1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/filemap.c 4 * 5 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 7 8 /* 9 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differently, for example) 12 */ 13 #include <linux/export.h> 14 #include <linux/compiler.h> 15 #include <linux/dax.h> 16 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 19 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 22 #include <linux/mm.h> 23 #include <linux/swap.h> 24 #include <linux/swapops.h> 25 #include <linux/syscalls.h> 26 #include <linux/mman.h> 27 #include <linux/pagemap.h> 28 #include <linux/file.h> 29 #include <linux/uio.h> 30 #include <linux/error-injection.h> 31 #include <linux/hash.h> 32 #include <linux/writeback.h> 33 #include <linux/backing-dev.h> 34 #include <linux/pagevec.h> 35 #include <linux/security.h> 36 #include <linux/cpuset.h> 37 #include <linux/hugetlb.h> 38 #include <linux/memcontrol.h> 39 #include <linux/shmem_fs.h> 40 #include <linux/rmap.h> 41 #include <linux/delayacct.h> 42 #include <linux/psi.h> 43 #include <linux/ramfs.h> 44 #include <linux/page_idle.h> 45 #include <linux/migrate.h> 46 #include <linux/pipe_fs_i.h> 47 #include <linux/splice.h> 48 #include <linux/rcupdate_wait.h> 49 #include <linux/sched/mm.h> 50 #include <asm/pgalloc.h> 51 #include <asm/tlbflush.h> 52 #include "internal.h" 53 54 #define CREATE_TRACE_POINTS 55 #include <trace/events/filemap.h> 56 57 /* 58 * FIXME: remove all knowledge of the buffer layer from the core VM 59 */ 60 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 61 62 #include <asm/mman.h> 63 64 #include "swap.h" 65 66 /* 67 * Shared mappings implemented 30.11.1994. It's not fully working yet, 68 * though. 69 * 70 * Shared mappings now work. 15.8.1995 Bruno. 71 * 72 * finished 'unifying' the page and buffer cache and SMP-threaded the 73 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 74 * 75 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 76 */ 77 78 /* 79 * Lock ordering: 80 * 81 * ->i_mmap_rwsem (truncate_pagecache) 82 * ->private_lock (__free_pte->block_dirty_folio) 83 * ->swap_lock (exclusive_swap_page, others) 84 * ->i_pages lock 85 * 86 * ->i_rwsem 87 * ->invalidate_lock (acquired by fs in truncate path) 88 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 89 * 90 * ->mmap_lock 91 * ->i_mmap_rwsem 92 * ->page_table_lock or pte_lock (various, mainly in memory.c) 93 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 94 * 95 * ->mmap_lock 96 * ->invalidate_lock (filemap_fault) 97 * ->lock_page (filemap_fault, access_process_vm) 98 * 99 * ->i_rwsem (generic_perform_write) 100 * ->mmap_lock (fault_in_readable->do_page_fault) 101 * 102 * bdi->wb.list_lock 103 * sb_lock (fs/fs-writeback.c) 104 * ->i_pages lock (__sync_single_inode) 105 * 106 * ->i_mmap_rwsem 107 * ->anon_vma.lock (vma_merge) 108 * 109 * ->anon_vma.lock 110 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 111 * 112 * ->page_table_lock or pte_lock 113 * ->swap_lock (try_to_unmap_one) 114 * ->private_lock (try_to_unmap_one) 115 * ->i_pages lock (try_to_unmap_one) 116 * ->lruvec->lru_lock (follow_page_mask->mark_page_accessed) 117 * ->lruvec->lru_lock (check_pte_range->folio_isolate_lru) 118 * ->private_lock (folio_remove_rmap_pte->set_page_dirty) 119 * ->i_pages lock (folio_remove_rmap_pte->set_page_dirty) 120 * bdi.wb->list_lock (folio_remove_rmap_pte->set_page_dirty) 121 * ->inode->i_lock (folio_remove_rmap_pte->set_page_dirty) 122 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 123 * ->inode->i_lock (zap_pte_range->set_page_dirty) 124 * ->private_lock (zap_pte_range->block_dirty_folio) 125 */ 126 127 static void page_cache_delete(struct address_space *mapping, 128 struct folio *folio, void *shadow) 129 { 130 XA_STATE(xas, &mapping->i_pages, folio->index); 131 long nr = 1; 132 133 mapping_set_update(&xas, mapping); 134 135 xas_set_order(&xas, folio->index, folio_order(folio)); 136 nr = folio_nr_pages(folio); 137 138 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 139 140 xas_store(&xas, shadow); 141 xas_init_marks(&xas); 142 143 folio->mapping = NULL; 144 /* Leave page->index set: truncation lookup relies upon it */ 145 mapping->nrpages -= nr; 146 } 147 148 static void filemap_unaccount_folio(struct address_space *mapping, 149 struct folio *folio) 150 { 151 long nr; 152 153 VM_BUG_ON_FOLIO(folio_mapped(folio), folio); 154 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) { 155 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 156 current->comm, folio_pfn(folio)); 157 dump_page(&folio->page, "still mapped when deleted"); 158 dump_stack(); 159 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 160 161 if (mapping_exiting(mapping) && !folio_test_large(folio)) { 162 int mapcount = folio_mapcount(folio); 163 164 if (folio_ref_count(folio) >= mapcount + 2) { 165 /* 166 * All vmas have already been torn down, so it's 167 * a good bet that actually the page is unmapped 168 * and we'd rather not leak it: if we're wrong, 169 * another bad page check should catch it later. 170 */ 171 atomic_set(&folio->_mapcount, -1); 172 folio_ref_sub(folio, mapcount); 173 } 174 } 175 } 176 177 /* hugetlb folios do not participate in page cache accounting. */ 178 if (folio_test_hugetlb(folio)) 179 return; 180 181 nr = folio_nr_pages(folio); 182 183 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 184 if (folio_test_swapbacked(folio)) { 185 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 186 if (folio_test_pmd_mappable(folio)) 187 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr); 188 } else if (folio_test_pmd_mappable(folio)) { 189 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr); 190 filemap_nr_thps_dec(mapping); 191 } 192 193 /* 194 * At this point folio must be either written or cleaned by 195 * truncate. Dirty folio here signals a bug and loss of 196 * unwritten data - on ordinary filesystems. 197 * 198 * But it's harmless on in-memory filesystems like tmpfs; and can 199 * occur when a driver which did get_user_pages() sets page dirty 200 * before putting it, while the inode is being finally evicted. 201 * 202 * Below fixes dirty accounting after removing the folio entirely 203 * but leaves the dirty flag set: it has no effect for truncated 204 * folio and anyway will be cleared before returning folio to 205 * buddy allocator. 206 */ 207 if (WARN_ON_ONCE(folio_test_dirty(folio) && 208 mapping_can_writeback(mapping))) 209 folio_account_cleaned(folio, inode_to_wb(mapping->host)); 210 } 211 212 /* 213 * Delete a page from the page cache and free it. Caller has to make 214 * sure the page is locked and that nobody else uses it - or that usage 215 * is safe. The caller must hold the i_pages lock. 216 */ 217 void __filemap_remove_folio(struct folio *folio, void *shadow) 218 { 219 struct address_space *mapping = folio->mapping; 220 221 trace_mm_filemap_delete_from_page_cache(folio); 222 filemap_unaccount_folio(mapping, folio); 223 page_cache_delete(mapping, folio, shadow); 224 } 225 226 void filemap_free_folio(struct address_space *mapping, struct folio *folio) 227 { 228 void (*free_folio)(struct folio *); 229 int refs = 1; 230 231 free_folio = mapping->a_ops->free_folio; 232 if (free_folio) 233 free_folio(folio); 234 235 if (folio_test_large(folio)) 236 refs = folio_nr_pages(folio); 237 folio_put_refs(folio, refs); 238 } 239 240 /** 241 * filemap_remove_folio - Remove folio from page cache. 242 * @folio: The folio. 243 * 244 * This must be called only on folios that are locked and have been 245 * verified to be in the page cache. It will never put the folio into 246 * the free list because the caller has a reference on the page. 247 */ 248 void filemap_remove_folio(struct folio *folio) 249 { 250 struct address_space *mapping = folio->mapping; 251 252 BUG_ON(!folio_test_locked(folio)); 253 spin_lock(&mapping->host->i_lock); 254 xa_lock_irq(&mapping->i_pages); 255 __filemap_remove_folio(folio, NULL); 256 xa_unlock_irq(&mapping->i_pages); 257 if (mapping_shrinkable(mapping)) 258 inode_add_lru(mapping->host); 259 spin_unlock(&mapping->host->i_lock); 260 261 filemap_free_folio(mapping, folio); 262 } 263 264 /* 265 * page_cache_delete_batch - delete several folios from page cache 266 * @mapping: the mapping to which folios belong 267 * @fbatch: batch of folios to delete 268 * 269 * The function walks over mapping->i_pages and removes folios passed in 270 * @fbatch from the mapping. The function expects @fbatch to be sorted 271 * by page index and is optimised for it to be dense. 272 * It tolerates holes in @fbatch (mapping entries at those indices are not 273 * modified). 274 * 275 * The function expects the i_pages lock to be held. 276 */ 277 static void page_cache_delete_batch(struct address_space *mapping, 278 struct folio_batch *fbatch) 279 { 280 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index); 281 long total_pages = 0; 282 int i = 0; 283 struct folio *folio; 284 285 mapping_set_update(&xas, mapping); 286 xas_for_each(&xas, folio, ULONG_MAX) { 287 if (i >= folio_batch_count(fbatch)) 288 break; 289 290 /* A swap/dax/shadow entry got inserted? Skip it. */ 291 if (xa_is_value(folio)) 292 continue; 293 /* 294 * A page got inserted in our range? Skip it. We have our 295 * pages locked so they are protected from being removed. 296 * If we see a page whose index is higher than ours, it 297 * means our page has been removed, which shouldn't be 298 * possible because we're holding the PageLock. 299 */ 300 if (folio != fbatch->folios[i]) { 301 VM_BUG_ON_FOLIO(folio->index > 302 fbatch->folios[i]->index, folio); 303 continue; 304 } 305 306 WARN_ON_ONCE(!folio_test_locked(folio)); 307 308 folio->mapping = NULL; 309 /* Leave folio->index set: truncation lookup relies on it */ 310 311 i++; 312 xas_store(&xas, NULL); 313 total_pages += folio_nr_pages(folio); 314 } 315 mapping->nrpages -= total_pages; 316 } 317 318 void delete_from_page_cache_batch(struct address_space *mapping, 319 struct folio_batch *fbatch) 320 { 321 int i; 322 323 if (!folio_batch_count(fbatch)) 324 return; 325 326 spin_lock(&mapping->host->i_lock); 327 xa_lock_irq(&mapping->i_pages); 328 for (i = 0; i < folio_batch_count(fbatch); i++) { 329 struct folio *folio = fbatch->folios[i]; 330 331 trace_mm_filemap_delete_from_page_cache(folio); 332 filemap_unaccount_folio(mapping, folio); 333 } 334 page_cache_delete_batch(mapping, fbatch); 335 xa_unlock_irq(&mapping->i_pages); 336 if (mapping_shrinkable(mapping)) 337 inode_add_lru(mapping->host); 338 spin_unlock(&mapping->host->i_lock); 339 340 for (i = 0; i < folio_batch_count(fbatch); i++) 341 filemap_free_folio(mapping, fbatch->folios[i]); 342 } 343 344 int filemap_check_errors(struct address_space *mapping) 345 { 346 int ret = 0; 347 /* Check for outstanding write errors */ 348 if (test_bit(AS_ENOSPC, &mapping->flags) && 349 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 350 ret = -ENOSPC; 351 if (test_bit(AS_EIO, &mapping->flags) && 352 test_and_clear_bit(AS_EIO, &mapping->flags)) 353 ret = -EIO; 354 return ret; 355 } 356 EXPORT_SYMBOL(filemap_check_errors); 357 358 static int filemap_check_and_keep_errors(struct address_space *mapping) 359 { 360 /* Check for outstanding write errors */ 361 if (test_bit(AS_EIO, &mapping->flags)) 362 return -EIO; 363 if (test_bit(AS_ENOSPC, &mapping->flags)) 364 return -ENOSPC; 365 return 0; 366 } 367 368 /** 369 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range 370 * @mapping: address space structure to write 371 * @wbc: the writeback_control controlling the writeout 372 * 373 * Call writepages on the mapping using the provided wbc to control the 374 * writeout. 375 * 376 * Return: %0 on success, negative error code otherwise. 377 */ 378 int filemap_fdatawrite_wbc(struct address_space *mapping, 379 struct writeback_control *wbc) 380 { 381 int ret; 382 383 if (!mapping_can_writeback(mapping) || 384 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 385 return 0; 386 387 wbc_attach_fdatawrite_inode(wbc, mapping->host); 388 ret = do_writepages(mapping, wbc); 389 wbc_detach_inode(wbc); 390 return ret; 391 } 392 EXPORT_SYMBOL(filemap_fdatawrite_wbc); 393 394 /** 395 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 396 * @mapping: address space structure to write 397 * @start: offset in bytes where the range starts 398 * @end: offset in bytes where the range ends (inclusive) 399 * @sync_mode: enable synchronous operation 400 * 401 * Start writeback against all of a mapping's dirty pages that lie 402 * within the byte offsets <start, end> inclusive. 403 * 404 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 405 * opposed to a regular memory cleansing writeback. The difference between 406 * these two operations is that if a dirty page/buffer is encountered, it must 407 * be waited upon, and not just skipped over. 408 * 409 * Return: %0 on success, negative error code otherwise. 410 */ 411 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 412 loff_t end, int sync_mode) 413 { 414 struct writeback_control wbc = { 415 .sync_mode = sync_mode, 416 .nr_to_write = LONG_MAX, 417 .range_start = start, 418 .range_end = end, 419 }; 420 421 return filemap_fdatawrite_wbc(mapping, &wbc); 422 } 423 424 static inline int __filemap_fdatawrite(struct address_space *mapping, 425 int sync_mode) 426 { 427 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 428 } 429 430 int filemap_fdatawrite(struct address_space *mapping) 431 { 432 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 433 } 434 EXPORT_SYMBOL(filemap_fdatawrite); 435 436 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 437 loff_t end) 438 { 439 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 440 } 441 EXPORT_SYMBOL(filemap_fdatawrite_range); 442 443 /** 444 * filemap_fdatawrite_range_kick - start writeback on a range 445 * @mapping: target address_space 446 * @start: index to start writeback on 447 * @end: last (inclusive) index for writeback 448 * 449 * This is a non-integrity writeback helper, to start writing back folios 450 * for the indicated range. 451 * 452 * Return: %0 on success, negative error code otherwise. 453 */ 454 int filemap_fdatawrite_range_kick(struct address_space *mapping, loff_t start, 455 loff_t end) 456 { 457 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_NONE); 458 } 459 EXPORT_SYMBOL_GPL(filemap_fdatawrite_range_kick); 460 461 /** 462 * filemap_flush - mostly a non-blocking flush 463 * @mapping: target address_space 464 * 465 * This is a mostly non-blocking flush. Not suitable for data-integrity 466 * purposes - I/O may not be started against all dirty pages. 467 * 468 * Return: %0 on success, negative error code otherwise. 469 */ 470 int filemap_flush(struct address_space *mapping) 471 { 472 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 473 } 474 EXPORT_SYMBOL(filemap_flush); 475 476 /** 477 * filemap_range_has_page - check if a page exists in range. 478 * @mapping: address space within which to check 479 * @start_byte: offset in bytes where the range starts 480 * @end_byte: offset in bytes where the range ends (inclusive) 481 * 482 * Find at least one page in the range supplied, usually used to check if 483 * direct writing in this range will trigger a writeback. 484 * 485 * Return: %true if at least one page exists in the specified range, 486 * %false otherwise. 487 */ 488 bool filemap_range_has_page(struct address_space *mapping, 489 loff_t start_byte, loff_t end_byte) 490 { 491 struct folio *folio; 492 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 493 pgoff_t max = end_byte >> PAGE_SHIFT; 494 495 if (end_byte < start_byte) 496 return false; 497 498 rcu_read_lock(); 499 for (;;) { 500 folio = xas_find(&xas, max); 501 if (xas_retry(&xas, folio)) 502 continue; 503 /* Shadow entries don't count */ 504 if (xa_is_value(folio)) 505 continue; 506 /* 507 * We don't need to try to pin this page; we're about to 508 * release the RCU lock anyway. It is enough to know that 509 * there was a page here recently. 510 */ 511 break; 512 } 513 rcu_read_unlock(); 514 515 return folio != NULL; 516 } 517 EXPORT_SYMBOL(filemap_range_has_page); 518 519 static void __filemap_fdatawait_range(struct address_space *mapping, 520 loff_t start_byte, loff_t end_byte) 521 { 522 pgoff_t index = start_byte >> PAGE_SHIFT; 523 pgoff_t end = end_byte >> PAGE_SHIFT; 524 struct folio_batch fbatch; 525 unsigned nr_folios; 526 527 folio_batch_init(&fbatch); 528 529 while (index <= end) { 530 unsigned i; 531 532 nr_folios = filemap_get_folios_tag(mapping, &index, end, 533 PAGECACHE_TAG_WRITEBACK, &fbatch); 534 535 if (!nr_folios) 536 break; 537 538 for (i = 0; i < nr_folios; i++) { 539 struct folio *folio = fbatch.folios[i]; 540 541 folio_wait_writeback(folio); 542 } 543 folio_batch_release(&fbatch); 544 cond_resched(); 545 } 546 } 547 548 /** 549 * filemap_fdatawait_range - wait for writeback to complete 550 * @mapping: address space structure to wait for 551 * @start_byte: offset in bytes where the range starts 552 * @end_byte: offset in bytes where the range ends (inclusive) 553 * 554 * Walk the list of under-writeback pages of the given address space 555 * in the given range and wait for all of them. Check error status of 556 * the address space and return it. 557 * 558 * Since the error status of the address space is cleared by this function, 559 * callers are responsible for checking the return value and handling and/or 560 * reporting the error. 561 * 562 * Return: error status of the address space. 563 */ 564 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 565 loff_t end_byte) 566 { 567 __filemap_fdatawait_range(mapping, start_byte, end_byte); 568 return filemap_check_errors(mapping); 569 } 570 EXPORT_SYMBOL(filemap_fdatawait_range); 571 572 /** 573 * filemap_fdatawait_range_keep_errors - wait for writeback to complete 574 * @mapping: address space structure to wait for 575 * @start_byte: offset in bytes where the range starts 576 * @end_byte: offset in bytes where the range ends (inclusive) 577 * 578 * Walk the list of under-writeback pages of the given address space in the 579 * given range and wait for all of them. Unlike filemap_fdatawait_range(), 580 * this function does not clear error status of the address space. 