xref: /linux/mm/filemap.c (revision b8265621f4888af9494e1d685620871ec81bc33d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/mm/filemap.c
4  *
5  * Copyright (C) 1994-1999  Linus Torvalds
6  */
7 
8 /*
9  * This file handles the generic file mmap semantics used by
10  * most "normal" filesystems (but you don't /have/ to use this:
11  * the NFS filesystem used to do this differently, for example)
12  */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/mman.h>
25 #include <linux/pagemap.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/error-injection.h>
29 #include <linux/hash.h>
30 #include <linux/writeback.h>
31 #include <linux/backing-dev.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/cleancache.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include "internal.h"
45 
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/filemap.h>
48 
49 /*
50  * FIXME: remove all knowledge of the buffer layer from the core VM
51  */
52 #include <linux/buffer_head.h> /* for try_to_free_buffers */
53 
54 #include <asm/mman.h>
55 
56 /*
57  * Shared mappings implemented 30.11.1994. It's not fully working yet,
58  * though.
59  *
60  * Shared mappings now work. 15.8.1995  Bruno.
61  *
62  * finished 'unifying' the page and buffer cache and SMP-threaded the
63  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
64  *
65  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
66  */
67 
68 /*
69  * Lock ordering:
70  *
71  *  ->i_mmap_rwsem		(truncate_pagecache)
72  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
73  *      ->swap_lock		(exclusive_swap_page, others)
74  *        ->i_pages lock
75  *
76  *  ->i_mutex
77  *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
78  *
79  *  ->mmap_lock
80  *    ->i_mmap_rwsem
81  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
82  *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
83  *
84  *  ->mmap_lock
85  *    ->lock_page		(access_process_vm)
86  *
87  *  ->i_mutex			(generic_perform_write)
88  *    ->mmap_lock		(fault_in_pages_readable->do_page_fault)
89  *
90  *  bdi->wb.list_lock
91  *    sb_lock			(fs/fs-writeback.c)
92  *    ->i_pages lock		(__sync_single_inode)
93  *
94  *  ->i_mmap_rwsem
95  *    ->anon_vma.lock		(vma_adjust)
96  *
97  *  ->anon_vma.lock
98  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
99  *
100  *  ->page_table_lock or pte_lock
101  *    ->swap_lock		(try_to_unmap_one)
102  *    ->private_lock		(try_to_unmap_one)
103  *    ->i_pages lock		(try_to_unmap_one)
104  *    ->pgdat->lru_lock		(follow_page->mark_page_accessed)
105  *    ->pgdat->lru_lock		(check_pte_range->isolate_lru_page)
106  *    ->private_lock		(page_remove_rmap->set_page_dirty)
107  *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
108  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
109  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
110  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
111  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
112  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
113  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
114  *
115  * ->i_mmap_rwsem
116  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
117  */
118 
119 static void page_cache_delete(struct address_space *mapping,
120 				   struct page *page, void *shadow)
121 {
122 	XA_STATE(xas, &mapping->i_pages, page->index);
123 	unsigned int nr = 1;
124 
125 	mapping_set_update(&xas, mapping);
126 
127 	/* hugetlb pages are represented by a single entry in the xarray */
128 	if (!PageHuge(page)) {
129 		xas_set_order(&xas, page->index, compound_order(page));
130 		nr = compound_nr(page);
131 	}
132 
133 	VM_BUG_ON_PAGE(!PageLocked(page), page);
134 	VM_BUG_ON_PAGE(PageTail(page), page);
135 	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
136 
137 	xas_store(&xas, shadow);
138 	xas_init_marks(&xas);
139 
140 	page->mapping = NULL;
141 	/* Leave page->index set: truncation lookup relies upon it */
142 
143 	if (shadow) {
144 		mapping->nrexceptional += nr;
145 		/*
146 		 * Make sure the nrexceptional update is committed before
147 		 * the nrpages update so that final truncate racing
148 		 * with reclaim does not see both counters 0 at the
149 		 * same time and miss a shadow entry.
150 		 */
151 		smp_wmb();
152 	}
153 	mapping->nrpages -= nr;
154 }
155 
156 static void unaccount_page_cache_page(struct address_space *mapping,
157 				      struct page *page)
158 {
159 	int nr;
160 
161 	/*
162 	 * if we're uptodate, flush out into the cleancache, otherwise
163 	 * invalidate any existing cleancache entries.  We can't leave
164 	 * stale data around in the cleancache once our page is gone
165 	 */
166 	if (PageUptodate(page) && PageMappedToDisk(page))
167 		cleancache_put_page(page);
168 	else
169 		cleancache_invalidate_page(mapping, page);
170 
171 	VM_BUG_ON_PAGE(PageTail(page), page);
172 	VM_BUG_ON_PAGE(page_mapped(page), page);
173 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
174 		int mapcount;
175 
176 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
177 			 current->comm, page_to_pfn(page));
178 		dump_page(page, "still mapped when deleted");
179 		dump_stack();
180 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
181 
182 		mapcount = page_mapcount(page);
183 		if (mapping_exiting(mapping) &&
184 		    page_count(page) >= mapcount + 2) {
185 			/*
186 			 * All vmas have already been torn down, so it's
187 			 * a good bet that actually the page is unmapped,
188 			 * and we'd prefer not to leak it: if we're wrong,
189 			 * some other bad page check should catch it later.
190 			 */
191 			page_mapcount_reset(page);
192 			page_ref_sub(page, mapcount);
193 		}
194 	}
195 
196 	/* hugetlb pages do not participate in page cache accounting. */
197 	if (PageHuge(page))
198 		return;
199 
200 	nr = hpage_nr_pages(page);
201 
202 	__mod_lruvec_page_state(page, NR_FILE_PAGES, -nr);
203 	if (PageSwapBacked(page)) {
204 		__mod_lruvec_page_state(page, NR_SHMEM, -nr);
205 		if (PageTransHuge(page))
206 			__dec_node_page_state(page, NR_SHMEM_THPS);
207 	} else if (PageTransHuge(page)) {
208 		__dec_node_page_state(page, NR_FILE_THPS);
209 		filemap_nr_thps_dec(mapping);
210 	}
211 
212 	/*
213 	 * At this point page must be either written or cleaned by
214 	 * truncate.  Dirty page here signals a bug and loss of
215 	 * unwritten data.
216 	 *
217 	 * This fixes dirty accounting after removing the page entirely
218 	 * but leaves PageDirty set: it has no effect for truncated
219 	 * page and anyway will be cleared before returning page into
220 	 * buddy allocator.
221 	 */
222 	if (WARN_ON_ONCE(PageDirty(page)))
223 		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
224 }
225 
226 /*
227  * Delete a page from the page cache and free it. Caller has to make
228  * sure the page is locked and that nobody else uses it - or that usage
229  * is safe.  The caller must hold the i_pages lock.
230  */
231 void __delete_from_page_cache(struct page *page, void *shadow)
232 {
233 	struct address_space *mapping = page->mapping;
234 
235 	trace_mm_filemap_delete_from_page_cache(page);
236 
237 	unaccount_page_cache_page(mapping, page);
238 	page_cache_delete(mapping, page, shadow);
239 }
240 
241 static void page_cache_free_page(struct address_space *mapping,
242 				struct page *page)
243 {
244 	void (*freepage)(struct page *);
245 
246 	freepage = mapping->a_ops->freepage;
247 	if (freepage)
248 		freepage(page);
249 
250 	if (PageTransHuge(page) && !PageHuge(page)) {
251 		page_ref_sub(page, HPAGE_PMD_NR);
252 		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
253 	} else {
254 		put_page(page);
255 	}
256 }
257 
258 /**
259  * delete_from_page_cache - delete page from page cache
260  * @page: the page which the kernel is trying to remove from page cache
261  *
262  * This must be called only on pages that have been verified to be in the page
263  * cache and locked.  It will never put the page into the free list, the caller
264  * has a reference on the page.
265  */
266 void delete_from_page_cache(struct page *page)
267 {
268 	struct address_space *mapping = page_mapping(page);
269 	unsigned long flags;
270 
271 	BUG_ON(!PageLocked(page));
272 	xa_lock_irqsave(&mapping->i_pages, flags);
273 	__delete_from_page_cache(page, NULL);
274 	xa_unlock_irqrestore(&mapping->i_pages, flags);
275 
276 	page_cache_free_page(mapping, page);
277 }
278 EXPORT_SYMBOL(delete_from_page_cache);
279 
280 /*
281  * page_cache_delete_batch - delete several pages from page cache
282  * @mapping: the mapping to which pages belong
283  * @pvec: pagevec with pages to delete
284  *
285  * The function walks over mapping->i_pages and removes pages passed in @pvec
286  * from the mapping. The function expects @pvec to be sorted by page index
287  * and is optimised for it to be dense.
288  * It tolerates holes in @pvec (mapping entries at those indices are not
289  * modified). The function expects only THP head pages to be present in the
290  * @pvec.
291  *
292  * The function expects the i_pages lock to be held.
293  */
294 static void page_cache_delete_batch(struct address_space *mapping,
295 			     struct pagevec *pvec)
296 {
297 	XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
298 	int total_pages = 0;
299 	int i = 0;
300 	struct page *page;
301 
302 	mapping_set_update(&xas, mapping);
303 	xas_for_each(&xas, page, ULONG_MAX) {
304 		if (i >= pagevec_count(pvec))
305 			break;
306 
307 		/* A swap/dax/shadow entry got inserted? Skip it. */
308 		if (xa_is_value(page))
309 			continue;
310 		/*
311 		 * A page got inserted in our range? Skip it. We have our
312 		 * pages locked so they are protected from being removed.
313 		 * If we see a page whose index is higher than ours, it
314 		 * means our page has been removed, which shouldn't be
315 		 * possible because we're holding the PageLock.
316 		 */
317 		if (page != pvec->pages[i]) {
318 			VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
319 					page);
320 			continue;
321 		}
322 
323 		WARN_ON_ONCE(!PageLocked(page));
324 
325 		if (page->index == xas.xa_index)
326 			page->mapping = NULL;
327 		/* Leave page->index set: truncation lookup relies on it */
328 
329 		/*
330 		 * Move to the next page in the vector if this is a regular
331 		 * page or the index is of the last sub-page of this compound
332 		 * page.
333 		 */
334 		if (page->index + compound_nr(page) - 1 == xas.xa_index)
335 			i++;
336 		xas_store(&xas, NULL);
337 		total_pages++;
338 	}
339 	mapping->nrpages -= total_pages;
340 }
341 
342 void delete_from_page_cache_batch(struct address_space *mapping,
343 				  struct pagevec *pvec)
344 {
345 	int i;
346 	unsigned long flags;
347 
348 	if (!pagevec_count(pvec))
349 		return;
350 
351 	xa_lock_irqsave(&mapping->i_pages, flags);
352 	for (i = 0; i < pagevec_count(pvec); i++) {
353 		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
354 
355 		unaccount_page_cache_page(mapping, pvec->pages[i]);
356 	}
357 	page_cache_delete_batch(mapping, pvec);
358 	xa_unlock_irqrestore(&mapping->i_pages, flags);
359 
360 	for (i = 0; i < pagevec_count(pvec); i++)
361 		page_cache_free_page(mapping, pvec->pages[i]);
362 }
363 
364 int filemap_check_errors(struct address_space *mapping)
365 {
366 	int ret = 0;
367 	/* Check for outstanding write errors */
368 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
369 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
370 		ret = -ENOSPC;
371 	if (test_bit(AS_EIO, &mapping->flags) &&
372 	    test_and_clear_bit(AS_EIO, &mapping->flags))
373 		ret = -EIO;
374 	return ret;
375 }
376 EXPORT_SYMBOL(filemap_check_errors);
377 
378 static int filemap_check_and_keep_errors(struct address_space *mapping)
379 {
380 	/* Check for outstanding write errors */
381 	if (test_bit(AS_EIO, &mapping->flags))
382 		return -EIO;
383 	if (test_bit(AS_ENOSPC, &mapping->flags))
384 		return -ENOSPC;
385 	return 0;
386 }
387 
388 /**
389  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
390  * @mapping:	address space structure to write
391  * @start:	offset in bytes where the range starts
392  * @end:	offset in bytes where the range ends (inclusive)
393  * @sync_mode:	enable synchronous operation
394  *
395  * Start writeback against all of a mapping's dirty pages that lie
396  * within the byte offsets <start, end> inclusive.
397  *
398  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
399  * opposed to a regular memory cleansing writeback.  The difference between
400  * these two operations is that if a dirty page/buffer is encountered, it must
401  * be waited upon, and not just skipped over.
402  *
403  * Return: %0 on success, negative error code otherwise.
404  */
405 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
406 				loff_t end, int sync_mode)
407 {
408 	int ret;
409 	struct writeback_control wbc = {
410 		.sync_mode = sync_mode,
411 		.nr_to_write = LONG_MAX,
412 		.range_start = start,
413 		.range_end = end,
414 	};
415 
416 	if (!mapping_cap_writeback_dirty(mapping) ||
417 	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
418 		return 0;
419 
420 	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
421 	ret = do_writepages(mapping, &wbc);
422 	wbc_detach_inode(&wbc);
423 	return ret;
424 }
425 
426 static inline int __filemap_fdatawrite(struct address_space *mapping,
427 	int sync_mode)
428 {
429 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
430 }
431 
432 int filemap_fdatawrite(struct address_space *mapping)
433 {
434 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
435 }
436 EXPORT_SYMBOL(filemap_fdatawrite);
437 
438 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
439 				loff_t end)
440 {
441 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
442 }
443 EXPORT_SYMBOL(filemap_fdatawrite_range);
444 
445 /**
446  * filemap_flush - mostly a non-blocking flush
447  * @mapping:	target address_space
448  *
449  * This is a mostly non-blocking flush.  Not suitable for data-integrity
450  * purposes - I/O may not be started against all dirty pages.
451  *
452  * Return: %0 on success, negative error code otherwise.
453  */
454 int filemap_flush(struct address_space *mapping)
455 {
456 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
457 }
458 EXPORT_SYMBOL(filemap_flush);
459 
460 /**
461  * filemap_range_has_page - check if a page exists in range.
