xref: /linux/mm/filemap.c (revision c80544dc0b87bb65038355e7aafdc30be16b26ab)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include "internal.h"
35 
36 /*
37  * FIXME: remove all knowledge of the buffer layer from the core VM
38  */
39 #include <linux/buffer_head.h> /* for generic_osync_inode */
40 
41 #include <asm/mman.h>
42 
43 static ssize_t
44 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
45 	loff_t offset, unsigned long nr_segs);
46 
47 /*
48  * Shared mappings implemented 30.11.1994. It's not fully working yet,
49  * though.
50  *
51  * Shared mappings now work. 15.8.1995  Bruno.
52  *
53  * finished 'unifying' the page and buffer cache and SMP-threaded the
54  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55  *
56  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
57  */
58 
59 /*
60  * Lock ordering:
61  *
62  *  ->i_mmap_lock		(vmtruncate)
63  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
64  *      ->swap_lock		(exclusive_swap_page, others)
65  *        ->mapping->tree_lock
66  *          ->zone.lock
67  *
68  *  ->i_mutex
69  *    ->i_mmap_lock		(truncate->unmap_mapping_range)
70  *
71  *  ->mmap_sem
72  *    ->i_mmap_lock
73  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
74  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
75  *
76  *  ->mmap_sem
77  *    ->lock_page		(access_process_vm)
78  *
79  *  ->i_mutex			(generic_file_buffered_write)
80  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
81  *
82  *  ->i_mutex
83  *    ->i_alloc_sem             (various)
84  *
85  *  ->inode_lock
86  *    ->sb_lock			(fs/fs-writeback.c)
87  *    ->mapping->tree_lock	(__sync_single_inode)
88  *
89  *  ->i_mmap_lock
90  *    ->anon_vma.lock		(vma_adjust)
91  *
92  *  ->anon_vma.lock
93  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
94  *
95  *  ->page_table_lock or pte_lock
96  *    ->swap_lock		(try_to_unmap_one)
97  *    ->private_lock		(try_to_unmap_one)
98  *    ->tree_lock		(try_to_unmap_one)
99  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
100  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
101  *    ->private_lock		(page_remove_rmap->set_page_dirty)
102  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
103  *    ->inode_lock		(page_remove_rmap->set_page_dirty)
104  *    ->inode_lock		(zap_pte_range->set_page_dirty)
105  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
106  *
107  *  ->task->proc_lock
108  *    ->dcache_lock		(proc_pid_lookup)
109  */
110 
111 /*
112  * Remove a page from the page cache and free it. Caller has to make
113  * sure the page is locked and that nobody else uses it - or that usage
114  * is safe.  The caller must hold a write_lock on the mapping's tree_lock.
115  */
116 void __remove_from_page_cache(struct page *page)
117 {
118 	struct address_space *mapping = page->mapping;
119 
120 	radix_tree_delete(&mapping->page_tree, page->index);
121 	page->mapping = NULL;
122 	mapping->nrpages--;
123 	__dec_zone_page_state(page, NR_FILE_PAGES);
124 	BUG_ON(page_mapped(page));
125 }
126 
127 void remove_from_page_cache(struct page *page)
128 {
129 	struct address_space *mapping = page->mapping;
130 
131 	BUG_ON(!PageLocked(page));
132 
133 	write_lock_irq(&mapping->tree_lock);
134 	__remove_from_page_cache(page);
135 	write_unlock_irq(&mapping->tree_lock);
136 }
137 
138 static int sync_page(void *word)
139 {
140 	struct address_space *mapping;
141 	struct page *page;
142 
143 	page = container_of((unsigned long *)word, struct page, flags);
144 
145 	/*
146 	 * page_mapping() is being called without PG_locked held.
147 	 * Some knowledge of the state and use of the page is used to
148 	 * reduce the requirements down to a memory barrier.
149 	 * The danger here is of a stale page_mapping() return value
150 	 * indicating a struct address_space different from the one it's
151 	 * associated with when it is associated with one.
152 	 * After smp_mb(), it's either the correct page_mapping() for
153 	 * the page, or an old page_mapping() and the page's own
154 	 * page_mapping() has gone NULL.
155 	 * The ->sync_page() address_space operation must tolerate
156 	 * page_mapping() going NULL. By an amazing coincidence,
157 	 * this comes about because none of the users of the page
158 	 * in the ->sync_page() methods make essential use of the
159 	 * page_mapping(), merely passing the page down to the backing
160 	 * device's unplug functions when it's non-NULL, which in turn
161 	 * ignore it for all cases but swap, where only page_private(page) is
162 	 * of interest. When page_mapping() does go NULL, the entire
163 	 * call stack gracefully ignores the page and returns.
164 	 * -- wli
165 	 */
166 	smp_mb();
167 	mapping = page_mapping(page);
168 	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
169 		mapping->a_ops->sync_page(page);
170 	io_schedule();
171 	return 0;
172 }
173 
174 /**
175  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
176  * @mapping:	address space structure to write
177  * @start:	offset in bytes where the range starts
178  * @end:	offset in bytes where the range ends (inclusive)
179  * @sync_mode:	enable synchronous operation
180  *
181  * Start writeback against all of a mapping's dirty pages that lie
182  * within the byte offsets <start, end> inclusive.
183  *
184  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
185  * opposed to a regular memory cleansing writeback.  The difference between
186  * these two operations is that if a dirty page/buffer is encountered, it must
187  * be waited upon, and not just skipped over.
188  */
189 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
190 				loff_t end, int sync_mode)
191 {
192 	int ret;
193 	struct writeback_control wbc = {
194 		.sync_mode = sync_mode,
195 		.nr_to_write = mapping->nrpages * 2,
196 		.range_start = start,
197 		.range_end = end,
198 	};
199 
200 	if (!mapping_cap_writeback_dirty(mapping))
201 		return 0;
202 
203 	ret = do_writepages(mapping, &wbc);
204 	return ret;
205 }
206 
207 static inline int __filemap_fdatawrite(struct address_space *mapping,
208 	int sync_mode)
209 {
210 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
211 }
212 
213 int filemap_fdatawrite(struct address_space *mapping)
214 {
215 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
216 }
217 EXPORT_SYMBOL(filemap_fdatawrite);
218 
219 static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
220 				loff_t end)
221 {
222 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
223 }
224 
225 /**
226  * filemap_flush - mostly a non-blocking flush
227  * @mapping:	target address_space
228  *
229  * This is a mostly non-blocking flush.  Not suitable for data-integrity
230  * purposes - I/O may not be started against all dirty pages.
231  */
232 int filemap_flush(struct address_space *mapping)
233 {
234 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
235 }
236 EXPORT_SYMBOL(filemap_flush);
237 
238 /**
239  * wait_on_page_writeback_range - wait for writeback to complete
240  * @mapping:	target address_space
241  * @start:	beginning page index
242  * @end:	ending page index
243  *
244  * Wait for writeback to complete against pages indexed by start->end
245  * inclusive
246  */
247 int wait_on_page_writeback_range(struct address_space *mapping,
248 				pgoff_t start, pgoff_t end)
249 {
250 	struct pagevec pvec;
251 	int nr_pages;
252 	int ret = 0;
253 	pgoff_t index;
254 
255 	if (end < start)
256 		return 0;
257 
258 	pagevec_init(&pvec, 0);
259 	index = start;
260 	while ((index <= end) &&
261 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
262 			PAGECACHE_TAG_WRITEBACK,
263 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
264 		unsigned i;
265 
266 		for (i = 0; i < nr_pages; i++) {
267 			struct page *page = pvec.pages[i];
268 
269 			/* until radix tree lookup accepts end_index */
270 			if (page->index > end)
271 				continue;
272 
273 			wait_on_page_writeback(page);
274 			if (PageError(page))
275 				ret = -EIO;
276 		}
277 		pagevec_release(&pvec);
278 		cond_resched();
279 	}
280 
281 	/* Check for outstanding write errors */
282 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
283 		ret = -ENOSPC;
284 	if (test_and_clear_bit(AS_EIO, &mapping->flags))
285 		ret = -EIO;
286 
287 	return ret;
288 }
289 
290 /**
291  * sync_page_range - write and wait on all pages in the passed range
292  * @inode:	target inode
293  * @mapping:	target address_space
294  * @pos:	beginning offset in pages to write
295  * @count:	number of bytes to write
296  *
297  * Write and wait upon all the pages in the passed range.  This is a "data
298  * integrity" operation.  It waits upon in-flight writeout before starting and
299  * waiting upon new writeout.  If there was an IO error, return it.
300  *
301  * We need to re-take i_mutex during the generic_osync_inode list walk because
302  * it is otherwise livelockable.
303  */
304 int sync_page_range(struct inode *inode, struct address_space *mapping,
305 			loff_t pos, loff_t count)
306 {
307 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
308 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
309 	int ret;
310 
311 	if (!mapping_cap_writeback_dirty(mapping) || !count)
312 		return 0;
313 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
314 	if (ret == 0) {
315 		mutex_lock(&inode->i_mutex);
316 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
317 		mutex_unlock(&inode->i_mutex);
318 	}
319 	if (ret == 0)
320 		ret = wait_on_page_writeback_range(mapping, start, end);
321 	return ret;
322 }
323 EXPORT_SYMBOL(sync_page_range);
324 
325 /**
326  * sync_page_range_nolock
327  * @inode:	target inode
328  * @mapping:	target address_space
329  * @pos:	beginning offset in pages to write
330  * @count:	number of bytes to write
331  *
332  * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
333  * as it forces O_SYNC writers to different parts of the same file
334  * to be serialised right until io completion.
335  */
336 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
337 			   loff_t pos, loff_t count)
338 {
339 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
340 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
341 	int ret;
342 
343 	if (!mapping_cap_writeback_dirty(mapping) || !count)
344 		return 0;
345 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
346 	if (ret == 0)
347 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
348 	if (ret == 0)
349 		ret = wait_on_page_writeback_range(mapping, start, end);
350 	return ret;
351 }
352 EXPORT_SYMBOL(sync_page_range_nolock);
353 
354 /**
355  * filemap_fdatawait - wait for all under-writeback pages to complete
356  * @mapping: address space structure to wait for
357  *
358  * Walk the list of under-writeback pages of the given address space
359  * and wait for all of them.
