xref: /linux/mm/filemap.c (revision c02ce1735b150cf7c3b43790b48e23dcd17c0d46)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/mm/filemap.c
4  *
5  * Copyright (C) 1994-1999  Linus Torvalds
6  */
7 
8 /*
9  * This file handles the generic file mmap semantics used by
10  * most "normal" filesystems (but you don't /have/ to use this:
11  * the NFS filesystem used to do this differently, for example)
12  */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/syscalls.h>
26 #include <linux/mman.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
29 #include <linux/uio.h>
30 #include <linux/error-injection.h>
31 #include <linux/hash.h>
32 #include <linux/writeback.h>
33 #include <linux/backing-dev.h>
34 #include <linux/pagevec.h>
35 #include <linux/security.h>
36 #include <linux/cpuset.h>
37 #include <linux/hugetlb.h>
38 #include <linux/memcontrol.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include <linux/page_idle.h>
45 #include <linux/migrate.h>
46 #include <linux/pipe_fs_i.h>
47 #include <linux/splice.h>
48 #include <linux/rcupdate_wait.h>
49 #include <asm/pgalloc.h>
50 #include <asm/tlbflush.h>
51 #include "internal.h"
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/filemap.h>
55 
56 /*
57  * FIXME: remove all knowledge of the buffer layer from the core VM
58  */
59 #include <linux/buffer_head.h> /* for try_to_free_buffers */
60 
61 #include <asm/mman.h>
62 
63 #include "swap.h"
64 
65 /*
66  * Shared mappings implemented 30.11.1994. It's not fully working yet,
67  * though.
68  *
69  * Shared mappings now work. 15.8.1995  Bruno.
70  *
71  * finished 'unifying' the page and buffer cache and SMP-threaded the
72  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
73  *
74  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
75  */
76 
77 /*
78  * Lock ordering:
79  *
80  *  ->i_mmap_rwsem		(truncate_pagecache)
81  *    ->private_lock		(__free_pte->block_dirty_folio)
82  *      ->swap_lock		(exclusive_swap_page, others)
83  *        ->i_pages lock
84  *
85  *  ->i_rwsem
86  *    ->invalidate_lock		(acquired by fs in truncate path)
87  *      ->i_mmap_rwsem		(truncate->unmap_mapping_range)
88  *
89  *  ->mmap_lock
90  *    ->i_mmap_rwsem
91  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
92  *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
93  *
94  *  ->mmap_lock
95  *    ->invalidate_lock		(filemap_fault)
96  *      ->lock_page		(filemap_fault, access_process_vm)
97  *
98  *  ->i_rwsem			(generic_perform_write)
99  *    ->mmap_lock		(fault_in_readable->do_page_fault)
100  *
101  *  bdi->wb.list_lock
102  *    sb_lock			(fs/fs-writeback.c)
103  *    ->i_pages lock		(__sync_single_inode)
104  *
105  *  ->i_mmap_rwsem
106  *    ->anon_vma.lock		(vma_merge)
107  *
108  *  ->anon_vma.lock
109  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
110  *
111  *  ->page_table_lock or pte_lock
112  *    ->swap_lock		(try_to_unmap_one)
113  *    ->private_lock		(try_to_unmap_one)
114  *    ->i_pages lock		(try_to_unmap_one)
115  *    ->lruvec->lru_lock	(follow_page->mark_page_accessed)
116  *    ->lruvec->lru_lock	(check_pte_range->isolate_lru_page)
117  *    ->private_lock		(folio_remove_rmap_pte->set_page_dirty)
118  *    ->i_pages lock		(folio_remove_rmap_pte->set_page_dirty)
119  *    bdi.wb->list_lock		(folio_remove_rmap_pte->set_page_dirty)
120  *    ->inode->i_lock		(folio_remove_rmap_pte->set_page_dirty)
121  *    ->memcg->move_lock	(folio_remove_rmap_pte->folio_memcg_lock)
122  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
123  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
124  *    ->private_lock		(zap_pte_range->block_dirty_folio)
125  */
126 
127 static void mapping_set_update(struct xa_state *xas,
128 		struct address_space *mapping)
129 {
130 	if (dax_mapping(mapping) || shmem_mapping(mapping))
131 		return;
132 	xas_set_update(xas, workingset_update_node);
133 	xas_set_lru(xas, &shadow_nodes);
134 }
135 
136 static void page_cache_delete(struct address_space *mapping,
137 				   struct folio *folio, void *shadow)
138 {
139 	XA_STATE(xas, &mapping->i_pages, folio->index);
140 	long nr = 1;
141 
142 	mapping_set_update(&xas, mapping);
143 
144 	xas_set_order(&xas, folio->index, folio_order(folio));
145 	nr = folio_nr_pages(folio);
146 
147 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
148 
149 	xas_store(&xas, shadow);
150 	xas_init_marks(&xas);
151 
152 	folio->mapping = NULL;
153 	/* Leave page->index set: truncation lookup relies upon it */
154 	mapping->nrpages -= nr;
155 }
156 
157 static void filemap_unaccount_folio(struct address_space *mapping,
158 		struct folio *folio)
159 {
160 	long nr;
161 
162 	VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
163 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
164 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
165 			 current->comm, folio_pfn(folio));
166 		dump_page(&folio->page, "still mapped when deleted");
167 		dump_stack();
168 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
169 
170 		if (mapping_exiting(mapping) && !folio_test_large(folio)) {
171 			int mapcount = page_mapcount(&folio->page);
172 
173 			if (folio_ref_count(folio) >= mapcount + 2) {
174 				/*
175 				 * All vmas have already been torn down, so it's
176 				 * a good bet that actually the page is unmapped
177 				 * and we'd rather not leak it: if we're wrong,
178 				 * another bad page check should catch it later.
179 				 */
180 				page_mapcount_reset(&folio->page);
181 				folio_ref_sub(folio, mapcount);
182 			}
183 		}
184 	}
185 
186 	/* hugetlb folios do not participate in page cache accounting. */
187 	if (folio_test_hugetlb(folio))
188 		return;
189 
190 	nr = folio_nr_pages(folio);
191 
192 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
193 	if (folio_test_swapbacked(folio)) {
194 		__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
195 		if (folio_test_pmd_mappable(folio))
196 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
197 	} else if (folio_test_pmd_mappable(folio)) {
198 		__lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
199 		filemap_nr_thps_dec(mapping);
200 	}
201 
202 	/*
203 	 * At this point folio must be either written or cleaned by
204 	 * truncate.  Dirty folio here signals a bug and loss of
205 	 * unwritten data - on ordinary filesystems.
206 	 *
207 	 * But it's harmless on in-memory filesystems like tmpfs; and can
208 	 * occur when a driver which did get_user_pages() sets page dirty
209 	 * before putting it, while the inode is being finally evicted.
210 	 *
211 	 * Below fixes dirty accounting after removing the folio entirely
212 	 * but leaves the dirty flag set: it has no effect for truncated
213 	 * folio and anyway will be cleared before returning folio to
214 	 * buddy allocator.
215 	 */
216 	if (WARN_ON_ONCE(folio_test_dirty(folio) &&
217 			 mapping_can_writeback(mapping)))
218 		folio_account_cleaned(folio, inode_to_wb(mapping->host));
219 }
220 
221 /*
222  * Delete a page from the page cache and free it. Caller has to make
223  * sure the page is locked and that nobody else uses it - or that usage
224  * is safe.  The caller must hold the i_pages lock.
225  */
226 void __filemap_remove_folio(struct folio *folio, void *shadow)
227 {
228 	struct address_space *mapping = folio->mapping;
229 
230 	trace_mm_filemap_delete_from_page_cache(folio);
231 	filemap_unaccount_folio(mapping, folio);
232 	page_cache_delete(mapping, folio, shadow);
233 }
234 
235 void filemap_free_folio(struct address_space *mapping, struct folio *folio)
236 {
237 	void (*free_folio)(struct folio *);
238 	int refs = 1;
239 
240 	free_folio = mapping->a_ops->free_folio;
241 	if (free_folio)
242 		free_folio(folio);
243 
244 	if (folio_test_large(folio))
245 		refs = folio_nr_pages(folio);
246 	folio_put_refs(folio, refs);
247 }
248 
249 /**
250  * filemap_remove_folio - Remove folio from page cache.
251  * @folio: The folio.
252  *
253  * This must be called only on folios that are locked and have been
254  * verified to be in the page cache.  It will never put the folio into
255  * the free list because the caller has a reference on the page.
256  */
257 void filemap_remove_folio(struct folio *folio)
258 {
259 	struct address_space *mapping = folio->mapping;
260 
261 	BUG_ON(!folio_test_locked(folio));
262 	spin_lock(&mapping->host->i_lock);
263 	xa_lock_irq(&mapping->i_pages);
264 	__filemap_remove_folio(folio, NULL);
265 	xa_unlock_irq(&mapping->i_pages);
266 	if (mapping_shrinkable(mapping))
267 		inode_add_lru(mapping->host);
268 	spin_unlock(&mapping->host->i_lock);
269 
270 	filemap_free_folio(mapping, folio);
271 }
272 
273 /*
274  * page_cache_delete_batch - delete several folios from page cache
275  * @mapping: the mapping to which folios belong
276  * @fbatch: batch of folios to delete
277  *
278  * The function walks over mapping->i_pages and removes folios passed in
279  * @fbatch from the mapping. The function expects @fbatch to be sorted
280  * by page index and is optimised for it to be dense.
281  * It tolerates holes in @fbatch (mapping entries at those indices are not
282  * modified).
283  *
284  * The function expects the i_pages lock to be held.
285  */
286 static void page_cache_delete_batch(struct address_space *mapping,
287 			     struct folio_batch *fbatch)
288 {
289 	XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
290 	long total_pages = 0;
291 	int i = 0;
292 	struct folio *folio;
293 
294 	mapping_set_update(&xas, mapping);
295 	xas_for_each(&xas, folio, ULONG_MAX) {
296 		if (i >= folio_batch_count(fbatch))
297 			break;
298 
299 		/* A swap/dax/shadow entry got inserted? Skip it. */
300 		if (xa_is_value(folio))
301 			continue;
302 		/*
303 		 * A page got inserted in our range? Skip it. We have our
304 		 * pages locked so they are protected from being removed.
305 		 * If we see a page whose index is higher than ours, it
306 		 * means our page has been removed, which shouldn't be
307 		 * possible because we're holding the PageLock.
308 		 */
309 		if (folio != fbatch->folios[i]) {
310 			VM_BUG_ON_FOLIO(folio->index >
311 					fbatch->folios[i]->index, folio);
312 			continue;
313 		}
314 
315 		WARN_ON_ONCE(!folio_test_locked(folio));
316 
317 		folio->mapping = NULL;
318 		/* Leave folio->index set: truncation lookup relies on it */
319 
320 		i++;
321 		xas_store(&xas, NULL);
322 		total_pages += folio_nr_pages(folio);
323 	}
324 	mapping->nrpages -= total_pages;
325 }
326 
327 void delete_from_page_cache_batch(struct address_space *mapping,
328 				  struct folio_batch *fbatch)
329 {
330 	int i;
331 
332 	if (!folio_batch_count(fbatch))
333 		return;
334 
335 	spin_lock(&mapping->host->i_lock);
336 	xa_lock_irq(&mapping->i_pages);
337 	for (i = 0; i < folio_batch_count(fbatch); i++) {
338 		struct folio *folio = fbatch->folios[i];
339 
340 		trace_mm_filemap_delete_from_page_cache(folio);
341 		filemap_unaccount_folio(mapping, folio);
342 	}
343 	page_cache_delete_batch(mapping, fbatch);
344 	xa_unlock_irq(&mapping->i_pages);
345 	if (mapping_shrinkable(mapping))
346 		inode_add_lru(mapping->host);
347 	spin_unlock(&mapping->host->i_lock);
348 
349 	for (i = 0; i < folio_batch_count(fbatch); i++)
350 		filemap_free_folio(mapping, fbatch->folios[i]);
351 }
352 
353 int filemap_check_errors(struct address_space *mapping)
354 {
355 	int ret = 0;
356 	/* Check for outstanding write errors */
357 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
358 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
359 		ret = -ENOSPC;
360 	if (test_bit(AS_EIO, &mapping->flags) &&
361 	    test_and_clear_bit(AS_EIO, &mapping->flags))
362 		ret = -EIO;
363 	return ret;
364 }
365 EXPORT_SYMBOL(filemap_check_errors);
366 
367 static int filemap_check_and_keep_errors(struct address_space *mapping)
368 {
369 	/* Check for outstanding write errors */
370 	if (test_bit(AS_EIO, &mapping->flags))
371 		return -EIO;
372 	if (test_bit(AS_ENOSPC, &mapping->flags))
373 		return -ENOSPC;
374 	return 0;
375 }
376 
377 /**
378  * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
379  * @mapping:	address space structure to write
380  * @wbc:	the writeback_control controlling the writeout
381  *
382  * Call writepages on the mapping using the provided wbc to control the
383  * writeout.
384  *
385  * Return: %0 on success, negative error code otherwise.
386  */
387 int filemap_fdatawrite_wbc(struct address_space *mapping,
388 			   struct writeback_control *wbc)
389 {
390 	int ret;
391 
392 	if (!mapping_can_writeback(mapping) ||
393 	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
394 		return 0;
395 
396 	wbc_attach_fdatawrite_inode(wbc, mapping->host);
397 	ret = do_writepages(mapping, wbc);
398 	wbc_detach_inode(wbc);
399 	return ret;
400 }
401 EXPORT_SYMBOL(filemap_fdatawrite_wbc);
402 
403 /**
404  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
405  * @mapping:	address space structure to write
406  * @start:	offset in bytes where the range starts
407  * @end:	offset in bytes where the range ends (inclusive)
408  * @sync_mode:	enable synchronous operation
409  *
410  * Start writeback against all of a mapping's dirty pages that lie
411  * within the byte offsets <start, end> inclusive.
412  *
413  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
414  * opposed to a regular memory cleansing writeback.  The difference between
415  * these two operations is that if a dirty page/buffer is encountered, it must
416  * be waited upon, and not just skipped over.
417  *
418  * Return: %0 on success, negative error code otherwise.
419  */
420 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
421 				loff_t end, int sync_mode)
422 {
423 	struct writeback_control wbc = {
424 		.sync_mode = sync_mode,
425 		.nr_to_write = LONG_MAX,
426 		.range_start = start,
427 		.range_end = end,
428 	};
429 
430 	return filemap_fdatawrite_wbc(mapping, &wbc);
431 }
432 
433 static inline int __filemap_fdatawrite(struct address_space *mapping,
434 	int sync_mode)
435 {
436 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
437 }
438 
439 int filemap_fdatawrite(struct address_space *mapping)
440 {
441 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
442 }
443 EXPORT_SYMBOL(filemap_fdatawrite);
444 
445 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
446 				loff_t end)
447 {
448 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
449 }
450 EXPORT_SYMBOL(filemap_fdatawrite_range);
451 
452 /**
453  * filemap_flush - mostly a non-blocking flush
454  * @mapping:	target address_space
455  *
456  * This is a mostly non-blocking flush.  Not suitable for data-integrity
457  * purposes - I/O may not be started against all dirty pages.
458  *
459  * Return: %0 on success, negative error code otherwise.
460  */
461 int filemap_flush(struct address_space *mapping)
462 {
463 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
464 }
465 EXPORT_SYMBOL(filemap_flush);
466 
467 /**
468  * filemap_range_has_page - check if a page exists in range.
469  * @mapping:           address space within which to check
470  * @start_byte:        offset in bytes where the range starts
471  * @end_byte:          offset in bytes where the range ends (inclusive)
472  *
473  * Find at least one page in the range supplied, usually used to check if
474  * direct writing in this range will trigger a writeback.
475  *
476  * Return: %true if at least one page exists in the specified range,
477  * %false otherwise.
478  */
479 bool filemap_range_has_page(struct address_space *mapping,
480 			   loff_t start_byte, loff_t end_byte)
481 {
482 	struct folio *folio;
483 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
484 	pgoff_t max = end_byte >> PAGE_SHIFT;
485 
486 	if (end_byte < start_byte)
487 		return false;
488 
489 	rcu_read_lock();
490 	for (;;) {
491 		folio = xas_find(&xas, max);
492 		if (xas_retry(&xas, folio))
493 			continue;
494 		/* Shadow entries don't count */
495 		if (xa_is_value(folio))
496 			continue;
497 		/*
498 		 * We don't need to try to pin this page; we're about to
499 		 * release the RCU lock anyway.  It is enough to know that
500 		 * there was a page here recently.
501 		 */
502 		break;
503 	}
504 	rcu_read_unlock();
505 
506 	return folio != NULL;
507 }
508 EXPORT_SYMBOL(filemap_range_has_page);
509 
510 static void __filemap_fdatawait_range(struct address_space *mapping,
511 				     loff_t start_byte, loff_t end_byte)
512 {
513 	pgoff_t index = start_byte >> PAGE_SHIFT;
514 	pgoff_t end = end_byte >> PAGE_SHIFT;
515 	struct folio_batch fbatch;
516 	unsigned nr_folios;
517 
518 	folio_batch_init(&fbatch);
519 
520 	while (index <= end) {
521 		unsigned i;
522 
523 		nr_folios = filemap_get_folios_tag(mapping, &index, end,
524 				PAGECACHE_TAG_WRITEBACK, &fbatch);
525 
526 		if (!nr_folios)
527 			break;
528 
529 		for (i = 0; i < nr_folios; i++) {
530 			struct folio *folio = fbatch.folios[i];
531 
532 			folio_wait_writeback(folio);
533 			folio_clear_error(folio);
534 		}
535 		folio_batch_release(&fbatch);
536 		cond_resched();
537 	}
538 }
539 
540 /**
541  * filemap_fdatawait_range - wait for writeback to complete
542  * @mapping:		address space structure to wait for
543  * @start_byte:		offset in bytes where the range starts
544  * @end_byte:		offset in bytes where the range ends (inclusive)
545  *
546  * Walk the list of under-writeback pages of the given address space
547  * in the given range and wait for all of them.  Check error status of
548  * the address space and return it.
549  *
550  * Since the error status of the address space is cleared by this function,
551  * callers are responsible for checking the return value and handling and/or
552  * reporting the error.
553  *
554  * Return: error status of the address space.
