xref: /linux/mm/filemap.c (revision c01044cc819160323f3ca4acd44fca487c4432e6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/mm/filemap.c
4  *
5  * Copyright (C) 1994-1999  Linus Torvalds
6  */
7 
8 /*
9  * This file handles the generic file mmap semantics used by
10  * most "normal" filesystems (but you don't /have/ to use this:
11  * the NFS filesystem used to do this differently, for example)
12  */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/mman.h>
25 #include <linux/pagemap.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/error-injection.h>
29 #include <linux/hash.h>
30 #include <linux/writeback.h>
31 #include <linux/backing-dev.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/cleancache.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include <linux/page_idle.h>
45 #include "internal.h"
46 
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/filemap.h>
49 
50 /*
51  * FIXME: remove all knowledge of the buffer layer from the core VM
52  */
53 #include <linux/buffer_head.h> /* for try_to_free_buffers */
54 
55 #include <asm/mman.h>
56 
57 /*
58  * Shared mappings implemented 30.11.1994. It's not fully working yet,
59  * though.
60  *
61  * Shared mappings now work. 15.8.1995  Bruno.
62  *
63  * finished 'unifying' the page and buffer cache and SMP-threaded the
64  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
65  *
66  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
67  */
68 
69 /*
70  * Lock ordering:
71  *
72  *  ->i_mmap_rwsem		(truncate_pagecache)
73  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
74  *      ->swap_lock		(exclusive_swap_page, others)
75  *        ->i_pages lock
76  *
77  *  ->i_mutex
78  *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
79  *
80  *  ->mmap_lock
81  *    ->i_mmap_rwsem
82  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
83  *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
84  *
85  *  ->mmap_lock
86  *    ->lock_page		(access_process_vm)
87  *
88  *  ->i_mutex			(generic_perform_write)
89  *    ->mmap_lock		(fault_in_pages_readable->do_page_fault)
90  *
91  *  bdi->wb.list_lock
92  *    sb_lock			(fs/fs-writeback.c)
93  *    ->i_pages lock		(__sync_single_inode)
94  *
95  *  ->i_mmap_rwsem
96  *    ->anon_vma.lock		(vma_adjust)
97  *
98  *  ->anon_vma.lock
99  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
100  *
101  *  ->page_table_lock or pte_lock
102  *    ->swap_lock		(try_to_unmap_one)
103  *    ->private_lock		(try_to_unmap_one)
104  *    ->i_pages lock		(try_to_unmap_one)
105  *    ->pgdat->lru_lock		(follow_page->mark_page_accessed)
106  *    ->pgdat->lru_lock		(check_pte_range->isolate_lru_page)
107  *    ->private_lock		(page_remove_rmap->set_page_dirty)
108  *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
109  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
110  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
111  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
112  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
113  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
114  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
115  *
116  * ->i_mmap_rwsem
117  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
118  */
119 
120 static void page_cache_delete(struct address_space *mapping,
121 				   struct page *page, void *shadow)
122 {
123 	XA_STATE(xas, &mapping->i_pages, page->index);
124 	unsigned int nr = 1;
125 
126 	mapping_set_update(&xas, mapping);
127 
128 	/* hugetlb pages are represented by a single entry in the xarray */
129 	if (!PageHuge(page)) {
130 		xas_set_order(&xas, page->index, compound_order(page));
131 		nr = compound_nr(page);
132 	}
133 
134 	VM_BUG_ON_PAGE(!PageLocked(page), page);
135 	VM_BUG_ON_PAGE(PageTail(page), page);
136 	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
137 
138 	xas_store(&xas, shadow);
139 	xas_init_marks(&xas);
140 
141 	page->mapping = NULL;
142 	/* Leave page->index set: truncation lookup relies upon it */
143 
144 	if (shadow) {
145 		mapping->nrexceptional += nr;
146 		/*
147 		 * Make sure the nrexceptional update is committed before
148 		 * the nrpages update so that final truncate racing
149 		 * with reclaim does not see both counters 0 at the
150 		 * same time and miss a shadow entry.
151 		 */
152 		smp_wmb();
153 	}
154 	mapping->nrpages -= nr;
155 }
156 
157 static void unaccount_page_cache_page(struct address_space *mapping,
158 				      struct page *page)
159 {
160 	int nr;
161 
162 	/*
163 	 * if we're uptodate, flush out into the cleancache, otherwise
164 	 * invalidate any existing cleancache entries.  We can't leave
165 	 * stale data around in the cleancache once our page is gone
166 	 */
167 	if (PageUptodate(page) && PageMappedToDisk(page))
168 		cleancache_put_page(page);
169 	else
170 		cleancache_invalidate_page(mapping, page);
171 
172 	VM_BUG_ON_PAGE(PageTail(page), page);
173 	VM_BUG_ON_PAGE(page_mapped(page), page);
174 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
175 		int mapcount;
176 
177 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
178 			 current->comm, page_to_pfn(page));
179 		dump_page(page, "still mapped when deleted");
180 		dump_stack();
181 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
182 
183 		mapcount = page_mapcount(page);
184 		if (mapping_exiting(mapping) &&
185 		    page_count(page) >= mapcount + 2) {
186 			/*
187 			 * All vmas have already been torn down, so it's
188 			 * a good bet that actually the page is unmapped,
189 			 * and we'd prefer not to leak it: if we're wrong,
190 			 * some other bad page check should catch it later.
191 			 */
192 			page_mapcount_reset(page);
193 			page_ref_sub(page, mapcount);
194 		}
195 	}
196 
197 	/* hugetlb pages do not participate in page cache accounting. */
198 	if (PageHuge(page))
199 		return;
200 
201 	nr = thp_nr_pages(page);
202 
203 	__mod_lruvec_page_state(page, NR_FILE_PAGES, -nr);
204 	if (PageSwapBacked(page)) {
205 		__mod_lruvec_page_state(page, NR_SHMEM, -nr);
206 		if (PageTransHuge(page))
207 			__dec_node_page_state(page, NR_SHMEM_THPS);
208 	} else if (PageTransHuge(page)) {
209 		__dec_node_page_state(page, NR_FILE_THPS);
210 		filemap_nr_thps_dec(mapping);
211 	}
212 
213 	/*
214 	 * At this point page must be either written or cleaned by
215 	 * truncate.  Dirty page here signals a bug and loss of
216 	 * unwritten data.
217 	 *
218 	 * This fixes dirty accounting after removing the page entirely
219 	 * but leaves PageDirty set: it has no effect for truncated
220 	 * page and anyway will be cleared before returning page into
221 	 * buddy allocator.
222 	 */
223 	if (WARN_ON_ONCE(PageDirty(page)))
224 		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
225 }
226 
227 /*
228  * Delete a page from the page cache and free it. Caller has to make
229  * sure the page is locked and that nobody else uses it - or that usage
230  * is safe.  The caller must hold the i_pages lock.
231  */
232 void __delete_from_page_cache(struct page *page, void *shadow)
233 {
234 	struct address_space *mapping = page->mapping;
235 
236 	trace_mm_filemap_delete_from_page_cache(page);
237 
238 	unaccount_page_cache_page(mapping, page);
239 	page_cache_delete(mapping, page, shadow);
240 }
241 
242 static void page_cache_free_page(struct address_space *mapping,
243 				struct page *page)
244 {
245 	void (*freepage)(struct page *);
246 
247 	freepage = mapping->a_ops->freepage;
248 	if (freepage)
249 		freepage(page);
250 
251 	if (PageTransHuge(page) && !PageHuge(page)) {
252 		page_ref_sub(page, HPAGE_PMD_NR);
253 		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
254 	} else {
255 		put_page(page);
256 	}
257 }
258 
259 /**
260  * delete_from_page_cache - delete page from page cache
261  * @page: the page which the kernel is trying to remove from page cache
262  *
263  * This must be called only on pages that have been verified to be in the page
264  * cache and locked.  It will never put the page into the free list, the caller
265  * has a reference on the page.
266  */
267 void delete_from_page_cache(struct page *page)
268 {
269 	struct address_space *mapping = page_mapping(page);
270 	unsigned long flags;
271 
272 	BUG_ON(!PageLocked(page));
273 	xa_lock_irqsave(&mapping->i_pages, flags);
274 	__delete_from_page_cache(page, NULL);
275 	xa_unlock_irqrestore(&mapping->i_pages, flags);
276 
277 	page_cache_free_page(mapping, page);
278 }
279 EXPORT_SYMBOL(delete_from_page_cache);
280 
281 /*
282  * page_cache_delete_batch - delete several pages from page cache
283  * @mapping: the mapping to which pages belong
284  * @pvec: pagevec with pages to delete
285  *
286  * The function walks over mapping->i_pages and removes pages passed in @pvec
287  * from the mapping. The function expects @pvec to be sorted by page index
288  * and is optimised for it to be dense.
289  * It tolerates holes in @pvec (mapping entries at those indices are not
290  * modified). The function expects only THP head pages to be present in the
291  * @pvec.
292  *
293  * The function expects the i_pages lock to be held.
294  */
295 static void page_cache_delete_batch(struct address_space *mapping,
296 			     struct pagevec *pvec)
297 {
298 	XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
299 	int total_pages = 0;
300 	int i = 0;
301 	struct page *page;
302 
303 	mapping_set_update(&xas, mapping);
304 	xas_for_each(&xas, page, ULONG_MAX) {
305 		if (i >= pagevec_count(pvec))
306 			break;
307 
308 		/* A swap/dax/shadow entry got inserted? Skip it. */
309 		if (xa_is_value(page))
310 			continue;
311 		/*
312 		 * A page got inserted in our range? Skip it. We have our
313 		 * pages locked so they are protected from being removed.
314 		 * If we see a page whose index is higher than ours, it
315 		 * means our page has been removed, which shouldn't be
316 		 * possible because we're holding the PageLock.
317 		 */
318 		if (page != pvec->pages[i]) {
319 			VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
320 					page);
321 			continue;
322 		}
323 
324 		WARN_ON_ONCE(!PageLocked(page));
325 
326 		if (page->index == xas.xa_index)
327 			page->mapping = NULL;
328 		/* Leave page->index set: truncation lookup relies on it */
329 
330 		/*
331 		 * Move to the next page in the vector if this is a regular
332 		 * page or the index is of the last sub-page of this compound
333 		 * page.
334 		 */
335 		if (page->index + compound_nr(page) - 1 == xas.xa_index)
336 			i++;
337 		xas_store(&xas, NULL);
338 		total_pages++;
339 	}
340 	mapping->nrpages -= total_pages;
341 }
342 
343 void delete_from_page_cache_batch(struct address_space *mapping,
344 				  struct pagevec *pvec)
345 {
346 	int i;
347 	unsigned long flags;
348 
349 	if (!pagevec_count(pvec))
350 		return;
351 
352 	xa_lock_irqsave(&mapping->i_pages, flags);
353 	for (i = 0; i < pagevec_count(pvec); i++) {
354 		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
355 
356 		unaccount_page_cache_page(mapping, pvec->pages[i]);
357 	}
358 	page_cache_delete_batch(mapping, pvec);
359 	xa_unlock_irqrestore(&mapping->i_pages, flags);
360 
361 	for (i = 0; i < pagevec_count(pvec); i++)
362 		page_cache_free_page(mapping, pvec->pages[i]);
363 }
364 
365 int filemap_check_errors(struct address_space *mapping)
366 {
367 	int ret = 0;
368 	/* Check for outstanding write errors */
369 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
370 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
371 		ret = -ENOSPC;
372 	if (test_bit(AS_EIO, &mapping->flags) &&
373 	    test_and_clear_bit(AS_EIO, &mapping->flags))
374 		ret = -EIO;
375 	return ret;
376 }
377 EXPORT_SYMBOL(filemap_check_errors);
378 
379 static int filemap_check_and_keep_errors(struct address_space *mapping)
380 {
381 	/* Check for outstanding write errors */
382 	if (test_bit(AS_EIO, &mapping->flags))
383 		return -EIO;
384 	if (test_bit(AS_ENOSPC, &mapping->flags))
385 		return -ENOSPC;
386 	return 0;
387 }
388 
389 /**
390  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
391  * @mapping:	address space structure to write
392  * @start:	offset in bytes where the range starts
393  * @end:	offset in bytes where the range ends (inclusive)
394  * @sync_mode:	enable synchronous operation
395  *
396  * Start writeback against all of a mapping's dirty pages that lie
397  * within the byte offsets <start, end> inclusive.
398  *
399  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
400  * opposed to a regular memory cleansing writeback.  The difference between
401  * these two operations is that if a dirty page/buffer is encountered, it must
402  * be waited upon, and not just skipped over.
403  *
404  * Return: %0 on success, negative error code otherwise.
405  */
406 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
407 				loff_t end, int sync_mode)
408 {
409 	int ret;
410 	struct writeback_control wbc = {
411 		.sync_mode = sync_mode,
412 		.nr_to_write = LONG_MAX,
413 		.range_start = start,
414 		.range_end = end,
415 	};
416 
417 	if (!mapping_can_writeback(mapping) ||
418 	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
419 		return 0;
420 
421 	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
422 	ret = do_writepages(mapping, &wbc);
423 	wbc_detach_inode(&wbc);
424 	return ret;
425 }
426 
427 static inline int __filemap_fdatawrite(struct address_space *mapping,
428 	int sync_mode)
429 {
430 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
431 }
432 
433 int filemap_fdatawrite(struct address_space *mapping)
434 {
435 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
436 }
437 EXPORT_SYMBOL(filemap_fdatawrite);
438 
439 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
440 				loff_t end)
441 {
442 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
443 }
444 EXPORT_SYMBOL(filemap_fdatawrite_range);
445 
446 /**
447  * filemap_flush - mostly a non-blocking flush
448  * @mapping:	target address_space
449  *
450  * This is a mostly non-blocking flush.  Not suitable for data-integrity
451  * purposes - I/O may not be started against all dirty pages.
452  *
453  * Return: %0 on success, negative error code otherwise.
454  */
455 int filemap_flush(struct address_space *mapping)
456 {
457 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
458 }
459 EXPORT_SYMBOL(filemap_flush);
460 
461 /**
462  * filemap_range_has_page - check if a page exists in range.
463  * @mapping:           address space within which to check
464  * @start_byte:        offset in bytes where the range starts
465  * @end_byte:          offset in bytes where the range ends (inclusive)
466  *
467  * Find at least one page in the range supplied, usually used to check if
468  * direct writing in this range will trigger a writeback.
469  *
470  * Return: %true if at least one page exists in the specified range,
471  * %false otherwise.
472  */
473 bool filemap_range_has_page(struct address_space *mapping,
474 			   loff_t start_byte, loff_t end_byte)
475 {
476 	struct page *page;
477 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
478 	pgoff_t max = end_byte >> PAGE_SHIFT;
479 
480 	if (end_byte < start_byte)
481 		return false;
482 
483 	rcu_read_lock();
484 	for (;;) {
485 		page = xas_find(&xas, max);
486 		if (xas_retry(&xas, page))
487 			continue;
488 		/* Shadow entries don't count */
489 		if (xa_is_value(page))
490 			continue;
491 		/*
492 		 * We don't need to try to pin this page; we're about to
493 		 * release the RCU lock anyway.  It is enough to know that
494 		 * there was a page here recently.