360  */
361 int filemap_fdatawait(struct address_space *mapping)
362 {
363 	loff_t i_size = i_size_read(mapping->host);
364 
365 	if (i_size == 0)
366 		return 0;
367 
368 	return wait_on_page_writeback_range(mapping, 0,
369 				(i_size - 1) >> PAGE_CACHE_SHIFT);
370 }
371 EXPORT_SYMBOL(filemap_fdatawait);
372 
373 int filemap_write_and_wait(struct address_space *mapping)
374 {
375 	int err = 0;
376 
377 	if (mapping->nrpages) {
378 		err = filemap_fdatawrite(mapping);
379 		/*
380 		 * Even if the above returned error, the pages may be
381 		 * written partially (e.g. -ENOSPC), so we wait for it.
382 		 * But the -EIO is special case, it may indicate the worst
383 		 * thing (e.g. bug) happened, so we avoid waiting for it.
384 		 */
385 		if (err != -EIO) {
386 			int err2 = filemap_fdatawait(mapping);
387 			if (!err)
388 				err = err2;
389 		}
390 	}
391 	return err;
392 }
393 EXPORT_SYMBOL(filemap_write_and_wait);
394 
395 /**
396  * filemap_write_and_wait_range - write out & wait on a file range
397  * @mapping:	the address_space for the pages
398  * @lstart:	offset in bytes where the range starts
399  * @lend:	offset in bytes where the range ends (inclusive)
400  *
401  * Write out and wait upon file offsets lstart->lend, inclusive.
402  *
403  * Note that `lend' is inclusive (describes the last byte to be written) so
404  * that this function can be used to write to the very end-of-file (end = -1).
405  */
406 int filemap_write_and_wait_range(struct address_space *mapping,
407 				 loff_t lstart, loff_t lend)
408 {
409 	int err = 0;
410 
411 	if (mapping->nrpages) {
412 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
413 						 WB_SYNC_ALL);
414 		/* See comment of filemap_write_and_wait() */
415 		if (err != -EIO) {
416 			int err2 = wait_on_page_writeback_range(mapping,
417 						lstart >> PAGE_CACHE_SHIFT,
418 						lend >> PAGE_CACHE_SHIFT);
419 			if (!err)
420 				err = err2;
421 		}
422 	}
423 	return err;
424 }
425 
426 /**
427  * add_to_page_cache - add newly allocated pagecache pages
428  * @page:	page to add
429  * @mapping:	the page's address_space
430  * @offset:	page index
431  * @gfp_mask:	page allocation mode
432  *
433  * This function is used to add newly allocated pagecache pages;
434  * the page is new, so we can just run SetPageLocked() against it.
435  * The other page state flags were set by rmqueue().
436  *
437  * This function does not add the page to the LRU.  The caller must do that.
438  */
439 int add_to_page_cache(struct page *page, struct address_space *mapping,
440 		pgoff_t offset, gfp_t gfp_mask)
441 {
442 	int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
443 
444 	if (error == 0) {
445 		write_lock_irq(&mapping->tree_lock);
446 		error = radix_tree_insert(&mapping->page_tree, offset, page);
447 		if (!error) {
448 			page_cache_get(page);
449 			SetPageLocked(page);
450 			page->mapping = mapping;
451 			page->index = offset;
452 			mapping->nrpages++;
453 			__inc_zone_page_state(page, NR_FILE_PAGES);
454 		}
455 		write_unlock_irq(&mapping->tree_lock);
456 		radix_tree_preload_end();
457 	}
458 	return error;
459 }
460 EXPORT_SYMBOL(add_to_page_cache);
461 
462 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
463 				pgoff_t offset, gfp_t gfp_mask)
464 {
465 	int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
466 	if (ret == 0)
467 		lru_cache_add(page);
468 	return ret;
469 }
470 
471 #ifdef CONFIG_NUMA
472 struct page *__page_cache_alloc(gfp_t gfp)
473 {
474 	if (cpuset_do_page_mem_spread()) {
475 		int n = cpuset_mem_spread_node();
476 		return alloc_pages_node(n, gfp, 0);
477 	}
478 	return alloc_pages(gfp, 0);
479 }
480 EXPORT_SYMBOL(__page_cache_alloc);
481 #endif
482 
483 static int __sleep_on_page_lock(void *word)
484 {
485 	io_schedule();
486 	return 0;
487 }
488 
489 /*
490  * In order to wait for pages to become available there must be
491  * waitqueues associated with pages. By using a hash table of
492  * waitqueues where the bucket discipline is to maintain all
493  * waiters on the same queue and wake all when any of the pages
494  * become available, and for the woken contexts to check to be
495  * sure the appropriate page became available, this saves space
496  * at a cost of "thundering herd" phenomena during rare hash
497  * collisions.
498  */
499 static wait_queue_head_t *page_waitqueue(struct page *page)
500 {
501 	const struct zone *zone = page_zone(page);
502 
503 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
504 }
505 
506 static inline void wake_up_page(struct page *page, int bit)
507 {
508 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
509 }
510 
511 void fastcall wait_on_page_bit(struct page *page, int bit_nr)
512 {
513 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
514 
515 	if (test_bit(bit_nr, &page->flags))
516 		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
517 							TASK_UNINTERRUPTIBLE);
518 }
519 EXPORT_SYMBOL(wait_on_page_bit);
520 
521 /**
522  * unlock_page - unlock a locked page
523  * @page: the page
524  *
525  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
526  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
527  * mechananism between PageLocked pages and PageWriteback pages is shared.
528  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
529  *
530  * The first mb is necessary to safely close the critical section opened by the
531  * TestSetPageLocked(), the second mb is necessary to enforce ordering between
532  * the clear_bit and the read of the waitqueue (to avoid SMP races with a
533  * parallel wait_on_page_locked()).
534  */
535 void fastcall unlock_page(struct page *page)
536 {
537 	smp_mb__before_clear_bit();
538 	if (!TestClearPageLocked(page))
539 		BUG();
540 	smp_mb__after_clear_bit();
541 	wake_up_page(page, PG_locked);
542 }
543 EXPORT_SYMBOL(unlock_page);
544 
545 /**
546  * end_page_writeback - end writeback against a page
547  * @page: the page
548  */
549 void end_page_writeback(struct page *page)
550 {
551 	if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
552 		if (!test_clear_page_writeback(page))
553 			BUG();
554 	}
555 	smp_mb__after_clear_bit();
556 	wake_up_page(page, PG_writeback);
557 }
558 EXPORT_SYMBOL(end_page_writeback);
559 
560 /**
561  * __lock_page - get a lock on the page, assuming we need to sleep to get it
562  * @page: the page to lock
563  *
564  * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
565  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
566  * chances are that on the second loop, the block layer's plug list is empty,
567  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
568  */
569 void fastcall __lock_page(struct page *page)
570 {
571 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
572 
573 	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
574 							TASK_UNINTERRUPTIBLE);
575 }
576 EXPORT_SYMBOL(__lock_page);
577 
578 /*
579  * Variant of lock_page that does not require the caller to hold a reference
580  * on the page's mapping.
581  */
582 void fastcall __lock_page_nosync(struct page *page)
583 {
584 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
585 	__wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
586 							TASK_UNINTERRUPTIBLE);
587 }
588 
589 /**
590  * find_get_page - find and get a page reference
591  * @mapping: the address_space to search
592  * @offset: the page index
593  *
594  * Is there a pagecache struct page at the given (mapping, offset) tuple?
595  * If yes, increment its refcount and return it; if no, return NULL.
596  */
597 struct page * find_get_page(struct address_space *mapping, pgoff_t offset)
598 {
599 	struct page *page;
600 
601 	read_lock_irq(&mapping->tree_lock);
602 	page = radix_tree_lookup(&mapping->page_tree, offset);
603 	if (page)
604 		page_cache_get(page);
605 	read_unlock_irq(&mapping->tree_lock);
606 	return page;
607 }
608 EXPORT_SYMBOL(find_get_page);
609 
610 /**
611  * find_lock_page - locate, pin and lock a pagecache page
612  * @mapping: the address_space to search
613  * @offset: the page index
614  *
615  * Locates the desired pagecache page, locks it, increments its reference
616  * count and returns its address.
617  *
618  * Returns zero if the page was not present. find_lock_page() may sleep.
619  */
620 struct page *find_lock_page(struct address_space *mapping,
621 				pgoff_t offset)
622 {
623 	struct page *page;
624 
625 repeat:
626 	read_lock_irq(&mapping->tree_lock);
627 	page = radix_tree_lookup(&mapping->page_tree, offset);
628 	if (page) {
629 		page_cache_get(page);
630 		if (TestSetPageLocked(page)) {
631 			read_unlock_irq(&mapping->tree_lock);
632 			__lock_page(page);
633 
634 			/* Has the page been truncated while we slept? */
635 			if (unlikely(page->mapping != mapping)) {
636 				unlock_page(page);
637 				page_cache_release(page);
638 				goto repeat;
639 			}
640 			VM_BUG_ON(page->index != offset);
641 			goto out;
642 		}
643 	}
644 	read_unlock_irq(&mapping->tree_lock);
645 out:
646 	return page;
647 }
648 EXPORT_SYMBOL(find_lock_page);
649 
650 /**
651  * find_or_create_page - locate or add a pagecache page
652  * @mapping: the page's address_space
653  * @index: the page's index into the mapping
654  * @gfp_mask: page allocation mode
655  *
656  * Locates a page in the pagecache.  If the page is not present, a new page
657  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
658  * LRU list.  The returned page is locked and has its reference count
659  * incremented.
660  *
661  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
662  * allocation!
663  *
664  * find_or_create_page() returns the desired page's address, or zero on
665  * memory exhaustion.
666  */
667 struct page *find_or_create_page(struct address_space *mapping,
668 		pgoff_t index, gfp_t gfp_mask)
669 {
670 	struct page *page;
671 	int err;
672 repeat:
673 	page = find_lock_page(mapping, index);
674 	if (!page) {
675 		page = __page_cache_alloc(gfp_mask);
676 		if (!page)
677 			return NULL;
678 		err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
679 		if (unlikely(err)) {
680 			page_cache_release(page);
681 			page = NULL;
682 			if (err == -EEXIST)
683 				goto repeat;
684 		}
685 	}
686 	return page;
687 }
688 EXPORT_SYMBOL(find_or_create_page);
689 
690 /**
691  * find_get_pages - gang pagecache lookup
692  * @mapping:	The address_space to search
693  * @start:	The starting page index
694  * @nr_pages:	The maximum number of pages
695  * @pages:	Where the resulting pages are placed
696  *
697  * find_get_pages() will search for and return a group of up to
698  * @nr_pages pages in the mapping.  The pages are placed at @pages.
