xref: /linux/mm/filemap.c (revision c537b994505099b7197e7d3125b942ecbcc51eb6)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/cpuset.h>
33 #include "filemap.h"
34 #include "internal.h"
35 
36 /*
37  * FIXME: remove all knowledge of the buffer layer from the core VM
38  */
39 #include <linux/buffer_head.h> /* for generic_osync_inode */
40 
41 #include <asm/mman.h>
42 
43 static ssize_t
44 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
45 	loff_t offset, unsigned long nr_segs);
46 
47 /*
48  * Shared mappings implemented 30.11.1994. It's not fully working yet,
49  * though.
50  *
51  * Shared mappings now work. 15.8.1995  Bruno.
52  *
53  * finished 'unifying' the page and buffer cache and SMP-threaded the
54  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55  *
56  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
57  */
58 
59 /*
60  * Lock ordering:
61  *
62  *  ->i_mmap_lock		(vmtruncate)
63  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
64  *      ->swap_lock		(exclusive_swap_page, others)
65  *        ->mapping->tree_lock
66  *
67  *  ->i_mutex
68  *    ->i_mmap_lock		(truncate->unmap_mapping_range)
69  *
70  *  ->mmap_sem
71  *    ->i_mmap_lock
72  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
73  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
74  *
75  *  ->mmap_sem
76  *    ->lock_page		(access_process_vm)
77  *
78  *  ->i_mutex			(generic_file_buffered_write)
79  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
80  *
81  *  ->i_mutex
82  *    ->i_alloc_sem             (various)
83  *
84  *  ->inode_lock
85  *    ->sb_lock			(fs/fs-writeback.c)
86  *    ->mapping->tree_lock	(__sync_single_inode)
87  *
88  *  ->i_mmap_lock
89  *    ->anon_vma.lock		(vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock		(try_to_unmap_one)
96  *    ->private_lock		(try_to_unmap_one)
97  *    ->tree_lock		(try_to_unmap_one)
98  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
99  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
100  *    ->private_lock		(page_remove_rmap->set_page_dirty)
101  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
102  *    ->inode_lock		(page_remove_rmap->set_page_dirty)
103  *    ->inode_lock		(zap_pte_range->set_page_dirty)
104  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
105  *
106  *  ->task->proc_lock
107  *    ->dcache_lock		(proc_pid_lookup)
108  */
109 
110 /*
111  * Remove a page from the page cache and free it. Caller has to make
112  * sure the page is locked and that nobody else uses it - or that usage
113  * is safe.  The caller must hold a write_lock on the mapping's tree_lock.
114  */
115 void __remove_from_page_cache(struct page *page)
116 {
117 	struct address_space *mapping = page->mapping;
118 
119 	radix_tree_delete(&mapping->page_tree, page->index);
120 	page->mapping = NULL;
121 	mapping->nrpages--;
122 	__dec_zone_page_state(page, NR_FILE_PAGES);
123 }
124 
125 void remove_from_page_cache(struct page *page)
126 {
127 	struct address_space *mapping = page->mapping;
128 
129 	BUG_ON(!PageLocked(page));
130 
131 	write_lock_irq(&mapping->tree_lock);
132 	__remove_from_page_cache(page);
133 	write_unlock_irq(&mapping->tree_lock);
134 }
135 
136 static int sync_page(void *word)
137 {
138 	struct address_space *mapping;
139 	struct page *page;
140 
141 	page = container_of((unsigned long *)word, struct page, flags);
142 
143 	/*
144 	 * page_mapping() is being called without PG_locked held.
145 	 * Some knowledge of the state and use of the page is used to
146 	 * reduce the requirements down to a memory barrier.
147 	 * The danger here is of a stale page_mapping() return value
148 	 * indicating a struct address_space different from the one it's
149 	 * associated with when it is associated with one.
150 	 * After smp_mb(), it's either the correct page_mapping() for
151 	 * the page, or an old page_mapping() and the page's own
152 	 * page_mapping() has gone NULL.
153 	 * The ->sync_page() address_space operation must tolerate
154 	 * page_mapping() going NULL. By an amazing coincidence,
155 	 * this comes about because none of the users of the page
156 	 * in the ->sync_page() methods make essential use of the
157 	 * page_mapping(), merely passing the page down to the backing
158 	 * device's unplug functions when it's non-NULL, which in turn
159 	 * ignore it for all cases but swap, where only page_private(page) is
160 	 * of interest. When page_mapping() does go NULL, the entire
161 	 * call stack gracefully ignores the page and returns.
162 	 * -- wli
163 	 */
164 	smp_mb();
165 	mapping = page_mapping(page);
166 	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
167 		mapping->a_ops->sync_page(page);
168 	io_schedule();
169 	return 0;
170 }
171 
172 /**
173  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
174  * @mapping:	address space structure to write
175  * @start:	offset in bytes where the range starts
176  * @end:	offset in bytes where the range ends (inclusive)
177  * @sync_mode:	enable synchronous operation
178  *
179  * Start writeback against all of a mapping's dirty pages that lie
180  * within the byte offsets <start, end> inclusive.
181  *
182  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
183  * opposed to a regular memory cleansing writeback.  The difference between
184  * these two operations is that if a dirty page/buffer is encountered, it must
185  * be waited upon, and not just skipped over.
186  */
187 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
188 				loff_t end, int sync_mode)
189 {
190 	int ret;
191 	struct writeback_control wbc = {
192 		.sync_mode = sync_mode,
193 		.nr_to_write = mapping->nrpages * 2,
194 		.range_start = start,
195 		.range_end = end,
196 	};
197 
198 	if (!mapping_cap_writeback_dirty(mapping))
199 		return 0;
200 
201 	ret = do_writepages(mapping, &wbc);
202 	return ret;
203 }
204 
205 static inline int __filemap_fdatawrite(struct address_space *mapping,
206 	int sync_mode)
207 {
208 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
209 }
210 
211 int filemap_fdatawrite(struct address_space *mapping)
212 {
213 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
214 }
215 EXPORT_SYMBOL(filemap_fdatawrite);
216 
217 static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
218 				loff_t end)
219 {
220 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
221 }
222 
223 /**
224  * filemap_flush - mostly a non-blocking flush
225  * @mapping:	target address_space
226  *
227  * This is a mostly non-blocking flush.  Not suitable for data-integrity
228  * purposes - I/O may not be started against all dirty pages.
229  */
230 int filemap_flush(struct address_space *mapping)
231 {
232 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
233 }
234 EXPORT_SYMBOL(filemap_flush);
235 
236 /**
237  * wait_on_page_writeback_range - wait for writeback to complete
238  * @mapping:	target address_space
239  * @start:	beginning page index
240  * @end:	ending page index
241  *
242  * Wait for writeback to complete against pages indexed by start->end
243  * inclusive
244  */
245 int wait_on_page_writeback_range(struct address_space *mapping,
246 				pgoff_t start, pgoff_t end)
247 {
248 	struct pagevec pvec;
249 	int nr_pages;
250 	int ret = 0;
251 	pgoff_t index;
252 
253 	if (end < start)
254 		return 0;
255 
256 	pagevec_init(&pvec, 0);
257 	index = start;
258 	while ((index <= end) &&
259 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
260 			PAGECACHE_TAG_WRITEBACK,
261 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
262 		unsigned i;
263 
264 		for (i = 0; i < nr_pages; i++) {
265 			struct page *page = pvec.pages[i];
266 
267 			/* until radix tree lookup accepts end_index */
268 			if (page->index > end)
269 				continue;
270 
271 			wait_on_page_writeback(page);
272 			if (PageError(page))
273 				ret = -EIO;
274 		}
275 		pagevec_release(&pvec);
276 		cond_resched();
277 	}
278 
279 	/* Check for outstanding write errors */
280 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
281 		ret = -ENOSPC;
282 	if (test_and_clear_bit(AS_EIO, &mapping->flags))
283 		ret = -EIO;
284 
285 	return ret;
286 }
287 
288 /**
289  * sync_page_range - write and wait on all pages in the passed range
290  * @inode:	target inode
291  * @mapping:	target address_space
292  * @pos:	beginning offset in pages to write
293  * @count:	number of bytes to write
294  *
295  * Write and wait upon all the pages in the passed range.  This is a "data
296  * integrity" operation.  It waits upon in-flight writeout before starting and
297  * waiting upon new writeout.  If there was an IO error, return it.
298  *
299  * We need to re-take i_mutex during the generic_osync_inode list walk because
300  * it is otherwise livelockable.
301  */
302 int sync_page_range(struct inode *inode, struct address_space *mapping,
303 			loff_t pos, loff_t count)
304 {
305 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
306 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
307 	int ret;
308 
309 	if (!mapping_cap_writeback_dirty(mapping) || !count)
310 		return 0;
311 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
312 	if (ret == 0) {
313 		mutex_lock(&inode->i_mutex);
314 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
315 		mutex_unlock(&inode->i_mutex);
316 	}
317 	if (ret == 0)
318 		ret = wait_on_page_writeback_range(mapping, start, end);
319 	return ret;
320 }
321 EXPORT_SYMBOL(sync_page_range);
322 
323 /**
324  * sync_page_range_nolock
325  * @inode:	target inode
326  * @mapping:	target address_space
327  * @pos:	beginning offset in pages to write
328  * @count:	number of bytes to write
329  *
330  * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
331  * as it forces O_SYNC writers to different parts of the same file
332  * to be serialised right until io completion.
333  */
334 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
335 			   loff_t pos, loff_t count)
336 {
337 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
338 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
339 	int ret;
340 
341 	if (!mapping_cap_writeback_dirty(mapping) || !count)
342 		return 0;
343 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
344 	if (ret == 0)
345 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
346 	if (ret == 0)
347 		ret = wait_on_page_writeback_range(mapping, start, end);
348 	return ret;
349 }
350 EXPORT_SYMBOL(sync_page_range_nolock);
351 
352 /**
353  * filemap_fdatawait - wait for all under-writeback pages to complete
354  * @mapping: address space structure to wait for
355  *
356  * Walk the list of under-writeback pages of the given address space
357  * and wait for all of them.
