page.
2578 	 */
2579 	if (page)
2580 		put_page(page);
2581 	if (fpin)
2582 		fput(fpin);
2583 	return ret | VM_FAULT_RETRY;
2584 }
2585 EXPORT_SYMBOL(filemap_fault);
2586 
2587 void filemap_map_pages(struct vm_fault *vmf,
2588 		pgoff_t start_pgoff, pgoff_t end_pgoff)
2589 {
2590 	struct file *file = vmf->vma->vm_file;
2591 	struct address_space *mapping = file->f_mapping;
2592 	pgoff_t last_pgoff = start_pgoff;
2593 	unsigned long max_idx;
2594 	XA_STATE(xas, &mapping->i_pages, start_pgoff);
2595 	struct page *page;
2596 
2597 	rcu_read_lock();
2598 	xas_for_each(&xas, page, end_pgoff) {
2599 		if (xas_retry(&xas, page))
2600 			continue;
2601 		if (xa_is_value(page))
2602 			goto next;
2603 
2604 		/*
2605 		 * Check for a locked page first, as a speculative
2606 		 * reference may adversely influence page migration.
2607 		 */
2608 		if (PageLocked(page))
2609 			goto next;
2610 		if (!page_cache_get_speculative(page))
2611 			goto next;
2612 
2613 		/* Has the page moved or been split? */
2614 		if (unlikely(page != xas_reload(&xas)))
2615 			goto skip;
2616 		page = find_subpage(page, xas.xa_index);
2617 
2618 		if (!PageUptodate(page) ||
2619 				PageReadahead(page) ||
2620 				PageHWPoison(page))
2621 			goto skip;
2622 		if (!trylock_page(page))
2623 			goto skip;
2624 
2625 		if (page->mapping != mapping || !PageUptodate(page))
2626 			goto unlock;
2627 
2628 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2629 		if (page->index >= max_idx)
2630 			goto unlock;
2631 
2632 		if (file->f_ra.mmap_miss > 0)
2633 			file->f_ra.mmap_miss--;
2634 
2635 		vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
2636 		if (vmf->pte)
2637 			vmf->pte += xas.xa_index - last_pgoff;
2638 		last_pgoff = xas.xa_index;
2639 		if (alloc_set_pte(vmf, NULL, page))
2640 			goto unlock;
2641 		unlock_page(page);
2642 		goto next;
2643 unlock:
2644 		unlock_page(page);
2645 skip:
2646 		put_page(page);
2647 next:
2648 		/* Huge page is mapped? No need to proceed. */
2649 		if (pmd_trans_huge(*vmf->pmd))
2650 			break;
2651 	}
2652 	rcu_read_unlock();
2653 }
2654 EXPORT_SYMBOL(filemap_map_pages);
2655 
2656 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2657 {
2658 	struct page *page = vmf->page;
2659 	struct inode *inode = file_inode(vmf->vma->vm_file);
2660 	vm_fault_t ret = VM_FAULT_LOCKED;
2661 
2662 	sb_start_pagefault(inode->i_sb);
2663 	file_update_time(vmf->vma->vm_file);
2664 	lock_page(page);
2665 	if (page->mapping != inode->i_mapping) {
2666 		unlock_page(page);
2667 		ret = VM_FAULT_NOPAGE;
2668 		goto out;
2669 	}
2670 	/*
2671 	 * We mark the page dirty already here so that when freeze is in
2672 	 * progress, we are guaranteed that writeback during freezing will
2673 	 * see the dirty page and writeprotect it again.
2674 	 */
2675 	set_page_dirty(page);
2676 	wait_for_stable_page(page);
2677 out:
2678 	sb_end_pagefault(inode->i_sb);
2679 	return ret;
2680 }
2681 
2682 const struct vm_operations_struct generic_file_vm_ops = {
2683 	.fault		= filemap_fault,
2684 	.map_pages	= filemap_map_pages,
2685 	.page_mkwrite	= filemap_page_mkwrite,
2686 };
2687 
2688 /* This is used for a general mmap of a disk file */
2689 
2690 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2691 {
2692 	struct address_space *mapping = file->f_mapping;
2693 
2694 	if (!mapping->a_ops->readpage)
2695 		return -ENOEXEC;
2696 	file_accessed(file);
2697 	vma->vm_ops = &generic_file_vm_ops;
2698 	return 0;
2699 }
2700 
2701 /*
2702  * This is for filesystems which do not implement ->writepage.