699  * find_get_pages() takes a reference against the returned pages.
700  *
701  * The search returns a group of mapping-contiguous pages with ascending
702  * indexes.  There may be holes in the indices due to not-present pages.
703  *
704  * find_get_pages() returns the number of pages which were found.
705  */
706 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
707 			    unsigned int nr_pages, struct page **pages)
708 {
709 	unsigned int i;
710 	unsigned int ret;
711 
712 	read_lock_irq(&mapping->tree_lock);
713 	ret = radix_tree_gang_lookup(&mapping->page_tree,
714 				(void **)pages, start, nr_pages);
715 	for (i = 0; i < ret; i++)
716 		page_cache_get(pages[i]);
717 	read_unlock_irq(&mapping->tree_lock);
718 	return ret;
719 }
720 
721 /**
722  * find_get_pages_contig - gang contiguous pagecache lookup
723  * @mapping:	The address_space to search
724  * @index:	The starting page index
725  * @nr_pages:	The maximum number of pages
726  * @pages:	Where the resulting pages are placed
727  *
728  * find_get_pages_contig() works exactly like find_get_pages(), except
729  * that the returned number of pages are guaranteed to be contiguous.
730  *
731  * find_get_pages_contig() returns the number of pages which were found.
732  */
733 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
734 			       unsigned int nr_pages, struct page **pages)
735 {
736 	unsigned int i;
737 	unsigned int ret;
738 
739 	read_lock_irq(&mapping->tree_lock);
740 	ret = radix_tree_gang_lookup(&mapping->page_tree,
741 				(void **)pages, index, nr_pages);
742 	for (i = 0; i < ret; i++) {
743 		if (pages[i]->mapping == NULL || pages[i]->index != index)
744 			break;
745 
746 		page_cache_get(pages[i]);
747 		index++;
748 	}
749 	read_unlock_irq(&mapping->tree_lock);
750 	return i;
751 }
752 EXPORT_SYMBOL(find_get_pages_contig);
753 
754 /**
755  * find_get_pages_tag - find and return pages that match @tag
756  * @mapping:	the address_space to search
757  * @index:	the starting page index
758  * @tag:	the tag index
759  * @nr_pages:	the maximum number of pages
760  * @pages:	where the resulting pages are placed
761  *
762  * Like find_get_pages, except we only return pages which are tagged with
763  * @tag.   We update @index to index the next page for the traversal.
764  */
765 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
766 			int tag, unsigned int nr_pages, struct page **pages)
767 {
768 	unsigned int i;
769 	unsigned int ret;
770 
771 	read_lock_irq(&mapping->tree_lock);
772 	ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
773 				(void **)pages, *index, nr_pages, tag);
774 	for (i = 0; i < ret; i++)
775 		page_cache_get(pages[i]);
776 	if (ret)
777 		*index = pages[ret - 1]->index + 1;
778 	read_unlock_irq(&mapping->tree_lock);
779 	return ret;
780 }
781 EXPORT_SYMBOL(find_get_pages_tag);
782 
783 /**
784  * grab_cache_page_nowait - returns locked page at given index in given cache
785  * @mapping: target address_space
786  * @index: the page index
787  *
788  * Same as grab_cache_page(), but do not wait if the page is unavailable.
789  * This is intended for speculative data generators, where the data can
790  * be regenerated if the page couldn't be grabbed.  This routine should
791  * be safe to call while holding the lock for another page.
792  *
793  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
794  * and deadlock against the caller's locked page.
795  */
796 struct page *
797 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
798 {
799 	struct page *page = find_get_page(mapping, index);
800 
801 	if (page) {
802 		if (!TestSetPageLocked(page))
803 			return page;
804 		page_cache_release(page);
805 		return NULL;
806 	}
807 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
808 	if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
809 		page_cache_release(page);
810 		page = NULL;
811 	}
812 	return page;
813 }
814 EXPORT_SYMBOL(grab_cache_page_nowait);
815 
816 /*
817  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
818  * a _large_ part of the i/o request. Imagine the worst scenario:
819  *
820  *      ---R__________________________________________B__________
821  *         ^ reading here                             ^ bad block(assume 4k)
822  *
823  * read(R) => miss => readahead(R...B) => media error => frustrating retries
824  * => failing the whole request => read(R) => read(R+1) =>
825  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
826  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
827  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
828  *
829  * It is going insane. Fix it by quickly scaling down the readahead size.
830  */
831 static void shrink_readahead_size_eio(struct file *filp,
832 					struct file_ra_state *ra)
833 {
834 	if (!ra->ra_pages)
835 		return;
836 
837 	ra->ra_pages /= 4;
838 }
839 
840 /**
841  * do_generic_mapping_read - generic file read routine
842  * @mapping:	address_space to be read
843  * @_ra:	file's readahead state
844  * @filp:	the file to read
845  * @ppos:	current file position
846  * @desc:	read_descriptor
847  * @actor:	read method
848  *
849  * This is a generic file read routine, and uses the
850  * mapping->a_ops->readpage() function for the actual low-level stuff.
851  *
852  * This is really ugly. But the goto's actually try to clarify some
853  * of the logic when it comes to error handling etc.
854  *
855  * Note the struct file* is only passed for the use of readpage.
856  * It may be NULL.
857  */
858 void do_generic_mapping_read(struct address_space *mapping,
859 			     struct file_ra_state *ra,
860 			     struct file *filp,
861 			     loff_t *ppos,
862 			     read_descriptor_t *desc,
863 			     read_actor_t actor)
864 {
865 	struct inode *inode = mapping->host;
866 	pgoff_t index;
867 	pgoff_t last_index;
868 	pgoff_t prev_index;
869 	unsigned long offset;      /* offset into pagecache page */
870 	unsigned int prev_offset;
871 	int error;
872 
873 	index = *ppos >> PAGE_CACHE_SHIFT;
874 	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
875 	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
876 	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
877 	offset = *ppos & ~PAGE_CACHE_MASK;
878 
879 	for (;;) {
880 		struct page *page;
881 		pgoff_t end_index;
882 		loff_t isize;
883 		unsigned long nr, ret;
884 
885 		cond_resched();
886 find_page:
887 		page = find_get_page(mapping, index);
888 		if (!page) {
889 			page_cache_sync_readahead(mapping,
890 					ra, filp,
891 					index, last_index - index);
892 			page = find_get_page(mapping, index);
893 			if (unlikely(page == NULL))
894 				goto no_cached_page;
895 		}
896 		if (PageReadahead(page)) {
897 			page_cache_async_readahead(mapping,
898 					ra, filp, page,
899 					index, last_index - index);
900 		}
901 		if (!PageUptodate(page))
902 			goto page_not_up_to_date;
903 page_ok:
904 		/*
905 		 * i_size must be checked after we know the page is Uptodate.
906 		 *
907 		 * Checking i_size after the check allows us to calculate
908 		 * the correct value for "nr", which means the zero-filled
909 		 * part of the page is not copied back to userspace (unless
910 		 * another truncate extends the file - this is desired though).
911 		 */
912 
913 		isize = i_size_read(inode);
914 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
915 		if (unlikely(!isize || index > end_index)) {
916 			page_cache_release(page);
917 			goto out;
918 		}
919 
920 		/* nr is the maximum number of bytes to copy from this page */
921 		nr = PAGE_CACHE_SIZE;
922 		if (index == end_index) {
923 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
924 			if (nr <= offset) {
925 				page_cache_release(page);
926 				goto out;
927 			}
928 		}
929 		nr = nr - offset;
930 
931 		/* If users can be writing to this page using arbitrary
932 		 * virtual addresses, take care about potential aliasing
933 		 * before reading the page on the kernel side.
934 		 */
935 		if (mapping_writably_mapped(mapping))
936 			flush_dcache_page(page);
937 
938 		/*
939 		 * When a sequential read accesses a page several times,
940 		 * only mark it as accessed the first time.
941 		 */
942 		if (prev_index != index || offset != prev_offset)
943 			mark_page_accessed(page);
944 		prev_index = index;
945 
946 		/*
947 		 * Ok, we have the page, and it's up-to-date, so
948 		 * now we can copy it to user space...
949 		 *
950 		 * The actor routine returns how many bytes were actually used..
951 		 * NOTE! This may not be the same as how much of a user buffer
952 		 * we filled up (we may be padding etc), so we can only update
953 		 * "pos" here (the actor routine has to update the user buffer
954 		 * pointers and the remaining count).
955 		 */
956 		ret = actor(desc, page, offset, nr);
957 		offset += ret;
958 		index += offset >> PAGE_CACHE_SHIFT;
959 		offset &= ~PAGE_CACHE_MASK;
960 		prev_offset = offset;
961 
962 		page_cache_release(page);
963 		if (ret == nr && desc->count)
964 			continue;
965 		goto out;
966 
967 page_not_up_to_date:
968 		/* Get exclusive access to the page ... */
969 		lock_page(page);
970 
971 		/* Did it get truncated before we got the lock? */
972 		if (!page->mapping) {
973 			unlock_page(page);
974 			page_cache_release(page);
975 			continue;
976 		}
977 
978 		/* Did somebody else fill it already? */
979 		if (PageUptodate(page)) {
980 			unlock_page(page);
981 			goto page_ok;
982 		}
983 
984 readpage:
985 		/* Start the actual read. The read will unlock the page. */
986 		error = mapping->a_ops->readpage(filp, page);
987 
988 		if (unlikely(error)) {
989 			if (error == AOP_TRUNCATED_PAGE) {
990 				page_cache_release(page);
991 				goto find_page;
992 			}
993 			goto readpage_error;
994 		}
995 
996 		if (!PageUptodate(page)) {
997 			lock_page(page);
998 			if (!PageUptodate(page)) {
999 				if (page->mapping == NULL) {
1000 					/*
1001 					 * invalidate_inode_pages got it
1002 					 */
1003 					unlock_page(page);
1004 					page_cache_release(page);
1005 					goto find_page;
1006 				}
1007 				unlock_page(page);
1008 				error = -EIO;
1009 				shrink_readahead_size_eio(filp, ra);
1010 				goto readpage_error;
1011 			}
1012 			unlock_page(page);
1013 		}
1014 
1015 		goto page_ok;
1016 
1017 readpage_error:
1018 		/* UHHUH! A synchronous read error occurred. Report it */
1019 		desc->error = error;
1020 		page_cache_release(page);
1021 		goto out;
1022 
1023 no_cached_page:
1024 		/*
1025 		 * Ok, it wasn't cached, so we need to create a new
1026 		 * page..