581 * 582 * Use this function if callers don't handle errors themselves. Expected 583 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 584 * fsfreeze(8) 585 */ 586 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 587 loff_t start_byte, loff_t end_byte) 588 { 589 __filemap_fdatawait_range(mapping, start_byte, end_byte); 590 return filemap_check_and_keep_errors(mapping); 591 } 592 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); 593 594 /** 595 * file_fdatawait_range - wait for writeback to complete 596 * @file: file pointing to address space structure to wait for 597 * @start_byte: offset in bytes where the range starts 598 * @end_byte: offset in bytes where the range ends (inclusive) 599 * 600 * Walk the list of under-writeback pages of the address space that file 601 * refers to, in the given range and wait for all of them. Check error 602 * status of the address space vs. the file->f_wb_err cursor and return it. 603 * 604 * Since the error status of the file is advanced by this function, 605 * callers are responsible for checking the return value and handling and/or 606 * reporting the error. 607 * 608 * Return: error status of the address space vs. the file->f_wb_err cursor. 609 */ 610 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 611 { 612 struct address_space *mapping = file->f_mapping; 613 614 __filemap_fdatawait_range(mapping, start_byte, end_byte); 615 return file_check_and_advance_wb_err(file); 616 } 617 EXPORT_SYMBOL(file_fdatawait_range); 618 619 /** 620 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 621 * @mapping: address space structure to wait for 622 * 623 * Walk the list of under-writeback pages of the given address space 624 * and wait for all of them. Unlike filemap_fdatawait(), this function 625 * does not clear error status of the address space. 626 * 627 * Use this function if callers don't handle errors themselves. Expected 628 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 629 * fsfreeze(8) 630 * 631 * Return: error status of the address space. 632 */ 633 int filemap_fdatawait_keep_errors(struct address_space *mapping) 634 { 635 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 636 return filemap_check_and_keep_errors(mapping); 637 } 638 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 639 640 /* Returns true if writeback might be needed or already in progress. */ 641 static bool mapping_needs_writeback(struct address_space *mapping) 642 { 643 return mapping->nrpages; 644 } 645 646 bool filemap_range_has_writeback(struct address_space *mapping, 647 loff_t start_byte, loff_t end_byte) 648 { 649 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 650 pgoff_t max = end_byte >> PAGE_SHIFT; 651 struct folio *folio; 652 653 if (end_byte < start_byte) 654 return false; 655 656 rcu_read_lock(); 657 xas_for_each(&xas, folio, max) { 658 if (xas_retry(&xas, folio)) 659 continue; 660 if (xa_is_value(folio)) 661 continue; 662 if (folio_test_dirty(folio) || folio_test_locked(folio) || 663 folio_test_writeback(folio)) 664 break; 665 } 666 rcu_read_unlock(); 667 return folio != NULL; 668 } 669 EXPORT_SYMBOL_GPL(filemap_range_has_writeback); 670 671 /** 672 * filemap_write_and_wait_range - write out & wait on a file range 673 * @mapping: the address_space for the pages 674 * @lstart: offset in bytes where the range starts 675 * @lend: offset in bytes where the range ends (inclusive) 676 * 677 * Write out and wait upon file offsets lstart->lend, inclusive. 678 * 679 * Note that @lend is inclusive (describes the last byte to be written) so 680 * that this function can be used to write to the very end-of-file (end = -1). 681 * 682 * Return: error status of the address space. 683 */ 684 int filemap_write_and_wait_range(struct address_space *mapping, 685 loff_t lstart, loff_t lend) 686 { 687 int err = 0, err2; 688 689 if (lend < lstart) 690 return 0; 691 692 if (mapping_needs_writeback(mapping)) { 693 err = __filemap_fdatawrite_range(mapping, lstart, lend, 694 WB_SYNC_ALL); 695 /* 696 * Even if the above returned error, the pages may be 697 * written partially (e.g. -ENOSPC), so we wait for it. 698 * But the -EIO is special case, it may indicate the worst 699 * thing (e.g. bug) happened, so we avoid waiting for it. 700 */ 701 if (err != -EIO) 702 __filemap_fdatawait_range(mapping, lstart, lend); 703 } 704 err2 = filemap_check_errors(mapping); 705 if (!err) 706 err = err2; 707 return err; 708 } 709 EXPORT_SYMBOL(filemap_write_and_wait_range); 710 711 void __filemap_set_wb_err(struct address_space *mapping, int err) 712 { 713 errseq_t eseq = errseq_set(&mapping->wb_err, err); 714 715 trace_filemap_set_wb_err(mapping, eseq); 716 } 717 EXPORT_SYMBOL(__filemap_set_wb_err); 718 719 /** 720 * file_check_and_advance_wb_err - report wb error (if any) that was previously 721 * and advance wb_err to current one 722 * @file: struct file on which the error is being reported 723 * 724 * When userland calls fsync (or something like nfsd does the equivalent), we 725 * want to report any writeback errors that occurred since the last fsync (or 726 * since the file was opened if there haven't been any). 727 * 728 * Grab the wb_err from the mapping. If it matches what we have in the file, 729 * then just quickly return 0. The file is all caught up. 730 * 731 * If it doesn't match, then take the mapping value, set the "seen" flag in 732 * it and try to swap it into place. If it works, or another task beat us 733 * to it with the new value, then update the f_wb_err and return the error 734 * portion. The error at this point must be reported via proper channels 735 * (a'la fsync, or NFS COMMIT operation, etc.). 736 * 737 * While we handle mapping->wb_err with atomic operations, the f_wb_err 738 * value is protected by the f_lock since we must ensure that it reflects 739 * the latest value swapped in for this file descriptor. 740 * 741 * Return: %0 on success, negative error code otherwise. 742 */ 743 int file_check_and_advance_wb_err(struct file *file) 744 { 745 int err = 0; 746 errseq_t old = READ_ONCE(file->f_wb_err); 747 struct address_space *mapping = file->f_mapping; 748 749 /* Locklessly handle the common case where nothing has changed */ 750 if (errseq_check(&mapping->wb_err, old)) { 751 /* Something changed, must use slow path */ 752 spin_lock(&file->f_lock); 753 old = file->f_wb_err; 754 err = errseq_check_and_advance(&mapping->wb_err, 755 &file->f_wb_err); 756 trace_file_check_and_advance_wb_err(file, old); 757 spin_unlock(&file->f_lock); 758 } 759 760 /* 761 * We're mostly using this function as a drop in replacement for 762 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 763 * that the legacy code would have had on these flags. 764 */ 765 clear_bit(AS_EIO, &mapping->flags); 766 clear_bit(AS_ENOSPC, &mapping->flags); 767 return err; 768 } 769 EXPORT_SYMBOL(file_check_and_advance_wb_err); 770 771 /** 772 * file_write_and_wait_range - write out & wait on a file range 773 * @file: file pointing to address_space with pages 774 * @lstart: offset in bytes where the range starts 775 * @lend: offset in bytes where the range ends (inclusive) 776 * 777 * Write out and wait upon file offsets lstart->lend, inclusive. 778 * 779 * Note that @lend is inclusive (describes the last byte to be written) so 780 * that this function can be used to write to the very end-of-file (end = -1). 781 * 782 * After writing out and waiting on the data, we check and advance the 783 * f_wb_err cursor to the latest value, and return any errors detected there. 784 * 785 * Return: %0 on success, negative error code otherwise. 786 */ 787 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 788 { 789 int err = 0, err2; 790 struct address_space *mapping = file->f_mapping; 791 792 if (lend < lstart) 793 return 0; 794 795 if (mapping_needs_writeback(mapping)) { 796 err = __filemap_fdatawrite_range(mapping, lstart, lend, 797 WB_SYNC_ALL); 798 /* See comment of filemap_write_and_wait() */ 799 if (err != -EIO) 800 __filemap_fdatawait_range(mapping, lstart, lend); 801 } 802 err2 = file_check_and_advance_wb_err(file); 803 if (!err) 804 err = err2; 805 return err; 806 } 807 EXPORT_SYMBOL(file_write_and_wait_range); 808 809 /** 810 * replace_page_cache_folio - replace a pagecache folio with a new one 811 * @old: folio to be replaced 812 * @new: folio to replace with 813 * 814 * This function replaces a folio in the pagecache with a new one. On 815 * success it acquires the pagecache reference for the new folio and 816 * drops it for the old folio. Both the old and new folios must be 817 * locked. This function does not add the new folio to the LRU, the 818 * caller must do that. 819 * 820 * The remove + add is atomic. This function cannot fail. 821 */ 822 void replace_page_cache_folio(struct folio *old, struct folio *new) 823 { 824 struct address_space *mapping = old->mapping; 825 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio; 826 pgoff_t offset = old->index; 827 XA_STATE(xas, &mapping->i_pages, offset); 828 829 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 830 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 831 VM_BUG_ON_FOLIO(new->mapping, new); 832 833 folio_get(new); 834 new->mapping = mapping; 835 new->index = offset; 836 837 mem_cgroup_replace_folio(old, new); 838 839 xas_lock_irq(&xas); 840 xas_store(&xas, new); 841 842 old->mapping = NULL; 843 /* hugetlb pages do not participate in page cache accounting. */ 844 if (!folio_test_hugetlb(old)) 845 __lruvec_stat_sub_folio(old, NR_FILE_PAGES); 846 if (!folio_test_hugetlb(new)) 847 __lruvec_stat_add_folio(new, NR_FILE_PAGES); 848 if (folio_test_swapbacked(old)) 849 __lruvec_stat_sub_folio(old, NR_SHMEM); 850 if (folio_test_swapbacked(new)) 851 __lruvec_stat_add_folio(new, NR_SHMEM); 852 xas_unlock_irq(&xas); 853 if (free_folio) 854 free_folio(old); 855 folio_put(old); 856 } 857 EXPORT_SYMBOL_GPL(replace_page_cache_folio); 858 859 noinline int __filemap_add_folio(struct address_space *mapping, 860 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp) 861 { 862 XA_STATE(xas, &mapping->i_pages, index); 863 void *alloced_shadow = NULL; 864 int alloced_order = 0; 865 bool huge; 866 long nr; 867 868 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 869 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio); 870 VM_BUG_ON_FOLIO(folio_order(folio) < mapping_min_folio_order(mapping), 871 folio); 872 mapping_set_update(&xas, mapping); 873 874 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio); 875 xas_set_order(&xas, index, folio_order(folio)); 876 huge = folio_test_hugetlb(folio); 877 nr = folio_nr_pages(folio); 878 879 gfp &= GFP_RECLAIM_MASK; 880 folio_ref_add(folio, nr); 881 folio->mapping = mapping; 882 folio->index = xas.xa_index; 883 884 for (;;) { 885 int order = -1, split_order = 0; 886 void *entry, *old = NULL; 887 888 xas_lock_irq(&xas); 889 xas_for_each_conflict(&xas, entry) { 890 old = entry; 891 if (!xa_is_value(entry)) { 892 xas_set_err(&xas, -EEXIST); 893 goto unlock; 894 } 895 /* 896 * If a larger entry exists, 897 * it will be the first and only entry iterated. 898 */ 899 if (order == -1) 900 order = xas_get_order(&xas); 901 } 902 903 /* entry may have changed before we re-acquire the lock */ 904 if (alloced_order && (old != alloced_shadow || order != alloced_order)) { 905 xas_destroy(&xas); 906 alloced_order = 0; 907 } 908 909 if (old) { 910 if (order > 0 && order > folio_order(folio)) { 911 /* How to handle large swap entries? */ 912 BUG_ON(shmem_mapping(mapping)); 913 if (!alloced_order) { 914 split_order = order; 915 goto unlock; 916 } 917 xas_split(&xas, old, order); 918 xas_reset(&xas); 919 } 920 if (shadowp) 921 *shadowp = old; 922 } 923 924 xas_store(&xas, folio); 925 if (xas_error(&xas)) 926 goto unlock; 927 928 mapping->nrpages += nr; 929 930 /* hugetlb pages do not participate in page cache accounting */ 931 if (!huge) { 932 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 933 if (folio_test_pmd_mappable(folio)) 934 __lruvec_stat_mod_folio(folio, 935 NR_FILE_THPS, nr); 936 } 937 938 unlock: 939 xas_unlock_irq(&xas); 940 941 /* split needed, alloc here and retry. */ 942 if (split_order) { 943 xas_split_alloc(&xas, old, split_order, gfp); 944 if (xas_error(&xas)) 945 goto error; 946 alloced_shadow = old; 947 alloced_order = split_order; 948 xas_reset(&xas); 949 continue; 950 } 951 952 if (!xas_nomem(&xas, gfp)) 953 break; 954 } 955 956 if (xas_error(&xas)) 957 goto error; 958 959 trace_mm_filemap_add_to_page_cache(folio); 960 return 0; 961 error: 962 folio->mapping = NULL; 963 /* Leave page->index set: truncation relies upon it */ 964 folio_put_refs(folio, nr); 965 return xas_error(&xas); 966 } 967 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO); 968 969 int filemap_add_folio(struct address_space *mapping, struct folio *folio, 970 pgoff_t index, gfp_t gfp) 971 { 972 void *shadow = NULL; 973 int ret; 974 975 ret = mem_cgroup_charge(folio, NULL, gfp); 976 if (ret) 977 return ret; 978 979 __folio_set_locked(folio); 980 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow); 981 if (unlikely(ret)) { 982 mem_cgroup_uncharge(folio); 983 __folio_clear_locked(folio); 984 } else { 985 /* 986 * The folio might have been evicted from cache only 987 * recently, in which case it should be activated like 988 * any other repeatedly accessed folio. 989 * The exception is folios getting rewritten; evicting other 990 * data from the working set, only to cache data that will 991 * get overwritten with something else, is a waste of memory. 992 */ 993 WARN_ON_ONCE(folio_test_active(folio)); 994 if (!(gfp & __GFP_WRITE) && shadow) 995 workingset_refault(folio, shadow); 996 folio_add_lru(folio); 997 } 998 return ret; 999 } 1000 EXPORT_SYMBOL_GPL(filemap_add_folio); 1001 1002 #ifdef CONFIG_NUMA 1003 struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order) 1004 { 1005 int n; 1006 struct folio *folio; 1007 1008 if (cpuset_do_page_mem_spread()) { 1009 unsigned int cpuset_mems_cookie; 1010 do { 1011 cpuset_mems_cookie = read_mems_allowed_begin(); 1012 n = cpuset_mem_spread_node(); 1013 folio = __folio_alloc_node_noprof(gfp, order, n); 1014 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie)); 1015 1016 return folio; 1017 } 1018 return folio_alloc_noprof(gfp, order); 1019 } 1020 EXPORT_SYMBOL(filemap_alloc_folio_noprof); 1021 #endif 1022 1023 /* 1024 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings 1025 * 1026 * Lock exclusively invalidate_lock of any passed mapping that is not NULL. 1027 * 1028 * @mapping1: the first mapping to lock 1029 * @mapping2: the second mapping to lock 1030 */ 1031 void filemap_invalidate_lock_two(struct address_space *mapping1, 1032 struct address_space *mapping2) 1033 { 1034 if (mapping1 > mapping2) 1035 swap(mapping1, mapping2); 1036 if (mapping1) 1037 down_write(&mapping1->invalidate_lock); 1038 if (mapping2 && mapping1 != mapping2) 1039 down_write_nested(&mapping2->invalidate_lock, 1); 1040 } 1041 EXPORT_SYMBOL(filemap_invalidate_lock_two); 1042 1043 /* 1044 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings 1045 * 1046 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL. 1047 * 1048 * @mapping1: the first mapping to unlock 1049 * @mapping2: the second mapping to unlock 1050 */ 1051 void filemap_invalidate_unlock_two(struct address_space *mapping1, 1052 struct address_space *mapping2) 1053 { 1054 if (mapping1) 1055 up_write(&mapping1->invalidate_lock); 1056 if (mapping2 && mapping1 != mapping2) 1057 up_write(&mapping2->invalidate_lock); 1058 } 1059 EXPORT_SYMBOL(filemap_invalidate_unlock_two); 1060 1061 /* 1062 * In order to wait for pages to become available there must be 1063 * waitqueues associated with pages. By using a hash table of 1064 * waitqueues where the bucket discipline is to maintain all 1065 * waiters on the same queue and wake all when any of the pages 1066 * become available, and for the woken contexts to check to be 1067 * sure the appropriate page became available, this saves space 1068 * at a cost of "thundering herd" phenomena during rare hash 1069 * collisions. 1070 */ 1071 #define PAGE_WAIT_TABLE_BITS 8 1072 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 1073 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 1074 1075 static wait_queue_head_t *folio_waitqueue(struct folio *folio) 1076 { 1077 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)]; 1078 } 1079 1080 void __init pagecache_init(void) 1081 { 1082 int i; 1083 1084 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 1085 init_waitqueue_head(&folio_wait_table[i]); 1086 1087 page_writeback_init(); 1088 } 1089 1090 /* 1091 * The page wait code treats the "wait->flags" somewhat unusually, because 1092 * we have multiple different kinds of waits, not just the usual "exclusive" 1093 * one. 1094 * 1095 * We have: 1096 * 1097 * (a) no special bits set: 1098 * 1099 * We're just waiting for the bit to be released, and when a waker 1100 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up, 1101 * and remove it from the wait queue. 1102 * 1103 * Simple and straightforward. 1104 * 1105 * (b) WQ_FLAG_EXCLUSIVE: 1106 * 1107 * The waiter is waiting to get the lock, and only one waiter should 1108 * be woken up to avoid any thundering herd behavior. We'll set the 1109 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue. 1110 * 1111 * This is the traditional exclusive wait. 1112 * 1113 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM: 1114 * 1115 * The waiter is waiting to get the bit, and additionally wants the 1116 * lock to be transferred to it for fair lock behavior. If the lock 1117 * cannot be taken, we stop walking the wait queue without waking 1118 * the waiter. 