555  */
556 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
557 			    loff_t end_byte)
558 {
559 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
560 	return filemap_check_errors(mapping);
561 }
562 EXPORT_SYMBOL(filemap_fdatawait_range);
563 
564 /**
565  * filemap_fdatawait_range_keep_errors - wait for writeback to complete
566  * @mapping:		address space structure to wait for
567  * @start_byte:		offset in bytes where the range starts
568  * @end_byte:		offset in bytes where the range ends (inclusive)
569  *
570  * Walk the list of under-writeback pages of the given address space in the
571  * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
572  * this function does not clear error status of the address space.
573  *
574  * Use this function if callers don't handle errors themselves.  Expected
575  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
576  * fsfreeze(8)
577  */
578 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
579 		loff_t start_byte, loff_t end_byte)
580 {
581 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
582 	return filemap_check_and_keep_errors(mapping);
583 }
584 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
585 
586 /**
587  * file_fdatawait_range - wait for writeback to complete
588  * @file:		file pointing to address space structure to wait for
589  * @start_byte:		offset in bytes where the range starts
590  * @end_byte:		offset in bytes where the range ends (inclusive)
591  *
592  * Walk the list of under-writeback pages of the address space that file
593  * refers to, in the given range and wait for all of them.  Check error
594  * status of the address space vs. the file->f_wb_err cursor and return it.
595  *
596  * Since the error status of the file is advanced by this function,
597  * callers are responsible for checking the return value and handling and/or
598  * reporting the error.
599  *
600  * Return: error status of the address space vs. the file->f_wb_err cursor.
601  */
602 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
603 {
604 	struct address_space *mapping = file->f_mapping;
605 
606 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
607 	return file_check_and_advance_wb_err(file);
608 }
609 EXPORT_SYMBOL(file_fdatawait_range);
610 
611 /**
612  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
613  * @mapping: address space structure to wait for
614  *
615  * Walk the list of under-writeback pages of the given address space
616  * and wait for all of them.  Unlike filemap_fdatawait(), this function
617  * does not clear error status of the address space.
618  *
619  * Use this function if callers don't handle errors themselves.  Expected
620  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
621  * fsfreeze(8)
622  *
623  * Return: error status of the address space.
624  */
625 int filemap_fdatawait_keep_errors(struct address_space *mapping)
626 {
627 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
628 	return filemap_check_and_keep_errors(mapping);
629 }
630 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
631 
632 /* Returns true if writeback might be needed or already in progress. */
633 static bool mapping_needs_writeback(struct address_space *mapping)
634 {
635 	return mapping->nrpages;
636 }
637 
638 bool filemap_range_has_writeback(struct address_space *mapping,
639 				 loff_t start_byte, loff_t end_byte)
640 {
641 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
642 	pgoff_t max = end_byte >> PAGE_SHIFT;
643 	struct folio *folio;
644 
645 	if (end_byte < start_byte)
646 		return false;
647 
648 	rcu_read_lock();
649 	xas_for_each(&xas, folio, max) {
650 		if (xas_retry(&xas, folio))
651 			continue;
652 		if (xa_is_value(folio))
653 			continue;
654 		if (folio_test_dirty(folio) || folio_test_locked(folio) ||
655 				folio_test_writeback(folio))
656 			break;
657 	}
658 	rcu_read_unlock();
659 	return folio != NULL;
660 }
661 EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
662 
663 /**
664  * filemap_write_and_wait_range - write out & wait on a file range
665  * @mapping:	the address_space for the pages
666  * @lstart:	offset in bytes where the range starts
667  * @lend:	offset in bytes where the range ends (inclusive)
668  *
669  * Write out and wait upon file offsets lstart->lend, inclusive.
670  *
671  * Note that @lend is inclusive (describes the last byte to be written) so
672  * that this function can be used to write to the very end-of-file (end = -1).
673  *
674  * Return: error status of the address space.
675  */
676 int filemap_write_and_wait_range(struct address_space *mapping,
677 				 loff_t lstart, loff_t lend)
678 {
679 	int err = 0, err2;
680 
681 	if (lend < lstart)
682 		return 0;
683 
684 	if (mapping_needs_writeback(mapping)) {
685 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
686 						 WB_SYNC_ALL);
687 		/*
688 		 * Even if the above returned error, the pages may be
689 		 * written partially (e.g. -ENOSPC), so we wait for it.
690 		 * But the -EIO is special case, it may indicate the worst
691 		 * thing (e.g. bug) happened, so we avoid waiting for it.
692 		 */
693 		if (err != -EIO)
694 			__filemap_fdatawait_range(mapping, lstart, lend);
695 	}
696 	err2 = filemap_check_errors(mapping);
697 	if (!err)
698 		err = err2;
699 	return err;
700 }
701 EXPORT_SYMBOL(filemap_write_and_wait_range);
702 
703 void __filemap_set_wb_err(struct address_space *mapping, int err)
704 {
705 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
706 
707 	trace_filemap_set_wb_err(mapping, eseq);
708 }
709 EXPORT_SYMBOL(__filemap_set_wb_err);
710 
711 /**
712  * file_check_and_advance_wb_err - report wb error (if any) that was previously
713  * 				   and advance wb_err to current one
714  * @file: struct file on which the error is being reported
715  *
716  * When userland calls fsync (or something like nfsd does the equivalent), we
717  * want to report any writeback errors that occurred since the last fsync (or
718  * since the file was opened if there haven't been any).
719  *
720  * Grab the wb_err from the mapping. If it matches what we have in the file,
721  * then just quickly return 0. The file is all caught up.
722  *
723  * If it doesn't match, then take the mapping value, set the "seen" flag in
724  * it and try to swap it into place. If it works, or another task beat us
725  * to it with the new value, then update the f_wb_err and return the error
726  * portion. The error at this point must be reported via proper channels
727  * (a'la fsync, or NFS COMMIT operation, etc.).
728  *
729  * While we handle mapping->wb_err with atomic operations, the f_wb_err
730  * value is protected by the f_lock since we must ensure that it reflects
731  * the latest value swapped in for this file descriptor.
732  *
733  * Return: %0 on success, negative error code otherwise.
734  */
735 int file_check_and_advance_wb_err(struct file *file)
736 {
737 	int err = 0;
738 	errseq_t old = READ_ONCE(file->f_wb_err);
739 	struct address_space *mapping = file->f_mapping;
740 
741 	/* Locklessly handle the common case where nothing has changed */
742 	if (errseq_check(&mapping->wb_err, old)) {
743 		/* Something changed, must use slow path */
744 		spin_lock(&file->f_lock);
745 		old = file->f_wb_err;
746 		err = errseq_check_and_advance(&mapping->wb_err,
747 						&file->f_wb_err);
748 		trace_file_check_and_advance_wb_err(file, old);
749 		spin_unlock(&file->f_lock);
750 	}
751 
752 	/*
753 	 * We're mostly using this function as a drop in replacement for
754 	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
755 	 * that the legacy code would have had on these flags.
756 	 */
757 	clear_bit(AS_EIO, &mapping->flags);
758 	clear_bit(AS_ENOSPC, &mapping->flags);
759 	return err;
760 }
761 EXPORT_SYMBOL(file_check_and_advance_wb_err);
762 
763 /**
764  * file_write_and_wait_range - write out & wait on a file range
765  * @file:	file pointing to address_space with pages
766  * @lstart:	offset in bytes where the range starts
767  * @lend:	offset in bytes where the range ends (inclusive)
768  *
769  * Write out and wait upon file offsets lstart->lend, inclusive.
770  *
771  * Note that @lend is inclusive (describes the last byte to be written) so
772  * that this function can be used to write to the very end-of-file (end = -1).
773  *
774  * After writing out and waiting on the data, we check and advance the
775  * f_wb_err cursor to the latest value, and return any errors detected there.
776  *
777  * Return: %0 on success, negative error code otherwise.
778  */
779 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
780 {
781 	int err = 0, err2;
782 	struct address_space *mapping = file->f_mapping;
783 
784 	if (lend < lstart)
785 		return 0;
786 
787 	if (mapping_needs_writeback(mapping)) {
788 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
789 						 WB_SYNC_ALL);
790 		/* See comment of filemap_write_and_wait() */
791 		if (err != -EIO)
792 			__filemap_fdatawait_range(mapping, lstart, lend);
793 	}
794 	err2 = file_check_and_advance_wb_err(file);
795 	if (!err)
796 		err = err2;
797 	return err;
798 }
799 EXPORT_SYMBOL(file_write_and_wait_range);
800 
801 /**
802  * replace_page_cache_folio - replace a pagecache folio with a new one
803  * @old:	folio to be replaced
804  * @new:	folio to replace with
805  *
806  * This function replaces a folio in the pagecache with a new one.  On
807  * success it acquires the pagecache reference for the new folio and
808  * drops it for the old folio.  Both the old and new folios must be
809  * locked.  This function does not add the new folio to the LRU, the
810  * caller must do that.
811  *
812  * The remove + add is atomic.  This function cannot fail.
813  */
814 void replace_page_cache_folio(struct folio *old, struct folio *new)
815 {
816 	struct address_space *mapping = old->mapping;
817 	void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
818 	pgoff_t offset = old->index;
819 	XA_STATE(xas, &mapping->i_pages, offset);
820 
821 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
822 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
823 	VM_BUG_ON_FOLIO(new->mapping, new);
824 
825 	folio_get(new);
826 	new->mapping = mapping;
827 	new->index = offset;
828 
829 	mem_cgroup_replace_folio(old, new);
830 
831 	xas_lock_irq(&xas);
832 	xas_store(&xas, new);
833 
834 	old->mapping = NULL;
835 	/* hugetlb pages do not participate in page cache accounting. */
836 	if (!folio_test_hugetlb(old))
837 		__lruvec_stat_sub_folio(old, NR_FILE_PAGES);
838 	if (!folio_test_hugetlb(new))
839 		__lruvec_stat_add_folio(new, NR_FILE_PAGES);
840 	if (folio_test_swapbacked(old))
841 		__lruvec_stat_sub_folio(old, NR_SHMEM);
842 	if (folio_test_swapbacked(new))
843 		__lruvec_stat_add_folio(new, NR_SHMEM);
844 	xas_unlock_irq(&xas);
845 	if (free_folio)
846 		free_folio(old);
847 	folio_put(old);
848 }
849 EXPORT_SYMBOL_GPL(replace_page_cache_folio);
850 
851 noinline int __filemap_add_folio(struct address_space *mapping,
852 		struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
853 {
854 	XA_STATE(xas, &mapping->i_pages, index);
855 	bool huge = folio_test_hugetlb(folio);
856 	bool charged = false;
857 	long nr = 1;
858 
859 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
860 	VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
861 	mapping_set_update(&xas, mapping);
862 
863 	if (!huge) {
864 		int error = mem_cgroup_charge(folio, NULL, gfp);
865 		if (error)
866 			return error;
867 		charged = true;
868 	}
869 
870 	VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
871 	xas_set_order(&xas, index, folio_order(folio));
872 	nr = folio_nr_pages(folio);
873 
874 	gfp &= GFP_RECLAIM_MASK;
875 	folio_ref_add(folio, nr);
876 	folio->mapping = mapping;
877 	folio->index = xas.xa_index;
878 
879 	do {
880 		unsigned int order = xa_get_order(xas.xa, xas.xa_index);
881 		void *entry, *old = NULL;
882 
883 		if (order > folio_order(folio))
884 			xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
885 					order, gfp);
886 		xas_lock_irq(&xas);
887 		xas_for_each_conflict(&xas, entry) {
888 			old = entry;
889 			if (!xa_is_value(entry)) {
890 				xas_set_err(&xas, -EEXIST);
891 				goto unlock;
892 			}
893 		}
894 
895 		if (old) {
896 			if (shadowp)
897 				*shadowp = old;
898 			/* entry may have been split before we acquired lock */
899 			order = xa_get_order(xas.xa, xas.xa_index);
900 			if (order > folio_order(folio)) {
901 				/* How to handle large swap entries? */
902 				BUG_ON(shmem_mapping(mapping));
903 				xas_split(&xas, old, order);
904 				xas_reset(&xas);
905 			}
906 		}
907 
908 		xas_store(&xas, folio);
909 		if (xas_error(&xas))
910 			goto unlock;
911 
912 		mapping->nrpages += nr;
913 
914 		/* hugetlb pages do not participate in page cache accounting */
915 		if (!huge) {
916 			__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
917 			if (folio_test_pmd_mappable(folio))
918 				__lruvec_stat_mod_folio(folio,
919 						NR_FILE_THPS, nr);
920 		}
921 unlock:
922 		xas_unlock_irq(&xas);
923 	} while (xas_nomem(&xas, gfp));
924 
925 	if (xas_error(&xas))
926 		goto error;
927 
928 	trace_mm_filemap_add_to_page_cache(folio);
929 	return 0;
930 error:
931 	if (charged)
932 		mem_cgroup_uncharge(folio);
933 	folio->mapping = NULL;
934 	/* Leave page->index set: truncation relies upon it */
935 	folio_put_refs(folio, nr);
936 	return xas_error(&xas);
937 }
938 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
939 
940 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
941 				pgoff_t index, gfp_t gfp)
942 {
943 	void *shadow = NULL;
944 	int ret;
945 
946 	__folio_set_locked(folio);
947 	ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
948 	if (unlikely(ret))
949 		__folio_clear_locked(folio);
950 	else {
951 		/*
952 		 * The folio might have been evicted from cache only
953 		 * recently, in which case it should be activated like
954 		 * any other repeatedly accessed folio.
955 		 * The exception is folios getting rewritten; evicting other
956 		 * data from the working set, only to cache data that will
957 		 * get overwritten with something else, is a waste of memory.
958 		 */
959 		WARN_ON_ONCE(folio_test_active(folio));
960 		if (!(gfp & __GFP_WRITE) && shadow)
961 			workingset_refault(folio, shadow);
962 		folio_add_lru(folio);
963 	}
964 	return ret;
965 }
966 EXPORT_SYMBOL_GPL(filemap_add_folio);
967 
968 #ifdef CONFIG_NUMA
969 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
970 {
971 	int n;
972 	struct folio *folio;
973 
974 	if (cpuset_do_page_mem_spread()) {
975 		unsigned int cpuset_mems_cookie;
976 		do {
977 			cpuset_mems_cookie = read_mems_allowed_begin();
978 			n = cpuset_mem_spread_node();
979 			folio = __folio_alloc_node(gfp, order, n);
980 		} while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
981 
982 		return folio;
983 	}
984 	return folio_alloc(gfp, order);
985 }
986 EXPORT_SYMBOL(filemap_alloc_folio);
987 #endif
988 
989 /*
990  * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
991  *
992  * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
993  *
994  * @mapping1: the first mapping to lock
995  * @mapping2: the second mapping to lock
996  */
997 void filemap_invalidate_lock_two(struct address_space *mapping1,
998 				 struct address_space *mapping2)
999 {
1000 	if (mapping1 > mapping2)
1001 		swap(mapping1, mapping2);
1002 	if (mapping1)
1003 		down_write(&mapping1->invalidate_lock);
1004 	if (mapping2 && mapping1 != mapping2)
1005 		down_write_nested(&mapping2->invalidate_lock, 1);
1006 }
1007 EXPORT_SYMBOL(filemap_invalidate_lock_two);
1008 
1009 /*
1010  * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1011  *
1012  * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1013  *
1014  * @mapping1: the first mapping to unlock
1015  * @mapping2: the second mapping to unlock
1016  */
1017 void filemap_invalidate_unlock_two(struct address_space *mapping1,
1018 				   struct address_space *mapping2)
1019 {
1020 	if (mapping1)
1021 		up_write(&mapping1->invalidate_lock);
1022 	if (mapping2 && mapping1 != mapping2)
1023 		up_write(&mapping2->invalidate_lock);
1024 }
1025 EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1026 
1027 /*
1028  * In order to wait for pages to become available there must be
1029  * waitqueues associated with pages. By using a hash table of
1030  * waitqueues where the bucket discipline is to maintain all
1031  * waiters on the same queue and wake all when any of the pages
1032  * become available, and for the woken contexts to check to be
1033  * sure the appropriate page became available, this saves space
1034  * at a cost of "thundering herd" phenomena during rare hash
1035  * collisions.
1036  */
1037 #define PAGE_WAIT_TABLE_BITS 8
1038 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1039 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1040 
1041 static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1042 {
1043 	return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1044 }
1045 
1046 void __init pagecache_init(void)
1047 {
1048 	int i;
1049 
1050 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1051 		init_waitqueue_head(&folio_wait_table[i]);
1052 
1053 	page_writeback_init();
1054 }
1055 
1056 /*
1057  * The page wait code treats the "wait->flags" somewhat unusually, because
1058  * we have multiple different kinds of waits, not just the usual "exclusive"
1059  * one.
1060  *
1061  * We have:
1062  *
1063  *  (a) no special bits set:
1064  *
1065  *	We're just waiting for the bit to be released, and when a waker
1066  *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1067  *	and remove it from the wait queue.
1068  *
1069  *	Simple and straightforward.
1070  *
1071  *  (b) WQ_FLAG_EXCLUSIVE:
1072  *
1073  *	The waiter is waiting to get the lock, and only one waiter should
1074  *	be woken up to avoid any thundering herd behavior. We'll set the
1075  *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1076  *
1077  *	This is the traditional exclusive wait.
1078  *
1079  *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1080  *
1081  *	The waiter is waiting to get the bit, and additionally wants the
1082  *	lock to be transferred to it for fair lock behavior. If the lock
1083  *	cannot be taken, we stop walking the wait queue without waking
1084  *	the waiter.
1085  *
1086  *	This is the "fair lock handoff" case, and in addition to setting
1087  *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1088  *	that it now has the lock.
1089  */
1090 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1091 {
1092 	unsigned int flags;
1093 	struct wait_page_key *key = arg;
1094 	struct wait_page_queue *wait_page
1095 		= container_of(wait, struct wait_page_queue, wait);
1096 
1097 	if (!wake_page_match(wait_page, key))
1098 		return 0;
1099 
1100 	/*
1101 	 * If it's a lock handoff wait, we get the bit for it, and
1102 	 * stop walking (and do not wake it up) if we can't.
1103 	 */
1104 	flags = wait->flags;
1105 	if (flags & WQ_FLAG_EXCLUSIVE) {
1106 		if (test_bit(key->bit_nr, &key->folio->flags))
1107 			return -1;
1108 		if (flags & WQ_FLAG_CUSTOM) {
1109 			if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1110 				return -1;
1111 			flags |= WQ_FLAG_DONE;
1112 		}
1113 	}
1114 
1115 	/*
1116 	 * We are holding the wait-queue lock, but the waiter that
1117 	 * is waiting for this will be checking the flags without
1118 	 * any locking.