1027 		 */
1028 		page = page_cache_alloc_cold(mapping);
1029 		if (!page) {
1030 			desc->error = -ENOMEM;
1031 			goto out;
1032 		}
1033 		error = add_to_page_cache_lru(page, mapping,
1034 						index, GFP_KERNEL);
1035 		if (error) {
1036 			page_cache_release(page);
1037 			if (error == -EEXIST)
1038 				goto find_page;
1039 			desc->error = error;
1040 			goto out;
1041 		}
1042 		goto readpage;
1043 	}
1044 
1045 out:
1046 	ra->prev_pos = prev_index;
1047 	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1048 	ra->prev_pos |= prev_offset;
1049 
1050 	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1051 	if (filp)
1052 		file_accessed(filp);
1053 }
1054 EXPORT_SYMBOL(do_generic_mapping_read);
1055 
1056 int file_read_actor(read_descriptor_t *desc, struct page *page,
1057 			unsigned long offset, unsigned long size)
1058 {
1059 	char *kaddr;
1060 	unsigned long left, count = desc->count;
1061 
1062 	if (size > count)
1063 		size = count;
1064 
1065 	/*
1066 	 * Faults on the destination of a read are common, so do it before
1067 	 * taking the kmap.
1068 	 */
1069 	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1070 		kaddr = kmap_atomic(page, KM_USER0);
1071 		left = __copy_to_user_inatomic(desc->arg.buf,
1072 						kaddr + offset, size);
1073 		kunmap_atomic(kaddr, KM_USER0);
1074 		if (left == 0)
1075 			goto success;
1076 	}
1077 
1078 	/* Do it the slow way */
1079 	kaddr = kmap(page);
1080 	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1081 	kunmap(page);
1082 
1083 	if (left) {
1084 		size -= left;
1085 		desc->error = -EFAULT;
1086 	}
1087 success:
1088 	desc->count = count - size;
1089 	desc->written += size;
1090 	desc->arg.buf += size;
1091 	return size;
1092 }
1093 
1094 /*
1095  * Performs necessary checks before doing a write
1096  * @iov:	io vector request
1097  * @nr_segs:	number of segments in the iovec
1098  * @count:	number of bytes to write
1099  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1100  *
1101  * Adjust number of segments and amount of bytes to write (nr_segs should be
1102  * properly initialized first). Returns appropriate error code that caller
1103  * should return or zero in case that write should be allowed.
1104  */
1105 int generic_segment_checks(const struct iovec *iov,
1106 			unsigned long *nr_segs, size_t *count, int access_flags)
1107 {
1108 	unsigned long   seg;
1109 	size_t cnt = 0;
1110 	for (seg = 0; seg < *nr_segs; seg++) {
1111 		const struct iovec *iv = &iov[seg];
1112 
1113 		/*
1114 		 * If any segment has a negative length, or the cumulative
1115 		 * length ever wraps negative then return -EINVAL.
1116 		 */
1117 		cnt += iv->iov_len;
1118 		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1119 			return -EINVAL;
1120 		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1121 			continue;
1122 		if (seg == 0)
1123 			return -EFAULT;
1124 		*nr_segs = seg;
1125 		cnt -= iv->iov_len;	/* This segment is no good */
1126 		break;
1127 	}
1128 	*count = cnt;
1129 	return 0;
1130 }
1131 EXPORT_SYMBOL(generic_segment_checks);
1132 
1133 /**
1134  * generic_file_aio_read - generic filesystem read routine
1135  * @iocb:	kernel I/O control block
1136  * @iov:	io vector request
1137  * @nr_segs:	number of segments in the iovec
1138  * @pos:	current file position
1139  *
1140  * This is the "read()" routine for all filesystems
1141  * that can use the page cache directly.
1142  */
1143 ssize_t
1144 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1145 		unsigned long nr_segs, loff_t pos)
1146 {
1147 	struct file *filp = iocb->ki_filp;
1148 	ssize_t retval;
1149 	unsigned long seg;
1150 	size_t count;
1151 	loff_t *ppos = &iocb->ki_pos;
1152 
1153 	count = 0;
1154 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1155 	if (retval)
1156 		return retval;
1157 
1158 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1159 	if (filp->f_flags & O_DIRECT) {
1160 		loff_t size;
1161 		struct address_space *mapping;
1162 		struct inode *inode;
1163 
1164 		mapping = filp->f_mapping;
1165 		inode = mapping->host;
1166 		retval = 0;
1167 		if (!count)
1168 			goto out; /* skip atime */
1169 		size = i_size_read(inode);
1170 		if (pos < size) {
1171 			retval = generic_file_direct_IO(READ, iocb,
1172 						iov, pos, nr_segs);
1173 			if (retval > 0)
1174 				*ppos = pos + retval;
1175 		}
1176 		if (likely(retval != 0)) {
1177 			file_accessed(filp);
1178 			goto out;
1179 		}
1180 	}
1181 
1182 	retval = 0;
1183 	if (count) {
1184 		for (seg = 0; seg < nr_segs; seg++) {
1185 			read_descriptor_t desc;
1186 
1187 			desc.written = 0;
1188 			desc.arg.buf = iov[seg].iov_base;
1189 			desc.count = iov[seg].iov_len;
1190 			if (desc.count == 0)
1191 				continue;
1192 			desc.error = 0;
1193 			do_generic_file_read(filp,ppos,&desc,file_read_actor);
1194 			retval += desc.written;
1195 			if (desc.error) {
1196 				retval = retval ?: desc.error;
1197 				break;
1198 			}
1199 			if (desc.count > 0)
1200 				break;
1201 		}
1202 	}
1203 out:
1204 	return retval;
1205 }
1206 EXPORT_SYMBOL(generic_file_aio_read);
1207 
1208 static ssize_t
1209 do_readahead(struct address_space *mapping, struct file *filp,
1210 	     pgoff_t index, unsigned long nr)
1211 {
1212 	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1213 		return -EINVAL;
1214 
1215 	force_page_cache_readahead(mapping, filp, index,
1216 					max_sane_readahead(nr));
1217 	return 0;
1218 }
1219 
1220 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1221 {
1222 	ssize_t ret;
1223 	struct file *file;
1224 
1225 	ret = -EBADF;
1226 	file = fget(fd);
1227 	if (file) {
1228 		if (file->f_mode & FMODE_READ) {
1229 			struct address_space *mapping = file->f_mapping;
1230 			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1231 			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1232 			unsigned long len = end - start + 1;
1233 			ret = do_readahead(mapping, file, start, len);
1234 		}
1235 		fput(file);
1236 	}
1237 	return ret;
1238 }
1239 
1240 #ifdef CONFIG_MMU
1241 /**
1242  * page_cache_read - adds requested page to the page cache if not already there
1243  * @file:	file to read
1244  * @offset:	page index
1245  *
1246  * This adds the requested page to the page cache if it isn't already there,
1247  * and schedules an I/O to read in its contents from disk.
1248  */
1249 static int fastcall page_cache_read(struct file * file, pgoff_t offset)
1250 {
1251 	struct address_space *mapping = file->f_mapping;
1252 	struct page *page;
1253 	int ret;
1254 
1255 	do {
1256 		page = page_cache_alloc_cold(mapping);
1257 		if (!page)
1258 			return -ENOMEM;
1259 
1260 		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1261 		if (ret == 0)
1262 			ret = mapping->a_ops->readpage(file, page);
1263 		else if (ret == -EEXIST)
1264 			ret = 0; /* losing race to add is OK */
1265 
1266 		page_cache_release(page);
1267 
1268 	} while (ret == AOP_TRUNCATED_PAGE);
1269 
1270 	return ret;
1271 }
1272 
1273 #define MMAP_LOTSAMISS  (100)
1274 
1275 /**
1276  * filemap_fault - read in file data for page fault handling
1277  * @vma:	vma in which the fault was taken
1278  * @vmf:	struct vm_fault containing details of the fault
1279  *
1280  * filemap_fault() is invoked via the vma operations vector for a
1281  * mapped memory region to read in file data during a page fault.
1282  *
1283  * The goto's are kind of ugly, but this streamlines the normal case of having
1284  * it in the page cache, and handles the special cases reasonably without
1285  * having a lot of duplicated code.
1286  */
1287 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1288 {
1289 	int error;
1290 	struct file *file = vma->vm_file;
1291 	struct address_space *mapping = file->f_mapping;
1292 	struct file_ra_state *ra = &file->f_ra;
1293 	struct inode *inode = mapping->host;
1294 	struct page *page;
1295 	unsigned long size;
1296 	int did_readaround = 0;
1297 	int ret = 0;
1298 
1299 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1300 	if (vmf->pgoff >= size)
1301 		goto outside_data_content;
1302 
1303 	/* If we don't want any read-ahead, don't bother */
1304 	if (VM_RandomReadHint(vma))
1305 		goto no_cached_page;
1306 
1307 	/*
1308 	 * Do we have something in the page cache already?
1309 	 */
1310 retry_find:
1311 	page = find_lock_page(mapping, vmf->pgoff);
1312 	/*
1313 	 * For sequential accesses, we use the generic readahead logic.
1314 	 */
1315 	if (VM_SequentialReadHint(vma)) {
1316 		if (!page) {
1317 			page_cache_sync_readahead(mapping, ra, file,
1318 							   vmf->pgoff, 1);
1319 			page = find_lock_page(mapping, vmf->pgoff);
1320 			if (!page)
1321 				goto no_cached_page;
1322 		}
1323 		if (PageReadahead(page)) {
1324 			page_cache_async_readahead(mapping, ra, file, page,
1325 							   vmf->pgoff, 1);
1326 		}
1327 	}
1328 
1329 	if (!page) {
1330 		unsigned long ra_pages;
1331 
1332 		ra->mmap_miss++;
1333 
1334 		/*
1335 		 * Do we miss much more than hit in this file? If so,
1336 		 * stop bothering with read-ahead. It will only hurt.