1119 * 1120 * This is the "fair lock handoff" case, and in addition to setting 1121 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see 1122 * that it now has the lock. 1123 */ 1124 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 1125 { 1126 unsigned int flags; 1127 struct wait_page_key *key = arg; 1128 struct wait_page_queue *wait_page 1129 = container_of(wait, struct wait_page_queue, wait); 1130 1131 if (!wake_page_match(wait_page, key)) 1132 return 0; 1133 1134 /* 1135 * If it's a lock handoff wait, we get the bit for it, and 1136 * stop walking (and do not wake it up) if we can't. 1137 */ 1138 flags = wait->flags; 1139 if (flags & WQ_FLAG_EXCLUSIVE) { 1140 if (test_bit(key->bit_nr, &key->folio->flags)) 1141 return -1; 1142 if (flags & WQ_FLAG_CUSTOM) { 1143 if (test_and_set_bit(key->bit_nr, &key->folio->flags)) 1144 return -1; 1145 flags |= WQ_FLAG_DONE; 1146 } 1147 } 1148 1149 /* 1150 * We are holding the wait-queue lock, but the waiter that 1151 * is waiting for this will be checking the flags without 1152 * any locking. 1153 * 1154 * So update the flags atomically, and wake up the waiter 1155 * afterwards to avoid any races. This store-release pairs 1156 * with the load-acquire in folio_wait_bit_common(). 1157 */ 1158 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN); 1159 wake_up_state(wait->private, mode); 1160 1161 /* 1162 * Ok, we have successfully done what we're waiting for, 1163 * and we can unconditionally remove the wait entry. 1164 * 1165 * Note that this pairs with the "finish_wait()" in the 1166 * waiter, and has to be the absolute last thing we do. 1167 * After this list_del_init(&wait->entry) the wait entry 1168 * might be de-allocated and the process might even have 1169 * exited. 1170 */ 1171 list_del_init_careful(&wait->entry); 1172 return (flags & WQ_FLAG_EXCLUSIVE) != 0; 1173 } 1174 1175 static void folio_wake_bit(struct folio *folio, int bit_nr) 1176 { 1177 wait_queue_head_t *q = folio_waitqueue(folio); 1178 struct wait_page_key key; 1179 unsigned long flags; 1180 1181 key.folio = folio; 1182 key.bit_nr = bit_nr; 1183 key.page_match = 0; 1184 1185 spin_lock_irqsave(&q->lock, flags); 1186 __wake_up_locked_key(q, TASK_NORMAL, &key); 1187 1188 /* 1189 * It's possible to miss clearing waiters here, when we woke our page 1190 * waiters, but the hashed waitqueue has waiters for other pages on it. 1191 * That's okay, it's a rare case. The next waker will clear it. 1192 * 1193 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE, 1194 * other), the flag may be cleared in the course of freeing the page; 1195 * but that is not required for correctness. 1196 */ 1197 if (!waitqueue_active(q) || !key.page_match) 1198 folio_clear_waiters(folio); 1199 1200 spin_unlock_irqrestore(&q->lock, flags); 1201 } 1202 1203 /* 1204 * A choice of three behaviors for folio_wait_bit_common(): 1205 */ 1206 enum behavior { 1207 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1208 * __folio_lock() waiting on then setting PG_locked. 1209 */ 1210 SHARED, /* Hold ref to page and check the bit when woken, like 1211 * folio_wait_writeback() waiting on PG_writeback. 1212 */ 1213 DROP, /* Drop ref to page before wait, no check when woken, 1214 * like folio_put_wait_locked() on PG_locked. 1215 */ 1216 }; 1217 1218 /* 1219 * Attempt to check (or get) the folio flag, and mark us done 1220 * if successful. 1221 */ 1222 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr, 1223 struct wait_queue_entry *wait) 1224 { 1225 if (wait->flags & WQ_FLAG_EXCLUSIVE) { 1226 if (test_and_set_bit(bit_nr, &folio->flags)) 1227 return false; 1228 } else if (test_bit(bit_nr, &folio->flags)) 1229 return false; 1230 1231 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE; 1232 return true; 1233 } 1234 1235 /* How many times do we accept lock stealing from under a waiter? */ 1236 int sysctl_page_lock_unfairness = 5; 1237 1238 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr, 1239 int state, enum behavior behavior) 1240 { 1241 wait_queue_head_t *q = folio_waitqueue(folio); 1242 int unfairness = sysctl_page_lock_unfairness; 1243 struct wait_page_queue wait_page; 1244 wait_queue_entry_t *wait = &wait_page.wait; 1245 bool thrashing = false; 1246 unsigned long pflags; 1247 bool in_thrashing; 1248 1249 if (bit_nr == PG_locked && 1250 !folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1251 delayacct_thrashing_start(&in_thrashing); 1252 psi_memstall_enter(&pflags); 1253 thrashing = true; 1254 } 1255 1256 init_wait(wait); 1257 wait->func = wake_page_function; 1258 wait_page.folio = folio; 1259 wait_page.bit_nr = bit_nr; 1260 1261 repeat: 1262 wait->flags = 0; 1263 if (behavior == EXCLUSIVE) { 1264 wait->flags = WQ_FLAG_EXCLUSIVE; 1265 if (--unfairness < 0) 1266 wait->flags |= WQ_FLAG_CUSTOM; 1267 } 1268 1269 /* 1270 * Do one last check whether we can get the 1271 * page bit synchronously. 1272 * 1273 * Do the folio_set_waiters() marking before that 1274 * to let any waker we _just_ missed know they 1275 * need to wake us up (otherwise they'll never 1276 * even go to the slow case that looks at the 1277 * page queue), and add ourselves to the wait 1278 * queue if we need to sleep. 1279 * 1280 * This part needs to be done under the queue 1281 * lock to avoid races. 1282 */ 1283 spin_lock_irq(&q->lock); 1284 folio_set_waiters(folio); 1285 if (!folio_trylock_flag(folio, bit_nr, wait)) 1286 __add_wait_queue_entry_tail(q, wait); 1287 spin_unlock_irq(&q->lock); 1288 1289 /* 1290 * From now on, all the logic will be based on 1291 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to 1292 * see whether the page bit testing has already 1293 * been done by the wake function. 1294 * 1295 * We can drop our reference to the folio. 1296 */ 1297 if (behavior == DROP) 1298 folio_put(folio); 1299 1300 /* 1301 * Note that until the "finish_wait()", or until 1302 * we see the WQ_FLAG_WOKEN flag, we need to 1303 * be very careful with the 'wait->flags', because 1304 * we may race with a waker that sets them. 1305 */ 1306 for (;;) { 1307 unsigned int flags; 1308 1309 set_current_state(state); 1310 1311 /* Loop until we've been woken or interrupted */ 1312 flags = smp_load_acquire(&wait->flags); 1313 if (!(flags & WQ_FLAG_WOKEN)) { 1314 if (signal_pending_state(state, current)) 1315 break; 1316 1317 io_schedule(); 1318 continue; 1319 } 1320 1321 /* If we were non-exclusive, we're done */ 1322 if (behavior != EXCLUSIVE) 1323 break; 1324 1325 /* If the waker got the lock for us, we're done */ 1326 if (flags & WQ_FLAG_DONE) 1327 break; 1328 1329 /* 1330 * Otherwise, if we're getting the lock, we need to 1331 * try to get it ourselves. 1332 * 1333 * And if that fails, we'll have to retry this all. 1334 */ 1335 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0)))) 1336 goto repeat; 1337 1338 wait->flags |= WQ_FLAG_DONE; 1339 break; 1340 } 1341 1342 /* 1343 * If a signal happened, this 'finish_wait()' may remove the last 1344 * waiter from the wait-queues, but the folio waiters bit will remain 1345 * set. That's ok. The next wakeup will take care of it, and trying 1346 * to do it here would be difficult and prone to races. 1347 */ 1348 finish_wait(q, wait); 1349 1350 if (thrashing) { 1351 delayacct_thrashing_end(&in_thrashing); 1352 psi_memstall_leave(&pflags); 1353 } 1354 1355 /* 1356 * NOTE! The wait->flags weren't stable until we've done the 1357 * 'finish_wait()', and we could have exited the loop above due 1358 * to a signal, and had a wakeup event happen after the signal 1359 * test but before the 'finish_wait()'. 1360 * 1361 * So only after the finish_wait() can we reliably determine 1362 * if we got woken up or not, so we can now figure out the final 1363 * return value based on that state without races. 1364 * 1365 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive 1366 * waiter, but an exclusive one requires WQ_FLAG_DONE. 1367 */ 1368 if (behavior == EXCLUSIVE) 1369 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR; 1370 1371 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR; 1372 } 1373 1374 #ifdef CONFIG_MIGRATION 1375 /** 1376 * migration_entry_wait_on_locked - Wait for a migration entry to be removed 1377 * @entry: migration swap entry. 1378 * @ptl: already locked ptl. This function will drop the lock. 1379 * 1380 * Wait for a migration entry referencing the given page to be removed. This is 1381 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except 1382 * this can be called without taking a reference on the page. Instead this 1383 * should be called while holding the ptl for the migration entry referencing 1384 * the page. 1385 * 1386 * Returns after unlocking the ptl. 1387 * 1388 * This follows the same logic as folio_wait_bit_common() so see the comments 1389 * there. 1390 */ 1391 void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl) 1392 __releases(ptl) 1393 { 1394 struct wait_page_queue wait_page; 1395 wait_queue_entry_t *wait = &wait_page.wait; 1396 bool thrashing = false; 1397 unsigned long pflags; 1398 bool in_thrashing; 1399 wait_queue_head_t *q; 1400 struct folio *folio = pfn_swap_entry_folio(entry); 1401 1402 q = folio_waitqueue(folio); 1403 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1404 delayacct_thrashing_start(&in_thrashing); 1405 psi_memstall_enter(&pflags); 1406 thrashing = true; 1407 } 1408 1409 init_wait(wait); 1410 wait->func = wake_page_function; 1411 wait_page.folio = folio; 1412 wait_page.bit_nr = PG_locked; 1413 wait->flags = 0; 1414 1415 spin_lock_irq(&q->lock); 1416 folio_set_waiters(folio); 1417 if (!folio_trylock_flag(folio, PG_locked, wait)) 1418 __add_wait_queue_entry_tail(q, wait); 1419 spin_unlock_irq(&q->lock); 1420 1421 /* 1422 * If a migration entry exists for the page the migration path must hold 1423 * a valid reference to the page, and it must take the ptl to remove the 1424 * migration entry. So the page is valid until the ptl is dropped. 1425 */ 1426 spin_unlock(ptl); 1427 1428 for (;;) { 1429 unsigned int flags; 1430 1431 set_current_state(TASK_UNINTERRUPTIBLE); 1432 1433 /* Loop until we've been woken or interrupted */ 1434 flags = smp_load_acquire(&wait->flags); 1435 if (!(flags & WQ_FLAG_WOKEN)) { 1436 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current)) 1437 break; 1438 1439 io_schedule(); 1440 continue; 1441 } 1442 break; 1443 } 1444 1445 finish_wait(q, wait); 1446 1447 if (thrashing) { 1448 delayacct_thrashing_end(&in_thrashing); 1449 psi_memstall_leave(&pflags); 1450 } 1451 } 1452 #endif 1453 1454 void folio_wait_bit(struct folio *folio, int bit_nr) 1455 { 1456 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1457 } 1458 EXPORT_SYMBOL(folio_wait_bit); 1459 1460 int folio_wait_bit_killable(struct folio *folio, int bit_nr) 1461 { 1462 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED); 1463 } 1464 EXPORT_SYMBOL(folio_wait_bit_killable); 1465 1466 /** 1467 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked 1468 * @folio: The folio to wait for. 1469 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc). 1470 * 1471 * The caller should hold a reference on @folio. They expect the page to 1472 * become unlocked relatively soon, but do not wish to hold up migration 1473 * (for example) by holding the reference while waiting for the folio to 1474 * come unlocked. After this function returns, the caller should not 1475 * dereference @folio. 1476 * 1477 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal. 1478 */ 1479 static int folio_put_wait_locked(struct folio *folio, int state) 1480 { 1481 return folio_wait_bit_common(folio, PG_locked, state, DROP); 1482 } 1483 1484 /** 1485 * folio_unlock - Unlock a locked folio. 1486 * @folio: The folio. 1487 * 1488 * Unlocks the folio and wakes up any thread sleeping on the page lock. 1489 * 1490 * Context: May be called from interrupt or process context. May not be 1491 * called from NMI context. 1492 */ 1493 void folio_unlock(struct folio *folio) 1494 { 1495 /* Bit 7 allows x86 to check the byte's sign bit */ 1496 BUILD_BUG_ON(PG_waiters != 7); 1497 BUILD_BUG_ON(PG_locked > 7); 1498 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1499 if (folio_xor_flags_has_waiters(folio, 1 << PG_locked)) 1500 folio_wake_bit(folio, PG_locked); 1501 } 1502 EXPORT_SYMBOL(folio_unlock); 1503 1504 /** 1505 * folio_end_read - End read on a folio. 1506 * @folio: The folio. 1507 * @success: True if all reads completed successfully. 1508 * 1509 * When all reads against a folio have completed, filesystems should 1510 * call this function to let the pagecache know that no more reads 1511 * are outstanding. This will unlock the folio and wake up any thread 1512 * sleeping on the lock. The folio will also be marked uptodate if all 1513 * reads succeeded. 1514 * 1515 * Context: May be called from interrupt or process context. May not be 1516 * called from NMI context. 1517 */ 1518 void folio_end_read(struct folio *folio, bool success) 1519 { 1520 unsigned long mask = 1 << PG_locked; 1521 1522 /* Must be in bottom byte for x86 to work */ 1523 BUILD_BUG_ON(PG_uptodate > 7); 1524 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1525 VM_BUG_ON_FOLIO(success && folio_test_uptodate(folio), folio); 1526 1527 if (likely(success)) 1528 mask |= 1 << PG_uptodate; 1529 if (folio_xor_flags_has_waiters(folio, mask)) 1530 folio_wake_bit(folio, PG_locked); 1531 } 1532 EXPORT_SYMBOL(folio_end_read); 1533 1534 /** 1535 * folio_end_private_2 - Clear PG_private_2 and wake any waiters. 1536 * @folio: The folio. 1537 * 1538 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for 1539 * it. The folio reference held for PG_private_2 being set is released. 1540 * 1541 * This is, for example, used when a netfs folio is being written to a local 1542 * disk cache, thereby allowing writes to the cache for the same folio to be 1543 * serialised. 1544 */ 1545 void folio_end_private_2(struct folio *folio) 1546 { 1547 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio); 1548 clear_bit_unlock(PG_private_2, folio_flags(folio, 0)); 1549 folio_wake_bit(folio, PG_private_2); 1550 folio_put(folio); 1551 } 1552 EXPORT_SYMBOL(folio_end_private_2); 1553 1554 /** 1555 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio. 1556 * @folio: The folio to wait on. 1557 * 1558 * Wait for PG_private_2 to be cleared on a folio. 1559 */ 1560 void folio_wait_private_2(struct folio *folio) 1561 { 1562 while (folio_test_private_2(folio)) 1563 folio_wait_bit(folio, PG_private_2); 1564 } 1565 EXPORT_SYMBOL(folio_wait_private_2); 1566 1567 /** 1568 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio. 1569 * @folio: The folio to wait on. 1570 * 1571 * Wait for PG_private_2 to be cleared on a folio or until a fatal signal is 1572 * received by the calling task. 1573 * 1574 * Return: 1575 * - 0 if successful. 1576 * - -EINTR if a fatal signal was encountered. 1577 */ 1578 int folio_wait_private_2_killable(struct folio *folio) 1579 { 1580 int ret = 0; 1581 1582 while (folio_test_private_2(folio)) { 1583 ret = folio_wait_bit_killable(folio, PG_private_2); 1584 if (ret < 0) 1585 break; 1586 } 1587 1588 return ret; 1589 } 1590 EXPORT_SYMBOL(folio_wait_private_2_killable); 1591 1592 /* 1593 * If folio was marked as dropbehind, then pages should be dropped when writeback 1594 * completes. Do that now. If we fail, it's likely because of a big folio - 1595 * just reset dropbehind for that case and latter completions should invalidate. 1596 */ 1597 static void folio_end_dropbehind_write(struct folio *folio) 1598 { 1599 /* 1600 * Hitting !in_task() should not happen off RWF_DONTCACHE writeback, 1601 * but can happen if normal writeback just happens to find dirty folios 1602 * that were created as part of uncached writeback, and that writeback 1603 * would otherwise not need non-IRQ handling. Just skip the 1604 * invalidation in that case. 1605 */ 1606 if (in_task() && folio_trylock(folio)) { 1607 if (folio->mapping) 1608 folio_unmap_invalidate(folio->mapping, folio, 0); 1609 folio_unlock(folio); 1610 } 1611 } 1612 1613 /** 1614 * folio_end_writeback - End writeback against a folio. 1615 * @folio: The folio. 1616 * 1617 * The folio must actually be under writeback. 1618 * 1619 * Context: May be called from process or interrupt context. 1620 */ 1621 void folio_end_writeback(struct folio *folio) 1622 { 1623 bool folio_dropbehind = false; 1624 1625 VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio); 1626 1627 /* 1628 * folio_test_clear_reclaim() could be used here but it is an 1629 * atomic operation and overkill in this particular case. Failing 1630 * to shuffle a folio marked for immediate reclaim is too mild 1631 * a gain to justify taking an atomic operation penalty at the 1632 * end of every folio writeback. 1633 */ 1634 if (folio_test_reclaim(folio)) { 1635 folio_clear_reclaim(folio); 1636 folio_rotate_reclaimable(folio); 1637 } 1638 1639 /* 1640 * Writeback does not hold a folio reference of its own, relying 1641 * on truncation to wait for the clearing of PG_writeback. 1642 * But here we must make sure that the folio is not freed and 1643 * reused before the folio_wake_bit(). 1644 */ 1645 folio_get(folio); 1646 if (!folio_test_dirty(folio)) 1647 folio_dropbehind = folio_test_clear_dropbehind(folio); 1648 if (__folio_end_writeback(folio)) 1649 folio_wake_bit(folio, PG_writeback); 1650 acct_reclaim_writeback(folio); 1651 1652 if (folio_dropbehind) 1653 folio_end_dropbehind_write(folio); 1654 folio_put(folio); 1655 } 1656 EXPORT_SYMBOL(folio_end_writeback); 1657 1658 /** 1659 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it. 1660 * @folio: The folio to lock 1661 */ 1662 void __folio_lock(struct folio *folio) 1663 { 1664 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE, 1665 EXCLUSIVE); 1666 } 1667 EXPORT_SYMBOL(__folio_lock); 1668 1669 int __folio_lock_killable(struct folio *folio) 1670 { 1671 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE, 1672 EXCLUSIVE); 1673 } 1674 EXPORT_SYMBOL_GPL(__folio_lock_killable); 1675 1676 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait) 1677 { 1678 struct wait_queue_head *q = folio_waitqueue(folio); 1679 int ret; 1680 1681 wait->folio = folio; 1682 wait->bit_nr = PG_locked; 1683 1684 spin_lock_irq(&q->lock); 1685 __add_wait_queue_entry_tail(q, &wait->wait); 1686 folio_set_waiters(folio); 1687 ret = !folio_trylock(folio); 1688 /* 1689 * If we were successful now, we know we're still on the 1690 * waitqueue as we're still under the lock. This means it's 1691 * safe to remove and return success, we know the callback 1692 * isn't going to trigger. 