462  * @mapping:           address space within which to check
463  * @start_byte:        offset in bytes where the range starts
464  * @end_byte:          offset in bytes where the range ends (inclusive)
465  *
466  * Find at least one page in the range supplied, usually used to check if
467  * direct writing in this range will trigger a writeback.
468  *
469  * Return: %true if at least one page exists in the specified range,
470  * %false otherwise.
471  */
472 bool filemap_range_has_page(struct address_space *mapping,
473 			   loff_t start_byte, loff_t end_byte)
474 {
475 	struct page *page;
476 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
477 	pgoff_t max = end_byte >> PAGE_SHIFT;
478 
479 	if (end_byte < start_byte)
480 		return false;
481 
482 	rcu_read_lock();
483 	for (;;) {
484 		page = xas_find(&xas, max);
485 		if (xas_retry(&xas, page))
486 			continue;
487 		/* Shadow entries don't count */
488 		if (xa_is_value(page))
489 			continue;
490 		/*
491 		 * We don't need to try to pin this page; we're about to
492 		 * release the RCU lock anyway.  It is enough to know that
493 		 * there was a page here recently.
494 		 */
495 		break;
496 	}
497 	rcu_read_unlock();
498 
499 	return page != NULL;
500 }
501 EXPORT_SYMBOL(filemap_range_has_page);
502 
503 static void __filemap_fdatawait_range(struct address_space *mapping,
504 				     loff_t start_byte, loff_t end_byte)
505 {
506 	pgoff_t index = start_byte >> PAGE_SHIFT;
507 	pgoff_t end = end_byte >> PAGE_SHIFT;
508 	struct pagevec pvec;
509 	int nr_pages;
510 
511 	if (end_byte < start_byte)
512 		return;
513 
514 	pagevec_init(&pvec);
515 	while (index <= end) {
516 		unsigned i;
517 
518 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
519 				end, PAGECACHE_TAG_WRITEBACK);
520 		if (!nr_pages)
521 			break;
522 
523 		for (i = 0; i < nr_pages; i++) {
524 			struct page *page = pvec.pages[i];
525 
526 			wait_on_page_writeback(page);
527 			ClearPageError(page);
528 		}
529 		pagevec_release(&pvec);
530 		cond_resched();
531 	}
532 }
533 
534 /**
535  * filemap_fdatawait_range - wait for writeback to complete
536  * @mapping:		address space structure to wait for
537  * @start_byte:		offset in bytes where the range starts
538  * @end_byte:		offset in bytes where the range ends (inclusive)
539  *
540  * Walk the list of under-writeback pages of the given address space
541  * in the given range and wait for all of them.  Check error status of
542  * the address space and return it.
543  *
544  * Since the error status of the address space is cleared by this function,
545  * callers are responsible for checking the return value and handling and/or
546  * reporting the error.
547  *
548  * Return: error status of the address space.
549  */
550 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
551 			    loff_t end_byte)
552 {
553 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
554 	return filemap_check_errors(mapping);
555 }
556 EXPORT_SYMBOL(filemap_fdatawait_range);
557 
558 /**
559  * filemap_fdatawait_range_keep_errors - wait for writeback to complete
560  * @mapping:		address space structure to wait for
561  * @start_byte:		offset in bytes where the range starts
562  * @end_byte:		offset in bytes where the range ends (inclusive)
563  *
564  * Walk the list of under-writeback pages of the given address space in the
565  * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
566  * this function does not clear error status of the address space.
567  *
568  * Use this function if callers don't handle errors themselves.  Expected
569  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
570  * fsfreeze(8)
571  */
572 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
573 		loff_t start_byte, loff_t end_byte)
574 {
575 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
576 	return filemap_check_and_keep_errors(mapping);
577 }
578 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
579 
580 /**
581  * file_fdatawait_range - wait for writeback to complete
582  * @file:		file pointing to address space structure to wait for
583  * @start_byte:		offset in bytes where the range starts
584  * @end_byte:		offset in bytes where the range ends (inclusive)
585  *
586  * Walk the list of under-writeback pages of the address space that file
587  * refers to, in the given range and wait for all of them.  Check error
588  * status of the address space vs. the file->f_wb_err cursor and return it.
589  *
590  * Since the error status of the file is advanced by this function,
591  * callers are responsible for checking the return value and handling and/or
592  * reporting the error.
593  *
594  * Return: error status of the address space vs. the file->f_wb_err cursor.
595  */
596 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
597 {
598 	struct address_space *mapping = file->f_mapping;
599 
600 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
601 	return file_check_and_advance_wb_err(file);
602 }
603 EXPORT_SYMBOL(file_fdatawait_range);
604 
605 /**
606  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
607  * @mapping: address space structure to wait for
608  *
609  * Walk the list of under-writeback pages of the given address space
610  * and wait for all of them.  Unlike filemap_fdatawait(), this function
611  * does not clear error status of the address space.
612  *
613  * Use this function if callers don't handle errors themselves.  Expected
614  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
615  * fsfreeze(8)
616  *
617  * Return: error status of the address space.
618  */
619 int filemap_fdatawait_keep_errors(struct address_space *mapping)
620 {
621 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
622 	return filemap_check_and_keep_errors(mapping);
623 }
624 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
625 
626 /* Returns true if writeback might be needed or already in progress. */
627 static bool mapping_needs_writeback(struct address_space *mapping)
628 {
629 	if (dax_mapping(mapping))
630 		return mapping->nrexceptional;
631 
632 	return mapping->nrpages;
633 }
634 
635 /**
636  * filemap_write_and_wait_range - write out & wait on a file range
637  * @mapping:	the address_space for the pages
638  * @lstart:	offset in bytes where the range starts
639  * @lend:	offset in bytes where the range ends (inclusive)
640  *
641  * Write out and wait upon file offsets lstart->lend, inclusive.
642  *
643  * Note that @lend is inclusive (describes the last byte to be written) so
644  * that this function can be used to write to the very end-of-file (end = -1).
645  *
646  * Return: error status of the address space.
647  */
648 int filemap_write_and_wait_range(struct address_space *mapping,
649 				 loff_t lstart, loff_t lend)
650 {
651 	int err = 0;
652 
653 	if (mapping_needs_writeback(mapping)) {
654 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
655 						 WB_SYNC_ALL);
656 		/*
657 		 * Even if the above returned error, the pages may be
658 		 * written partially (e.g. -ENOSPC), so we wait for it.
659 		 * But the -EIO is special case, it may indicate the worst
660 		 * thing (e.g. bug) happened, so we avoid waiting for it.
661 		 */
662 		if (err != -EIO) {
663 			int err2 = filemap_fdatawait_range(mapping,
664 						lstart, lend);
665 			if (!err)
666 				err = err2;
667 		} else {
668 			/* Clear any previously stored errors */
669 			filemap_check_errors(mapping);
670 		}
671 	} else {
672 		err = filemap_check_errors(mapping);
673 	}
674 	return err;
675 }
676 EXPORT_SYMBOL(filemap_write_and_wait_range);
677 
678 void __filemap_set_wb_err(struct address_space *mapping, int err)
679 {
680 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
681 
682 	trace_filemap_set_wb_err(mapping, eseq);
683 }
684 EXPORT_SYMBOL(__filemap_set_wb_err);
685 
686 /**
687  * file_check_and_advance_wb_err - report wb error (if any) that was previously
688  * 				   and advance wb_err to current one
689  * @file: struct file on which the error is being reported
690  *
691  * When userland calls fsync (or something like nfsd does the equivalent), we
692  * want to report any writeback errors that occurred since the last fsync (or
693  * since the file was opened if there haven't been any).
694  *
695  * Grab the wb_err from the mapping. If it matches what we have in the file,
696  * then just quickly return 0. The file is all caught up.
697  *
698  * If it doesn't match, then take the mapping value, set the "seen" flag in
699  * it and try to swap it into place. If it works, or another task beat us
700  * to it with the new value, then update the f_wb_err and return the error
701  * portion. The error at this point must be reported via proper channels
702  * (a'la fsync, or NFS COMMIT operation, etc.).
703  *
704  * While we handle mapping->wb_err with atomic operations, the f_wb_err
705  * value is protected by the f_lock since we must ensure that it reflects
706  * the latest value swapped in for this file descriptor.
707  *
708  * Return: %0 on success, negative error code otherwise.
709  */
710 int file_check_and_advance_wb_err(struct file *file)
711 {
712 	int err = 0;
713 	errseq_t old = READ_ONCE(file->f_wb_err);
714 	struct address_space *mapping = file->f_mapping;
715 
716 	/* Locklessly handle the common case where nothing has changed */
717 	if (errseq_check(&mapping->wb_err, old)) {
718 		/* Something changed, must use slow path */
719 		spin_lock(&file->f_lock);
720 		old = file->f_wb_err;
721 		err = errseq_check_and_advance(&mapping->wb_err,
722 						&file->f_wb_err);
723 		trace_file_check_and_advance_wb_err(file, old);
724 		spin_unlock(&file->f_lock);
725 	}
726 
727 	/*
728 	 * We're mostly using this function as a drop in replacement for
729 	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
730 	 * that the legacy code would have had on these flags.
731 	 */
732 	clear_bit(AS_EIO, &mapping->flags);
733 	clear_bit(AS_ENOSPC, &mapping->flags);
734 	return err;
735 }
736 EXPORT_SYMBOL(file_check_and_advance_wb_err);
737 
738 /**
739  * file_write_and_wait_range - write out & wait on a file range
740  * @file:	file pointing to address_space with pages
741  * @lstart:	offset in bytes where the range starts
742  * @lend:	offset in bytes where the range ends (inclusive)
743  *
744  * Write out and wait upon file offsets lstart->lend, inclusive.
745  *
746  * Note that @lend is inclusive (describes the last byte to be written) so
747  * that this function can be used to write to the very end-of-file (end = -1).
748  *
749  * After writing out and waiting on the data, we check and advance the
750  * f_wb_err cursor to the latest value, and return any errors detected there.
751  *
752  * Return: %0 on success, negative error code otherwise.
753  */
754 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
755 {
756 	int err = 0, err2;
757 	struct address_space *mapping = file->f_mapping;
758 
759 	if (mapping_needs_writeback(mapping)) {
760 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
761 						 WB_SYNC_ALL);
762 		/* See comment of filemap_write_and_wait() */
763 		if (err != -EIO)
764 			__filemap_fdatawait_range(mapping, lstart, lend);
765 	}
766 	err2 = file_check_and_advance_wb_err(file);
767 	if (!err)
768 		err = err2;
769 	return err;
770 }
771 EXPORT_SYMBOL(file_write_and_wait_range);
772 
773 /**
774  * replace_page_cache_page - replace a pagecache page with a new one
775  * @old:	page to be replaced
776  * @new:	page to replace with
777  * @gfp_mask:	allocation mode
778  *
779  * This function replaces a page in the pagecache with a new one.  On
780  * success it acquires the pagecache reference for the new page and
781  * drops it for the old page.  Both the old and new pages must be
782  * locked.  This function does not add the new page to the LRU, the
783  * caller must do that.
784  *
785  * The remove + add is atomic.  This function cannot fail.
786  *
787  * Return: %0
788  */
789 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
790 {
791 	struct address_space *mapping = old->mapping;
792 	void (*freepage)(struct page *) = mapping->a_ops->freepage;
793 	pgoff_t offset = old->index;
794 	XA_STATE(xas, &mapping->i_pages, offset);
795 	unsigned long flags;
796 
797 	VM_BUG_ON_PAGE(!PageLocked(old), old);
798 	VM_BUG_ON_PAGE(!PageLocked(new), new);
799 	VM_BUG_ON_PAGE(new->mapping, new);
800 
801 	get_page(new);
802 	new->mapping = mapping;
803 	new->index = offset;
804 
805 	mem_cgroup_migrate(old, new);
806 
807 	xas_lock_irqsave(&xas, flags);
808 	xas_store(&xas, new);
809 
810 	old->mapping = NULL;
811 	/* hugetlb pages do not participate in page cache accounting. */
812 	if (!PageHuge(old))
813 		__dec_lruvec_page_state(old, NR_FILE_PAGES);
814 	if (!PageHuge(new))
815 		__inc_lruvec_page_state(new, NR_FILE_PAGES);
816 	if (PageSwapBacked(old))
817 		__dec_lruvec_page_state(old, NR_SHMEM);
818 	if (PageSwapBacked(new))
819 		__inc_lruvec_page_state(new, NR_SHMEM);
820 	xas_unlock_irqrestore(&xas, flags);
821 	if (freepage)
822 		freepage(old);
823 	put_page(old);
824 
825 	return 0;
826 }
827 EXPORT_SYMBOL_GPL(replace_page_cache_page);
828 
829 static int __add_to_page_cache_locked(struct page *page,
830 				      struct address_space *mapping,
831 				      pgoff_t offset, gfp_t gfp_mask,
832 				      void **shadowp)
833 {
834 	XA_STATE(xas, &mapping->i_pages, offset);
835 	int huge = PageHuge(page);
836 	int error;
837 	void *old;
838 
839 	VM_BUG_ON_PAGE(!PageLocked(page), page);
840 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
841 	mapping_set_update(&xas, mapping);
842 
843 	get_page(page);
844 	page->mapping = mapping;
845 	page->index = offset;
846 
847 	if (!huge) {
848 		error = mem_cgroup_charge(page, current->mm, gfp_mask);
849 		if (error)
850 			goto error;
851 	}
852 
853 	do {
854 		xas_lock_irq(&xas);
855 		old = xas_load(&xas);
856 		if (old && !xa_is_value(old))
857 			xas_set_err(&xas, -EEXIST);
858 		xas_store(&xas, page);
859 		if (xas_error(&xas))
860 			goto unlock;
861 
862 		if (xa_is_value(old)) {
863 			mapping->nrexceptional--;
864 			if (shadowp)
865 				*shadowp = old;
866 		}
867 		mapping->nrpages++;
868 
869 		/* hugetlb pages do not participate in page cache accounting */
870 		if (!huge)
871 			__inc_lruvec_page_state(page, NR_FILE_PAGES);
872 unlock:
873 		xas_unlock_irq(&xas);
874 	} while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));
875 
876 	if (xas_error(&xas)) {
877 		error = xas_error(&xas);
878 		goto error;
879 	}
880 
881 	trace_mm_filemap_add_to_page_cache(page);
882 	return 0;
883 error:
884 	page->mapping = NULL;
885 	/* Leave page->index set: truncation relies upon it */
886 	put_page(page);
887 	return error;
888 }
889 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
890 
891 /**
892  * add_to_page_cache_locked - add a locked page to the pagecache
893  * @page:	page to add
894  * @mapping:	the page's address_space
895  * @offset:	page index
896  * @gfp_mask:	page allocation mode
897  *
898  * This function is used to add a page to the pagecache. It must be locked.