1337 		 */
1338 		if (ra->mmap_miss > MMAP_LOTSAMISS)
1339 			goto no_cached_page;
1340 
1341 		/*
1342 		 * To keep the pgmajfault counter straight, we need to
1343 		 * check did_readaround, as this is an inner loop.
1344 		 */
1345 		if (!did_readaround) {
1346 			ret = VM_FAULT_MAJOR;
1347 			count_vm_event(PGMAJFAULT);
1348 		}
1349 		did_readaround = 1;
1350 		ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1351 		if (ra_pages) {
1352 			pgoff_t start = 0;
1353 
1354 			if (vmf->pgoff > ra_pages / 2)
1355 				start = vmf->pgoff - ra_pages / 2;
1356 			do_page_cache_readahead(mapping, file, start, ra_pages);
1357 		}
1358 		page = find_lock_page(mapping, vmf->pgoff);
1359 		if (!page)
1360 			goto no_cached_page;
1361 	}
1362 
1363 	if (!did_readaround)
1364 		ra->mmap_miss--;
1365 
1366 	/*
1367 	 * We have a locked page in the page cache, now we need to check
1368 	 * that it's up-to-date. If not, it is going to be due to an error.
1369 	 */
1370 	if (unlikely(!PageUptodate(page)))
1371 		goto page_not_uptodate;
1372 
1373 	/* Must recheck i_size under page lock */
1374 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1375 	if (unlikely(vmf->pgoff >= size)) {
1376 		unlock_page(page);
1377 		page_cache_release(page);
1378 		goto outside_data_content;
1379 	}
1380 
1381 	/*
1382 	 * Found the page and have a reference on it.
1383 	 */
1384 	mark_page_accessed(page);
1385 	ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT;
1386 	vmf->page = page;
1387 	return ret | VM_FAULT_LOCKED;
1388 
1389 outside_data_content:
1390 	/*
1391 	 * An external ptracer can access pages that normally aren't
1392 	 * accessible..
1393 	 */
1394 	if (vma->vm_mm == current->mm)
1395 		return VM_FAULT_SIGBUS;
1396 
1397 	/* Fall through to the non-read-ahead case */
1398 no_cached_page:
1399 	/*
1400 	 * We're only likely to ever get here if MADV_RANDOM is in
1401 	 * effect.
1402 	 */
1403 	error = page_cache_read(file, vmf->pgoff);
1404 
1405 	/*
1406 	 * The page we want has now been added to the page cache.
1407 	 * In the unlikely event that someone removed it in the
1408 	 * meantime, we'll just come back here and read it again.
1409 	 */
1410 	if (error >= 0)
1411 		goto retry_find;
1412 
1413 	/*
1414 	 * An error return from page_cache_read can result if the
1415 	 * system is low on memory, or a problem occurs while trying
1416 	 * to schedule I/O.
1417 	 */
1418 	if (error == -ENOMEM)
1419 		return VM_FAULT_OOM;
1420 	return VM_FAULT_SIGBUS;
1421 
1422 page_not_uptodate:
1423 	/* IO error path */
1424 	if (!did_readaround) {
1425 		ret = VM_FAULT_MAJOR;
1426 		count_vm_event(PGMAJFAULT);
1427 	}
1428 
1429 	/*
1430 	 * Umm, take care of errors if the page isn't up-to-date.
1431 	 * Try to re-read it _once_. We do this synchronously,
1432 	 * because there really aren't any performance issues here
1433 	 * and we need to check for errors.
1434 	 */
1435 	ClearPageError(page);
1436 	error = mapping->a_ops->readpage(file, page);
1437 	page_cache_release(page);
1438 
1439 	if (!error || error == AOP_TRUNCATED_PAGE)
1440 		goto retry_find;
1441 
1442 	/* Things didn't work out. Return zero to tell the mm layer so. */
1443 	shrink_readahead_size_eio(file, ra);
1444 	return VM_FAULT_SIGBUS;
1445 }
1446 EXPORT_SYMBOL(filemap_fault);
1447 
1448 struct vm_operations_struct generic_file_vm_ops = {
1449 	.fault		= filemap_fault,
1450 };
1451 
1452 /* This is used for a general mmap of a disk file */
1453 
1454 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1455 {
1456 	struct address_space *mapping = file->f_mapping;
1457 
1458 	if (!mapping->a_ops->readpage)
1459 		return -ENOEXEC;
1460 	file_accessed(file);
1461 	vma->vm_ops = &generic_file_vm_ops;
1462 	vma->vm_flags |= VM_CAN_NONLINEAR;
1463 	return 0;
1464 }
1465 
1466 /*
1467  * This is for filesystems which do not implement ->writepage.
1468  */
1469 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1470 {
1471 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1472 		return -EINVAL;
1473 	return generic_file_mmap(file, vma);
1474 }
1475 #else
1476 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1477 {
1478 	return -ENOSYS;
1479 }
1480 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1481 {
1482 	return -ENOSYS;
1483 }
1484 #endif /* CONFIG_MMU */
1485 
1486 EXPORT_SYMBOL(generic_file_mmap);
1487 EXPORT_SYMBOL(generic_file_readonly_mmap);
1488 
1489 static struct page *__read_cache_page(struct address_space *mapping,
1490 				pgoff_t index,
1491 				int (*filler)(void *,struct page*),
1492 				void *data)
1493 {
1494 	struct page *page;
1495 	int err;
1496 repeat:
1497 	page = find_get_page(mapping, index);
1498 	if (!page) {
1499 		page = page_cache_alloc_cold(mapping);
1500 		if (!page)
1501 			return ERR_PTR(-ENOMEM);
1502 		err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1503 		if (unlikely(err)) {
1504 			page_cache_release(page);
1505 			if (err == -EEXIST)
1506 				goto repeat;
1507 			/* Presumably ENOMEM for radix tree node */
1508 			return ERR_PTR(err);
1509 		}
1510 		err = filler(data, page);
1511 		if (err < 0) {
1512 			page_cache_release(page);
1513 			page = ERR_PTR(err);
1514 		}
1515 	}
1516 	return page;
1517 }
1518 
1519 /*
1520  * Same as read_cache_page, but don't wait for page to become unlocked
1521  * after submitting it to the filler.
1522  */
1523 struct page *read_cache_page_async(struct address_space *mapping,
1524 				pgoff_t index,
1525 				int (*filler)(void *,struct page*),
1526 				void *data)
1527 {
1528 	struct page *page;
1529 	int err;
1530 
1531 retry:
1532 	page = __read_cache_page(mapping, index, filler, data);
1533 	if (IS_ERR(page))
1534 		return page;
1535 	if (PageUptodate(page))
1536 		goto out;
1537 
1538 	lock_page(page);
1539 	if (!page->mapping) {
1540 		unlock_page(page);
1541 		page_cache_release(page);
1542 		goto retry;
1543 	}
1544 	if (PageUptodate(page)) {
1545 		unlock_page(page);
1546 		goto out;
1547 	}
1548 	err = filler(data, page);
1549 	if (err < 0) {
1550 		page_cache_release(page);
1551 		return ERR_PTR(err);
1552 	}
1553 out:
1554 	mark_page_accessed(page);
1555 	return page;
1556 }
1557 EXPORT_SYMBOL(read_cache_page_async);
1558 
1559 /**
1560  * read_cache_page - read into page cache, fill it if needed
1561  * @mapping:	the page's address_space
1562  * @index:	the page index
1563  * @filler:	function to perform the read
1564  * @data:	destination for read data
1565  *
1566  * Read into the page cache. If a page already exists, and PageUptodate() is
1567  * not set, try to fill the page then wait for it to become unlocked.
1568  *
1569  * If the page does not get brought uptodate, return -EIO.
1570  */
1571 struct page *read_cache_page(struct address_space *mapping,
1572 				pgoff_t index,
1573 				int (*filler)(void *,struct page*),
1574 				void *data)
1575 {
1576 	struct page *page;
1577 
1578 	page = read_cache_page_async(mapping, index, filler, data);
1579 	if (IS_ERR(page))
1580 		goto out;
1581 	wait_on_page_locked(page);
1582 	if (!PageUptodate(page)) {
1583 		page_cache_release(page);
1584 		page = ERR_PTR(-EIO);
1585 	}
1586  out:
1587 	return page;
1588 }
1589 EXPORT_SYMBOL(read_cache_page);
1590 
1591 /*
1592  * The logic we want is
1593  *
1594  *	if suid or (sgid and xgrp)
1595  *		remove privs
1596  */
1597 int should_remove_suid(struct dentry *dentry)
1598 {
1599 	mode_t mode = dentry->d_inode->i_mode;
1600 	int kill = 0;
1601 
1602 	/* suid always must be killed */
1603 	if (unlikely(mode & S_ISUID))
1604 		kill = ATTR_KILL_SUID;
1605 
1606 	/*
1607 	 * sgid without any exec bits is just a mandatory locking mark; leave
1608 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1609 	 */
1610 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1611 		kill |= ATTR_KILL_SGID;
1612 
1613 	if (unlikely(kill && !capable(CAP_FSETID)))
1614 		return kill;
1615 
1616 	return 0;
1617 }
1618 EXPORT_SYMBOL(should_remove_suid);
1619 
1620 int __remove_suid(struct dentry *dentry, int kill)
1621 {
1622 	struct iattr newattrs;
1623 
1624 	newattrs.ia_valid = ATTR_FORCE | kill;
1625 	return notify_change(dentry, &newattrs);
1626 }
1627 
1628 int remove_suid(struct dentry *dentry)
1629 {
1630 	int killsuid = should_remove_suid(dentry);
1631 	int killpriv = security_inode_need_killpriv(dentry);
1632 	int error = 0;
1633 
1634 	if (killpriv < 0)
1635 		return killpriv;
1636 	if (killpriv)
1637 		error = security_inode_killpriv(dentry);
1638 	if (!error && killsuid)
1639 		error = __remove_suid(dentry, killsuid);
1640 
1641 	return error;
1642 }
1643 EXPORT_SYMBOL(remove_suid);
1644 
1645 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1646 			const struct iovec *iov, size_t base, size_t bytes)
1647 {
1648 	size_t copied = 0, left = 0;
1649 
1650 	while (bytes) {
1651 		char __user *buf = iov->iov_base + base;
1652 		int copy = min(bytes, iov->iov_len - base);
1653 
1654 		base = 0;
1655 		left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1656 		copied += copy;
1657 		bytes -= copy;
1658 		vaddr += copy;
1659 		iov++;
1660 
1661 		if (unlikely(left))
1662 			break;
1663 	}
1664 	return copied - left;
1665 }
1666 
1667 /*
1668  * Copy as much as we can into the page and return the number of bytes which
1669  * were sucessfully copied.  If a fault is encountered then return the number of
1670  * bytes which were copied.