1119 	 *
1120 	 * So update the flags atomically, and wake up the waiter
1121 	 * afterwards to avoid any races. This store-release pairs
1122 	 * with the load-acquire in folio_wait_bit_common().
1123 	 */
1124 	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1125 	wake_up_state(wait->private, mode);
1126 
1127 	/*
1128 	 * Ok, we have successfully done what we're waiting for,
1129 	 * and we can unconditionally remove the wait entry.
1130 	 *
1131 	 * Note that this pairs with the "finish_wait()" in the
1132 	 * waiter, and has to be the absolute last thing we do.
1133 	 * After this list_del_init(&wait->entry) the wait entry
1134 	 * might be de-allocated and the process might even have
1135 	 * exited.
1136 	 */
1137 	list_del_init_careful(&wait->entry);
1138 	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1139 }
1140 
1141 static void folio_wake_bit(struct folio *folio, int bit_nr)
1142 {
1143 	wait_queue_head_t *q = folio_waitqueue(folio);
1144 	struct wait_page_key key;
1145 	unsigned long flags;
1146 
1147 	key.folio = folio;
1148 	key.bit_nr = bit_nr;
1149 	key.page_match = 0;
1150 
1151 	spin_lock_irqsave(&q->lock, flags);
1152 	__wake_up_locked_key(q, TASK_NORMAL, &key);
1153 
1154 	/*
1155 	 * It's possible to miss clearing waiters here, when we woke our page
1156 	 * waiters, but the hashed waitqueue has waiters for other pages on it.
1157 	 * That's okay, it's a rare case. The next waker will clear it.
1158 	 *
1159 	 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1160 	 * other), the flag may be cleared in the course of freeing the page;
1161 	 * but that is not required for correctness.
1162 	 */
1163 	if (!waitqueue_active(q) || !key.page_match)
1164 		folio_clear_waiters(folio);
1165 
1166 	spin_unlock_irqrestore(&q->lock, flags);
1167 }
1168 
1169 /*
1170  * A choice of three behaviors for folio_wait_bit_common():
1171  */
1172 enum behavior {
1173 	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1174 			 * __folio_lock() waiting on then setting PG_locked.
1175 			 */
1176 	SHARED,		/* Hold ref to page and check the bit when woken, like
1177 			 * folio_wait_writeback() waiting on PG_writeback.
1178 			 */
1179 	DROP,		/* Drop ref to page before wait, no check when woken,
1180 			 * like folio_put_wait_locked() on PG_locked.
1181 			 */
1182 };
1183 
1184 /*
1185  * Attempt to check (or get) the folio flag, and mark us done
1186  * if successful.
1187  */
1188 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1189 					struct wait_queue_entry *wait)
1190 {
1191 	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1192 		if (test_and_set_bit(bit_nr, &folio->flags))
1193 			return false;
1194 	} else if (test_bit(bit_nr, &folio->flags))
1195 		return false;
1196 
1197 	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1198 	return true;
1199 }
1200 
1201 /* How many times do we accept lock stealing from under a waiter? */
1202 int sysctl_page_lock_unfairness = 5;
1203 
1204 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1205 		int state, enum behavior behavior)
1206 {
1207 	wait_queue_head_t *q = folio_waitqueue(folio);
1208 	int unfairness = sysctl_page_lock_unfairness;
1209 	struct wait_page_queue wait_page;
1210 	wait_queue_entry_t *wait = &wait_page.wait;
1211 	bool thrashing = false;
1212 	unsigned long pflags;
1213 	bool in_thrashing;
1214 
1215 	if (bit_nr == PG_locked &&
1216 	    !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1217 		delayacct_thrashing_start(&in_thrashing);
1218 		psi_memstall_enter(&pflags);
1219 		thrashing = true;
1220 	}
1221 
1222 	init_wait(wait);
1223 	wait->func = wake_page_function;
1224 	wait_page.folio = folio;
1225 	wait_page.bit_nr = bit_nr;
1226 
1227 repeat:
1228 	wait->flags = 0;
1229 	if (behavior == EXCLUSIVE) {
1230 		wait->flags = WQ_FLAG_EXCLUSIVE;
1231 		if (--unfairness < 0)
1232 			wait->flags |= WQ_FLAG_CUSTOM;
1233 	}
1234 
1235 	/*
1236 	 * Do one last check whether we can get the
1237 	 * page bit synchronously.
1238 	 *
1239 	 * Do the folio_set_waiters() marking before that
1240 	 * to let any waker we _just_ missed know they
1241 	 * need to wake us up (otherwise they'll never
1242 	 * even go to the slow case that looks at the
1243 	 * page queue), and add ourselves to the wait
1244 	 * queue if we need to sleep.
1245 	 *
1246 	 * This part needs to be done under the queue
1247 	 * lock to avoid races.
1248 	 */
1249 	spin_lock_irq(&q->lock);
1250 	folio_set_waiters(folio);
1251 	if (!folio_trylock_flag(folio, bit_nr, wait))
1252 		__add_wait_queue_entry_tail(q, wait);
1253 	spin_unlock_irq(&q->lock);
1254 
1255 	/*
1256 	 * From now on, all the logic will be based on
1257 	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1258 	 * see whether the page bit testing has already
1259 	 * been done by the wake function.
1260 	 *
1261 	 * We can drop our reference to the folio.
1262 	 */
1263 	if (behavior == DROP)
1264 		folio_put(folio);
1265 
1266 	/*
1267 	 * Note that until the "finish_wait()", or until
1268 	 * we see the WQ_FLAG_WOKEN flag, we need to
1269 	 * be very careful with the 'wait->flags', because
1270 	 * we may race with a waker that sets them.
1271 	 */
1272 	for (;;) {
1273 		unsigned int flags;
1274 
1275 		set_current_state(state);
1276 
1277 		/* Loop until we've been woken or interrupted */
1278 		flags = smp_load_acquire(&wait->flags);
1279 		if (!(flags & WQ_FLAG_WOKEN)) {
1280 			if (signal_pending_state(state, current))
1281 				break;
1282 
1283 			io_schedule();
1284 			continue;
1285 		}
1286 
1287 		/* If we were non-exclusive, we're done */
1288 		if (behavior != EXCLUSIVE)
1289 			break;
1290 
1291 		/* If the waker got the lock for us, we're done */
1292 		if (flags & WQ_FLAG_DONE)
1293 			break;
1294 
1295 		/*
1296 		 * Otherwise, if we're getting the lock, we need to
1297 		 * try to get it ourselves.
1298 		 *
1299 		 * And if that fails, we'll have to retry this all.
1300 		 */
1301 		if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1302 			goto repeat;
1303 
1304 		wait->flags |= WQ_FLAG_DONE;
1305 		break;
1306 	}
1307 
1308 	/*
1309 	 * If a signal happened, this 'finish_wait()' may remove the last
1310 	 * waiter from the wait-queues, but the folio waiters bit will remain
1311 	 * set. That's ok. The next wakeup will take care of it, and trying
1312 	 * to do it here would be difficult and prone to races.
1313 	 */
1314 	finish_wait(q, wait);
1315 
1316 	if (thrashing) {
1317 		delayacct_thrashing_end(&in_thrashing);
1318 		psi_memstall_leave(&pflags);
1319 	}
1320 
1321 	/*
1322 	 * NOTE! The wait->flags weren't stable until we've done the
1323 	 * 'finish_wait()', and we could have exited the loop above due
1324 	 * to a signal, and had a wakeup event happen after the signal
1325 	 * test but before the 'finish_wait()'.
1326 	 *
1327 	 * So only after the finish_wait() can we reliably determine
1328 	 * if we got woken up or not, so we can now figure out the final
1329 	 * return value based on that state without races.
1330 	 *
1331 	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1332 	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1333 	 */
1334 	if (behavior == EXCLUSIVE)
1335 		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1336 
1337 	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1338 }
1339 
1340 #ifdef CONFIG_MIGRATION
1341 /**
1342  * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1343  * @entry: migration swap entry.
1344  * @ptl: already locked ptl. This function will drop the lock.
1345  *
1346  * Wait for a migration entry referencing the given page to be removed. This is
1347  * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1348  * this can be called without taking a reference on the page. Instead this
1349  * should be called while holding the ptl for the migration entry referencing
1350  * the page.
1351  *
1352  * Returns after unlocking the ptl.
1353  *
1354  * This follows the same logic as folio_wait_bit_common() so see the comments
1355  * there.
1356  */
1357 void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl)
1358 	__releases(ptl)
1359 {
1360 	struct wait_page_queue wait_page;
1361 	wait_queue_entry_t *wait = &wait_page.wait;
1362 	bool thrashing = false;
1363 	unsigned long pflags;
1364 	bool in_thrashing;
1365 	wait_queue_head_t *q;
1366 	struct folio *folio = pfn_swap_entry_folio(entry);
1367 
1368 	q = folio_waitqueue(folio);
1369 	if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1370 		delayacct_thrashing_start(&in_thrashing);
1371 		psi_memstall_enter(&pflags);
1372 		thrashing = true;
1373 	}
1374 
1375 	init_wait(wait);
1376 	wait->func = wake_page_function;
1377 	wait_page.folio = folio;
1378 	wait_page.bit_nr = PG_locked;
1379 	wait->flags = 0;
1380 
1381 	spin_lock_irq(&q->lock);
1382 	folio_set_waiters(folio);
1383 	if (!folio_trylock_flag(folio, PG_locked, wait))
1384 		__add_wait_queue_entry_tail(q, wait);
1385 	spin_unlock_irq(&q->lock);
1386 
1387 	/*
1388 	 * If a migration entry exists for the page the migration path must hold
1389 	 * a valid reference to the page, and it must take the ptl to remove the
1390 	 * migration entry. So the page is valid until the ptl is dropped.
1391 	 */
1392 	spin_unlock(ptl);
1393 
1394 	for (;;) {
1395 		unsigned int flags;
1396 
1397 		set_current_state(TASK_UNINTERRUPTIBLE);
1398 
1399 		/* Loop until we've been woken or interrupted */
1400 		flags = smp_load_acquire(&wait->flags);
1401 		if (!(flags & WQ_FLAG_WOKEN)) {
1402 			if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1403 				break;
1404 
1405 			io_schedule();
1406 			continue;
1407 		}
1408 		break;
1409 	}
1410 
1411 	finish_wait(q, wait);
1412 
1413 	if (thrashing) {
1414 		delayacct_thrashing_end(&in_thrashing);
1415 		psi_memstall_leave(&pflags);
1416 	}
1417 }
1418 #endif
1419 
1420 void folio_wait_bit(struct folio *folio, int bit_nr)
1421 {
1422 	folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1423 }
1424 EXPORT_SYMBOL(folio_wait_bit);
1425 
1426 int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1427 {
1428 	return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1429 }
1430 EXPORT_SYMBOL(folio_wait_bit_killable);
1431 
1432 /**
1433  * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1434  * @folio: The folio to wait for.
1435  * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1436  *
1437  * The caller should hold a reference on @folio.  They expect the page to
1438  * become unlocked relatively soon, but do not wish to hold up migration
1439  * (for example) by holding the reference while waiting for the folio to
1440  * come unlocked.  After this function returns, the caller should not
1441  * dereference @folio.
1442  *
1443  * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1444  */
1445 static int folio_put_wait_locked(struct folio *folio, int state)
1446 {
1447 	return folio_wait_bit_common(folio, PG_locked, state, DROP);
1448 }
1449 
1450 /**
1451  * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1452  * @folio: Folio defining the wait queue of interest
1453  * @waiter: Waiter to add to the queue
1454  *
1455  * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1456  */
1457 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1458 {
1459 	wait_queue_head_t *q = folio_waitqueue(folio);
1460 	unsigned long flags;
1461 
1462 	spin_lock_irqsave(&q->lock, flags);
1463 	__add_wait_queue_entry_tail(q, waiter);
1464 	folio_set_waiters(folio);
1465 	spin_unlock_irqrestore(&q->lock, flags);
1466 }
1467 EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1468 
1469 /**
1470  * folio_unlock - Unlock a locked folio.
1471  * @folio: The folio.
1472  *
1473  * Unlocks the folio and wakes up any thread sleeping on the page lock.
1474  *
1475  * Context: May be called from interrupt or process context.  May not be
1476  * called from NMI context.
1477  */
1478 void folio_unlock(struct folio *folio)
1479 {
1480 	/* Bit 7 allows x86 to check the byte's sign bit */
1481 	BUILD_BUG_ON(PG_waiters != 7);
1482 	BUILD_BUG_ON(PG_locked > 7);
1483 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1484 	if (folio_xor_flags_has_waiters(folio, 1 << PG_locked))
1485 		folio_wake_bit(folio, PG_locked);
1486 }
1487 EXPORT_SYMBOL(folio_unlock);
1488 
1489 /**
1490  * folio_end_read - End read on a folio.
1491  * @folio: The folio.
1492  * @success: True if all reads completed successfully.
1493  *
1494  * When all reads against a folio have completed, filesystems should
1495  * call this function to let the pagecache know that no more reads
1496  * are outstanding.  This will unlock the folio and wake up any thread
1497  * sleeping on the lock.  The folio will also be marked uptodate if all
1498  * reads succeeded.
1499  *
1500  * Context: May be called from interrupt or process context.  May not be
1501  * called from NMI context.
1502  */
1503 void folio_end_read(struct folio *folio, bool success)
1504 {
1505 	unsigned long mask = 1 << PG_locked;
1506 
1507 	/* Must be in bottom byte for x86 to work */
1508 	BUILD_BUG_ON(PG_uptodate > 7);
1509 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1510 	VM_BUG_ON_FOLIO(folio_test_uptodate(folio), folio);
1511 
1512 	if (likely(success))
1513 		mask |= 1 << PG_uptodate;
1514 	if (folio_xor_flags_has_waiters(folio, mask))
1515 		folio_wake_bit(folio, PG_locked);
1516 }
1517 EXPORT_SYMBOL(folio_end_read);
1518 
1519 /**
1520  * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1521  * @folio: The folio.
1522  *
1523  * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1524  * it.  The folio reference held for PG_private_2 being set is released.
1525  *
1526  * This is, for example, used when a netfs folio is being written to a local
1527  * disk cache, thereby allowing writes to the cache for the same folio to be
1528  * serialised.
1529  */
1530 void folio_end_private_2(struct folio *folio)
1531 {
1532 	VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1533 	clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1534 	folio_wake_bit(folio, PG_private_2);
1535 	folio_put(folio);
1536 }
1537 EXPORT_SYMBOL(folio_end_private_2);
1538 
1539 /**
1540  * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1541  * @folio: The folio to wait on.
1542  *
1543  * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
1544  */
1545 void folio_wait_private_2(struct folio *folio)
1546 {
1547 	while (folio_test_private_2(folio))
1548 		folio_wait_bit(folio, PG_private_2);
1549 }
1550 EXPORT_SYMBOL(folio_wait_private_2);
1551 
1552 /**
1553  * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1554  * @folio: The folio to wait on.
1555  *
1556  * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
1557  * fatal signal is received by the calling task.
1558  *
1559  * Return:
1560  * - 0 if successful.
1561  * - -EINTR if a fatal signal was encountered.
1562  */
1563 int folio_wait_private_2_killable(struct folio *folio)
1564 {
1565 	int ret = 0;
1566 
1567 	while (folio_test_private_2(folio)) {
1568 		ret = folio_wait_bit_killable(folio, PG_private_2);
1569 		if (ret < 0)
1570 			break;
1571 	}
1572 
1573 	return ret;
1574 }
1575 EXPORT_SYMBOL(folio_wait_private_2_killable);
1576 
1577 /**
1578  * folio_end_writeback - End writeback against a folio.
1579  * @folio: The folio.
1580  *
1581  * The folio must actually be under writeback.
1582  *
1583  * Context: May be called from process or interrupt context.
1584  */
1585 void folio_end_writeback(struct folio *folio)
1586 {
1587 	VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio);
1588 
1589 	/*
1590 	 * folio_test_clear_reclaim() could be used here but it is an
1591 	 * atomic operation and overkill in this particular case. Failing
1592 	 * to shuffle a folio marked for immediate reclaim is too mild
1593 	 * a gain to justify taking an atomic operation penalty at the
1594 	 * end of every folio writeback.
1595 	 */
1596 	if (folio_test_reclaim(folio)) {
1597 		folio_clear_reclaim(folio);
1598 		folio_rotate_reclaimable(folio);
1599 	}
1600 
1601 	/*
1602 	 * Writeback does not hold a folio reference of its own, relying
1603 	 * on truncation to wait for the clearing of PG_writeback.
1604 	 * But here we must make sure that the folio is not freed and
1605 	 * reused before the folio_wake_bit().
1606 	 */
1607 	folio_get(folio);
1608 	if (__folio_end_writeback(folio))
1609 		folio_wake_bit(folio, PG_writeback);
1610 	acct_reclaim_writeback(folio);
1611 	folio_put(folio);
1612 }
1613 EXPORT_SYMBOL(folio_end_writeback);
1614 
1615 /**
1616  * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1617  * @folio: The folio to lock
1618  */
1619 void __folio_lock(struct folio *folio)
1620 {
1621 	folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1622 				EXCLUSIVE);
1623 }
1624 EXPORT_SYMBOL(__folio_lock);
1625 
1626 int __folio_lock_killable(struct folio *folio)
1627 {
1628 	return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1629 					EXCLUSIVE);
1630 }
1631 EXPORT_SYMBOL_GPL(__folio_lock_killable);
1632 
1633 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1634 {
1635 	struct wait_queue_head *q = folio_waitqueue(folio);
1636 	int ret;
1637 
1638 	wait->folio = folio;
1639 	wait->bit_nr = PG_locked;
1640 
1641 	spin_lock_irq(&q->lock);
1642 	__add_wait_queue_entry_tail(q, &wait->wait);
1643 	folio_set_waiters(folio);
1644 	ret = !folio_trylock(folio);
1645 	/*
1646 	 * If we were successful now, we know we're still on the
1647 	 * waitqueue as we're still under the lock. This means it's
1648 	 * safe to remove and return success, we know the callback
1649 	 * isn't going to trigger.
1650 	 */
1651 	if (!ret)
1652 		__remove_wait_queue(q, &wait->wait);
1653 	else
1654 		ret = -EIOCBQUEUED;
1655 	spin_unlock_irq(&q->lock);
1656 	return ret;
1657 }
1658 
1659 /*
1660  * Return values:
1661  * 0 - folio is locked.
1662  * non-zero - folio is not locked.
1663  *     mmap_lock or per-VMA lock has been released (mmap_read_unlock() or
1664  *     vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and
1665  *     FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held.
1666  *
1667  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0
1668  * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed.