358  */
359 int filemap_fdatawait(struct address_space *mapping)
360 {
361 	loff_t i_size = i_size_read(mapping->host);
362 
363 	if (i_size == 0)
364 		return 0;
365 
366 	return wait_on_page_writeback_range(mapping, 0,
367 				(i_size - 1) >> PAGE_CACHE_SHIFT);
368 }
369 EXPORT_SYMBOL(filemap_fdatawait);
370 
371 int filemap_write_and_wait(struct address_space *mapping)
372 {
373 	int err = 0;
374 
375 	if (mapping->nrpages) {
376 		err = filemap_fdatawrite(mapping);
377 		/*
378 		 * Even if the above returned error, the pages may be
379 		 * written partially (e.g. -ENOSPC), so we wait for it.
380 		 * But the -EIO is special case, it may indicate the worst
381 		 * thing (e.g. bug) happened, so we avoid waiting for it.
382 		 */
383 		if (err != -EIO) {
384 			int err2 = filemap_fdatawait(mapping);
385 			if (!err)
386 				err = err2;
387 		}
388 	}
389 	return err;
390 }
391 EXPORT_SYMBOL(filemap_write_and_wait);
392 
393 /**
394  * filemap_write_and_wait_range - write out & wait on a file range
395  * @mapping:	the address_space for the pages
396  * @lstart:	offset in bytes where the range starts
397  * @lend:	offset in bytes where the range ends (inclusive)
398  *
399  * Write out and wait upon file offsets lstart->lend, inclusive.
400  *
401  * Note that `lend' is inclusive (describes the last byte to be written) so
402  * that this function can be used to write to the very end-of-file (end = -1).
403  */
404 int filemap_write_and_wait_range(struct address_space *mapping,
405 				 loff_t lstart, loff_t lend)
406 {
407 	int err = 0;
408 
409 	if (mapping->nrpages) {
410 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
411 						 WB_SYNC_ALL);
412 		/* See comment of filemap_write_and_wait() */
413 		if (err != -EIO) {
414 			int err2 = wait_on_page_writeback_range(mapping,
415 						lstart >> PAGE_CACHE_SHIFT,
416 						lend >> PAGE_CACHE_SHIFT);
417 			if (!err)
418 				err = err2;
419 		}
420 	}
421 	return err;
422 }
423 
424 /**
425  * add_to_page_cache - add newly allocated pagecache pages
426  * @page:	page to add
427  * @mapping:	the page's address_space
428  * @offset:	page index
429  * @gfp_mask:	page allocation mode
430  *
431  * This function is used to add newly allocated pagecache pages;
432  * the page is new, so we can just run SetPageLocked() against it.
433  * The other page state flags were set by rmqueue().
434  *
435  * This function does not add the page to the LRU.  The caller must do that.
436  */
437 int add_to_page_cache(struct page *page, struct address_space *mapping,
438 		pgoff_t offset, gfp_t gfp_mask)
439 {
440 	int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
441 
442 	if (error == 0) {
443 		write_lock_irq(&mapping->tree_lock);
444 		error = radix_tree_insert(&mapping->page_tree, offset, page);
445 		if (!error) {
446 			page_cache_get(page);
447 			SetPageLocked(page);
448 			page->mapping = mapping;
449 			page->index = offset;
450 			mapping->nrpages++;
451 			__inc_zone_page_state(page, NR_FILE_PAGES);
452 		}
453 		write_unlock_irq(&mapping->tree_lock);
454 		radix_tree_preload_end();
455 	}
456 	return error;
457 }
458 EXPORT_SYMBOL(add_to_page_cache);
459 
460 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
461 				pgoff_t offset, gfp_t gfp_mask)
462 {
463 	int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
464 	if (ret == 0)
465 		lru_cache_add(page);
466 	return ret;
467 }
468 
469 #ifdef CONFIG_NUMA
470 struct page *__page_cache_alloc(gfp_t gfp)
471 {
472 	if (cpuset_do_page_mem_spread()) {
473 		int n = cpuset_mem_spread_node();
474 		return alloc_pages_node(n, gfp, 0);
475 	}
476 	return alloc_pages(gfp, 0);
477 }
478 EXPORT_SYMBOL(__page_cache_alloc);
479 #endif
480 
481 static int __sleep_on_page_lock(void *word)
482 {
483 	io_schedule();
484 	return 0;
485 }
486 
487 /*
488  * In order to wait for pages to become available there must be
489  * waitqueues associated with pages. By using a hash table of
490  * waitqueues where the bucket discipline is to maintain all
491  * waiters on the same queue and wake all when any of the pages
492  * become available, and for the woken contexts to check to be
493  * sure the appropriate page became available, this saves space
494  * at a cost of "thundering herd" phenomena during rare hash
495  * collisions.
496  */
497 static wait_queue_head_t *page_waitqueue(struct page *page)
498 {
499 	const struct zone *zone = page_zone(page);
500 
501 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
502 }
503 
504 static inline void wake_up_page(struct page *page, int bit)
505 {
506 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
507 }
508 
509 void fastcall wait_on_page_bit(struct page *page, int bit_nr)
510 {
511 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
512 
513 	if (test_bit(bit_nr, &page->flags))
514 		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
515 							TASK_UNINTERRUPTIBLE);
516 }
517 EXPORT_SYMBOL(wait_on_page_bit);
518 
519 /**
520  * unlock_page - unlock a locked page
521  * @page: the page
522  *
523  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
524  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
525  * mechananism between PageLocked pages and PageWriteback pages is shared.
526  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
527  *
528  * The first mb is necessary to safely close the critical section opened by the
529  * TestSetPageLocked(), the second mb is necessary to enforce ordering between
530  * the clear_bit and the read of the waitqueue (to avoid SMP races with a
531  * parallel wait_on_page_locked()).
532  */
533 void fastcall unlock_page(struct page *page)
534 {
535 	smp_mb__before_clear_bit();
536 	if (!TestClearPageLocked(page))
537 		BUG();
538 	smp_mb__after_clear_bit();
539 	wake_up_page(page, PG_locked);
540 }
541 EXPORT_SYMBOL(unlock_page);
542 
543 /**
544  * end_page_writeback - end writeback against a page
545  * @page: the page
546  */
547 void end_page_writeback(struct page *page)
548 {
549 	if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
550 		if (!test_clear_page_writeback(page))
551 			BUG();
552 	}
553 	smp_mb__after_clear_bit();
554 	wake_up_page(page, PG_writeback);
555 }
556 EXPORT_SYMBOL(end_page_writeback);
557 
558 /**
559  * __lock_page - get a lock on the page, assuming we need to sleep to get it
560  * @page: the page to lock
561  *
562  * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
563  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
564  * chances are that on the second loop, the block layer's plug list is empty,
565  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
566  */
567 void fastcall __lock_page(struct page *page)
568 {
569 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
570 
571 	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
572 							TASK_UNINTERRUPTIBLE);
573 }
574 EXPORT_SYMBOL(__lock_page);
575 
576 /*
577  * Variant of lock_page that does not require the caller to hold a reference
578  * on the page's mapping.
579  */
580 void fastcall __lock_page_nosync(struct page *page)
581 {
582 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
583 	__wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
584 							TASK_UNINTERRUPTIBLE);
585 }
586 
587 /**
588  * find_get_page - find and get a page reference
589  * @mapping: the address_space to search
590  * @offset: the page index
591  *
592  * Is there a pagecache struct page at the given (mapping, offset) tuple?
593  * If yes, increment its refcount and return it; if no, return NULL.
594  */
595 struct page * find_get_page(struct address_space *mapping, unsigned long offset)
596 {
597 	struct page *page;
598 
599 	read_lock_irq(&mapping->tree_lock);
600 	page = radix_tree_lookup(&mapping->page_tree, offset);
601 	if (page)
602 		page_cache_get(page);
603 	read_unlock_irq(&mapping->tree_lock);
604 	return page;
605 }
606 EXPORT_SYMBOL(find_get_page);
607 
608 /**
609  * find_lock_page - locate, pin and lock a pagecache page
610  * @mapping: the address_space to search
611  * @offset: the page index
612  *
613  * Locates the desired pagecache page, locks it, increments its reference
614  * count and returns its address.
615  *
616  * Returns zero if the page was not present. find_lock_page() may sleep.
617  */
618 struct page *find_lock_page(struct address_space *mapping,
619 				unsigned long offset)
620 {
621 	struct page *page;
622 
623 	read_lock_irq(&mapping->tree_lock);
624 repeat:
625 	page = radix_tree_lookup(&mapping->page_tree, offset);
626 	if (page) {
627 		page_cache_get(page);
628 		if (TestSetPageLocked(page)) {
629 			read_unlock_irq(&mapping->tree_lock);
630 			__lock_page(page);
631 			read_lock_irq(&mapping->tree_lock);
632 
633 			/* Has the page been truncated while we slept? */
634 			if (unlikely(page->mapping != mapping ||
635 				     page->index != offset)) {
636 				unlock_page(page);
637 				page_cache_release(page);
638 				goto repeat;
639 			}
640 		}
641 	}
642 	read_unlock_irq(&mapping->tree_lock);
643 	return page;
644 }
645 EXPORT_SYMBOL(find_lock_page);
646 
647 /**
648  * find_or_create_page - locate or add a pagecache page
649  * @mapping: the page's address_space
650  * @index: the page's index into the mapping
651  * @gfp_mask: page allocation mode
652  *
653  * Locates a page in the pagecache.  If the page is not present, a new page
654  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
655  * LRU list.  The returned page is locked and has its reference count
656  * incremented.