1671  */
1672 size_t iov_iter_copy_from_user_atomic(struct page *page,
1673 		struct iov_iter *i, unsigned long offset, size_t bytes)
1674 {
1675 	char *kaddr;
1676 	size_t copied;
1677 
1678 	BUG_ON(!in_atomic());
1679 	kaddr = kmap_atomic(page, KM_USER0);
1680 	if (likely(i->nr_segs == 1)) {
1681 		int left;
1682 		char __user *buf = i->iov->iov_base + i->iov_offset;
1683 		left = __copy_from_user_inatomic_nocache(kaddr + offset,
1684 							buf, bytes);
1685 		copied = bytes - left;
1686 	} else {
1687 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1688 						i->iov, i->iov_offset, bytes);
1689 	}
1690 	kunmap_atomic(kaddr, KM_USER0);
1691 
1692 	return copied;
1693 }
1694 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1695 
1696 /*
1697  * This has the same sideeffects and return value as
1698  * iov_iter_copy_from_user_atomic().
1699  * The difference is that it attempts to resolve faults.
1700  * Page must not be locked.
1701  */
1702 size_t iov_iter_copy_from_user(struct page *page,
1703 		struct iov_iter *i, unsigned long offset, size_t bytes)
1704 {
1705 	char *kaddr;
1706 	size_t copied;
1707 
1708 	kaddr = kmap(page);
1709 	if (likely(i->nr_segs == 1)) {
1710 		int left;
1711 		char __user *buf = i->iov->iov_base + i->iov_offset;
1712 		left = __copy_from_user_nocache(kaddr + offset, buf, bytes);
1713 		copied = bytes - left;
1714 	} else {
1715 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1716 						i->iov, i->iov_offset, bytes);
1717 	}
1718 	kunmap(page);
1719 	return copied;
1720 }
1721 EXPORT_SYMBOL(iov_iter_copy_from_user);
1722 
1723 static void __iov_iter_advance_iov(struct iov_iter *i, size_t bytes)
1724 {
1725 	if (likely(i->nr_segs == 1)) {
1726 		i->iov_offset += bytes;
1727 	} else {
1728 		const struct iovec *iov = i->iov;
1729 		size_t base = i->iov_offset;
1730 
1731 		while (bytes) {
1732 			int copy = min(bytes, iov->iov_len - base);
1733 
1734 			bytes -= copy;
1735 			base += copy;
1736 			if (iov->iov_len == base) {
1737 				iov++;
1738 				base = 0;
1739 			}
1740 		}
1741 		i->iov = iov;
1742 		i->iov_offset = base;
1743 	}
1744 }
1745 
1746 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1747 {
1748 	BUG_ON(i->count < bytes);
1749 
1750 	__iov_iter_advance_iov(i, bytes);
1751 	i->count -= bytes;
1752 }
1753 EXPORT_SYMBOL(iov_iter_advance);
1754 
1755 /*
1756  * Fault in the first iovec of the given iov_iter, to a maximum length
1757  * of bytes. Returns 0 on success, or non-zero if the memory could not be
1758  * accessed (ie. because it is an invalid address).
1759  *
1760  * writev-intensive code may want this to prefault several iovecs -- that
1761  * would be possible (callers must not rely on the fact that _only_ the
1762  * first iovec will be faulted with the current implementation).
1763  */
1764 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1765 {
1766 	char __user *buf = i->iov->iov_base + i->iov_offset;
1767 	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1768 	return fault_in_pages_readable(buf, bytes);
1769 }
1770 EXPORT_SYMBOL(iov_iter_fault_in_readable);
1771 
1772 /*
1773  * Return the count of just the current iov_iter segment.
1774  */
1775 size_t iov_iter_single_seg_count(struct iov_iter *i)
1776 {
1777 	const struct iovec *iov = i->iov;
1778 	if (i->nr_segs == 1)
1779 		return i->count;
1780 	else
1781 		return min(i->count, iov->iov_len - i->iov_offset);
1782 }
1783 EXPORT_SYMBOL(iov_iter_single_seg_count);
1784 
1785 /*
1786  * Performs necessary checks before doing a write
1787  *
1788  * Can adjust writing position or amount of bytes to write.
1789  * Returns appropriate error code that caller should return or
1790  * zero in case that write should be allowed.
1791  */
1792 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1793 {
1794 	struct inode *inode = file->f_mapping->host;
1795 	unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1796 
1797         if (unlikely(*pos < 0))
1798                 return -EINVAL;
1799 
1800 	if (!isblk) {
1801 		/* FIXME: this is for backwards compatibility with 2.4 */
1802 		if (file->f_flags & O_APPEND)
1803                         *pos = i_size_read(inode);
1804 
1805 		if (limit != RLIM_INFINITY) {
1806 			if (*pos >= limit) {
1807 				send_sig(SIGXFSZ, current, 0);
1808 				return -EFBIG;
1809 			}
1810 			if (*count > limit - (typeof(limit))*pos) {
1811 				*count = limit - (typeof(limit))*pos;
1812 			}
1813 		}
1814 	}
1815 
1816 	/*
1817 	 * LFS rule
1818 	 */
1819 	if (unlikely(*pos + *count > MAX_NON_LFS &&
1820 				!(file->f_flags & O_LARGEFILE))) {
1821 		if (*pos >= MAX_NON_LFS) {
1822 			return -EFBIG;
1823 		}
1824 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1825 			*count = MAX_NON_LFS - (unsigned long)*pos;
1826 		}
1827 	}
1828 
1829 	/*
1830 	 * Are we about to exceed the fs block limit ?
1831 	 *
1832 	 * If we have written data it becomes a short write.  If we have
1833 	 * exceeded without writing data we send a signal and return EFBIG.
1834 	 * Linus frestrict idea will clean these up nicely..
1835 	 */
1836 	if (likely(!isblk)) {
1837 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1838 			if (*count || *pos > inode->i_sb->s_maxbytes) {
1839 				return -EFBIG;
1840 			}
1841 			/* zero-length writes at ->s_maxbytes are OK */
1842 		}
1843 
1844 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1845 			*count = inode->i_sb->s_maxbytes - *pos;
1846 	} else {
1847 #ifdef CONFIG_BLOCK
1848 		loff_t isize;
1849 		if (bdev_read_only(I_BDEV(inode)))
1850 			return -EPERM;
1851 		isize = i_size_read(inode);
1852 		if (*pos >= isize) {
1853 			if (*count || *pos > isize)
1854 				return -ENOSPC;
1855 		}
1856 
1857 		if (*pos + *count > isize)
1858 			*count = isize - *pos;
1859 #else
1860 		return -EPERM;
1861 #endif
1862 	}
1863 	return 0;
1864 }
1865 EXPORT_SYMBOL(generic_write_checks);
1866 
1867 int pagecache_write_begin(struct file *file, struct address_space *mapping,
1868 				loff_t pos, unsigned len, unsigned flags,
1869 				struct page **pagep, void **fsdata)
1870 {
1871 	const struct address_space_operations *aops = mapping->a_ops;
1872 
1873 	if (aops->write_begin) {
1874 		return aops->write_begin(file, mapping, pos, len, flags,
1875 							pagep, fsdata);
1876 	} else {
1877 		int ret;
1878 		pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1879 		unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1880 		struct inode *inode = mapping->host;
1881 		struct page *page;
1882 again:
1883 		page = __grab_cache_page(mapping, index);
1884 		*pagep = page;
1885 		if (!page)
1886 			return -ENOMEM;
1887 
1888 		if (flags & AOP_FLAG_UNINTERRUPTIBLE && !PageUptodate(page)) {
1889 			/*
1890 			 * There is no way to resolve a short write situation
1891 			 * for a !Uptodate page (except by double copying in
1892 			 * the caller done by generic_perform_write_2copy).
1893 			 *
1894 			 * Instead, we have to bring it uptodate here.
1895 			 */
1896 			ret = aops->readpage(file, page);
1897 			page_cache_release(page);
1898 			if (ret) {
1899 				if (ret == AOP_TRUNCATED_PAGE)
1900 					goto again;
1901 				return ret;
1902 			}
1903 			goto again;
1904 		}
1905 
1906 		ret = aops->prepare_write(file, page, offset, offset+len);
1907 		if (ret) {
1908 			unlock_page(page);
1909 			page_cache_release(page);
1910 			if (pos + len > inode->i_size)
1911 				vmtruncate(inode, inode->i_size);
1912 		}
1913 		return ret;
1914 	}
1915 }
1916 EXPORT_SYMBOL(pagecache_write_begin);
1917 
1918 int pagecache_write_end(struct file *file, struct address_space *mapping,
1919 				loff_t pos, unsigned len, unsigned copied,
1920 				struct page *page, void *fsdata)
1921 {
1922 	const struct address_space_operations *aops = mapping->a_ops;
1923 	int ret;
1924 
1925 	if (aops->write_end) {
1926 		mark_page_accessed(page);
1927 		ret = aops->write_end(file, mapping, pos, len, copied,
1928 							page, fsdata);
1929 	} else {
1930 		unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1931 		struct inode *inode = mapping->host;
1932 
1933 		flush_dcache_page(page);
1934 		ret = aops->commit_write(file, page, offset, offset+len);
1935 		unlock_page(page);
1936 		mark_page_accessed(page);
1937 		page_cache_release(page);
1938 
1939 		if (ret < 0) {
1940 			if (pos + len > inode->i_size)
1941 				vmtruncate(inode, inode->i_size);
1942 		} else if (ret > 0)
1943 			ret = min_t(size_t, copied, ret);
1944 		else
1945 			ret = copied;
1946 	}
1947 
1948 	return ret;
1949 }
1950 EXPORT_SYMBOL(pagecache_write_end);
1951 
1952 ssize_t
1953 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1954 		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
1955 		size_t count, size_t ocount)
1956 {
1957 	struct file	*file = iocb->ki_filp;
1958 	struct address_space *mapping = file->f_mapping;
1959 	struct inode	*inode = mapping->host;
1960 	ssize_t		written;
1961 
1962 	if (count != ocount)
1963 		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
1964 
1965 	written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
1966 	if (written > 0) {
1967 		loff_t end = pos + written;
1968 		if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
1969 			i_size_write(inode,  end);
1970 			mark_inode_dirty(inode);
1971 		}
1972 		*ppos = end;
1973 	}
1974 
1975 	/*
1976 	 * Sync the fs metadata but not the minor inode changes and
1977 	 * of course not the data as we did direct DMA for the IO.