2703  */
2704 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2705 {
2706 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2707 		return -EINVAL;
2708 	return generic_file_mmap(file, vma);
2709 }
2710 #else
2711 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2712 {
2713 	return VM_FAULT_SIGBUS;
2714 }
2715 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2716 {
2717 	return -ENOSYS;
2718 }
2719 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2720 {
2721 	return -ENOSYS;
2722 }
2723 #endif /* CONFIG_MMU */
2724 
2725 EXPORT_SYMBOL(filemap_page_mkwrite);
2726 EXPORT_SYMBOL(generic_file_mmap);
2727 EXPORT_SYMBOL(generic_file_readonly_mmap);
2728 
2729 static struct page *wait_on_page_read(struct page *page)
2730 {
2731 	if (!IS_ERR(page)) {
2732 		wait_on_page_locked(page);
2733 		if (!PageUptodate(page)) {
2734 			put_page(page);
2735 			page = ERR_PTR(-EIO);
2736 		}
2737 	}
2738 	return page;
2739 }
2740 
2741 static struct page *do_read_cache_page(struct address_space *mapping,
2742 				pgoff_t index,
2743 				int (*filler)(void *, struct page *),
2744 				void *data,
2745 				gfp_t gfp)
2746 {
2747 	struct page *page;
2748 	int err;
2749 repeat:
2750 	page = find_get_page(mapping, index);
2751 	if (!page) {
2752 		page = __page_cache_alloc(gfp);
2753 		if (!page)
2754 			return ERR_PTR(-ENOMEM);
2755 		err = add_to_page_cache_lru(page, mapping, index, gfp);
2756 		if (unlikely(err)) {
2757 			put_page(page);
2758 			if (err == -EEXIST)
2759 				goto repeat;
2760 			/* Presumably ENOMEM for xarray node */
2761 			return ERR_PTR(err);
2762 		}
2763 
2764 filler:
2765 		if (filler)
2766 			err = filler(data, page);
2767 		else
2768 			err = mapping->a_ops->readpage(data, page);
2769 
2770 		if (err < 0) {
2771 			put_page(page);
2772 			return ERR_PTR(err);
2773 		}
2774 
2775 		page = wait_on_page_read(page);
2776 		if (IS_ERR(page))
2777 			return page;
2778 		goto out;
2779 	}
2780 	if (PageUptodate(page))
2781 		goto out;
2782 
2783 	/*
2784 	 * Page is not up to date and may be locked due one of the following
2785 	 * case a: Page is being filled and the page lock is held
2786 	 * case b: Read/write error clearing the page uptodate status
2787 	 * case c: Truncation in progress (page locked)
2788 	 * case d: Reclaim in progress
2789 	 *
2790 	 * Case a, the page will be up to date when the page is unlocked.
2791 	 *    There is no need to serialise on the page lock here as the page
2792 	 *    is pinned so the lock gives no additional protection. Even if the
2793 	 *    the page is truncated, the data is still valid if PageUptodate as
2794 	 *    it's a race vs truncate race.
2795 	 * Case b, the page will not be up to date
2796 	 * Case c, the page may be truncated but in itself, the data may still
2797 	 *    be valid after IO completes as it's a read vs truncate race. The
2798 	 *    operation must restart if the page is not uptodate on unlock but
2799 	 *    otherwise serialising on page lock to stabilise the mapping gives
2800 	 *    no additional guarantees to the caller as the page lock is
2801 	 *    released before return.
2802 	 * Case d, similar to truncation. If reclaim holds the page lock, it
2803 	 *    will be a race with remove_mapping that determines if the mapping
2804 	 *    is valid on unlock but otherwise the data is valid and there is
2805 	 *    no need to serialise with page lock.