1669  */
1670 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf)
1671 {
1672 	unsigned int flags = vmf->flags;
1673 
1674 	if (fault_flag_allow_retry_first(flags)) {
1675 		/*
1676 		 * CAUTION! In this case, mmap_lock/per-VMA lock is not
1677 		 * released even though returning VM_FAULT_RETRY.
1678 		 */
1679 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1680 			return VM_FAULT_RETRY;
1681 
1682 		release_fault_lock(vmf);
1683 		if (flags & FAULT_FLAG_KILLABLE)
1684 			folio_wait_locked_killable(folio);
1685 		else
1686 			folio_wait_locked(folio);
1687 		return VM_FAULT_RETRY;
1688 	}
1689 	if (flags & FAULT_FLAG_KILLABLE) {
1690 		bool ret;
1691 
1692 		ret = __folio_lock_killable(folio);
1693 		if (ret) {
1694 			release_fault_lock(vmf);
1695 			return VM_FAULT_RETRY;
1696 		}
1697 	} else {
1698 		__folio_lock(folio);
1699 	}
1700 
1701 	return 0;
1702 }
1703 
1704 /**
1705  * page_cache_next_miss() - Find the next gap in the page cache.
1706  * @mapping: Mapping.
1707  * @index: Index.
1708  * @max_scan: Maximum range to search.
1709  *
1710  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1711  * gap with the lowest index.
1712  *
1713  * This function may be called under the rcu_read_lock.  However, this will
1714  * not atomically search a snapshot of the cache at a single point in time.
1715  * For example, if a gap is created at index 5, then subsequently a gap is
1716  * created at index 10, page_cache_next_miss covering both indices may
1717  * return 10 if called under the rcu_read_lock.
1718  *
1719  * Return: The index of the gap if found, otherwise an index outside the
1720  * range specified (in which case 'return - index >= max_scan' will be true).
1721  * In the rare case of index wrap-around, 0 will be returned.
1722  */
1723 pgoff_t page_cache_next_miss(struct address_space *mapping,
1724 			     pgoff_t index, unsigned long max_scan)
1725 {
1726 	XA_STATE(xas, &mapping->i_pages, index);
1727 
1728 	while (max_scan--) {
1729 		void *entry = xas_next(&xas);
1730 		if (!entry || xa_is_value(entry))
1731 			break;
1732 		if (xas.xa_index == 0)
1733 			break;
1734 	}
1735 
1736 	return xas.xa_index;
1737 }
1738 EXPORT_SYMBOL(page_cache_next_miss);
1739 
1740 /**
1741  * page_cache_prev_miss() - Find the previous gap in the page cache.
1742  * @mapping: Mapping.
1743  * @index: Index.
1744  * @max_scan: Maximum range to search.
1745  *
1746  * Search the range [max(index - max_scan + 1, 0), index] for the
1747  * gap with the highest index.
1748  *
1749  * This function may be called under the rcu_read_lock.  However, this will
1750  * not atomically search a snapshot of the cache at a single point in time.
1751  * For example, if a gap is created at index 10, then subsequently a gap is
1752  * created at index 5, page_cache_prev_miss() covering both indices may
1753  * return 5 if called under the rcu_read_lock.
1754  *
1755  * Return: The index of the gap if found, otherwise an index outside the
1756  * range specified (in which case 'index - return >= max_scan' will be true).
1757  * In the rare case of wrap-around, ULONG_MAX will be returned.
1758  */
1759 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1760 			     pgoff_t index, unsigned long max_scan)
1761 {
1762 	XA_STATE(xas, &mapping->i_pages, index);
1763 
1764 	while (max_scan--) {
1765 		void *entry = xas_prev(&xas);
1766 		if (!entry || xa_is_value(entry))
1767 			break;
1768 		if (xas.xa_index == ULONG_MAX)
1769 			break;
1770 	}
1771 
1772 	return xas.xa_index;
1773 }
1774 EXPORT_SYMBOL(page_cache_prev_miss);
1775 
1776 /*
1777  * Lockless page cache protocol:
1778  * On the lookup side:
1779  * 1. Load the folio from i_pages
1780  * 2. Increment the refcount if it's not zero
1781  * 3. If the folio is not found by xas_reload(), put the refcount and retry
1782  *
1783  * On the removal side:
1784  * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1785  * B. Remove the page from i_pages
1786  * C. Return the page to the page allocator
1787  *
1788  * This means that any page may have its reference count temporarily
1789  * increased by a speculative page cache (or fast GUP) lookup as it can
1790  * be allocated by another user before the RCU grace period expires.
1791  * Because the refcount temporarily acquired here may end up being the
1792  * last refcount on the page, any page allocation must be freeable by
1793  * folio_put().
1794  */
1795 
1796 /*
1797  * filemap_get_entry - Get a page cache entry.
1798  * @mapping: the address_space to search
1799  * @index: The page cache index.
1800  *
1801  * Looks up the page cache entry at @mapping & @index.  If it is a folio,
1802  * it is returned with an increased refcount.  If it is a shadow entry
1803  * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1804  * it is returned without further action.
1805  *
1806  * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1807  */
1808 void *filemap_get_entry(struct address_space *mapping, pgoff_t index)
1809 {
1810 	XA_STATE(xas, &mapping->i_pages, index);
1811 	struct folio *folio;
1812 
1813 	rcu_read_lock();
1814 repeat:
1815 	xas_reset(&xas);
1816 	folio = xas_load(&xas);
1817 	if (xas_retry(&xas, folio))
1818 		goto repeat;
1819 	/*
1820 	 * A shadow entry of a recently evicted page, or a swap entry from
1821 	 * shmem/tmpfs.  Return it without attempting to raise page count.
1822 	 */
1823 	if (!folio || xa_is_value(folio))
1824 		goto out;
1825 
1826 	if (!folio_try_get_rcu(folio))
1827 		goto repeat;
1828 
1829 	if (unlikely(folio != xas_reload(&xas))) {
1830 		folio_put(folio);
1831 		goto repeat;
1832 	}
1833 out:
1834 	rcu_read_unlock();
1835 
1836 	return folio;
1837 }
1838 
1839 /**
1840  * __filemap_get_folio - Find and get a reference to a folio.
1841  * @mapping: The address_space to search.
1842  * @index: The page index.
1843  * @fgp_flags: %FGP flags modify how the folio is returned.
1844  * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1845  *
1846  * Looks up the page cache entry at @mapping & @index.
1847  *
1848  * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1849  * if the %GFP flags specified for %FGP_CREAT are atomic.
1850  *
1851  * If this function returns a folio, it is returned with an increased refcount.
1852  *
1853  * Return: The found folio or an ERR_PTR() otherwise.
1854  */
1855 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1856 		fgf_t fgp_flags, gfp_t gfp)
1857 {
1858 	struct folio *folio;
1859 
1860 repeat:
1861 	folio = filemap_get_entry(mapping, index);
1862 	if (xa_is_value(folio))
1863 		folio = NULL;
1864 	if (!folio)
1865 		goto no_page;
1866 
1867 	if (fgp_flags & FGP_LOCK) {
1868 		if (fgp_flags & FGP_NOWAIT) {
1869 			if (!folio_trylock(folio)) {
1870 				folio_put(folio);
1871 				return ERR_PTR(-EAGAIN);
1872 			}
1873 		} else {
1874 			folio_lock(folio);
1875 		}
1876 
1877 		/* Has the page been truncated? */
1878 		if (unlikely(folio->mapping != mapping)) {
1879 			folio_unlock(folio);
1880 			folio_put(folio);
1881 			goto repeat;
1882 		}
1883 		VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1884 	}
1885 
1886 	if (fgp_flags & FGP_ACCESSED)
1887 		folio_mark_accessed(folio);
1888 	else if (fgp_flags & FGP_WRITE) {
1889 		/* Clear idle flag for buffer write */
1890 		if (folio_test_idle(folio))
1891 			folio_clear_idle(folio);
1892 	}
1893 
1894 	if (fgp_flags & FGP_STABLE)
1895 		folio_wait_stable(folio);
1896 no_page:
1897 	if (!folio && (fgp_flags & FGP_CREAT)) {
1898 		unsigned order = FGF_GET_ORDER(fgp_flags);
1899 		int err;
1900 
1901 		if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1902 			gfp |= __GFP_WRITE;
1903 		if (fgp_flags & FGP_NOFS)
1904 			gfp &= ~__GFP_FS;
1905 		if (fgp_flags & FGP_NOWAIT) {
1906 			gfp &= ~GFP_KERNEL;
1907 			gfp |= GFP_NOWAIT | __GFP_NOWARN;
1908 		}
1909 		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1910 			fgp_flags |= FGP_LOCK;
1911 
1912 		if (!mapping_large_folio_support(mapping))
1913 			order = 0;
1914 		if (order > MAX_PAGECACHE_ORDER)
1915 			order = MAX_PAGECACHE_ORDER;
1916 		/* If we're not aligned, allocate a smaller folio */
1917 		if (index & ((1UL << order) - 1))
1918 			order = __ffs(index);
1919 
1920 		do {
1921 			gfp_t alloc_gfp = gfp;
1922 
1923 			err = -ENOMEM;
1924 			if (order > 0)
1925 				alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN;
1926 			folio = filemap_alloc_folio(alloc_gfp, order);
1927 			if (!folio)
1928 				continue;
1929 
1930 			/* Init accessed so avoid atomic mark_page_accessed later */
1931 			if (fgp_flags & FGP_ACCESSED)
1932 				__folio_set_referenced(folio);
1933 
1934 			err = filemap_add_folio(mapping, folio, index, gfp);
1935 			if (!err)
1936 				break;
1937 			folio_put(folio);
1938 			folio = NULL;
1939 		} while (order-- > 0);
1940 
1941 		if (err == -EEXIST)
1942 			goto repeat;
1943 		if (err)
1944 			return ERR_PTR(err);
1945 		/*
1946 		 * filemap_add_folio locks the page, and for mmap
1947 		 * we expect an unlocked page.
1948 		 */
1949 		if (folio && (fgp_flags & FGP_FOR_MMAP))
1950 			folio_unlock(folio);
1951 	}
1952 
1953 	if (!folio)
1954 		return ERR_PTR(-ENOENT);
1955 	return folio;
1956 }
1957 EXPORT_SYMBOL(__filemap_get_folio);
1958 
1959 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
1960 		xa_mark_t mark)
1961 {
1962 	struct folio *folio;
1963 
1964 retry:
1965 	if (mark == XA_PRESENT)
1966 		folio = xas_find(xas, max);
1967 	else
1968 		folio = xas_find_marked(xas, max, mark);
1969 
1970 	if (xas_retry(xas, folio))
1971 		goto retry;
1972 	/*
1973 	 * A shadow entry of a recently evicted page, a swap
1974 	 * entry from shmem/tmpfs or a DAX entry.  Return it
1975 	 * without attempting to raise page count.
1976 	 */
1977 	if (!folio || xa_is_value(folio))
1978 		return folio;
1979 
1980 	if (!folio_try_get_rcu(folio))
1981 		goto reset;
1982 
1983 	if (unlikely(folio != xas_reload(xas))) {
1984 		folio_put(folio);
1985 		goto reset;
1986 	}
1987 
1988 	return folio;
1989 reset:
1990 	xas_reset(xas);
1991 	goto retry;
1992 }
1993 
1994 /**
1995  * find_get_entries - gang pagecache lookup
1996  * @mapping:	The address_space to search
1997  * @start:	The starting page cache index
1998  * @end:	The final page index (inclusive).
1999  * @fbatch:	Where the resulting entries are placed.
2000  * @indices:	The cache indices corresponding to the entries in @entries
2001  *
2002  * find_get_entries() will search for and return a batch of entries in
2003  * the mapping.  The entries are placed in @fbatch.  find_get_entries()
2004  * takes a reference on any actual folios it returns.
2005  *
2006  * The entries have ascending indexes.  The indices may not be consecutive
2007  * due to not-present entries or large folios.
2008  *
2009  * Any shadow entries of evicted folios, or swap entries from
2010  * shmem/tmpfs, are included in the returned array.
2011  *
2012  * Return: The number of entries which were found.
2013  */
2014 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
2015 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2016 {
2017 	XA_STATE(xas, &mapping->i_pages, *start);
2018 	struct folio *folio;
2019 
2020 	rcu_read_lock();
2021 	while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2022 		indices[fbatch->nr] = xas.xa_index;
2023 		if (!folio_batch_add(fbatch, folio))
2024 			break;
2025 	}
2026 	rcu_read_unlock();
2027 
2028 	if (folio_batch_count(fbatch)) {
2029 		unsigned long nr = 1;
2030 		int idx = folio_batch_count(fbatch) - 1;
2031 
2032 		folio = fbatch->folios[idx];
2033 		if (!xa_is_value(folio))
2034 			nr = folio_nr_pages(folio);
2035 		*start = indices[idx] + nr;
2036 	}
2037 	return folio_batch_count(fbatch);
2038 }
2039 
2040 /**
2041  * find_lock_entries - Find a batch of pagecache entries.
2042  * @mapping:	The address_space to search.
2043  * @start:	The starting page cache index.
2044  * @end:	The final page index (inclusive).
2045  * @fbatch:	Where the resulting entries are placed.
2046  * @indices:	The cache indices of the entries in @fbatch.
2047  *
2048  * find_lock_entries() will return a batch of entries from @mapping.
2049  * Swap, shadow and DAX entries are included.  Folios are returned
2050  * locked and with an incremented refcount.  Folios which are locked
2051  * by somebody else or under writeback are skipped.  Folios which are
2052  * partially outside the range are not returned.
2053  *
2054  * The entries have ascending indexes.  The indices may not be consecutive
2055  * due to not-present entries, large folios, folios which could not be
2056  * locked or folios under writeback.
2057  *
2058  * Return: The number of entries which were found.
2059  */
2060 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
2061 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2062 {
2063 	XA_STATE(xas, &mapping->i_pages, *start);
2064 	struct folio *folio;
2065 
2066 	rcu_read_lock();
2067 	while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2068 		if (!xa_is_value(folio)) {
2069 			if (folio->index < *start)
2070 				goto put;
2071 			if (folio_next_index(folio) - 1 > end)
2072 				goto put;
2073 			if (!folio_trylock(folio))
2074 				goto put;
2075 			if (folio->mapping != mapping ||
2076 			    folio_test_writeback(folio))
2077 				goto unlock;
2078 			VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2079 					folio);
2080 		}
2081 		indices[fbatch->nr] = xas.xa_index;
2082 		if (!folio_batch_add(fbatch, folio))
2083 			break;
2084 		continue;
2085 unlock:
2086 		folio_unlock(folio);
2087 put:
2088 		folio_put(folio);
2089 	}
2090 	rcu_read_unlock();
2091 
2092 	if (folio_batch_count(fbatch)) {
2093 		unsigned long nr = 1;
2094 		int idx = folio_batch_count(fbatch) - 1;
2095 
2096 		folio = fbatch->folios[idx];
2097 		if (!xa_is_value(folio))
2098 			nr = folio_nr_pages(folio);
2099 		*start = indices[idx] + nr;
2100 	}
2101 	return folio_batch_count(fbatch);
2102 }
2103 
2104 /**
2105  * filemap_get_folios - Get a batch of folios
2106  * @mapping:	The address_space to search
2107  * @start:	The starting page index
2108  * @end:	The final page index (inclusive)
2109  * @fbatch:	The batch to fill.
2110  *
2111  * Search for and return a batch of folios in the mapping starting at
2112  * index @start and up to index @end (inclusive).  The folios are returned
2113  * in @fbatch with an elevated reference count.
2114  *
2115  * Return: The number of folios which were found.
2116  * We also update @start to index the next folio for the traversal.
2117  */
2118 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2119 		pgoff_t end, struct folio_batch *fbatch)
2120 {
2121 	return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch);
2122 }
2123 EXPORT_SYMBOL(filemap_get_folios);
2124 
2125 /**
2126  * filemap_get_folios_contig - Get a batch of contiguous folios
2127  * @mapping:	The address_space to search
2128  * @start:	The starting page index
2129  * @end:	The final page index (inclusive)
2130  * @fbatch:	The batch to fill
2131  *
2132  * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2133  * except the returned folios are guaranteed to be contiguous. This may
2134  * not return all contiguous folios if the batch gets filled up.
2135  *
2136  * Return: The number of folios found.
2137  * Also update @start to be positioned for traversal of the next folio.
2138  */
2139 
2140 unsigned filemap_get_folios_contig(struct address_space *mapping,
2141 		pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
2142 {
2143 	XA_STATE(xas, &mapping->i_pages, *start);
2144 	unsigned long nr;
2145 	struct folio *folio;
2146 
2147 	rcu_read_lock();
2148 
2149 	for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2150 			folio = xas_next(&xas)) {
2151 		if (xas_retry(&xas, folio))
2152 			continue;
2153 		/*
2154 		 * If the entry has been swapped out, we can stop looking.
2155 		 * No current caller is looking for DAX entries.
2156 		 */
2157 		if (xa_is_value(folio))
2158 			goto update_start;
2159 
2160 		if (!folio_try_get_rcu(folio))
2161 			goto retry;
2162 
2163 		if (unlikely(folio != xas_reload(&xas)))
2164 			goto put_folio;
2165 
2166 		if (!folio_batch_add(fbatch, folio)) {
2167 			nr = folio_nr_pages(folio);
2168 			*start = folio->index + nr;
2169 			goto out;
2170 		}
2171 		continue;
2172 put_folio:
2173 		folio_put(folio);
2174 
2175 retry:
2176 		xas_reset(&xas);
2177 	}
2178 
2179 update_start:
2180 	nr = folio_batch_count(fbatch);
2181 
2182 	if (nr) {
2183 		folio = fbatch->folios[nr - 1];
2184 		*start = folio_next_index(folio);
2185 	}
2186 out:
2187 	rcu_read_unlock();
2188 	return folio_batch_count(fbatch);
2189 }
2190 EXPORT_SYMBOL(filemap_get_folios_contig);
2191 
2192 /**
2193  * filemap_get_folios_tag - Get a batch of folios matching @tag
2194  * @mapping:    The address_space to search
2195  * @start:      The starting page index
2196  * @end:        The final page index (inclusive)
2197  * @tag:        The tag index
2198  * @fbatch:     The batch to fill
2199  *
2200  * The first folio may start before @start; if it does, it will contain
2201  * @start.  The final folio may extend beyond @end; if it does, it will
2202  * contain @end.  The folios have ascending indices.  There may be gaps
2203  * between the folios if there are indices which have no folio in the
2204  * page cache.  If folios are added to or removed from the page cache
2205  * while this is running, they may or may not be found by this call.