1978 	 * i_mutex is held, which protects generic_osync_inode() from
1979 	 * livelocking.  AIO O_DIRECT ops attempt to sync metadata here.
1980 	 */
1981 	if ((written >= 0 || written == -EIOCBQUEUED) &&
1982 	    ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
1983 		int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
1984 		if (err < 0)
1985 			written = err;
1986 	}
1987 	return written;
1988 }
1989 EXPORT_SYMBOL(generic_file_direct_write);
1990 
1991 /*
1992  * Find or create a page at the given pagecache position. Return the locked
1993  * page. This function is specifically for buffered writes.
1994  */
1995 struct page *__grab_cache_page(struct address_space *mapping, pgoff_t index)
1996 {
1997 	int status;
1998 	struct page *page;
1999 repeat:
2000 	page = find_lock_page(mapping, index);
2001 	if (likely(page))
2002 		return page;
2003 
2004 	page = page_cache_alloc(mapping);
2005 	if (!page)
2006 		return NULL;
2007 	status = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
2008 	if (unlikely(status)) {
2009 		page_cache_release(page);
2010 		if (status == -EEXIST)
2011 			goto repeat;
2012 		return NULL;
2013 	}
2014 	return page;
2015 }
2016 EXPORT_SYMBOL(__grab_cache_page);
2017 
2018 static ssize_t generic_perform_write_2copy(struct file *file,
2019 				struct iov_iter *i, loff_t pos)
2020 {
2021 	struct address_space *mapping = file->f_mapping;
2022 	const struct address_space_operations *a_ops = mapping->a_ops;
2023 	struct inode *inode = mapping->host;
2024 	long status = 0;
2025 	ssize_t written = 0;
2026 
2027 	do {
2028 		struct page *src_page;
2029 		struct page *page;
2030 		pgoff_t index;		/* Pagecache index for current page */
2031 		unsigned long offset;	/* Offset into pagecache page */
2032 		unsigned long bytes;	/* Bytes to write to page */
2033 		size_t copied;		/* Bytes copied from user */
2034 
2035 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2036 		index = pos >> PAGE_CACHE_SHIFT;
2037 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2038 						iov_iter_count(i));
2039 
2040 		/*
2041 		 * a non-NULL src_page indicates that we're doing the
2042 		 * copy via get_user_pages and kmap.
2043 		 */
2044 		src_page = NULL;
2045 
2046 		/*
2047 		 * Bring in the user page that we will copy from _first_.
2048 		 * Otherwise there's a nasty deadlock on copying from the
2049 		 * same page as we're writing to, without it being marked
2050 		 * up-to-date.
2051 		 *
2052 		 * Not only is this an optimisation, but it is also required
2053 		 * to check that the address is actually valid, when atomic
2054 		 * usercopies are used, below.
2055 		 */
2056 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2057 			status = -EFAULT;
2058 			break;
2059 		}
2060 
2061 		page = __grab_cache_page(mapping, index);
2062 		if (!page) {
2063 			status = -ENOMEM;
2064 			break;
2065 		}
2066 
2067 		/*
2068 		 * non-uptodate pages cannot cope with short copies, and we
2069 		 * cannot take a pagefault with the destination page locked.
2070 		 * So pin the source page to copy it.
2071 		 */
2072 		if (!PageUptodate(page) && !segment_eq(get_fs(), KERNEL_DS)) {
2073 			unlock_page(page);
2074 
2075 			src_page = alloc_page(GFP_KERNEL);
2076 			if (!src_page) {
2077 				page_cache_release(page);
2078 				status = -ENOMEM;
2079 				break;
2080 			}
2081 
2082 			/*
2083 			 * Cannot get_user_pages with a page locked for the
2084 			 * same reason as we can't take a page fault with a
2085 			 * page locked (as explained below).
2086 			 */
2087 			copied = iov_iter_copy_from_user(src_page, i,
2088 								offset, bytes);
2089 			if (unlikely(copied == 0)) {
2090 				status = -EFAULT;
2091 				page_cache_release(page);
2092 				page_cache_release(src_page);
2093 				break;
2094 			}
2095 			bytes = copied;
2096 
2097 			lock_page(page);
2098 			/*
2099 			 * Can't handle the page going uptodate here, because
2100 			 * that means we would use non-atomic usercopies, which
2101 			 * zero out the tail of the page, which can cause
2102 			 * zeroes to become transiently visible. We could just
2103 			 * use a non-zeroing copy, but the APIs aren't too
2104 			 * consistent.
2105 			 */
2106 			if (unlikely(!page->mapping || PageUptodate(page))) {
2107 				unlock_page(page);
2108 				page_cache_release(page);
2109 				page_cache_release(src_page);
2110 				continue;
2111 			}
2112 		}
2113 
2114 		status = a_ops->prepare_write(file, page, offset, offset+bytes);
2115 		if (unlikely(status))
2116 			goto fs_write_aop_error;
2117 
2118 		if (!src_page) {
2119 			/*
2120 			 * Must not enter the pagefault handler here, because
2121 			 * we hold the page lock, so we might recursively
2122 			 * deadlock on the same lock, or get an ABBA deadlock
2123 			 * against a different lock, or against the mmap_sem
2124 			 * (which nests outside the page lock).  So increment
2125 			 * preempt count, and use _atomic usercopies.
2126 			 *
2127 			 * The page is uptodate so we are OK to encounter a
2128 			 * short copy: if unmodified parts of the page are
2129 			 * marked dirty and written out to disk, it doesn't
2130 			 * really matter.
2131 			 */
2132 			pagefault_disable();
2133 			copied = iov_iter_copy_from_user_atomic(page, i,
2134 								offset, bytes);
2135 			pagefault_enable();
2136 		} else {
2137 			void *src, *dst;
2138 			src = kmap_atomic(src_page, KM_USER0);
2139 			dst = kmap_atomic(page, KM_USER1);
2140 			memcpy(dst + offset, src + offset, bytes);
2141 			kunmap_atomic(dst, KM_USER1);
2142 			kunmap_atomic(src, KM_USER0);
2143 			copied = bytes;
2144 		}
2145 		flush_dcache_page(page);
2146 
2147 		status = a_ops->commit_write(file, page, offset, offset+bytes);
2148 		if (unlikely(status < 0))
2149 			goto fs_write_aop_error;
2150 		if (unlikely(status > 0)) /* filesystem did partial write */
2151 			copied = min_t(size_t, copied, status);
2152 
2153 		unlock_page(page);
2154 		mark_page_accessed(page);
2155 		page_cache_release(page);
2156 		if (src_page)
2157 			page_cache_release(src_page);
2158 
2159 		iov_iter_advance(i, copied);
2160 		pos += copied;
2161 		written += copied;
2162 
2163 		balance_dirty_pages_ratelimited(mapping);
2164 		cond_resched();
2165 		continue;
2166 
2167 fs_write_aop_error:
2168 		unlock_page(page);
2169 		page_cache_release(page);
2170 		if (src_page)
2171 			page_cache_release(src_page);
2172 
2173 		/*
2174 		 * prepare_write() may have instantiated a few blocks
2175 		 * outside i_size.  Trim these off again. Don't need
2176 		 * i_size_read because we hold i_mutex.
2177 		 */
2178 		if (pos + bytes > inode->i_size)
2179 			vmtruncate(inode, inode->i_size);
2180 		break;
2181 	} while (iov_iter_count(i));
2182 
2183 	return written ? written : status;
2184 }
2185 
2186 static ssize_t generic_perform_write(struct file *file,
2187 				struct iov_iter *i, loff_t pos)
2188 {
2189 	struct address_space *mapping = file->f_mapping;
2190 	const struct address_space_operations *a_ops = mapping->a_ops;
2191 	long status = 0;
2192 	ssize_t written = 0;
2193 	unsigned int flags = 0;
2194 
2195 	/*
2196 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2197 	 */
2198 	if (segment_eq(get_fs(), KERNEL_DS))
2199 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2200 
2201 	do {
2202 		struct page *page;
2203 		pgoff_t index;		/* Pagecache index for current page */
2204 		unsigned long offset;	/* Offset into pagecache page */
2205 		unsigned long bytes;	/* Bytes to write to page */
2206 		size_t copied;		/* Bytes copied from user */
2207 		void *fsdata;
2208 
2209 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2210 		index = pos >> PAGE_CACHE_SHIFT;
2211 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2212 						iov_iter_count(i));
2213 
2214 again:
2215 
2216 		/*
2217 		 * Bring in the user page that we will copy from _first_.
2218 		 * Otherwise there's a nasty deadlock on copying from the
2219 		 * same page as we're writing to, without it being marked
2220 		 * up-to-date.
2221 		 *
2222 		 * Not only is this an optimisation, but it is also required
2223 		 * to check that the address is actually valid, when atomic
2224 		 * usercopies are used, below.
2225 		 */
2226 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2227 			status = -EFAULT;
2228 			break;
2229 		}
2230 
2231 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2232 						&page, &fsdata);
2233 		if (unlikely(status))
2234 			break;
2235 
2236 		pagefault_disable();
2237 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2238 		pagefault_enable();
2239 		flush_dcache_page(page);
2240 
2241 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2242 						page, fsdata);
2243 		if (unlikely(status < 0))
2244 			break;
2245 		copied = status;
2246 
2247 		cond_resched();
2248 
2249 		if (unlikely(copied == 0)) {
2250 			/*
2251 			 * If we were unable to copy any data at all, we must
2252 			 * fall back to a single segment length write.
2253 			 *
2254 			 * If we didn't fallback here, we could livelock
2255 			 * because not all segments in the iov can be copied at
2256 			 * once without a pagefault.