2806 	 *
2807 	 * As the page lock gives no additional guarantee, we optimistically
2808 	 * wait on the page to be unlocked and check if it's up to date and
2809 	 * use the page if it is. Otherwise, the page lock is required to
2810 	 * distinguish between the different cases. The motivation is that we
2811 	 * avoid spurious serialisations and wakeups when multiple processes
2812 	 * wait on the same page for IO to complete.
2813 	 */
2814 	wait_on_page_locked(page);
2815 	if (PageUptodate(page))
2816 		goto out;
2817 
2818 	/* Distinguish between all the cases under the safety of the lock */
2819 	lock_page(page);
2820 
2821 	/* Case c or d, restart the operation */
2822 	if (!page->mapping) {
2823 		unlock_page(page);
2824 		put_page(page);
2825 		goto repeat;
2826 	}
2827 
2828 	/* Someone else locked and filled the page in a very small window */
2829 	if (PageUptodate(page)) {
2830 		unlock_page(page);
2831 		goto out;
2832 	}
2833 
2834 	/*
2835 	 * A previous I/O error may have been due to temporary
2836 	 * failures.
2837 	 * Clear page error before actual read, PG_error will be
2838 	 * set again if read page fails.
2839 	 */
2840 	ClearPageError(page);
2841 	goto filler;
2842 
2843 out:
2844 	mark_page_accessed(page);
2845 	return page;
2846 }
2847 
2848 /**
2849  * read_cache_page - read into page cache, fill it if needed
2850  * @mapping:	the page's address_space
2851  * @index:	the page index
2852  * @filler:	function to perform the read
2853  * @data:	first arg to filler(data, page) function, often left as NULL
2854  *
2855  * Read into the page cache. If a page already exists, and PageUptodate() is
2856  * not set, try to fill the page and wait for it to become unlocked.
2857  *
2858  * If the page does not get brought uptodate, return -EIO.
2859  *
2860  * Return: up to date page on success, ERR_PTR() on failure.
2861  */
2862 struct page *read_cache_page(struct address_space *mapping,
2863 				pgoff_t index,
2864 				int (*filler)(void *, struct page *),
2865 				void *data)
2866 {
2867 	return do_read_cache_page(mapping, index, filler, data,
2868 			mapping_gfp_mask(mapping));
2869 }
2870 EXPORT_SYMBOL(read_cache_page);
2871 
2872 /**
2873  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2874  * @mapping:	the page's address_space
2875  * @index:	the page index
2876  * @gfp:	the page allocator flags to use if allocating
2877  *
2878  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2879  * any new page allocations done using the specified allocation flags.
2880  *
2881  * If the page does not get brought uptodate, return -EIO.
2882  *
2883  * Return: up to date page on success, ERR_PTR() on failure.
2884  */
2885 struct page *read_cache_page_gfp(struct address_space *mapping,
2886 				pgoff_t index,
2887 				gfp_t gfp)
2888 {
2889 	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
2890 }
2891 EXPORT_SYMBOL(read_cache_page_gfp);
2892 
2893 /*
2894  * Don't operate on ranges the page cache doesn't support, and don't exceed the
2895  * LFS limits.  If pos is under the limit it becomes a short access.  If it
2896  * exceeds the limit we return -EFBIG.
2897  */
2898 static int generic_write_check_limits(struct file *file, loff_t pos,
2899 				      loff_t *count)
2900 {
2901 	struct inode *inode = file->f_mapping->host;
2902 	loff_t max_size = inode->i_sb->s_maxbytes;
2903 	loff_t limit = rlimit(RLIMIT_FSIZE);
2904 
2905 	if (limit != RLIM_INFINITY) {
2906 		if (pos >= limit) {
2907 			send_sig(SIGXFSZ, current, 0);
2908 			return -EFBIG;
2909 		}
2910 		*count = min(*count, limit - pos);
2911 	}
2912 
2913 	if (!(file->f_flags & O_LARGEFILE))
2914 		max_size = MAX_NON_LFS;
2915 
2916 	if (unlikely(pos >= max_size))
2917 		return -EFBIG;
2918 
2919 	*count = min(*count, max_size - pos);
2920 
2921 	return 0;
2922 }
2923 
2924 /*
2925  * Performs necessary checks before doing a write
2926  *
2927  * Can adjust writing position or amount of bytes to write.