657  *
658  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
659  * allocation!
660  *
661  * find_or_create_page() returns the desired page's address, or zero on
662  * memory exhaustion.
663  */
664 struct page *find_or_create_page(struct address_space *mapping,
665 		unsigned long index, gfp_t gfp_mask)
666 {
667 	struct page *page, *cached_page = NULL;
668 	int err;
669 repeat:
670 	page = find_lock_page(mapping, index);
671 	if (!page) {
672 		if (!cached_page) {
673 			cached_page = alloc_page(gfp_mask);
674 			if (!cached_page)
675 				return NULL;
676 		}
677 		err = add_to_page_cache_lru(cached_page, mapping,
678 					index, gfp_mask);
679 		if (!err) {
680 			page = cached_page;
681 			cached_page = NULL;
682 		} else if (err == -EEXIST)
683 			goto repeat;
684 	}
685 	if (cached_page)
686 		page_cache_release(cached_page);
687 	return page;
688 }
689 EXPORT_SYMBOL(find_or_create_page);
690 
691 /**
692  * find_get_pages - gang pagecache lookup
693  * @mapping:	The address_space to search
694  * @start:	The starting page index
695  * @nr_pages:	The maximum number of pages
696  * @pages:	Where the resulting pages are placed
697  *
698  * find_get_pages() will search for and return a group of up to
699  * @nr_pages pages in the mapping.  The pages are placed at @pages.
700  * find_get_pages() takes a reference against the returned pages.
701  *
702  * The search returns a group of mapping-contiguous pages with ascending
703  * indexes.  There may be holes in the indices due to not-present pages.
704  *
705  * find_get_pages() returns the number of pages which were found.
706  */
707 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
708 			    unsigned int nr_pages, struct page **pages)
709 {
710 	unsigned int i;
711 	unsigned int ret;
712 
713 	read_lock_irq(&mapping->tree_lock);
714 	ret = radix_tree_gang_lookup(&mapping->page_tree,
715 				(void **)pages, start, nr_pages);
716 	for (i = 0; i < ret; i++)
717 		page_cache_get(pages[i]);
718 	read_unlock_irq(&mapping->tree_lock);
719 	return ret;
720 }
721 
722 /**
723  * find_get_pages_contig - gang contiguous pagecache lookup
724  * @mapping:	The address_space to search
725  * @index:	The starting page index
726  * @nr_pages:	The maximum number of pages
727  * @pages:	Where the resulting pages are placed
728  *
729  * find_get_pages_contig() works exactly like find_get_pages(), except
730  * that the returned number of pages are guaranteed to be contiguous.
731  *
732  * find_get_pages_contig() returns the number of pages which were found.
733  */
734 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
735 			       unsigned int nr_pages, struct page **pages)
736 {
737 	unsigned int i;
738 	unsigned int ret;
739 
740 	read_lock_irq(&mapping->tree_lock);
741 	ret = radix_tree_gang_lookup(&mapping->page_tree,
742 				(void **)pages, index, nr_pages);
743 	for (i = 0; i < ret; i++) {
744 		if (pages[i]->mapping == NULL || pages[i]->index != index)
745 			break;
746 
747 		page_cache_get(pages[i]);
748 		index++;
749 	}
750 	read_unlock_irq(&mapping->tree_lock);
751 	return i;
752 }
753 
754 /**
755  * find_get_pages_tag - find and return pages that match @tag
756  * @mapping:	the address_space to search
757  * @index:	the starting page index
758  * @tag:	the tag index
759  * @nr_pages:	the maximum number of pages
760  * @pages:	where the resulting pages are placed
761  *
762  * Like find_get_pages, except we only return pages which are tagged with
763  * @tag.   We update @index to index the next page for the traversal.
764  */
765 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
766 			int tag, unsigned int nr_pages, struct page **pages)
767 {
768 	unsigned int i;
769 	unsigned int ret;
770 
771 	read_lock_irq(&mapping->tree_lock);
772 	ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
773 				(void **)pages, *index, nr_pages, tag);
774 	for (i = 0; i < ret; i++)
775 		page_cache_get(pages[i]);
776 	if (ret)
777 		*index = pages[ret - 1]->index + 1;
778 	read_unlock_irq(&mapping->tree_lock);
779 	return ret;
780 }
781 
782 /**
783  * grab_cache_page_nowait - returns locked page at given index in given cache
784  * @mapping: target address_space
785  * @index: the page index
786  *
787  * Same as grab_cache_page(), but do not wait if the page is unavailable.
788  * This is intended for speculative data generators, where the data can
789  * be regenerated if the page couldn't be grabbed.  This routine should
790  * be safe to call while holding the lock for another page.
791  *
792  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
793  * and deadlock against the caller's locked page.
794  */
795 struct page *
796 grab_cache_page_nowait(struct address_space *mapping, unsigned long index)
797 {
798 	struct page *page = find_get_page(mapping, index);
799 
800 	if (page) {
801 		if (!TestSetPageLocked(page))
802 			return page;
803 		page_cache_release(page);
804 		return NULL;
805 	}
806 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
807 	if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
808 		page_cache_release(page);
809 		page = NULL;
810 	}
811 	return page;
812 }
813 EXPORT_SYMBOL(grab_cache_page_nowait);
814 
815 /*
816  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
817  * a _large_ part of the i/o request. Imagine the worst scenario:
818  *
819  *      ---R__________________________________________B__________
820  *         ^ reading here                             ^ bad block(assume 4k)
821  *
822  * read(R) => miss => readahead(R...B) => media error => frustrating retries
823  * => failing the whole request => read(R) => read(R+1) =>
824  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
825  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
826  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
827  *
828  * It is going insane. Fix it by quickly scaling down the readahead size.
829  */
830 static void shrink_readahead_size_eio(struct file *filp,
831 					struct file_ra_state *ra)
832 {
833 	if (!ra->ra_pages)
834 		return;
835 
836 	ra->ra_pages /= 4;
837 }
838 
839 /**
840  * do_generic_mapping_read - generic file read routine
841  * @mapping:	address_space to be read
842  * @_ra:	file's readahead state
843  * @filp:	the file to read
844  * @ppos:	current file position
845  * @desc:	read_descriptor
846  * @actor:	read method
847  *
848  * This is a generic file read routine, and uses the
849  * mapping->a_ops->readpage() function for the actual low-level stuff.
850  *
851  * This is really ugly. But the goto's actually try to clarify some
852  * of the logic when it comes to error handling etc.
853  *
854  * Note the struct file* is only passed for the use of readpage.
855  * It may be NULL.
856  */
857 void do_generic_mapping_read(struct address_space *mapping,
858 			     struct file_ra_state *_ra,
859 			     struct file *filp,
860 			     loff_t *ppos,
861 			     read_descriptor_t *desc,
862 			     read_actor_t actor)
863 {
864 	struct inode *inode = mapping->host;
865 	unsigned long index;
866 	unsigned long end_index;
867 	unsigned long offset;
868 	unsigned long last_index;
869 	unsigned long next_index;
870 	unsigned long prev_index;
871 	loff_t isize;
872 	struct page *cached_page;
873 	int error;
874 	struct file_ra_state ra = *_ra;
875 
876 	cached_page = NULL;
877 	index = *ppos >> PAGE_CACHE_SHIFT;
878 	next_index = index;
879 	prev_index = ra.prev_page;
880 	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
881 	offset = *ppos & ~PAGE_CACHE_MASK;
882 
883 	isize = i_size_read(inode);
884 	if (!isize)
885 		goto out;
886 
887 	end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
888 	for (;;) {
889 		struct page *page;
890 		unsigned long nr, ret;
891 
892 		/* nr is the maximum number of bytes to copy from this page */
893 		nr = PAGE_CACHE_SIZE;
894 		if (index >= end_index) {
895 			if (index > end_index)
896 				goto out;
897 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
898 			if (nr <= offset) {
899 				goto out;
900 			}
901 		}
902 		nr = nr - offset;
903 
904 		cond_resched();
905 		if (index == next_index)
906 			next_index = page_cache_readahead(mapping, &ra, filp,
907 					index, last_index - index);
908 
909 find_page:
910 		page = find_get_page(mapping, index);
911 		if (unlikely(page == NULL)) {
912 			handle_ra_miss(mapping, &ra, index);
913 			goto no_cached_page;
914 		}
915 		if (!PageUptodate(page))
916 			goto page_not_up_to_date;
917 page_ok:
918 
919 		/* If users can be writing to this page using arbitrary
920 		 * virtual addresses, take care about potential aliasing
921 		 * before reading the page on the kernel side.
922 		 */
923 		if (mapping_writably_mapped(mapping))
924 			flush_dcache_page(page);
925 
926 		/*
927 		 * When (part of) the same page is read multiple times
928 		 * in succession, only mark it as accessed the first time.
929 		 */
930 		if (prev_index != index)
931 			mark_page_accessed(page);
932 		prev_index = index;
933 
934 		/*
935 		 * Ok, we have the page, and it's up-to-date, so
936 		 * now we can copy it to user space...
937 		 *
938 		 * The actor routine returns how many bytes were actually used..
939 		 * NOTE! This may not be the same as how much of a user buffer
940 		 * we filled up (we may be padding etc), so we can only update
941 		 * "pos" here (the actor routine has to update the user buffer
942 		 * pointers and the remaining count).