899  * This function does not add the page to the LRU.  The caller must do that.
900  *
901  * Return: %0 on success, negative error code otherwise.
902  */
903 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
904 		pgoff_t offset, gfp_t gfp_mask)
905 {
906 	return __add_to_page_cache_locked(page, mapping, offset,
907 					  gfp_mask, NULL);
908 }
909 EXPORT_SYMBOL(add_to_page_cache_locked);
910 
911 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
912 				pgoff_t offset, gfp_t gfp_mask)
913 {
914 	void *shadow = NULL;
915 	int ret;
916 
917 	__SetPageLocked(page);
918 	ret = __add_to_page_cache_locked(page, mapping, offset,
919 					 gfp_mask, &shadow);
920 	if (unlikely(ret))
921 		__ClearPageLocked(page);
922 	else {
923 		/*
924 		 * The page might have been evicted from cache only
925 		 * recently, in which case it should be activated like
926 		 * any other repeatedly accessed page.
927 		 * The exception is pages getting rewritten; evicting other
928 		 * data from the working set, only to cache data that will
929 		 * get overwritten with something else, is a waste of memory.
930 		 */
931 		WARN_ON_ONCE(PageActive(page));
932 		if (!(gfp_mask & __GFP_WRITE) && shadow)
933 			workingset_refault(page, shadow);
934 		lru_cache_add(page);
935 	}
936 	return ret;
937 }
938 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
939 
940 #ifdef CONFIG_NUMA
941 struct page *__page_cache_alloc(gfp_t gfp)
942 {
943 	int n;
944 	struct page *page;
945 
946 	if (cpuset_do_page_mem_spread()) {
947 		unsigned int cpuset_mems_cookie;
948 		do {
949 			cpuset_mems_cookie = read_mems_allowed_begin();
950 			n = cpuset_mem_spread_node();
951 			page = __alloc_pages_node(n, gfp, 0);
952 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
953 
954 		return page;
955 	}
956 	return alloc_pages(gfp, 0);
957 }
958 EXPORT_SYMBOL(__page_cache_alloc);
959 #endif
960 
961 /*
962  * In order to wait for pages to become available there must be
963  * waitqueues associated with pages. By using a hash table of
964  * waitqueues where the bucket discipline is to maintain all
965  * waiters on the same queue and wake all when any of the pages
966  * become available, and for the woken contexts to check to be
967  * sure the appropriate page became available, this saves space
968  * at a cost of "thundering herd" phenomena during rare hash
969  * collisions.
970  */
971 #define PAGE_WAIT_TABLE_BITS 8
972 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
973 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
974 
975 static wait_queue_head_t *page_waitqueue(struct page *page)
976 {
977 	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
978 }
979 
980 void __init pagecache_init(void)
981 {
982 	int i;
983 
984 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
985 		init_waitqueue_head(&page_wait_table[i]);
986 
987 	page_writeback_init();
988 }
989 
990 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
991 struct wait_page_key {
992 	struct page *page;
993 	int bit_nr;
994 	int page_match;
995 };
996 
997 struct wait_page_queue {
998 	struct page *page;
999 	int bit_nr;
1000 	wait_queue_entry_t wait;
1001 };
1002 
1003 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1004 {
1005 	struct wait_page_key *key = arg;
1006 	struct wait_page_queue *wait_page
1007 		= container_of(wait, struct wait_page_queue, wait);
1008 
1009 	if (wait_page->page != key->page)
1010 	       return 0;
1011 	key->page_match = 1;
1012 
1013 	if (wait_page->bit_nr != key->bit_nr)
1014 		return 0;
1015 
1016 	/*
1017 	 * Stop walking if it's locked.
1018 	 * Is this safe if put_and_wait_on_page_locked() is in use?
1019 	 * Yes: the waker must hold a reference to this page, and if PG_locked
1020 	 * has now already been set by another task, that task must also hold
1021 	 * a reference to the *same usage* of this page; so there is no need
1022 	 * to walk on to wake even the put_and_wait_on_page_locked() callers.
1023 	 */
1024 	if (test_bit(key->bit_nr, &key->page->flags))
1025 		return -1;
1026 
1027 	return autoremove_wake_function(wait, mode, sync, key);
1028 }
1029 
1030 static void wake_up_page_bit(struct page *page, int bit_nr)
1031 {
1032 	wait_queue_head_t *q = page_waitqueue(page);
1033 	struct wait_page_key key;
1034 	unsigned long flags;
1035 	wait_queue_entry_t bookmark;
1036 
1037 	key.page = page;
1038 	key.bit_nr = bit_nr;
1039 	key.page_match = 0;
1040 
1041 	bookmark.flags = 0;
1042 	bookmark.private = NULL;
1043 	bookmark.func = NULL;
1044 	INIT_LIST_HEAD(&bookmark.entry);
1045 
1046 	spin_lock_irqsave(&q->lock, flags);
1047 	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1048 
1049 	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1050 		/*
1051 		 * Take a breather from holding the lock,
1052 		 * allow pages that finish wake up asynchronously
1053 		 * to acquire the lock and remove themselves
1054 		 * from wait queue
1055 		 */
1056 		spin_unlock_irqrestore(&q->lock, flags);
1057 		cpu_relax();
1058 		spin_lock_irqsave(&q->lock, flags);
1059 		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1060 	}
1061 
1062 	/*
1063 	 * It is possible for other pages to have collided on the waitqueue
1064 	 * hash, so in that case check for a page match. That prevents a long-
1065 	 * term waiter
1066 	 *
1067 	 * It is still possible to miss a case here, when we woke page waiters
1068 	 * and removed them from the waitqueue, but there are still other
1069 	 * page waiters.
1070 	 */
1071 	if (!waitqueue_active(q) || !key.page_match) {
1072 		ClearPageWaiters(page);
1073 		/*
1074 		 * It's possible to miss clearing Waiters here, when we woke
1075 		 * our page waiters, but the hashed waitqueue has waiters for
1076 		 * other pages on it.
1077 		 *
1078 		 * That's okay, it's a rare case. The next waker will clear it.
1079 		 */
1080 	}
1081 	spin_unlock_irqrestore(&q->lock, flags);
1082 }
1083 
1084 static void wake_up_page(struct page *page, int bit)
1085 {
1086 	if (!PageWaiters(page))
1087 		return;
1088 	wake_up_page_bit(page, bit);
1089 }
1090 
1091 /*
1092  * A choice of three behaviors for wait_on_page_bit_common():
1093  */
1094 enum behavior {
1095 	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1096 			 * __lock_page() waiting on then setting PG_locked.
1097 			 */
1098 	SHARED,		/* Hold ref to page and check the bit when woken, like
1099 			 * wait_on_page_writeback() waiting on PG_writeback.
1100 			 */
1101 	DROP,		/* Drop ref to page before wait, no check when woken,
1102 			 * like put_and_wait_on_page_locked() on PG_locked.
1103 			 */
1104 };
1105 
1106 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1107 	struct page *page, int bit_nr, int state, enum behavior behavior)
1108 {
1109 	struct wait_page_queue wait_page;
1110 	wait_queue_entry_t *wait = &wait_page.wait;
1111 	bool bit_is_set;
1112 	bool thrashing = false;
1113 	bool delayacct = false;
1114 	unsigned long pflags;
1115 	int ret = 0;
1116 
1117 	if (bit_nr == PG_locked &&
1118 	    !PageUptodate(page) && PageWorkingset(page)) {
1119 		if (!PageSwapBacked(page)) {
1120 			delayacct_thrashing_start();
1121 			delayacct = true;
1122 		}
1123 		psi_memstall_enter(&pflags);
1124 		thrashing = true;
1125 	}
1126 
1127 	init_wait(wait);
1128 	wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0;
1129 	wait->func = wake_page_function;
1130 	wait_page.page = page;
1131 	wait_page.bit_nr = bit_nr;
1132 
1133 	for (;;) {
1134 		spin_lock_irq(&q->lock);
1135 
1136 		if (likely(list_empty(&wait->entry))) {
1137 			__add_wait_queue_entry_tail(q, wait);
1138 			SetPageWaiters(page);
1139 		}
1140 
1141 		set_current_state(state);
1142 
1143 		spin_unlock_irq(&q->lock);
1144 
1145 		bit_is_set = test_bit(bit_nr, &page->flags);
1146 		if (behavior == DROP)
1147 			put_page(page);
1148 
1149 		if (likely(bit_is_set))
1150 			io_schedule();
1151 
1152 		if (behavior == EXCLUSIVE) {
1153 			if (!test_and_set_bit_lock(bit_nr, &page->flags))
1154 				break;
1155 		} else if (behavior == SHARED) {
1156 			if (!test_bit(bit_nr, &page->flags))
1157 				break;
1158 		}
1159 
1160 		if (signal_pending_state(state, current)) {
1161 			ret = -EINTR;
1162 			break;
1163 		}
1164 
1165 		if (behavior == DROP) {
1166 			/*
1167 			 * We can no longer safely access page->flags:
1168 			 * even if CONFIG_MEMORY_HOTREMOVE is not enabled,
1169 			 * there is a risk of waiting forever on a page reused
1170 			 * for something that keeps it locked indefinitely.
1171 			 * But best check for -EINTR above before breaking.
1172 			 */
1173 			break;
1174 		}
1175 	}
1176 
1177 	finish_wait(q, wait);
1178 
1179 	if (thrashing) {
1180 		if (delayacct)
1181 			delayacct_thrashing_end();
1182 		psi_memstall_leave(&pflags);
1183 	}
1184 
1185 	/*
1186 	 * A signal could leave PageWaiters set. Clearing it here if
1187 	 * !waitqueue_active would be possible (by open-coding finish_wait),
1188 	 * but still fail to catch it in the case of wait hash collision. We
1189 	 * already can fail to clear wait hash collision cases, so don't
1190 	 * bother with signals either.
1191 	 */
1192 
1193 	return ret;
1194 }
1195 
1196 void wait_on_page_bit(struct page *page, int bit_nr)
1197 {
1198 	wait_queue_head_t *q = page_waitqueue(page);
1199 	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1200 }
1201 EXPORT_SYMBOL(wait_on_page_bit);
1202 
1203 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1204 {
1205 	wait_queue_head_t *q = page_waitqueue(page);
1206 	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1207 }
1208 EXPORT_SYMBOL(wait_on_page_bit_killable);
1209 
1210 /**
1211  * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1212  * @page: The page to wait for.
1213  *
1214  * The caller should hold a reference on @page.  They expect the page to
1215  * become unlocked relatively soon, but do not wish to hold up migration
1216  * (for example) by holding the reference while waiting for the page to
1217  * come unlocked.  After this function returns, the caller should not
1218  * dereference @page.
1219  */
1220 void put_and_wait_on_page_locked(struct page *page)
1221 {
1222 	wait_queue_head_t *q;
1223 
1224 	page = compound_head(page);
1225 	q = page_waitqueue(page);
1226 	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
1227 }
1228 
1229 /**
1230  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1231  * @page: Page defining the wait queue of interest
1232  * @waiter: Waiter to add to the queue
1233  *
1234  * Add an arbitrary @waiter to the wait queue for the nominated @page.
1235  */
1236 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1237 {
1238 	wait_queue_head_t *q = page_waitqueue(page);
1239 	unsigned long flags;
1240 
1241 	spin_lock_irqsave(&q->lock, flags);
1242 	__add_wait_queue_entry_tail(q, waiter);
1243 	SetPageWaiters(page);
1244 	spin_unlock_irqrestore(&q->lock, flags);
1245 }
1246 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1247 
1248 #ifndef clear_bit_unlock_is_negative_byte
1249 
1250 /*
1251  * PG_waiters is the high bit in the same byte as PG_lock.
1252  *
1253  * On x86 (and on many other architectures), we can clear PG_lock and
1254  * test the sign bit at the same time. But if the architecture does
1255  * not support that special operation, we just do this all by hand
1256  * instead.
1257  *
1258  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1259  * being cleared, but a memory barrier should be unnecessary since it is
1260  * in the same byte as PG_locked.
1261  */
1262 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1263 {
1264 	clear_bit_unlock(nr, mem);
1265 	/* smp_mb__after_atomic(); */
1266 	return test_bit(PG_waiters, mem);
1267 }
1268 
1269 #endif
1270 
1271 /**
1272  * unlock_page - unlock a locked page
1273  * @page: the page
1274  *
1275  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1276  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1277  * mechanism between PageLocked pages and PageWriteback pages is shared.
1278  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1279  *
1280  * Note that this depends on PG_waiters being the sign bit in the byte
1281  * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1282  * clear the PG_locked bit and test PG_waiters at the same time fairly
1283  * portably (architectures that do LL/SC can test any bit, while x86 can
1284  * test the sign bit).
1285  */
1286 void unlock_page(struct page *page)
1287 {
1288 	BUILD_BUG_ON(PG_waiters != 7);
1289 	page = compound_head(page);
1290 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1291 	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1292 		wake_up_page_bit(page, PG_locked);
1293 }
1294 EXPORT_SYMBOL(unlock_page);
1295 
1296 /**
1297  * end_page_writeback - end writeback against a page
1298  * @page: the page
1299  */
1300 void end_page_writeback(struct page *page)
1301 {
1302 	/*
1303 	 * TestClearPageReclaim could be used here but it is an atomic
1304 	 * operation and overkill in this particular case. Failing to
1305 	 * shuffle a page marked for immediate reclaim is too mild to
1306 	 * justify taking an atomic operation penalty at the end of
1307 	 * ever page writeback.