2257 			 */
2258 			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2259 						iov_iter_single_seg_count(i));
2260 			goto again;
2261 		}
2262 		iov_iter_advance(i, copied);
2263 		pos += copied;
2264 		written += copied;
2265 
2266 		balance_dirty_pages_ratelimited(mapping);
2267 
2268 	} while (iov_iter_count(i));
2269 
2270 	return written ? written : status;
2271 }
2272 
2273 ssize_t
2274 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2275 		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2276 		size_t count, ssize_t written)
2277 {
2278 	struct file *file = iocb->ki_filp;
2279 	struct address_space *mapping = file->f_mapping;
2280 	const struct address_space_operations *a_ops = mapping->a_ops;
2281 	struct inode *inode = mapping->host;
2282 	ssize_t status;
2283 	struct iov_iter i;
2284 
2285 	iov_iter_init(&i, iov, nr_segs, count, written);
2286 	if (a_ops->write_begin)
2287 		status = generic_perform_write(file, &i, pos);
2288 	else
2289 		status = generic_perform_write_2copy(file, &i, pos);
2290 
2291 	if (likely(status >= 0)) {
2292 		written += status;
2293 		*ppos = pos + status;
2294 
2295 		/*
2296 		 * For now, when the user asks for O_SYNC, we'll actually give
2297 		 * O_DSYNC
2298 		 */
2299 		if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2300 			if (!a_ops->writepage || !is_sync_kiocb(iocb))
2301 				status = generic_osync_inode(inode, mapping,
2302 						OSYNC_METADATA|OSYNC_DATA);
2303 		}
2304   	}
2305 
2306 	/*
2307 	 * If we get here for O_DIRECT writes then we must have fallen through
2308 	 * to buffered writes (block instantiation inside i_size).  So we sync
2309 	 * the file data here, to try to honour O_DIRECT expectations.
2310 	 */
2311 	if (unlikely(file->f_flags & O_DIRECT) && written)
2312 		status = filemap_write_and_wait(mapping);
2313 
2314 	return written ? written : status;
2315 }
2316 EXPORT_SYMBOL(generic_file_buffered_write);
2317 
2318 static ssize_t
2319 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2320 				unsigned long nr_segs, loff_t *ppos)
2321 {
2322 	struct file *file = iocb->ki_filp;
2323 	struct address_space * mapping = file->f_mapping;
2324 	size_t ocount;		/* original count */
2325 	size_t count;		/* after file limit checks */
2326 	struct inode 	*inode = mapping->host;
2327 	loff_t		pos;
2328 	ssize_t		written;
2329 	ssize_t		err;
2330 
2331 	ocount = 0;
2332 	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2333 	if (err)
2334 		return err;
2335 
2336 	count = ocount;
2337 	pos = *ppos;
2338 
2339 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2340 
2341 	/* We can write back this queue in page reclaim */
2342 	current->backing_dev_info = mapping->backing_dev_info;
2343 	written = 0;
2344 
2345 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2346 	if (err)
2347 		goto out;
2348 
2349 	if (count == 0)
2350 		goto out;
2351 
2352 	err = remove_suid(file->f_path.dentry);
2353 	if (err)
2354 		goto out;
2355 
2356 	file_update_time(file);
2357 
2358 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2359 	if (unlikely(file->f_flags & O_DIRECT)) {
2360 		loff_t endbyte;
2361 		ssize_t written_buffered;
2362 
2363 		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2364 							ppos, count, ocount);
2365 		if (written < 0 || written == count)
2366 			goto out;
2367 		/*
2368 		 * direct-io write to a hole: fall through to buffered I/O
2369 		 * for completing the rest of the request.
2370 		 */
2371 		pos += written;
2372 		count -= written;
2373 		written_buffered = generic_file_buffered_write(iocb, iov,
2374 						nr_segs, pos, ppos, count,
2375 						written);
2376 		/*
2377 		 * If generic_file_buffered_write() retuned a synchronous error
2378 		 * then we want to return the number of bytes which were
2379 		 * direct-written, or the error code if that was zero.  Note
2380 		 * that this differs from normal direct-io semantics, which
2381 		 * will return -EFOO even if some bytes were written.
2382 		 */
2383 		if (written_buffered < 0) {
2384 			err = written_buffered;
2385 			goto out;
2386 		}
2387 
2388 		/*
2389 		 * We need to ensure that the page cache pages are written to
2390 		 * disk and invalidated to preserve the expected O_DIRECT
2391 		 * semantics.
2392 		 */
2393 		endbyte = pos + written_buffered - written - 1;
2394 		err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2395 					    SYNC_FILE_RANGE_WAIT_BEFORE|
2396 					    SYNC_FILE_RANGE_WRITE|
2397 					    SYNC_FILE_RANGE_WAIT_AFTER);
2398 		if (err == 0) {
2399 			written = written_buffered;
2400 			invalidate_mapping_pages(mapping,
2401 						 pos >> PAGE_CACHE_SHIFT,
2402 						 endbyte >> PAGE_CACHE_SHIFT);
2403 		} else {
2404 			/*
2405 			 * We don't know how much we wrote, so just return
2406 			 * the number of bytes which were direct-written
2407 			 */
2408 		}
2409 	} else {
2410 		written = generic_file_buffered_write(iocb, iov, nr_segs,
2411 				pos, ppos, count, written);
2412 	}
2413 out:
2414 	current->backing_dev_info = NULL;
2415 	return written ? written : err;
2416 }
2417 
2418 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2419 		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2420 {
2421 	struct file *file = iocb->ki_filp;
2422 	struct address_space *mapping = file->f_mapping;
2423 	struct inode *inode = mapping->host;
2424 	ssize_t ret;
2425 
2426 	BUG_ON(iocb->ki_pos != pos);
2427 
2428 	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2429 			&iocb->ki_pos);
2430 
2431 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2432 		ssize_t err;
2433 
2434 		err = sync_page_range_nolock(inode, mapping, pos, ret);
2435 		if (err < 0)
2436 			ret = err;
2437 	}
2438 	return ret;
2439 }
2440 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2441 
2442 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2443 		unsigned long nr_segs, loff_t pos)
2444 {
2445 	struct file *file = iocb->ki_filp;
2446 	struct address_space *mapping = file->f_mapping;
2447 	struct inode *inode = mapping->host;
2448 	ssize_t ret;
2449 
2450 	BUG_ON(iocb->ki_pos != pos);
2451 
2452 	mutex_lock(&inode->i_mutex);
2453 	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2454 			&iocb->ki_pos);
2455 	mutex_unlock(&inode->i_mutex);
2456 
2457 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2458 		ssize_t err;
2459 
2460 		err = sync_page_range(inode, mapping, pos, ret);
2461 		if (err < 0)
2462 			ret = err;
2463 	}
2464 	return ret;
2465 }
2466 EXPORT_SYMBOL(generic_file_aio_write);
2467 
2468 /*
2469  * Called under i_mutex for writes to S_ISREG files.   Returns -EIO if something
2470  * went wrong during pagecache shootdown.
2471  */
2472 static ssize_t
2473 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2474 	loff_t offset, unsigned long nr_segs)
2475 {
2476 	struct file *file = iocb->ki_filp;
2477 	struct address_space *mapping = file->f_mapping;
2478 	ssize_t retval;
2479 	size_t write_len;
2480 	pgoff_t end = 0; /* silence gcc */
2481 
2482 	/*
2483 	 * If it's a write, unmap all mmappings of the file up-front.  This
2484 	 * will cause any pte dirty bits to be propagated into the pageframes
2485 	 * for the subsequent filemap_write_and_wait().
2486 	 */
2487 	if (rw == WRITE) {
2488 		write_len = iov_length(iov, nr_segs);
2489 		end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT;
2490 	       	if (mapping_mapped(mapping))
2491 			unmap_mapping_range(mapping, offset, write_len, 0);
2492 	}
2493 
2494 	retval = filemap_write_and_wait(mapping);
2495 	if (retval)
2496 		goto out;
2497 
2498 	/*
2499 	 * After a write we want buffered reads to be sure to go to disk to get
2500 	 * the new data.  We invalidate clean cached page from the region we're
2501 	 * about to write.  We do this *before* the write so that we can return
2502 	 * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2503 	 */
2504 	if (rw == WRITE && mapping->nrpages) {
2505 		retval = invalidate_inode_pages2_range(mapping,
2506 					offset >> PAGE_CACHE_SHIFT, end);
2507 		if (retval)
2508 			goto out;
2509 	}
2510 
2511 	retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs);
2512 	if (retval)
2513 		goto out;
2514 
2515 	/*
2516 	 * Finally, try again to invalidate clean pages which might have been
2517 	 * faulted in by get_user_pages() if the source of the write was an
2518 	 * mmap()ed region of the file we're writing.  That's a pretty crazy
2519 	 * thing to do, so we don't support it 100%.  If this invalidation
2520 	 * fails and we have -EIOCBQUEUED we ignore the failure.
2521 	 */
2522 	if (rw == WRITE && mapping->nrpages) {
2523 		int err = invalidate_inode_pages2_range(mapping,
2524 					      offset >> PAGE_CACHE_SHIFT, end);
2525 		if (err && retval >= 0)
2526 			retval = err;
2527 	}
2528 out:
2529 	return retval;
2530 }
2531 
2532 /**
2533  * try_to_release_page() - release old fs-specific metadata on a page
2534  *
2535  * @page: the page which the kernel is trying to free
2536  * @gfp_mask: memory allocation flags (and I/O mode)
2537  *
2538  * The address_space is to try to release any data against the page
2539  * (presumably at page->private).  If the release was successful, return `1'.
2540  * Otherwise return zero.
2541  *
2542  * The @gfp_mask argument specifies whether I/O may be performed to release
2543  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2544  *
2545  * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2546  */
2547 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2548 {
2549 	struct address_space * const mapping = page->mapping;
2550 
2551 	BUG_ON(!PageLocked(page));
2552 	if (PageWriteback(page))
2553 		return 0;
2554 
2555 	if (mapping && mapping->a_ops->releasepage)
2556 		return mapping->a_ops->releasepage(page, gfp_mask);
2557 	return try_to_free_buffers(page);
2558 }
2559 
2560 EXPORT_SYMBOL(try_to_release_page);
2561