943 		 */
944 		ret = actor(desc, page, offset, nr);
945 		offset += ret;
946 		index += offset >> PAGE_CACHE_SHIFT;
947 		offset &= ~PAGE_CACHE_MASK;
948 
949 		page_cache_release(page);
950 		if (ret == nr && desc->count)
951 			continue;
952 		goto out;
953 
954 page_not_up_to_date:
955 		/* Get exclusive access to the page ... */
956 		lock_page(page);
957 
958 		/* Did it get truncated before we got the lock? */
959 		if (!page->mapping) {
960 			unlock_page(page);
961 			page_cache_release(page);
962 			continue;
963 		}
964 
965 		/* Did somebody else fill it already? */
966 		if (PageUptodate(page)) {
967 			unlock_page(page);
968 			goto page_ok;
969 		}
970 
971 readpage:
972 		/* Start the actual read. The read will unlock the page. */
973 		error = mapping->a_ops->readpage(filp, page);
974 
975 		if (unlikely(error)) {
976 			if (error == AOP_TRUNCATED_PAGE) {
977 				page_cache_release(page);
978 				goto find_page;
979 			}
980 			goto readpage_error;
981 		}
982 
983 		if (!PageUptodate(page)) {
984 			lock_page(page);
985 			if (!PageUptodate(page)) {
986 				if (page->mapping == NULL) {
987 					/*
988 					 * invalidate_inode_pages got it
989 					 */
990 					unlock_page(page);
991 					page_cache_release(page);
992 					goto find_page;
993 				}
994 				unlock_page(page);
995 				error = -EIO;
996 				shrink_readahead_size_eio(filp, &ra);
997 				goto readpage_error;
998 			}
999 			unlock_page(page);
1000 		}
1001 
1002 		/*
1003 		 * i_size must be checked after we have done ->readpage.
1004 		 *
1005 		 * Checking i_size after the readpage allows us to calculate
1006 		 * the correct value for "nr", which means the zero-filled
1007 		 * part of the page is not copied back to userspace (unless
1008 		 * another truncate extends the file - this is desired though).
1009 		 */
1010 		isize = i_size_read(inode);
1011 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1012 		if (unlikely(!isize || index > end_index)) {
1013 			page_cache_release(page);
1014 			goto out;
1015 		}
1016 
1017 		/* nr is the maximum number of bytes to copy from this page */
1018 		nr = PAGE_CACHE_SIZE;
1019 		if (index == end_index) {
1020 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1021 			if (nr <= offset) {
1022 				page_cache_release(page);
1023 				goto out;
1024 			}
1025 		}
1026 		nr = nr - offset;
1027 		goto page_ok;
1028 
1029 readpage_error:
1030 		/* UHHUH! A synchronous read error occurred. Report it */
1031 		desc->error = error;
1032 		page_cache_release(page);
1033 		goto out;
1034 
1035 no_cached_page:
1036 		/*
1037 		 * Ok, it wasn't cached, so we need to create a new
1038 		 * page..
1039 		 */
1040 		if (!cached_page) {
1041 			cached_page = page_cache_alloc_cold(mapping);
1042 			if (!cached_page) {
1043 				desc->error = -ENOMEM;
1044 				goto out;
1045 			}
1046 		}
1047 		error = add_to_page_cache_lru(cached_page, mapping,
1048 						index, GFP_KERNEL);
1049 		if (error) {
1050 			if (error == -EEXIST)
1051 				goto find_page;
1052 			desc->error = error;
1053 			goto out;
1054 		}
1055 		page = cached_page;
1056 		cached_page = NULL;
1057 		goto readpage;
1058 	}
1059 
1060 out:
1061 	*_ra = ra;
1062 
1063 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1064 	if (cached_page)
1065 		page_cache_release(cached_page);
1066 	if (filp)
1067 		file_accessed(filp);
1068 }
1069 EXPORT_SYMBOL(do_generic_mapping_read);
1070 
1071 int file_read_actor(read_descriptor_t *desc, struct page *page,
1072 			unsigned long offset, unsigned long size)
1073 {
1074 	char *kaddr;
1075 	unsigned long left, count = desc->count;
1076 
1077 	if (size > count)
1078 		size = count;
1079 
1080 	/*
1081 	 * Faults on the destination of a read are common, so do it before
1082 	 * taking the kmap.
1083 	 */
1084 	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1085 		kaddr = kmap_atomic(page, KM_USER0);
1086 		left = __copy_to_user_inatomic(desc->arg.buf,
1087 						kaddr + offset, size);
1088 		kunmap_atomic(kaddr, KM_USER0);
1089 		if (left == 0)
1090 			goto success;
1091 	}
1092 
1093 	/* Do it the slow way */
1094 	kaddr = kmap(page);
1095 	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1096 	kunmap(page);
1097 
1098 	if (left) {
1099 		size -= left;
1100 		desc->error = -EFAULT;
1101 	}
1102 success:
1103 	desc->count = count - size;
1104 	desc->written += size;
1105 	desc->arg.buf += size;
1106 	return size;
1107 }
1108 
1109 /**
1110  * generic_file_aio_read - generic filesystem read routine
1111  * @iocb:	kernel I/O control block
1112  * @iov:	io vector request
1113  * @nr_segs:	number of segments in the iovec
1114  * @pos:	current file position
1115  *
1116  * This is the "read()" routine for all filesystems
1117  * that can use the page cache directly.
1118  */
1119 ssize_t
1120 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1121 		unsigned long nr_segs, loff_t pos)
1122 {
1123 	struct file *filp = iocb->ki_filp;
1124 	ssize_t retval;
1125 	unsigned long seg;
1126 	size_t count;
1127 	loff_t *ppos = &iocb->ki_pos;
1128 
1129 	count = 0;
1130 	for (seg = 0; seg < nr_segs; seg++) {
1131 		const struct iovec *iv = &iov[seg];
1132 
1133 		/*
1134 		 * If any segment has a negative length, or the cumulative
1135 		 * length ever wraps negative then return -EINVAL.
1136 		 */
1137 		count += iv->iov_len;
1138 		if (unlikely((ssize_t)(count|iv->iov_len) < 0))
1139 			return -EINVAL;
1140 		if (access_ok(VERIFY_WRITE, iv->iov_base, iv->iov_len))
1141 			continue;
1142 		if (seg == 0)
1143 			return -EFAULT;
1144 		nr_segs = seg;
1145 		count -= iv->iov_len;	/* This segment is no good */
1146 		break;
1147 	}
1148 
1149 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1150 	if (filp->f_flags & O_DIRECT) {
1151 		loff_t size;
1152 		struct address_space *mapping;
1153 		struct inode *inode;
1154 
1155 		mapping = filp->f_mapping;
1156 		inode = mapping->host;
1157 		retval = 0;
1158 		if (!count)
1159 			goto out; /* skip atime */
1160 		size = i_size_read(inode);
1161 		if (pos < size) {
1162 			retval = generic_file_direct_IO(READ, iocb,
1163 						iov, pos, nr_segs);
1164 			if (retval > 0)
1165 				*ppos = pos + retval;
1166 		}
1167 		if (likely(retval != 0)) {
1168 			file_accessed(filp);
1169 			goto out;
1170 		}
1171 	}
1172 
1173 	retval = 0;
1174 	if (count) {
1175 		for (seg = 0; seg < nr_segs; seg++) {
1176 			read_descriptor_t desc;
1177 
1178 			desc.written = 0;
1179 			desc.arg.buf = iov[seg].iov_base;
1180 			desc.count = iov[seg].iov_len;
1181 			if (desc.count == 0)
1182 				continue;
1183 			desc.error = 0;
1184 			do_generic_file_read(filp,ppos,&desc,file_read_actor);
1185 			retval += desc.written;
1186 			if (desc.error) {
1187 				retval = retval ?: desc.error;
1188 				break;
1189 			}
1190 		}
1191 	}
1192 out:
1193 	return retval;
1194 }
1195 EXPORT_SYMBOL(generic_file_aio_read);
1196 
1197 int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size)
1198 {
1199 	ssize_t written;
1200 	unsigned long count = desc->count;
1201 	struct file *file = desc->arg.data;
1202 
1203 	if (size > count)
1204 		size = count;
1205 
1206 	written = file->f_op->sendpage(file, page, offset,
1207 				       size, &file->f_pos, size<count);
1208 	if (written < 0) {
1209 		desc->error = written;
1210 		written = 0;
1211 	}
1212 	desc->count = count - written;
1213 	desc->written += written;
1214 	return written;
1215 }
1216 
1217 ssize_t generic_file_sendfile(struct file *in_file, loff_t *ppos,
1218 			 size_t count, read_actor_t actor, void *target)
1219 {
1220 	read_descriptor_t desc;
1221 
1222 	if (!count)
1223 		return 0;
1224 
1225 	desc.written = 0;
1226 	desc.count = count;
1227 	desc.arg.data = target;
1228 	desc.error = 0;
1229 
1230 	do_generic_file_read(in_file, ppos, &desc, actor);
1231 	if (desc.written)
1232 		return desc.written;
1233 	return desc.error;
1234 }
1235 EXPORT_SYMBOL(generic_file_sendfile);
1236 
1237 static ssize_t
1238 do_readahead(struct address_space *mapping, struct file *filp,
1239 	     unsigned long index, unsigned long nr)
1240 {
1241 	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1242 		return -EINVAL;
1243 
1244 	force_page_cache_readahead(mapping, filp, index,
1245 					max_sane_readahead(nr));
1246 	return 0;
1247 }
1248 
1249 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1250 {
1251 	ssize_t ret;
1252 	struct file *file;
1253 
1254 	ret = -EBADF;
1255 	file = fget(fd);
1256 	if (file) {
1257 		if (file->f_mode & FMODE_READ) {
1258 			struct address_space *mapping = file->f_mapping;
1259 			unsigned long start = offset >> PAGE_CACHE_SHIFT;
1260 			unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1261 			unsigned long len = end - start + 1;
1262 			ret = do_readahead(mapping, file, start, len);
1263 		}
1264 		fput(file);
1265 	}
1266 	return ret;
1267 }
1268 
1269 #ifdef CONFIG_MMU
1270 static int FASTCALL(page_cache_read(struct file * file, unsigned long offset));
1271 /**
1272  * page_cache_read - adds requested page to the page cache if not already there
1273  * @file:	file to read
1274  * @offset:	page index
1275  *
1276  * This adds the requested page to the page cache if it isn't already there,
1277  * and schedules an I/O to read in its contents from disk.