495 		 */
496 		break;
497 	}
498 	rcu_read_unlock();
499 
500 	return page != NULL;
501 }
502 EXPORT_SYMBOL(filemap_range_has_page);
503 
504 static void __filemap_fdatawait_range(struct address_space *mapping,
505 				     loff_t start_byte, loff_t end_byte)
506 {
507 	pgoff_t index = start_byte >> PAGE_SHIFT;
508 	pgoff_t end = end_byte >> PAGE_SHIFT;
509 	struct pagevec pvec;
510 	int nr_pages;
511 
512 	if (end_byte < start_byte)
513 		return;
514 
515 	pagevec_init(&pvec);
516 	while (index <= end) {
517 		unsigned i;
518 
519 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
520 				end, PAGECACHE_TAG_WRITEBACK);
521 		if (!nr_pages)
522 			break;
523 
524 		for (i = 0; i < nr_pages; i++) {
525 			struct page *page = pvec.pages[i];
526 
527 			wait_on_page_writeback(page);
528 			ClearPageError(page);
529 		}
530 		pagevec_release(&pvec);
531 		cond_resched();
532 	}
533 }
534 
535 /**
536  * filemap_fdatawait_range - wait for writeback to complete
537  * @mapping:		address space structure to wait for
538  * @start_byte:		offset in bytes where the range starts
539  * @end_byte:		offset in bytes where the range ends (inclusive)
540  *
541  * Walk the list of under-writeback pages of the given address space
542  * in the given range and wait for all of them.  Check error status of
543  * the address space and return it.
544  *
545  * Since the error status of the address space is cleared by this function,
546  * callers are responsible for checking the return value and handling and/or
547  * reporting the error.
548  *
549  * Return: error status of the address space.
550  */
551 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
552 			    loff_t end_byte)
553 {
554 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
555 	return filemap_check_errors(mapping);
556 }
557 EXPORT_SYMBOL(filemap_fdatawait_range);
558 
559 /**
560  * filemap_fdatawait_range_keep_errors - wait for writeback to complete
561  * @mapping:		address space structure to wait for
562  * @start_byte:		offset in bytes where the range starts
563  * @end_byte:		offset in bytes where the range ends (inclusive)
564  *
565  * Walk the list of under-writeback pages of the given address space in the
566  * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
567  * this function does not clear error status of the address space.
568  *
569  * Use this function if callers don't handle errors themselves.  Expected
570  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
571  * fsfreeze(8)
572  */
573 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
574 		loff_t start_byte, loff_t end_byte)
575 {
576 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
577 	return filemap_check_and_keep_errors(mapping);
578 }
579 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
580 
581 /**
582  * file_fdatawait_range - wait for writeback to complete
583  * @file:		file pointing to address space structure to wait for
584  * @start_byte:		offset in bytes where the range starts
585  * @end_byte:		offset in bytes where the range ends (inclusive)
586  *
587  * Walk the list of under-writeback pages of the address space that file
588  * refers to, in the given range and wait for all of them.  Check error
589  * status of the address space vs. the file->f_wb_err cursor and return it.
590  *
591  * Since the error status of the file is advanced by this function,
592  * callers are responsible for checking the return value and handling and/or
593  * reporting the error.
594  *
595  * Return: error status of the address space vs. the file->f_wb_err cursor.
596  */
597 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
598 {
599 	struct address_space *mapping = file->f_mapping;
600 
601 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
602 	return file_check_and_advance_wb_err(file);
603 }
604 EXPORT_SYMBOL(file_fdatawait_range);
605 
606 /**
607  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
608  * @mapping: address space structure to wait for
609  *
610  * Walk the list of under-writeback pages of the given address space
611  * and wait for all of them.  Unlike filemap_fdatawait(), this function
612  * does not clear error status of the address space.
613  *
614  * Use this function if callers don't handle errors themselves.  Expected
615  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
616  * fsfreeze(8)
617  *
618  * Return: error status of the address space.
619  */
620 int filemap_fdatawait_keep_errors(struct address_space *mapping)
621 {
622 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
623 	return filemap_check_and_keep_errors(mapping);
624 }
625 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
626 
627 /* Returns true if writeback might be needed or already in progress. */
628 static bool mapping_needs_writeback(struct address_space *mapping)
629 {
630 	if (dax_mapping(mapping))
631 		return mapping->nrexceptional;
632 
633 	return mapping->nrpages;
634 }
635 
636 /**
637  * filemap_write_and_wait_range - write out & wait on a file range
638  * @mapping:	the address_space for the pages
639  * @lstart:	offset in bytes where the range starts
640  * @lend:	offset in bytes where the range ends (inclusive)
641  *
642  * Write out and wait upon file offsets lstart->lend, inclusive.
643  *
644  * Note that @lend is inclusive (describes the last byte to be written) so
645  * that this function can be used to write to the very end-of-file (end = -1).
646  *
647  * Return: error status of the address space.
648  */
649 int filemap_write_and_wait_range(struct address_space *mapping,
650 				 loff_t lstart, loff_t lend)
651 {
652 	int err = 0;
653 
654 	if (mapping_needs_writeback(mapping)) {
655 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
656 						 WB_SYNC_ALL);
657 		/*
658 		 * Even if the above returned error, the pages may be
659 		 * written partially (e.g. -ENOSPC), so we wait for it.
660 		 * But the -EIO is special case, it may indicate the worst
661 		 * thing (e.g. bug) happened, so we avoid waiting for it.
662 		 */
663 		if (err != -EIO) {
664 			int err2 = filemap_fdatawait_range(mapping,
665 						lstart, lend);
666 			if (!err)
667 				err = err2;
668 		} else {
669 			/* Clear any previously stored errors */
670 			filemap_check_errors(mapping);
671 		}
672 	} else {
673 		err = filemap_check_errors(mapping);
674 	}
675 	return err;
676 }
677 EXPORT_SYMBOL(filemap_write_and_wait_range);
678 
679 void __filemap_set_wb_err(struct address_space *mapping, int err)
680 {
681 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
682 
683 	trace_filemap_set_wb_err(mapping, eseq);
684 }
685 EXPORT_SYMBOL(__filemap_set_wb_err);
686 
687 /**
688  * file_check_and_advance_wb_err - report wb error (if any) that was previously
689  * 				   and advance wb_err to current one
690  * @file: struct file on which the error is being reported
691  *
692  * When userland calls fsync (or something like nfsd does the equivalent), we
693  * want to report any writeback errors that occurred since the last fsync (or
694  * since the file was opened if there haven't been any).
695  *
696  * Grab the wb_err from the mapping. If it matches what we have in the file,
697  * then just quickly return 0. The file is all caught up.
698  *
699  * If it doesn't match, then take the mapping value, set the "seen" flag in
700  * it and try to swap it into place. If it works, or another task beat us
701  * to it with the new value, then update the f_wb_err and return the error
702  * portion. The error at this point must be reported via proper channels
703  * (a'la fsync, or NFS COMMIT operation, etc.).
704  *
705  * While we handle mapping->wb_err with atomic operations, the f_wb_err
706  * value is protected by the f_lock since we must ensure that it reflects
707  * the latest value swapped in for this file descriptor.
708  *
709  * Return: %0 on success, negative error code otherwise.
710  */
711 int file_check_and_advance_wb_err(struct file *file)
712 {
713 	int err = 0;
714 	errseq_t old = READ_ONCE(file->f_wb_err);
715 	struct address_space *mapping = file->f_mapping;
716 
717 	/* Locklessly handle the common case where nothing has changed */
718 	if (errseq_check(&mapping->wb_err, old)) {
719 		/* Something changed, must use slow path */
720 		spin_lock(&file->f_lock);
721 		old = file->f_wb_err;
722 		err = errseq_check_and_advance(&mapping->wb_err,
723 						&file->f_wb_err);
724 		trace_file_check_and_advance_wb_err(file, old);
725 		spin_unlock(&file->f_lock);
726 	}
727 
728 	/*
729 	 * We're mostly using this function as a drop in replacement for
730 	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
731 	 * that the legacy code would have had on these flags.
732 	 */
733 	clear_bit(AS_EIO, &mapping->flags);
734 	clear_bit(AS_ENOSPC, &mapping->flags);
735 	return err;
736 }
737 EXPORT_SYMBOL(file_check_and_advance_wb_err);
738 
739 /**
740  * file_write_and_wait_range - write out & wait on a file range
741  * @file:	file pointing to address_space with pages
742  * @lstart:	offset in bytes where the range starts
743  * @lend:	offset in bytes where the range ends (inclusive)
744  *
745  * Write out and wait upon file offsets lstart->lend, inclusive.
746  *
747  * Note that @lend is inclusive (describes the last byte to be written) so
748  * that this function can be used to write to the very end-of-file (end = -1).
749  *
750  * After writing out and waiting on the data, we check and advance the
751  * f_wb_err cursor to the latest value, and return any errors detected there.
752  *
753  * Return: %0 on success, negative error code otherwise.
754  */
755 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
756 {
757 	int err = 0, err2;
758 	struct address_space *mapping = file->f_mapping;
759 
760 	if (mapping_needs_writeback(mapping)) {
761 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
762 						 WB_SYNC_ALL);
763 		/* See comment of filemap_write_and_wait() */
764 		if (err != -EIO)
765 			__filemap_fdatawait_range(mapping, lstart, lend);
766 	}
767 	err2 = file_check_and_advance_wb_err(file);
768 	if (!err)
769 		err = err2;
770 	return err;
771 }
772 EXPORT_SYMBOL(file_write_and_wait_range);
773 
774 /**
775  * replace_page_cache_page - replace a pagecache page with a new one
776  * @old:	page to be replaced
777  * @new:	page to replace with
778  * @gfp_mask:	allocation mode
779  *
780  * This function replaces a page in the pagecache with a new one.  On
781  * success it acquires the pagecache reference for the new page and
782  * drops it for the old page.  Both the old and new pages must be
783  * locked.  This function does not add the new page to the LRU, the
784  * caller must do that.
785  *
786  * The remove + add is atomic.  This function cannot fail.
787  *
788  * Return: %0
789  */
790 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
791 {
792 	struct address_space *mapping = old->mapping;
793 	void (*freepage)(struct page *) = mapping->a_ops->freepage;
794 	pgoff_t offset = old->index;
795 	XA_STATE(xas, &mapping->i_pages, offset);
796 	unsigned long flags;
797 
798 	VM_BUG_ON_PAGE(!PageLocked(old), old);
799 	VM_BUG_ON_PAGE(!PageLocked(new), new);
800 	VM_BUG_ON_PAGE(new->mapping, new);
801 
802 	get_page(new);
803 	new->mapping = mapping;
804 	new->index = offset;
805 
806 	mem_cgroup_migrate(old, new);
807 
808 	xas_lock_irqsave(&xas, flags);
809 	xas_store(&xas, new);
810 
811 	old->mapping = NULL;
812 	/* hugetlb pages do not participate in page cache accounting. */
813 	if (!PageHuge(old))
814 		__dec_lruvec_page_state(old, NR_FILE_PAGES);
815 	if (!PageHuge(new))
816 		__inc_lruvec_page_state(new, NR_FILE_PAGES);
817 	if (PageSwapBacked(old))
818 		__dec_lruvec_page_state(old, NR_SHMEM);
819 	if (PageSwapBacked(new))
820 		__inc_lruvec_page_state(new, NR_SHMEM);
821 	xas_unlock_irqrestore(&xas, flags);
822 	if (freepage)
823 		freepage(old);
824 	put_page(old);
825 
826 	return 0;
827 }
828 EXPORT_SYMBOL_GPL(replace_page_cache_page);
829 
830 static int __add_to_page_cache_locked(struct page *page,
831 				      struct address_space *mapping,
832 				      pgoff_t offset, gfp_t gfp_mask,
833 				      void **shadowp)
834 {
835 	XA_STATE(xas, &mapping->i_pages, offset);
836 	int huge = PageHuge(page);
837 	int error;
838 	void *old;
839 
840 	VM_BUG_ON_PAGE(!PageLocked(page), page);
841 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
842 	mapping_set_update(&xas, mapping);
843 
844 	get_page(page);
845 	page->mapping = mapping;
846 	page->index = offset;
847 
848 	if (!huge) {
849 		error = mem_cgroup_charge(page, current->mm, gfp_mask);
850 		if (error)
851 			goto error;
852 	}
853 
854 	do {
855 		xas_lock_irq(&xas);
856 		old = xas_load(&xas);
857 		if (old && !xa_is_value(old))
858 			xas_set_err(&xas, -EEXIST);
859 		xas_store(&xas, page);
860 		if (xas_error(&xas))
861 			goto unlock;
862 
863 		if (xa_is_value(old)) {
864 			mapping->nrexceptional--;
865 			if (shadowp)
866 				*shadowp = old;
867 		}
868 		mapping->nrpages++;
869 
870 		/* hugetlb pages do not participate in page cache accounting */
871 		if (!huge)
872 			__inc_lruvec_page_state(page, NR_FILE_PAGES);
873 unlock:
874 		xas_unlock_irq(&xas);
875 	} while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));
876 
877 	if (xas_error(&xas)) {
878 		error = xas_error(&xas);
879 		goto error;
880 	}
881 
882 	trace_mm_filemap_add_to_page_cache(page);
883 	return 0;
884 error:
885 	page->mapping = NULL;
886 	/* Leave page->index set: truncation relies upon it */
887 	put_page(page);
888 	return error;
889 }
890 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
891 
892 /**
893  * add_to_page_cache_locked - add a locked page to the pagecache
894  * @page:	page to add
895  * @mapping:	the page's address_space
896  * @offset:	page index
897  * @gfp_mask:	page allocation mode
898  *
899  * This function is used to add a page to the pagecache. It must be locked.
900  * This function does not add the page to the LRU.  The caller must do that.
901  *
902  * Return: %0 on success, negative error code otherwise.
903  */
904 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
905 		pgoff_t offset, gfp_t gfp_mask)
906 {
907 	return __add_to_page_cache_locked(page, mapping, offset,
908 					  gfp_mask, NULL);
909 }
910 EXPORT_SYMBOL(add_to_page_cache_locked);
911 
912 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
913 				pgoff_t offset, gfp_t gfp_mask)
914 {
915 	void *shadow = NULL;
916 	int ret;
917 
918 	__SetPageLocked(page);
919 	ret = __add_to_page_cache_locked(page, mapping, offset,
920 					 gfp_mask, &shadow);
921 	if (unlikely(ret))
922 		__ClearPageLocked(page);
923 	else {
924 		/*
925 		 * The page might have been evicted from cache only
926 		 * recently, in which case it should be activated like
927 		 * any other repeatedly accessed page.
928 		 * The exception is pages getting rewritten; evicting other
929 		 * data from the working set, only to cache data that will
930 		 * get overwritten with something else, is a waste of memory.
931 		 */
932 		WARN_ON_ONCE(PageActive(page));
933 		if (!(gfp_mask & __GFP_WRITE) && shadow)
934 			workingset_refault(page, shadow);
935 		lru_cache_add(page);
936 	}
937 	return ret;
938 }
939 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
940 
941 #ifdef CONFIG_NUMA
942 struct page *__page_cache_alloc(gfp_t gfp)
943 {
944 	int n;
945 	struct page *page;
946 
947 	if (cpuset_do_page_mem_spread()) {
948 		unsigned int cpuset_mems_cookie;
949 		do {
950 			cpuset_mems_cookie = read_mems_allowed_begin();
951 			n = cpuset_mem_spread_node();
952 			page = __alloc_pages_node(n, gfp, 0);
953 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
954 
955 		return page;
956 	}
957 	return alloc_pages(gfp, 0);
958 }
959 EXPORT_SYMBOL(__page_cache_alloc);
960 #endif
961 
962 /*
963  * In order to wait for pages to become available there must be
964  * waitqueues associated with pages. By using a hash table of
965  * waitqueues where the bucket discipline is to maintain all
966  * waiters on the same queue and wake all when any of the pages
967  * become available, and for the woken contexts to check to be
968  * sure the appropriate page became available, this saves space
969  * at a cost of "thundering herd" phenomena during rare hash
970  * collisions.