1693 */ 1694 if (!ret) 1695 __remove_wait_queue(q, &wait->wait); 1696 else 1697 ret = -EIOCBQUEUED; 1698 spin_unlock_irq(&q->lock); 1699 return ret; 1700 } 1701 1702 /* 1703 * Return values: 1704 * 0 - folio is locked. 1705 * non-zero - folio is not locked. 1706 * mmap_lock or per-VMA lock has been released (mmap_read_unlock() or 1707 * vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and 1708 * FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held. 1709 * 1710 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0 1711 * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed. 1712 */ 1713 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf) 1714 { 1715 unsigned int flags = vmf->flags; 1716 1717 if (fault_flag_allow_retry_first(flags)) { 1718 /* 1719 * CAUTION! In this case, mmap_lock/per-VMA lock is not 1720 * released even though returning VM_FAULT_RETRY. 1721 */ 1722 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1723 return VM_FAULT_RETRY; 1724 1725 release_fault_lock(vmf); 1726 if (flags & FAULT_FLAG_KILLABLE) 1727 folio_wait_locked_killable(folio); 1728 else 1729 folio_wait_locked(folio); 1730 return VM_FAULT_RETRY; 1731 } 1732 if (flags & FAULT_FLAG_KILLABLE) { 1733 bool ret; 1734 1735 ret = __folio_lock_killable(folio); 1736 if (ret) { 1737 release_fault_lock(vmf); 1738 return VM_FAULT_RETRY; 1739 } 1740 } else { 1741 __folio_lock(folio); 1742 } 1743 1744 return 0; 1745 } 1746 1747 /** 1748 * page_cache_next_miss() - Find the next gap in the page cache. 1749 * @mapping: Mapping. 1750 * @index: Index. 1751 * @max_scan: Maximum range to search. 1752 * 1753 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1754 * gap with the lowest index. 1755 * 1756 * This function may be called under the rcu_read_lock. However, this will 1757 * not atomically search a snapshot of the cache at a single point in time. 1758 * For example, if a gap is created at index 5, then subsequently a gap is 1759 * created at index 10, page_cache_next_miss covering both indices may 1760 * return 10 if called under the rcu_read_lock. 1761 * 1762 * Return: The index of the gap if found, otherwise an index outside the 1763 * range specified (in which case 'return - index >= max_scan' will be true). 1764 * In the rare case of index wrap-around, 0 will be returned. 1765 */ 1766 pgoff_t page_cache_next_miss(struct address_space *mapping, 1767 pgoff_t index, unsigned long max_scan) 1768 { 1769 XA_STATE(xas, &mapping->i_pages, index); 1770 1771 while (max_scan--) { 1772 void *entry = xas_next(&xas); 1773 if (!entry || xa_is_value(entry)) 1774 return xas.xa_index; 1775 if (xas.xa_index == 0) 1776 return 0; 1777 } 1778 1779 return index + max_scan; 1780 } 1781 EXPORT_SYMBOL(page_cache_next_miss); 1782 1783 /** 1784 * page_cache_prev_miss() - Find the previous gap in the page cache. 1785 * @mapping: Mapping. 1786 * @index: Index. 1787 * @max_scan: Maximum range to search. 1788 * 1789 * Search the range [max(index - max_scan + 1, 0), index] for the 1790 * gap with the highest index. 1791 * 1792 * This function may be called under the rcu_read_lock. However, this will 1793 * not atomically search a snapshot of the cache at a single point in time. 1794 * For example, if a gap is created at index 10, then subsequently a gap is 1795 * created at index 5, page_cache_prev_miss() covering both indices may 1796 * return 5 if called under the rcu_read_lock. 1797 * 1798 * Return: The index of the gap if found, otherwise an index outside the 1799 * range specified (in which case 'index - return >= max_scan' will be true). 1800 * In the rare case of wrap-around, ULONG_MAX will be returned. 1801 */ 1802 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1803 pgoff_t index, unsigned long max_scan) 1804 { 1805 XA_STATE(xas, &mapping->i_pages, index); 1806 1807 while (max_scan--) { 1808 void *entry = xas_prev(&xas); 1809 if (!entry || xa_is_value(entry)) 1810 break; 1811 if (xas.xa_index == ULONG_MAX) 1812 break; 1813 } 1814 1815 return xas.xa_index; 1816 } 1817 EXPORT_SYMBOL(page_cache_prev_miss); 1818 1819 /* 1820 * Lockless page cache protocol: 1821 * On the lookup side: 1822 * 1. Load the folio from i_pages 1823 * 2. Increment the refcount if it's not zero 1824 * 3. If the folio is not found by xas_reload(), put the refcount and retry 1825 * 1826 * On the removal side: 1827 * A. Freeze the page (by zeroing the refcount if nobody else has a reference) 1828 * B. Remove the page from i_pages 1829 * C. Return the page to the page allocator 1830 * 1831 * This means that any page may have its reference count temporarily 1832 * increased by a speculative page cache (or GUP-fast) lookup as it can 1833 * be allocated by another user before the RCU grace period expires. 1834 * Because the refcount temporarily acquired here may end up being the 1835 * last refcount on the page, any page allocation must be freeable by 1836 * folio_put(). 1837 */ 1838 1839 /* 1840 * filemap_get_entry - Get a page cache entry. 1841 * @mapping: the address_space to search 1842 * @index: The page cache index. 1843 * 1844 * Looks up the page cache entry at @mapping & @index. If it is a folio, 1845 * it is returned with an increased refcount. If it is a shadow entry 1846 * of a previously evicted folio, or a swap entry from shmem/tmpfs, 1847 * it is returned without further action. 1848 * 1849 * Return: The folio, swap or shadow entry, %NULL if nothing is found. 1850 */ 1851 void *filemap_get_entry(struct address_space *mapping, pgoff_t index) 1852 { 1853 XA_STATE(xas, &mapping->i_pages, index); 1854 struct folio *folio; 1855 1856 rcu_read_lock(); 1857 repeat: 1858 xas_reset(&xas); 1859 folio = xas_load(&xas); 1860 if (xas_retry(&xas, folio)) 1861 goto repeat; 1862 /* 1863 * A shadow entry of a recently evicted page, or a swap entry from 1864 * shmem/tmpfs. Return it without attempting to raise page count. 1865 */ 1866 if (!folio || xa_is_value(folio)) 1867 goto out; 1868 1869 if (!folio_try_get(folio)) 1870 goto repeat; 1871 1872 if (unlikely(folio != xas_reload(&xas))) { 1873 folio_put(folio); 1874 goto repeat; 1875 } 1876 out: 1877 rcu_read_unlock(); 1878 1879 return folio; 1880 } 1881 1882 /** 1883 * __filemap_get_folio - Find and get a reference to a folio. 1884 * @mapping: The address_space to search. 1885 * @index: The page index. 1886 * @fgp_flags: %FGP flags modify how the folio is returned. 1887 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified. 1888 * 1889 * Looks up the page cache entry at @mapping & @index. 1890 * 1891 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even 1892 * if the %GFP flags specified for %FGP_CREAT are atomic. 1893 * 1894 * If this function returns a folio, it is returned with an increased refcount. 1895 * 1896 * Return: The found folio or an ERR_PTR() otherwise. 1897 */ 1898 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index, 1899 fgf_t fgp_flags, gfp_t gfp) 1900 { 1901 struct folio *folio; 1902 1903 repeat: 1904 folio = filemap_get_entry(mapping, index); 1905 if (xa_is_value(folio)) 1906 folio = NULL; 1907 if (!folio) 1908 goto no_page; 1909 1910 if (fgp_flags & FGP_LOCK) { 1911 if (fgp_flags & FGP_NOWAIT) { 1912 if (!folio_trylock(folio)) { 1913 folio_put(folio); 1914 return ERR_PTR(-EAGAIN); 1915 } 1916 } else { 1917 folio_lock(folio); 1918 } 1919 1920 /* Has the page been truncated? */ 1921 if (unlikely(folio->mapping != mapping)) { 1922 folio_unlock(folio); 1923 folio_put(folio); 1924 goto repeat; 1925 } 1926 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 1927 } 1928 1929 if (fgp_flags & FGP_ACCESSED) 1930 folio_mark_accessed(folio); 1931 else if (fgp_flags & FGP_WRITE) { 1932 /* Clear idle flag for buffer write */ 1933 if (folio_test_idle(folio)) 1934 folio_clear_idle(folio); 1935 } 1936 1937 if (fgp_flags & FGP_STABLE) 1938 folio_wait_stable(folio); 1939 no_page: 1940 if (!folio && (fgp_flags & FGP_CREAT)) { 1941 unsigned int min_order = mapping_min_folio_order(mapping); 1942 unsigned int order = max(min_order, FGF_GET_ORDER(fgp_flags)); 1943 int err; 1944 index = mapping_align_index(mapping, index); 1945 1946 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping)) 1947 gfp |= __GFP_WRITE; 1948 if (fgp_flags & FGP_NOFS) 1949 gfp &= ~__GFP_FS; 1950 if (fgp_flags & FGP_NOWAIT) { 1951 gfp &= ~GFP_KERNEL; 1952 gfp |= GFP_NOWAIT | __GFP_NOWARN; 1953 } 1954 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 1955 fgp_flags |= FGP_LOCK; 1956 1957 if (order > mapping_max_folio_order(mapping)) 1958 order = mapping_max_folio_order(mapping); 1959 /* If we're not aligned, allocate a smaller folio */ 1960 if (index & ((1UL << order) - 1)) 1961 order = __ffs(index); 1962 1963 do { 1964 gfp_t alloc_gfp = gfp; 1965 1966 err = -ENOMEM; 1967 if (order > min_order) 1968 alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN; 1969 folio = filemap_alloc_folio(alloc_gfp, order); 1970 if (!folio) 1971 continue; 1972 1973 /* Init accessed so avoid atomic mark_page_accessed later */ 1974 if (fgp_flags & FGP_ACCESSED) 1975 __folio_set_referenced(folio); 1976 if (fgp_flags & FGP_DONTCACHE) 1977 __folio_set_dropbehind(folio); 1978 1979 err = filemap_add_folio(mapping, folio, index, gfp); 1980 if (!err) 1981 break; 1982 folio_put(folio); 1983 folio = NULL; 1984 } while (order-- > min_order); 1985 1986 if (err == -EEXIST) 1987 goto repeat; 1988 if (err) { 1989 /* 1990 * When NOWAIT I/O fails to allocate folios this could 1991 * be due to a nonblocking memory allocation and not 1992 * because the system actually is out of memory. 1993 * Return -EAGAIN so that there caller retries in a 1994 * blocking fashion instead of propagating -ENOMEM 1995 * to the application. 1996 */ 1997 if ((fgp_flags & FGP_NOWAIT) && err == -ENOMEM) 1998 err = -EAGAIN; 1999 return ERR_PTR(err); 2000 } 2001 /* 2002 * filemap_add_folio locks the page, and for mmap 2003 * we expect an unlocked page. 2004 */ 2005 if (folio && (fgp_flags & FGP_FOR_MMAP)) 2006 folio_unlock(folio); 2007 } 2008 2009 if (!folio) 2010 return ERR_PTR(-ENOENT); 2011 /* not an uncached lookup, clear uncached if set */ 2012 if (folio_test_dropbehind(folio) && !(fgp_flags & FGP_DONTCACHE)) 2013 folio_clear_dropbehind(folio); 2014 return folio; 2015 } 2016 EXPORT_SYMBOL(__filemap_get_folio); 2017 2018 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max, 2019 xa_mark_t mark) 2020 { 2021 struct folio *folio; 2022 2023 retry: 2024 if (mark == XA_PRESENT) 2025 folio = xas_find(xas, max); 2026 else 2027 folio = xas_find_marked(xas, max, mark); 2028 2029 if (xas_retry(xas, folio)) 2030 goto retry; 2031 /* 2032 * A shadow entry of a recently evicted page, a swap 2033 * entry from shmem/tmpfs or a DAX entry. Return it 2034 * without attempting to raise page count. 2035 */ 2036 if (!folio || xa_is_value(folio)) 2037 return folio; 2038 2039 if (!folio_try_get(folio)) 2040 goto reset; 2041 2042 if (unlikely(folio != xas_reload(xas))) { 2043 folio_put(folio); 2044 goto reset; 2045 } 2046 2047 return folio; 2048 reset: 2049 xas_reset(xas); 2050 goto retry; 2051 } 2052 2053 /** 2054 * find_get_entries - gang pagecache lookup 2055 * @mapping: The address_space to search 2056 * @start: The starting page cache index 2057 * @end: The final page index (inclusive). 2058 * @fbatch: Where the resulting entries are placed. 2059 * @indices: The cache indices corresponding to the entries in @entries 2060 * 2061 * find_get_entries() will search for and return a batch of entries in 2062 * the mapping. The entries are placed in @fbatch. find_get_entries() 2063 * takes a reference on any actual folios it returns. 2064 * 2065 * The entries have ascending indexes. The indices may not be consecutive 2066 * due to not-present entries or large folios. 2067 * 2068 * Any shadow entries of evicted folios, or swap entries from 2069 * shmem/tmpfs, are included in the returned array. 2070 * 2071 * Return: The number of entries which were found. 2072 */ 2073 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start, 2074 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2075 { 2076 XA_STATE(xas, &mapping->i_pages, *start); 2077 struct folio *folio; 2078 2079 rcu_read_lock(); 2080 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) { 2081 indices[fbatch->nr] = xas.xa_index; 2082 if (!folio_batch_add(fbatch, folio)) 2083 break; 2084 } 2085 2086 if (folio_batch_count(fbatch)) { 2087 unsigned long nr; 2088 int idx = folio_batch_count(fbatch) - 1; 2089 2090 folio = fbatch->folios[idx]; 2091 if (!xa_is_value(folio)) 2092 nr = folio_nr_pages(folio); 2093 else 2094 nr = 1 << xa_get_order(&mapping->i_pages, indices[idx]); 2095 *start = round_down(indices[idx] + nr, nr); 2096 } 2097 rcu_read_unlock(); 2098 2099 return folio_batch_count(fbatch); 2100 } 2101 2102 /** 2103 * find_lock_entries - Find a batch of pagecache entries. 2104 * @mapping: The address_space to search. 2105 * @start: The starting page cache index. 2106 * @end: The final page index (inclusive). 2107 * @fbatch: Where the resulting entries are placed. 2108 * @indices: The cache indices of the entries in @fbatch. 2109 * 2110 * find_lock_entries() will return a batch of entries from @mapping. 2111 * Swap, shadow and DAX entries are included. Folios are returned 2112 * locked and with an incremented refcount. Folios which are locked 2113 * by somebody else or under writeback are skipped. Folios which are 2114 * partially outside the range are not returned. 2115 * 2116 * The entries have ascending indexes. The indices may not be consecutive 2117 * due to not-present entries, large folios, folios which could not be 2118 * locked or folios under writeback. 2119 * 2120 * Return: The number of entries which were found. 2121 */ 2122 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start, 2123 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2124 { 2125 XA_STATE(xas, &mapping->i_pages, *start); 2126 struct folio *folio; 2127 2128 rcu_read_lock(); 2129 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) { 2130 unsigned long base; 2131 unsigned long nr; 2132 2133 if (!xa_is_value(folio)) { 2134 nr = folio_nr_pages(folio); 2135 base = folio->index; 2136 /* Omit large folio which begins before the start */ 2137 if (base < *start) 2138 goto put; 2139 /* Omit large folio which extends beyond the end */ 2140 if (base + nr - 1 > end) 2141 goto put; 2142 if (!folio_trylock(folio)) 2143 goto put; 2144 if (folio->mapping != mapping || 2145 folio_test_writeback(folio)) 2146 goto unlock; 2147 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index), 2148 folio); 2149 } else { 2150 nr = 1 << xas_get_order(&xas); 2151 base = xas.xa_index & ~(nr - 1); 2152 /* Omit order>0 value which begins before the start */ 2153 if (base < *start) 2154 continue; 2155 /* Omit order>0 value which extends beyond the end */ 2156 if (base + nr - 1 > end) 2157 break; 2158 } 2159 2160 /* Update start now so that last update is correct on return */ 2161 *start = base + nr; 2162 indices[fbatch->nr] = xas.xa_index; 2163 if (!folio_batch_add(fbatch, folio)) 2164 break; 2165 continue; 2166 unlock: 2167 folio_unlock(folio); 2168 put: 2169 folio_put(folio); 2170 } 2171 rcu_read_unlock(); 2172 2173 return folio_batch_count(fbatch); 2174 } 2175 2176 /** 2177 * filemap_get_folios - Get a batch of folios 2178 * @mapping: The address_space to search 2179 * @start: The starting page index 2180 * @end: The final page index (inclusive) 2181 * @fbatch: The batch to fill. 2182 * 2183 * Search for and return a batch of folios in the mapping starting at 2184 * index @start and up to index @end (inclusive). The folios are returned 2185 * in @fbatch with an elevated reference count. 2186 * 2187 * Return: The number of folios which were found. 2188 * We also update @start to index the next folio for the traversal. 2189 */ 2190 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start, 2191 pgoff_t end, struct folio_batch *fbatch) 2192 { 2193 return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch); 2194 } 2195 EXPORT_SYMBOL(filemap_get_folios); 2196 2197 /** 2198 * filemap_get_folios_contig - Get a batch of contiguous folios 2199 * @mapping: The address_space to search 2200 * @start: The starting page index 2201 * @end: The final page index (inclusive) 2202 * @fbatch: The batch to fill 2203 * 2204 * filemap_get_folios_contig() works exactly like filemap_get_folios(), 2205 * except the returned folios are guaranteed to be contiguous. This may 2206 * not return all contiguous folios if the batch gets filled up. 2207 * 2208 * Return: The number of folios found. 2209 * Also update @start to be positioned for traversal of the next folio. 2210 */ 2211 2212 unsigned filemap_get_folios_contig(struct address_space *mapping, 2213 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch) 2214 { 2215 XA_STATE(xas, &mapping->i_pages, *start); 2216 unsigned long nr; 2217 struct folio *folio; 2218 2219 rcu_read_lock(); 2220 2221 for (folio = xas_load(&xas); folio && xas.xa_index <= end; 2222 folio = xas_next(&xas)) { 2223 if (xas_retry(&xas, folio)) 2224 continue; 2225 /* 2226 * If the entry has been swapped out, we can stop looking. 2227 * No current caller is looking for DAX entries. 