1308 	 */
1309 	if (PageReclaim(page)) {
1310 		ClearPageReclaim(page);
1311 		rotate_reclaimable_page(page);
1312 	}
1313 
1314 	if (!test_clear_page_writeback(page))
1315 		BUG();
1316 
1317 	smp_mb__after_atomic();
1318 	wake_up_page(page, PG_writeback);
1319 }
1320 EXPORT_SYMBOL(end_page_writeback);
1321 
1322 /*
1323  * After completing I/O on a page, call this routine to update the page
1324  * flags appropriately
1325  */
1326 void page_endio(struct page *page, bool is_write, int err)
1327 {
1328 	if (!is_write) {
1329 		if (!err) {
1330 			SetPageUptodate(page);
1331 		} else {
1332 			ClearPageUptodate(page);
1333 			SetPageError(page);
1334 		}
1335 		unlock_page(page);
1336 	} else {
1337 		if (err) {
1338 			struct address_space *mapping;
1339 
1340 			SetPageError(page);
1341 			mapping = page_mapping(page);
1342 			if (mapping)
1343 				mapping_set_error(mapping, err);
1344 		}
1345 		end_page_writeback(page);
1346 	}
1347 }
1348 EXPORT_SYMBOL_GPL(page_endio);
1349 
1350 /**
1351  * __lock_page - get a lock on the page, assuming we need to sleep to get it
1352  * @__page: the page to lock
1353  */
1354 void __lock_page(struct page *__page)
1355 {
1356 	struct page *page = compound_head(__page);
1357 	wait_queue_head_t *q = page_waitqueue(page);
1358 	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1359 				EXCLUSIVE);
1360 }
1361 EXPORT_SYMBOL(__lock_page);
1362 
1363 int __lock_page_killable(struct page *__page)
1364 {
1365 	struct page *page = compound_head(__page);
1366 	wait_queue_head_t *q = page_waitqueue(page);
1367 	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1368 					EXCLUSIVE);
1369 }
1370 EXPORT_SYMBOL_GPL(__lock_page_killable);
1371 
1372 /*
1373  * Return values:
1374  * 1 - page is locked; mmap_lock is still held.
1375  * 0 - page is not locked.
1376  *     mmap_lock has been released (mmap_read_unlock(), unless flags had both
1377  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1378  *     which case mmap_lock is still held.
1379  *
1380  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1381  * with the page locked and the mmap_lock unperturbed.
1382  */
1383 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1384 			 unsigned int flags)
1385 {
1386 	if (fault_flag_allow_retry_first(flags)) {
1387 		/*
1388 		 * CAUTION! In this case, mmap_lock is not released
1389 		 * even though return 0.
1390 		 */
1391 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1392 			return 0;
1393 
1394 		mmap_read_unlock(mm);
1395 		if (flags & FAULT_FLAG_KILLABLE)
1396 			wait_on_page_locked_killable(page);
1397 		else
1398 			wait_on_page_locked(page);
1399 		return 0;
1400 	} else {
1401 		if (flags & FAULT_FLAG_KILLABLE) {
1402 			int ret;
1403 
1404 			ret = __lock_page_killable(page);
1405 			if (ret) {
1406 				mmap_read_unlock(mm);
1407 				return 0;
1408 			}
1409 		} else
1410 			__lock_page(page);
1411 		return 1;
1412 	}
1413 }
1414 
1415 /**
1416  * page_cache_next_miss() - Find the next gap in the page cache.
1417  * @mapping: Mapping.
1418  * @index: Index.
1419  * @max_scan: Maximum range to search.
1420  *
1421  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1422  * gap with the lowest index.
1423  *
1424  * This function may be called under the rcu_read_lock.  However, this will
1425  * not atomically search a snapshot of the cache at a single point in time.
1426  * For example, if a gap is created at index 5, then subsequently a gap is
1427  * created at index 10, page_cache_next_miss covering both indices may
1428  * return 10 if called under the rcu_read_lock.
1429  *
1430  * Return: The index of the gap if found, otherwise an index outside the
1431  * range specified (in which case 'return - index >= max_scan' will be true).
1432  * In the rare case of index wrap-around, 0 will be returned.
1433  */
1434 pgoff_t page_cache_next_miss(struct address_space *mapping,
1435 			     pgoff_t index, unsigned long max_scan)
1436 {
1437 	XA_STATE(xas, &mapping->i_pages, index);
1438 
1439 	while (max_scan--) {
1440 		void *entry = xas_next(&xas);
1441 		if (!entry || xa_is_value(entry))
1442 			break;
1443 		if (xas.xa_index == 0)
1444 			break;
1445 	}
1446 
1447 	return xas.xa_index;
1448 }
1449 EXPORT_SYMBOL(page_cache_next_miss);
1450 
1451 /**
1452  * page_cache_prev_miss() - Find the previous gap in the page cache.
1453  * @mapping: Mapping.
1454  * @index: Index.
1455  * @max_scan: Maximum range to search.
1456  *
1457  * Search the range [max(index - max_scan + 1, 0), index] for the
1458  * gap with the highest index.
1459  *
1460  * This function may be called under the rcu_read_lock.  However, this will
1461  * not atomically search a snapshot of the cache at a single point in time.
1462  * For example, if a gap is created at index 10, then subsequently a gap is
1463  * created at index 5, page_cache_prev_miss() covering both indices may
1464  * return 5 if called under the rcu_read_lock.
1465  *
1466  * Return: The index of the gap if found, otherwise an index outside the
1467  * range specified (in which case 'index - return >= max_scan' will be true).
1468  * In the rare case of wrap-around, ULONG_MAX will be returned.
1469  */
1470 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1471 			     pgoff_t index, unsigned long max_scan)
1472 {
1473 	XA_STATE(xas, &mapping->i_pages, index);
1474 
1475 	while (max_scan--) {
1476 		void *entry = xas_prev(&xas);
1477 		if (!entry || xa_is_value(entry))
1478 			break;
1479 		if (xas.xa_index == ULONG_MAX)
1480 			break;
1481 	}
1482 
1483 	return xas.xa_index;
1484 }
1485 EXPORT_SYMBOL(page_cache_prev_miss);
1486 
1487 /**
1488  * find_get_entry - find and get a page cache entry
1489  * @mapping: the address_space to search
1490  * @offset: the page cache index
1491  *
1492  * Looks up the page cache slot at @mapping & @offset.  If there is a
1493  * page cache page, it is returned with an increased refcount.
1494  *
1495  * If the slot holds a shadow entry of a previously evicted page, or a
1496  * swap entry from shmem/tmpfs, it is returned.
1497  *
1498  * Return: the found page or shadow entry, %NULL if nothing is found.
1499  */
1500 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1501 {
1502 	XA_STATE(xas, &mapping->i_pages, offset);
1503 	struct page *page;
1504 
1505 	rcu_read_lock();
1506 repeat:
1507 	xas_reset(&xas);
1508 	page = xas_load(&xas);
1509 	if (xas_retry(&xas, page))
1510 		goto repeat;
1511 	/*
1512 	 * A shadow entry of a recently evicted page, or a swap entry from
1513 	 * shmem/tmpfs.  Return it without attempting to raise page count.
1514 	 */
1515 	if (!page || xa_is_value(page))
1516 		goto out;
1517 
1518 	if (!page_cache_get_speculative(page))
1519 		goto repeat;
1520 
1521 	/*
1522 	 * Has the page moved or been split?
1523 	 * This is part of the lockless pagecache protocol. See
1524 	 * include/linux/pagemap.h for details.
1525 	 */
1526 	if (unlikely(page != xas_reload(&xas))) {
1527 		put_page(page);
1528 		goto repeat;
1529 	}
1530 	page = find_subpage(page, offset);
1531 out:
1532 	rcu_read_unlock();
1533 
1534 	return page;
1535 }
1536 
1537 /**
1538  * find_lock_entry - locate, pin and lock a page cache entry
1539  * @mapping: the address_space to search
1540  * @offset: the page cache index
1541  *
1542  * Looks up the page cache slot at @mapping & @offset.  If there is a
1543  * page cache page, it is returned locked and with an increased
1544  * refcount.
1545  *
1546  * If the slot holds a shadow entry of a previously evicted page, or a
1547  * swap entry from shmem/tmpfs, it is returned.
1548  *
1549  * find_lock_entry() may sleep.
1550  *
1551  * Return: the found page or shadow entry, %NULL if nothing is found.
1552  */
1553 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1554 {
1555 	struct page *page;
1556 
1557 repeat:
1558 	page = find_get_entry(mapping, offset);
1559 	if (page && !xa_is_value(page)) {
1560 		lock_page(page);
1561 		/* Has the page been truncated? */
1562 		if (unlikely(page_mapping(page) != mapping)) {
1563 			unlock_page(page);
1564 			put_page(page);
1565 			goto repeat;
1566 		}
1567 		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1568 	}
1569 	return page;
1570 }
1571 EXPORT_SYMBOL(find_lock_entry);
1572 
1573 /**
1574  * pagecache_get_page - Find and get a reference to a page.
1575  * @mapping: The address_space to search.
1576  * @index: The page index.
1577  * @fgp_flags: %FGP flags modify how the page is returned.
1578  * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified.
1579  *
1580  * Looks up the page cache entry at @mapping & @index.
1581  *
1582  * @fgp_flags can be zero or more of these flags:
1583  *
1584  * * %FGP_ACCESSED - The page will be marked accessed.
1585  * * %FGP_LOCK - The page is returned locked.
1586  * * %FGP_CREAT - If no page is present then a new page is allocated using
1587  *   @gfp_mask and added to the page cache and the VM's LRU list.
1588  *   The page is returned locked and with an increased refcount.
1589  * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1590  *   page is already in cache.  If the page was allocated, unlock it before
1591  *   returning so the caller can do the same dance.
1592  *
1593  * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1594  * if the %GFP flags specified for %FGP_CREAT are atomic.
1595  *
1596  * If there is a page cache page, it is returned with an increased refcount.
1597  *
1598  * Return: The found page or %NULL otherwise.
1599  */
1600 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
1601 		int fgp_flags, gfp_t gfp_mask)
1602 {
1603 	struct page *page;
1604 
1605 repeat:
1606 	page = find_get_entry(mapping, index);
1607 	if (xa_is_value(page))
1608 		page = NULL;
1609 	if (!page)
1610 		goto no_page;
1611 
1612 	if (fgp_flags & FGP_LOCK) {
1613 		if (fgp_flags & FGP_NOWAIT) {
1614 			if (!trylock_page(page)) {
1615 				put_page(page);
1616 				return NULL;
1617 			}
1618 		} else {
1619 			lock_page(page);
1620 		}
1621 
1622 		/* Has the page been truncated? */
1623 		if (unlikely(compound_head(page)->mapping != mapping)) {
1624 			unlock_page(page);
1625 			put_page(page);
1626 			goto repeat;
1627 		}
1628 		VM_BUG_ON_PAGE(page->index != index, page);
1629 	}
1630 
1631 	if (fgp_flags & FGP_ACCESSED)
1632 		mark_page_accessed(page);
1633 
1634 no_page:
1635 	if (!page && (fgp_flags & FGP_CREAT)) {
1636 		int err;
1637 		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1638 			gfp_mask |= __GFP_WRITE;
1639 		if (fgp_flags & FGP_NOFS)
1640 			gfp_mask &= ~__GFP_FS;
1641 
1642 		page = __page_cache_alloc(gfp_mask);
1643 		if (!page)
1644 			return NULL;
1645 
1646 		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1647 			fgp_flags |= FGP_LOCK;
1648 
1649 		/* Init accessed so avoid atomic mark_page_accessed later */
1650 		if (fgp_flags & FGP_ACCESSED)
1651 			__SetPageReferenced(page);
1652 
1653 		err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
1654 		if (unlikely(err)) {
1655 			put_page(page);
1656 			page = NULL;
1657 			if (err == -EEXIST)
1658 				goto repeat;
1659 		}
1660 
1661 		/*
1662 		 * add_to_page_cache_lru locks the page, and for mmap we expect
1663 		 * an unlocked page.
1664 		 */
1665 		if (page && (fgp_flags & FGP_FOR_MMAP))
1666 			unlock_page(page);
1667 	}
1668 
1669 	return page;
1670 }
1671 EXPORT_SYMBOL(pagecache_get_page);
1672 
1673 /**
1674  * find_get_entries - gang pagecache lookup
1675  * @mapping:	The address_space to search
1676  * @start:	The starting page cache index
1677  * @nr_entries:	The maximum number of entries
1678  * @entries:	Where the resulting entries are placed
1679  * @indices:	The cache indices corresponding to the entries in @entries
1680  *
1681  * find_get_entries() will search for and return a group of up to
1682  * @nr_entries entries in the mapping.  The entries are placed at
1683  * @entries.  find_get_entries() takes a reference against any actual
1684  * pages it returns.
1685  *
1686  * The search returns a group of mapping-contiguous page cache entries
1687  * with ascending indexes.  There may be holes in the indices due to
1688  * not-present pages.
1689  *
1690  * Any shadow entries of evicted pages, or swap entries from
1691  * shmem/tmpfs, are included in the returned array.
1692  *
1693  * If it finds a Transparent Huge Page, head or tail, find_get_entries()
1694  * stops at that page: the caller is likely to have a better way to handle
1695  * the compound page as a whole, and then skip its extent, than repeatedly
1696  * calling find_get_entries() to return all its tails.
1697  *
1698  * Return: the number of pages and shadow entries which were found.
1699  */
1700 unsigned find_get_entries(struct address_space *mapping,
1701 			  pgoff_t start, unsigned int nr_entries,
1702 			  struct page **entries, pgoff_t *indices)
1703 {
1704 	XA_STATE(xas, &mapping->i_pages, start);
1705 	struct page *page;
1706 	unsigned int ret = 0;
1707 
1708 	if (!nr_entries)
1709 		return 0;
1710 
1711 	rcu_read_lock();
1712 	xas_for_each(&xas, page, ULONG_MAX) {
1713 		if (xas_retry(&xas, page))
1714 			continue;
1715 		/*
1716 		 * A shadow entry of a recently evicted page, a swap
1717 		 * entry from shmem/tmpfs or a DAX entry.  Return it
1718 		 * without attempting to raise page count.