971  */
972 #define PAGE_WAIT_TABLE_BITS 8
973 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
974 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
975 
976 static wait_queue_head_t *page_waitqueue(struct page *page)
977 {
978 	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
979 }
980 
981 void __init pagecache_init(void)
982 {
983 	int i;
984 
985 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
986 		init_waitqueue_head(&page_wait_table[i]);
987 
988 	page_writeback_init();
989 }
990 
991 /*
992  * The page wait code treats the "wait->flags" somewhat unusually, because
993  * we have multiple different kinds of waits, not just the usual "exclusive"
994  * one.
995  *
996  * We have:
997  *
998  *  (a) no special bits set:
999  *
1000  *	We're just waiting for the bit to be released, and when a waker
1001  *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1002  *	and remove it from the wait queue.
1003  *
1004  *	Simple and straightforward.
1005  *
1006  *  (b) WQ_FLAG_EXCLUSIVE:
1007  *
1008  *	The waiter is waiting to get the lock, and only one waiter should
1009  *	be woken up to avoid any thundering herd behavior. We'll set the
1010  *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1011  *
1012  *	This is the traditional exclusive wait.
1013  *
1014  *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1015  *
1016  *	The waiter is waiting to get the bit, and additionally wants the
1017  *	lock to be transferred to it for fair lock behavior. If the lock
1018  *	cannot be taken, we stop walking the wait queue without waking
1019  *	the waiter.
1020  *
1021  *	This is the "fair lock handoff" case, and in addition to setting
1022  *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1023  *	that it now has the lock.
1024  */
1025 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1026 {
1027 	unsigned int flags;
1028 	struct wait_page_key *key = arg;
1029 	struct wait_page_queue *wait_page
1030 		= container_of(wait, struct wait_page_queue, wait);
1031 
1032 	if (!wake_page_match(wait_page, key))
1033 		return 0;
1034 
1035 	/*
1036 	 * If it's a lock handoff wait, we get the bit for it, and
1037 	 * stop walking (and do not wake it up) if we can't.
1038 	 */
1039 	flags = wait->flags;
1040 	if (flags & WQ_FLAG_EXCLUSIVE) {
1041 		if (test_bit(key->bit_nr, &key->page->flags))
1042 			return -1;
1043 		if (flags & WQ_FLAG_CUSTOM) {
1044 			if (test_and_set_bit(key->bit_nr, &key->page->flags))
1045 				return -1;
1046 			flags |= WQ_FLAG_DONE;
1047 		}
1048 	}
1049 
1050 	/*
1051 	 * We are holding the wait-queue lock, but the waiter that
1052 	 * is waiting for this will be checking the flags without
1053 	 * any locking.
1054 	 *
1055 	 * So update the flags atomically, and wake up the waiter
1056 	 * afterwards to avoid any races. This store-release pairs
1057 	 * with the load-acquire in wait_on_page_bit_common().
1058 	 */
1059 	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1060 	wake_up_state(wait->private, mode);
1061 
1062 	/*
1063 	 * Ok, we have successfully done what we're waiting for,
1064 	 * and we can unconditionally remove the wait entry.
1065 	 *
1066 	 * Note that this pairs with the "finish_wait()" in the
1067 	 * waiter, and has to be the absolute last thing we do.
1068 	 * After this list_del_init(&wait->entry) the wait entry
1069 	 * might be de-allocated and the process might even have
1070 	 * exited.
1071 	 */
1072 	list_del_init_careful(&wait->entry);
1073 	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1074 }
1075 
1076 static void wake_up_page_bit(struct page *page, int bit_nr)
1077 {
1078 	wait_queue_head_t *q = page_waitqueue(page);
1079 	struct wait_page_key key;
1080 	unsigned long flags;
1081 	wait_queue_entry_t bookmark;
1082 
1083 	key.page = page;
1084 	key.bit_nr = bit_nr;
1085 	key.page_match = 0;
1086 
1087 	bookmark.flags = 0;
1088 	bookmark.private = NULL;
1089 	bookmark.func = NULL;
1090 	INIT_LIST_HEAD(&bookmark.entry);
1091 
1092 	spin_lock_irqsave(&q->lock, flags);
1093 	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1094 
1095 	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1096 		/*
1097 		 * Take a breather from holding the lock,
1098 		 * allow pages that finish wake up asynchronously
1099 		 * to acquire the lock and remove themselves
1100 		 * from wait queue
1101 		 */
1102 		spin_unlock_irqrestore(&q->lock, flags);
1103 		cpu_relax();
1104 		spin_lock_irqsave(&q->lock, flags);
1105 		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1106 	}
1107 
1108 	/*
1109 	 * It is possible for other pages to have collided on the waitqueue
1110 	 * hash, so in that case check for a page match. That prevents a long-
1111 	 * term waiter
1112 	 *
1113 	 * It is still possible to miss a case here, when we woke page waiters
1114 	 * and removed them from the waitqueue, but there are still other
1115 	 * page waiters.
1116 	 */
1117 	if (!waitqueue_active(q) || !key.page_match) {
1118 		ClearPageWaiters(page);
1119 		/*
1120 		 * It's possible to miss clearing Waiters here, when we woke
1121 		 * our page waiters, but the hashed waitqueue has waiters for
1122 		 * other pages on it.
1123 		 *
1124 		 * That's okay, it's a rare case. The next waker will clear it.
1125 		 */
1126 	}
1127 	spin_unlock_irqrestore(&q->lock, flags);
1128 }
1129 
1130 static void wake_up_page(struct page *page, int bit)
1131 {
1132 	if (!PageWaiters(page))
1133 		return;
1134 	wake_up_page_bit(page, bit);
1135 }
1136 
1137 /*
1138  * A choice of three behaviors for wait_on_page_bit_common():
1139  */
1140 enum behavior {
1141 	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1142 			 * __lock_page() waiting on then setting PG_locked.
1143 			 */
1144 	SHARED,		/* Hold ref to page and check the bit when woken, like
1145 			 * wait_on_page_writeback() waiting on PG_writeback.
1146 			 */
1147 	DROP,		/* Drop ref to page before wait, no check when woken,
1148 			 * like put_and_wait_on_page_locked() on PG_locked.
1149 			 */
1150 };
1151 
1152 /*
1153  * Attempt to check (or get) the page bit, and mark us done
1154  * if successful.
1155  */
1156 static inline bool trylock_page_bit_common(struct page *page, int bit_nr,
1157 					struct wait_queue_entry *wait)
1158 {
1159 	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1160 		if (test_and_set_bit(bit_nr, &page->flags))
1161 			return false;
1162 	} else if (test_bit(bit_nr, &page->flags))
1163 		return false;
1164 
1165 	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1166 	return true;
1167 }
1168 
1169 /* How many times do we accept lock stealing from under a waiter? */
1170 int sysctl_page_lock_unfairness = 5;
1171 
1172 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1173 	struct page *page, int bit_nr, int state, enum behavior behavior)
1174 {
1175 	int unfairness = sysctl_page_lock_unfairness;
1176 	struct wait_page_queue wait_page;
1177 	wait_queue_entry_t *wait = &wait_page.wait;
1178 	bool thrashing = false;
1179 	bool delayacct = false;
1180 	unsigned long pflags;
1181 
1182 	if (bit_nr == PG_locked &&
1183 	    !PageUptodate(page) && PageWorkingset(page)) {
1184 		if (!PageSwapBacked(page)) {
1185 			delayacct_thrashing_start();
1186 			delayacct = true;
1187 		}
1188 		psi_memstall_enter(&pflags);
1189 		thrashing = true;
1190 	}
1191 
1192 	init_wait(wait);
1193 	wait->func = wake_page_function;
1194 	wait_page.page = page;
1195 	wait_page.bit_nr = bit_nr;
1196 
1197 repeat:
1198 	wait->flags = 0;
1199 	if (behavior == EXCLUSIVE) {
1200 		wait->flags = WQ_FLAG_EXCLUSIVE;
1201 		if (--unfairness < 0)
1202 			wait->flags |= WQ_FLAG_CUSTOM;
1203 	}
1204 
1205 	/*
1206 	 * Do one last check whether we can get the
1207 	 * page bit synchronously.
1208 	 *
1209 	 * Do the SetPageWaiters() marking before that
1210 	 * to let any waker we _just_ missed know they
1211 	 * need to wake us up (otherwise they'll never
1212 	 * even go to the slow case that looks at the
1213 	 * page queue), and add ourselves to the wait
1214 	 * queue if we need to sleep.
1215 	 *
1216 	 * This part needs to be done under the queue
1217 	 * lock to avoid races.
1218 	 */
1219 	spin_lock_irq(&q->lock);
1220 	SetPageWaiters(page);
1221 	if (!trylock_page_bit_common(page, bit_nr, wait))
1222 		__add_wait_queue_entry_tail(q, wait);
1223 	spin_unlock_irq(&q->lock);
1224 
1225 	/*
1226 	 * From now on, all the logic will be based on
1227 	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1228 	 * see whether the page bit testing has already
1229 	 * been done by the wake function.
1230 	 *
1231 	 * We can drop our reference to the page.
1232 	 */
1233 	if (behavior == DROP)
1234 		put_page(page);
1235 
1236 	/*
1237 	 * Note that until the "finish_wait()", or until
1238 	 * we see the WQ_FLAG_WOKEN flag, we need to
1239 	 * be very careful with the 'wait->flags', because
1240 	 * we may race with a waker that sets them.
1241 	 */
1242 	for (;;) {
1243 		unsigned int flags;
1244 
1245 		set_current_state(state);
1246 
1247 		/* Loop until we've been woken or interrupted */
1248 		flags = smp_load_acquire(&wait->flags);
1249 		if (!(flags & WQ_FLAG_WOKEN)) {
1250 			if (signal_pending_state(state, current))
1251 				break;
1252 
1253 			io_schedule();
1254 			continue;
1255 		}
1256 
1257 		/* If we were non-exclusive, we're done */
1258 		if (behavior != EXCLUSIVE)
1259 			break;
1260 
1261 		/* If the waker got the lock for us, we're done */
1262 		if (flags & WQ_FLAG_DONE)
1263 			break;
1264 
1265 		/*
1266 		 * Otherwise, if we're getting the lock, we need to
1267 		 * try to get it ourselves.
1268 		 *
1269 		 * And if that fails, we'll have to retry this all.
1270 		 */
1271 		if (unlikely(test_and_set_bit(bit_nr, &page->flags)))
1272 			goto repeat;
1273 
1274 		wait->flags |= WQ_FLAG_DONE;
1275 		break;
1276 	}
1277 
1278 	/*
1279 	 * If a signal happened, this 'finish_wait()' may remove the last
1280 	 * waiter from the wait-queues, but the PageWaiters bit will remain
1281 	 * set. That's ok. The next wakeup will take care of it, and trying
1282 	 * to do it here would be difficult and prone to races.
1283 	 */
1284 	finish_wait(q, wait);
1285 
1286 	if (thrashing) {
1287 		if (delayacct)
1288 			delayacct_thrashing_end();
1289 		psi_memstall_leave(&pflags);
1290 	}
1291 
1292 	/*
1293 	 * NOTE! The wait->flags weren't stable until we've done the
1294 	 * 'finish_wait()', and we could have exited the loop above due
1295 	 * to a signal, and had a wakeup event happen after the signal
1296 	 * test but before the 'finish_wait()'.
1297 	 *
1298 	 * So only after the finish_wait() can we reliably determine
1299 	 * if we got woken up or not, so we can now figure out the final
1300 	 * return value based on that state without races.
1301 	 *
1302 	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1303 	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1304 	 */
1305 	if (behavior == EXCLUSIVE)
1306 		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1307 
1308 	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1309 }
1310 
1311 void wait_on_page_bit(struct page *page, int bit_nr)
1312 {
1313 	wait_queue_head_t *q = page_waitqueue(page);
1314 	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1315 }
1316 EXPORT_SYMBOL(wait_on_page_bit);
1317 
1318 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1319 {
1320 	wait_queue_head_t *q = page_waitqueue(page);
1321 	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1322 }
1323 EXPORT_SYMBOL(wait_on_page_bit_killable);
1324 
1325 static int __wait_on_page_locked_async(struct page *page,
1326 				       struct wait_page_queue *wait, bool set)
1327 {
1328 	struct wait_queue_head *q = page_waitqueue(page);
1329 	int ret = 0;
1330 
1331 	wait->page = page;
1332 	wait->bit_nr = PG_locked;
1333 
1334 	spin_lock_irq(&q->lock);
1335 	__add_wait_queue_entry_tail(q, &wait->wait);
1336 	SetPageWaiters(page);
1337 	if (set)
1338 		ret = !trylock_page(page);
1339 	else
1340 		ret = PageLocked(page);
1341 	/*
1342 	 * If we were succesful now, we know we're still on the
1343 	 * waitqueue as we're still under the lock. This means it's
1344 	 * safe to remove and return success, we know the callback
1345 	 * isn't going to trigger.
1346 	 */
1347 	if (!ret)
1348 		__remove_wait_queue(q, &wait->wait);
1349 	else
1350 		ret = -EIOCBQUEUED;
1351 	spin_unlock_irq(&q->lock);
1352 	return ret;
1353 }
1354 
1355 static int wait_on_page_locked_async(struct page *page,
1356 				     struct wait_page_queue *wait)
1357 {
1358 	if (!PageLocked(page))
1359 		return 0;
1360 	return __wait_on_page_locked_async(compound_head(page), wait, false);
1361 }
1362 
1363 /**
1364  * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1365  * @page: The page to wait for.
1366  *
1367  * The caller should hold a reference on @page.  They expect the page to
1368  * become unlocked relatively soon, but do not wish to hold up migration
1369  * (for example) by holding the reference while waiting for the page to
1370  * come unlocked.  After this function returns, the caller should not
1371  * dereference @page.
1372  */
1373 void put_and_wait_on_page_locked(struct page *page)
1374 {
1375 	wait_queue_head_t *q;
1376 
1377 	page = compound_head(page);
1378 	q = page_waitqueue(page);
1379 	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
1380 }
1381 
1382 /**
1383  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1384  * @page: Page defining the wait queue of interest
1385  * @waiter: Waiter to add to the queue
1386  *
1387  * Add an arbitrary @waiter to the wait queue for the nominated @page.
1388  */
1389 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1390 {
1391 	wait_queue_head_t *q = page_waitqueue(page);
1392 	unsigned long flags;
1393 
1394 	spin_lock_irqsave(&q->lock, flags);
1395 	__add_wait_queue_entry_tail(q, waiter);
1396 	SetPageWaiters(page);
1397 	spin_unlock_irqrestore(&q->lock, flags);
1398 }
1399 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1400 
1401 #ifndef clear_bit_unlock_is_negative_byte
1402 
1403 /*
1404  * PG_waiters is the high bit in the same byte as PG_lock.
1405  *
1406  * On x86 (and on many other architectures), we can clear PG_lock and
1407  * test the sign bit at the same time. But if the architecture does
1408  * not support that special operation, we just do this all by hand
1409  * instead.
1410  *
1411  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1412  * being cleared, but a memory barrier should be unnecessary since it is
1413  * in the same byte as PG_locked.
1414  */
1415 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1416 {
1417 	clear_bit_unlock(nr, mem);
1418 	/* smp_mb__after_atomic(); */
1419 	return test_bit(PG_waiters, mem);
1420 }
1421 
1422 #endif
1423 
1424 /**
1425  * unlock_page - unlock a locked page
1426  * @page: the page
1427  *
1428  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1429  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1430  * mechanism between PageLocked pages and PageWriteback pages is shared.
1431  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1432  *
1433  * Note that this depends on PG_waiters being the sign bit in the byte
1434  * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1435  * clear the PG_locked bit and test PG_waiters at the same time fairly
1436  * portably (architectures that do LL/SC can test any bit, while x86 can
1437  * test the sign bit).