2928  * Returns appropriate error code that caller should return or
2929  * zero in case that write should be allowed.
2930  */
2931 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2932 {
2933 	struct file *file = iocb->ki_filp;
2934 	struct inode *inode = file->f_mapping->host;
2935 	loff_t count;
2936 	int ret;
2937 
2938 	if (IS_SWAPFILE(inode))
2939 		return -ETXTBSY;
2940 
2941 	if (!iov_iter_count(from))
2942 		return 0;
2943 
2944 	/* FIXME: this is for backwards compatibility with 2.4 */
2945 	if (iocb->ki_flags & IOCB_APPEND)
2946 		iocb->ki_pos = i_size_read(inode);
2947 
2948 	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2949 		return -EINVAL;
2950 
2951 	count = iov_iter_count(from);
2952 	ret = generic_write_check_limits(file, iocb->ki_pos, &count);
2953 	if (ret)
2954 		return ret;
2955 
2956 	iov_iter_truncate(from, count);
2957 	return iov_iter_count(from);
2958 }
2959 EXPORT_SYMBOL(generic_write_checks);
2960 
2961 /*
2962  * Performs necessary checks before doing a clone.
2963  *
2964  * Can adjust amount of bytes to clone via @req_count argument.
2965  * Returns appropriate error code that caller should return or
2966  * zero in case the clone should be allowed.
2967  */
2968 int generic_remap_checks(struct file *file_in, loff_t pos_in,
2969 			 struct file *file_out, loff_t pos_out,
2970 			 loff_t *req_count, unsigned int remap_flags)
2971 {
2972 	struct inode *inode_in = file_in->f_mapping->host;
2973 	struct inode *inode_out = file_out->f_mapping->host;
2974 	uint64_t count = *req_count;
2975 	uint64_t bcount;
2976 	loff_t size_in, size_out;
2977 	loff_t bs = inode_out->i_sb->s_blocksize;
2978 	int ret;
2979 
2980 	/* The start of both ranges must be aligned to an fs block. */
2981 	if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
2982 		return -EINVAL;
2983 
2984 	/* Ensure offsets don't wrap. */
2985 	if (pos_in + count < pos_in || pos_out + count < pos_out)
2986 		return -EINVAL;
2987 
2988 	size_in = i_size_read(inode_in);
2989 	size_out = i_size_read(inode_out);
2990 
2991 	/* Dedupe requires both ranges to be within EOF. */
2992 	if ((remap_flags & REMAP_FILE_DEDUP) &&
2993 	    (pos_in >= size_in || pos_in + count > size_in ||
2994 	     pos_out >= size_out || pos_out + count > size_out))
2995 		return -EINVAL;
2996 
2997 	/* Ensure the infile range is within the infile. */
2998 	if (pos_in >= size_in)
2999 		return -EINVAL;
3000 	count = min(count, size_in - (uint64_t)pos_in);
3001 
3002 	ret = generic_write_check_limits(file_out, pos_out, &count);
3003 	if (ret)
3004 		return ret;
3005 
3006 	/*
3007 	 * If the user wanted us to link to the infile's EOF, round up to the
3008 	 * next block boundary for this check.
3009 	 *
3010 	 * Otherwise, make sure the count is also block-aligned, having
3011 	 * already confirmed the starting offsets' block alignment.
3012 	 */
3013 	if (pos_in + count == size_in) {
3014 		bcount = ALIGN(size_in, bs) - pos_in;
3015 	} else {
3016 		if (!IS_ALIGNED(count, bs))
3017 			count = ALIGN_DOWN(count, bs);
3018 		bcount = count;
3019 	}
3020 
3021 	/* Don't allow overlapped cloning within the same file. */
3022 	if (inode_in == inode_out &&
3023 	    pos_out + bcount > pos_in &&
3024 	    pos_out < pos_in + bcount)
3025 		return -EINVAL;
3026 
3027 	/*
3028 	 * We shortened the request but the caller can't deal with that, so
3029 	 * bounce the request back to userspace.
3030 	 */
3031 	if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
3032 		return -EINVAL;
3033 
3034 	*req_count = count;
3035 	return 0;
3036 }
3037 
3038 
3039 /*
3040  * Performs common checks before doing a file copy/clone
3041  * from @file_in to @file_out.