1719 		 */
1720 		if (xa_is_value(page))
1721 			goto export;
1722 
1723 		if (!page_cache_get_speculative(page))
1724 			goto retry;
1725 
1726 		/* Has the page moved or been split? */
1727 		if (unlikely(page != xas_reload(&xas)))
1728 			goto put_page;
1729 
1730 		/*
1731 		 * Terminate early on finding a THP, to allow the caller to
1732 		 * handle it all at once; but continue if this is hugetlbfs.
1733 		 */
1734 		if (PageTransHuge(page) && !PageHuge(page)) {
1735 			page = find_subpage(page, xas.xa_index);
1736 			nr_entries = ret + 1;
1737 		}
1738 export:
1739 		indices[ret] = xas.xa_index;
1740 		entries[ret] = page;
1741 		if (++ret == nr_entries)
1742 			break;
1743 		continue;
1744 put_page:
1745 		put_page(page);
1746 retry:
1747 		xas_reset(&xas);
1748 	}
1749 	rcu_read_unlock();
1750 	return ret;
1751 }
1752 
1753 /**
1754  * find_get_pages_range - gang pagecache lookup
1755  * @mapping:	The address_space to search
1756  * @start:	The starting page index
1757  * @end:	The final page index (inclusive)
1758  * @nr_pages:	The maximum number of pages
1759  * @pages:	Where the resulting pages are placed
1760  *
1761  * find_get_pages_range() will search for and return a group of up to @nr_pages
1762  * pages in the mapping starting at index @start and up to index @end
1763  * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
1764  * a reference against the returned pages.
1765  *
1766  * The search returns a group of mapping-contiguous pages with ascending
1767  * indexes.  There may be holes in the indices due to not-present pages.
1768  * We also update @start to index the next page for the traversal.
1769  *
1770  * Return: the number of pages which were found. If this number is
1771  * smaller than @nr_pages, the end of specified range has been
1772  * reached.
1773  */
1774 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1775 			      pgoff_t end, unsigned int nr_pages,
1776 			      struct page **pages)
1777 {
1778 	XA_STATE(xas, &mapping->i_pages, *start);
1779 	struct page *page;
1780 	unsigned ret = 0;
1781 
1782 	if (unlikely(!nr_pages))
1783 		return 0;
1784 
1785 	rcu_read_lock();
1786 	xas_for_each(&xas, page, end) {
1787 		if (xas_retry(&xas, page))
1788 			continue;
1789 		/* Skip over shadow, swap and DAX entries */
1790 		if (xa_is_value(page))
1791 			continue;
1792 
1793 		if (!page_cache_get_speculative(page))
1794 			goto retry;
1795 
1796 		/* Has the page moved or been split? */
1797 		if (unlikely(page != xas_reload(&xas)))
1798 			goto put_page;
1799 
1800 		pages[ret] = find_subpage(page, xas.xa_index);
1801 		if (++ret == nr_pages) {
1802 			*start = xas.xa_index + 1;
1803 			goto out;
1804 		}
1805 		continue;
1806 put_page:
1807 		put_page(page);
1808 retry:
1809 		xas_reset(&xas);
1810 	}
1811 
1812 	/*
1813 	 * We come here when there is no page beyond @end. We take care to not
1814 	 * overflow the index @start as it confuses some of the callers. This
1815 	 * breaks the iteration when there is a page at index -1 but that is
1816 	 * already broken anyway.
1817 	 */
1818 	if (end == (pgoff_t)-1)
1819 		*start = (pgoff_t)-1;
1820 	else
1821 		*start = end + 1;
1822 out:
1823 	rcu_read_unlock();
1824 
1825 	return ret;
1826 }
1827 
1828 /**
1829  * find_get_pages_contig - gang contiguous pagecache lookup
1830  * @mapping:	The address_space to search
1831  * @index:	The starting page index
1832  * @nr_pages:	The maximum number of pages
1833  * @pages:	Where the resulting pages are placed
1834  *
1835  * find_get_pages_contig() works exactly like find_get_pages(), except
1836  * that the returned number of pages are guaranteed to be contiguous.
1837  *
1838  * Return: the number of pages which were found.
1839  */
1840 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1841 			       unsigned int nr_pages, struct page **pages)
1842 {
1843 	XA_STATE(xas, &mapping->i_pages, index);
1844 	struct page *page;
1845 	unsigned int ret = 0;
1846 
1847 	if (unlikely(!nr_pages))
1848 		return 0;
1849 
1850 	rcu_read_lock();
1851 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1852 		if (xas_retry(&xas, page))
1853 			continue;
1854 		/*
1855 		 * If the entry has been swapped out, we can stop looking.
1856 		 * No current caller is looking for DAX entries.
1857 		 */
1858 		if (xa_is_value(page))
1859 			break;
1860 
1861 		if (!page_cache_get_speculative(page))
1862 			goto retry;
1863 
1864 		/* Has the page moved or been split? */
1865 		if (unlikely(page != xas_reload(&xas)))
1866 			goto put_page;
1867 
1868 		pages[ret] = find_subpage(page, xas.xa_index);
1869 		if (++ret == nr_pages)
1870 			break;
1871 		continue;
1872 put_page:
1873 		put_page(page);
1874 retry:
1875 		xas_reset(&xas);
1876 	}
1877 	rcu_read_unlock();
1878 	return ret;
1879 }
1880 EXPORT_SYMBOL(find_get_pages_contig);
1881 
1882 /**
1883  * find_get_pages_range_tag - find and return pages in given range matching @tag
1884  * @mapping:	the address_space to search
1885  * @index:	the starting page index
1886  * @end:	The final page index (inclusive)
1887  * @tag:	the tag index
1888  * @nr_pages:	the maximum number of pages
1889  * @pages:	where the resulting pages are placed
1890  *
1891  * Like find_get_pages, except we only return pages which are tagged with
1892  * @tag.   We update @index to index the next page for the traversal.
1893  *
1894  * Return: the number of pages which were found.
1895  */
1896 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1897 			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
1898 			struct page **pages)
1899 {
1900 	XA_STATE(xas, &mapping->i_pages, *index);
1901 	struct page *page;
1902 	unsigned ret = 0;
1903 
1904 	if (unlikely(!nr_pages))
1905 		return 0;
1906 
1907 	rcu_read_lock();
1908 	xas_for_each_marked(&xas, page, end, tag) {
1909 		if (xas_retry(&xas, page))
1910 			continue;
1911 		/*
1912 		 * Shadow entries should never be tagged, but this iteration
1913 		 * is lockless so there is a window for page reclaim to evict
1914 		 * a page we saw tagged.  Skip over it.
1915 		 */
1916 		if (xa_is_value(page))
1917 			continue;
1918 
1919 		if (!page_cache_get_speculative(page))
1920 			goto retry;
1921 
1922 		/* Has the page moved or been split? */
1923 		if (unlikely(page != xas_reload(&xas)))
1924 			goto put_page;
1925 
1926 		pages[ret] = find_subpage(page, xas.xa_index);
1927 		if (++ret == nr_pages) {
1928 			*index = xas.xa_index + 1;
1929 			goto out;
1930 		}
1931 		continue;
1932 put_page:
1933 		put_page(page);
1934 retry:
1935 		xas_reset(&xas);
1936 	}
1937 
1938 	/*
1939 	 * We come here when we got to @end. We take care to not overflow the
1940 	 * index @index as it confuses some of the callers. This breaks the
1941 	 * iteration when there is a page at index -1 but that is already
1942 	 * broken anyway.
1943 	 */
1944 	if (end == (pgoff_t)-1)
1945 		*index = (pgoff_t)-1;
1946 	else
1947 		*index = end + 1;
1948 out:
1949 	rcu_read_unlock();
1950 
1951 	return ret;
1952 }
1953 EXPORT_SYMBOL(find_get_pages_range_tag);
1954 
1955 /*
1956  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1957  * a _large_ part of the i/o request. Imagine the worst scenario:
1958  *
1959  *      ---R__________________________________________B__________
1960  *         ^ reading here                             ^ bad block(assume 4k)
1961  *
1962  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1963  * => failing the whole request => read(R) => read(R+1) =>
1964  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1965  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1966  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1967  *
1968  * It is going insane. Fix it by quickly scaling down the readahead size.
1969  */
1970 static void shrink_readahead_size_eio(struct file_ra_state *ra)
1971 {
1972 	ra->ra_pages /= 4;
1973 }
1974 
1975 /**
1976  * generic_file_buffered_read - generic file read routine
1977  * @iocb:	the iocb to read
1978  * @iter:	data destination
1979  * @written:	already copied
1980  *
1981  * This is a generic file read routine, and uses the
1982  * mapping->a_ops->readpage() function for the actual low-level stuff.
1983  *
1984  * This is really ugly. But the goto's actually try to clarify some
1985  * of the logic when it comes to error handling etc.
1986  *
1987  * Return:
1988  * * total number of bytes copied, including those the were already @written
1989  * * negative error code if nothing was copied
1990  */
1991 ssize_t generic_file_buffered_read(struct kiocb *iocb,
1992 		struct iov_iter *iter, ssize_t written)
1993 {
1994 	struct file *filp = iocb->ki_filp;
1995 	struct address_space *mapping = filp->f_mapping;
1996 	struct inode *inode = mapping->host;
1997 	struct file_ra_state *ra = &filp->f_ra;
1998 	loff_t *ppos = &iocb->ki_pos;
1999 	pgoff_t index;
2000 	pgoff_t last_index;
2001 	pgoff_t prev_index;
2002 	unsigned long offset;      /* offset into pagecache page */
2003 	unsigned int prev_offset;
2004 	int error = 0;
2005 
2006 	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2007 		return 0;
2008 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2009 
2010 	index = *ppos >> PAGE_SHIFT;
2011 	prev_index = ra->prev_pos >> PAGE_SHIFT;
2012 	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2013 	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2014 	offset = *ppos & ~PAGE_MASK;
2015 
2016 	for (;;) {
2017 		struct page *page;
2018 		pgoff_t end_index;
2019 		loff_t isize;
2020 		unsigned long nr, ret;
2021 
2022 		cond_resched();
2023 find_page:
2024 		if (fatal_signal_pending(current)) {
2025 			error = -EINTR;
2026 			goto out;
2027 		}
2028 
2029 		page = find_get_page(mapping, index);
2030 		if (!page) {
2031 			if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2032 				goto would_block;
2033 			page_cache_sync_readahead(mapping,
2034 					ra, filp,
2035 					index, last_index - index);
2036 			page = find_get_page(mapping, index);
2037 			if (unlikely(page == NULL))
2038 				goto no_cached_page;
2039 		}
2040 		if (PageReadahead(page)) {
2041 			if (iocb->ki_flags & IOCB_NOIO) {
2042 				put_page(page);
2043 				goto out;
2044 			}
2045 			page_cache_async_readahead(mapping,
2046 					ra, filp, page,
2047 					index, last_index - index);
2048 		}
2049 		if (!PageUptodate(page)) {
2050 			if (iocb->ki_flags & IOCB_NOWAIT) {
2051 				put_page(page);
2052 				goto would_block;
2053 			}
2054 
2055 			/*
2056 			 * See comment in do_read_cache_page on why
2057 			 * wait_on_page_locked is used to avoid unnecessarily
2058 			 * serialisations and why it's safe.
2059 			 */
2060 			error = wait_on_page_locked_killable(page);
2061 			if (unlikely(error))
2062 				goto readpage_error;
2063 			if (PageUptodate(page))
2064 				goto page_ok;
2065 
2066 			if (inode->i_blkbits == PAGE_SHIFT ||
2067 					!mapping->a_ops->is_partially_uptodate)
2068 				goto page_not_up_to_date;
2069 			/* pipes can't handle partially uptodate pages */
2070 			if (unlikely(iov_iter_is_pipe(iter)))
2071 				goto page_not_up_to_date;
2072 			if (!trylock_page(page))
2073 				goto page_not_up_to_date;
2074 			/* Did it get truncated before we got the lock? */
2075 			if (!page->mapping)
2076 				goto page_not_up_to_date_locked;
2077 			if (!mapping->a_ops->is_partially_uptodate(page,
2078 							offset, iter->count))
2079 				goto page_not_up_to_date_locked;
2080 			unlock_page(page);
2081 		}
2082 page_ok:
2083 		/*
2084 		 * i_size must be checked after we know the page is Uptodate.
2085 		 *
2086 		 * Checking i_size after the check allows us to calculate
2087 		 * the correct value for "nr", which means the zero-filled
2088 		 * part of the page is not copied back to userspace (unless
2089 		 * another truncate extends the file - this is desired though).
2090 		 */
2091 
2092 		isize = i_size_read(inode);
2093 		end_index = (isize - 1) >> PAGE_SHIFT;
2094 		if (unlikely(!isize || index > end_index)) {
2095 			put_page(page);
2096 			goto out;
2097 		}
2098 
2099 		/* nr is the maximum number of bytes to copy from this page */
2100 		nr = PAGE_SIZE;
2101 		if (index == end_index) {
2102 			nr = ((isize - 1) & ~PAGE_MASK) + 1;
2103 			if (nr <= offset) {
2104 				put_page(page);
2105 				goto out;
2106 			}
2107 		}
2108 		nr = nr - offset;
2109 
2110 		/* If users can be writing to this page using arbitrary
2111 		 * virtual addresses, take care about potential aliasing
2112 		 * before reading the page on the kernel side.
2113 		 */
2114 		if (mapping_writably_mapped(mapping))
2115 			flush_dcache_page(page);
2116 
2117 		/*
2118 		 * When a sequential read accesses a page several times,
2119 		 * only mark it as accessed the first time.
2120 		 */
2121 		if (prev_index != index || offset != prev_offset)
2122 			mark_page_accessed(page);
2123 		prev_index = index;
2124 
2125 		/*
2126 		 * Ok, we have the page, and it's up-to-date, so
2127 		 * now we can copy it to user space...