1438  */
1439 void unlock_page(struct page *page)
1440 {
1441 	BUILD_BUG_ON(PG_waiters != 7);
1442 	page = compound_head(page);
1443 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1444 	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1445 		wake_up_page_bit(page, PG_locked);
1446 }
1447 EXPORT_SYMBOL(unlock_page);
1448 
1449 /**
1450  * end_page_writeback - end writeback against a page
1451  * @page: the page
1452  */
1453 void end_page_writeback(struct page *page)
1454 {
1455 	/*
1456 	 * TestClearPageReclaim could be used here but it is an atomic
1457 	 * operation and overkill in this particular case. Failing to
1458 	 * shuffle a page marked for immediate reclaim is too mild to
1459 	 * justify taking an atomic operation penalty at the end of
1460 	 * ever page writeback.
1461 	 */
1462 	if (PageReclaim(page)) {
1463 		ClearPageReclaim(page);
1464 		rotate_reclaimable_page(page);
1465 	}
1466 
1467 	if (!test_clear_page_writeback(page))
1468 		BUG();
1469 
1470 	smp_mb__after_atomic();
1471 	wake_up_page(page, PG_writeback);
1472 }
1473 EXPORT_SYMBOL(end_page_writeback);
1474 
1475 /*
1476  * After completing I/O on a page, call this routine to update the page
1477  * flags appropriately
1478  */
1479 void page_endio(struct page *page, bool is_write, int err)
1480 {
1481 	if (!is_write) {
1482 		if (!err) {
1483 			SetPageUptodate(page);
1484 		} else {
1485 			ClearPageUptodate(page);
1486 			SetPageError(page);
1487 		}
1488 		unlock_page(page);
1489 	} else {
1490 		if (err) {
1491 			struct address_space *mapping;
1492 
1493 			SetPageError(page);
1494 			mapping = page_mapping(page);
1495 			if (mapping)
1496 				mapping_set_error(mapping, err);
1497 		}
1498 		end_page_writeback(page);
1499 	}
1500 }
1501 EXPORT_SYMBOL_GPL(page_endio);
1502 
1503 /**
1504  * __lock_page - get a lock on the page, assuming we need to sleep to get it
1505  * @__page: the page to lock
1506  */
1507 void __lock_page(struct page *__page)
1508 {
1509 	struct page *page = compound_head(__page);
1510 	wait_queue_head_t *q = page_waitqueue(page);
1511 	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1512 				EXCLUSIVE);
1513 }
1514 EXPORT_SYMBOL(__lock_page);
1515 
1516 int __lock_page_killable(struct page *__page)
1517 {
1518 	struct page *page = compound_head(__page);
1519 	wait_queue_head_t *q = page_waitqueue(page);
1520 	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1521 					EXCLUSIVE);
1522 }
1523 EXPORT_SYMBOL_GPL(__lock_page_killable);
1524 
1525 int __lock_page_async(struct page *page, struct wait_page_queue *wait)
1526 {
1527 	return __wait_on_page_locked_async(page, wait, true);
1528 }
1529 
1530 /*
1531  * Return values:
1532  * 1 - page is locked; mmap_lock is still held.
1533  * 0 - page is not locked.
1534  *     mmap_lock has been released (mmap_read_unlock(), unless flags had both
1535  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1536  *     which case mmap_lock is still held.
1537  *
1538  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1539  * with the page locked and the mmap_lock unperturbed.
1540  */
1541 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1542 			 unsigned int flags)
1543 {
1544 	if (fault_flag_allow_retry_first(flags)) {
1545 		/*
1546 		 * CAUTION! In this case, mmap_lock is not released
1547 		 * even though return 0.
1548 		 */
1549 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1550 			return 0;
1551 
1552 		mmap_read_unlock(mm);
1553 		if (flags & FAULT_FLAG_KILLABLE)
1554 			wait_on_page_locked_killable(page);
1555 		else
1556 			wait_on_page_locked(page);
1557 		return 0;
1558 	} else {
1559 		if (flags & FAULT_FLAG_KILLABLE) {
1560 			int ret;
1561 
1562 			ret = __lock_page_killable(page);
1563 			if (ret) {
1564 				mmap_read_unlock(mm);
1565 				return 0;
1566 			}
1567 		} else
1568 			__lock_page(page);
1569 		return 1;
1570 	}
1571 }
1572 
1573 /**
1574  * page_cache_next_miss() - Find the next gap in the page cache.
1575  * @mapping: Mapping.
1576  * @index: Index.
1577  * @max_scan: Maximum range to search.
1578  *
1579  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1580  * gap with the lowest index.
1581  *
1582  * This function may be called under the rcu_read_lock.  However, this will
1583  * not atomically search a snapshot of the cache at a single point in time.
1584  * For example, if a gap is created at index 5, then subsequently a gap is
1585  * created at index 10, page_cache_next_miss covering both indices may
1586  * return 10 if called under the rcu_read_lock.
1587  *
1588  * Return: The index of the gap if found, otherwise an index outside the
1589  * range specified (in which case 'return - index >= max_scan' will be true).
1590  * In the rare case of index wrap-around, 0 will be returned.
1591  */
1592 pgoff_t page_cache_next_miss(struct address_space *mapping,
1593 			     pgoff_t index, unsigned long max_scan)
1594 {
1595 	XA_STATE(xas, &mapping->i_pages, index);
1596 
1597 	while (max_scan--) {
1598 		void *entry = xas_next(&xas);
1599 		if (!entry || xa_is_value(entry))
1600 			break;
1601 		if (xas.xa_index == 0)
1602 			break;
1603 	}
1604 
1605 	return xas.xa_index;
1606 }
1607 EXPORT_SYMBOL(page_cache_next_miss);
1608 
1609 /**
1610  * page_cache_prev_miss() - Find the previous gap in the page cache.
1611  * @mapping: Mapping.
1612  * @index: Index.
1613  * @max_scan: Maximum range to search.
1614  *
1615  * Search the range [max(index - max_scan + 1, 0), index] for the
1616  * gap with the highest index.
1617  *
1618  * This function may be called under the rcu_read_lock.  However, this will
1619  * not atomically search a snapshot of the cache at a single point in time.
1620  * For example, if a gap is created at index 10, then subsequently a gap is
1621  * created at index 5, page_cache_prev_miss() covering both indices may
1622  * return 5 if called under the rcu_read_lock.
1623  *
1624  * Return: The index of the gap if found, otherwise an index outside the
1625  * range specified (in which case 'index - return >= max_scan' will be true).
1626  * In the rare case of wrap-around, ULONG_MAX will be returned.
1627  */
1628 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1629 			     pgoff_t index, unsigned long max_scan)
1630 {
1631 	XA_STATE(xas, &mapping->i_pages, index);
1632 
1633 	while (max_scan--) {
1634 		void *entry = xas_prev(&xas);
1635 		if (!entry || xa_is_value(entry))
1636 			break;
1637 		if (xas.xa_index == ULONG_MAX)
1638 			break;
1639 	}
1640 
1641 	return xas.xa_index;
1642 }
1643 EXPORT_SYMBOL(page_cache_prev_miss);
1644 
1645 /**
1646  * find_get_entry - find and get a page cache entry
1647  * @mapping: the address_space to search
1648  * @offset: the page cache index
1649  *
1650  * Looks up the page cache slot at @mapping & @offset.  If there is a
1651  * page cache page, it is returned with an increased refcount.
1652  *
1653  * If the slot holds a shadow entry of a previously evicted page, or a
1654  * swap entry from shmem/tmpfs, it is returned.
1655  *
1656  * Return: the found page or shadow entry, %NULL if nothing is found.
1657  */
1658 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1659 {
1660 	XA_STATE(xas, &mapping->i_pages, offset);
1661 	struct page *page;
1662 
1663 	rcu_read_lock();
1664 repeat:
1665 	xas_reset(&xas);
1666 	page = xas_load(&xas);
1667 	if (xas_retry(&xas, page))
1668 		goto repeat;
1669 	/*
1670 	 * A shadow entry of a recently evicted page, or a swap entry from
1671 	 * shmem/tmpfs.  Return it without attempting to raise page count.
1672 	 */
1673 	if (!page || xa_is_value(page))
1674 		goto out;
1675 
1676 	if (!page_cache_get_speculative(page))
1677 		goto repeat;
1678 
1679 	/*
1680 	 * Has the page moved or been split?
1681 	 * This is part of the lockless pagecache protocol. See
1682 	 * include/linux/pagemap.h for details.
1683 	 */
1684 	if (unlikely(page != xas_reload(&xas))) {
1685 		put_page(page);
1686 		goto repeat;
1687 	}
1688 	page = find_subpage(page, offset);
1689 out:
1690 	rcu_read_unlock();
1691 
1692 	return page;
1693 }
1694 
1695 /**
1696  * find_lock_entry - locate, pin and lock a page cache entry
1697  * @mapping: the address_space to search
1698  * @offset: the page cache index
1699  *
1700  * Looks up the page cache slot at @mapping & @offset.  If there is a
1701  * page cache page, it is returned locked and with an increased
1702  * refcount.
1703  *
1704  * If the slot holds a shadow entry of a previously evicted page, or a
1705  * swap entry from shmem/tmpfs, it is returned.
1706  *
1707  * find_lock_entry() may sleep.
1708  *
1709  * Return: the found page or shadow entry, %NULL if nothing is found.
1710  */
1711 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1712 {
1713 	struct page *page;
1714 
1715 repeat:
1716 	page = find_get_entry(mapping, offset);
1717 	if (page && !xa_is_value(page)) {
1718 		lock_page(page);
1719 		/* Has the page been truncated? */
1720 		if (unlikely(page_mapping(page) != mapping)) {
1721 			unlock_page(page);
1722 			put_page(page);
1723 			goto repeat;
1724 		}
1725 		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1726 	}
1727 	return page;
1728 }
1729 EXPORT_SYMBOL(find_lock_entry);
1730 
1731 /**
1732  * pagecache_get_page - Find and get a reference to a page.
1733  * @mapping: The address_space to search.
1734  * @index: The page index.
1735  * @fgp_flags: %FGP flags modify how the page is returned.
1736  * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified.
1737  *
1738  * Looks up the page cache entry at @mapping & @index.
1739  *
1740  * @fgp_flags can be zero or more of these flags:
1741  *
1742  * * %FGP_ACCESSED - The page will be marked accessed.
1743  * * %FGP_LOCK - The page is returned locked.
1744  * * %FGP_CREAT - If no page is present then a new page is allocated using
1745  *   @gfp_mask and added to the page cache and the VM's LRU list.
1746  *   The page is returned locked and with an increased refcount.
1747  * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1748  *   page is already in cache.  If the page was allocated, unlock it before
1749  *   returning so the caller can do the same dance.
1750  * * %FGP_WRITE - The page will be written
1751  * * %FGP_NOFS - __GFP_FS will get cleared in gfp mask
1752  * * %FGP_NOWAIT - Don't get blocked by page lock
1753  *
1754  * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1755  * if the %GFP flags specified for %FGP_CREAT are atomic.
1756  *
1757  * If there is a page cache page, it is returned with an increased refcount.
1758  *
1759  * Return: The found page or %NULL otherwise.
1760  */
1761 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
1762 		int fgp_flags, gfp_t gfp_mask)
1763 {
1764 	struct page *page;
1765 
1766 repeat:
1767 	page = find_get_entry(mapping, index);
1768 	if (xa_is_value(page))
1769 		page = NULL;
1770 	if (!page)
1771 		goto no_page;
1772 
1773 	if (fgp_flags & FGP_LOCK) {
1774 		if (fgp_flags & FGP_NOWAIT) {
1775 			if (!trylock_page(page)) {
1776 				put_page(page);
1777 				return NULL;
1778 			}
1779 		} else {
1780 			lock_page(page);
1781 		}
1782 
1783 		/* Has the page been truncated? */
1784 		if (unlikely(compound_head(page)->mapping != mapping)) {
1785 			unlock_page(page);
1786 			put_page(page);
1787 			goto repeat;
1788 		}
1789 		VM_BUG_ON_PAGE(page->index != index, page);
1790 	}
1791 
1792 	if (fgp_flags & FGP_ACCESSED)
1793 		mark_page_accessed(page);
1794 	else if (fgp_flags & FGP_WRITE) {
1795 		/* Clear idle flag for buffer write */
1796 		if (page_is_idle(page))
1797 			clear_page_idle(page);
1798 	}
1799 
1800 no_page:
1801 	if (!page && (fgp_flags & FGP_CREAT)) {
1802 		int err;
1803 		if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1804 			gfp_mask |= __GFP_WRITE;
1805 		if (fgp_flags & FGP_NOFS)
1806 			gfp_mask &= ~__GFP_FS;
1807 
1808 		page = __page_cache_alloc(gfp_mask);
1809 		if (!page)
1810 			return NULL;
1811 
1812 		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1813 			fgp_flags |= FGP_LOCK;
1814 
1815 		/* Init accessed so avoid atomic mark_page_accessed later */
1816 		if (fgp_flags & FGP_ACCESSED)
1817 			__SetPageReferenced(page);
1818 
1819 		err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
1820 		if (unlikely(err)) {
1821 			put_page(page);
1822 			page = NULL;
1823 			if (err == -EEXIST)
1824 				goto repeat;
1825 		}
1826 
1827 		/*
1828 		 * add_to_page_cache_lru locks the page, and for mmap we expect
1829 		 * an unlocked page.
1830 		 */
1831 		if (page && (fgp_flags & FGP_FOR_MMAP))
1832 			unlock_page(page);
1833 	}
1834 
1835 	return page;
1836 }
1837 EXPORT_SYMBOL(pagecache_get_page);
1838 
1839 /**
1840  * find_get_entries - gang pagecache lookup
1841  * @mapping:	The address_space to search
1842  * @start:	The starting page cache index
1843  * @nr_entries:	The maximum number of entries
1844  * @entries:	Where the resulting entries are placed
1845  * @indices:	The cache indices corresponding to the entries in @entries
1846  *
1847  * find_get_entries() will search for and return a group of up to
1848  * @nr_entries entries in the mapping.  The entries are placed at
1849  * @entries.  find_get_entries() takes a reference against any actual
1850  * pages it returns.
1851  *
1852  * The search returns a group of mapping-contiguous page cache entries
1853  * with ascending indexes.  There may be holes in the indices due to
1854  * not-present pages.
1855  *
1856  * Any shadow entries of evicted pages, or swap entries from
1857  * shmem/tmpfs, are included in the returned array.
1858  *
1859  * If it finds a Transparent Huge Page, head or tail, find_get_entries()
1860  * stops at that page: the caller is likely to have a better way to handle
1861  * the compound page as a whole, and then skip its extent, than repeatedly
1862  * calling find_get_entries() to return all its tails.
1863  *
1864  * Return: the number of pages and shadow entries which were found.
1865  */
1866 unsigned find_get_entries(struct address_space *mapping,
1867 			  pgoff_t start, unsigned int nr_entries,
1868 			  struct page **entries, pgoff_t *indices)
1869 {
1870 	XA_STATE(xas, &mapping->i_pages, start);
1871 	struct page *page;
1872 	unsigned int ret = 0;
1873 
1874 	if (!nr_entries)
1875 		return 0;
1876 
1877 	rcu_read_lock();
1878 	xas_for_each(&xas, page, ULONG_MAX) {
1879 		if (xas_retry(&xas, page))
1880 			continue;
1881 		/*
1882 		 * A shadow entry of a recently evicted page, a swap
1883 		 * entry from shmem/tmpfs or a DAX entry.  Return it
1884 		 * without attempting to raise page count.