2228 */ 2229 if (xa_is_value(folio)) 2230 goto update_start; 2231 2232 /* If we landed in the middle of a THP, continue at its end. */ 2233 if (xa_is_sibling(folio)) 2234 goto update_start; 2235 2236 if (!folio_try_get(folio)) 2237 goto retry; 2238 2239 if (unlikely(folio != xas_reload(&xas))) 2240 goto put_folio; 2241 2242 if (!folio_batch_add(fbatch, folio)) { 2243 nr = folio_nr_pages(folio); 2244 *start = folio->index + nr; 2245 goto out; 2246 } 2247 continue; 2248 put_folio: 2249 folio_put(folio); 2250 2251 retry: 2252 xas_reset(&xas); 2253 } 2254 2255 update_start: 2256 nr = folio_batch_count(fbatch); 2257 2258 if (nr) { 2259 folio = fbatch->folios[nr - 1]; 2260 *start = folio_next_index(folio); 2261 } 2262 out: 2263 rcu_read_unlock(); 2264 return folio_batch_count(fbatch); 2265 } 2266 EXPORT_SYMBOL(filemap_get_folios_contig); 2267 2268 /** 2269 * filemap_get_folios_tag - Get a batch of folios matching @tag 2270 * @mapping: The address_space to search 2271 * @start: The starting page index 2272 * @end: The final page index (inclusive) 2273 * @tag: The tag index 2274 * @fbatch: The batch to fill 2275 * 2276 * The first folio may start before @start; if it does, it will contain 2277 * @start. The final folio may extend beyond @end; if it does, it will 2278 * contain @end. The folios have ascending indices. There may be gaps 2279 * between the folios if there are indices which have no folio in the 2280 * page cache. If folios are added to or removed from the page cache 2281 * while this is running, they may or may not be found by this call. 2282 * Only returns folios that are tagged with @tag. 2283 * 2284 * Return: The number of folios found. 2285 * Also update @start to index the next folio for traversal. 2286 */ 2287 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start, 2288 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch) 2289 { 2290 XA_STATE(xas, &mapping->i_pages, *start); 2291 struct folio *folio; 2292 2293 rcu_read_lock(); 2294 while ((folio = find_get_entry(&xas, end, tag)) != NULL) { 2295 /* 2296 * Shadow entries should never be tagged, but this iteration 2297 * is lockless so there is a window for page reclaim to evict 2298 * a page we saw tagged. Skip over it. 2299 */ 2300 if (xa_is_value(folio)) 2301 continue; 2302 if (!folio_batch_add(fbatch, folio)) { 2303 unsigned long nr = folio_nr_pages(folio); 2304 *start = folio->index + nr; 2305 goto out; 2306 } 2307 } 2308 /* 2309 * We come here when there is no page beyond @end. We take care to not 2310 * overflow the index @start as it confuses some of the callers. This 2311 * breaks the iteration when there is a page at index -1 but that is 2312 * already broke anyway. 2313 */ 2314 if (end == (pgoff_t)-1) 2315 *start = (pgoff_t)-1; 2316 else 2317 *start = end + 1; 2318 out: 2319 rcu_read_unlock(); 2320 2321 return folio_batch_count(fbatch); 2322 } 2323 EXPORT_SYMBOL(filemap_get_folios_tag); 2324 2325 /* 2326 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 2327 * a _large_ part of the i/o request. Imagine the worst scenario: 2328 * 2329 * ---R__________________________________________B__________ 2330 * ^ reading here ^ bad block(assume 4k) 2331 * 2332 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2333 * => failing the whole request => read(R) => read(R+1) => 2334 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2335 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2336 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2337 * 2338 * It is going insane. Fix it by quickly scaling down the readahead size. 2339 */ 2340 static void shrink_readahead_size_eio(struct file_ra_state *ra) 2341 { 2342 ra->ra_pages /= 4; 2343 } 2344 2345 /* 2346 * filemap_get_read_batch - Get a batch of folios for read 2347 * 2348 * Get a batch of folios which represent a contiguous range of bytes in 2349 * the file. No exceptional entries will be returned. If @index is in 2350 * the middle of a folio, the entire folio will be returned. The last 2351 * folio in the batch may have the readahead flag set or the uptodate flag 2352 * clear so that the caller can take the appropriate action. 2353 */ 2354 static void filemap_get_read_batch(struct address_space *mapping, 2355 pgoff_t index, pgoff_t max, struct folio_batch *fbatch) 2356 { 2357 XA_STATE(xas, &mapping->i_pages, index); 2358 struct folio *folio; 2359 2360 rcu_read_lock(); 2361 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) { 2362 if (xas_retry(&xas, folio)) 2363 continue; 2364 if (xas.xa_index > max || xa_is_value(folio)) 2365 break; 2366 if (xa_is_sibling(folio)) 2367 break; 2368 if (!folio_try_get(folio)) 2369 goto retry; 2370 2371 if (unlikely(folio != xas_reload(&xas))) 2372 goto put_folio; 2373 2374 if (!folio_batch_add(fbatch, folio)) 2375 break; 2376 if (!folio_test_uptodate(folio)) 2377 break; 2378 if (folio_test_readahead(folio)) 2379 break; 2380 xas_advance(&xas, folio_next_index(folio) - 1); 2381 continue; 2382 put_folio: 2383 folio_put(folio); 2384 retry: 2385 xas_reset(&xas); 2386 } 2387 rcu_read_unlock(); 2388 } 2389 2390 static int filemap_read_folio(struct file *file, filler_t filler, 2391 struct folio *folio) 2392 { 2393 bool workingset = folio_test_workingset(folio); 2394 unsigned long pflags; 2395 int error; 2396 2397 /* Start the actual read. The read will unlock the page. */ 2398 if (unlikely(workingset)) 2399 psi_memstall_enter(&pflags); 2400 error = filler(file, folio); 2401 if (unlikely(workingset)) 2402 psi_memstall_leave(&pflags); 2403 if (error) 2404 return error; 2405 2406 error = folio_wait_locked_killable(folio); 2407 if (error) 2408 return error; 2409 if (folio_test_uptodate(folio)) 2410 return 0; 2411 if (file) 2412 shrink_readahead_size_eio(&file->f_ra); 2413 return -EIO; 2414 } 2415 2416 static bool filemap_range_uptodate(struct address_space *mapping, 2417 loff_t pos, size_t count, struct folio *folio, 2418 bool need_uptodate) 2419 { 2420 if (folio_test_uptodate(folio)) 2421 return true; 2422 /* pipes can't handle partially uptodate pages */ 2423 if (need_uptodate) 2424 return false; 2425 if (!mapping->a_ops->is_partially_uptodate) 2426 return false; 2427 if (mapping->host->i_blkbits >= folio_shift(folio)) 2428 return false; 2429 2430 if (folio_pos(folio) > pos) { 2431 count -= folio_pos(folio) - pos; 2432 pos = 0; 2433 } else { 2434 pos -= folio_pos(folio); 2435 } 2436 2437 return mapping->a_ops->is_partially_uptodate(folio, pos, count); 2438 } 2439 2440 static int filemap_update_page(struct kiocb *iocb, 2441 struct address_space *mapping, size_t count, 2442 struct folio *folio, bool need_uptodate) 2443 { 2444 int error; 2445 2446 if (iocb->ki_flags & IOCB_NOWAIT) { 2447 if (!filemap_invalidate_trylock_shared(mapping)) 2448 return -EAGAIN; 2449 } else { 2450 filemap_invalidate_lock_shared(mapping); 2451 } 2452 2453 if (!folio_trylock(folio)) { 2454 error = -EAGAIN; 2455 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) 2456 goto unlock_mapping; 2457 if (!(iocb->ki_flags & IOCB_WAITQ)) { 2458 filemap_invalidate_unlock_shared(mapping); 2459 /* 2460 * This is where we usually end up waiting for a 2461 * previously submitted readahead to finish. 2462 */ 2463 folio_put_wait_locked(folio, TASK_KILLABLE); 2464 return AOP_TRUNCATED_PAGE; 2465 } 2466 error = __folio_lock_async(folio, iocb->ki_waitq); 2467 if (error) 2468 goto unlock_mapping; 2469 } 2470 2471 error = AOP_TRUNCATED_PAGE; 2472 if (!folio->mapping) 2473 goto unlock; 2474 2475 error = 0; 2476 if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio, 2477 need_uptodate)) 2478 goto unlock; 2479 2480 error = -EAGAIN; 2481 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ)) 2482 goto unlock; 2483 2484 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio, 2485 folio); 2486 goto unlock_mapping; 2487 unlock: 2488 folio_unlock(folio); 2489 unlock_mapping: 2490 filemap_invalidate_unlock_shared(mapping); 2491 if (error == AOP_TRUNCATED_PAGE) 2492 folio_put(folio); 2493 return error; 2494 } 2495 2496 static int filemap_create_folio(struct kiocb *iocb, struct folio_batch *fbatch) 2497 { 2498 struct address_space *mapping = iocb->ki_filp->f_mapping; 2499 struct folio *folio; 2500 int error; 2501 unsigned int min_order = mapping_min_folio_order(mapping); 2502 pgoff_t index; 2503 2504 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ)) 2505 return -EAGAIN; 2506 2507 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), min_order); 2508 if (!folio) 2509 return -ENOMEM; 2510 if (iocb->ki_flags & IOCB_DONTCACHE) 2511 __folio_set_dropbehind(folio); 2512 2513 /* 2514 * Protect against truncate / hole punch. Grabbing invalidate_lock 2515 * here assures we cannot instantiate and bring uptodate new 2516 * pagecache folios after evicting page cache during truncate 2517 * and before actually freeing blocks. Note that we could 2518 * release invalidate_lock after inserting the folio into 2519 * the page cache as the locked folio would then be enough to 2520 * synchronize with hole punching. But there are code paths 2521 * such as filemap_update_page() filling in partially uptodate 2522 * pages or ->readahead() that need to hold invalidate_lock 2523 * while mapping blocks for IO so let's hold the lock here as 2524 * well to keep locking rules simple. 2525 */ 2526 filemap_invalidate_lock_shared(mapping); 2527 index = (iocb->ki_pos >> (PAGE_SHIFT + min_order)) << min_order; 2528 error = filemap_add_folio(mapping, folio, index, 2529 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2530 if (error == -EEXIST) 2531 error = AOP_TRUNCATED_PAGE; 2532 if (error) 2533 goto error; 2534 2535 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio, 2536 folio); 2537 if (error) 2538 goto error; 2539 2540 filemap_invalidate_unlock_shared(mapping); 2541 folio_batch_add(fbatch, folio); 2542 return 0; 2543 error: 2544 filemap_invalidate_unlock_shared(mapping); 2545 folio_put(folio); 2546 return error; 2547 } 2548 2549 static int filemap_readahead(struct kiocb *iocb, struct file *file, 2550 struct address_space *mapping, struct folio *folio, 2551 pgoff_t last_index) 2552 { 2553 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index); 2554 2555 if (iocb->ki_flags & IOCB_NOIO) 2556 return -EAGAIN; 2557 if (iocb->ki_flags & IOCB_DONTCACHE) 2558 ractl.dropbehind = 1; 2559 page_cache_async_ra(&ractl, folio, last_index - folio->index); 2560 return 0; 2561 } 2562 2563 static int filemap_get_pages(struct kiocb *iocb, size_t count, 2564 struct folio_batch *fbatch, bool need_uptodate) 2565 { 2566 struct file *filp = iocb->ki_filp; 2567 struct address_space *mapping = filp->f_mapping; 2568 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT; 2569 pgoff_t last_index; 2570 struct folio *folio; 2571 unsigned int flags; 2572 int err = 0; 2573 2574 /* "last_index" is the index of the page beyond the end of the read */ 2575 last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE); 2576 retry: 2577 if (fatal_signal_pending(current)) 2578 return -EINTR; 2579 2580 filemap_get_read_batch(mapping, index, last_index - 1, fbatch); 2581 if (!folio_batch_count(fbatch)) { 2582 DEFINE_READAHEAD(ractl, filp, &filp->f_ra, mapping, index); 2583 2584 if (iocb->ki_flags & IOCB_NOIO) 2585 return -EAGAIN; 2586 if (iocb->ki_flags & IOCB_NOWAIT) 2587 flags = memalloc_noio_save(); 2588 if (iocb->ki_flags & IOCB_DONTCACHE) 2589 ractl.dropbehind = 1; 2590 page_cache_sync_ra(&ractl, last_index - index); 2591 if (iocb->ki_flags & IOCB_NOWAIT) 2592 memalloc_noio_restore(flags); 2593 filemap_get_read_batch(mapping, index, last_index - 1, fbatch); 2594 } 2595 if (!folio_batch_count(fbatch)) { 2596 err = filemap_create_folio(iocb, fbatch); 2597 if (err == AOP_TRUNCATED_PAGE) 2598 goto retry; 2599 return err; 2600 } 2601 2602 folio = fbatch->folios[folio_batch_count(fbatch) - 1]; 2603 if (folio_test_readahead(folio)) { 2604 err = filemap_readahead(iocb, filp, mapping, folio, last_index); 2605 if (err) 2606 goto err; 2607 } 2608 if (!folio_test_uptodate(folio)) { 2609 if ((iocb->ki_flags & IOCB_WAITQ) && 2610 folio_batch_count(fbatch) > 1) 2611 iocb->ki_flags |= IOCB_NOWAIT; 2612 err = filemap_update_page(iocb, mapping, count, folio, 2613 need_uptodate); 2614 if (err) 2615 goto err; 2616 } 2617 2618 trace_mm_filemap_get_pages(mapping, index, last_index - 1); 2619 return 0; 2620 err: 2621 if (err < 0) 2622 folio_put(folio); 2623 if (likely(--fbatch->nr)) 2624 return 0; 2625 if (err == AOP_TRUNCATED_PAGE) 2626 goto retry; 2627 return err; 2628 } 2629 2630 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio) 2631 { 2632 unsigned int shift = folio_shift(folio); 2633 2634 return (pos1 >> shift == pos2 >> shift); 2635 } 2636 2637 static void filemap_end_dropbehind_read(struct address_space *mapping, 2638 struct folio *folio) 2639 { 2640 if (!folio_test_dropbehind(folio)) 2641 return; 2642 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 2643 return; 2644 if (folio_trylock(folio)) { 2645 if (folio_test_clear_dropbehind(folio)) 2646 folio_unmap_invalidate(mapping, folio, 0); 2647 folio_unlock(folio); 2648 } 2649 } 2650 2651 /** 2652 * filemap_read - Read data from the page cache. 2653 * @iocb: The iocb to read. 2654 * @iter: Destination for the data. 2655 * @already_read: Number of bytes already read by the caller. 2656 * 2657 * Copies data from the page cache. If the data is not currently present, 2658 * uses the readahead and read_folio address_space operations to fetch it. 2659 * 2660 * Return: Total number of bytes copied, including those already read by 2661 * the caller. If an error happens before any bytes are copied, returns 2662 * a negative error number. 2663 */ 2664 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter, 2665 ssize_t already_read) 2666 { 2667 struct file *filp = iocb->ki_filp; 2668 struct file_ra_state *ra = &filp->f_ra; 2669 struct address_space *mapping = filp->f_mapping; 2670 struct inode *inode = mapping->host; 2671 struct folio_batch fbatch; 2672 int i, error = 0; 2673 bool writably_mapped; 2674 loff_t isize, end_offset; 2675 loff_t last_pos = ra->prev_pos; 2676 2677 if (unlikely(iocb->ki_pos < 0)) 2678 return -EINVAL; 2679 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes)) 2680 return 0; 2681 if (unlikely(!iov_iter_count(iter))) 2682 return 0; 2683 2684 iov_iter_truncate(iter, inode->i_sb->s_maxbytes - iocb->ki_pos); 2685 folio_batch_init(&fbatch); 2686 2687 do { 2688 cond_resched(); 2689 2690 /* 2691 * If we've already successfully copied some data, then we 2692 * can no longer safely return -EIOCBQUEUED. Hence mark 2693 * an async read NOWAIT at that point. 2694 */ 2695 if ((iocb->ki_flags & IOCB_WAITQ) && already_read) 2696 iocb->ki_flags |= IOCB_NOWAIT; 2697 2698 if (unlikely(iocb->ki_pos >= i_size_read(inode))) 2699 break; 2700 2701 error = filemap_get_pages(iocb, iter->count, &fbatch, false); 2702 if (error < 0) 2703 break; 2704 2705 /* 2706 * i_size must be checked after we know the pages are Uptodate. 2707 * 2708 * Checking i_size after the check allows us to calculate 2709 * the correct value for "nr", which means the zero-filled 2710 * part of the page is not copied back to userspace (unless 2711 * another truncate extends the file - this is desired though). 2712 */ 2713 isize = i_size_read(inode); 2714 if (unlikely(iocb->ki_pos >= isize)) 2715 goto put_folios; 2716 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count); 2717 2718 /* 2719 * Once we start copying data, we don't want to be touching any 2720 * cachelines that might be contended: 2721 */ 2722 writably_mapped = mapping_writably_mapped(mapping); 2723 2724 /* 2725 * When a read accesses the same folio several times, only 2726 * mark it as accessed the first time. 2727 */ 2728 if (!pos_same_folio(iocb->ki_pos, last_pos - 1, 2729 fbatch.folios[0])) 2730 folio_mark_accessed(fbatch.folios[0]); 2731 2732 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2733 struct folio *folio = fbatch.folios[i]; 2734 size_t fsize = folio_size(folio); 2735 size_t offset = iocb->ki_pos & (fsize - 1); 2736 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos, 2737 fsize - offset); 2738 size_t copied; 2739 2740 if (end_offset < folio_pos(folio)) 2741 break; 2742 if (i > 0) 2743 folio_mark_accessed(folio); 2744 /* 2745 * If users can be writing to this folio using arbitrary 2746 * virtual addresses, take care of potential aliasing 2747 * before reading the folio on the kernel side. 2748 */ 2749 if (writably_mapped) 2750 flush_dcache_folio(folio); 2751 2752 copied = copy_folio_to_iter(folio, offset, bytes, iter); 2753 2754 already_read += copied; 2755 iocb->ki_pos += copied; 2756 last_pos = iocb->ki_pos; 2757 2758 if (copied < bytes) { 2759 error = -EFAULT; 2760 break; 2761 } 2762 } 2763 put_folios: 2764 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2765 struct folio *folio = fbatch.folios[i]; 2766 2767 filemap_end_dropbehind_read(mapping, folio); 2768 folio_put(folio); 2769 } 2770 folio_batch_init(&fbatch); 2771 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error); 2772 2773 file_accessed(filp); 2774 ra->prev_pos = last_pos; 2775 return already_read ? already_read : error; 2776 } 2777 EXPORT_SYMBOL_GPL(filemap_read); 2778 2779 int kiocb_write_and_wait(struct kiocb *iocb, size_t count) 2780 { 2781 struct address_space *mapping = iocb->ki_filp->f_mapping; 2782 loff_t pos = iocb->ki_pos; 2783 loff_t end = pos + count - 1; 2784 2785 if (iocb->ki_flags & IOCB_NOWAIT) { 2786 if (filemap_range_needs_writeback(mapping, pos, end)) 2787 return -EAGAIN; 2788 return 0; 2789 } 2790 2791 return filemap_write_and_wait_range(mapping, pos, end); 2792 } 2793 EXPORT_SYMBOL_GPL(kiocb_write_and_wait); 2794 2795 int filemap_invalidate_pages(struct address_space *mapping, 2796 loff_t pos, loff_t end, bool nowait) 2797 { 2798 int ret; 2799 2800 if (nowait) { 2801 /* we could block if there are any pages in the range */ 2802 if (filemap_range_has_page(mapping, pos, end)) 2803 return -EAGAIN; 2804 } else { 2805 ret = filemap_write_and_wait_range(mapping, pos, end); 2806 if (ret) 2807 return ret; 2808 } 2809 2810 /* 2811 * After a write we want buffered reads to be sure to go to disk to get 2812 * the new data. We invalidate clean cached page from the region we're 2813 * about to write. We do this *before* the write so that we can return 2814 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2815 */ 2816 return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, 2817 end >> PAGE_SHIFT); 2818 } 2819 2820 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count) 2821 { 2822 struct address_space *mapping = iocb->ki_filp->f_mapping; 2823 2824 return filemap_invalidate_pages(mapping, iocb->ki_pos, 2825 iocb->ki_pos + count - 1, 2826 iocb->ki_flags & IOCB_NOWAIT); 2827 } 2828 EXPORT_SYMBOL_GPL(kiocb_invalidate_pages); 2829 2830 /** 2831 * generic_file_read_iter - generic filesystem read routine 2832 * @iocb: kernel I/O control block 2833 * @iter: destination for the data read 2834 * 2835 * This is the "read_iter()" routine for all filesystems 2836 * that can use the page cache directly. 