1278  */
1279 static int fastcall page_cache_read(struct file * file, unsigned long offset)
1280 {
1281 	struct address_space *mapping = file->f_mapping;
1282 	struct page *page;
1283 	int ret;
1284 
1285 	do {
1286 		page = page_cache_alloc_cold(mapping);
1287 		if (!page)
1288 			return -ENOMEM;
1289 
1290 		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1291 		if (ret == 0)
1292 			ret = mapping->a_ops->readpage(file, page);
1293 		else if (ret == -EEXIST)
1294 			ret = 0; /* losing race to add is OK */
1295 
1296 		page_cache_release(page);
1297 
1298 	} while (ret == AOP_TRUNCATED_PAGE);
1299 
1300 	return ret;
1301 }
1302 
1303 #define MMAP_LOTSAMISS  (100)
1304 
1305 /**
1306  * filemap_nopage - read in file data for page fault handling
1307  * @area:	the applicable vm_area
1308  * @address:	target address to read in
1309  * @type:	returned with VM_FAULT_{MINOR,MAJOR} if not %NULL
1310  *
1311  * filemap_nopage() is invoked via the vma operations vector for a
1312  * mapped memory region to read in file data during a page fault.
1313  *
1314  * The goto's are kind of ugly, but this streamlines the normal case of having
1315  * it in the page cache, and handles the special cases reasonably without
1316  * having a lot of duplicated code.
1317  */
1318 struct page *filemap_nopage(struct vm_area_struct *area,
1319 				unsigned long address, int *type)
1320 {
1321 	int error;
1322 	struct file *file = area->vm_file;
1323 	struct address_space *mapping = file->f_mapping;
1324 	struct file_ra_state *ra = &file->f_ra;
1325 	struct inode *inode = mapping->host;
1326 	struct page *page;
1327 	unsigned long size, pgoff;
1328 	int did_readaround = 0, majmin = VM_FAULT_MINOR;
1329 
1330 	pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff;
1331 
1332 retry_all:
1333 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1334 	if (pgoff >= size)
1335 		goto outside_data_content;
1336 
1337 	/* If we don't want any read-ahead, don't bother */
1338 	if (VM_RandomReadHint(area))
1339 		goto no_cached_page;
1340 
1341 	/*
1342 	 * The readahead code wants to be told about each and every page
1343 	 * so it can build and shrink its windows appropriately
1344 	 *
1345 	 * For sequential accesses, we use the generic readahead logic.
1346 	 */
1347 	if (VM_SequentialReadHint(area))
1348 		page_cache_readahead(mapping, ra, file, pgoff, 1);
1349 
1350 	/*
1351 	 * Do we have something in the page cache already?
1352 	 */
1353 retry_find:
1354 	page = find_get_page(mapping, pgoff);
1355 	if (!page) {
1356 		unsigned long ra_pages;
1357 
1358 		if (VM_SequentialReadHint(area)) {
1359 			handle_ra_miss(mapping, ra, pgoff);
1360 			goto no_cached_page;
1361 		}
1362 		ra->mmap_miss++;
1363 
1364 		/*
1365 		 * Do we miss much more than hit in this file? If so,
1366 		 * stop bothering with read-ahead. It will only hurt.
1367 		 */
1368 		if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS)
1369 			goto no_cached_page;
1370 
1371 		/*
1372 		 * To keep the pgmajfault counter straight, we need to
1373 		 * check did_readaround, as this is an inner loop.
1374 		 */
1375 		if (!did_readaround) {
1376 			majmin = VM_FAULT_MAJOR;
1377 			count_vm_event(PGMAJFAULT);
1378 		}
1379 		did_readaround = 1;
1380 		ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1381 		if (ra_pages) {
1382 			pgoff_t start = 0;
1383 
1384 			if (pgoff > ra_pages / 2)
1385 				start = pgoff - ra_pages / 2;
1386 			do_page_cache_readahead(mapping, file, start, ra_pages);
1387 		}
1388 		page = find_get_page(mapping, pgoff);
1389 		if (!page)
1390 			goto no_cached_page;
1391 	}
1392 
1393 	if (!did_readaround)
1394 		ra->mmap_hit++;
1395 
1396 	/*
1397 	 * Ok, found a page in the page cache, now we need to check
1398 	 * that it's up-to-date.
1399 	 */
1400 	if (!PageUptodate(page))
1401 		goto page_not_uptodate;
1402 
1403 success:
1404 	/*
1405 	 * Found the page and have a reference on it.
1406 	 */
1407 	mark_page_accessed(page);
1408 	if (type)
1409 		*type = majmin;
1410 	return page;
1411 
1412 outside_data_content:
1413 	/*
1414 	 * An external ptracer can access pages that normally aren't
1415 	 * accessible..
1416 	 */
1417 	if (area->vm_mm == current->mm)
1418 		return NOPAGE_SIGBUS;
1419 	/* Fall through to the non-read-ahead case */
1420 no_cached_page:
1421 	/*
1422 	 * We're only likely to ever get here if MADV_RANDOM is in
1423 	 * effect.
1424 	 */
1425 	error = page_cache_read(file, pgoff);
1426 
1427 	/*
1428 	 * The page we want has now been added to the page cache.
1429 	 * In the unlikely event that someone removed it in the
1430 	 * meantime, we'll just come back here and read it again.
1431 	 */
1432 	if (error >= 0)
1433 		goto retry_find;
1434 
1435 	/*
1436 	 * An error return from page_cache_read can result if the
1437 	 * system is low on memory, or a problem occurs while trying
1438 	 * to schedule I/O.
1439 	 */
1440 	if (error == -ENOMEM)
1441 		return NOPAGE_OOM;
1442 	return NOPAGE_SIGBUS;
1443 
1444 page_not_uptodate:
1445 	if (!did_readaround) {
1446 		majmin = VM_FAULT_MAJOR;
1447 		count_vm_event(PGMAJFAULT);
1448 	}
1449 	lock_page(page);
1450 
1451 	/* Did it get unhashed while we waited for it? */
1452 	if (!page->mapping) {
1453 		unlock_page(page);
1454 		page_cache_release(page);
1455 		goto retry_all;
1456 	}
1457 
1458 	/* Did somebody else get it up-to-date? */
1459 	if (PageUptodate(page)) {
1460 		unlock_page(page);
1461 		goto success;
1462 	}
1463 
1464 	error = mapping->a_ops->readpage(file, page);
1465 	if (!error) {
1466 		wait_on_page_locked(page);
1467 		if (PageUptodate(page))
1468 			goto success;
1469 	} else if (error == AOP_TRUNCATED_PAGE) {
1470 		page_cache_release(page);
1471 		goto retry_find;
1472 	}
1473 
1474 	/*
1475 	 * Umm, take care of errors if the page isn't up-to-date.
1476 	 * Try to re-read it _once_. We do this synchronously,
1477 	 * because there really aren't any performance issues here
1478 	 * and we need to check for errors.
1479 	 */
1480 	lock_page(page);
1481 
1482 	/* Somebody truncated the page on us? */
1483 	if (!page->mapping) {
1484 		unlock_page(page);
1485 		page_cache_release(page);
1486 		goto retry_all;
1487 	}
1488 
1489 	/* Somebody else successfully read it in? */
1490 	if (PageUptodate(page)) {
1491 		unlock_page(page);
1492 		goto success;
1493 	}
1494 	ClearPageError(page);
1495 	error = mapping->a_ops->readpage(file, page);
1496 	if (!error) {
1497 		wait_on_page_locked(page);
1498 		if (PageUptodate(page))
1499 			goto success;
1500 	} else if (error == AOP_TRUNCATED_PAGE) {
1501 		page_cache_release(page);
1502 		goto retry_find;
1503 	}
1504 
1505 	/*
1506 	 * Things didn't work out. Return zero to tell the
1507 	 * mm layer so, possibly freeing the page cache page first.
1508 	 */
1509 	shrink_readahead_size_eio(file, ra);
1510 	page_cache_release(page);
1511 	return NOPAGE_SIGBUS;
1512 }
1513 EXPORT_SYMBOL(filemap_nopage);
1514 
1515 static struct page * filemap_getpage(struct file *file, unsigned long pgoff,
1516 					int nonblock)
1517 {
1518 	struct address_space *mapping = file->f_mapping;
1519 	struct page *page;
1520 	int error;
1521 
1522 	/*
1523 	 * Do we have something in the page cache already?
1524 	 */
1525 retry_find:
1526 	page = find_get_page(mapping, pgoff);
1527 	if (!page) {
1528 		if (nonblock)
1529 			return NULL;
1530 		goto no_cached_page;
1531 	}
1532 
1533 	/*
1534 	 * Ok, found a page in the page cache, now we need to check
1535 	 * that it's up-to-date.
1536 	 */
1537 	if (!PageUptodate(page)) {
1538 		if (nonblock) {
1539 			page_cache_release(page);
1540 			return NULL;
1541 		}
1542 		goto page_not_uptodate;
1543 	}
1544 
1545 success:
1546 	/*
1547 	 * Found the page and have a reference on it.
1548 	 */
1549 	mark_page_accessed(page);
1550 	return page;
1551 
1552 no_cached_page:
1553 	error = page_cache_read(file, pgoff);
1554 
1555 	/*
1556 	 * The page we want has now been added to the page cache.
1557 	 * In the unlikely event that someone removed it in the
1558 	 * meantime, we'll just come back here and read it again.