1885 		 */
1886 		if (xa_is_value(page))
1887 			goto export;
1888 
1889 		if (!page_cache_get_speculative(page))
1890 			goto retry;
1891 
1892 		/* Has the page moved or been split? */
1893 		if (unlikely(page != xas_reload(&xas)))
1894 			goto put_page;
1895 
1896 		/*
1897 		 * Terminate early on finding a THP, to allow the caller to
1898 		 * handle it all at once; but continue if this is hugetlbfs.
1899 		 */
1900 		if (PageTransHuge(page) && !PageHuge(page)) {
1901 			page = find_subpage(page, xas.xa_index);
1902 			nr_entries = ret + 1;
1903 		}
1904 export:
1905 		indices[ret] = xas.xa_index;
1906 		entries[ret] = page;
1907 		if (++ret == nr_entries)
1908 			break;
1909 		continue;
1910 put_page:
1911 		put_page(page);
1912 retry:
1913 		xas_reset(&xas);
1914 	}
1915 	rcu_read_unlock();
1916 	return ret;
1917 }
1918 
1919 /**
1920  * find_get_pages_range - gang pagecache lookup
1921  * @mapping:	The address_space to search
1922  * @start:	The starting page index
1923  * @end:	The final page index (inclusive)
1924  * @nr_pages:	The maximum number of pages
1925  * @pages:	Where the resulting pages are placed
1926  *
1927  * find_get_pages_range() will search for and return a group of up to @nr_pages
1928  * pages in the mapping starting at index @start and up to index @end
1929  * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
1930  * a reference against the returned pages.
1931  *
1932  * The search returns a group of mapping-contiguous pages with ascending
1933  * indexes.  There may be holes in the indices due to not-present pages.
1934  * We also update @start to index the next page for the traversal.
1935  *
1936  * Return: the number of pages which were found. If this number is
1937  * smaller than @nr_pages, the end of specified range has been
1938  * reached.
1939  */
1940 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1941 			      pgoff_t end, unsigned int nr_pages,
1942 			      struct page **pages)
1943 {
1944 	XA_STATE(xas, &mapping->i_pages, *start);
1945 	struct page *page;
1946 	unsigned ret = 0;
1947 
1948 	if (unlikely(!nr_pages))
1949 		return 0;
1950 
1951 	rcu_read_lock();
1952 	xas_for_each(&xas, page, end) {
1953 		if (xas_retry(&xas, page))
1954 			continue;
1955 		/* Skip over shadow, swap and DAX entries */
1956 		if (xa_is_value(page))
1957 			continue;
1958 
1959 		if (!page_cache_get_speculative(page))
1960 			goto retry;
1961 
1962 		/* Has the page moved or been split? */
1963 		if (unlikely(page != xas_reload(&xas)))
1964 			goto put_page;
1965 
1966 		pages[ret] = find_subpage(page, xas.xa_index);
1967 		if (++ret == nr_pages) {
1968 			*start = xas.xa_index + 1;
1969 			goto out;
1970 		}
1971 		continue;
1972 put_page:
1973 		put_page(page);
1974 retry:
1975 		xas_reset(&xas);
1976 	}
1977 
1978 	/*
1979 	 * We come here when there is no page beyond @end. We take care to not
1980 	 * overflow the index @start as it confuses some of the callers. This
1981 	 * breaks the iteration when there is a page at index -1 but that is
1982 	 * already broken anyway.
1983 	 */
1984 	if (end == (pgoff_t)-1)
1985 		*start = (pgoff_t)-1;
1986 	else
1987 		*start = end + 1;
1988 out:
1989 	rcu_read_unlock();
1990 
1991 	return ret;
1992 }
1993 
1994 /**
1995  * find_get_pages_contig - gang contiguous pagecache lookup
1996  * @mapping:	The address_space to search
1997  * @index:	The starting page index
1998  * @nr_pages:	The maximum number of pages
1999  * @pages:	Where the resulting pages are placed
2000  *
2001  * find_get_pages_contig() works exactly like find_get_pages(), except
2002  * that the returned number of pages are guaranteed to be contiguous.
2003  *
2004  * Return: the number of pages which were found.
2005  */
2006 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
2007 			       unsigned int nr_pages, struct page **pages)
2008 {
2009 	XA_STATE(xas, &mapping->i_pages, index);
2010 	struct page *page;
2011 	unsigned int ret = 0;
2012 
2013 	if (unlikely(!nr_pages))
2014 		return 0;
2015 
2016 	rcu_read_lock();
2017 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
2018 		if (xas_retry(&xas, page))
2019 			continue;
2020 		/*
2021 		 * If the entry has been swapped out, we can stop looking.
2022 		 * No current caller is looking for DAX entries.
2023 		 */
2024 		if (xa_is_value(page))
2025 			break;
2026 
2027 		if (!page_cache_get_speculative(page))
2028 			goto retry;
2029 
2030 		/* Has the page moved or been split? */
2031 		if (unlikely(page != xas_reload(&xas)))
2032 			goto put_page;
2033 
2034 		pages[ret] = find_subpage(page, xas.xa_index);
2035 		if (++ret == nr_pages)
2036 			break;
2037 		continue;
2038 put_page:
2039 		put_page(page);
2040 retry:
2041 		xas_reset(&xas);
2042 	}
2043 	rcu_read_unlock();
2044 	return ret;
2045 }
2046 EXPORT_SYMBOL(find_get_pages_contig);
2047 
2048 /**
2049  * find_get_pages_range_tag - find and return pages in given range matching @tag
2050  * @mapping:	the address_space to search
2051  * @index:	the starting page index
2052  * @end:	The final page index (inclusive)
2053  * @tag:	the tag index
2054  * @nr_pages:	the maximum number of pages
2055  * @pages:	where the resulting pages are placed
2056  *
2057  * Like find_get_pages, except we only return pages which are tagged with
2058  * @tag.   We update @index to index the next page for the traversal.
2059  *
2060  * Return: the number of pages which were found.
2061  */
2062 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
2063 			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
2064 			struct page **pages)
2065 {
2066 	XA_STATE(xas, &mapping->i_pages, *index);
2067 	struct page *page;
2068 	unsigned ret = 0;
2069 
2070 	if (unlikely(!nr_pages))
2071 		return 0;
2072 
2073 	rcu_read_lock();
2074 	xas_for_each_marked(&xas, page, end, tag) {
2075 		if (xas_retry(&xas, page))
2076 			continue;
2077 		/*
2078 		 * Shadow entries should never be tagged, but this iteration
2079 		 * is lockless so there is a window for page reclaim to evict
2080 		 * a page we saw tagged.  Skip over it.
2081 		 */
2082 		if (xa_is_value(page))
2083 			continue;
2084 
2085 		if (!page_cache_get_speculative(page))
2086 			goto retry;
2087 
2088 		/* Has the page moved or been split? */
2089 		if (unlikely(page != xas_reload(&xas)))
2090 			goto put_page;
2091 
2092 		pages[ret] = find_subpage(page, xas.xa_index);
2093 		if (++ret == nr_pages) {
2094 			*index = xas.xa_index + 1;
2095 			goto out;
2096 		}
2097 		continue;
2098 put_page:
2099 		put_page(page);
2100 retry:
2101 		xas_reset(&xas);
2102 	}
2103 
2104 	/*
2105 	 * We come here when we got to @end. We take care to not overflow the
2106 	 * index @index as it confuses some of the callers. This breaks the
2107 	 * iteration when there is a page at index -1 but that is already
2108 	 * broken anyway.
2109 	 */
2110 	if (end == (pgoff_t)-1)
2111 		*index = (pgoff_t)-1;
2112 	else
2113 		*index = end + 1;
2114 out:
2115 	rcu_read_unlock();
2116 
2117 	return ret;
2118 }
2119 EXPORT_SYMBOL(find_get_pages_range_tag);
2120 
2121 /*
2122  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2123  * a _large_ part of the i/o request. Imagine the worst scenario:
2124  *
2125  *      ---R__________________________________________B__________
2126  *         ^ reading here                             ^ bad block(assume 4k)
2127  *
2128  * read(R) => miss => readahead(R...B) => media error => frustrating retries
2129  * => failing the whole request => read(R) => read(R+1) =>
2130  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2131  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2132  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2133  *
2134  * It is going insane. Fix it by quickly scaling down the readahead size.
2135  */
2136 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2137 {
2138 	ra->ra_pages /= 4;
2139 }
2140 
2141 /**
2142  * generic_file_buffered_read - generic file read routine
2143  * @iocb:	the iocb to read
2144  * @iter:	data destination
2145  * @written:	already copied
2146  *
2147  * This is a generic file read routine, and uses the
2148  * mapping->a_ops->readpage() function for the actual low-level stuff.
2149  *
2150  * This is really ugly. But the goto's actually try to clarify some
2151  * of the logic when it comes to error handling etc.
2152  *
2153  * Return:
2154  * * total number of bytes copied, including those the were already @written
2155  * * negative error code if nothing was copied
2156  */
2157 ssize_t generic_file_buffered_read(struct kiocb *iocb,
2158 		struct iov_iter *iter, ssize_t written)
2159 {
2160 	struct file *filp = iocb->ki_filp;
2161 	struct address_space *mapping = filp->f_mapping;
2162 	struct inode *inode = mapping->host;
2163 	struct file_ra_state *ra = &filp->f_ra;
2164 	loff_t *ppos = &iocb->ki_pos;
2165 	pgoff_t index;
2166 	pgoff_t last_index;
2167 	pgoff_t prev_index;
2168 	unsigned long offset;      /* offset into pagecache page */
2169 	unsigned int prev_offset;
2170 	int error = 0;
2171 
2172 	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2173 		return 0;
2174 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2175 
2176 	index = *ppos >> PAGE_SHIFT;
2177 	prev_index = ra->prev_pos >> PAGE_SHIFT;
2178 	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2179 	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2180 	offset = *ppos & ~PAGE_MASK;
2181 
2182 	for (;;) {
2183 		struct page *page;
2184 		pgoff_t end_index;
2185 		loff_t isize;
2186 		unsigned long nr, ret;
2187 
2188 		cond_resched();
2189 find_page:
2190 		if (fatal_signal_pending(current)) {
2191 			error = -EINTR;
2192 			goto out;
2193 		}
2194 
2195 		page = find_get_page(mapping, index);
2196 		if (!page) {
2197 			if (iocb->ki_flags & IOCB_NOIO)
2198 				goto would_block;
2199 			page_cache_sync_readahead(mapping,
2200 					ra, filp,
2201 					index, last_index - index);
2202 			page = find_get_page(mapping, index);
2203 			if (unlikely(page == NULL))
2204 				goto no_cached_page;
2205 		}
2206 		if (PageReadahead(page)) {
2207 			if (iocb->ki_flags & IOCB_NOIO) {
2208 				put_page(page);
2209 				goto out;
2210 			}
2211 			page_cache_async_readahead(mapping,
2212 					ra, filp, page,
2213 					index, last_index - index);
2214 		}
2215 		if (!PageUptodate(page)) {
2216 			/*
2217 			 * See comment in do_read_cache_page on why
2218 			 * wait_on_page_locked is used to avoid unnecessarily
2219 			 * serialisations and why it's safe.
2220 			 */
2221 			if (iocb->ki_flags & IOCB_WAITQ) {
2222 				if (written) {
2223 					put_page(page);
2224 					goto out;
2225 				}
2226 				error = wait_on_page_locked_async(page,
2227 								iocb->ki_waitq);
2228 			} else {
2229 				if (iocb->ki_flags & IOCB_NOWAIT) {
2230 					put_page(page);
2231 					goto would_block;
2232 				}
2233 				error = wait_on_page_locked_killable(page);
2234 			}
2235 			if (unlikely(error))
2236 				goto readpage_error;
2237 			if (PageUptodate(page))
2238 				goto page_ok;
2239 
2240 			if (inode->i_blkbits == PAGE_SHIFT ||
2241 					!mapping->a_ops->is_partially_uptodate)
2242 				goto page_not_up_to_date;
2243 			/* pipes can't handle partially uptodate pages */
2244 			if (unlikely(iov_iter_is_pipe(iter)))
2245 				goto page_not_up_to_date;
2246 			if (!trylock_page(page))
2247 				goto page_not_up_to_date;
2248 			/* Did it get truncated before we got the lock? */
2249 			if (!page->mapping)
2250 				goto page_not_up_to_date_locked;
2251 			if (!mapping->a_ops->is_partially_uptodate(page,
2252 							offset, iter->count))
2253 				goto page_not_up_to_date_locked;
2254 			unlock_page(page);
2255 		}
2256 page_ok:
2257 		/*
2258 		 * i_size must be checked after we know the page is Uptodate.
2259 		 *
2260 		 * Checking i_size after the check allows us to calculate
2261 		 * the correct value for "nr", which means the zero-filled
2262 		 * part of the page is not copied back to userspace (unless
2263 		 * another truncate extends the file - this is desired though).
2264 		 */
2265 
2266 		isize = i_size_read(inode);
2267 		end_index = (isize - 1) >> PAGE_SHIFT;
2268 		if (unlikely(!isize || index > end_index)) {
2269 			put_page(page);
2270 			goto out;
2271 		}
2272 
2273 		/* nr is the maximum number of bytes to copy from this page */
2274 		nr = PAGE_SIZE;
2275 		if (index == end_index) {
2276 			nr = ((isize - 1) & ~PAGE_MASK) + 1;
2277 			if (nr <= offset) {
2278 				put_page(page);
2279 				goto out;
2280 			}
2281 		}
2282 		nr = nr - offset;
2283 
2284 		/* If users can be writing to this page using arbitrary
2285 		 * virtual addresses, take care about potential aliasing
2286 		 * before reading the page on the kernel side.
2287 		 */
2288 		if (mapping_writably_mapped(mapping))
2289 			flush_dcache_page(page);
2290 
2291 		/*
2292 		 * When a sequential read accesses a page several times,
2293 		 * only mark it as accessed the first time.
2294 		 */
2295 		if (prev_index != index || offset != prev_offset)
2296 			mark_page_accessed(page);
2297 		prev_index = index;
2298 
2299 		/*
2300 		 * Ok, we have the page, and it's up-to-date, so
2301 		 * now we can copy it to user space...
2302 		 */
2303 
2304 		ret = copy_page_to_iter(page, offset, nr, iter);
2305 		offset += ret;
2306 		index += offset >> PAGE_SHIFT;
2307 		offset &= ~PAGE_MASK;
2308 		prev_offset = offset;
2309 
2310 		put_page(page);
2311 		written += ret;
2312 		if (!iov_iter_count(iter))
2313 			goto out;
2314 		if (ret < nr) {
2315 			error = -EFAULT;
2316 			goto out;
2317 		}
2318 		continue;
2319 
2320 page_not_up_to_date:
2321 		/* Get exclusive access to the page ... */
2322 		if (iocb->ki_flags & IOCB_WAITQ)
2323 			error = lock_page_async(page, iocb->ki_waitq);
2324 		else
2325 			error = lock_page_killable(page);
2326 		if (unlikely(error))
2327 			goto readpage_error;
2328 
2329 page_not_up_to_date_locked:
2330 		/* Did it get truncated before we got the lock? */
2331 		if (!page->mapping) {
2332 			unlock_page(page);
2333 			put_page(page);
2334 			continue;
2335 		}
2336 
2337 		/* Did somebody else fill it already? */
2338 		if (PageUptodate(page)) {
2339 			unlock_page(page);
2340 			goto page_ok;
2341 		}
2342 
2343 readpage:
2344 		if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT)) {
2345 			unlock_page(page);
2346 			put_page(page);
2347 			goto would_block;
2348 		}
2349 		/*
2350 		 * A previous I/O error may have been due to temporary
2351 		 * failures, eg. multipath errors.
2352 		 * PG_error will be set again if readpage fails.