2128 		 */
2129 
2130 		ret = copy_page_to_iter(page, offset, nr, iter);
2131 		offset += ret;
2132 		index += offset >> PAGE_SHIFT;
2133 		offset &= ~PAGE_MASK;
2134 		prev_offset = offset;
2135 
2136 		put_page(page);
2137 		written += ret;
2138 		if (!iov_iter_count(iter))
2139 			goto out;
2140 		if (ret < nr) {
2141 			error = -EFAULT;
2142 			goto out;
2143 		}
2144 		continue;
2145 
2146 page_not_up_to_date:
2147 		/* Get exclusive access to the page ... */
2148 		error = lock_page_killable(page);
2149 		if (unlikely(error))
2150 			goto readpage_error;
2151 
2152 page_not_up_to_date_locked:
2153 		/* Did it get truncated before we got the lock? */
2154 		if (!page->mapping) {
2155 			unlock_page(page);
2156 			put_page(page);
2157 			continue;
2158 		}
2159 
2160 		/* Did somebody else fill it already? */
2161 		if (PageUptodate(page)) {
2162 			unlock_page(page);
2163 			goto page_ok;
2164 		}
2165 
2166 readpage:
2167 		if (iocb->ki_flags & IOCB_NOIO) {
2168 			unlock_page(page);
2169 			put_page(page);
2170 			goto would_block;
2171 		}
2172 		/*
2173 		 * A previous I/O error may have been due to temporary
2174 		 * failures, eg. multipath errors.
2175 		 * PG_error will be set again if readpage fails.
2176 		 */
2177 		ClearPageError(page);
2178 		/* Start the actual read. The read will unlock the page. */
2179 		error = mapping->a_ops->readpage(filp, page);
2180 
2181 		if (unlikely(error)) {
2182 			if (error == AOP_TRUNCATED_PAGE) {
2183 				put_page(page);
2184 				error = 0;
2185 				goto find_page;
2186 			}
2187 			goto readpage_error;
2188 		}
2189 
2190 		if (!PageUptodate(page)) {
2191 			error = lock_page_killable(page);
2192 			if (unlikely(error))
2193 				goto readpage_error;
2194 			if (!PageUptodate(page)) {
2195 				if (page->mapping == NULL) {
2196 					/*
2197 					 * invalidate_mapping_pages got it
2198 					 */
2199 					unlock_page(page);
2200 					put_page(page);
2201 					goto find_page;
2202 				}
2203 				unlock_page(page);
2204 				shrink_readahead_size_eio(ra);
2205 				error = -EIO;
2206 				goto readpage_error;
2207 			}
2208 			unlock_page(page);
2209 		}
2210 
2211 		goto page_ok;
2212 
2213 readpage_error:
2214 		/* UHHUH! A synchronous read error occurred. Report it */
2215 		put_page(page);
2216 		goto out;
2217 
2218 no_cached_page:
2219 		/*
2220 		 * Ok, it wasn't cached, so we need to create a new
2221 		 * page..
2222 		 */
2223 		page = page_cache_alloc(mapping);
2224 		if (!page) {
2225 			error = -ENOMEM;
2226 			goto out;
2227 		}
2228 		error = add_to_page_cache_lru(page, mapping, index,
2229 				mapping_gfp_constraint(mapping, GFP_KERNEL));
2230 		if (error) {
2231 			put_page(page);
2232 			if (error == -EEXIST) {
2233 				error = 0;
2234 				goto find_page;
2235 			}
2236 			goto out;
2237 		}
2238 		goto readpage;
2239 	}
2240 
2241 would_block:
2242 	error = -EAGAIN;
2243 out:
2244 	ra->prev_pos = prev_index;
2245 	ra->prev_pos <<= PAGE_SHIFT;
2246 	ra->prev_pos |= prev_offset;
2247 
2248 	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2249 	file_accessed(filp);
2250 	return written ? written : error;
2251 }
2252 EXPORT_SYMBOL_GPL(generic_file_buffered_read);
2253 
2254 /**
2255  * generic_file_read_iter - generic filesystem read routine
2256  * @iocb:	kernel I/O control block
2257  * @iter:	destination for the data read
2258  *
2259  * This is the "read_iter()" routine for all filesystems
2260  * that can use the page cache directly.
2261  *
2262  * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2263  * be returned when no data can be read without waiting for I/O requests
2264  * to complete; it doesn't prevent readahead.
2265  *
2266  * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2267  * requests shall be made for the read or for readahead.  When no data
2268  * can be read, -EAGAIN shall be returned.  When readahead would be
2269  * triggered, a partial, possibly empty read shall be returned.
2270  *
2271  * Return:
2272  * * number of bytes copied, even for partial reads
2273  * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2274  */
2275 ssize_t
2276 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2277 {
2278 	size_t count = iov_iter_count(iter);
2279 	ssize_t retval = 0;
2280 
2281 	if (!count)
2282 		goto out; /* skip atime */
2283 
2284 	if (iocb->ki_flags & IOCB_DIRECT) {
2285 		struct file *file = iocb->ki_filp;
2286 		struct address_space *mapping = file->f_mapping;
2287 		struct inode *inode = mapping->host;
2288 		loff_t size;
2289 
2290 		size = i_size_read(inode);
2291 		if (iocb->ki_flags & IOCB_NOWAIT) {
2292 			if (filemap_range_has_page(mapping, iocb->ki_pos,
2293 						   iocb->ki_pos + count - 1))
2294 				return -EAGAIN;
2295 		} else {
2296 			retval = filemap_write_and_wait_range(mapping,
2297 						iocb->ki_pos,
2298 					        iocb->ki_pos + count - 1);
2299 			if (retval < 0)
2300 				goto out;
2301 		}
2302 
2303 		file_accessed(file);
2304 
2305 		retval = mapping->a_ops->direct_IO(iocb, iter);
2306 		if (retval >= 0) {
2307 			iocb->ki_pos += retval;
2308 			count -= retval;
2309 		}
2310 		iov_iter_revert(iter, count - iov_iter_count(iter));
2311 
2312 		/*
2313 		 * Btrfs can have a short DIO read if we encounter
2314 		 * compressed extents, so if there was an error, or if
2315 		 * we've already read everything we wanted to, or if
2316 		 * there was a short read because we hit EOF, go ahead
2317 		 * and return.  Otherwise fallthrough to buffered io for
2318 		 * the rest of the read.  Buffered reads will not work for
2319 		 * DAX files, so don't bother trying.
2320 		 */
2321 		if (retval < 0 || !count || iocb->ki_pos >= size ||
2322 		    IS_DAX(inode))
2323 			goto out;
2324 	}
2325 
2326 	retval = generic_file_buffered_read(iocb, iter, retval);
2327 out:
2328 	return retval;
2329 }
2330 EXPORT_SYMBOL(generic_file_read_iter);
2331 
2332 #ifdef CONFIG_MMU
2333 #define MMAP_LOTSAMISS  (100)
2334 /*
2335  * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2336  * @vmf - the vm_fault for this fault.
2337  * @page - the page to lock.
2338  * @fpin - the pointer to the file we may pin (or is already pinned).
2339  *
2340  * This works similar to lock_page_or_retry in that it can drop the mmap_lock.
2341  * It differs in that it actually returns the page locked if it returns 1 and 0
2342  * if it couldn't lock the page.  If we did have to drop the mmap_lock then fpin
2343  * will point to the pinned file and needs to be fput()'ed at a later point.
2344  */
2345 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2346 				     struct file **fpin)
2347 {
2348 	if (trylock_page(page))
2349 		return 1;
2350 
2351 	/*
2352 	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2353 	 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2354 	 * is supposed to work. We have way too many special cases..
2355 	 */
2356 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2357 		return 0;
2358 
2359 	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2360 	if (vmf->flags & FAULT_FLAG_KILLABLE) {
2361 		if (__lock_page_killable(page)) {
2362 			/*
2363 			 * We didn't have the right flags to drop the mmap_lock,
2364 			 * but all fault_handlers only check for fatal signals
2365 			 * if we return VM_FAULT_RETRY, so we need to drop the
2366 			 * mmap_lock here and return 0 if we don't have a fpin.
2367 			 */
2368 			if (*fpin == NULL)
2369 				mmap_read_unlock(vmf->vma->vm_mm);
2370 			return 0;
2371 		}
2372 	} else
2373 		__lock_page(page);
2374 	return 1;
2375 }
2376 
2377 
2378 /*
2379  * Synchronous readahead happens when we don't even find a page in the page
2380  * cache at all.  We don't want to perform IO under the mmap sem, so if we have
2381  * to drop the mmap sem we return the file that was pinned in order for us to do
2382  * that.  If we didn't pin a file then we return NULL.  The file that is
2383  * returned needs to be fput()'ed when we're done with it.
2384  */
2385 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2386 {
2387 	struct file *file = vmf->vma->vm_file;
2388 	struct file_ra_state *ra = &file->f_ra;
2389 	struct address_space *mapping = file->f_mapping;
2390 	struct file *fpin = NULL;
2391 	pgoff_t offset = vmf->pgoff;
2392 
2393 	/* If we don't want any read-ahead, don't bother */
2394 	if (vmf->vma->vm_flags & VM_RAND_READ)
2395 		return fpin;
2396 	if (!ra->ra_pages)
2397 		return fpin;
2398 
2399 	if (vmf->vma->vm_flags & VM_SEQ_READ) {
2400 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2401 		page_cache_sync_readahead(mapping, ra, file, offset,
2402 					  ra->ra_pages);
2403 		return fpin;
2404 	}
2405 
2406 	/* Avoid banging the cache line if not needed */
2407 	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2408 		ra->mmap_miss++;
2409 
2410 	/*
2411 	 * Do we miss much more than hit in this file? If so,
2412 	 * stop bothering with read-ahead. It will only hurt.
2413 	 */
2414 	if (ra->mmap_miss > MMAP_LOTSAMISS)
2415 		return fpin;
2416 
2417 	/*
2418 	 * mmap read-around
2419 	 */
2420 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2421 	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2422 	ra->size = ra->ra_pages;
2423 	ra->async_size = ra->ra_pages / 4;
2424 	ra_submit(ra, mapping, file);
2425 	return fpin;
2426 }
2427 
2428 /*
2429  * Asynchronous readahead happens when we find the page and PG_readahead,
2430  * so we want to possibly extend the readahead further.  We return the file that
2431  * was pinned if we have to drop the mmap_lock in order to do IO.
2432  */
2433 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2434 					    struct page *page)
2435 {
2436 	struct file *file = vmf->vma->vm_file;
2437 	struct file_ra_state *ra = &file->f_ra;
2438 	struct address_space *mapping = file->f_mapping;
2439 	struct file *fpin = NULL;
2440 	pgoff_t offset = vmf->pgoff;
2441 
2442 	/* If we don't want any read-ahead, don't bother */
2443 	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
2444 		return fpin;
2445 	if (ra->mmap_miss > 0)
2446 		ra->mmap_miss--;
2447 	if (PageReadahead(page)) {
2448 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2449 		page_cache_async_readahead(mapping, ra, file,
2450 					   page, offset, ra->ra_pages);
2451 	}
2452 	return fpin;
2453 }
2454 
2455 /**
2456  * filemap_fault - read in file data for page fault handling
2457  * @vmf:	struct vm_fault containing details of the fault
2458  *
2459  * filemap_fault() is invoked via the vma operations vector for a
2460  * mapped memory region to read in file data during a page fault.
2461  *
2462  * The goto's are kind of ugly, but this streamlines the normal case of having
2463  * it in the page cache, and handles the special cases reasonably without
2464  * having a lot of duplicated code.
2465  *
2466  * vma->vm_mm->mmap_lock must be held on entry.
2467  *
2468  * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
2469  * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
2470  *
2471  * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
2472  * has not been released.
2473  *
2474  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2475  *
2476  * Return: bitwise-OR of %VM_FAULT_ codes.
2477  */
2478 vm_fault_t filemap_fault(struct vm_fault *vmf)
2479 {
2480 	int error;
2481 	struct file *file = vmf->vma->vm_file;
2482 	struct file *fpin = NULL;
2483 	struct address_space *mapping = file->f_mapping;
2484 	struct file_ra_state *ra = &file->f_ra;
2485 	struct inode *inode = mapping->host;
2486 	pgoff_t offset = vmf->pgoff;
2487 	pgoff_t max_off;
2488 	struct page *page;
2489 	vm_fault_t ret = 0;
2490 
2491 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2492 	if (unlikely(offset >= max_off))
2493 		return VM_FAULT_SIGBUS;
2494 
2495 	/*
2496 	 * Do we have something in the page cache already?
2497 	 */
2498 	page = find_get_page(mapping, offset);
2499 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2500 		/*
2501 		 * We found the page, so try async readahead before
2502 		 * waiting for the lock.
2503 		 */
2504 		fpin = do_async_mmap_readahead(vmf, page);
2505 	} else if (!page) {
2506 		/* No page in the page cache at all */
2507 		count_vm_event(PGMAJFAULT);
2508 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2509 		ret = VM_FAULT_MAJOR;
2510 		fpin = do_sync_mmap_readahead(vmf);
2511 retry_find:
2512 		page = pagecache_get_page(mapping, offset,
2513 					  FGP_CREAT|FGP_FOR_MMAP,
2514 					  vmf->gfp_mask);
2515 		if (!page) {
2516 			if (fpin)
2517 				goto out_retry;
2518 			return VM_FAULT_OOM;
2519 		}
2520 	}
2521 
2522 	if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2523 		goto out_retry;
2524 
2525 	/* Did it get truncated? */
2526 	if (unlikely(compound_head(page)->mapping != mapping)) {
2527 		unlock_page(page);
2528 		put_page(page);
2529 		goto retry_find;
2530 	}
2531 	VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
2532 
2533 	/*
2534 	 * We have a locked page in the page cache, now we need to check
2535 	 * that it's up-to-date. If not, it is going to be due to an error.
2536 	 */
2537 	if (unlikely(!PageUptodate(page)))
2538 		goto page_not_uptodate;
2539 
2540 	/*
2541 	 * We've made it this far and we had to drop our mmap_lock, now is the
2542 	 * time to return to the upper layer and have it re-find the vma and
2543 	 * redo the fault.
2544 	 */
2545 	if (fpin) {
2546 		unlock_page(page);
2547 		goto out_retry;
2548 	}
2549 
2550 	/*
2551 	 * Found the page and have a reference on it.