3042  */
3043 int generic_file_rw_checks(struct file *file_in, struct file *file_out)
3044 {
3045 	struct inode *inode_in = file_inode(file_in);
3046 	struct inode *inode_out = file_inode(file_out);
3047 
3048 	/* Don't copy dirs, pipes, sockets... */
3049 	if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode))
3050 		return -EISDIR;
3051 	if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode))
3052 		return -EINVAL;
3053 
3054 	if (!(file_in->f_mode & FMODE_READ) ||
3055 	    !(file_out->f_mode & FMODE_WRITE) ||
3056 	    (file_out->f_flags & O_APPEND))
3057 		return -EBADF;
3058 
3059 	return 0;
3060 }
3061 
3062 /*
3063  * Performs necessary checks before doing a file copy
3064  *
3065  * Can adjust amount of bytes to copy via @req_count argument.
3066  * Returns appropriate error code that caller should return or
3067  * zero in case the copy should be allowed.
3068  */
3069 int generic_copy_file_checks(struct file *file_in, loff_t pos_in,
3070 			     struct file *file_out, loff_t pos_out,
3071 			     size_t *req_count, unsigned int flags)
3072 {
3073 	struct inode *inode_in = file_inode(file_in);
3074 	struct inode *inode_out = file_inode(file_out);
3075 	uint64_t count = *req_count;
3076 	loff_t size_in;
3077 	int ret;
3078 
3079 	ret = generic_file_rw_checks(file_in, file_out);
3080 	if (ret)
3081 		return ret;
3082 
3083 	/* Don't touch certain kinds of inodes */
3084 	if (IS_IMMUTABLE(inode_out))
3085 		return -EPERM;
3086 
3087 	if (IS_SWAPFILE(inode_in) || IS_SWAPFILE(inode_out))
3088 		return -ETXTBSY;
3089 
3090 	/* Ensure offsets don't wrap. */
3091 	if (pos_in + count < pos_in || pos_out + count < pos_out)
3092 		return -EOVERFLOW;
3093 
3094 	/* Shorten the copy to EOF */
3095 	size_in = i_size_read(inode_in);
3096 	if (pos_in >= size_in)
3097 		count = 0;
3098 	else
3099 		count = min(count, size_in - (uint64_t)pos_in);
3100 
3101 	ret = generic_write_check_limits(file_out, pos_out, &count);
3102 	if (ret)
3103 		return ret;
3104 
3105 	/* Don't allow overlapped copying within the same file. */
3106 	if (inode_in == inode_out &&
3107 	    pos_out + count > pos_in &&
3108 	    pos_out < pos_in + count)
3109 		return -EINVAL;
3110 
3111 	*req_count = count;
3112 	return 0;
3113 }
3114 
3115 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3116 				loff_t pos, unsigned len, unsigned flags,
3117 				struct page **pagep, void **fsdata)
3118 {
3119 	const struct address_space_operations *aops = mapping->a_ops;
3120 
3121 	return aops->write_begin(file, mapping, pos, len, flags,
3122 							pagep, fsdata);
3123 }
3124 EXPORT_SYMBOL(pagecache_write_begin);
3125 
3126 int pagecache_write_end(struct file *file, struct address_space *mapping,
3127 				loff_t pos, unsigned len, unsigned copied,
3128 				struct page *page, void *fsdata)
3129 {
3130 	const struct address_space_operations *aops = mapping->a_ops;
3131 
3132 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3133 }
3134 EXPORT_SYMBOL(pagecache_write_end);
3135 
3136 /*
3137  * Warn about a page cache invalidation failure during a direct I/O write.