2353 		 */
2354 		ClearPageError(page);
2355 		/* Start the actual read. The read will unlock the page. */
2356 		error = mapping->a_ops->readpage(filp, page);
2357 
2358 		if (unlikely(error)) {
2359 			if (error == AOP_TRUNCATED_PAGE) {
2360 				put_page(page);
2361 				error = 0;
2362 				goto find_page;
2363 			}
2364 			goto readpage_error;
2365 		}
2366 
2367 		if (!PageUptodate(page)) {
2368 			if (iocb->ki_flags & IOCB_WAITQ)
2369 				error = lock_page_async(page, iocb->ki_waitq);
2370 			else
2371 				error = lock_page_killable(page);
2372 
2373 			if (unlikely(error))
2374 				goto readpage_error;
2375 			if (!PageUptodate(page)) {
2376 				if (page->mapping == NULL) {
2377 					/*
2378 					 * invalidate_mapping_pages got it
2379 					 */
2380 					unlock_page(page);
2381 					put_page(page);
2382 					goto find_page;
2383 				}
2384 				unlock_page(page);
2385 				shrink_readahead_size_eio(ra);
2386 				error = -EIO;
2387 				goto readpage_error;
2388 			}
2389 			unlock_page(page);
2390 		}
2391 
2392 		goto page_ok;
2393 
2394 readpage_error:
2395 		/* UHHUH! A synchronous read error occurred. Report it */
2396 		put_page(page);
2397 		goto out;
2398 
2399 no_cached_page:
2400 		/*
2401 		 * Ok, it wasn't cached, so we need to create a new
2402 		 * page..
2403 		 */
2404 		page = page_cache_alloc(mapping);
2405 		if (!page) {
2406 			error = -ENOMEM;
2407 			goto out;
2408 		}
2409 		error = add_to_page_cache_lru(page, mapping, index,
2410 				mapping_gfp_constraint(mapping, GFP_KERNEL));
2411 		if (error) {
2412 			put_page(page);
2413 			if (error == -EEXIST) {
2414 				error = 0;
2415 				goto find_page;
2416 			}
2417 			goto out;
2418 		}
2419 		goto readpage;
2420 	}
2421 
2422 would_block:
2423 	error = -EAGAIN;
2424 out:
2425 	ra->prev_pos = prev_index;
2426 	ra->prev_pos <<= PAGE_SHIFT;
2427 	ra->prev_pos |= prev_offset;
2428 
2429 	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2430 	file_accessed(filp);
2431 	return written ? written : error;
2432 }
2433 EXPORT_SYMBOL_GPL(generic_file_buffered_read);
2434 
2435 /**
2436  * generic_file_read_iter - generic filesystem read routine
2437  * @iocb:	kernel I/O control block
2438  * @iter:	destination for the data read
2439  *
2440  * This is the "read_iter()" routine for all filesystems
2441  * that can use the page cache directly.
2442  *
2443  * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2444  * be returned when no data can be read without waiting for I/O requests
2445  * to complete; it doesn't prevent readahead.
2446  *
2447  * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2448  * requests shall be made for the read or for readahead.  When no data
2449  * can be read, -EAGAIN shall be returned.  When readahead would be
2450  * triggered, a partial, possibly empty read shall be returned.
2451  *
2452  * Return:
2453  * * number of bytes copied, even for partial reads
2454  * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2455  */
2456 ssize_t
2457 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2458 {
2459 	size_t count = iov_iter_count(iter);
2460 	ssize_t retval = 0;
2461 
2462 	if (!count)
2463 		goto out; /* skip atime */
2464 
2465 	if (iocb->ki_flags & IOCB_DIRECT) {
2466 		struct file *file = iocb->ki_filp;
2467 		struct address_space *mapping = file->f_mapping;
2468 		struct inode *inode = mapping->host;
2469 		loff_t size;
2470 
2471 		size = i_size_read(inode);
2472 		if (iocb->ki_flags & IOCB_NOWAIT) {
2473 			if (filemap_range_has_page(mapping, iocb->ki_pos,
2474 						   iocb->ki_pos + count - 1))
2475 				return -EAGAIN;
2476 		} else {
2477 			retval = filemap_write_and_wait_range(mapping,
2478 						iocb->ki_pos,
2479 					        iocb->ki_pos + count - 1);
2480 			if (retval < 0)
2481 				goto out;
2482 		}
2483 
2484 		file_accessed(file);
2485 
2486 		retval = mapping->a_ops->direct_IO(iocb, iter);
2487 		if (retval >= 0) {
2488 			iocb->ki_pos += retval;
2489 			count -= retval;
2490 		}
2491 		iov_iter_revert(iter, count - iov_iter_count(iter));
2492 
2493 		/*
2494 		 * Btrfs can have a short DIO read if we encounter
2495 		 * compressed extents, so if there was an error, or if
2496 		 * we've already read everything we wanted to, or if
2497 		 * there was a short read because we hit EOF, go ahead
2498 		 * and return.  Otherwise fallthrough to buffered io for
2499 		 * the rest of the read.  Buffered reads will not work for
2500 		 * DAX files, so don't bother trying.
2501 		 */
2502 		if (retval < 0 || !count || iocb->ki_pos >= size ||
2503 		    IS_DAX(inode))
2504 			goto out;
2505 	}
2506 
2507 	retval = generic_file_buffered_read(iocb, iter, retval);
2508 out:
2509 	return retval;
2510 }
2511 EXPORT_SYMBOL(generic_file_read_iter);
2512 
2513 #ifdef CONFIG_MMU
2514 #define MMAP_LOTSAMISS  (100)
2515 /*
2516  * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2517  * @vmf - the vm_fault for this fault.
2518  * @page - the page to lock.
2519  * @fpin - the pointer to the file we may pin (or is already pinned).
2520  *
2521  * This works similar to lock_page_or_retry in that it can drop the mmap_lock.
2522  * It differs in that it actually returns the page locked if it returns 1 and 0
2523  * if it couldn't lock the page.  If we did have to drop the mmap_lock then fpin
2524  * will point to the pinned file and needs to be fput()'ed at a later point.
2525  */
2526 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2527 				     struct file **fpin)
2528 {
2529 	if (trylock_page(page))
2530 		return 1;
2531 
2532 	/*
2533 	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2534 	 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2535 	 * is supposed to work. We have way too many special cases..
2536 	 */
2537 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2538 		return 0;
2539 
2540 	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2541 	if (vmf->flags & FAULT_FLAG_KILLABLE) {
2542 		if (__lock_page_killable(page)) {
2543 			/*
2544 			 * We didn't have the right flags to drop the mmap_lock,
2545 			 * but all fault_handlers only check for fatal signals
2546 			 * if we return VM_FAULT_RETRY, so we need to drop the
2547 			 * mmap_lock here and return 0 if we don't have a fpin.
2548 			 */
2549 			if (*fpin == NULL)
2550 				mmap_read_unlock(vmf->vma->vm_mm);
2551 			return 0;
2552 		}
2553 	} else
2554 		__lock_page(page);
2555 	return 1;
2556 }
2557 
2558 
2559 /*
2560  * Synchronous readahead happens when we don't even find a page in the page
2561  * cache at all.  We don't want to perform IO under the mmap sem, so if we have
2562  * to drop the mmap sem we return the file that was pinned in order for us to do
2563  * that.  If we didn't pin a file then we return NULL.  The file that is
2564  * returned needs to be fput()'ed when we're done with it.
2565  */
2566 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2567 {
2568 	struct file *file = vmf->vma->vm_file;
2569 	struct file_ra_state *ra = &file->f_ra;
2570 	struct address_space *mapping = file->f_mapping;
2571 	struct file *fpin = NULL;
2572 	pgoff_t offset = vmf->pgoff;
2573 	unsigned int mmap_miss;
2574 
2575 	/* If we don't want any read-ahead, don't bother */
2576 	if (vmf->vma->vm_flags & VM_RAND_READ)
2577 		return fpin;
2578 	if (!ra->ra_pages)
2579 		return fpin;
2580 
2581 	if (vmf->vma->vm_flags & VM_SEQ_READ) {
2582 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2583 		page_cache_sync_readahead(mapping, ra, file, offset,
2584 					  ra->ra_pages);
2585 		return fpin;
2586 	}
2587 
2588 	/* Avoid banging the cache line if not needed */
2589 	mmap_miss = READ_ONCE(ra->mmap_miss);
2590 	if (mmap_miss < MMAP_LOTSAMISS * 10)
2591 		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
2592 
2593 	/*
2594 	 * Do we miss much more than hit in this file? If so,
2595 	 * stop bothering with read-ahead. It will only hurt.
2596 	 */
2597 	if (mmap_miss > MMAP_LOTSAMISS)
2598 		return fpin;
2599 
2600 	/*
2601 	 * mmap read-around
2602 	 */
2603 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2604 	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2605 	ra->size = ra->ra_pages;
2606 	ra->async_size = ra->ra_pages / 4;
2607 	ra_submit(ra, mapping, file);
2608 	return fpin;
2609 }
2610 
2611 /*
2612  * Asynchronous readahead happens when we find the page and PG_readahead,
2613  * so we want to possibly extend the readahead further.  We return the file that
2614  * was pinned if we have to drop the mmap_lock in order to do IO.
2615  */
2616 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2617 					    struct page *page)
2618 {
2619 	struct file *file = vmf->vma->vm_file;
2620 	struct file_ra_state *ra = &file->f_ra;
2621 	struct address_space *mapping = file->f_mapping;
2622 	struct file *fpin = NULL;
2623 	unsigned int mmap_miss;
2624 	pgoff_t offset = vmf->pgoff;
2625 
2626 	/* If we don't want any read-ahead, don't bother */
2627 	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
2628 		return fpin;
2629 	mmap_miss = READ_ONCE(ra->mmap_miss);
2630 	if (mmap_miss)
2631 		WRITE_ONCE(ra->mmap_miss, --mmap_miss);
2632 	if (PageReadahead(page)) {
2633 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2634 		page_cache_async_readahead(mapping, ra, file,
2635 					   page, offset, ra->ra_pages);
2636 	}
2637 	return fpin;
2638 }
2639 
2640 /**
2641  * filemap_fault - read in file data for page fault handling
2642  * @vmf:	struct vm_fault containing details of the fault
2643  *
2644  * filemap_fault() is invoked via the vma operations vector for a
2645  * mapped memory region to read in file data during a page fault.
2646  *
2647  * The goto's are kind of ugly, but this streamlines the normal case of having
2648  * it in the page cache, and handles the special cases reasonably without
2649  * having a lot of duplicated code.
2650  *
2651  * vma->vm_mm->mmap_lock must be held on entry.
2652  *
2653  * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
2654  * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
2655  *
2656  * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
2657  * has not been released.
2658  *
2659  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2660  *
2661  * Return: bitwise-OR of %VM_FAULT_ codes.
2662  */
2663 vm_fault_t filemap_fault(struct vm_fault *vmf)
2664 {
2665 	int error;
2666 	struct file *file = vmf->vma->vm_file;
2667 	struct file *fpin = NULL;
2668 	struct address_space *mapping = file->f_mapping;
2669 	struct file_ra_state *ra = &file->f_ra;
2670 	struct inode *inode = mapping->host;
2671 	pgoff_t offset = vmf->pgoff;
2672 	pgoff_t max_off;
2673 	struct page *page;
2674 	vm_fault_t ret = 0;
2675 
2676 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2677 	if (unlikely(offset >= max_off))
2678 		return VM_FAULT_SIGBUS;
2679 
2680 	/*
2681 	 * Do we have something in the page cache already?
2682 	 */
2683 	page = find_get_page(mapping, offset);
2684 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2685 		/*
2686 		 * We found the page, so try async readahead before
2687 		 * waiting for the lock.
2688 		 */
2689 		fpin = do_async_mmap_readahead(vmf, page);
2690 	} else if (!page) {
2691 		/* No page in the page cache at all */
2692 		count_vm_event(PGMAJFAULT);
2693 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2694 		ret = VM_FAULT_MAJOR;
2695 		fpin = do_sync_mmap_readahead(vmf);
2696 retry_find:
2697 		page = pagecache_get_page(mapping, offset,
2698 					  FGP_CREAT|FGP_FOR_MMAP,
2699 					  vmf->gfp_mask);
2700 		if (!page) {
2701 			if (fpin)
2702 				goto out_retry;
2703 			return VM_FAULT_OOM;
2704 		}
2705 	}
2706 
2707 	if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2708 		goto out_retry;
2709 
2710 	/* Did it get truncated? */
2711 	if (unlikely(compound_head(page)->mapping != mapping)) {
2712 		unlock_page(page);
2713 		put_page(page);
2714 		goto retry_find;
2715 	}
2716 	VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
2717 
2718 	/*
2719 	 * We have a locked page in the page cache, now we need to check
2720 	 * that it's up-to-date. If not, it is going to be due to an error.
2721 	 */
2722 	if (unlikely(!PageUptodate(page)))
2723 		goto page_not_uptodate;
2724 
2725 	/*
2726 	 * We've made it this far and we had to drop our mmap_lock, now is the
2727 	 * time to return to the upper layer and have it re-find the vma and
2728 	 * redo the fault.
2729 	 */
2730 	if (fpin) {
2731 		unlock_page(page);
2732 		goto out_retry;
2733 	}
2734 
2735 	/*
2736 	 * Found the page and have a reference on it.
2737 	 * We must recheck i_size under page lock.
2738 	 */
2739 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2740 	if (unlikely(offset >= max_off)) {
2741 		unlock_page(page);
2742 		put_page(page);
2743 		return VM_FAULT_SIGBUS;
2744 	}
2745 
2746 	vmf->page = page;
2747 	return ret | VM_FAULT_LOCKED;
2748 
2749 page_not_uptodate:
2750 	/*
2751 	 * Umm, take care of errors if the page isn't up-to-date.
2752 	 * Try to re-read it _once_. We do this synchronously,
2753 	 * because there really aren't any performance issues here
2754 	 * and we need to check for errors.
2755 	 */
2756 	ClearPageError(page);
2757 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2758 	error = mapping->a_ops->readpage(file, page);
2759 	if (!error) {
2760 		wait_on_page_locked(page);
2761 		if (!PageUptodate(page))
2762 			error = -EIO;
2763 	}
2764 	if (fpin)
2765 		goto out_retry;
2766 	put_page(page);
2767 
2768 	if (!error || error == AOP_TRUNCATED_PAGE)
2769 		goto retry_find;
2770 
2771 	shrink_readahead_size_eio(ra);
2772 	return VM_FAULT_SIGBUS;
2773 
2774 out_retry:
2775 	/*
2776 	 * We dropped the mmap_lock, we need to return to the fault handler to
2777 	 * re-find the vma and come back and find our hopefully still populated
2778 	 * page.
2779 	 */
2780 	if (page)
2781 		put_page(page);
2782 	if (fpin)
2783 		fput(fpin);
2784 	return ret | VM_FAULT_RETRY;
2785 }
2786 EXPORT_SYMBOL(filemap_fault);
2787 
2788 void filemap_map_pages(struct vm_fault *vmf,
2789 		pgoff_t start_pgoff, pgoff_t end_pgoff)
2790 {
2791 	struct file *file = vmf->vma->vm_file;
2792 	struct address_space *mapping = file->f_mapping;
2793 	pgoff_t last_pgoff = start_pgoff;
2794 	unsigned long max_idx;
2795 	XA_STATE(xas, &mapping->i_pages, start_pgoff);
2796 	struct page *page;
2797 	unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
2798 
2799 	rcu_read_lock();
2800 	xas_for_each(&xas, page, end_pgoff) {
2801 		if (xas_retry(&xas, page))
2802 			continue;
2803 		if (xa_is_value(page))
2804 			goto next;
2805 
2806 		/*
2807 		 * Check for a locked page first, as a speculative
2808 		 * reference may adversely influence page migration.