2837 * 2838 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall 2839 * be returned when no data can be read without waiting for I/O requests 2840 * to complete; it doesn't prevent readahead. 2841 * 2842 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O 2843 * requests shall be made for the read or for readahead. When no data 2844 * can be read, -EAGAIN shall be returned. When readahead would be 2845 * triggered, a partial, possibly empty read shall be returned. 2846 * 2847 * Return: 2848 * * number of bytes copied, even for partial reads 2849 * * negative error code (or 0 if IOCB_NOIO) if nothing was read 2850 */ 2851 ssize_t 2852 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2853 { 2854 size_t count = iov_iter_count(iter); 2855 ssize_t retval = 0; 2856 2857 if (!count) 2858 return 0; /* skip atime */ 2859 2860 if (iocb->ki_flags & IOCB_DIRECT) { 2861 struct file *file = iocb->ki_filp; 2862 struct address_space *mapping = file->f_mapping; 2863 struct inode *inode = mapping->host; 2864 2865 retval = kiocb_write_and_wait(iocb, count); 2866 if (retval < 0) 2867 return retval; 2868 file_accessed(file); 2869 2870 retval = mapping->a_ops->direct_IO(iocb, iter); 2871 if (retval >= 0) { 2872 iocb->ki_pos += retval; 2873 count -= retval; 2874 } 2875 if (retval != -EIOCBQUEUED) 2876 iov_iter_revert(iter, count - iov_iter_count(iter)); 2877 2878 /* 2879 * Btrfs can have a short DIO read if we encounter 2880 * compressed extents, so if there was an error, or if 2881 * we've already read everything we wanted to, or if 2882 * there was a short read because we hit EOF, go ahead 2883 * and return. Otherwise fallthrough to buffered io for 2884 * the rest of the read. Buffered reads will not work for 2885 * DAX files, so don't bother trying. 2886 */ 2887 if (retval < 0 || !count || IS_DAX(inode)) 2888 return retval; 2889 if (iocb->ki_pos >= i_size_read(inode)) 2890 return retval; 2891 } 2892 2893 return filemap_read(iocb, iter, retval); 2894 } 2895 EXPORT_SYMBOL(generic_file_read_iter); 2896 2897 /* 2898 * Splice subpages from a folio into a pipe. 2899 */ 2900 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe, 2901 struct folio *folio, loff_t fpos, size_t size) 2902 { 2903 struct page *page; 2904 size_t spliced = 0, offset = offset_in_folio(folio, fpos); 2905 2906 page = folio_page(folio, offset / PAGE_SIZE); 2907 size = min(size, folio_size(folio) - offset); 2908 offset %= PAGE_SIZE; 2909 2910 while (spliced < size && !pipe_is_full(pipe)) { 2911 struct pipe_buffer *buf = pipe_head_buf(pipe); 2912 size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced); 2913 2914 *buf = (struct pipe_buffer) { 2915 .ops = &page_cache_pipe_buf_ops, 2916 .page = page, 2917 .offset = offset, 2918 .len = part, 2919 }; 2920 folio_get(folio); 2921 pipe->head++; 2922 page++; 2923 spliced += part; 2924 offset = 0; 2925 } 2926 2927 return spliced; 2928 } 2929 2930 /** 2931 * filemap_splice_read - Splice data from a file's pagecache into a pipe 2932 * @in: The file to read from 2933 * @ppos: Pointer to the file position to read from 2934 * @pipe: The pipe to splice into 2935 * @len: The amount to splice 2936 * @flags: The SPLICE_F_* flags 2937 * 2938 * This function gets folios from a file's pagecache and splices them into the 2939 * pipe. Readahead will be called as necessary to fill more folios. This may 2940 * be used for blockdevs also. 2941 * 2942 * Return: On success, the number of bytes read will be returned and *@ppos 2943 * will be updated if appropriate; 0 will be returned if there is no more data 2944 * to be read; -EAGAIN will be returned if the pipe had no space, and some 2945 * other negative error code will be returned on error. A short read may occur 2946 * if the pipe has insufficient space, we reach the end of the data or we hit a 2947 * hole. 2948 */ 2949 ssize_t filemap_splice_read(struct file *in, loff_t *ppos, 2950 struct pipe_inode_info *pipe, 2951 size_t len, unsigned int flags) 2952 { 2953 struct folio_batch fbatch; 2954 struct kiocb iocb; 2955 size_t total_spliced = 0, used, npages; 2956 loff_t isize, end_offset; 2957 bool writably_mapped; 2958 int i, error = 0; 2959 2960 if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes)) 2961 return 0; 2962 2963 init_sync_kiocb(&iocb, in); 2964 iocb.ki_pos = *ppos; 2965 2966 /* Work out how much data we can actually add into the pipe */ 2967 used = pipe_buf_usage(pipe); 2968 npages = max_t(ssize_t, pipe->max_usage - used, 0); 2969 len = min_t(size_t, len, npages * PAGE_SIZE); 2970 2971 folio_batch_init(&fbatch); 2972 2973 do { 2974 cond_resched(); 2975 2976 if (*ppos >= i_size_read(in->f_mapping->host)) 2977 break; 2978 2979 iocb.ki_pos = *ppos; 2980 error = filemap_get_pages(&iocb, len, &fbatch, true); 2981 if (error < 0) 2982 break; 2983 2984 /* 2985 * i_size must be checked after we know the pages are Uptodate. 2986 * 2987 * Checking i_size after the check allows us to calculate 2988 * the correct value for "nr", which means the zero-filled 2989 * part of the page is not copied back to userspace (unless 2990 * another truncate extends the file - this is desired though). 2991 */ 2992 isize = i_size_read(in->f_mapping->host); 2993 if (unlikely(*ppos >= isize)) 2994 break; 2995 end_offset = min_t(loff_t, isize, *ppos + len); 2996 2997 /* 2998 * Once we start copying data, we don't want to be touching any 2999 * cachelines that might be contended: 3000 */ 3001 writably_mapped = mapping_writably_mapped(in->f_mapping); 3002 3003 for (i = 0; i < folio_batch_count(&fbatch); i++) { 3004 struct folio *folio = fbatch.folios[i]; 3005 size_t n; 3006 3007 if (folio_pos(folio) >= end_offset) 3008 goto out; 3009 folio_mark_accessed(folio); 3010 3011 /* 3012 * If users can be writing to this folio using arbitrary 3013 * virtual addresses, take care of potential aliasing 3014 * before reading the folio on the kernel side. 3015 */ 3016 if (writably_mapped) 3017 flush_dcache_folio(folio); 3018 3019 n = min_t(loff_t, len, isize - *ppos); 3020 n = splice_folio_into_pipe(pipe, folio, *ppos, n); 3021 if (!n) 3022 goto out; 3023 len -= n; 3024 total_spliced += n; 3025 *ppos += n; 3026 in->f_ra.prev_pos = *ppos; 3027 if (pipe_is_full(pipe)) 3028 goto out; 3029 } 3030 3031 folio_batch_release(&fbatch); 3032 } while (len); 3033 3034 out: 3035 folio_batch_release(&fbatch); 3036 file_accessed(in); 3037 3038 return total_spliced ? total_spliced : error; 3039 } 3040 EXPORT_SYMBOL(filemap_splice_read); 3041 3042 static inline loff_t folio_seek_hole_data(struct xa_state *xas, 3043 struct address_space *mapping, struct folio *folio, 3044 loff_t start, loff_t end, bool seek_data) 3045 { 3046 const struct address_space_operations *ops = mapping->a_ops; 3047 size_t offset, bsz = i_blocksize(mapping->host); 3048 3049 if (xa_is_value(folio) || folio_test_uptodate(folio)) 3050 return seek_data ? start : end; 3051 if (!ops->is_partially_uptodate) 3052 return seek_data ? end : start; 3053 3054 xas_pause(xas); 3055 rcu_read_unlock(); 3056 folio_lock(folio); 3057 if (unlikely(folio->mapping != mapping)) 3058 goto unlock; 3059 3060 offset = offset_in_folio(folio, start) & ~(bsz - 1); 3061 3062 do { 3063 if (ops->is_partially_uptodate(folio, offset, bsz) == 3064 seek_data) 3065 break; 3066 start = (start + bsz) & ~((u64)bsz - 1); 3067 offset += bsz; 3068 } while (offset < folio_size(folio)); 3069 unlock: 3070 folio_unlock(folio); 3071 rcu_read_lock(); 3072 return start; 3073 } 3074 3075 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio) 3076 { 3077 if (xa_is_value(folio)) 3078 return PAGE_SIZE << xas_get_order(xas); 3079 return folio_size(folio); 3080 } 3081 3082 /** 3083 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache. 3084 * @mapping: Address space to search. 3085 * @start: First byte to consider. 3086 * @end: Limit of search (exclusive). 3087 * @whence: Either SEEK_HOLE or SEEK_DATA. 3088 * 3089 * If the page cache knows which blocks contain holes and which blocks 3090 * contain data, your filesystem can use this function to implement 3091 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are 3092 * entirely memory-based such as tmpfs, and filesystems which support 3093 * unwritten extents. 3094 * 3095 * Return: The requested offset on success, or -ENXIO if @whence specifies 3096 * SEEK_DATA and there is no data after @start. There is an implicit hole 3097 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start 3098 * and @end contain data. 3099 */ 3100 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start, 3101 loff_t end, int whence) 3102 { 3103 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT); 3104 pgoff_t max = (end - 1) >> PAGE_SHIFT; 3105 bool seek_data = (whence == SEEK_DATA); 3106 struct folio *folio; 3107 3108 if (end <= start) 3109 return -ENXIO; 3110 3111 rcu_read_lock(); 3112 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) { 3113 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT; 3114 size_t seek_size; 3115 3116 if (start < pos) { 3117 if (!seek_data) 3118 goto unlock; 3119 start = pos; 3120 } 3121 3122 seek_size = seek_folio_size(&xas, folio); 3123 pos = round_up((u64)pos + 1, seek_size); 3124 start = folio_seek_hole_data(&xas, mapping, folio, start, pos, 3125 seek_data); 3126 if (start < pos) 3127 goto unlock; 3128 if (start >= end) 3129 break; 3130 if (seek_size > PAGE_SIZE) 3131 xas_set(&xas, pos >> PAGE_SHIFT); 3132 if (!xa_is_value(folio)) 3133 folio_put(folio); 3134 } 3135 if (seek_data) 3136 start = -ENXIO; 3137 unlock: 3138 rcu_read_unlock(); 3139 if (folio && !xa_is_value(folio)) 3140 folio_put(folio); 3141 if (start > end) 3142 return end; 3143 return start; 3144 } 3145 3146 #ifdef CONFIG_MMU 3147 #define MMAP_LOTSAMISS (100) 3148 /* 3149 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock 3150 * @vmf - the vm_fault for this fault. 3151 * @folio - the folio to lock. 3152 * @fpin - the pointer to the file we may pin (or is already pinned). 3153 * 3154 * This works similar to lock_folio_or_retry in that it can drop the 3155 * mmap_lock. It differs in that it actually returns the folio locked 3156 * if it returns 1 and 0 if it couldn't lock the folio. If we did have 3157 * to drop the mmap_lock then fpin will point to the pinned file and 3158 * needs to be fput()'ed at a later point. 3159 */ 3160 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio, 3161 struct file **fpin) 3162 { 3163 if (folio_trylock(folio)) 3164 return 1; 3165 3166 /* 3167 * NOTE! This will make us return with VM_FAULT_RETRY, but with 3168 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT 3169 * is supposed to work. We have way too many special cases.. 3170 */ 3171 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 3172 return 0; 3173 3174 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 3175 if (vmf->flags & FAULT_FLAG_KILLABLE) { 3176 if (__folio_lock_killable(folio)) { 3177 /* 3178 * We didn't have the right flags to drop the 3179 * fault lock, but all fault_handlers only check 3180 * for fatal signals if we return VM_FAULT_RETRY, 3181 * so we need to drop the fault lock here and 3182 * return 0 if we don't have a fpin. 3183 */ 3184 if (*fpin == NULL) 3185 release_fault_lock(vmf); 3186 return 0; 3187 } 3188 } else 3189 __folio_lock(folio); 3190 3191 return 1; 3192 } 3193 3194 /* 3195 * Synchronous readahead happens when we don't even find a page in the page 3196 * cache at all. We don't want to perform IO under the mmap sem, so if we have 3197 * to drop the mmap sem we return the file that was pinned in order for us to do 3198 * that. If we didn't pin a file then we return NULL. The file that is 3199 * returned needs to be fput()'ed when we're done with it. 3200 */ 3201 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 3202 { 3203 struct file *file = vmf->vma->vm_file; 3204 struct file_ra_state *ra = &file->f_ra; 3205 struct address_space *mapping = file->f_mapping; 3206 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff); 3207 struct file *fpin = NULL; 3208 unsigned long vm_flags = vmf->vma->vm_flags; 3209 unsigned int mmap_miss; 3210 3211 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3212 /* Use the readahead code, even if readahead is disabled */ 3213 if ((vm_flags & VM_HUGEPAGE) && HPAGE_PMD_ORDER <= MAX_PAGECACHE_ORDER) { 3214 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3215 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1); 3216 ra->size = HPAGE_PMD_NR; 3217 /* 3218 * Fetch two PMD folios, so we get the chance to actually 3219 * readahead, unless we've been told not to. 3220 */ 3221 if (!(vm_flags & VM_RAND_READ)) 3222 ra->size *= 2; 3223 ra->async_size = HPAGE_PMD_NR; 3224 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER); 3225 return fpin; 3226 } 3227 #endif 3228 3229 /* If we don't want any read-ahead, don't bother */ 3230 if (vm_flags & VM_RAND_READ) 3231 return fpin; 3232 if (!ra->ra_pages) 3233 return fpin; 3234 3235 if (vm_flags & VM_SEQ_READ) { 3236 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3237 page_cache_sync_ra(&ractl, ra->ra_pages); 3238 return fpin; 3239 } 3240 3241 /* Avoid banging the cache line if not needed */ 3242 mmap_miss = READ_ONCE(ra->mmap_miss); 3243 if (mmap_miss < MMAP_LOTSAMISS * 10) 3244 WRITE_ONCE(ra->mmap_miss, ++mmap_miss); 3245 3246 /* 3247 * Do we miss much more than hit in this file? If so, 3248 * stop bothering with read-ahead. It will only hurt. 3249 */ 3250 if (mmap_miss > MMAP_LOTSAMISS) 3251 return fpin; 3252 3253 /* 3254 * mmap read-around 3255 */ 3256 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3257 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2); 3258 ra->size = ra->ra_pages; 3259 ra->async_size = ra->ra_pages / 4; 3260 ractl._index = ra->start; 3261 page_cache_ra_order(&ractl, ra, 0); 3262 return fpin; 3263 } 3264 3265 /* 3266 * Asynchronous readahead happens when we find the page and PG_readahead, 3267 * so we want to possibly extend the readahead further. We return the file that 3268 * was pinned if we have to drop the mmap_lock in order to do IO. 3269 */ 3270 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 3271 struct folio *folio) 3272 { 3273 struct file *file = vmf->vma->vm_file; 3274 struct file_ra_state *ra = &file->f_ra; 3275 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff); 3276 struct file *fpin = NULL; 3277 unsigned int mmap_miss; 3278 3279 /* If we don't want any read-ahead, don't bother */ 3280 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages) 3281 return fpin; 3282 3283 mmap_miss = READ_ONCE(ra->mmap_miss); 3284 if (mmap_miss) 3285 WRITE_ONCE(ra->mmap_miss, --mmap_miss); 3286 3287 if (folio_test_readahead(folio)) { 3288 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3289 page_cache_async_ra(&ractl, folio, ra->ra_pages); 3290 } 3291 return fpin; 3292 } 3293 3294 static vm_fault_t filemap_fault_recheck_pte_none(struct vm_fault *vmf) 3295 { 3296 struct vm_area_struct *vma = vmf->vma; 3297 vm_fault_t ret = 0; 3298 pte_t *ptep; 3299 3300 /* 3301 * We might have COW'ed a pagecache folio and might now have an mlocked 3302 * anon folio mapped. The original pagecache folio is not mlocked and 3303 * might have been evicted. During a read+clear/modify/write update of 3304 * the PTE, such as done in do_numa_page()/change_pte_range(), we 3305 * temporarily clear the PTE under PT lock and might detect it here as 3306 * "none" when not holding the PT lock. 3307 * 3308 * Not rechecking the PTE under PT lock could result in an unexpected 3309 * major fault in an mlock'ed region. Recheck only for this special 3310 * scenario while holding the PT lock, to not degrade non-mlocked 3311 * scenarios. Recheck the PTE without PT lock firstly, thereby reducing 3312 * the number of times we hold PT lock. 3313 */ 3314 if (!(vma->vm_flags & VM_LOCKED)) 3315 return 0; 3316 3317 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 3318 return 0; 3319 3320 ptep = pte_offset_map_ro_nolock(vma->vm_mm, vmf->pmd, vmf->address, 3321 &vmf->ptl); 3322 if (unlikely(!ptep)) 3323 return VM_FAULT_NOPAGE; 3324 3325 if (unlikely(!pte_none(ptep_get_lockless(ptep)))) { 3326 ret = VM_FAULT_NOPAGE; 3327 } else { 3328 spin_lock(vmf->ptl); 3329 if (unlikely(!pte_none(ptep_get(ptep)))) 3330 ret = VM_FAULT_NOPAGE; 3331 spin_unlock(vmf->ptl); 3332 } 3333 pte_unmap(ptep); 3334 return ret; 3335 } 3336 3337 /** 3338 * filemap_fault - read in file data for page fault handling 3339 * @vmf: struct vm_fault containing details of the fault 3340 * 3341 * filemap_fault() is invoked via the vma operations vector for a 3342 * mapped memory region to read in file data during a page fault. 3343 * 3344 * The goto's are kind of ugly, but this streamlines the normal case of having 3345 * it in the page cache, and handles the special cases reasonably without 3346 * having a lot of duplicated code. 3347 * 3348 * vma->vm_mm->mmap_lock must be held on entry. 3349 * 3350 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock 3351 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap(). 3352 * 3353 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock 3354 * has not been released. 3355 * 3356 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 3357 * 3358 * Return: bitwise-OR of %VM_FAULT_ codes. 3359 */ 3360 vm_fault_t filemap_fault(struct vm_fault *vmf) 3361 { 3362 int error; 3363 struct file *file = vmf->vma->vm_file; 3364 struct file *fpin = NULL; 3365 struct address_space *mapping = file->f_mapping; 3366 struct inode *inode = mapping->host; 3367 pgoff_t max_idx, index = vmf->pgoff; 3368 struct folio *folio; 3369 vm_fault_t ret = 0; 3370 bool mapping_locked = false; 3371 3372 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3373 if (unlikely(index >= max_idx)) 3374 return VM_FAULT_SIGBUS; 3375 3376 trace_mm_filemap_fault(mapping, index); 3377 3378 /* 3379 * Do we have something in the page cache already? 