2206  * Only returns folios that are tagged with @tag.
2207  *
2208  * Return: The number of folios found.
2209  * Also update @start to index the next folio for traversal.
2210  */
2211 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
2212 			pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
2213 {
2214 	XA_STATE(xas, &mapping->i_pages, *start);
2215 	struct folio *folio;
2216 
2217 	rcu_read_lock();
2218 	while ((folio = find_get_entry(&xas, end, tag)) != NULL) {
2219 		/*
2220 		 * Shadow entries should never be tagged, but this iteration
2221 		 * is lockless so there is a window for page reclaim to evict
2222 		 * a page we saw tagged. Skip over it.
2223 		 */
2224 		if (xa_is_value(folio))
2225 			continue;
2226 		if (!folio_batch_add(fbatch, folio)) {
2227 			unsigned long nr = folio_nr_pages(folio);
2228 			*start = folio->index + nr;
2229 			goto out;
2230 		}
2231 	}
2232 	/*
2233 	 * We come here when there is no page beyond @end. We take care to not
2234 	 * overflow the index @start as it confuses some of the callers. This
2235 	 * breaks the iteration when there is a page at index -1 but that is
2236 	 * already broke anyway.
2237 	 */
2238 	if (end == (pgoff_t)-1)
2239 		*start = (pgoff_t)-1;
2240 	else
2241 		*start = end + 1;
2242 out:
2243 	rcu_read_unlock();
2244 
2245 	return folio_batch_count(fbatch);
2246 }
2247 EXPORT_SYMBOL(filemap_get_folios_tag);
2248 
2249 /*
2250  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2251  * a _large_ part of the i/o request. Imagine the worst scenario:
2252  *
2253  *      ---R__________________________________________B__________
2254  *         ^ reading here                             ^ bad block(assume 4k)
2255  *
2256  * read(R) => miss => readahead(R...B) => media error => frustrating retries
2257  * => failing the whole request => read(R) => read(R+1) =>
2258  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2259  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2260  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2261  *
2262  * It is going insane. Fix it by quickly scaling down the readahead size.
2263  */
2264 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2265 {
2266 	ra->ra_pages /= 4;
2267 }
2268 
2269 /*
2270  * filemap_get_read_batch - Get a batch of folios for read
2271  *
2272  * Get a batch of folios which represent a contiguous range of bytes in
2273  * the file.  No exceptional entries will be returned.  If @index is in
2274  * the middle of a folio, the entire folio will be returned.  The last
2275  * folio in the batch may have the readahead flag set or the uptodate flag
2276  * clear so that the caller can take the appropriate action.
2277  */
2278 static void filemap_get_read_batch(struct address_space *mapping,
2279 		pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2280 {
2281 	XA_STATE(xas, &mapping->i_pages, index);
2282 	struct folio *folio;
2283 
2284 	rcu_read_lock();
2285 	for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2286 		if (xas_retry(&xas, folio))
2287 			continue;
2288 		if (xas.xa_index > max || xa_is_value(folio))
2289 			break;
2290 		if (xa_is_sibling(folio))
2291 			break;
2292 		if (!folio_try_get_rcu(folio))
2293 			goto retry;
2294 
2295 		if (unlikely(folio != xas_reload(&xas)))
2296 			goto put_folio;
2297 
2298 		if (!folio_batch_add(fbatch, folio))
2299 			break;
2300 		if (!folio_test_uptodate(folio))
2301 			break;
2302 		if (folio_test_readahead(folio))
2303 			break;
2304 		xas_advance(&xas, folio_next_index(folio) - 1);
2305 		continue;
2306 put_folio:
2307 		folio_put(folio);
2308 retry:
2309 		xas_reset(&xas);
2310 	}
2311 	rcu_read_unlock();
2312 }
2313 
2314 static int filemap_read_folio(struct file *file, filler_t filler,
2315 		struct folio *folio)
2316 {
2317 	bool workingset = folio_test_workingset(folio);
2318 	unsigned long pflags;
2319 	int error;
2320 
2321 	/*
2322 	 * A previous I/O error may have been due to temporary failures,
2323 	 * eg. multipath errors.  PG_error will be set again if read_folio
2324 	 * fails.
2325 	 */
2326 	folio_clear_error(folio);
2327 
2328 	/* Start the actual read. The read will unlock the page. */
2329 	if (unlikely(workingset))
2330 		psi_memstall_enter(&pflags);
2331 	error = filler(file, folio);
2332 	if (unlikely(workingset))
2333 		psi_memstall_leave(&pflags);
2334 	if (error)
2335 		return error;
2336 
2337 	error = folio_wait_locked_killable(folio);
2338 	if (error)
2339 		return error;
2340 	if (folio_test_uptodate(folio))
2341 		return 0;
2342 	if (file)
2343 		shrink_readahead_size_eio(&file->f_ra);
2344 	return -EIO;
2345 }
2346 
2347 static bool filemap_range_uptodate(struct address_space *mapping,
2348 		loff_t pos, size_t count, struct folio *folio,
2349 		bool need_uptodate)
2350 {
2351 	if (folio_test_uptodate(folio))
2352 		return true;
2353 	/* pipes can't handle partially uptodate pages */
2354 	if (need_uptodate)
2355 		return false;
2356 	if (!mapping->a_ops->is_partially_uptodate)
2357 		return false;
2358 	if (mapping->host->i_blkbits >= folio_shift(folio))
2359 		return false;
2360 
2361 	if (folio_pos(folio) > pos) {
2362 		count -= folio_pos(folio) - pos;
2363 		pos = 0;
2364 	} else {
2365 		pos -= folio_pos(folio);
2366 	}
2367 
2368 	return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2369 }
2370 
2371 static int filemap_update_page(struct kiocb *iocb,
2372 		struct address_space *mapping, size_t count,
2373 		struct folio *folio, bool need_uptodate)
2374 {
2375 	int error;
2376 
2377 	if (iocb->ki_flags & IOCB_NOWAIT) {
2378 		if (!filemap_invalidate_trylock_shared(mapping))
2379 			return -EAGAIN;
2380 	} else {
2381 		filemap_invalidate_lock_shared(mapping);
2382 	}
2383 
2384 	if (!folio_trylock(folio)) {
2385 		error = -EAGAIN;
2386 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2387 			goto unlock_mapping;
2388 		if (!(iocb->ki_flags & IOCB_WAITQ)) {
2389 			filemap_invalidate_unlock_shared(mapping);
2390 			/*
2391 			 * This is where we usually end up waiting for a
2392 			 * previously submitted readahead to finish.
2393 			 */
2394 			folio_put_wait_locked(folio, TASK_KILLABLE);
2395 			return AOP_TRUNCATED_PAGE;
2396 		}
2397 		error = __folio_lock_async(folio, iocb->ki_waitq);
2398 		if (error)
2399 			goto unlock_mapping;
2400 	}
2401 
2402 	error = AOP_TRUNCATED_PAGE;
2403 	if (!folio->mapping)
2404 		goto unlock;
2405 
2406 	error = 0;
2407 	if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio,
2408 				   need_uptodate))
2409 		goto unlock;
2410 
2411 	error = -EAGAIN;
2412 	if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2413 		goto unlock;
2414 
2415 	error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2416 			folio);
2417 	goto unlock_mapping;
2418 unlock:
2419 	folio_unlock(folio);
2420 unlock_mapping:
2421 	filemap_invalidate_unlock_shared(mapping);
2422 	if (error == AOP_TRUNCATED_PAGE)
2423 		folio_put(folio);
2424 	return error;
2425 }
2426 
2427 static int filemap_create_folio(struct file *file,
2428 		struct address_space *mapping, pgoff_t index,
2429 		struct folio_batch *fbatch)
2430 {
2431 	struct folio *folio;
2432 	int error;
2433 
2434 	folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2435 	if (!folio)
2436 		return -ENOMEM;
2437 
2438 	/*
2439 	 * Protect against truncate / hole punch. Grabbing invalidate_lock
2440 	 * here assures we cannot instantiate and bring uptodate new
2441 	 * pagecache folios after evicting page cache during truncate
2442 	 * and before actually freeing blocks.	Note that we could
2443 	 * release invalidate_lock after inserting the folio into
2444 	 * the page cache as the locked folio would then be enough to
2445 	 * synchronize with hole punching. But there are code paths
2446 	 * such as filemap_update_page() filling in partially uptodate
2447 	 * pages or ->readahead() that need to hold invalidate_lock
2448 	 * while mapping blocks for IO so let's hold the lock here as
2449 	 * well to keep locking rules simple.
2450 	 */
2451 	filemap_invalidate_lock_shared(mapping);
2452 	error = filemap_add_folio(mapping, folio, index,
2453 			mapping_gfp_constraint(mapping, GFP_KERNEL));
2454 	if (error == -EEXIST)
2455 		error = AOP_TRUNCATED_PAGE;
2456 	if (error)
2457 		goto error;
2458 
2459 	error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
2460 	if (error)
2461 		goto error;
2462 
2463 	filemap_invalidate_unlock_shared(mapping);
2464 	folio_batch_add(fbatch, folio);
2465 	return 0;
2466 error:
2467 	filemap_invalidate_unlock_shared(mapping);
2468 	folio_put(folio);
2469 	return error;
2470 }
2471 
2472 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2473 		struct address_space *mapping, struct folio *folio,
2474 		pgoff_t last_index)
2475 {
2476 	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2477 
2478 	if (iocb->ki_flags & IOCB_NOIO)
2479 		return -EAGAIN;
2480 	page_cache_async_ra(&ractl, folio, last_index - folio->index);
2481 	return 0;
2482 }
2483 
2484 static int filemap_get_pages(struct kiocb *iocb, size_t count,
2485 		struct folio_batch *fbatch, bool need_uptodate)
2486 {
2487 	struct file *filp = iocb->ki_filp;
2488 	struct address_space *mapping = filp->f_mapping;
2489 	struct file_ra_state *ra = &filp->f_ra;
2490 	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2491 	pgoff_t last_index;
2492 	struct folio *folio;
2493 	int err = 0;
2494 
2495 	/* "last_index" is the index of the page beyond the end of the read */
2496 	last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE);
2497 retry:
2498 	if (fatal_signal_pending(current))
2499 		return -EINTR;
2500 
2501 	filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2502 	if (!folio_batch_count(fbatch)) {
2503 		if (iocb->ki_flags & IOCB_NOIO)
2504 			return -EAGAIN;
2505 		page_cache_sync_readahead(mapping, ra, filp, index,
2506 				last_index - index);
2507 		filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2508 	}
2509 	if (!folio_batch_count(fbatch)) {
2510 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2511 			return -EAGAIN;
2512 		err = filemap_create_folio(filp, mapping,
2513 				iocb->ki_pos >> PAGE_SHIFT, fbatch);
2514 		if (err == AOP_TRUNCATED_PAGE)
2515 			goto retry;
2516 		return err;
2517 	}
2518 
2519 	folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2520 	if (folio_test_readahead(folio)) {
2521 		err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2522 		if (err)
2523 			goto err;
2524 	}
2525 	if (!folio_test_uptodate(folio)) {
2526 		if ((iocb->ki_flags & IOCB_WAITQ) &&
2527 		    folio_batch_count(fbatch) > 1)
2528 			iocb->ki_flags |= IOCB_NOWAIT;
2529 		err = filemap_update_page(iocb, mapping, count, folio,
2530 					  need_uptodate);
2531 		if (err)
2532 			goto err;
2533 	}
2534 
2535 	return 0;
2536 err:
2537 	if (err < 0)
2538 		folio_put(folio);
2539 	if (likely(--fbatch->nr))
2540 		return 0;
2541 	if (err == AOP_TRUNCATED_PAGE)
2542 		goto retry;
2543 	return err;
2544 }
2545 
2546 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2547 {
2548 	unsigned int shift = folio_shift(folio);
2549 
2550 	return (pos1 >> shift == pos2 >> shift);
2551 }
2552 
2553 /**
2554  * filemap_read - Read data from the page cache.
2555  * @iocb: The iocb to read.
2556  * @iter: Destination for the data.
2557  * @already_read: Number of bytes already read by the caller.
2558  *
2559  * Copies data from the page cache.  If the data is not currently present,
2560  * uses the readahead and read_folio address_space operations to fetch it.
2561  *
2562  * Return: Total number of bytes copied, including those already read by
2563  * the caller.  If an error happens before any bytes are copied, returns
2564  * a negative error number.
2565  */
2566 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2567 		ssize_t already_read)
2568 {
2569 	struct file *filp = iocb->ki_filp;
2570 	struct file_ra_state *ra = &filp->f_ra;
2571 	struct address_space *mapping = filp->f_mapping;
2572 	struct inode *inode = mapping->host;
2573 	struct folio_batch fbatch;
2574 	int i, error = 0;
2575 	bool writably_mapped;
2576 	loff_t isize, end_offset;
2577 	loff_t last_pos = ra->prev_pos;
2578 
2579 	if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2580 		return 0;
2581 	if (unlikely(!iov_iter_count(iter)))
2582 		return 0;
2583 
2584 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2585 	folio_batch_init(&fbatch);
2586 
2587 	do {
2588 		cond_resched();
2589 
2590 		/*
2591 		 * If we've already successfully copied some data, then we
2592 		 * can no longer safely return -EIOCBQUEUED. Hence mark
2593 		 * an async read NOWAIT at that point.
2594 		 */
2595 		if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2596 			iocb->ki_flags |= IOCB_NOWAIT;
2597 
2598 		if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2599 			break;
2600 
2601 		error = filemap_get_pages(iocb, iter->count, &fbatch, false);
2602 		if (error < 0)
2603 			break;
2604 
2605 		/*
2606 		 * i_size must be checked after we know the pages are Uptodate.
2607 		 *
2608 		 * Checking i_size after the check allows us to calculate
2609 		 * the correct value for "nr", which means the zero-filled
2610 		 * part of the page is not copied back to userspace (unless
2611 		 * another truncate extends the file - this is desired though).
2612 		 */
2613 		isize = i_size_read(inode);
2614 		if (unlikely(iocb->ki_pos >= isize))
2615 			goto put_folios;
2616 		end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2617 
2618 		/*
2619 		 * Once we start copying data, we don't want to be touching any
2620 		 * cachelines that might be contended:
2621 		 */
2622 		writably_mapped = mapping_writably_mapped(mapping);
2623 
2624 		/*
2625 		 * When a read accesses the same folio several times, only
2626 		 * mark it as accessed the first time.
2627 		 */
2628 		if (!pos_same_folio(iocb->ki_pos, last_pos - 1,
2629 				    fbatch.folios[0]))
2630 			folio_mark_accessed(fbatch.folios[0]);
2631 
2632 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2633 			struct folio *folio = fbatch.folios[i];
2634 			size_t fsize = folio_size(folio);
2635 			size_t offset = iocb->ki_pos & (fsize - 1);
2636 			size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2637 					     fsize - offset);
2638 			size_t copied;
2639 
2640 			if (end_offset < folio_pos(folio))
2641 				break;
2642 			if (i > 0)
2643 				folio_mark_accessed(folio);
2644 			/*
2645 			 * If users can be writing to this folio using arbitrary
2646 			 * virtual addresses, take care of potential aliasing
2647 			 * before reading the folio on the kernel side.
2648 			 */
2649 			if (writably_mapped)
2650 				flush_dcache_folio(folio);
2651 
2652 			copied = copy_folio_to_iter(folio, offset, bytes, iter);
2653 
2654 			already_read += copied;
2655 			iocb->ki_pos += copied;
2656 			last_pos = iocb->ki_pos;
2657 
2658 			if (copied < bytes) {
2659 				error = -EFAULT;
2660 				break;
2661 			}
2662 		}
2663 put_folios:
2664 		for (i = 0; i < folio_batch_count(&fbatch); i++)
2665 			folio_put(fbatch.folios[i]);
2666 		folio_batch_init(&fbatch);
2667 	} while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2668 
2669 	file_accessed(filp);
2670 	ra->prev_pos = last_pos;
2671 	return already_read ? already_read : error;
2672 }
2673 EXPORT_SYMBOL_GPL(filemap_read);
2674 
2675 int kiocb_write_and_wait(struct kiocb *iocb, size_t count)
2676 {
2677 	struct address_space *mapping = iocb->ki_filp->f_mapping;
2678 	loff_t pos = iocb->ki_pos;
2679 	loff_t end = pos + count - 1;
2680 
2681 	if (iocb->ki_flags & IOCB_NOWAIT) {
2682 		if (filemap_range_needs_writeback(mapping, pos, end))
2683 			return -EAGAIN;
2684 		return 0;
2685 	}
2686 
2687 	return filemap_write_and_wait_range(mapping, pos, end);
2688 }
2689 EXPORT_SYMBOL_GPL(kiocb_write_and_wait);
2690 
2691 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count)
2692 {
2693 	struct address_space *mapping = iocb->ki_filp->f_mapping;
2694 	loff_t pos = iocb->ki_pos;
2695 	loff_t end = pos + count - 1;
2696 	int ret;
2697 
2698 	if (iocb->ki_flags & IOCB_NOWAIT) {
2699 		/* we could block if there are any pages in the range */
2700 		if (filemap_range_has_page(mapping, pos, end))
2701 			return -EAGAIN;
2702 	} else {
2703 		ret = filemap_write_and_wait_range(mapping, pos, end);
2704 		if (ret)
2705 			return ret;
2706 	}
2707 
2708 	/*
2709 	 * After a write we want buffered reads to be sure to go to disk to get
2710 	 * the new data.  We invalidate clean cached page from the region we're
2711 	 * about to write.  We do this *before* the write so that we can return
2712 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2713 	 */
2714 	return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT,
2715 					     end >> PAGE_SHIFT);
2716 }
2717 EXPORT_SYMBOL_GPL(kiocb_invalidate_pages);
2718 
2719 /**
2720  * generic_file_read_iter - generic filesystem read routine
2721  * @iocb:	kernel I/O control block
2722  * @iter:	destination for the data read
2723  *
2724  * This is the "read_iter()" routine for all filesystems
2725  * that can use the page cache directly.
2726  *
2727  * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2728  * be returned when no data can be read without waiting for I/O requests
2729  * to complete; it doesn't prevent readahead.
2730  *
2731  * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2732  * requests shall be made for the read or for readahead.  When no data
2733  * can be read, -EAGAIN shall be returned.  When readahead would be
2734  * triggered, a partial, possibly empty read shall be returned.