3138  */
3139 void dio_warn_stale_pagecache(struct file *filp)
3140 {
3141 	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3142 	char pathname[128];
3143 	struct inode *inode = file_inode(filp);
3144 	char *path;
3145 
3146 	errseq_set(&inode->i_mapping->wb_err, -EIO);
3147 	if (__ratelimit(&_rs)) {
3148 		path = file_path(filp, pathname, sizeof(pathname));
3149 		if (IS_ERR(path))
3150 			path = "(unknown)";
3151 		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3152 		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3153 			current->comm);
3154 	}
3155 }
3156 
3157 ssize_t
3158 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3159 {
3160 	struct file	*file = iocb->ki_filp;
3161 	struct address_space *mapping = file->f_mapping;
3162 	struct inode	*inode = mapping->host;
3163 	loff_t		pos = iocb->ki_pos;
3164 	ssize_t		written;
3165 	size_t		write_len;
3166 	pgoff_t		end;
3167 
3168 	write_len = iov_iter_count(from);
3169 	end = (pos + write_len - 1) >> PAGE_SHIFT;
3170 
3171 	if (iocb->ki_flags & IOCB_NOWAIT) {
3172 		/* If there are pages to writeback, return */
3173 		if (filemap_range_has_page(inode->i_mapping, pos,
3174 					   pos + write_len - 1))
3175 			return -EAGAIN;
3176 	} else {
3177 		written = filemap_write_and_wait_range(mapping, pos,
3178 							pos + write_len - 1);
3179 		if (written)
3180 			goto out;
3181 	}
3182 
3183 	/*
3184 	 * After a write we want buffered reads to be sure to go to disk to get
3185 	 * the new data.  We invalidate clean cached page from the region we're
3186 	 * about to write.  We do this *before* the write so that we can return
3187 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3188 	 */
3189 	written = invalidate_inode_pages2_range(mapping,
3190 					pos >> PAGE_SHIFT, end);
3191 	/*
3192 	 * If a page can not be invalidated, return 0 to fall back
3193 	 * to buffered write.
3194 	 */
3195 	if (written) {
3196 		if (written == -EBUSY)
3197 			return 0;
3198 		goto out;
3199 	}
3200 
3201 	written = mapping->a_ops->direct_IO(iocb, from);
3202 
3203 	/*
3204 	 * Finally, try again to invalidate clean pages which might have been
3205 	 * cached by non-direct readahead, or faulted in by get_user_pages()
3206 	 * if the source of the write was an mmap'ed region of the file
3207 	 * we're writing.  Either one is a pretty crazy thing to do,
3208 	 * so we don't support it 100%.  If this invalidation
3209 	 * fails, tough, the write still worked...
3210 	 *
3211 	 * Most of the time we do not need this since dio_complete() will do
3212 	 * the invalidation for us. However there are some file systems that
3213 	 * do not end up with dio_complete() being called, so let's not break
3214 	 * them by removing it completely.
3215 	 *
3216 	 * Noticeable example is a blkdev_direct_IO().
3217 	 *
3218 	 * Skip invalidation for async writes or if mapping has no pages.
3219 	 */
3220 	if (written > 0 && mapping->nrpages &&
3221 	    invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3222 		dio_warn_stale_pagecache(file);
3223 
3224 	if (written > 0) {
3225 		pos += written;
3226 		write_len -= written;
3227 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3228 			i_size_write(inode, pos);
3229 			mark_inode_dirty(inode);
3230 		}
3231 		iocb->ki_pos = pos;
3232 	}
3233 	iov_iter_revert(from, write_len - iov_iter_count(from));
3234 out:
3235 	return written;
3236 }
3237 EXPORT_SYMBOL(generic_file_direct_write);
3238 
3239 /*
3240  * Find or create a page at the given pagecache position. Return the locked
3241  * page. This function is specifically for buffered writes.
3242  */
3243 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3244 					pgoff_t index, unsigned flags)
3245 {
3246 	struct page *page;
3247 	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3248 
3249 	if (flags & AOP_FLAG_NOFS)
3250 		fgp_flags |= FGP_NOFS;
3251 
3252 	page = pagecache_get_page(mapping, index, fgp_flags,
3253 			mapping_gfp_mask(mapping));
3254 	if (page)
3255 		wait_for_stable_page(page);
3256 
3257 	return page;
3258 }
3259 EXPORT_SYMBOL(grab_cache_page_write_begin);
3260 
3261 ssize_t generic_perform_write(struct file *file,
3262 				struct iov_iter *i, loff_t pos)
3263 {
3264 	struct address_space *mapping = file->f_mapping;
3265 	const struct address_space_operations *a_ops = mapping->a_ops;
3266 	long status = 0;
3267 	ssize_t written = 0;
3268 	unsigned int flags = 0;
3269 
3270 	do {
3271 		struct page *page;
3272 		unsigned long offset;	/* Offset into pagecache page */
3273 		unsigned long bytes;	/* Bytes to write to page */
3274 		size_t copied;		/* Bytes copied from user */
3275 		void *fsdata;
3276 
3277 		offset = (pos & (PAGE_SIZE - 1));
3278 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3279 						iov_iter_count(i));
3280 
3281 again:
3282 		/*
3283 		 * Bring in the user page that we will copy from _first_.