3380 */ 3381 folio = filemap_get_folio(mapping, index); 3382 if (likely(!IS_ERR(folio))) { 3383 /* 3384 * We found the page, so try async readahead before waiting for 3385 * the lock. 3386 */ 3387 if (!(vmf->flags & FAULT_FLAG_TRIED)) 3388 fpin = do_async_mmap_readahead(vmf, folio); 3389 if (unlikely(!folio_test_uptodate(folio))) { 3390 filemap_invalidate_lock_shared(mapping); 3391 mapping_locked = true; 3392 } 3393 } else { 3394 ret = filemap_fault_recheck_pte_none(vmf); 3395 if (unlikely(ret)) 3396 return ret; 3397 3398 /* No page in the page cache at all */ 3399 count_vm_event(PGMAJFAULT); 3400 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 3401 ret = VM_FAULT_MAJOR; 3402 fpin = do_sync_mmap_readahead(vmf); 3403 retry_find: 3404 /* 3405 * See comment in filemap_create_folio() why we need 3406 * invalidate_lock 3407 */ 3408 if (!mapping_locked) { 3409 filemap_invalidate_lock_shared(mapping); 3410 mapping_locked = true; 3411 } 3412 folio = __filemap_get_folio(mapping, index, 3413 FGP_CREAT|FGP_FOR_MMAP, 3414 vmf->gfp_mask); 3415 if (IS_ERR(folio)) { 3416 if (fpin) 3417 goto out_retry; 3418 filemap_invalidate_unlock_shared(mapping); 3419 return VM_FAULT_OOM; 3420 } 3421 } 3422 3423 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin)) 3424 goto out_retry; 3425 3426 /* Did it get truncated? */ 3427 if (unlikely(folio->mapping != mapping)) { 3428 folio_unlock(folio); 3429 folio_put(folio); 3430 goto retry_find; 3431 } 3432 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 3433 3434 /* 3435 * We have a locked folio in the page cache, now we need to check 3436 * that it's up-to-date. If not, it is going to be due to an error, 3437 * or because readahead was otherwise unable to retrieve it. 3438 */ 3439 if (unlikely(!folio_test_uptodate(folio))) { 3440 /* 3441 * If the invalidate lock is not held, the folio was in cache 3442 * and uptodate and now it is not. Strange but possible since we 3443 * didn't hold the page lock all the time. Let's drop 3444 * everything, get the invalidate lock and try again. 3445 */ 3446 if (!mapping_locked) { 3447 folio_unlock(folio); 3448 folio_put(folio); 3449 goto retry_find; 3450 } 3451 3452 /* 3453 * OK, the folio is really not uptodate. This can be because the 3454 * VMA has the VM_RAND_READ flag set, or because an error 3455 * arose. Let's read it in directly. 3456 */ 3457 goto page_not_uptodate; 3458 } 3459 3460 /* 3461 * We've made it this far and we had to drop our mmap_lock, now is the 3462 * time to return to the upper layer and have it re-find the vma and 3463 * redo the fault. 3464 */ 3465 if (fpin) { 3466 folio_unlock(folio); 3467 goto out_retry; 3468 } 3469 if (mapping_locked) 3470 filemap_invalidate_unlock_shared(mapping); 3471 3472 /* 3473 * Found the page and have a reference on it. 3474 * We must recheck i_size under page lock. 3475 */ 3476 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3477 if (unlikely(index >= max_idx)) { 3478 folio_unlock(folio); 3479 folio_put(folio); 3480 return VM_FAULT_SIGBUS; 3481 } 3482 3483 vmf->page = folio_file_page(folio, index); 3484 return ret | VM_FAULT_LOCKED; 3485 3486 page_not_uptodate: 3487 /* 3488 * Umm, take care of errors if the page isn't up-to-date. 3489 * Try to re-read it _once_. We do this synchronously, 3490 * because there really aren't any performance issues here 3491 * and we need to check for errors. 3492 */ 3493 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3494 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio); 3495 if (fpin) 3496 goto out_retry; 3497 folio_put(folio); 3498 3499 if (!error || error == AOP_TRUNCATED_PAGE) 3500 goto retry_find; 3501 filemap_invalidate_unlock_shared(mapping); 3502 3503 return VM_FAULT_SIGBUS; 3504 3505 out_retry: 3506 /* 3507 * We dropped the mmap_lock, we need to return to the fault handler to 3508 * re-find the vma and come back and find our hopefully still populated 3509 * page. 3510 */ 3511 if (!IS_ERR(folio)) 3512 folio_put(folio); 3513 if (mapping_locked) 3514 filemap_invalidate_unlock_shared(mapping); 3515 if (fpin) 3516 fput(fpin); 3517 return ret | VM_FAULT_RETRY; 3518 } 3519 EXPORT_SYMBOL(filemap_fault); 3520 3521 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio, 3522 pgoff_t start) 3523 { 3524 struct mm_struct *mm = vmf->vma->vm_mm; 3525 3526 /* Huge page is mapped? No need to proceed. */ 3527 if (pmd_trans_huge(*vmf->pmd)) { 3528 folio_unlock(folio); 3529 folio_put(folio); 3530 return true; 3531 } 3532 3533 if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) { 3534 struct page *page = folio_file_page(folio, start); 3535 vm_fault_t ret = do_set_pmd(vmf, page); 3536 if (!ret) { 3537 /* The page is mapped successfully, reference consumed. */ 3538 folio_unlock(folio); 3539 return true; 3540 } 3541 } 3542 3543 if (pmd_none(*vmf->pmd) && vmf->prealloc_pte) 3544 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte); 3545 3546 return false; 3547 } 3548 3549 static struct folio *next_uptodate_folio(struct xa_state *xas, 3550 struct address_space *mapping, pgoff_t end_pgoff) 3551 { 3552 struct folio *folio = xas_next_entry(xas, end_pgoff); 3553 unsigned long max_idx; 3554 3555 do { 3556 if (!folio) 3557 return NULL; 3558 if (xas_retry(xas, folio)) 3559 continue; 3560 if (xa_is_value(folio)) 3561 continue; 3562 if (!folio_try_get(folio)) 3563 continue; 3564 if (folio_test_locked(folio)) 3565 goto skip; 3566 /* Has the page moved or been split? */ 3567 if (unlikely(folio != xas_reload(xas))) 3568 goto skip; 3569 if (!folio_test_uptodate(folio) || folio_test_readahead(folio)) 3570 goto skip; 3571 if (!folio_trylock(folio)) 3572 goto skip; 3573 if (folio->mapping != mapping) 3574 goto unlock; 3575 if (!folio_test_uptodate(folio)) 3576 goto unlock; 3577 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3578 if (xas->xa_index >= max_idx) 3579 goto unlock; 3580 return folio; 3581 unlock: 3582 folio_unlock(folio); 3583 skip: 3584 folio_put(folio); 3585 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL); 3586 3587 return NULL; 3588 } 3589 3590 /* 3591 * Map page range [start_page, start_page + nr_pages) of folio. 3592 * start_page is gotten from start by folio_page(folio, start) 3593 */ 3594 static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf, 3595 struct folio *folio, unsigned long start, 3596 unsigned long addr, unsigned int nr_pages, 3597 unsigned long *rss, unsigned int *mmap_miss) 3598 { 3599 vm_fault_t ret = 0; 3600 struct page *page = folio_page(folio, start); 3601 unsigned int count = 0; 3602 pte_t *old_ptep = vmf->pte; 3603 3604 do { 3605 if (PageHWPoison(page + count)) 3606 goto skip; 3607 3608 /* 3609 * If there are too many folios that are recently evicted 3610 * in a file, they will probably continue to be evicted. 3611 * In such situation, read-ahead is only a waste of IO. 3612 * Don't decrease mmap_miss in this scenario to make sure 3613 * we can stop read-ahead. 3614 */ 3615 if (!folio_test_workingset(folio)) 3616 (*mmap_miss)++; 3617 3618 /* 3619 * NOTE: If there're PTE markers, we'll leave them to be 3620 * handled in the specific fault path, and it'll prohibit the 3621 * fault-around logic. 3622 */ 3623 if (!pte_none(ptep_get(&vmf->pte[count]))) 3624 goto skip; 3625 3626 count++; 3627 continue; 3628 skip: 3629 if (count) { 3630 set_pte_range(vmf, folio, page, count, addr); 3631 *rss += count; 3632 folio_ref_add(folio, count); 3633 if (in_range(vmf->address, addr, count * PAGE_SIZE)) 3634 ret = VM_FAULT_NOPAGE; 3635 } 3636 3637 count++; 3638 page += count; 3639 vmf->pte += count; 3640 addr += count * PAGE_SIZE; 3641 count = 0; 3642 } while (--nr_pages > 0); 3643 3644 if (count) { 3645 set_pte_range(vmf, folio, page, count, addr); 3646 *rss += count; 3647 folio_ref_add(folio, count); 3648 if (in_range(vmf->address, addr, count * PAGE_SIZE)) 3649 ret = VM_FAULT_NOPAGE; 3650 } 3651 3652 vmf->pte = old_ptep; 3653 3654 return ret; 3655 } 3656 3657 static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf, 3658 struct folio *folio, unsigned long addr, 3659 unsigned long *rss, unsigned int *mmap_miss) 3660 { 3661 vm_fault_t ret = 0; 3662 struct page *page = &folio->page; 3663 3664 if (PageHWPoison(page)) 3665 return ret; 3666 3667 /* See comment of filemap_map_folio_range() */ 3668 if (!folio_test_workingset(folio)) 3669 (*mmap_miss)++; 3670 3671 /* 3672 * NOTE: If there're PTE markers, we'll leave them to be 3673 * handled in the specific fault path, and it'll prohibit 3674 * the fault-around logic. 3675 */ 3676 if (!pte_none(ptep_get(vmf->pte))) 3677 return ret; 3678 3679 if (vmf->address == addr) 3680 ret = VM_FAULT_NOPAGE; 3681 3682 set_pte_range(vmf, folio, page, 1, addr); 3683 (*rss)++; 3684 folio_ref_inc(folio); 3685 3686 return ret; 3687 } 3688 3689 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3690 pgoff_t start_pgoff, pgoff_t end_pgoff) 3691 { 3692 struct vm_area_struct *vma = vmf->vma; 3693 struct file *file = vma->vm_file; 3694 struct address_space *mapping = file->f_mapping; 3695 pgoff_t file_end, last_pgoff = start_pgoff; 3696 unsigned long addr; 3697 XA_STATE(xas, &mapping->i_pages, start_pgoff); 3698 struct folio *folio; 3699 vm_fault_t ret = 0; 3700 unsigned long rss = 0; 3701 unsigned int nr_pages = 0, mmap_miss = 0, mmap_miss_saved, folio_type; 3702 3703 rcu_read_lock(); 3704 folio = next_uptodate_folio(&xas, mapping, end_pgoff); 3705 if (!folio) 3706 goto out; 3707 3708 if (filemap_map_pmd(vmf, folio, start_pgoff)) { 3709 ret = VM_FAULT_NOPAGE; 3710 goto out; 3711 } 3712 3713 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT); 3714 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 3715 if (!vmf->pte) { 3716 folio_unlock(folio); 3717 folio_put(folio); 3718 goto out; 3719 } 3720 3721 file_end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE) - 1; 3722 if (end_pgoff > file_end) 3723 end_pgoff = file_end; 3724 3725 folio_type = mm_counter_file(folio); 3726 do { 3727 unsigned long end; 3728 3729 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 3730 vmf->pte += xas.xa_index - last_pgoff; 3731 last_pgoff = xas.xa_index; 3732 end = folio_next_index(folio) - 1; 3733 nr_pages = min(end, end_pgoff) - xas.xa_index + 1; 3734 3735 if (!folio_test_large(folio)) 3736 ret |= filemap_map_order0_folio(vmf, 3737 folio, addr, &rss, &mmap_miss); 3738 else 3739 ret |= filemap_map_folio_range(vmf, folio, 3740 xas.xa_index - folio->index, addr, 3741 nr_pages, &rss, &mmap_miss); 3742 3743 folio_unlock(folio); 3744 folio_put(folio); 3745 } while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL); 3746 add_mm_counter(vma->vm_mm, folio_type, rss); 3747 pte_unmap_unlock(vmf->pte, vmf->ptl); 3748 trace_mm_filemap_map_pages(mapping, start_pgoff, end_pgoff); 3749 out: 3750 rcu_read_unlock(); 3751 3752 mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss); 3753 if (mmap_miss >= mmap_miss_saved) 3754 WRITE_ONCE(file->f_ra.mmap_miss, 0); 3755 else 3756 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss); 3757 3758 return ret; 3759 } 3760 EXPORT_SYMBOL(filemap_map_pages); 3761 3762 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3763 { 3764 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 3765 struct folio *folio = page_folio(vmf->page); 3766 vm_fault_t ret = VM_FAULT_LOCKED; 3767 3768 sb_start_pagefault(mapping->host->i_sb); 3769 file_update_time(vmf->vma->vm_file); 3770 folio_lock(folio); 3771 if (folio->mapping != mapping) { 3772 folio_unlock(folio); 3773 ret = VM_FAULT_NOPAGE; 3774 goto out; 3775 } 3776 /* 3777 * We mark the folio dirty already here so that when freeze is in 3778 * progress, we are guaranteed that writeback during freezing will 3779 * see the dirty folio and writeprotect it again. 3780 */ 3781 folio_mark_dirty(folio); 3782 folio_wait_stable(folio); 3783 out: 3784 sb_end_pagefault(mapping->host->i_sb); 3785 return ret; 3786 } 3787 3788 const struct vm_operations_struct generic_file_vm_ops = { 3789 .fault = filemap_fault, 3790 .map_pages = filemap_map_pages, 3791 .page_mkwrite = filemap_page_mkwrite, 3792 }; 3793 3794 /* This is used for a general mmap of a disk file */ 3795 3796 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3797 { 3798 struct address_space *mapping = file->f_mapping; 3799 3800 if (!mapping->a_ops->read_folio) 3801 return -ENOEXEC; 3802 file_accessed(file); 3803 vma->vm_ops = &generic_file_vm_ops; 3804 return 0; 3805 } 3806 3807 /* 3808 * This is for filesystems which do not implement ->writepage. 3809 */ 3810 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3811 { 3812 if (vma_is_shared_maywrite(vma)) 3813 return -EINVAL; 3814 return generic_file_mmap(file, vma); 3815 } 3816 #else 3817 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3818 { 3819 return VM_FAULT_SIGBUS; 3820 } 3821 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3822 { 3823 return -ENOSYS; 3824 } 3825 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3826 { 3827 return -ENOSYS; 3828 } 3829 #endif /* CONFIG_MMU */ 3830 3831 EXPORT_SYMBOL(filemap_page_mkwrite); 3832 EXPORT_SYMBOL(generic_file_mmap); 3833 EXPORT_SYMBOL(generic_file_readonly_mmap); 3834 3835 static struct folio *do_read_cache_folio(struct address_space *mapping, 3836 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp) 3837 { 3838 struct folio *folio; 3839 int err; 3840 3841 if (!filler) 3842 filler = mapping->a_ops->read_folio; 3843 repeat: 3844 folio = filemap_get_folio(mapping, index); 3845 if (IS_ERR(folio)) { 3846 folio = filemap_alloc_folio(gfp, 3847 mapping_min_folio_order(mapping)); 3848 if (!folio) 3849 return ERR_PTR(-ENOMEM); 3850 index = mapping_align_index(mapping, index); 3851 err = filemap_add_folio(mapping, folio, index, gfp); 3852 if (unlikely(err)) { 3853 folio_put(folio); 3854 if (err == -EEXIST) 3855 goto repeat; 3856 /* Presumably ENOMEM for xarray node */ 3857 return ERR_PTR(err); 3858 } 3859 3860 goto filler; 3861 } 3862 if (folio_test_uptodate(folio)) 3863 goto out; 3864 3865 if (!folio_trylock(folio)) { 3866 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE); 3867 goto repeat; 3868 } 3869 3870 /* Folio was truncated from mapping */ 3871 if (!folio->mapping) { 3872 folio_unlock(folio); 3873 folio_put(folio); 3874 goto repeat; 3875 } 3876 3877 /* Someone else locked and filled the page in a very small window */ 3878 if (folio_test_uptodate(folio)) { 3879 folio_unlock(folio); 3880 goto out; 3881 } 3882 3883 filler: 3884 err = filemap_read_folio(file, filler, folio); 3885 if (err) { 3886 folio_put(folio); 3887 if (err == AOP_TRUNCATED_PAGE) 3888 goto repeat; 3889 return ERR_PTR(err); 3890 } 3891 3892 out: 3893 folio_mark_accessed(folio); 3894 return folio; 3895 } 3896 3897 /** 3898 * read_cache_folio - Read into page cache, fill it if needed. 3899 * @mapping: The address_space to read from. 3900 * @index: The index to read. 3901 * @filler: Function to perform the read, or NULL to use aops->read_folio(). 3902 * @file: Passed to filler function, may be NULL if not required. 3903 * 3904 * Read one page into the page cache. If it succeeds, the folio returned 3905 * will contain @index, but it may not be the first page of the folio. 3906 * 3907 * If the filler function returns an error, it will be returned to the 3908 * caller. 3909 * 3910 * Context: May sleep. Expects mapping->invalidate_lock to be held. 3911 * Return: An uptodate folio on success, ERR_PTR() on failure. 3912 */ 3913 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index, 3914 filler_t filler, struct file *file) 3915 { 3916 return do_read_cache_folio(mapping, index, filler, file, 3917 mapping_gfp_mask(mapping)); 3918 } 3919 EXPORT_SYMBOL(read_cache_folio); 3920 3921 /** 3922 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags. 3923 * @mapping: The address_space for the folio. 3924 * @index: The index that the allocated folio will contain. 3925 * @gfp: The page allocator flags to use if allocating. 3926 * 3927 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with 3928 * any new memory allocations done using the specified allocation flags. 3929 * 3930 * The most likely error from this function is EIO, but ENOMEM is 3931 * possible and so is EINTR. If ->read_folio returns another error, 3932 * that will be returned to the caller. 3933 * 3934 * The function expects mapping->invalidate_lock to be already held. 3935 * 3936 * Return: Uptodate folio on success, ERR_PTR() on failure. 3937 */ 3938 struct folio *mapping_read_folio_gfp(struct address_space *mapping, 3939 pgoff_t index, gfp_t gfp) 3940 { 3941 return do_read_cache_folio(mapping, index, NULL, NULL, gfp); 3942 } 3943 EXPORT_SYMBOL(mapping_read_folio_gfp); 3944 3945 static struct page *do_read_cache_page(struct address_space *mapping, 3946 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp) 3947 { 3948 struct folio *folio; 3949 3950 folio = do_read_cache_folio(mapping, index, filler, file, gfp); 3951 if (IS_ERR(folio)) 3952 return &folio->page; 3953 return folio_file_page(folio, index); 3954 } 3955 3956 struct page *read_cache_page(struct address_space *mapping, 3957 pgoff_t index, filler_t *filler, struct file *file) 3958 { 3959 return do_read_cache_page(mapping, index, filler, file, 3960 mapping_gfp_mask(mapping)); 3961 } 3962 EXPORT_SYMBOL(read_cache_page); 3963 3964 /** 3965 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 3966 * @mapping: the page's address_space 3967 * @index: the page index 3968 * @gfp: the page allocator flags to use if allocating 3969 * 3970 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 3971 * any new page allocations done using the specified allocation flags. 3972 * 3973 * If the page does not get brought uptodate, return -EIO. 3974 * 3975 * The function expects mapping->invalidate_lock to be already held. 3976 * 3977 * Return: up to date page on success, ERR_PTR() on failure. 3978 */ 3979 struct page *read_cache_page_gfp(struct address_space *mapping, 3980 pgoff_t index, 3981 gfp_t gfp) 3982 { 3983 return do_read_cache_page(mapping, index, NULL, NULL, gfp); 3984 } 3985 EXPORT_SYMBOL(read_cache_page_gfp); 3986 3987 /* 3988 * Warn about a page cache invalidation failure during a direct I/O write. 