2735  *
2736  * Return:
2737  * * number of bytes copied, even for partial reads
2738  * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2739  */
2740 ssize_t
2741 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2742 {
2743 	size_t count = iov_iter_count(iter);
2744 	ssize_t retval = 0;
2745 
2746 	if (!count)
2747 		return 0; /* skip atime */
2748 
2749 	if (iocb->ki_flags & IOCB_DIRECT) {
2750 		struct file *file = iocb->ki_filp;
2751 		struct address_space *mapping = file->f_mapping;
2752 		struct inode *inode = mapping->host;
2753 
2754 		retval = kiocb_write_and_wait(iocb, count);
2755 		if (retval < 0)
2756 			return retval;
2757 		file_accessed(file);
2758 
2759 		retval = mapping->a_ops->direct_IO(iocb, iter);
2760 		if (retval >= 0) {
2761 			iocb->ki_pos += retval;
2762 			count -= retval;
2763 		}
2764 		if (retval != -EIOCBQUEUED)
2765 			iov_iter_revert(iter, count - iov_iter_count(iter));
2766 
2767 		/*
2768 		 * Btrfs can have a short DIO read if we encounter
2769 		 * compressed extents, so if there was an error, or if
2770 		 * we've already read everything we wanted to, or if
2771 		 * there was a short read because we hit EOF, go ahead
2772 		 * and return.  Otherwise fallthrough to buffered io for
2773 		 * the rest of the read.  Buffered reads will not work for
2774 		 * DAX files, so don't bother trying.
2775 		 */
2776 		if (retval < 0 || !count || IS_DAX(inode))
2777 			return retval;
2778 		if (iocb->ki_pos >= i_size_read(inode))
2779 			return retval;
2780 	}
2781 
2782 	return filemap_read(iocb, iter, retval);
2783 }
2784 EXPORT_SYMBOL(generic_file_read_iter);
2785 
2786 /*
2787  * Splice subpages from a folio into a pipe.
2788  */
2789 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
2790 			      struct folio *folio, loff_t fpos, size_t size)
2791 {
2792 	struct page *page;
2793 	size_t spliced = 0, offset = offset_in_folio(folio, fpos);
2794 
2795 	page = folio_page(folio, offset / PAGE_SIZE);
2796 	size = min(size, folio_size(folio) - offset);
2797 	offset %= PAGE_SIZE;
2798 
2799 	while (spliced < size &&
2800 	       !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2801 		struct pipe_buffer *buf = pipe_head_buf(pipe);
2802 		size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
2803 
2804 		*buf = (struct pipe_buffer) {
2805 			.ops	= &page_cache_pipe_buf_ops,
2806 			.page	= page,
2807 			.offset	= offset,
2808 			.len	= part,
2809 		};
2810 		folio_get(folio);
2811 		pipe->head++;
2812 		page++;
2813 		spliced += part;
2814 		offset = 0;
2815 	}
2816 
2817 	return spliced;
2818 }
2819 
2820 /**
2821  * filemap_splice_read -  Splice data from a file's pagecache into a pipe
2822  * @in: The file to read from
2823  * @ppos: Pointer to the file position to read from
2824  * @pipe: The pipe to splice into
2825  * @len: The amount to splice
2826  * @flags: The SPLICE_F_* flags
2827  *
2828  * This function gets folios from a file's pagecache and splices them into the
2829  * pipe.  Readahead will be called as necessary to fill more folios.  This may
2830  * be used for blockdevs also.
2831  *
2832  * Return: On success, the number of bytes read will be returned and *@ppos
2833  * will be updated if appropriate; 0 will be returned if there is no more data
2834  * to be read; -EAGAIN will be returned if the pipe had no space, and some
2835  * other negative error code will be returned on error.  A short read may occur
2836  * if the pipe has insufficient space, we reach the end of the data or we hit a
2837  * hole.
2838  */
2839 ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
2840 			    struct pipe_inode_info *pipe,
2841 			    size_t len, unsigned int flags)
2842 {
2843 	struct folio_batch fbatch;
2844 	struct kiocb iocb;
2845 	size_t total_spliced = 0, used, npages;
2846 	loff_t isize, end_offset;
2847 	bool writably_mapped;
2848 	int i, error = 0;
2849 
2850 	if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes))
2851 		return 0;
2852 
2853 	init_sync_kiocb(&iocb, in);
2854 	iocb.ki_pos = *ppos;
2855 
2856 	/* Work out how much data we can actually add into the pipe */
2857 	used = pipe_occupancy(pipe->head, pipe->tail);
2858 	npages = max_t(ssize_t, pipe->max_usage - used, 0);
2859 	len = min_t(size_t, len, npages * PAGE_SIZE);
2860 
2861 	folio_batch_init(&fbatch);
2862 
2863 	do {
2864 		cond_resched();
2865 
2866 		if (*ppos >= i_size_read(in->f_mapping->host))
2867 			break;
2868 
2869 		iocb.ki_pos = *ppos;
2870 		error = filemap_get_pages(&iocb, len, &fbatch, true);
2871 		if (error < 0)
2872 			break;
2873 
2874 		/*
2875 		 * i_size must be checked after we know the pages are Uptodate.
2876 		 *
2877 		 * Checking i_size after the check allows us to calculate
2878 		 * the correct value for "nr", which means the zero-filled
2879 		 * part of the page is not copied back to userspace (unless
2880 		 * another truncate extends the file - this is desired though).
2881 		 */
2882 		isize = i_size_read(in->f_mapping->host);
2883 		if (unlikely(*ppos >= isize))
2884 			break;
2885 		end_offset = min_t(loff_t, isize, *ppos + len);
2886 
2887 		/*
2888 		 * Once we start copying data, we don't want to be touching any
2889 		 * cachelines that might be contended:
2890 		 */
2891 		writably_mapped = mapping_writably_mapped(in->f_mapping);
2892 
2893 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2894 			struct folio *folio = fbatch.folios[i];
2895 			size_t n;
2896 
2897 			if (folio_pos(folio) >= end_offset)
2898 				goto out;
2899 			folio_mark_accessed(folio);
2900 
2901 			/*
2902 			 * If users can be writing to this folio using arbitrary
2903 			 * virtual addresses, take care of potential aliasing
2904 			 * before reading the folio on the kernel side.
2905 			 */
2906 			if (writably_mapped)
2907 				flush_dcache_folio(folio);
2908 
2909 			n = min_t(loff_t, len, isize - *ppos);
2910 			n = splice_folio_into_pipe(pipe, folio, *ppos, n);
2911 			if (!n)
2912 				goto out;
2913 			len -= n;
2914 			total_spliced += n;
2915 			*ppos += n;
2916 			in->f_ra.prev_pos = *ppos;
2917 			if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
2918 				goto out;
2919 		}
2920 
2921 		folio_batch_release(&fbatch);
2922 	} while (len);
2923 
2924 out:
2925 	folio_batch_release(&fbatch);
2926 	file_accessed(in);
2927 
2928 	return total_spliced ? total_spliced : error;
2929 }
2930 EXPORT_SYMBOL(filemap_splice_read);
2931 
2932 static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2933 		struct address_space *mapping, struct folio *folio,
2934 		loff_t start, loff_t end, bool seek_data)
2935 {
2936 	const struct address_space_operations *ops = mapping->a_ops;
2937 	size_t offset, bsz = i_blocksize(mapping->host);
2938 
2939 	if (xa_is_value(folio) || folio_test_uptodate(folio))
2940 		return seek_data ? start : end;
2941 	if (!ops->is_partially_uptodate)
2942 		return seek_data ? end : start;
2943 
2944 	xas_pause(xas);
2945 	rcu_read_unlock();
2946 	folio_lock(folio);
2947 	if (unlikely(folio->mapping != mapping))
2948 		goto unlock;
2949 
2950 	offset = offset_in_folio(folio, start) & ~(bsz - 1);
2951 
2952 	do {
2953 		if (ops->is_partially_uptodate(folio, offset, bsz) ==
2954 							seek_data)
2955 			break;
2956 		start = (start + bsz) & ~(bsz - 1);
2957 		offset += bsz;
2958 	} while (offset < folio_size(folio));
2959 unlock:
2960 	folio_unlock(folio);
2961 	rcu_read_lock();
2962 	return start;
2963 }
2964 
2965 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
2966 {
2967 	if (xa_is_value(folio))
2968 		return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2969 	return folio_size(folio);
2970 }
2971 
2972 /**
2973  * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2974  * @mapping: Address space to search.
2975  * @start: First byte to consider.
2976  * @end: Limit of search (exclusive).
2977  * @whence: Either SEEK_HOLE or SEEK_DATA.
2978  *
2979  * If the page cache knows which blocks contain holes and which blocks
2980  * contain data, your filesystem can use this function to implement
2981  * SEEK_HOLE and SEEK_DATA.  This is useful for filesystems which are
2982  * entirely memory-based such as tmpfs, and filesystems which support
2983  * unwritten extents.
2984  *
2985  * Return: The requested offset on success, or -ENXIO if @whence specifies
2986  * SEEK_DATA and there is no data after @start.  There is an implicit hole
2987  * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2988  * and @end contain data.
2989  */
2990 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2991 		loff_t end, int whence)
2992 {
2993 	XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
2994 	pgoff_t max = (end - 1) >> PAGE_SHIFT;
2995 	bool seek_data = (whence == SEEK_DATA);
2996 	struct folio *folio;
2997 
2998 	if (end <= start)
2999 		return -ENXIO;
3000 
3001 	rcu_read_lock();
3002 	while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
3003 		loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
3004 		size_t seek_size;
3005 
3006 		if (start < pos) {
3007 			if (!seek_data)
3008 				goto unlock;
3009 			start = pos;
3010 		}
3011 
3012 		seek_size = seek_folio_size(&xas, folio);
3013 		pos = round_up((u64)pos + 1, seek_size);
3014 		start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
3015 				seek_data);
3016 		if (start < pos)
3017 			goto unlock;
3018 		if (start >= end)
3019 			break;
3020 		if (seek_size > PAGE_SIZE)
3021 			xas_set(&xas, pos >> PAGE_SHIFT);
3022 		if (!xa_is_value(folio))
3023 			folio_put(folio);
3024 	}
3025 	if (seek_data)
3026 		start = -ENXIO;
3027 unlock:
3028 	rcu_read_unlock();
3029 	if (folio && !xa_is_value(folio))
3030 		folio_put(folio);
3031 	if (start > end)
3032 		return end;
3033 	return start;
3034 }
3035 
3036 #ifdef CONFIG_MMU
3037 #define MMAP_LOTSAMISS  (100)
3038 /*
3039  * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
3040  * @vmf - the vm_fault for this fault.
3041  * @folio - the folio to lock.
3042  * @fpin - the pointer to the file we may pin (or is already pinned).
3043  *
3044  * This works similar to lock_folio_or_retry in that it can drop the
3045  * mmap_lock.  It differs in that it actually returns the folio locked
3046  * if it returns 1 and 0 if it couldn't lock the folio.  If we did have
3047  * to drop the mmap_lock then fpin will point to the pinned file and
3048  * needs to be fput()'ed at a later point.
3049  */
3050 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
3051 				     struct file **fpin)
3052 {
3053 	if (folio_trylock(folio))
3054 		return 1;
3055 
3056 	/*
3057 	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
3058 	 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
3059 	 * is supposed to work. We have way too many special cases..
3060 	 */
3061 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3062 		return 0;
3063 
3064 	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
3065 	if (vmf->flags & FAULT_FLAG_KILLABLE) {
3066 		if (__folio_lock_killable(folio)) {
3067 			/*
3068 			 * We didn't have the right flags to drop the
3069 			 * fault lock, but all fault_handlers only check
3070 			 * for fatal signals if we return VM_FAULT_RETRY,
3071 			 * so we need to drop the fault lock here and
3072 			 * return 0 if we don't have a fpin.
3073 			 */
3074 			if (*fpin == NULL)
3075 				release_fault_lock(vmf);
3076 			return 0;
3077 		}
3078 	} else
3079 		__folio_lock(folio);
3080 
3081 	return 1;
3082 }
3083 
3084 /*
3085  * Synchronous readahead happens when we don't even find a page in the page
3086  * cache at all.  We don't want to perform IO under the mmap sem, so if we have
3087  * to drop the mmap sem we return the file that was pinned in order for us to do
3088  * that.  If we didn't pin a file then we return NULL.  The file that is
3089  * returned needs to be fput()'ed when we're done with it.
3090  */
3091 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
3092 {
3093 	struct file *file = vmf->vma->vm_file;
3094 	struct file_ra_state *ra = &file->f_ra;
3095 	struct address_space *mapping = file->f_mapping;
3096 	DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
3097 	struct file *fpin = NULL;
3098 	unsigned long vm_flags = vmf->vma->vm_flags;
3099 	unsigned int mmap_miss;
3100 
3101 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3102 	/* Use the readahead code, even if readahead is disabled */
3103 	if (vm_flags & VM_HUGEPAGE) {
3104 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3105 		ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3106 		ra->size = HPAGE_PMD_NR;
3107 		/*
3108 		 * Fetch two PMD folios, so we get the chance to actually
3109 		 * readahead, unless we've been told not to.
3110 		 */
3111 		if (!(vm_flags & VM_RAND_READ))
3112 			ra->size *= 2;
3113 		ra->async_size = HPAGE_PMD_NR;
3114 		page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3115 		return fpin;
3116 	}
3117 #endif
3118 
3119 	/* If we don't want any read-ahead, don't bother */
3120 	if (vm_flags & VM_RAND_READ)
3121 		return fpin;
3122 	if (!ra->ra_pages)
3123 		return fpin;
3124 
3125 	if (vm_flags & VM_SEQ_READ) {
3126 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3127 		page_cache_sync_ra(&ractl, ra->ra_pages);
3128 		return fpin;
3129 	}
3130 
3131 	/* Avoid banging the cache line if not needed */
3132 	mmap_miss = READ_ONCE(ra->mmap_miss);
3133 	if (mmap_miss < MMAP_LOTSAMISS * 10)
3134 		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3135 
3136 	/*
3137 	 * Do we miss much more than hit in this file? If so,
3138 	 * stop bothering with read-ahead. It will only hurt.
3139 	 */
3140 	if (mmap_miss > MMAP_LOTSAMISS)
3141 		return fpin;
3142 
3143 	/*
3144 	 * mmap read-around
3145 	 */
3146 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3147 	ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3148 	ra->size = ra->ra_pages;
3149 	ra->async_size = ra->ra_pages / 4;
3150 	ractl._index = ra->start;
3151 	page_cache_ra_order(&ractl, ra, 0);
3152 	return fpin;
3153 }
3154 
3155 /*
3156  * Asynchronous readahead happens when we find the page and PG_readahead,
3157  * so we want to possibly extend the readahead further.  We return the file that
3158  * was pinned if we have to drop the mmap_lock in order to do IO.
3159  */
3160 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3161 					    struct folio *folio)
3162 {
3163 	struct file *file = vmf->vma->vm_file;
3164 	struct file_ra_state *ra = &file->f_ra;
3165 	DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3166 	struct file *fpin = NULL;
3167 	unsigned int mmap_miss;
3168 
3169 	/* If we don't want any read-ahead, don't bother */
3170 	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3171 		return fpin;
3172 
3173 	mmap_miss = READ_ONCE(ra->mmap_miss);
3174 	if (mmap_miss)
3175 		WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3176 
3177 	if (folio_test_readahead(folio)) {
3178 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3179 		page_cache_async_ra(&ractl, folio, ra->ra_pages);
3180 	}
3181 	return fpin;
3182 }
3183 
3184 static vm_fault_t filemap_fault_recheck_pte_none(struct vm_fault *vmf)
3185 {
3186 	struct vm_area_struct *vma = vmf->vma;
3187 	vm_fault_t ret = 0;
3188 	pte_t *ptep;
3189 
3190 	/*
3191 	 * We might have COW'ed a pagecache folio and might now have an mlocked
3192 	 * anon folio mapped. The original pagecache folio is not mlocked and
3193 	 * might have been evicted. During a read+clear/modify/write update of
3194 	 * the PTE, such as done in do_numa_page()/change_pte_range(), we
3195 	 * temporarily clear the PTE under PT lock and might detect it here as
3196 	 * "none" when not holding the PT lock.
3197 	 *
3198 	 * Not rechecking the PTE under PT lock could result in an unexpected
3199 	 * major fault in an mlock'ed region. Recheck only for this special
3200 	 * scenario while holding the PT lock, to not degrade non-mlocked
3201 	 * scenarios. Recheck the PTE without PT lock firstly, thereby reducing
3202 	 * the number of times we hold PT lock.
3203 	 */
3204 	if (!(vma->vm_flags & VM_LOCKED))
3205 		return 0;
3206 
3207 	if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
3208 		return 0;
3209 
3210 	ptep = pte_offset_map(vmf->pmd, vmf->address);
3211 	if (unlikely(!ptep))
3212 		return VM_FAULT_NOPAGE;
3213 
3214 	if (unlikely(!pte_none(ptep_get_lockless(ptep)))) {
3215 		ret = VM_FAULT_NOPAGE;
3216 	} else {
3217 		spin_lock(vmf->ptl);
3218 		if (unlikely(!pte_none(ptep_get(ptep))))
3219 			ret = VM_FAULT_NOPAGE;
3220 		spin_unlock(vmf->ptl);
3221 	}
3222 	pte_unmap(ptep);
3223 	return ret;
3224 }
3225 
3226 /**
3227  * filemap_fault - read in file data for page fault handling
3228  * @vmf:	struct vm_fault containing details of the fault
3229  *
3230  * filemap_fault() is invoked via the vma operations vector for a
3231  * mapped memory region to read in file data during a page fault.
3232  *
3233  * The goto's are kind of ugly, but this streamlines the normal case of having
3234  * it in the page cache, and handles the special cases reasonably without
3235  * having a lot of duplicated code.
3236  *
3237  * vma->vm_mm->mmap_lock must be held on entry.
3238  *
3239  * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3240  * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3241  *
3242  * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3243  * has not been released.
3244  *
3245  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3246  *
3247  * Return: bitwise-OR of %VM_FAULT_ codes.
3248  */
3249 vm_fault_t filemap_fault(struct vm_fault *vmf)
3250 {
3251 	int error;
3252 	struct file *file = vmf->vma->vm_file;
3253 	struct file *fpin = NULL;
3254 	struct address_space *mapping = file->f_mapping;
3255 	struct inode *inode = mapping->host;
3256 	pgoff_t max_idx, index = vmf->pgoff;
3257 	struct folio *folio;
3258 	vm_fault_t ret = 0;
3259 	bool mapping_locked = false;
3260 
3261 	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3262 	if (unlikely(index >= max_idx))
3263 		return VM_FAULT_SIGBUS;
3264 
3265 	/*
3266 	 * Do we have something in the page cache already?