1559 	 */
1560 	if (error >= 0)
1561 		goto retry_find;
1562 
1563 	/*
1564 	 * An error return from page_cache_read can result if the
1565 	 * system is low on memory, or a problem occurs while trying
1566 	 * to schedule I/O.
1567 	 */
1568 	return NULL;
1569 
1570 page_not_uptodate:
1571 	lock_page(page);
1572 
1573 	/* Did it get truncated while we waited for it? */
1574 	if (!page->mapping) {
1575 		unlock_page(page);
1576 		goto err;
1577 	}
1578 
1579 	/* Did somebody else get it up-to-date? */
1580 	if (PageUptodate(page)) {
1581 		unlock_page(page);
1582 		goto success;
1583 	}
1584 
1585 	error = mapping->a_ops->readpage(file, page);
1586 	if (!error) {
1587 		wait_on_page_locked(page);
1588 		if (PageUptodate(page))
1589 			goto success;
1590 	} else if (error == AOP_TRUNCATED_PAGE) {
1591 		page_cache_release(page);
1592 		goto retry_find;
1593 	}
1594 
1595 	/*
1596 	 * Umm, take care of errors if the page isn't up-to-date.
1597 	 * Try to re-read it _once_. We do this synchronously,
1598 	 * because there really aren't any performance issues here
1599 	 * and we need to check for errors.
1600 	 */
1601 	lock_page(page);
1602 
1603 	/* Somebody truncated the page on us? */
1604 	if (!page->mapping) {
1605 		unlock_page(page);
1606 		goto err;
1607 	}
1608 	/* Somebody else successfully read it in? */
1609 	if (PageUptodate(page)) {
1610 		unlock_page(page);
1611 		goto success;
1612 	}
1613 
1614 	ClearPageError(page);
1615 	error = mapping->a_ops->readpage(file, page);
1616 	if (!error) {
1617 		wait_on_page_locked(page);
1618 		if (PageUptodate(page))
1619 			goto success;
1620 	} else if (error == AOP_TRUNCATED_PAGE) {
1621 		page_cache_release(page);
1622 		goto retry_find;
1623 	}
1624 
1625 	/*
1626 	 * Things didn't work out. Return zero to tell the
1627 	 * mm layer so, possibly freeing the page cache page first.
1628 	 */
1629 err:
1630 	page_cache_release(page);
1631 
1632 	return NULL;
1633 }
1634 
1635 int filemap_populate(struct vm_area_struct *vma, unsigned long addr,
1636 		unsigned long len, pgprot_t prot, unsigned long pgoff,
1637 		int nonblock)
1638 {
1639 	struct file *file = vma->vm_file;
1640 	struct address_space *mapping = file->f_mapping;
1641 	struct inode *inode = mapping->host;
1642 	unsigned long size;
1643 	struct mm_struct *mm = vma->vm_mm;
1644 	struct page *page;
1645 	int err;
1646 
1647 	if (!nonblock)
1648 		force_page_cache_readahead(mapping, vma->vm_file,
1649 					pgoff, len >> PAGE_CACHE_SHIFT);
1650 
1651 repeat:
1652 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1653 	if (pgoff + (len >> PAGE_CACHE_SHIFT) > size)
1654 		return -EINVAL;
1655 
1656 	page = filemap_getpage(file, pgoff, nonblock);
1657 
1658 	/* XXX: This is wrong, a filesystem I/O error may have happened. Fix that as
1659 	 * done in shmem_populate calling shmem_getpage */
1660 	if (!page && !nonblock)
1661 		return -ENOMEM;
1662 
1663 	if (page) {
1664 		err = install_page(mm, vma, addr, page, prot);
1665 		if (err) {
1666 			page_cache_release(page);
1667 			return err;
1668 		}
1669 	} else if (vma->vm_flags & VM_NONLINEAR) {
1670 		/* No page was found just because we can't read it in now (being
1671 		 * here implies nonblock != 0), but the page may exist, so set
1672 		 * the PTE to fault it in later. */
1673 		err = install_file_pte(mm, vma, addr, pgoff, prot);
1674 		if (err)
1675 			return err;
1676 	}
1677 
1678 	len -= PAGE_SIZE;
1679 	addr += PAGE_SIZE;
1680 	pgoff++;
1681 	if (len)
1682 		goto repeat;
1683 
1684 	return 0;
1685 }
1686 EXPORT_SYMBOL(filemap_populate);
1687 
1688 struct vm_operations_struct generic_file_vm_ops = {
1689 	.nopage		= filemap_nopage,
1690 	.populate	= filemap_populate,
1691 };
1692 
1693 /* This is used for a general mmap of a disk file */
1694 
1695 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1696 {
1697 	struct address_space *mapping = file->f_mapping;
1698 
1699 	if (!mapping->a_ops->readpage)
1700 		return -ENOEXEC;
1701 	file_accessed(file);
1702 	vma->vm_ops = &generic_file_vm_ops;
1703 	return 0;
1704 }
1705 
1706 /*
1707  * This is for filesystems which do not implement ->writepage.
1708  */
1709 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1710 {
1711 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1712 		return -EINVAL;
1713 	return generic_file_mmap(file, vma);
1714 }
1715 #else
1716 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1717 {
1718 	return -ENOSYS;
1719 }
1720 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1721 {
1722 	return -ENOSYS;
1723 }
1724 #endif /* CONFIG_MMU */
1725 
1726 EXPORT_SYMBOL(generic_file_mmap);
1727 EXPORT_SYMBOL(generic_file_readonly_mmap);
1728 
1729 static inline struct page *__read_cache_page(struct address_space *mapping,
1730 				unsigned long index,
1731 				int (*filler)(void *,struct page*),
1732 				void *data)
1733 {
1734 	struct page *page, *cached_page = NULL;
1735 	int err;
1736 repeat:
1737 	page = find_get_page(mapping, index);
1738 	if (!page) {
1739 		if (!cached_page) {
1740 			cached_page = page_cache_alloc_cold(mapping);
1741 			if (!cached_page)
1742 				return ERR_PTR(-ENOMEM);
1743 		}
1744 		err = add_to_page_cache_lru(cached_page, mapping,
1745 					index, GFP_KERNEL);
1746 		if (err == -EEXIST)
1747 			goto repeat;
1748 		if (err < 0) {
1749 			/* Presumably ENOMEM for radix tree node */
1750 			page_cache_release(cached_page);
1751 			return ERR_PTR(err);
1752 		}
1753 		page = cached_page;
1754 		cached_page = NULL;
1755 		err = filler(data, page);
1756 		if (err < 0) {
1757 			page_cache_release(page);
1758 			page = ERR_PTR(err);
1759 		}
1760 	}
1761 	if (cached_page)
1762 		page_cache_release(cached_page);
1763 	return page;
1764 }
1765 
1766 /**
1767  * read_cache_page - read into page cache, fill it if needed
1768  * @mapping:	the page's address_space
1769  * @index:	the page index
1770  * @filler:	function to perform the read
1771  * @data:	destination for read data
1772  *
1773  * Read into the page cache. If a page already exists,
1774  * and PageUptodate() is not set, try to fill the page.
1775  */
1776 struct page *read_cache_page(struct address_space *mapping,
1777 				unsigned long index,
1778 				int (*filler)(void *,struct page*),
1779 				void *data)
1780 {
1781 	struct page *page;
1782 	int err;
1783 
1784 retry:
1785 	page = __read_cache_page(mapping, index, filler, data);
1786 	if (IS_ERR(page))
1787 		goto out;
1788 	mark_page_accessed(page);
1789 	if (PageUptodate(page))
1790 		goto out;
1791 
1792 	lock_page(page);
1793 	if (!page->mapping) {
1794 		unlock_page(page);
1795 		page_cache_release(page);
1796 		goto retry;
1797 	}
1798 	if (PageUptodate(page)) {
1799 		unlock_page(page);
1800 		goto out;
1801 	}
1802 	err = filler(data, page);
1803 	if (err < 0) {
1804 		page_cache_release(page);
1805 		page = ERR_PTR(err);
1806 	}
1807  out:
1808 	return page;
1809 }
1810 EXPORT_SYMBOL(read_cache_page);
1811 
1812 /*
1813  * If the page was newly created, increment its refcount and add it to the
1814  * caller's lru-buffering pagevec.  This function is specifically for
1815  * generic_file_write().