2552 	 * We must recheck i_size under page lock.
2553 	 */
2554 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2555 	if (unlikely(offset >= max_off)) {
2556 		unlock_page(page);
2557 		put_page(page);
2558 		return VM_FAULT_SIGBUS;
2559 	}
2560 
2561 	vmf->page = page;
2562 	return ret | VM_FAULT_LOCKED;
2563 
2564 page_not_uptodate:
2565 	/*
2566 	 * Umm, take care of errors if the page isn't up-to-date.
2567 	 * Try to re-read it _once_. We do this synchronously,
2568 	 * because there really aren't any performance issues here
2569 	 * and we need to check for errors.
2570 	 */
2571 	ClearPageError(page);
2572 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2573 	error = mapping->a_ops->readpage(file, page);
2574 	if (!error) {
2575 		wait_on_page_locked(page);
2576 		if (!PageUptodate(page))
2577 			error = -EIO;
2578 	}
2579 	if (fpin)
2580 		goto out_retry;
2581 	put_page(page);
2582 
2583 	if (!error || error == AOP_TRUNCATED_PAGE)
2584 		goto retry_find;
2585 
2586 	shrink_readahead_size_eio(ra);
2587 	return VM_FAULT_SIGBUS;
2588 
2589 out_retry:
2590 	/*
2591 	 * We dropped the mmap_lock, we need to return to the fault handler to
2592 	 * re-find the vma and come back and find our hopefully still populated
2593 	 * page.
2594 	 */
2595 	if (page)
2596 		put_page(page);
2597 	if (fpin)
2598 		fput(fpin);
2599 	return ret | VM_FAULT_RETRY;
2600 }
2601 EXPORT_SYMBOL(filemap_fault);
2602 
2603 void filemap_map_pages(struct vm_fault *vmf,
2604 		pgoff_t start_pgoff, pgoff_t end_pgoff)
2605 {
2606 	struct file *file = vmf->vma->vm_file;
2607 	struct address_space *mapping = file->f_mapping;
2608 	pgoff_t last_pgoff = start_pgoff;
2609 	unsigned long max_idx;
2610 	XA_STATE(xas, &mapping->i_pages, start_pgoff);
2611 	struct page *page;
2612 
2613 	rcu_read_lock();
2614 	xas_for_each(&xas, page, end_pgoff) {
2615 		if (xas_retry(&xas, page))
2616 			continue;
2617 		if (xa_is_value(page))
2618 			goto next;
2619 
2620 		/*
2621 		 * Check for a locked page first, as a speculative
2622 		 * reference may adversely influence page migration.
2623 		 */
2624 		if (PageLocked(page))
2625 			goto next;
2626 		if (!page_cache_get_speculative(page))
2627 			goto next;
2628 
2629 		/* Has the page moved or been split? */
2630 		if (unlikely(page != xas_reload(&xas)))
2631 			goto skip;
2632 		page = find_subpage(page, xas.xa_index);
2633 
2634 		if (!PageUptodate(page) ||
2635 				PageReadahead(page) ||
2636 				PageHWPoison(page))
2637 			goto skip;
2638 		if (!trylock_page(page))
2639 			goto skip;
2640 
2641 		if (page->mapping != mapping || !PageUptodate(page))
2642 			goto unlock;
2643 
2644 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2645 		if (page->index >= max_idx)
2646 			goto unlock;
2647 
2648 		if (file->f_ra.mmap_miss > 0)
2649 			file->f_ra.mmap_miss--;
2650 
2651 		vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
2652 		if (vmf->pte)
2653 			vmf->pte += xas.xa_index - last_pgoff;
2654 		last_pgoff = xas.xa_index;
2655 		if (alloc_set_pte(vmf, page))
2656 			goto unlock;
2657 		unlock_page(page);
2658 		goto next;
2659 unlock:
2660 		unlock_page(page);
2661 skip:
2662 		put_page(page);
2663 next:
2664 		/* Huge page is mapped? No need to proceed. */
2665 		if (pmd_trans_huge(*vmf->pmd))
2666 			break;
2667 	}
2668 	rcu_read_unlock();
2669 }
2670 EXPORT_SYMBOL(filemap_map_pages);
2671 
2672 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2673 {
2674 	struct page *page = vmf->page;
2675 	struct inode *inode = file_inode(vmf->vma->vm_file);
2676 	vm_fault_t ret = VM_FAULT_LOCKED;
2677 
2678 	sb_start_pagefault(inode->i_sb);
2679 	file_update_time(vmf->vma->vm_file);
2680 	lock_page(page);
2681 	if (page->mapping != inode->i_mapping) {
2682 		unlock_page(page);
2683 		ret = VM_FAULT_NOPAGE;
2684 		goto out;
2685 	}
2686 	/*
2687 	 * We mark the page dirty already here so that when freeze is in
2688 	 * progress, we are guaranteed that writeback during freezing will
2689 	 * see the dirty page and writeprotect it again.
2690 	 */
2691 	set_page_dirty(page);
2692 	wait_for_stable_page(page);
2693 out:
2694 	sb_end_pagefault(inode->i_sb);
2695 	return ret;
2696 }
2697 
2698 const struct vm_operations_struct generic_file_vm_ops = {
2699 	.fault		= filemap_fault,
2700 	.map_pages	= filemap_map_pages,
2701 	.page_mkwrite	= filemap_page_mkwrite,
2702 };
2703 
2704 /* This is used for a general mmap of a disk file */
2705 
2706 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2707 {
2708 	struct address_space *mapping = file->f_mapping;
2709 
2710 	if (!mapping->a_ops->readpage)
2711 		return -ENOEXEC;
2712 	file_accessed(file);
2713 	vma->vm_ops = &generic_file_vm_ops;
2714 	return 0;
2715 }
2716 
2717 /*
2718  * This is for filesystems which do not implement ->writepage.
2719  */
2720 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2721 {
2722 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2723 		return -EINVAL;
2724 	return generic_file_mmap(file, vma);
2725 }
2726 #else
2727 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2728 {
2729 	return VM_FAULT_SIGBUS;
2730 }
2731 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2732 {
2733 	return -ENOSYS;
2734 }
2735 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2736 {
2737 	return -ENOSYS;
2738 }
2739 #endif /* CONFIG_MMU */
2740 
2741 EXPORT_SYMBOL(filemap_page_mkwrite);
2742 EXPORT_SYMBOL(generic_file_mmap);
2743 EXPORT_SYMBOL(generic_file_readonly_mmap);
2744 
2745 static struct page *wait_on_page_read(struct page *page)
2746 {
2747 	if (!IS_ERR(page)) {
2748 		wait_on_page_locked(page);
2749 		if (!PageUptodate(page)) {
2750 			put_page(page);
2751 			page = ERR_PTR(-EIO);
2752 		}
2753 	}
2754 	return page;
2755 }
2756 
2757 static struct page *do_read_cache_page(struct address_space *mapping,
2758 				pgoff_t index,
2759 				int (*filler)(void *, struct page *),
2760 				void *data,
2761 				gfp_t gfp)
2762 {
2763 	struct page *page;
2764 	int err;
2765 repeat:
2766 	page = find_get_page(mapping, index);
2767 	if (!page) {
2768 		page = __page_cache_alloc(gfp);
2769 		if (!page)
2770 			return ERR_PTR(-ENOMEM);
2771 		err = add_to_page_cache_lru(page, mapping, index, gfp);
2772 		if (unlikely(err)) {
2773 			put_page(page);
2774 			if (err == -EEXIST)
2775 				goto repeat;
2776 			/* Presumably ENOMEM for xarray node */
2777 			return ERR_PTR(err);
2778 		}
2779 
2780 filler:
2781 		if (filler)
2782 			err = filler(data, page);
2783 		else
2784 			err = mapping->a_ops->readpage(data, page);
2785 
2786 		if (err < 0) {
2787 			put_page(page);
2788 			return ERR_PTR(err);
2789 		}
2790 
2791 		page = wait_on_page_read(page);
2792 		if (IS_ERR(page))
2793 			return page;
2794 		goto out;
2795 	}
2796 	if (PageUptodate(page))
2797 		goto out;
2798 
2799 	/*
2800 	 * Page is not up to date and may be locked due one of the following
2801 	 * case a: Page is being filled and the page lock is held
2802 	 * case b: Read/write error clearing the page uptodate status
2803 	 * case c: Truncation in progress (page locked)
2804 	 * case d: Reclaim in progress
2805 	 *
2806 	 * Case a, the page will be up to date when the page is unlocked.
2807 	 *    There is no need to serialise on the page lock here as the page
2808 	 *    is pinned so the lock gives no additional protection. Even if the
2809 	 *    the page is truncated, the data is still valid if PageUptodate as
2810 	 *    it's a race vs truncate race.
2811 	 * Case b, the page will not be up to date
2812 	 * Case c, the page may be truncated but in itself, the data may still
2813 	 *    be valid after IO completes as it's a read vs truncate race. The
2814 	 *    operation must restart if the page is not uptodate on unlock but
2815 	 *    otherwise serialising on page lock to stabilise the mapping gives
2816 	 *    no additional guarantees to the caller as the page lock is
2817 	 *    released before return.
2818 	 * Case d, similar to truncation. If reclaim holds the page lock, it
2819 	 *    will be a race with remove_mapping that determines if the mapping
2820 	 *    is valid on unlock but otherwise the data is valid and there is
2821 	 *    no need to serialise with page lock.
2822 	 *
2823 	 * As the page lock gives no additional guarantee, we optimistically
2824 	 * wait on the page to be unlocked and check if it's up to date and
2825 	 * use the page if it is. Otherwise, the page lock is required to
2826 	 * distinguish between the different cases. The motivation is that we
2827 	 * avoid spurious serialisations and wakeups when multiple processes
2828 	 * wait on the same page for IO to complete.
2829 	 */
2830 	wait_on_page_locked(page);
2831 	if (PageUptodate(page))
2832 		goto out;
2833 
2834 	/* Distinguish between all the cases under the safety of the lock */
2835 	lock_page(page);
2836 
2837 	/* Case c or d, restart the operation */
2838 	if (!page->mapping) {
2839 		unlock_page(page);
2840 		put_page(page);
2841 		goto repeat;
2842 	}
2843 
2844 	/* Someone else locked and filled the page in a very small window */
2845 	if (PageUptodate(page)) {
2846 		unlock_page(page);
2847 		goto out;
2848 	}
2849 
2850 	/*
2851 	 * A previous I/O error may have been due to temporary
2852 	 * failures.
2853 	 * Clear page error before actual read, PG_error will be
2854 	 * set again if read page fails.
2855 	 */
2856 	ClearPageError(page);
2857 	goto filler;
2858 
2859 out:
2860 	mark_page_accessed(page);
2861 	return page;
2862 }
2863 
2864 /**
2865  * read_cache_page - read into page cache, fill it if needed
2866  * @mapping:	the page's address_space
2867  * @index:	the page index
2868  * @filler:	function to perform the read
2869  * @data:	first arg to filler(data, page) function, often left as NULL
2870  *
2871  * Read into the page cache. If a page already exists, and PageUptodate() is
2872  * not set, try to fill the page and wait for it to become unlocked.
2873  *
2874  * If the page does not get brought uptodate, return -EIO.
2875  *
2876  * Return: up to date page on success, ERR_PTR() on failure.
2877  */
2878 struct page *read_cache_page(struct address_space *mapping,
2879 				pgoff_t index,
2880 				int (*filler)(void *, struct page *),
2881 				void *data)
2882 {
2883 	return do_read_cache_page(mapping, index, filler, data,
2884 			mapping_gfp_mask(mapping));
2885 }
2886 EXPORT_SYMBOL(read_cache_page);
2887 
2888 /**
2889  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2890  * @mapping:	the page's address_space
2891  * @index:	the page index
2892  * @gfp:	the page allocator flags to use if allocating
2893  *
2894  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2895  * any new page allocations done using the specified allocation flags.
2896  *
2897  * If the page does not get brought uptodate, return -EIO.
2898  *
2899  * Return: up to date page on success, ERR_PTR() on failure.
2900  */
2901 struct page *read_cache_page_gfp(struct address_space *mapping,
2902 				pgoff_t index,
2903 				gfp_t gfp)
2904 {
2905 	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
2906 }
2907 EXPORT_SYMBOL(read_cache_page_gfp);
2908 
2909 /*
2910  * Don't operate on ranges the page cache doesn't support, and don't exceed the
2911  * LFS limits.  If pos is under the limit it becomes a short access.  If it
2912  * exceeds the limit we return -EFBIG.
2913  */
2914 static int generic_write_check_limits(struct file *file, loff_t pos,
2915 				      loff_t *count)
2916 {
2917 	struct inode *inode = file->f_mapping->host;
2918 	loff_t max_size = inode->i_sb->s_maxbytes;
2919 	loff_t limit = rlimit(RLIMIT_FSIZE);
2920 
2921 	if (limit != RLIM_INFINITY) {
2922 		if (pos >= limit) {
2923 			send_sig(SIGXFSZ, current, 0);
2924 			return -EFBIG;
2925 		}
2926 		*count = min(*count, limit - pos);
2927 	}
2928 
2929 	if (!(file->f_flags & O_LARGEFILE))
2930 		max_size = MAX_NON_LFS;
2931 
2932 	if (unlikely(pos >= max_size))
2933 		return -EFBIG;
2934 
2935 	*count = min(*count, max_size - pos);
2936 
2937 	return 0;
2938 }
2939 
2940 /*
2941  * Performs necessary checks before doing a write
2942  *
2943  * Can adjust writing position or amount of bytes to write.
2944  * Returns appropriate error code that caller should return or
2945  * zero in case that write should be allowed.