2809 		 */
2810 		if (PageLocked(page))
2811 			goto next;
2812 		if (!page_cache_get_speculative(page))
2813 			goto next;
2814 
2815 		/* Has the page moved or been split? */
2816 		if (unlikely(page != xas_reload(&xas)))
2817 			goto skip;
2818 		page = find_subpage(page, xas.xa_index);
2819 
2820 		if (!PageUptodate(page) ||
2821 				PageReadahead(page) ||
2822 				PageHWPoison(page))
2823 			goto skip;
2824 		if (!trylock_page(page))
2825 			goto skip;
2826 
2827 		if (page->mapping != mapping || !PageUptodate(page))
2828 			goto unlock;
2829 
2830 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2831 		if (page->index >= max_idx)
2832 			goto unlock;
2833 
2834 		if (mmap_miss > 0)
2835 			mmap_miss--;
2836 
2837 		vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
2838 		if (vmf->pte)
2839 			vmf->pte += xas.xa_index - last_pgoff;
2840 		last_pgoff = xas.xa_index;
2841 		if (alloc_set_pte(vmf, page))
2842 			goto unlock;
2843 		unlock_page(page);
2844 		goto next;
2845 unlock:
2846 		unlock_page(page);
2847 skip:
2848 		put_page(page);
2849 next:
2850 		/* Huge page is mapped? No need to proceed. */
2851 		if (pmd_trans_huge(*vmf->pmd))
2852 			break;
2853 	}
2854 	rcu_read_unlock();
2855 	WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
2856 }
2857 EXPORT_SYMBOL(filemap_map_pages);
2858 
2859 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2860 {
2861 	struct page *page = vmf->page;
2862 	struct inode *inode = file_inode(vmf->vma->vm_file);
2863 	vm_fault_t ret = VM_FAULT_LOCKED;
2864 
2865 	sb_start_pagefault(inode->i_sb);
2866 	file_update_time(vmf->vma->vm_file);
2867 	lock_page(page);
2868 	if (page->mapping != inode->i_mapping) {
2869 		unlock_page(page);
2870 		ret = VM_FAULT_NOPAGE;
2871 		goto out;
2872 	}
2873 	/*
2874 	 * We mark the page dirty already here so that when freeze is in
2875 	 * progress, we are guaranteed that writeback during freezing will
2876 	 * see the dirty page and writeprotect it again.
2877 	 */
2878 	set_page_dirty(page);
2879 	wait_for_stable_page(page);
2880 out:
2881 	sb_end_pagefault(inode->i_sb);
2882 	return ret;
2883 }
2884 
2885 const struct vm_operations_struct generic_file_vm_ops = {
2886 	.fault		= filemap_fault,
2887 	.map_pages	= filemap_map_pages,
2888 	.page_mkwrite	= filemap_page_mkwrite,
2889 };
2890 
2891 /* This is used for a general mmap of a disk file */
2892 
2893 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2894 {
2895 	struct address_space *mapping = file->f_mapping;
2896 
2897 	if (!mapping->a_ops->readpage)
2898 		return -ENOEXEC;
2899 	file_accessed(file);
2900 	vma->vm_ops = &generic_file_vm_ops;
2901 	return 0;
2902 }
2903 
2904 /*
2905  * This is for filesystems which do not implement ->writepage.
2906  */
2907 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2908 {
2909 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2910 		return -EINVAL;
2911 	return generic_file_mmap(file, vma);
2912 }
2913 #else
2914 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2915 {
2916 	return VM_FAULT_SIGBUS;
2917 }
2918 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2919 {
2920 	return -ENOSYS;
2921 }
2922 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2923 {
2924 	return -ENOSYS;
2925 }
2926 #endif /* CONFIG_MMU */
2927 
2928 EXPORT_SYMBOL(filemap_page_mkwrite);
2929 EXPORT_SYMBOL(generic_file_mmap);
2930 EXPORT_SYMBOL(generic_file_readonly_mmap);
2931 
2932 static struct page *wait_on_page_read(struct page *page)
2933 {
2934 	if (!IS_ERR(page)) {
2935 		wait_on_page_locked(page);
2936 		if (!PageUptodate(page)) {
2937 			put_page(page);
2938 			page = ERR_PTR(-EIO);
2939 		}
2940 	}
2941 	return page;
2942 }
2943 
2944 static struct page *do_read_cache_page(struct address_space *mapping,
2945 				pgoff_t index,
2946 				int (*filler)(void *, struct page *),
2947 				void *data,
2948 				gfp_t gfp)
2949 {
2950 	struct page *page;
2951 	int err;
2952 repeat:
2953 	page = find_get_page(mapping, index);
2954 	if (!page) {
2955 		page = __page_cache_alloc(gfp);
2956 		if (!page)
2957 			return ERR_PTR(-ENOMEM);
2958 		err = add_to_page_cache_lru(page, mapping, index, gfp);
2959 		if (unlikely(err)) {
2960 			put_page(page);
2961 			if (err == -EEXIST)
2962 				goto repeat;
2963 			/* Presumably ENOMEM for xarray node */
2964 			return ERR_PTR(err);
2965 		}
2966 
2967 filler:
2968 		if (filler)
2969 			err = filler(data, page);
2970 		else
2971 			err = mapping->a_ops->readpage(data, page);
2972 
2973 		if (err < 0) {
2974 			put_page(page);
2975 			return ERR_PTR(err);
2976 		}
2977 
2978 		page = wait_on_page_read(page);
2979 		if (IS_ERR(page))
2980 			return page;
2981 		goto out;
2982 	}
2983 	if (PageUptodate(page))
2984 		goto out;
2985 
2986 	/*
2987 	 * Page is not up to date and may be locked due one of the following
2988 	 * case a: Page is being filled and the page lock is held
2989 	 * case b: Read/write error clearing the page uptodate status
2990 	 * case c: Truncation in progress (page locked)
2991 	 * case d: Reclaim in progress
2992 	 *
2993 	 * Case a, the page will be up to date when the page is unlocked.
2994 	 *    There is no need to serialise on the page lock here as the page
2995 	 *    is pinned so the lock gives no additional protection. Even if the
2996 	 *    page is truncated, the data is still valid if PageUptodate as
2997 	 *    it's a race vs truncate race.
2998 	 * Case b, the page will not be up to date
2999 	 * Case c, the page may be truncated but in itself, the data may still
3000 	 *    be valid after IO completes as it's a read vs truncate race. The
3001 	 *    operation must restart if the page is not uptodate on unlock but
3002 	 *    otherwise serialising on page lock to stabilise the mapping gives
3003 	 *    no additional guarantees to the caller as the page lock is
3004 	 *    released before return.
3005 	 * Case d, similar to truncation. If reclaim holds the page lock, it
3006 	 *    will be a race with remove_mapping that determines if the mapping
3007 	 *    is valid on unlock but otherwise the data is valid and there is
3008 	 *    no need to serialise with page lock.
3009 	 *
3010 	 * As the page lock gives no additional guarantee, we optimistically
3011 	 * wait on the page to be unlocked and check if it's up to date and
3012 	 * use the page if it is. Otherwise, the page lock is required to
3013 	 * distinguish between the different cases. The motivation is that we
3014 	 * avoid spurious serialisations and wakeups when multiple processes
3015 	 * wait on the same page for IO to complete.
3016 	 */
3017 	wait_on_page_locked(page);
3018 	if (PageUptodate(page))
3019 		goto out;
3020 
3021 	/* Distinguish between all the cases under the safety of the lock */
3022 	lock_page(page);
3023 
3024 	/* Case c or d, restart the operation */
3025 	if (!page->mapping) {
3026 		unlock_page(page);
3027 		put_page(page);
3028 		goto repeat;
3029 	}
3030 
3031 	/* Someone else locked and filled the page in a very small window */
3032 	if (PageUptodate(page)) {
3033 		unlock_page(page);
3034 		goto out;
3035 	}
3036 
3037 	/*
3038 	 * A previous I/O error may have been due to temporary
3039 	 * failures.
3040 	 * Clear page error before actual read, PG_error will be
3041 	 * set again if read page fails.
3042 	 */
3043 	ClearPageError(page);
3044 	goto filler;
3045 
3046 out:
3047 	mark_page_accessed(page);
3048 	return page;
3049 }
3050 
3051 /**
3052  * read_cache_page - read into page cache, fill it if needed
3053  * @mapping:	the page's address_space
3054  * @index:	the page index
3055  * @filler:	function to perform the read
3056  * @data:	first arg to filler(data, page) function, often left as NULL
3057  *
3058  * Read into the page cache. If a page already exists, and PageUptodate() is
3059  * not set, try to fill the page and wait for it to become unlocked.
3060  *
3061  * If the page does not get brought uptodate, return -EIO.
3062  *
3063  * Return: up to date page on success, ERR_PTR() on failure.
3064  */
3065 struct page *read_cache_page(struct address_space *mapping,
3066 				pgoff_t index,
3067 				int (*filler)(void *, struct page *),
3068 				void *data)
3069 {
3070 	return do_read_cache_page(mapping, index, filler, data,
3071 			mapping_gfp_mask(mapping));
3072 }
3073 EXPORT_SYMBOL(read_cache_page);
3074 
3075 /**
3076  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3077  * @mapping:	the page's address_space
3078  * @index:	the page index
3079  * @gfp:	the page allocator flags to use if allocating
3080  *
3081  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3082  * any new page allocations done using the specified allocation flags.
3083  *
3084  * If the page does not get brought uptodate, return -EIO.
3085  *
3086  * Return: up to date page on success, ERR_PTR() on failure.
3087  */
3088 struct page *read_cache_page_gfp(struct address_space *mapping,
3089 				pgoff_t index,
3090 				gfp_t gfp)
3091 {
3092 	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3093 }
3094 EXPORT_SYMBOL(read_cache_page_gfp);
3095 
3096 /*
3097  * Don't operate on ranges the page cache doesn't support, and don't exceed the
3098  * LFS limits.  If pos is under the limit it becomes a short access.  If it
3099  * exceeds the limit we return -EFBIG.
3100  */
3101 static int generic_write_check_limits(struct file *file, loff_t pos,
3102 				      loff_t *count)
3103 {
3104 	struct inode *inode = file->f_mapping->host;
3105 	loff_t max_size = inode->i_sb->s_maxbytes;
3106 	loff_t limit = rlimit(RLIMIT_FSIZE);
3107 
3108 	if (limit != RLIM_INFINITY) {
3109 		if (pos >= limit) {
3110 			send_sig(SIGXFSZ, current, 0);
3111 			return -EFBIG;
3112 		}
3113 		*count = min(*count, limit - pos);
3114 	}
3115 
3116 	if (!(file->f_flags & O_LARGEFILE))
3117 		max_size = MAX_NON_LFS;
3118 
3119 	if (unlikely(pos >= max_size))
3120 		return -EFBIG;
3121 
3122 	*count = min(*count, max_size - pos);
3123 
3124 	return 0;
3125 }
3126 
3127 /*
3128  * Performs necessary checks before doing a write
3129  *
3130  * Can adjust writing position or amount of bytes to write.
3131  * Returns appropriate error code that caller should return or
3132  * zero in case that write should be allowed.
3133  */
3134 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
3135 {
3136 	struct file *file = iocb->ki_filp;
3137 	struct inode *inode = file->f_mapping->host;
3138 	loff_t count;
3139 	int ret;
3140 
3141 	if (IS_SWAPFILE(inode))
3142 		return -ETXTBSY;
3143 
3144 	if (!iov_iter_count(from))
3145 		return 0;
3146 
3147 	/* FIXME: this is for backwards compatibility with 2.4 */
3148 	if (iocb->ki_flags & IOCB_APPEND)
3149 		iocb->ki_pos = i_size_read(inode);
3150 
3151 	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
3152 		return -EINVAL;
3153 
3154 	count = iov_iter_count(from);
3155 	ret = generic_write_check_limits(file, iocb->ki_pos, &count);
3156 	if (ret)
3157 		return ret;
3158 
3159 	iov_iter_truncate(from, count);
3160 	return iov_iter_count(from);
3161 }
3162 EXPORT_SYMBOL(generic_write_checks);
3163 
3164 /*
3165  * Performs necessary checks before doing a clone.
3166  *
3167  * Can adjust amount of bytes to clone via @req_count argument.
3168  * Returns appropriate error code that caller should return or
3169  * zero in case the clone should be allowed.
3170  */
3171 int generic_remap_checks(struct file *file_in, loff_t pos_in,
3172 			 struct file *file_out, loff_t pos_out,
3173 			 loff_t *req_count, unsigned int remap_flags)
3174 {
3175 	struct inode *inode_in = file_in->f_mapping->host;
3176 	struct inode *inode_out = file_out->f_mapping->host;
3177 	uint64_t count = *req_count;
3178 	uint64_t bcount;
3179 	loff_t size_in, size_out;
3180 	loff_t bs = inode_out->i_sb->s_blocksize;
3181 	int ret;
3182 
3183 	/* The start of both ranges must be aligned to an fs block. */
3184 	if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
3185 		return -EINVAL;
3186 
3187 	/* Ensure offsets don't wrap. */
3188 	if (pos_in + count < pos_in || pos_out + count < pos_out)
3189 		return -EINVAL;
3190 
3191 	size_in = i_size_read(inode_in);
3192 	size_out = i_size_read(inode_out);
3193 
3194 	/* Dedupe requires both ranges to be within EOF. */
3195 	if ((remap_flags & REMAP_FILE_DEDUP) &&
3196 	    (pos_in >= size_in || pos_in + count > size_in ||
3197 	     pos_out >= size_out || pos_out + count > size_out))
3198 		return -EINVAL;
3199 
3200 	/* Ensure the infile range is within the infile. */
3201 	if (pos_in >= size_in)
3202 		return -EINVAL;
3203 	count = min(count, size_in - (uint64_t)pos_in);
3204 
3205 	ret = generic_write_check_limits(file_out, pos_out, &count);
3206 	if (ret)
3207 		return ret;
3208 
3209 	/*
3210 	 * If the user wanted us to link to the infile's EOF, round up to the
3211 	 * next block boundary for this check.
3212 	 *
3213 	 * Otherwise, make sure the count is also block-aligned, having
3214 	 * already confirmed the starting offsets' block alignment.
3215 	 */
3216 	if (pos_in + count == size_in) {
3217 		bcount = ALIGN(size_in, bs) - pos_in;
3218 	} else {
3219 		if (!IS_ALIGNED(count, bs))
3220 			count = ALIGN_DOWN(count, bs);
3221 		bcount = count;
3222 	}
3223 
3224 	/* Don't allow overlapped cloning within the same file. */
3225 	if (inode_in == inode_out &&
3226 	    pos_out + bcount > pos_in &&
3227 	    pos_out < pos_in + bcount)
3228 		return -EINVAL;
3229 
3230 	/*
3231 	 * We shortened the request but the caller can't deal with that, so
3232 	 * bounce the request back to userspace.
3233 	 */
3234 	if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
3235 		return -EINVAL;
3236 
3237 	*req_count = count;
3238 	return 0;
3239 }
3240 
3241 
3242 /*
3243  * Performs common checks before doing a file copy/clone
3244  * from @file_in to @file_out.
3245  */
3246 int generic_file_rw_checks(struct file *file_in, struct file *file_out)
3247 {
3248 	struct inode *inode_in = file_inode(file_in);
3249 	struct inode *inode_out = file_inode(file_out);
3250 
3251 	/* Don't copy dirs, pipes, sockets... */
3252 	if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode))
3253 		return -EISDIR;
3254 	if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode))
3255 		return -EINVAL;
3256 
3257 	if (!(file_in->f_mode & FMODE_READ) ||
3258 	    !(file_out->f_mode & FMODE_WRITE) ||
3259 	    (file_out->f_flags & O_APPEND))
3260 		return -EBADF;
3261 
3262 	return 0;
3263 }
3264 
3265 /*
3266  * Performs necessary checks before doing a file copy
3267  *
3268  * Can adjust amount of bytes to copy via @req_count argument.