3284 		 * Otherwise there's a nasty deadlock on copying from the
3285 		 * same page as we're writing to, without it being marked
3286 		 * up-to-date.
3287 		 *
3288 		 * Not only is this an optimisation, but it is also required
3289 		 * to check that the address is actually valid, when atomic
3290 		 * usercopies are used, below.
3291 		 */
3292 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3293 			status = -EFAULT;
3294 			break;
3295 		}
3296 
3297 		if (fatal_signal_pending(current)) {
3298 			status = -EINTR;
3299 			break;
3300 		}
3301 
3302 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3303 						&page, &fsdata);
3304 		if (unlikely(status < 0))
3305 			break;
3306 
3307 		if (mapping_writably_mapped(mapping))
3308 			flush_dcache_page(page);
3309 
3310 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3311 		flush_dcache_page(page);
3312 
3313 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3314 						page, fsdata);
3315 		if (unlikely(status < 0))
3316 			break;
3317 		copied = status;
3318 
3319 		cond_resched();
3320 
3321 		iov_iter_advance(i, copied);
3322 		if (unlikely(copied == 0)) {
3323 			/*
3324 			 * If we were unable to copy any data at all, we must
3325 			 * fall back to a single segment length write.
3326 			 *
3327 			 * If we didn't fallback here, we could livelock
3328 			 * because not all segments in the iov can be copied at
3329 			 * once without a pagefault.
3330 			 */
3331 			bytes = min_t(unsigned long, PAGE_SIZE - offset,
3332 						iov_iter_single_seg_count(i));
3333 			goto again;
3334 		}
3335 		pos += copied;
3336 		written += copied;
3337 
3338 		balance_dirty_pages_ratelimited(mapping);
3339 	} while (iov_iter_count(i));
3340 
3341 	return written ? written : status;
3342 }
3343 EXPORT_SYMBOL(generic_perform_write);
3344 
3345 /**
3346  * __generic_file_write_iter - write data to a file
3347  * @iocb:	IO state structure (file, offset, etc.)
3348  * @from:	iov_iter with data to write
3349  *
3350  * This function does all the work needed for actually writing data to a
3351  * file. It does all basic checks, removes SUID from the file, updates
3352  * modification times and calls proper subroutines depending on whether we
3353  * do direct IO or a standard buffered write.
3354  *
3355  * It expects i_mutex to be grabbed unless we work on a block device or similar
3356  * object which does not need locking at all.
3357  *
3358  * This function does *not* take care of syncing data in case of O_SYNC write.
3359  * A caller has to handle it. This is mainly due to the fact that we want to
3360  * avoid syncing under i_mutex.
3361  *
3362  * Return:
3363  * * number of bytes written, even for truncated writes
3364  * * negative error code if no data has been written at all
3365  */
3366 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3367 {
3368 	struct file *file = iocb->ki_filp;
3369 	struct address_space * mapping = file->f_mapping;
3370 	struct inode 	*inode = mapping->host;
3371 	ssize_t		written = 0;
3372 	ssize_t		err;
3373 	ssize_t		status;
3374 
3375 	/* We can write back this queue in page reclaim */
3376 	current->backing_dev_info = inode_to_bdi(inode);
3377 	err = file_remove_privs(file);
3378 	if (err)
3379 		goto out;
3380 
3381 	err = file_update_time(file);
3382 	if (err)
3383 		goto out;
3384 
3385 	if (iocb->ki_flags & IOCB_DIRECT) {
3386 		loff_t pos, endbyte;
3387 
3388 		written = generic_file_direct_write(iocb, from);
3389 		/*
3390 		 * If the write stopped short of completing, fall back to
3391 		 * buffered writes.  Some filesystems do this for writes to
3392 		 * holes, for example.  For DAX files, a buffered write will
3393 		 * not succeed (even if it did, DAX does not handle dirty
3394 		 * page-cache pages correctly).