3267 	 */
3268 	folio = filemap_get_folio(mapping, index);
3269 	if (likely(!IS_ERR(folio))) {
3270 		/*
3271 		 * We found the page, so try async readahead before waiting for
3272 		 * the lock.
3273 		 */
3274 		if (!(vmf->flags & FAULT_FLAG_TRIED))
3275 			fpin = do_async_mmap_readahead(vmf, folio);
3276 		if (unlikely(!folio_test_uptodate(folio))) {
3277 			filemap_invalidate_lock_shared(mapping);
3278 			mapping_locked = true;
3279 		}
3280 	} else {
3281 		ret = filemap_fault_recheck_pte_none(vmf);
3282 		if (unlikely(ret))
3283 			return ret;
3284 
3285 		/* No page in the page cache at all */
3286 		count_vm_event(PGMAJFAULT);
3287 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3288 		ret = VM_FAULT_MAJOR;
3289 		fpin = do_sync_mmap_readahead(vmf);
3290 retry_find:
3291 		/*
3292 		 * See comment in filemap_create_folio() why we need
3293 		 * invalidate_lock
3294 		 */
3295 		if (!mapping_locked) {
3296 			filemap_invalidate_lock_shared(mapping);
3297 			mapping_locked = true;
3298 		}
3299 		folio = __filemap_get_folio(mapping, index,
3300 					  FGP_CREAT|FGP_FOR_MMAP,
3301 					  vmf->gfp_mask);
3302 		if (IS_ERR(folio)) {
3303 			if (fpin)
3304 				goto out_retry;
3305 			filemap_invalidate_unlock_shared(mapping);
3306 			return VM_FAULT_OOM;
3307 		}
3308 	}
3309 
3310 	if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3311 		goto out_retry;
3312 
3313 	/* Did it get truncated? */
3314 	if (unlikely(folio->mapping != mapping)) {
3315 		folio_unlock(folio);
3316 		folio_put(folio);
3317 		goto retry_find;
3318 	}
3319 	VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3320 
3321 	/*
3322 	 * We have a locked folio in the page cache, now we need to check
3323 	 * that it's up-to-date. If not, it is going to be due to an error,
3324 	 * or because readahead was otherwise unable to retrieve it.
3325 	 */
3326 	if (unlikely(!folio_test_uptodate(folio))) {
3327 		/*
3328 		 * If the invalidate lock is not held, the folio was in cache
3329 		 * and uptodate and now it is not. Strange but possible since we
3330 		 * didn't hold the page lock all the time. Let's drop
3331 		 * everything, get the invalidate lock and try again.
3332 		 */
3333 		if (!mapping_locked) {
3334 			folio_unlock(folio);
3335 			folio_put(folio);
3336 			goto retry_find;
3337 		}
3338 
3339 		/*
3340 		 * OK, the folio is really not uptodate. This can be because the
3341 		 * VMA has the VM_RAND_READ flag set, or because an error
3342 		 * arose. Let's read it in directly.
3343 		 */
3344 		goto page_not_uptodate;
3345 	}
3346 
3347 	/*
3348 	 * We've made it this far and we had to drop our mmap_lock, now is the
3349 	 * time to return to the upper layer and have it re-find the vma and
3350 	 * redo the fault.
3351 	 */
3352 	if (fpin) {
3353 		folio_unlock(folio);
3354 		goto out_retry;
3355 	}
3356 	if (mapping_locked)
3357 		filemap_invalidate_unlock_shared(mapping);
3358 
3359 	/*
3360 	 * Found the page and have a reference on it.
3361 	 * We must recheck i_size under page lock.
3362 	 */
3363 	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3364 	if (unlikely(index >= max_idx)) {
3365 		folio_unlock(folio);
3366 		folio_put(folio);
3367 		return VM_FAULT_SIGBUS;
3368 	}
3369 
3370 	vmf->page = folio_file_page(folio, index);
3371 	return ret | VM_FAULT_LOCKED;
3372 
3373 page_not_uptodate:
3374 	/*
3375 	 * Umm, take care of errors if the page isn't up-to-date.
3376 	 * Try to re-read it _once_. We do this synchronously,
3377 	 * because there really aren't any performance issues here
3378 	 * and we need to check for errors.
3379 	 */
3380 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3381 	error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
3382 	if (fpin)
3383 		goto out_retry;
3384 	folio_put(folio);
3385 
3386 	if (!error || error == AOP_TRUNCATED_PAGE)
3387 		goto retry_find;
3388 	filemap_invalidate_unlock_shared(mapping);
3389 
3390 	return VM_FAULT_SIGBUS;
3391 
3392 out_retry:
3393 	/*
3394 	 * We dropped the mmap_lock, we need to return to the fault handler to
3395 	 * re-find the vma and come back and find our hopefully still populated
3396 	 * page.
3397 	 */
3398 	if (!IS_ERR(folio))
3399 		folio_put(folio);
3400 	if (mapping_locked)
3401 		filemap_invalidate_unlock_shared(mapping);
3402 	if (fpin)
3403 		fput(fpin);
3404 	return ret | VM_FAULT_RETRY;
3405 }
3406 EXPORT_SYMBOL(filemap_fault);
3407 
3408 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio,
3409 		pgoff_t start)
3410 {
3411 	struct mm_struct *mm = vmf->vma->vm_mm;
3412 
3413 	/* Huge page is mapped? No need to proceed. */
3414 	if (pmd_trans_huge(*vmf->pmd)) {
3415 		folio_unlock(folio);
3416 		folio_put(folio);
3417 		return true;
3418 	}
3419 
3420 	if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) {
3421 		struct page *page = folio_file_page(folio, start);
3422 		vm_fault_t ret = do_set_pmd(vmf, page);
3423 		if (!ret) {
3424 			/* The page is mapped successfully, reference consumed. */
3425 			folio_unlock(folio);
3426 			return true;
3427 		}
3428 	}
3429 
3430 	if (pmd_none(*vmf->pmd) && vmf->prealloc_pte)
3431 		pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3432 
3433 	return false;
3434 }
3435 
3436 static struct folio *next_uptodate_folio(struct xa_state *xas,
3437 		struct address_space *mapping, pgoff_t end_pgoff)
3438 {
3439 	struct folio *folio = xas_next_entry(xas, end_pgoff);
3440 	unsigned long max_idx;
3441 
3442 	do {
3443 		if (!folio)
3444 			return NULL;
3445 		if (xas_retry(xas, folio))
3446 			continue;
3447 		if (xa_is_value(folio))
3448 			continue;
3449 		if (folio_test_locked(folio))
3450 			continue;
3451 		if (!folio_try_get_rcu(folio))
3452 			continue;
3453 		/* Has the page moved or been split? */
3454 		if (unlikely(folio != xas_reload(xas)))
3455 			goto skip;
3456 		if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3457 			goto skip;
3458 		if (!folio_trylock(folio))
3459 			goto skip;
3460 		if (folio->mapping != mapping)
3461 			goto unlock;
3462 		if (!folio_test_uptodate(folio))
3463 			goto unlock;
3464 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3465 		if (xas->xa_index >= max_idx)
3466 			goto unlock;
3467 		return folio;
3468 unlock:
3469 		folio_unlock(folio);
3470 skip:
3471 		folio_put(folio);
3472 	} while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3473 
3474 	return NULL;
3475 }
3476 
3477 /*
3478  * Map page range [start_page, start_page + nr_pages) of folio.
3479  * start_page is gotten from start by folio_page(folio, start)
3480  */
3481 static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf,
3482 			struct folio *folio, unsigned long start,
3483 			unsigned long addr, unsigned int nr_pages,
3484 			unsigned int *mmap_miss)
3485 {
3486 	vm_fault_t ret = 0;
3487 	struct page *page = folio_page(folio, start);
3488 	unsigned int count = 0;
3489 	pte_t *old_ptep = vmf->pte;
3490 
3491 	do {
3492 		if (PageHWPoison(page + count))
3493 			goto skip;
3494 
3495 		(*mmap_miss)++;
3496 
3497 		/*
3498 		 * NOTE: If there're PTE markers, we'll leave them to be
3499 		 * handled in the specific fault path, and it'll prohibit the
3500 		 * fault-around logic.
3501 		 */
3502 		if (!pte_none(ptep_get(&vmf->pte[count])))
3503 			goto skip;
3504 
3505 		count++;
3506 		continue;
3507 skip:
3508 		if (count) {
3509 			set_pte_range(vmf, folio, page, count, addr);
3510 			folio_ref_add(folio, count);
3511 			if (in_range(vmf->address, addr, count * PAGE_SIZE))
3512 				ret = VM_FAULT_NOPAGE;
3513 		}
3514 
3515 		count++;
3516 		page += count;
3517 		vmf->pte += count;
3518 		addr += count * PAGE_SIZE;
3519 		count = 0;
3520 	} while (--nr_pages > 0);
3521 
3522 	if (count) {
3523 		set_pte_range(vmf, folio, page, count, addr);
3524 		folio_ref_add(folio, count);
3525 		if (in_range(vmf->address, addr, count * PAGE_SIZE))
3526 			ret = VM_FAULT_NOPAGE;
3527 	}
3528 
3529 	vmf->pte = old_ptep;
3530 
3531 	return ret;
3532 }
3533 
3534 static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf,
3535 		struct folio *folio, unsigned long addr,
3536 		unsigned int *mmap_miss)
3537 {
3538 	vm_fault_t ret = 0;
3539 	struct page *page = &folio->page;
3540 
3541 	if (PageHWPoison(page))
3542 		return ret;
3543 
3544 	(*mmap_miss)++;
3545 
3546 	/*
3547 	 * NOTE: If there're PTE markers, we'll leave them to be
3548 	 * handled in the specific fault path, and it'll prohibit
3549 	 * the fault-around logic.
3550 	 */
3551 	if (!pte_none(ptep_get(vmf->pte)))
3552 		return ret;
3553 
3554 	if (vmf->address == addr)
3555 		ret = VM_FAULT_NOPAGE;
3556 
3557 	set_pte_range(vmf, folio, page, 1, addr);
3558 	folio_ref_inc(folio);
3559 
3560 	return ret;
3561 }
3562 
3563 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3564 			     pgoff_t start_pgoff, pgoff_t end_pgoff)
3565 {
3566 	struct vm_area_struct *vma = vmf->vma;
3567 	struct file *file = vma->vm_file;
3568 	struct address_space *mapping = file->f_mapping;
3569 	pgoff_t last_pgoff = start_pgoff;
3570 	unsigned long addr;
3571 	XA_STATE(xas, &mapping->i_pages, start_pgoff);
3572 	struct folio *folio;
3573 	vm_fault_t ret = 0;
3574 	unsigned int nr_pages = 0, mmap_miss = 0, mmap_miss_saved;
3575 
3576 	rcu_read_lock();
3577 	folio = next_uptodate_folio(&xas, mapping, end_pgoff);
3578 	if (!folio)
3579 		goto out;
3580 
3581 	if (filemap_map_pmd(vmf, folio, start_pgoff)) {
3582 		ret = VM_FAULT_NOPAGE;
3583 		goto out;
3584 	}
3585 
3586 	addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3587 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3588 	if (!vmf->pte) {
3589 		folio_unlock(folio);
3590 		folio_put(folio);
3591 		goto out;
3592 	}
3593 	do {
3594 		unsigned long end;
3595 
3596 		addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3597 		vmf->pte += xas.xa_index - last_pgoff;
3598 		last_pgoff = xas.xa_index;
3599 		end = folio_next_index(folio) - 1;
3600 		nr_pages = min(end, end_pgoff) - xas.xa_index + 1;
3601 
3602 		if (!folio_test_large(folio))
3603 			ret |= filemap_map_order0_folio(vmf,
3604 					folio, addr, &mmap_miss);
3605 		else
3606 			ret |= filemap_map_folio_range(vmf, folio,
3607 					xas.xa_index - folio->index, addr,
3608 					nr_pages, &mmap_miss);
3609 
3610 		folio_unlock(folio);
3611 		folio_put(folio);
3612 	} while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL);
3613 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3614 out:
3615 	rcu_read_unlock();
3616 
3617 	mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss);
3618 	if (mmap_miss >= mmap_miss_saved)
3619 		WRITE_ONCE(file->f_ra.mmap_miss, 0);
3620 	else
3621 		WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss);
3622 
3623 	return ret;
3624 }
3625 EXPORT_SYMBOL(filemap_map_pages);
3626 
3627 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3628 {
3629 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3630 	struct folio *folio = page_folio(vmf->page);
3631 	vm_fault_t ret = VM_FAULT_LOCKED;
3632 
3633 	sb_start_pagefault(mapping->host->i_sb);
3634 	file_update_time(vmf->vma->vm_file);
3635 	folio_lock(folio);
3636 	if (folio->mapping != mapping) {
3637 		folio_unlock(folio);
3638 		ret = VM_FAULT_NOPAGE;
3639 		goto out;
3640 	}
3641 	/*
3642 	 * We mark the folio dirty already here so that when freeze is in
3643 	 * progress, we are guaranteed that writeback during freezing will
3644 	 * see the dirty folio and writeprotect it again.
3645 	 */
3646 	folio_mark_dirty(folio);
3647 	folio_wait_stable(folio);
3648 out:
3649 	sb_end_pagefault(mapping->host->i_sb);
3650 	return ret;
3651 }
3652 
3653 const struct vm_operations_struct generic_file_vm_ops = {
3654 	.fault		= filemap_fault,
3655 	.map_pages	= filemap_map_pages,
3656 	.page_mkwrite	= filemap_page_mkwrite,
3657 };
3658 
3659 /* This is used for a general mmap of a disk file */
3660 
3661 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3662 {
3663 	struct address_space *mapping = file->f_mapping;
3664 
3665 	if (!mapping->a_ops->read_folio)
3666 		return -ENOEXEC;
3667 	file_accessed(file);
3668 	vma->vm_ops = &generic_file_vm_ops;
3669 	return 0;
3670 }
3671 
3672 /*
3673  * This is for filesystems which do not implement ->writepage.
3674  */
3675 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3676 {
3677 	if (vma_is_shared_maywrite(vma))
3678 		return -EINVAL;
3679 	return generic_file_mmap(file, vma);
3680 }
3681 #else
3682 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3683 {
3684 	return VM_FAULT_SIGBUS;
3685 }
3686 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3687 {
3688 	return -ENOSYS;
3689 }
3690 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3691 {
3692 	return -ENOSYS;
3693 }
3694 #endif /* CONFIG_MMU */
3695 
3696 EXPORT_SYMBOL(filemap_page_mkwrite);
3697 EXPORT_SYMBOL(generic_file_mmap);
3698 EXPORT_SYMBOL(generic_file_readonly_mmap);
3699 
3700 static struct folio *do_read_cache_folio(struct address_space *mapping,
3701 		pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
3702 {
3703 	struct folio *folio;
3704 	int err;
3705 
3706 	if (!filler)
3707 		filler = mapping->a_ops->read_folio;
3708 repeat:
3709 	folio = filemap_get_folio(mapping, index);
3710 	if (IS_ERR(folio)) {
3711 		folio = filemap_alloc_folio(gfp, 0);
3712 		if (!folio)
3713 			return ERR_PTR(-ENOMEM);
3714 		err = filemap_add_folio(mapping, folio, index, gfp);
3715 		if (unlikely(err)) {
3716 			folio_put(folio);
3717 			if (err == -EEXIST)
3718 				goto repeat;
3719 			/* Presumably ENOMEM for xarray node */
3720 			return ERR_PTR(err);
3721 		}
3722 
3723 		goto filler;
3724 	}
3725 	if (folio_test_uptodate(folio))
3726 		goto out;
3727 
3728 	if (!folio_trylock(folio)) {
3729 		folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3730 		goto repeat;
3731 	}
3732 
3733 	/* Folio was truncated from mapping */
3734 	if (!folio->mapping) {
3735 		folio_unlock(folio);
3736 		folio_put(folio);
3737 		goto repeat;
3738 	}
3739 
3740 	/* Someone else locked and filled the page in a very small window */
3741 	if (folio_test_uptodate(folio)) {
3742 		folio_unlock(folio);
3743 		goto out;
3744 	}
3745 
3746 filler:
3747 	err = filemap_read_folio(file, filler, folio);
3748 	if (err) {
3749 		folio_put(folio);
3750 		if (err == AOP_TRUNCATED_PAGE)
3751 			goto repeat;
3752 		return ERR_PTR(err);
3753 	}
3754 
3755 out:
3756 	folio_mark_accessed(folio);
3757 	return folio;
3758 }
3759 
3760 /**
3761  * read_cache_folio - Read into page cache, fill it if needed.
3762  * @mapping: The address_space to read from.
3763  * @index: The index to read.
3764  * @filler: Function to perform the read, or NULL to use aops->read_folio().
3765  * @file: Passed to filler function, may be NULL if not required.
3766  *
3767  * Read one page into the page cache.  If it succeeds, the folio returned
3768  * will contain @index, but it may not be the first page of the folio.
3769  *
3770  * If the filler function returns an error, it will be returned to the
3771  * caller.
3772  *
3773  * Context: May sleep.  Expects mapping->invalidate_lock to be held.
3774  * Return: An uptodate folio on success, ERR_PTR() on failure.
3775  */
3776 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3777 		filler_t filler, struct file *file)
3778 {
3779 	return do_read_cache_folio(mapping, index, filler, file,
3780 			mapping_gfp_mask(mapping));
3781 }
3782 EXPORT_SYMBOL(read_cache_folio);
3783 
3784 /**
3785  * mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
3786  * @mapping:	The address_space for the folio.
3787  * @index:	The index that the allocated folio will contain.
3788  * @gfp:	The page allocator flags to use if allocating.
3789  *
3790  * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
3791  * any new memory allocations done using the specified allocation flags.
3792  *
3793  * The most likely error from this function is EIO, but ENOMEM is
3794  * possible and so is EINTR.  If ->read_folio returns another error,
3795  * that will be returned to the caller.
3796  *
3797  * The function expects mapping->invalidate_lock to be already held.
3798  *
3799  * Return: Uptodate folio on success, ERR_PTR() on failure.