3989 */ 3990 static void dio_warn_stale_pagecache(struct file *filp) 3991 { 3992 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 3993 char pathname[128]; 3994 char *path; 3995 3996 errseq_set(&filp->f_mapping->wb_err, -EIO); 3997 if (__ratelimit(&_rs)) { 3998 path = file_path(filp, pathname, sizeof(pathname)); 3999 if (IS_ERR(path)) 4000 path = "(unknown)"; 4001 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); 4002 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, 4003 current->comm); 4004 } 4005 } 4006 4007 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count) 4008 { 4009 struct address_space *mapping = iocb->ki_filp->f_mapping; 4010 4011 if (mapping->nrpages && 4012 invalidate_inode_pages2_range(mapping, 4013 iocb->ki_pos >> PAGE_SHIFT, 4014 (iocb->ki_pos + count - 1) >> PAGE_SHIFT)) 4015 dio_warn_stale_pagecache(iocb->ki_filp); 4016 } 4017 4018 ssize_t 4019 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 4020 { 4021 struct address_space *mapping = iocb->ki_filp->f_mapping; 4022 size_t write_len = iov_iter_count(from); 4023 ssize_t written; 4024 4025 /* 4026 * If a page can not be invalidated, return 0 to fall back 4027 * to buffered write. 4028 */ 4029 written = kiocb_invalidate_pages(iocb, write_len); 4030 if (written) { 4031 if (written == -EBUSY) 4032 return 0; 4033 return written; 4034 } 4035 4036 written = mapping->a_ops->direct_IO(iocb, from); 4037 4038 /* 4039 * Finally, try again to invalidate clean pages which might have been 4040 * cached by non-direct readahead, or faulted in by get_user_pages() 4041 * if the source of the write was an mmap'ed region of the file 4042 * we're writing. Either one is a pretty crazy thing to do, 4043 * so we don't support it 100%. If this invalidation 4044 * fails, tough, the write still worked... 4045 * 4046 * Most of the time we do not need this since dio_complete() will do 4047 * the invalidation for us. However there are some file systems that 4048 * do not end up with dio_complete() being called, so let's not break 4049 * them by removing it completely. 4050 * 4051 * Noticeable example is a blkdev_direct_IO(). 4052 * 4053 * Skip invalidation for async writes or if mapping has no pages. 4054 */ 4055 if (written > 0) { 4056 struct inode *inode = mapping->host; 4057 loff_t pos = iocb->ki_pos; 4058 4059 kiocb_invalidate_post_direct_write(iocb, written); 4060 pos += written; 4061 write_len -= written; 4062 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 4063 i_size_write(inode, pos); 4064 mark_inode_dirty(inode); 4065 } 4066 iocb->ki_pos = pos; 4067 } 4068 if (written != -EIOCBQUEUED) 4069 iov_iter_revert(from, write_len - iov_iter_count(from)); 4070 return written; 4071 } 4072 EXPORT_SYMBOL(generic_file_direct_write); 4073 4074 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i) 4075 { 4076 struct file *file = iocb->ki_filp; 4077 loff_t pos = iocb->ki_pos; 4078 struct address_space *mapping = file->f_mapping; 4079 const struct address_space_operations *a_ops = mapping->a_ops; 4080 size_t chunk = mapping_max_folio_size(mapping); 4081 long status = 0; 4082 ssize_t written = 0; 4083 4084 do { 4085 struct folio *folio; 4086 size_t offset; /* Offset into folio */ 4087 size_t bytes; /* Bytes to write to folio */ 4088 size_t copied; /* Bytes copied from user */ 4089 void *fsdata = NULL; 4090 4091 bytes = iov_iter_count(i); 4092 retry: 4093 offset = pos & (chunk - 1); 4094 bytes = min(chunk - offset, bytes); 4095 balance_dirty_pages_ratelimited(mapping); 4096 4097 if (fatal_signal_pending(current)) { 4098 status = -EINTR; 4099 break; 4100 } 4101 4102 status = a_ops->write_begin(file, mapping, pos, bytes, 4103 &folio, &fsdata); 4104 if (unlikely(status < 0)) 4105 break; 4106 4107 offset = offset_in_folio(folio, pos); 4108 if (bytes > folio_size(folio) - offset) 4109 bytes = folio_size(folio) - offset; 4110 4111 if (mapping_writably_mapped(mapping)) 4112 flush_dcache_folio(folio); 4113 4114 /* 4115 * Faults here on mmap()s can recurse into arbitrary 4116 * filesystem code. Lots of locks are held that can 4117 * deadlock. Use an atomic copy to avoid deadlocking 4118 * in page fault handling. 4119 */ 4120 copied = copy_folio_from_iter_atomic(folio, offset, bytes, i); 4121 flush_dcache_folio(folio); 4122 4123 status = a_ops->write_end(file, mapping, pos, bytes, copied, 4124 folio, fsdata); 4125 if (unlikely(status != copied)) { 4126 iov_iter_revert(i, copied - max(status, 0L)); 4127 if (unlikely(status < 0)) 4128 break; 4129 } 4130 cond_resched(); 4131 4132 if (unlikely(status == 0)) { 4133 /* 4134 * A short copy made ->write_end() reject the 4135 * thing entirely. Might be memory poisoning 4136 * halfway through, might be a race with munmap, 4137 * might be severe memory pressure. 4138 */ 4139 if (chunk > PAGE_SIZE) 4140 chunk /= 2; 4141 if (copied) { 4142 bytes = copied; 4143 goto retry; 4144 } 4145 4146 /* 4147 * 'folio' is now unlocked and faults on it can be 4148 * handled. Ensure forward progress by trying to 4149 * fault it in now. 4150 */ 4151 if (fault_in_iov_iter_readable(i, bytes) == bytes) { 4152 status = -EFAULT; 4153 break; 4154 } 4155 } else { 4156 pos += status; 4157 written += status; 4158 } 4159 } while (iov_iter_count(i)); 4160 4161 if (!written) 4162 return status; 4163 iocb->ki_pos += written; 4164 return written; 4165 } 4166 EXPORT_SYMBOL(generic_perform_write); 4167 4168 /** 4169 * __generic_file_write_iter - write data to a file 4170 * @iocb: IO state structure (file, offset, etc.) 4171 * @from: iov_iter with data to write 4172 * 4173 * This function does all the work needed for actually writing data to a 4174 * file. It does all basic checks, removes SUID from the file, updates 4175 * modification times and calls proper subroutines depending on whether we 4176 * do direct IO or a standard buffered write. 4177 * 4178 * It expects i_rwsem to be grabbed unless we work on a block device or similar 4179 * object which does not need locking at all. 4180 * 4181 * This function does *not* take care of syncing data in case of O_SYNC write. 4182 * A caller has to handle it. This is mainly due to the fact that we want to 4183 * avoid syncing under i_rwsem. 4184 * 4185 * Return: 4186 * * number of bytes written, even for truncated writes 4187 * * negative error code if no data has been written at all 4188 */ 4189 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4190 { 4191 struct file *file = iocb->ki_filp; 4192 struct address_space *mapping = file->f_mapping; 4193 struct inode *inode = mapping->host; 4194 ssize_t ret; 4195 4196 ret = file_remove_privs(file); 4197 if (ret) 4198 return ret; 4199 4200 ret = file_update_time(file); 4201 if (ret) 4202 return ret; 4203 4204 if (iocb->ki_flags & IOCB_DIRECT) { 4205 ret = generic_file_direct_write(iocb, from); 4206 /* 4207 * If the write stopped short of completing, fall back to 4208 * buffered writes. Some filesystems do this for writes to 4209 * holes, for example. For DAX files, a buffered write will 4210 * not succeed (even if it did, DAX does not handle dirty 4211 * page-cache pages correctly). 4212 */ 4213 if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode)) 4214 return ret; 4215 return direct_write_fallback(iocb, from, ret, 4216 generic_perform_write(iocb, from)); 4217 } 4218 4219 return generic_perform_write(iocb, from); 4220 } 4221 EXPORT_SYMBOL(__generic_file_write_iter); 4222 4223 /** 4224 * generic_file_write_iter - write data to a file 4225 * @iocb: IO state structure 4226 * @from: iov_iter with data to write 4227 * 4228 * This is a wrapper around __generic_file_write_iter() to be used by most 4229 * filesystems. It takes care of syncing the file in case of O_SYNC file 4230 * and acquires i_rwsem as needed. 4231 * Return: 4232 * * negative error code if no data has been written at all of 4233 * vfs_fsync_range() failed for a synchronous write 4234 * * number of bytes written, even for truncated writes 4235 */ 4236 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4237 { 4238 struct file *file = iocb->ki_filp; 4239 struct inode *inode = file->f_mapping->host; 4240 ssize_t ret; 4241 4242 inode_lock(inode); 4243 ret = generic_write_checks(iocb, from); 4244 if (ret > 0) 4245 ret = __generic_file_write_iter(iocb, from); 4246 inode_unlock(inode); 4247 4248 if (ret > 0) 4249 ret = generic_write_sync(iocb, ret); 4250 return ret; 4251 } 4252 EXPORT_SYMBOL(generic_file_write_iter); 4253 4254 /** 4255 * filemap_release_folio() - Release fs-specific metadata on a folio. 4256 * @folio: The folio which the kernel is trying to free. 4257 * @gfp: Memory allocation flags (and I/O mode). 4258 * 4259 * The address_space is trying to release any data attached to a folio 4260 * (presumably at folio->private). 4261 * 4262 * This will also be called if the private_2 flag is set on a page, 4263 * indicating that the folio has other metadata associated with it. 4264 * 4265 * The @gfp argument specifies whether I/O may be performed to release 4266 * this page (__GFP_IO), and whether the call may block 4267 * (__GFP_RECLAIM & __GFP_FS). 4268 * 4269 * Return: %true if the release was successful, otherwise %false. 4270 */ 4271 bool filemap_release_folio(struct folio *folio, gfp_t gfp) 4272 { 4273 struct address_space * const mapping = folio->mapping; 4274 4275 BUG_ON(!folio_test_locked(folio)); 4276 if (!folio_needs_release(folio)) 4277 return true; 4278 if (folio_test_writeback(folio)) 4279 return false; 4280 4281 if (mapping && mapping->a_ops->release_folio) 4282 return mapping->a_ops->release_folio(folio, gfp); 4283 return try_to_free_buffers(folio); 4284 } 4285 EXPORT_SYMBOL(filemap_release_folio); 4286 4287 /** 4288 * filemap_invalidate_inode - Invalidate/forcibly write back a range of an inode's pagecache 4289 * @inode: The inode to flush 4290 * @flush: Set to write back rather than simply invalidate. 4291 * @start: First byte to in range. 4292 * @end: Last byte in range (inclusive), or LLONG_MAX for everything from start 4293 * onwards. 4294 * 4295 * Invalidate all the folios on an inode that contribute to the specified 4296 * range, possibly writing them back first. Whilst the operation is 4297 * undertaken, the invalidate lock is held to prevent new folios from being 4298 * installed. 4299 */ 4300 int filemap_invalidate_inode(struct inode *inode, bool flush, 4301 loff_t start, loff_t end) 4302 { 4303 struct address_space *mapping = inode->i_mapping; 4304 pgoff_t first = start >> PAGE_SHIFT; 4305 pgoff_t last = end >> PAGE_SHIFT; 4306 pgoff_t nr = end == LLONG_MAX ? ULONG_MAX : last - first + 1; 4307 4308 if (!mapping || !mapping->nrpages || end < start) 4309 goto out; 4310 4311 /* Prevent new folios from being added to the inode. */ 4312 filemap_invalidate_lock(mapping); 4313 4314 if (!mapping->nrpages) 4315 goto unlock; 4316 4317 unmap_mapping_pages(mapping, first, nr, false); 4318 4319 /* Write back the data if we're asked to. */ 4320 if (flush) { 4321 struct writeback_control wbc = { 4322 .sync_mode = WB_SYNC_ALL, 4323 .nr_to_write = LONG_MAX, 4324 .range_start = start, 4325 .range_end = end, 4326 }; 4327 4328 filemap_fdatawrite_wbc(mapping, &wbc); 4329 } 4330 4331 /* Wait for writeback to complete on all folios and discard. */ 4332 invalidate_inode_pages2_range(mapping, start / PAGE_SIZE, end / PAGE_SIZE); 4333 4334 unlock: 4335 filemap_invalidate_unlock(mapping); 4336 out: 4337 return filemap_check_errors(mapping); 4338 } 4339 EXPORT_SYMBOL_GPL(filemap_invalidate_inode); 4340 4341 #ifdef CONFIG_CACHESTAT_SYSCALL 4342 /** 4343 * filemap_cachestat() - compute the page cache statistics of a mapping 4344 * @mapping: The mapping to compute the statistics for. 4345 * @first_index: The starting page cache index. 4346 * @last_index: The final page index (inclusive). 4347 * @cs: the cachestat struct to write the result to. 4348 * 4349 * This will query the page cache statistics of a mapping in the 4350 * page range of [first_index, last_index] (inclusive). The statistics 4351 * queried include: number of dirty pages, number of pages marked for 4352 * writeback, and the number of (recently) evicted pages. 4353 */ 4354 static void filemap_cachestat(struct address_space *mapping, 4355 pgoff_t first_index, pgoff_t last_index, struct cachestat *cs) 4356 { 4357 XA_STATE(xas, &mapping->i_pages, first_index); 4358 struct folio *folio; 4359 4360 /* Flush stats (and potentially sleep) outside the RCU read section. */ 4361 mem_cgroup_flush_stats_ratelimited(NULL); 4362 4363 rcu_read_lock(); 4364 xas_for_each(&xas, folio, last_index) { 4365 int order; 4366 unsigned long nr_pages; 4367 pgoff_t folio_first_index, folio_last_index; 4368 4369 /* 4370 * Don't deref the folio. It is not pinned, and might 4371 * get freed (and reused) underneath us. 4372 * 4373 * We *could* pin it, but that would be expensive for 4374 * what should be a fast and lightweight syscall. 4375 * 4376 * Instead, derive all information of interest from 4377 * the rcu-protected xarray. 4378 */ 4379 4380 if (xas_retry(&xas, folio)) 4381 continue; 4382 4383 order = xas_get_order(&xas); 4384 nr_pages = 1 << order; 4385 folio_first_index = round_down(xas.xa_index, 1 << order); 4386 folio_last_index = folio_first_index + nr_pages - 1; 4387 4388 /* Folios might straddle the range boundaries, only count covered pages */ 4389 if (folio_first_index < first_index) 4390 nr_pages -= first_index - folio_first_index; 4391 4392 if (folio_last_index > last_index) 4393 nr_pages -= folio_last_index - last_index; 4394 4395 if (xa_is_value(folio)) { 4396 /* page is evicted */ 4397 void *shadow = (void *)folio; 4398 bool workingset; /* not used */ 4399 4400 cs->nr_evicted += nr_pages; 4401 4402 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */ 4403 if (shmem_mapping(mapping)) { 4404 /* shmem file - in swap cache */ 4405 swp_entry_t swp = radix_to_swp_entry(folio); 4406 4407 /* swapin error results in poisoned entry */ 4408 if (non_swap_entry(swp)) 4409 goto resched; 4410 4411 /* 4412 * Getting a swap entry from the shmem 4413 * inode means we beat 4414 * shmem_unuse(). rcu_read_lock() 4415 * ensures swapoff waits for us before 4416 * freeing the swapper space. However, 4417 * we can race with swapping and 4418 * invalidation, so there might not be 4419 * a shadow in the swapcache (yet). 4420 */ 4421 shadow = get_shadow_from_swap_cache(swp); 4422 if (!shadow) 4423 goto resched; 4424 } 4425 #endif 4426 if (workingset_test_recent(shadow, true, &workingset, false)) 4427 cs->nr_recently_evicted += nr_pages; 4428 4429 goto resched; 4430 } 4431 4432 /* page is in cache */ 4433 cs->nr_cache += nr_pages; 4434 4435 if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY)) 4436 cs->nr_dirty += nr_pages; 4437 4438 if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK)) 4439 cs->nr_writeback += nr_pages; 4440 4441 resched: 4442 if (need_resched()) { 4443 xas_pause(&xas); 4444 cond_resched_rcu(); 4445 } 4446 } 4447 rcu_read_unlock(); 4448 } 4449 4450 /* 4451 * See mincore: reveal pagecache information only for files 4452 * that the calling process has write access to, or could (if 4453 * tried) open for writing. 4454 */ 4455 static inline bool can_do_cachestat(struct file *f) 4456 { 4457 if (f->f_mode & FMODE_WRITE) 4458 return true; 4459 if (inode_owner_or_capable(file_mnt_idmap(f), file_inode(f))) 4460 return true; 4461 return file_permission(f, MAY_WRITE) == 0; 4462 } 4463 4464 /* 4465 * The cachestat(2) system call. 4466 * 4467 * cachestat() returns the page cache statistics of a file in the 4468 * bytes range specified by `off` and `len`: number of cached pages, 4469 * number of dirty pages, number of pages marked for writeback, 4470 * number of evicted pages, and number of recently evicted pages. 4471 * 4472 * An evicted page is a page that is previously in the page cache 4473 * but has been evicted since. A page is recently evicted if its last 4474 * eviction was recent enough that its reentry to the cache would 4475 * indicate that it is actively being used by the system, and that 4476 * there is memory pressure on the system. 4477 * 4478 * `off` and `len` must be non-negative integers. If `len` > 0, 4479 * the queried range is [`off`, `off` + `len`]. If `len` == 0, 4480 * we will query in the range from `off` to the end of the file. 4481 * 4482 * The `flags` argument is unused for now, but is included for future 4483 * extensibility. User should pass 0 (i.e no flag specified). 4484 * 4485 * Currently, hugetlbfs is not supported. 4486 * 4487 * Because the status of a page can change after cachestat() checks it 4488 * but before it returns to the application, the returned values may 4489 * contain stale information. 4490 * 4491 * return values: 4492 * zero - success 4493 * -EFAULT - cstat or cstat_range points to an illegal address 4494 * -EINVAL - invalid flags 4495 * -EBADF - invalid file descriptor 4496 * -EOPNOTSUPP - file descriptor is of a hugetlbfs file 4497 */ 4498 SYSCALL_DEFINE4(cachestat, unsigned int, fd, 4499 struct cachestat_range __user *, cstat_range, 4500 struct cachestat __user *, cstat, unsigned int, flags) 4501 { 4502 CLASS(fd, f)(fd); 4503 struct address_space *mapping; 4504 struct cachestat_range csr; 4505 struct cachestat cs; 4506 pgoff_t first_index, last_index; 4507 4508 if (fd_empty(f)) 4509 return -EBADF; 4510 4511 if (copy_from_user(&csr, cstat_range, 4512 sizeof(struct cachestat_range))) 4513 return -EFAULT; 4514 4515 /* hugetlbfs is not supported */ 4516 if (is_file_hugepages(fd_file(f))) 4517 return -EOPNOTSUPP; 4518 4519 if (!can_do_cachestat(fd_file(f))) 4520 return -EPERM; 4521 4522 if (flags != 0) 4523 return -EINVAL; 4524 4525 first_index = csr.off >> PAGE_SHIFT; 4526 last_index = 4527 csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT; 4528 memset(&cs, 0, sizeof(struct cachestat)); 4529 mapping = fd_file(f)->f_mapping; 4530 filemap_cachestat(mapping, first_index, last_index, &cs); 4531 4532 if (copy_to_user(cstat, &cs, sizeof(struct cachestat))) 4533 return -EFAULT; 4534 4535 return 0; 4536 } 4537 #endif /* CONFIG_CACHESTAT_SYSCALL */ 4538