3269  * Returns appropriate error code that caller should return or
3270  * zero in case the copy should be allowed.
3271  */
3272 int generic_copy_file_checks(struct file *file_in, loff_t pos_in,
3273 			     struct file *file_out, loff_t pos_out,
3274 			     size_t *req_count, unsigned int flags)
3275 {
3276 	struct inode *inode_in = file_inode(file_in);
3277 	struct inode *inode_out = file_inode(file_out);
3278 	uint64_t count = *req_count;
3279 	loff_t size_in;
3280 	int ret;
3281 
3282 	ret = generic_file_rw_checks(file_in, file_out);
3283 	if (ret)
3284 		return ret;
3285 
3286 	/* Don't touch certain kinds of inodes */
3287 	if (IS_IMMUTABLE(inode_out))
3288 		return -EPERM;
3289 
3290 	if (IS_SWAPFILE(inode_in) || IS_SWAPFILE(inode_out))
3291 		return -ETXTBSY;
3292 
3293 	/* Ensure offsets don't wrap. */
3294 	if (pos_in + count < pos_in || pos_out + count < pos_out)
3295 		return -EOVERFLOW;
3296 
3297 	/* Shorten the copy to EOF */
3298 	size_in = i_size_read(inode_in);
3299 	if (pos_in >= size_in)
3300 		count = 0;
3301 	else
3302 		count = min(count, size_in - (uint64_t)pos_in);
3303 
3304 	ret = generic_write_check_limits(file_out, pos_out, &count);
3305 	if (ret)
3306 		return ret;
3307 
3308 	/* Don't allow overlapped copying within the same file. */
3309 	if (inode_in == inode_out &&
3310 	    pos_out + count > pos_in &&
3311 	    pos_out < pos_in + count)
3312 		return -EINVAL;
3313 
3314 	*req_count = count;
3315 	return 0;
3316 }
3317 
3318 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3319 				loff_t pos, unsigned len, unsigned flags,
3320 				struct page **pagep, void **fsdata)
3321 {
3322 	const struct address_space_operations *aops = mapping->a_ops;
3323 
3324 	return aops->write_begin(file, mapping, pos, len, flags,
3325 							pagep, fsdata);
3326 }
3327 EXPORT_SYMBOL(pagecache_write_begin);
3328 
3329 int pagecache_write_end(struct file *file, struct address_space *mapping,
3330 				loff_t pos, unsigned len, unsigned copied,
3331 				struct page *page, void *fsdata)
3332 {
3333 	const struct address_space_operations *aops = mapping->a_ops;
3334 
3335 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3336 }
3337 EXPORT_SYMBOL(pagecache_write_end);
3338 
3339 /*
3340  * Warn about a page cache invalidation failure during a direct I/O write.
3341  */
3342 void dio_warn_stale_pagecache(struct file *filp)
3343 {
3344 	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3345 	char pathname[128];
3346 	struct inode *inode = file_inode(filp);
3347 	char *path;
3348 
3349 	errseq_set(&inode->i_mapping->wb_err, -EIO);
3350 	if (__ratelimit(&_rs)) {
3351 		path = file_path(filp, pathname, sizeof(pathname));
3352 		if (IS_ERR(path))
3353 			path = "(unknown)";
3354 		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3355 		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3356 			current->comm);
3357 	}
3358 }
3359 
3360 ssize_t
3361 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3362 {
3363 	struct file	*file = iocb->ki_filp;
3364 	struct address_space *mapping = file->f_mapping;
3365 	struct inode	*inode = mapping->host;
3366 	loff_t		pos = iocb->ki_pos;
3367 	ssize_t		written;
3368 	size_t		write_len;
3369 	pgoff_t		end;
3370 
3371 	write_len = iov_iter_count(from);
3372 	end = (pos + write_len - 1) >> PAGE_SHIFT;
3373 
3374 	if (iocb->ki_flags & IOCB_NOWAIT) {
3375 		/* If there are pages to writeback, return */
3376 		if (filemap_range_has_page(inode->i_mapping, pos,
3377 					   pos + write_len - 1))
3378 			return -EAGAIN;
3379 	} else {
3380 		written = filemap_write_and_wait_range(mapping, pos,
3381 							pos + write_len - 1);
3382 		if (written)
3383 			goto out;
3384 	}
3385 
3386 	/*
3387 	 * After a write we want buffered reads to be sure to go to disk to get
3388 	 * the new data.  We invalidate clean cached page from the region we're
3389 	 * about to write.  We do this *before* the write so that we can return
3390 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3391 	 */
3392 	written = invalidate_inode_pages2_range(mapping,
3393 					pos >> PAGE_SHIFT, end);
3394 	/*
3395 	 * If a page can not be invalidated, return 0 to fall back
3396 	 * to buffered write.
3397 	 */
3398 	if (written) {
3399 		if (written == -EBUSY)
3400 			return 0;
3401 		goto out;
3402 	}
3403 
3404 	written = mapping->a_ops->direct_IO(iocb, from);
3405 
3406 	/*
3407 	 * Finally, try again to invalidate clean pages which might have been
3408 	 * cached by non-direct readahead, or faulted in by get_user_pages()
3409 	 * if the source of the write was an mmap'ed region of the file
3410 	 * we're writing.  Either one is a pretty crazy thing to do,
3411 	 * so we don't support it 100%.  If this invalidation
3412 	 * fails, tough, the write still worked...
3413 	 *
3414 	 * Most of the time we do not need this since dio_complete() will do
3415 	 * the invalidation for us. However there are some file systems that
3416 	 * do not end up with dio_complete() being called, so let's not break
3417 	 * them by removing it completely.
3418 	 *
3419 	 * Noticeable example is a blkdev_direct_IO().
3420 	 *
3421 	 * Skip invalidation for async writes or if mapping has no pages.
3422 	 */
3423 	if (written > 0 && mapping->nrpages &&
3424 	    invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3425 		dio_warn_stale_pagecache(file);
3426 
3427 	if (written > 0) {
3428 		pos += written;
3429 		write_len -= written;
3430 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3431 			i_size_write(inode, pos);
3432 			mark_inode_dirty(inode);
3433 		}
3434 		iocb->ki_pos = pos;
3435 	}
3436 	iov_iter_revert(from, write_len - iov_iter_count(from));
3437 out:
3438 	return written;
3439 }
3440 EXPORT_SYMBOL(generic_file_direct_write);
3441 
3442 /*
3443  * Find or create a page at the given pagecache position. Return the locked
3444  * page. This function is specifically for buffered writes.
3445  */
3446 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3447 					pgoff_t index, unsigned flags)
3448 {
3449 	struct page *page;
3450 	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3451 
3452 	if (flags & AOP_FLAG_NOFS)
3453 		fgp_flags |= FGP_NOFS;
3454 
3455 	page = pagecache_get_page(mapping, index, fgp_flags,
3456 			mapping_gfp_mask(mapping));
3457 	if (page)
3458 		wait_for_stable_page(page);
3459 
3460 	return page;
3461 }
3462 EXPORT_SYMBOL(grab_cache_page_write_begin);
3463 
3464 ssize_t generic_perform_write(struct file *file,
3465 				struct iov_iter *i, loff_t pos)
3466 {
3467 	struct address_space *mapping = file->f_mapping;
3468 	const struct address_space_operations *a_ops = mapping->a_ops;
3469 	long status = 0;
3470 	ssize_t written = 0;
3471 	unsigned int flags = 0;
3472 
3473 	do {
3474 		struct page *page;
3475 		unsigned long offset;	/* Offset into pagecache page */
3476 		unsigned long bytes;	/* Bytes to write to page */
3477 		size_t copied;		/* Bytes copied from user */
3478 		void *fsdata;
3479 
3480 		offset = (pos & (PAGE_SIZE - 1));
3481 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3482 						iov_iter_count(i));
3483 
3484 again:
3485 		/*
3486 		 * Bring in the user page that we will copy from _first_.
3487 		 * Otherwise there's a nasty deadlock on copying from the
3488 		 * same page as we're writing to, without it being marked
3489 		 * up-to-date.
3490 		 *
3491 		 * Not only is this an optimisation, but it is also required
3492 		 * to check that the address is actually valid, when atomic
3493 		 * usercopies are used, below.
3494 		 */
3495 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3496 			status = -EFAULT;
3497 			break;
3498 		}
3499 
3500 		if (fatal_signal_pending(current)) {
3501 			status = -EINTR;
3502 			break;
3503 		}
3504 
3505 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3506 						&page, &fsdata);
3507 		if (unlikely(status < 0))
3508 			break;
3509 
3510 		if (mapping_writably_mapped(mapping))
3511 			flush_dcache_page(page);
3512 
3513 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3514 		flush_dcache_page(page);
3515 
3516 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3517 						page, fsdata);
3518 		if (unlikely(status < 0))
3519 			break;
3520 		copied = status;
3521 
3522 		cond_resched();
3523 
3524 		iov_iter_advance(i, copied);
3525 		if (unlikely(copied == 0)) {
3526 			/*
3527 			 * If we were unable to copy any data at all, we must
3528 			 * fall back to a single segment length write.
3529 			 *
3530 			 * If we didn't fallback here, we could livelock
3531 			 * because not all segments in the iov can be copied at
3532 			 * once without a pagefault.
3533 			 */
3534 			bytes = min_t(unsigned long, PAGE_SIZE - offset,
3535 						iov_iter_single_seg_count(i));
3536 			goto again;
3537 		}
3538 		pos += copied;
3539 		written += copied;
3540 
3541 		balance_dirty_pages_ratelimited(mapping);
3542 	} while (iov_iter_count(i));
3543 
3544 	return written ? written : status;
3545 }
3546 EXPORT_SYMBOL(generic_perform_write);
3547 
3548 /**
3549  * __generic_file_write_iter - write data to a file
3550  * @iocb:	IO state structure (file, offset, etc.)
3551  * @from:	iov_iter with data to write
3552  *
3553  * This function does all the work needed for actually writing data to a
3554  * file. It does all basic checks, removes SUID from the file, updates
3555  * modification times and calls proper subroutines depending on whether we
3556  * do direct IO or a standard buffered write.
3557  *
3558  * It expects i_mutex to be grabbed unless we work on a block device or similar
3559  * object which does not need locking at all.
3560  *
3561  * This function does *not* take care of syncing data in case of O_SYNC write.
3562  * A caller has to handle it. This is mainly due to the fact that we want to
3563  * avoid syncing under i_mutex.
3564  *
3565  * Return:
3566  * * number of bytes written, even for truncated writes
3567  * * negative error code if no data has been written at all
3568  */
3569 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3570 {
3571 	struct file *file = iocb->ki_filp;
3572 	struct address_space * mapping = file->f_mapping;
3573 	struct inode 	*inode = mapping->host;
3574 	ssize_t		written = 0;
3575 	ssize_t		err;
3576 	ssize_t		status;
3577 
3578 	/* We can write back this queue in page reclaim */
3579 	current->backing_dev_info = inode_to_bdi(inode);
3580 	err = file_remove_privs(file);
3581 	if (err)
3582 		goto out;
3583 
3584 	err = file_update_time(file);
3585 	if (err)
3586 		goto out;
3587 
3588 	if (iocb->ki_flags & IOCB_DIRECT) {
3589 		loff_t pos, endbyte;
3590 
3591 		written = generic_file_direct_write(iocb, from);
3592 		/*
3593 		 * If the write stopped short of completing, fall back to
3594 		 * buffered writes.  Some filesystems do this for writes to
3595 		 * holes, for example.  For DAX files, a buffered write will
3596 		 * not succeed (even if it did, DAX does not handle dirty
3597 		 * page-cache pages correctly).
3598 		 */
3599 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3600 			goto out;
3601 
3602 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3603 		/*
3604 		 * If generic_perform_write() returned a synchronous error
3605 		 * then we want to return the number of bytes which were
3606 		 * direct-written, or the error code if that was zero.  Note
3607 		 * that this differs from normal direct-io semantics, which
3608 		 * will return -EFOO even if some bytes were written.
3609 		 */
3610 		if (unlikely(status < 0)) {
3611 			err = status;
3612 			goto out;
3613 		}
3614 		/*
3615 		 * We need to ensure that the page cache pages are written to
3616 		 * disk and invalidated to preserve the expected O_DIRECT
3617 		 * semantics.
3618 		 */
3619 		endbyte = pos + status - 1;
3620 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3621 		if (err == 0) {
3622 			iocb->ki_pos = endbyte + 1;
3623 			written += status;
3624 			invalidate_mapping_pages(mapping,
3625 						 pos >> PAGE_SHIFT,
3626 						 endbyte >> PAGE_SHIFT);
3627 		} else {
3628 			/*
3629 			 * We don't know how much we wrote, so just return
3630 			 * the number of bytes which were direct-written
3631 			 */
3632 		}
3633 	} else {
3634 		written = generic_perform_write(file, from, iocb->ki_pos);
3635 		if (likely(written > 0))
3636 			iocb->ki_pos += written;
3637 	}
3638 out:
3639 	current->backing_dev_info = NULL;
3640 	return written ? written : err;
3641 }
3642 EXPORT_SYMBOL(__generic_file_write_iter);
3643 
3644 /**
3645  * generic_file_write_iter - write data to a file
3646  * @iocb:	IO state structure
3647  * @from:	iov_iter with data to write
3648  *
3649  * This is a wrapper around __generic_file_write_iter() to be used by most
3650  * filesystems. It takes care of syncing the file in case of O_SYNC file
3651  * and acquires i_mutex as needed.
3652  * Return:
3653  * * negative error code if no data has been written at all of
3654  *   vfs_fsync_range() failed for a synchronous write
3655  * * number of bytes written, even for truncated writes
3656  */
3657 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3658 {
3659 	struct file *file = iocb->ki_filp;
3660 	struct inode *inode = file->f_mapping->host;
3661 	ssize_t ret;
3662 
3663 	inode_lock(inode);
3664 	ret = generic_write_checks(iocb, from);
3665 	if (ret > 0)
3666 		ret = __generic_file_write_iter(iocb, from);
3667 	inode_unlock(inode);
3668 
3669 	if (ret > 0)
3670 		ret = generic_write_sync(iocb, ret);
3671 	return ret;
3672 }
3673 EXPORT_SYMBOL(generic_file_write_iter);
3674 
3675 /**
3676  * try_to_release_page() - release old fs-specific metadata on a page
3677  *
3678  * @page: the page which the kernel is trying to free
3679  * @gfp_mask: memory allocation flags (and I/O mode)
3680  *
3681  * The address_space is to try to release any data against the page
3682  * (presumably at page->private).
3683  *
3684  * This may also be called if PG_fscache is set on a page, indicating that the
3685  * page is known to the local caching routines.
3686  *
3687  * The @gfp_mask argument specifies whether I/O may be performed to release
3688  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3689  *
3690  * Return: %1 if the release was successful, otherwise return zero.
3691  */
3692 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3693 {
3694 	struct address_space * const mapping = page->mapping;
3695 
3696 	BUG_ON(!PageLocked(page));
3697 	if (PageWriteback(page))
3698 		return 0;
3699 
3700 	if (mapping && mapping->a_ops->releasepage)
3701 		return mapping->a_ops->releasepage(page, gfp_mask);
3702 	return try_to_free_buffers(page);
3703 }
3704 
3705 EXPORT_SYMBOL(try_to_release_page);
3706