1816  */
1817 static inline struct page *
1818 __grab_cache_page(struct address_space *mapping, unsigned long index,
1819 			struct page **cached_page, struct pagevec *lru_pvec)
1820 {
1821 	int err;
1822 	struct page *page;
1823 repeat:
1824 	page = find_lock_page(mapping, index);
1825 	if (!page) {
1826 		if (!*cached_page) {
1827 			*cached_page = page_cache_alloc(mapping);
1828 			if (!*cached_page)
1829 				return NULL;
1830 		}
1831 		err = add_to_page_cache(*cached_page, mapping,
1832 					index, GFP_KERNEL);
1833 		if (err == -EEXIST)
1834 			goto repeat;
1835 		if (err == 0) {
1836 			page = *cached_page;
1837 			page_cache_get(page);
1838 			if (!pagevec_add(lru_pvec, page))
1839 				__pagevec_lru_add(lru_pvec);
1840 			*cached_page = NULL;
1841 		}
1842 	}
1843 	return page;
1844 }
1845 
1846 /*
1847  * The logic we want is
1848  *
1849  *	if suid or (sgid and xgrp)
1850  *		remove privs
1851  */
1852 int should_remove_suid(struct dentry *dentry)
1853 {
1854 	mode_t mode = dentry->d_inode->i_mode;
1855 	int kill = 0;
1856 
1857 	/* suid always must be killed */
1858 	if (unlikely(mode & S_ISUID))
1859 		kill = ATTR_KILL_SUID;
1860 
1861 	/*
1862 	 * sgid without any exec bits is just a mandatory locking mark; leave
1863 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1864 	 */
1865 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1866 		kill |= ATTR_KILL_SGID;
1867 
1868 	if (unlikely(kill && !capable(CAP_FSETID)))
1869 		return kill;
1870 
1871 	return 0;
1872 }
1873 EXPORT_SYMBOL(should_remove_suid);
1874 
1875 int __remove_suid(struct dentry *dentry, int kill)
1876 {
1877 	struct iattr newattrs;
1878 
1879 	newattrs.ia_valid = ATTR_FORCE | kill;
1880 	return notify_change(dentry, &newattrs);
1881 }
1882 
1883 int remove_suid(struct dentry *dentry)
1884 {
1885 	int kill = should_remove_suid(dentry);
1886 
1887 	if (unlikely(kill))
1888 		return __remove_suid(dentry, kill);
1889 
1890 	return 0;
1891 }
1892 EXPORT_SYMBOL(remove_suid);
1893 
1894 size_t
1895 __filemap_copy_from_user_iovec_inatomic(char *vaddr,
1896 			const struct iovec *iov, size_t base, size_t bytes)
1897 {
1898 	size_t copied = 0, left = 0;
1899 
1900 	while (bytes) {
1901 		char __user *buf = iov->iov_base + base;
1902 		int copy = min(bytes, iov->iov_len - base);
1903 
1904 		base = 0;
1905 		left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1906 		copied += copy;
1907 		bytes -= copy;
1908 		vaddr += copy;
1909 		iov++;
1910 
1911 		if (unlikely(left))
1912 			break;
1913 	}
1914 	return copied - left;
1915 }
1916 
1917 /*
1918  * Performs necessary checks before doing a write
1919  *
1920  * Can adjust writing position or amount of bytes to write.
1921  * Returns appropriate error code that caller should return or
1922  * zero in case that write should be allowed.
1923  */
1924 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1925 {
1926 	struct inode *inode = file->f_mapping->host;
1927 	unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1928 
1929         if (unlikely(*pos < 0))
1930                 return -EINVAL;
1931 
1932 	if (!isblk) {
1933 		/* FIXME: this is for backwards compatibility with 2.4 */
1934 		if (file->f_flags & O_APPEND)
1935                         *pos = i_size_read(inode);
1936 
1937 		if (limit != RLIM_INFINITY) {
1938 			if (*pos >= limit) {
1939 				send_sig(SIGXFSZ, current, 0);
1940 				return -EFBIG;
1941 			}
1942 			if (*count > limit - (typeof(limit))*pos) {
1943 				*count = limit - (typeof(limit))*pos;
1944 			}
1945 		}
1946 	}
1947 
1948 	/*
1949 	 * LFS rule
1950 	 */
1951 	if (unlikely(*pos + *count > MAX_NON_LFS &&
1952 				!(file->f_flags & O_LARGEFILE))) {
1953 		if (*pos >= MAX_NON_LFS) {
1954 			send_sig(SIGXFSZ, current, 0);
1955 			return -EFBIG;
1956 		}
1957 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1958 			*count = MAX_NON_LFS - (unsigned long)*pos;
1959 		}
1960 	}
1961 
1962 	/*
1963 	 * Are we about to exceed the fs block limit ?
1964 	 *
1965 	 * If we have written data it becomes a short write.  If we have
1966 	 * exceeded without writing data we send a signal and return EFBIG.
1967 	 * Linus frestrict idea will clean these up nicely..
1968 	 */
1969 	if (likely(!isblk)) {
1970 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1971 			if (*count || *pos > inode->i_sb->s_maxbytes) {
1972 				send_sig(SIGXFSZ, current, 0);
1973 				return -EFBIG;
1974 			}
1975 			/* zero-length writes at ->s_maxbytes are OK */
1976 		}
1977 
1978 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1979 			*count = inode->i_sb->s_maxbytes - *pos;
1980 	} else {
1981 #ifdef CONFIG_BLOCK
1982 		loff_t isize;
1983 		if (bdev_read_only(I_BDEV(inode)))
1984 			return -EPERM;
1985 		isize = i_size_read(inode);
1986 		if (*pos >= isize) {
1987 			if (*count || *pos > isize)
1988 				return -ENOSPC;
1989 		}
1990 
1991 		if (*pos + *count > isize)
1992 			*count = isize - *pos;
1993 #else
1994 		return -EPERM;
1995 #endif
1996 	}
1997 	return 0;
1998 }
1999 EXPORT_SYMBOL(generic_write_checks);
2000 
2001 ssize_t
2002 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2003 		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2004 		size_t count, size_t ocount)
2005 {
2006 	struct file	*file = iocb->ki_filp;
2007 	struct address_space *mapping = file->f_mapping;
2008 	struct inode	*inode = mapping->host;
2009 	ssize_t		written;
2010 
2011 	if (count != ocount)
2012 		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2013 
2014 	written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2015 	if (written > 0) {
2016 		loff_t end = pos + written;
2017 		if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2018 			i_size_write(inode,  end);
2019 			mark_inode_dirty(inode);
2020 		}
2021 		*ppos = end;
2022 	}
2023 
2024 	/*
2025 	 * Sync the fs metadata but not the minor inode changes and
2026 	 * of course not the data as we did direct DMA for the IO.
2027 	 * i_mutex is held, which protects generic_osync_inode() from
2028 	 * livelocking.  AIO O_DIRECT ops attempt to sync metadata here.
2029 	 */
2030 	if ((written >= 0 || written == -EIOCBQUEUED) &&
2031 	    ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2032 		int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2033 		if (err < 0)
2034 			written = err;
2035 	}
2036 	return written;
2037 }
2038 EXPORT_SYMBOL(generic_file_direct_write);
2039 
2040 ssize_t
2041 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2042 		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2043 		size_t count, ssize_t written)
2044 {
2045 	struct file *file = iocb->ki_filp;
2046 	struct address_space * mapping = file->f_mapping;
2047 	const struct address_space_operations *a_ops = mapping->a_ops;
2048 	struct inode 	*inode = mapping->host;
2049 	long		status = 0;
2050 	struct page	*page;
2051 	struct page	*cached_page = NULL;
2052 	size_t		bytes;
2053 	struct pagevec	lru_pvec;
2054 	const struct iovec *cur_iov = iov; /* current iovec */
2055 	size_t		iov_base = 0;	   /* offset in the current iovec */
2056 	char __user	*buf;
2057 
2058 	pagevec_init(&lru_pvec, 0);
2059 
2060 	/*
2061 	 * handle partial DIO write.  Adjust cur_iov if needed.
2062 	 */
2063 	if (likely(nr_segs == 1))
2064 		buf = iov->iov_base + written;
2065 	else {
2066 		filemap_set_next_iovec(&cur_iov, &iov_base, written);
2067 		buf = cur_iov->iov_base + iov_base;
2068 	}
2069 
2070 	do {
2071 		unsigned long index;
2072 		unsigned long offset;
2073 		size_t copied;
2074 
2075 		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
2076 		index = pos >> PAGE_CACHE_SHIFT;
2077 		bytes = PAGE_CACHE_SIZE - offset;
2078 
2079 		/* Limit the size of the copy to the caller's write size */
2080 		bytes = min(bytes, count);
2081 
2082 		/* We only need to worry about prefaulting when writes are from
2083 		 * user-space.  NFSd uses vfs_writev with several non-aligned
2084 		 * segments in the vector, and limiting to one segment a time is
2085 		 * a noticeable performance for re-write
2086 		 */
2087 		if (!segment_eq(get_fs(), KERNEL_DS)) {
2088 			/*
2089 			 * Limit the size of the copy to that of the current
2090 			 * segment, because fault_in_pages_readable() doesn't
2091 			 * know how to walk segments.
2092 			 */
2093 			bytes = min(bytes, cur_iov->iov_len - iov_base);
2094 
2095 			/*
2096 			 * Bring in the user page that we will copy from
2097 			 * _first_.  Otherwise there's a nasty deadlock on
2098 			 * copying from the same page as we're writing to,
2099 			 * without it being marked up-to-date.
2100 			 */
2101 			fault_in_pages_readable(buf, bytes);
2102 		}
2103 		page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec);
2104 		if (!page) {
2105 			status = -ENOMEM;
2106 			break;
2107 		}
2108 
2109 		if (unlikely(bytes == 0)) {
2110 			status = 0;
2111 			copied = 0;
2112 			goto zero_length_segment;
2113 		}
2114 
2115 		status = a_ops->prepare_write(file, page, offset, offset+bytes);
2116 		if (unlikely(status)) {
2117 			loff_t isize = i_size_read(inode);
2118 
2119 			if (status != AOP_TRUNCATED_PAGE)
2120 				unlock_page(page);
2121 			page_cache_release(page);
2122 			if (status == AOP_TRUNCATED_PAGE)
2123 				continue;
2124 			/*
2125 			 * prepare_write() may have instantiated a few blocks
2126 			 * outside i_size.  Trim these off again.