3800  */
3801 struct folio *mapping_read_folio_gfp(struct address_space *mapping,
3802 		pgoff_t index, gfp_t gfp)
3803 {
3804 	return do_read_cache_folio(mapping, index, NULL, NULL, gfp);
3805 }
3806 EXPORT_SYMBOL(mapping_read_folio_gfp);
3807 
3808 static struct page *do_read_cache_page(struct address_space *mapping,
3809 		pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
3810 {
3811 	struct folio *folio;
3812 
3813 	folio = do_read_cache_folio(mapping, index, filler, file, gfp);
3814 	if (IS_ERR(folio))
3815 		return &folio->page;
3816 	return folio_file_page(folio, index);
3817 }
3818 
3819 struct page *read_cache_page(struct address_space *mapping,
3820 			pgoff_t index, filler_t *filler, struct file *file)
3821 {
3822 	return do_read_cache_page(mapping, index, filler, file,
3823 			mapping_gfp_mask(mapping));
3824 }
3825 EXPORT_SYMBOL(read_cache_page);
3826 
3827 /**
3828  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3829  * @mapping:	the page's address_space
3830  * @index:	the page index
3831  * @gfp:	the page allocator flags to use if allocating
3832  *
3833  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3834  * any new page allocations done using the specified allocation flags.
3835  *
3836  * If the page does not get brought uptodate, return -EIO.
3837  *
3838  * The function expects mapping->invalidate_lock to be already held.
3839  *
3840  * Return: up to date page on success, ERR_PTR() on failure.
3841  */
3842 struct page *read_cache_page_gfp(struct address_space *mapping,
3843 				pgoff_t index,
3844 				gfp_t gfp)
3845 {
3846 	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3847 }
3848 EXPORT_SYMBOL(read_cache_page_gfp);
3849 
3850 /*
3851  * Warn about a page cache invalidation failure during a direct I/O write.
3852  */
3853 static void dio_warn_stale_pagecache(struct file *filp)
3854 {
3855 	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3856 	char pathname[128];
3857 	char *path;
3858 
3859 	errseq_set(&filp->f_mapping->wb_err, -EIO);
3860 	if (__ratelimit(&_rs)) {
3861 		path = file_path(filp, pathname, sizeof(pathname));
3862 		if (IS_ERR(path))
3863 			path = "(unknown)";
3864 		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3865 		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3866 			current->comm);
3867 	}
3868 }
3869 
3870 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count)
3871 {
3872 	struct address_space *mapping = iocb->ki_filp->f_mapping;
3873 
3874 	if (mapping->nrpages &&
3875 	    invalidate_inode_pages2_range(mapping,
3876 			iocb->ki_pos >> PAGE_SHIFT,
3877 			(iocb->ki_pos + count - 1) >> PAGE_SHIFT))
3878 		dio_warn_stale_pagecache(iocb->ki_filp);
3879 }
3880 
3881 ssize_t
3882 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3883 {
3884 	struct address_space *mapping = iocb->ki_filp->f_mapping;
3885 	size_t write_len = iov_iter_count(from);
3886 	ssize_t written;
3887 
3888 	/*
3889 	 * If a page can not be invalidated, return 0 to fall back
3890 	 * to buffered write.
3891 	 */
3892 	written = kiocb_invalidate_pages(iocb, write_len);
3893 	if (written) {
3894 		if (written == -EBUSY)
3895 			return 0;
3896 		return written;
3897 	}
3898 
3899 	written = mapping->a_ops->direct_IO(iocb, from);
3900 
3901 	/*
3902 	 * Finally, try again to invalidate clean pages which might have been
3903 	 * cached by non-direct readahead, or faulted in by get_user_pages()
3904 	 * if the source of the write was an mmap'ed region of the file
3905 	 * we're writing.  Either one is a pretty crazy thing to do,
3906 	 * so we don't support it 100%.  If this invalidation
3907 	 * fails, tough, the write still worked...
3908 	 *
3909 	 * Most of the time we do not need this since dio_complete() will do
3910 	 * the invalidation for us. However there are some file systems that
3911 	 * do not end up with dio_complete() being called, so let's not break
3912 	 * them by removing it completely.
3913 	 *
3914 	 * Noticeable example is a blkdev_direct_IO().
3915 	 *
3916 	 * Skip invalidation for async writes or if mapping has no pages.
3917 	 */
3918 	if (written > 0) {
3919 		struct inode *inode = mapping->host;
3920 		loff_t pos = iocb->ki_pos;
3921 
3922 		kiocb_invalidate_post_direct_write(iocb, written);
3923 		pos += written;
3924 		write_len -= written;
3925 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3926 			i_size_write(inode, pos);
3927 			mark_inode_dirty(inode);
3928 		}
3929 		iocb->ki_pos = pos;
3930 	}
3931 	if (written != -EIOCBQUEUED)
3932 		iov_iter_revert(from, write_len - iov_iter_count(from));
3933 	return written;
3934 }
3935 EXPORT_SYMBOL(generic_file_direct_write);
3936 
3937 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
3938 {
3939 	struct file *file = iocb->ki_filp;
3940 	loff_t pos = iocb->ki_pos;
3941 	struct address_space *mapping = file->f_mapping;
3942 	const struct address_space_operations *a_ops = mapping->a_ops;
3943 	long status = 0;
3944 	ssize_t written = 0;
3945 
3946 	do {
3947 		struct page *page;
3948 		unsigned long offset;	/* Offset into pagecache page */
3949 		unsigned long bytes;	/* Bytes to write to page */
3950 		size_t copied;		/* Bytes copied from user */
3951 		void *fsdata = NULL;
3952 
3953 		offset = (pos & (PAGE_SIZE - 1));
3954 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3955 						iov_iter_count(i));
3956 
3957 again:
3958 		/*
3959 		 * Bring in the user page that we will copy from _first_.
3960 		 * Otherwise there's a nasty deadlock on copying from the
3961 		 * same page as we're writing to, without it being marked
3962 		 * up-to-date.
3963 		 */
3964 		if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
3965 			status = -EFAULT;
3966 			break;
3967 		}
3968 
3969 		if (fatal_signal_pending(current)) {
3970 			status = -EINTR;
3971 			break;
3972 		}
3973 
3974 		status = a_ops->write_begin(file, mapping, pos, bytes,
3975 						&page, &fsdata);
3976 		if (unlikely(status < 0))
3977 			break;
3978 
3979 		if (mapping_writably_mapped(mapping))
3980 			flush_dcache_page(page);
3981 
3982 		copied = copy_page_from_iter_atomic(page, offset, bytes, i);
3983 		flush_dcache_page(page);
3984 
3985 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3986 						page, fsdata);
3987 		if (unlikely(status != copied)) {
3988 			iov_iter_revert(i, copied - max(status, 0L));
3989 			if (unlikely(status < 0))
3990 				break;
3991 		}
3992 		cond_resched();
3993 
3994 		if (unlikely(status == 0)) {
3995 			/*
3996 			 * A short copy made ->write_end() reject the
3997 			 * thing entirely.  Might be memory poisoning
3998 			 * halfway through, might be a race with munmap,
3999 			 * might be severe memory pressure.
4000 			 */
4001 			if (copied)
4002 				bytes = copied;
4003 			goto again;
4004 		}
4005 		pos += status;
4006 		written += status;
4007 
4008 		balance_dirty_pages_ratelimited(mapping);
4009 	} while (iov_iter_count(i));
4010 
4011 	if (!written)
4012 		return status;
4013 	iocb->ki_pos += written;
4014 	return written;
4015 }
4016 EXPORT_SYMBOL(generic_perform_write);
4017 
4018 /**
4019  * __generic_file_write_iter - write data to a file
4020  * @iocb:	IO state structure (file, offset, etc.)
4021  * @from:	iov_iter with data to write
4022  *
4023  * This function does all the work needed for actually writing data to a
4024  * file. It does all basic checks, removes SUID from the file, updates
4025  * modification times and calls proper subroutines depending on whether we
4026  * do direct IO or a standard buffered write.
4027  *
4028  * It expects i_rwsem to be grabbed unless we work on a block device or similar
4029  * object which does not need locking at all.
4030  *
4031  * This function does *not* take care of syncing data in case of O_SYNC write.
4032  * A caller has to handle it. This is mainly due to the fact that we want to
4033  * avoid syncing under i_rwsem.
4034  *
4035  * Return:
4036  * * number of bytes written, even for truncated writes
4037  * * negative error code if no data has been written at all
4038  */
4039 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4040 {
4041 	struct file *file = iocb->ki_filp;
4042 	struct address_space *mapping = file->f_mapping;
4043 	struct inode *inode = mapping->host;
4044 	ssize_t ret;
4045 
4046 	ret = file_remove_privs(file);
4047 	if (ret)
4048 		return ret;
4049 
4050 	ret = file_update_time(file);
4051 	if (ret)
4052 		return ret;
4053 
4054 	if (iocb->ki_flags & IOCB_DIRECT) {
4055 		ret = generic_file_direct_write(iocb, from);
4056 		/*
4057 		 * If the write stopped short of completing, fall back to
4058 		 * buffered writes.  Some filesystems do this for writes to
4059 		 * holes, for example.  For DAX files, a buffered write will
4060 		 * not succeed (even if it did, DAX does not handle dirty
4061 		 * page-cache pages correctly).
4062 		 */
4063 		if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode))
4064 			return ret;
4065 		return direct_write_fallback(iocb, from, ret,
4066 				generic_perform_write(iocb, from));
4067 	}
4068 
4069 	return generic_perform_write(iocb, from);
4070 }
4071 EXPORT_SYMBOL(__generic_file_write_iter);
4072 
4073 /**
4074  * generic_file_write_iter - write data to a file
4075  * @iocb:	IO state structure
4076  * @from:	iov_iter with data to write
4077  *
4078  * This is a wrapper around __generic_file_write_iter() to be used by most
4079  * filesystems. It takes care of syncing the file in case of O_SYNC file
4080  * and acquires i_rwsem as needed.
4081  * Return:
4082  * * negative error code if no data has been written at all of
4083  *   vfs_fsync_range() failed for a synchronous write
4084  * * number of bytes written, even for truncated writes
4085  */
4086 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4087 {
4088 	struct file *file = iocb->ki_filp;
4089 	struct inode *inode = file->f_mapping->host;
4090 	ssize_t ret;
4091 
4092 	inode_lock(inode);
4093 	ret = generic_write_checks(iocb, from);
4094 	if (ret > 0)
4095 		ret = __generic_file_write_iter(iocb, from);
4096 	inode_unlock(inode);
4097 
4098 	if (ret > 0)
4099 		ret = generic_write_sync(iocb, ret);
4100 	return ret;
4101 }
4102 EXPORT_SYMBOL(generic_file_write_iter);
4103 
4104 /**
4105  * filemap_release_folio() - Release fs-specific metadata on a folio.
4106  * @folio: The folio which the kernel is trying to free.
4107  * @gfp: Memory allocation flags (and I/O mode).
4108  *
4109  * The address_space is trying to release any data attached to a folio
4110  * (presumably at folio->private).
4111  *
4112  * This will also be called if the private_2 flag is set on a page,
4113  * indicating that the folio has other metadata associated with it.
4114  *
4115  * The @gfp argument specifies whether I/O may be performed to release
4116  * this page (__GFP_IO), and whether the call may block
4117  * (__GFP_RECLAIM & __GFP_FS).
4118  *
4119  * Return: %true if the release was successful, otherwise %false.
4120  */
4121 bool filemap_release_folio(struct folio *folio, gfp_t gfp)
4122 {
4123 	struct address_space * const mapping = folio->mapping;
4124 
4125 	BUG_ON(!folio_test_locked(folio));
4126 	if (!folio_needs_release(folio))
4127 		return true;
4128 	if (folio_test_writeback(folio))
4129 		return false;
4130 
4131 	if (mapping && mapping->a_ops->release_folio)
4132 		return mapping->a_ops->release_folio(folio, gfp);
4133 	return try_to_free_buffers(folio);
4134 }
4135 EXPORT_SYMBOL(filemap_release_folio);
4136 
4137 #ifdef CONFIG_CACHESTAT_SYSCALL
4138 /**
4139  * filemap_cachestat() - compute the page cache statistics of a mapping
4140  * @mapping:	The mapping to compute the statistics for.
4141  * @first_index:	The starting page cache index.
4142  * @last_index:	The final page index (inclusive).
4143  * @cs:	the cachestat struct to write the result to.
4144  *
4145  * This will query the page cache statistics of a mapping in the
4146  * page range of [first_index, last_index] (inclusive). The statistics
4147  * queried include: number of dirty pages, number of pages marked for
4148  * writeback, and the number of (recently) evicted pages.
4149  */
4150 static void filemap_cachestat(struct address_space *mapping,
4151 		pgoff_t first_index, pgoff_t last_index, struct cachestat *cs)
4152 {
4153 	XA_STATE(xas, &mapping->i_pages, first_index);
4154 	struct folio *folio;
4155 
4156 	rcu_read_lock();
4157 	xas_for_each(&xas, folio, last_index) {
4158 		int order;
4159 		unsigned long nr_pages;
4160 		pgoff_t folio_first_index, folio_last_index;
4161 
4162 		/*
4163 		 * Don't deref the folio. It is not pinned, and might
4164 		 * get freed (and reused) underneath us.
4165 		 *
4166 		 * We *could* pin it, but that would be expensive for
4167 		 * what should be a fast and lightweight syscall.
4168 		 *
4169 		 * Instead, derive all information of interest from
4170 		 * the rcu-protected xarray.
4171 		 */
4172 
4173 		if (xas_retry(&xas, folio))
4174 			continue;
4175 
4176 		order = xa_get_order(xas.xa, xas.xa_index);
4177 		nr_pages = 1 << order;
4178 		folio_first_index = round_down(xas.xa_index, 1 << order);
4179 		folio_last_index = folio_first_index + nr_pages - 1;
4180 
4181 		/* Folios might straddle the range boundaries, only count covered pages */
4182 		if (folio_first_index < first_index)
4183 			nr_pages -= first_index - folio_first_index;
4184 
4185 		if (folio_last_index > last_index)
4186 			nr_pages -= folio_last_index - last_index;
4187 
4188 		if (xa_is_value(folio)) {
4189 			/* page is evicted */
4190 			void *shadow = (void *)folio;
4191 			bool workingset; /* not used */
4192 
4193 			cs->nr_evicted += nr_pages;
4194 
4195 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */
4196 			if (shmem_mapping(mapping)) {
4197 				/* shmem file - in swap cache */
4198 				swp_entry_t swp = radix_to_swp_entry(folio);
4199 
4200 				/* swapin error results in poisoned entry */
4201 				if (non_swap_entry(swp))
4202 					goto resched;
4203 
4204 				/*
4205 				 * Getting a swap entry from the shmem
4206 				 * inode means we beat
4207 				 * shmem_unuse(). rcu_read_lock()
4208 				 * ensures swapoff waits for us before
4209 				 * freeing the swapper space. However,
4210 				 * we can race with swapping and
4211 				 * invalidation, so there might not be
4212 				 * a shadow in the swapcache (yet).
4213 				 */
4214 				shadow = get_shadow_from_swap_cache(swp);
4215 				if (!shadow)
4216 					goto resched;
4217 			}
4218 #endif
4219 			if (workingset_test_recent(shadow, true, &workingset))
4220 				cs->nr_recently_evicted += nr_pages;
4221 
4222 			goto resched;
4223 		}
4224 
4225 		/* page is in cache */
4226 		cs->nr_cache += nr_pages;
4227 
4228 		if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY))
4229 			cs->nr_dirty += nr_pages;
4230 
4231 		if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK))
4232 			cs->nr_writeback += nr_pages;
4233 
4234 resched:
4235 		if (need_resched()) {
4236 			xas_pause(&xas);
4237 			cond_resched_rcu();
4238 		}
4239 	}
4240 	rcu_read_unlock();
4241 }
4242 
4243 /*
4244  * The cachestat(2) system call.
4245  *
4246  * cachestat() returns the page cache statistics of a file in the
4247  * bytes range specified by `off` and `len`: number of cached pages,
4248  * number of dirty pages, number of pages marked for writeback,
4249  * number of evicted pages, and number of recently evicted pages.
4250  *
4251  * An evicted page is a page that is previously in the page cache
4252  * but has been evicted since. A page is recently evicted if its last
4253  * eviction was recent enough that its reentry to the cache would
4254  * indicate that it is actively being used by the system, and that
4255  * there is memory pressure on the system.
4256  *
4257  * `off` and `len` must be non-negative integers. If `len` > 0,
4258  * the queried range is [`off`, `off` + `len`]. If `len` == 0,
4259  * we will query in the range from `off` to the end of the file.
4260  *
4261  * The `flags` argument is unused for now, but is included for future
4262  * extensibility. User should pass 0 (i.e no flag specified).
4263  *
4264  * Currently, hugetlbfs is not supported.
4265  *
4266  * Because the status of a page can change after cachestat() checks it
4267  * but before it returns to the application, the returned values may
4268  * contain stale information.
4269  *
4270  * return values:
4271  *  zero        - success
4272  *  -EFAULT     - cstat or cstat_range points to an illegal address
4273  *  -EINVAL     - invalid flags
4274  *  -EBADF      - invalid file descriptor
4275  *  -EOPNOTSUPP - file descriptor is of a hugetlbfs file
4276  */
4277 SYSCALL_DEFINE4(cachestat, unsigned int, fd,
4278 		struct cachestat_range __user *, cstat_range,
4279 		struct cachestat __user *, cstat, unsigned int, flags)
4280 {
4281 	struct fd f = fdget(fd);
4282 	struct address_space *mapping;
4283 	struct cachestat_range csr;
4284 	struct cachestat cs;
4285 	pgoff_t first_index, last_index;
4286 
4287 	if (!f.file)
4288 		return -EBADF;
4289 
4290 	if (copy_from_user(&csr, cstat_range,
4291 			sizeof(struct cachestat_range))) {
4292 		fdput(f);
4293 		return -EFAULT;
4294 	}
4295 
4296 	/* hugetlbfs is not supported */
4297 	if (is_file_hugepages(f.file)) {
4298 		fdput(f);
4299 		return -EOPNOTSUPP;
4300 	}
4301 
4302 	if (flags != 0) {
4303 		fdput(f);
4304 		return -EINVAL;
4305 	}
4306 
4307 	first_index = csr.off >> PAGE_SHIFT;
4308 	last_index =
4309 		csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT;
4310 	memset(&cs, 0, sizeof(struct cachestat));
4311 	mapping = f.file->f_mapping;
4312 	filemap_cachestat(mapping, first_index, last_index, &cs);
4313 	fdput(f);
4314 
4315 	if (copy_to_user(cstat, &cs, sizeof(struct cachestat)))
4316 		return -EFAULT;
4317 
4318 	return 0;
4319 }
4320 #endif /* CONFIG_CACHESTAT_SYSCALL */
4321