3395 		 */
3396 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3397 			goto out;
3398 
3399 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3400 		/*
3401 		 * If generic_perform_write() returned a synchronous error
3402 		 * then we want to return the number of bytes which were
3403 		 * direct-written, or the error code if that was zero.  Note
3404 		 * that this differs from normal direct-io semantics, which
3405 		 * will return -EFOO even if some bytes were written.
3406 		 */
3407 		if (unlikely(status < 0)) {
3408 			err = status;
3409 			goto out;
3410 		}
3411 		/*
3412 		 * We need to ensure that the page cache pages are written to
3413 		 * disk and invalidated to preserve the expected O_DIRECT
3414 		 * semantics.
3415 		 */
3416 		endbyte = pos + status - 1;
3417 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3418 		if (err == 0) {
3419 			iocb->ki_pos = endbyte + 1;
3420 			written += status;
3421 			invalidate_mapping_pages(mapping,
3422 						 pos >> PAGE_SHIFT,
3423 						 endbyte >> PAGE_SHIFT);
3424 		} else {
3425 			/*
3426 			 * We don't know how much we wrote, so just return
3427 			 * the number of bytes which were direct-written
3428 			 */
3429 		}
3430 	} else {
3431 		written = generic_perform_write(file, from, iocb->ki_pos);
3432 		if (likely(written > 0))
3433 			iocb->ki_pos += written;
3434 	}
3435 out:
3436 	current->backing_dev_info = NULL;
3437 	return written ? written : err;
3438 }
3439 EXPORT_SYMBOL(__generic_file_write_iter);
3440 
3441 /**
3442  * generic_file_write_iter - write data to a file
3443  * @iocb:	IO state structure
3444  * @from:	iov_iter with data to write
3445  *
3446  * This is a wrapper around __generic_file_write_iter() to be used by most
3447  * filesystems. It takes care of syncing the file in case of O_SYNC file
3448  * and acquires i_mutex as needed.
3449  * Return:
3450  * * negative error code if no data has been written at all of
3451  *   vfs_fsync_range() failed for a synchronous write
3452  * * number of bytes written, even for truncated writes
3453  */
3454 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3455 {
3456 	struct file *file = iocb->ki_filp;
3457 	struct inode *inode = file->f_mapping->host;
3458 	ssize_t ret;
3459 
3460 	inode_lock(inode);
3461 	ret = generic_write_checks(iocb, from);
3462 	if (ret > 0)
3463 		ret = __generic_file_write_iter(iocb, from);
3464 	inode_unlock(inode);
3465 
3466 	if (ret > 0)
3467 		ret = generic_write_sync(iocb, ret);
3468 	return ret;
3469 }
3470 EXPORT_SYMBOL(generic_file_write_iter);
3471 
3472 /**
3473  * try_to_release_page() - release old fs-specific metadata on a page
3474  *
3475  * @page: the page which the kernel is trying to free
3476  * @gfp_mask: memory allocation flags (and I/O mode)
3477  *
3478  * The address_space is to try to release any data against the page
3479  * (presumably at page->private).
3480  *
3481  * This may also be called if PG_fscache is set on a page, indicating that the
3482  * page is known to the local caching routines.
3483  *
3484  * The @gfp_mask argument specifies whether I/O may be performed to release
3485  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3486  *
3487  * Return: %1 if the release was successful, otherwise return zero.
3488  */
3489 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3490 {
3491 	struct address_space * const mapping = page->mapping;
3492 
3493 	BUG_ON(!PageLocked(page));
3494 	if (PageWriteback(page))
3495 		return 0;
3496 
3497 	if (mapping && mapping->a_ops->releasepage)
3498 		return mapping->a_ops->releasepage(page, gfp_mask);
3499 	return try_to_free_buffers(page);
3500 }
3501 
3502 EXPORT_SYMBOL(try_to_release_page);
3503