2127 			 */
2128 			if (pos + bytes > isize)
2129 				vmtruncate(inode, isize);
2130 			break;
2131 		}
2132 		if (likely(nr_segs == 1))
2133 			copied = filemap_copy_from_user(page, offset,
2134 							buf, bytes);
2135 		else
2136 			copied = filemap_copy_from_user_iovec(page, offset,
2137 						cur_iov, iov_base, bytes);
2138 		flush_dcache_page(page);
2139 		status = a_ops->commit_write(file, page, offset, offset+bytes);
2140 		if (status == AOP_TRUNCATED_PAGE) {
2141 			page_cache_release(page);
2142 			continue;
2143 		}
2144 zero_length_segment:
2145 		if (likely(copied >= 0)) {
2146 			if (!status)
2147 				status = copied;
2148 
2149 			if (status >= 0) {
2150 				written += status;
2151 				count -= status;
2152 				pos += status;
2153 				buf += status;
2154 				if (unlikely(nr_segs > 1)) {
2155 					filemap_set_next_iovec(&cur_iov,
2156 							&iov_base, status);
2157 					if (count)
2158 						buf = cur_iov->iov_base +
2159 							iov_base;
2160 				} else {
2161 					iov_base += status;
2162 				}
2163 			}
2164 		}
2165 		if (unlikely(copied != bytes))
2166 			if (status >= 0)
2167 				status = -EFAULT;
2168 		unlock_page(page);
2169 		mark_page_accessed(page);
2170 		page_cache_release(page);
2171 		if (status < 0)
2172 			break;
2173 		balance_dirty_pages_ratelimited(mapping);
2174 		cond_resched();
2175 	} while (count);
2176 	*ppos = pos;
2177 
2178 	if (cached_page)
2179 		page_cache_release(cached_page);
2180 
2181 	/*
2182 	 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
2183 	 */
2184 	if (likely(status >= 0)) {
2185 		if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2186 			if (!a_ops->writepage || !is_sync_kiocb(iocb))
2187 				status = generic_osync_inode(inode, mapping,
2188 						OSYNC_METADATA|OSYNC_DATA);
2189 		}
2190   	}
2191 
2192 	/*
2193 	 * If we get here for O_DIRECT writes then we must have fallen through
2194 	 * to buffered writes (block instantiation inside i_size).  So we sync
2195 	 * the file data here, to try to honour O_DIRECT expectations.
2196 	 */
2197 	if (unlikely(file->f_flags & O_DIRECT) && written)
2198 		status = filemap_write_and_wait(mapping);
2199 
2200 	pagevec_lru_add(&lru_pvec);
2201 	return written ? written : status;
2202 }
2203 EXPORT_SYMBOL(generic_file_buffered_write);
2204 
2205 static ssize_t
2206 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2207 				unsigned long nr_segs, loff_t *ppos)
2208 {
2209 	struct file *file = iocb->ki_filp;
2210 	struct address_space * mapping = file->f_mapping;
2211 	size_t ocount;		/* original count */
2212 	size_t count;		/* after file limit checks */
2213 	struct inode 	*inode = mapping->host;
2214 	unsigned long	seg;
2215 	loff_t		pos;
2216 	ssize_t		written;
2217 	ssize_t		err;
2218 
2219 	ocount = 0;
2220 	for (seg = 0; seg < nr_segs; seg++) {
2221 		const struct iovec *iv = &iov[seg];
2222 
2223 		/*
2224 		 * If any segment has a negative length, or the cumulative
2225 		 * length ever wraps negative then return -EINVAL.
2226 		 */
2227 		ocount += iv->iov_len;
2228 		if (unlikely((ssize_t)(ocount|iv->iov_len) < 0))
2229 			return -EINVAL;
2230 		if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len))
2231 			continue;
2232 		if (seg == 0)
2233 			return -EFAULT;
2234 		nr_segs = seg;
2235 		ocount -= iv->iov_len;	/* This segment is no good */
2236 		break;
2237 	}
2238 
2239 	count = ocount;
2240 	pos = *ppos;
2241 
2242 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2243 
2244 	/* We can write back this queue in page reclaim */
2245 	current->backing_dev_info = mapping->backing_dev_info;
2246 	written = 0;
2247 
2248 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2249 	if (err)
2250 		goto out;
2251 
2252 	if (count == 0)
2253 		goto out;
2254 
2255 	err = remove_suid(file->f_path.dentry);
2256 	if (err)
2257 		goto out;
2258 
2259 	file_update_time(file);
2260 
2261 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2262 	if (unlikely(file->f_flags & O_DIRECT)) {
2263 		loff_t endbyte;
2264 		ssize_t written_buffered;
2265 
2266 		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2267 							ppos, count, ocount);
2268 		if (written < 0 || written == count)
2269 			goto out;
2270 		/*
2271 		 * direct-io write to a hole: fall through to buffered I/O
2272 		 * for completing the rest of the request.
2273 		 */
2274 		pos += written;
2275 		count -= written;
2276 		written_buffered = generic_file_buffered_write(iocb, iov,
2277 						nr_segs, pos, ppos, count,
2278 						written);
2279 		/*
2280 		 * If generic_file_buffered_write() retuned a synchronous error
2281 		 * then we want to return the number of bytes which were
2282 		 * direct-written, or the error code if that was zero.  Note
2283 		 * that this differs from normal direct-io semantics, which
2284 		 * will return -EFOO even if some bytes were written.
2285 		 */
2286 		if (written_buffered < 0) {
2287 			err = written_buffered;
2288 			goto out;
2289 		}
2290 
2291 		/*
2292 		 * We need to ensure that the page cache pages are written to
2293 		 * disk and invalidated to preserve the expected O_DIRECT
2294 		 * semantics.
2295 		 */
2296 		endbyte = pos + written_buffered - written - 1;
2297 		err = do_sync_file_range(file, pos, endbyte,
2298 					 SYNC_FILE_RANGE_WAIT_BEFORE|
2299 					 SYNC_FILE_RANGE_WRITE|
2300 					 SYNC_FILE_RANGE_WAIT_AFTER);
2301 		if (err == 0) {
2302 			written = written_buffered;
2303 			invalidate_mapping_pages(mapping,
2304 						 pos >> PAGE_CACHE_SHIFT,
2305 						 endbyte >> PAGE_CACHE_SHIFT);
2306 		} else {
2307 			/*
2308 			 * We don't know how much we wrote, so just return
2309 			 * the number of bytes which were direct-written
2310 			 */
2311 		}
2312 	} else {
2313 		written = generic_file_buffered_write(iocb, iov, nr_segs,
2314 				pos, ppos, count, written);
2315 	}
2316 out:
2317 	current->backing_dev_info = NULL;
2318 	return written ? written : err;
2319 }
2320 
2321 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2322 		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2323 {
2324 	struct file *file = iocb->ki_filp;
2325 	struct address_space *mapping = file->f_mapping;
2326 	struct inode *inode = mapping->host;
2327 	ssize_t ret;
2328 
2329 	BUG_ON(iocb->ki_pos != pos);
2330 
2331 	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2332 			&iocb->ki_pos);
2333 
2334 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2335 		ssize_t err;
2336 
2337 		err = sync_page_range_nolock(inode, mapping, pos, ret);
2338 		if (err < 0)
2339 			ret = err;
2340 	}
2341 	return ret;
2342 }
2343 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2344 
2345 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2346 		unsigned long nr_segs, loff_t pos)
2347 {
2348 	struct file *file = iocb->ki_filp;
2349 	struct address_space *mapping = file->f_mapping;
2350 	struct inode *inode = mapping->host;
2351 	ssize_t ret;
2352 
2353 	BUG_ON(iocb->ki_pos != pos);
2354 
2355 	mutex_lock(&inode->i_mutex);
2356 	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2357 			&iocb->ki_pos);
2358 	mutex_unlock(&inode->i_mutex);
2359 
2360 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2361 		ssize_t err;
2362 
2363 		err = sync_page_range(inode, mapping, pos, ret);
2364 		if (err < 0)
2365 			ret = err;
2366 	}
2367 	return ret;
2368 }
2369 EXPORT_SYMBOL(generic_file_aio_write);
2370 
2371 /*
2372  * Called under i_mutex for writes to S_ISREG files.   Returns -EIO if something
2373  * went wrong during pagecache shootdown.
2374  */
2375 static ssize_t
2376 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2377 	loff_t offset, unsigned long nr_segs)
2378 {
2379 	struct file *file = iocb->ki_filp;
2380 	struct address_space *mapping = file->f_mapping;
2381 	ssize_t retval;
2382 	size_t write_len = 0;
2383 
2384 	/*
2385 	 * If it's a write, unmap all mmappings of the file up-front.  This
2386 	 * will cause any pte dirty bits to be propagated into the pageframes
2387 	 * for the subsequent filemap_write_and_wait().
2388 	 */
2389 	if (rw == WRITE) {
2390 		write_len = iov_length(iov, nr_segs);
2391 	       	if (mapping_mapped(mapping))
2392 			unmap_mapping_range(mapping, offset, write_len, 0);
2393 	}
2394 
2395 	retval = filemap_write_and_wait(mapping);
2396 	if (retval == 0) {
2397 		retval = mapping->a_ops->direct_IO(rw, iocb, iov,
2398 						offset, nr_segs);
2399 		if (rw == WRITE && mapping->nrpages) {
2400 			pgoff_t end = (offset + write_len - 1)
2401 						>> PAGE_CACHE_SHIFT;
2402 			int err = invalidate_inode_pages2_range(mapping,
2403 					offset >> PAGE_CACHE_SHIFT, end);
2404 			if (err)
2405 				retval = err;
2406 		}
2407 	}
2408 	return retval;
2409 }
2410 
2411 /**
2412  * try_to_release_page() - release old fs-specific metadata on a page
2413  *
2414  * @page: the page which the kernel is trying to free
2415  * @gfp_mask: memory allocation flags (and I/O mode)
2416  *
2417  * The address_space is to try to release any data against the page
2418  * (presumably at page->private).  If the release was successful, return `1'.
2419  * Otherwise return zero.
2420  *
2421  * The @gfp_mask argument specifies whether I/O may be performed to release
2422  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2423  *
2424  * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2425  */
2426 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2427 {
2428 	struct address_space * const mapping = page->mapping;
2429 
2430 	BUG_ON(!PageLocked(page));
2431 	if (PageWriteback(page))
2432 		return 0;
2433 
2434 	if (mapping && mapping->a_ops->releasepage)
2435 		return mapping->a_ops->releasepage(page, gfp_mask);
2436 	return try_to_free_buffers(page);
2437 }
2438 
2439 EXPORT_SYMBOL(try_to_release_page);
2440