2946  */
2947 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2948 {
2949 	struct file *file = iocb->ki_filp;
2950 	struct inode *inode = file->f_mapping->host;
2951 	loff_t count;
2952 	int ret;
2953 
2954 	if (IS_SWAPFILE(inode))
2955 		return -ETXTBSY;
2956 
2957 	if (!iov_iter_count(from))
2958 		return 0;
2959 
2960 	/* FIXME: this is for backwards compatibility with 2.4 */
2961 	if (iocb->ki_flags & IOCB_APPEND)
2962 		iocb->ki_pos = i_size_read(inode);
2963 
2964 	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2965 		return -EINVAL;
2966 
2967 	count = iov_iter_count(from);
2968 	ret = generic_write_check_limits(file, iocb->ki_pos, &count);
2969 	if (ret)
2970 		return ret;
2971 
2972 	iov_iter_truncate(from, count);
2973 	return iov_iter_count(from);
2974 }
2975 EXPORT_SYMBOL(generic_write_checks);
2976 
2977 /*
2978  * Performs necessary checks before doing a clone.
2979  *
2980  * Can adjust amount of bytes to clone via @req_count argument.
2981  * Returns appropriate error code that caller should return or
2982  * zero in case the clone should be allowed.
2983  */
2984 int generic_remap_checks(struct file *file_in, loff_t pos_in,
2985 			 struct file *file_out, loff_t pos_out,
2986 			 loff_t *req_count, unsigned int remap_flags)
2987 {
2988 	struct inode *inode_in = file_in->f_mapping->host;
2989 	struct inode *inode_out = file_out->f_mapping->host;
2990 	uint64_t count = *req_count;
2991 	uint64_t bcount;
2992 	loff_t size_in, size_out;
2993 	loff_t bs = inode_out->i_sb->s_blocksize;
2994 	int ret;
2995 
2996 	/* The start of both ranges must be aligned to an fs block. */
2997 	if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
2998 		return -EINVAL;
2999 
3000 	/* Ensure offsets don't wrap. */
3001 	if (pos_in + count < pos_in || pos_out + count < pos_out)
3002 		return -EINVAL;
3003 
3004 	size_in = i_size_read(inode_in);
3005 	size_out = i_size_read(inode_out);
3006 
3007 	/* Dedupe requires both ranges to be within EOF. */
3008 	if ((remap_flags & REMAP_FILE_DEDUP) &&
3009 	    (pos_in >= size_in || pos_in + count > size_in ||
3010 	     pos_out >= size_out || pos_out + count > size_out))
3011 		return -EINVAL;
3012 
3013 	/* Ensure the infile range is within the infile. */
3014 	if (pos_in >= size_in)
3015 		return -EINVAL;
3016 	count = min(count, size_in - (uint64_t)pos_in);
3017 
3018 	ret = generic_write_check_limits(file_out, pos_out, &count);
3019 	if (ret)
3020 		return ret;
3021 
3022 	/*
3023 	 * If the user wanted us to link to the infile's EOF, round up to the
3024 	 * next block boundary for this check.
3025 	 *
3026 	 * Otherwise, make sure the count is also block-aligned, having
3027 	 * already confirmed the starting offsets' block alignment.
3028 	 */
3029 	if (pos_in + count == size_in) {
3030 		bcount = ALIGN(size_in, bs) - pos_in;
3031 	} else {
3032 		if (!IS_ALIGNED(count, bs))
3033 			count = ALIGN_DOWN(count, bs);
3034 		bcount = count;
3035 	}
3036 
3037 	/* Don't allow overlapped cloning within the same file. */
3038 	if (inode_in == inode_out &&
3039 	    pos_out + bcount > pos_in &&
3040 	    pos_out < pos_in + bcount)
3041 		return -EINVAL;
3042 
3043 	/*
3044 	 * We shortened the request but the caller can't deal with that, so
3045 	 * bounce the request back to userspace.
3046 	 */
3047 	if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
3048 		return -EINVAL;
3049 
3050 	*req_count = count;
3051 	return 0;
3052 }
3053 
3054 
3055 /*
3056  * Performs common checks before doing a file copy/clone
3057  * from @file_in to @file_out.
3058  */
3059 int generic_file_rw_checks(struct file *file_in, struct file *file_out)
3060 {
3061 	struct inode *inode_in = file_inode(file_in);
3062 	struct inode *inode_out = file_inode(file_out);
3063 
3064 	/* Don't copy dirs, pipes, sockets... */
3065 	if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode))
3066 		return -EISDIR;
3067 	if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode))
3068 		return -EINVAL;
3069 
3070 	if (!(file_in->f_mode & FMODE_READ) ||
3071 	    !(file_out->f_mode & FMODE_WRITE) ||
3072 	    (file_out->f_flags & O_APPEND))
3073 		return -EBADF;
3074 
3075 	return 0;
3076 }
3077 
3078 /*
3079  * Performs necessary checks before doing a file copy
3080  *
3081  * Can adjust amount of bytes to copy via @req_count argument.
3082  * Returns appropriate error code that caller should return or
3083  * zero in case the copy should be allowed.
3084  */
3085 int generic_copy_file_checks(struct file *file_in, loff_t pos_in,
3086 			     struct file *file_out, loff_t pos_out,
3087 			     size_t *req_count, unsigned int flags)
3088 {
3089 	struct inode *inode_in = file_inode(file_in);
3090 	struct inode *inode_out = file_inode(file_out);
3091 	uint64_t count = *req_count;
3092 	loff_t size_in;
3093 	int ret;
3094 
3095 	ret = generic_file_rw_checks(file_in, file_out);
3096 	if (ret)
3097 		return ret;
3098 
3099 	/* Don't touch certain kinds of inodes */
3100 	if (IS_IMMUTABLE(inode_out))
3101 		return -EPERM;
3102 
3103 	if (IS_SWAPFILE(inode_in) || IS_SWAPFILE(inode_out))
3104 		return -ETXTBSY;
3105 
3106 	/* Ensure offsets don't wrap. */
3107 	if (pos_in + count < pos_in || pos_out + count < pos_out)
3108 		return -EOVERFLOW;
3109 
3110 	/* Shorten the copy to EOF */
3111 	size_in = i_size_read(inode_in);
3112 	if (pos_in >= size_in)
3113 		count = 0;
3114 	else
3115 		count = min(count, size_in - (uint64_t)pos_in);
3116 
3117 	ret = generic_write_check_limits(file_out, pos_out, &count);
3118 	if (ret)
3119 		return ret;
3120 
3121 	/* Don't allow overlapped copying within the same file. */
3122 	if (inode_in == inode_out &&
3123 	    pos_out + count > pos_in &&
3124 	    pos_out < pos_in + count)
3125 		return -EINVAL;
3126 
3127 	*req_count = count;
3128 	return 0;
3129 }
3130 
3131 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3132 				loff_t pos, unsigned len, unsigned flags,
3133 				struct page **pagep, void **fsdata)
3134 {
3135 	const struct address_space_operations *aops = mapping->a_ops;
3136 
3137 	return aops->write_begin(file, mapping, pos, len, flags,
3138 							pagep, fsdata);
3139 }
3140 EXPORT_SYMBOL(pagecache_write_begin);
3141 
3142 int pagecache_write_end(struct file *file, struct address_space *mapping,
3143 				loff_t pos, unsigned len, unsigned copied,
3144 				struct page *page, void *fsdata)
3145 {
3146 	const struct address_space_operations *aops = mapping->a_ops;
3147 
3148 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3149 }
3150 EXPORT_SYMBOL(pagecache_write_end);
3151 
3152 /*
3153  * Warn about a page cache invalidation failure during a direct I/O write.
3154  */
3155 void dio_warn_stale_pagecache(struct file *filp)
3156 {
3157 	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3158 	char pathname[128];
3159 	struct inode *inode = file_inode(filp);
3160 	char *path;
3161 
3162 	errseq_set(&inode->i_mapping->wb_err, -EIO);
3163 	if (__ratelimit(&_rs)) {
3164 		path = file_path(filp, pathname, sizeof(pathname));
3165 		if (IS_ERR(path))
3166 			path = "(unknown)";
3167 		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3168 		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3169 			current->comm);
3170 	}
3171 }
3172 
3173 ssize_t
3174 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3175 {
3176 	struct file	*file = iocb->ki_filp;
3177 	struct address_space *mapping = file->f_mapping;
3178 	struct inode	*inode = mapping->host;
3179 	loff_t		pos = iocb->ki_pos;
3180 	ssize_t		written;
3181 	size_t		write_len;
3182 	pgoff_t		end;
3183 
3184 	write_len = iov_iter_count(from);
3185 	end = (pos + write_len - 1) >> PAGE_SHIFT;
3186 
3187 	if (iocb->ki_flags & IOCB_NOWAIT) {
3188 		/* If there are pages to writeback, return */
3189 		if (filemap_range_has_page(inode->i_mapping, pos,
3190 					   pos + write_len - 1))
3191 			return -EAGAIN;
3192 	} else {
3193 		written = filemap_write_and_wait_range(mapping, pos,
3194 							pos + write_len - 1);
3195 		if (written)
3196 			goto out;
3197 	}
3198 
3199 	/*
3200 	 * After a write we want buffered reads to be sure to go to disk to get
3201 	 * the new data.  We invalidate clean cached page from the region we're
3202 	 * about to write.  We do this *before* the write so that we can return
3203 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3204 	 */
3205 	written = invalidate_inode_pages2_range(mapping,
3206 					pos >> PAGE_SHIFT, end);
3207 	/*
3208 	 * If a page can not be invalidated, return 0 to fall back
3209 	 * to buffered write.
3210 	 */
3211 	if (written) {
3212 		if (written == -EBUSY)
3213 			return 0;
3214 		goto out;
3215 	}
3216 
3217 	written = mapping->a_ops->direct_IO(iocb, from);
3218 
3219 	/*
3220 	 * Finally, try again to invalidate clean pages which might have been
3221 	 * cached by non-direct readahead, or faulted in by get_user_pages()
3222 	 * if the source of the write was an mmap'ed region of the file
3223 	 * we're writing.  Either one is a pretty crazy thing to do,
3224 	 * so we don't support it 100%.  If this invalidation
3225 	 * fails, tough, the write still worked...
3226 	 *
3227 	 * Most of the time we do not need this since dio_complete() will do
3228 	 * the invalidation for us. However there are some file systems that
3229 	 * do not end up with dio_complete() being called, so let's not break
3230 	 * them by removing it completely.
3231 	 *
3232 	 * Noticeable example is a blkdev_direct_IO().
3233 	 *
3234 	 * Skip invalidation for async writes or if mapping has no pages.
3235 	 */
3236 	if (written > 0 && mapping->nrpages &&
3237 	    invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3238 		dio_warn_stale_pagecache(file);
3239 
3240 	if (written > 0) {
3241 		pos += written;
3242 		write_len -= written;
3243 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3244 			i_size_write(inode, pos);
3245 			mark_inode_dirty(inode);
3246 		}
3247 		iocb->ki_pos = pos;
3248 	}
3249 	iov_iter_revert(from, write_len - iov_iter_count(from));
3250 out:
3251 	return written;
3252 }
3253 EXPORT_SYMBOL(generic_file_direct_write);
3254 
3255 /*
3256  * Find or create a page at the given pagecache position. Return the locked
3257  * page. This function is specifically for buffered writes.
3258  */
3259 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3260 					pgoff_t index, unsigned flags)
3261 {
3262 	struct page *page;
3263 	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3264 
3265 	if (flags & AOP_FLAG_NOFS)
3266 		fgp_flags |= FGP_NOFS;
3267 
3268 	page = pagecache_get_page(mapping, index, fgp_flags,
3269 			mapping_gfp_mask(mapping));
3270 	if (page)
3271 		wait_for_stable_page(page);
3272 
3273 	return page;
3274 }
3275 EXPORT_SYMBOL(grab_cache_page_write_begin);
3276 
3277 ssize_t generic_perform_write(struct file *file,
3278 				struct iov_iter *i, loff_t pos)
3279 {
3280 	struct address_space *mapping = file->f_mapping;
3281 	const struct address_space_operations *a_ops = mapping->a_ops;
3282 	long status = 0;
3283 	ssize_t written = 0;
3284 	unsigned int flags = 0;
3285 
3286 	do {
3287 		struct page *page;
3288 		unsigned long offset;	/* Offset into pagecache page */
3289 		unsigned long bytes;	/* Bytes to write to page */
3290 		size_t copied;		/* Bytes copied from user */
3291 		void *fsdata;
3292 
3293 		offset = (pos & (PAGE_SIZE - 1));
3294 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3295 						iov_iter_count(i));
3296 
3297 again:
3298 		/*
3299 		 * Bring in the user page that we will copy from _first_.
3300 		 * Otherwise there's a nasty deadlock on copying from the
3301 		 * same page as we're writing to, without it being marked
3302 		 * up-to-date.
3303 		 *
3304 		 * Not only is this an optimisation, but it is also required
3305 		 * to check that the address is actually valid, when atomic
3306 		 * usercopies are used, below.
3307 		 */
3308 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3309 			status = -EFAULT;
3310 			break;
3311 		}
3312 
3313 		if (fatal_signal_pending(current)) {
3314 			status = -EINTR;
3315 			break;
3316 		}
3317 
3318 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3319 						&page, &fsdata);
3320 		if (unlikely(status < 0))
3321 			break;
3322 
3323 		if (mapping_writably_mapped(mapping))
3324 			flush_dcache_page(page);
3325 
3326 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3327 		flush_dcache_page(page);
3328 
3329 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3330 						page, fsdata);
3331 		if (unlikely(status < 0))
3332 			break;
3333 		copied = status;
3334 
3335 		cond_resched();
3336 
3337 		iov_iter_advance(i, copied);
3338 		if (unlikely(copied == 0)) {
3339 			/*
3340 			 * If we were unable to copy any data at all, we must
3341 			 * fall back to a single segment length write.
3342 			 *
3343 			 * If we didn't fallback here, we could livelock
3344 			 * because not all segments in the iov can be copied at
3345 			 * once without a pagefault.
3346 			 */
3347 			bytes = min_t(unsigned long, PAGE_SIZE - offset,
3348 						iov_iter_single_seg_count(i));
3349 			goto again;
3350 		}
3351 		pos += copied;
3352 		written += copied;
3353 
3354 		balance_dirty_pages_ratelimited(mapping);
3355 	} while (iov_iter_count(i));
3356 
3357 	return written ? written : status;
3358 }
3359 EXPORT_SYMBOL(generic_perform_write);
3360 
3361 /**
3362  * __generic_file_write_iter - write data to a file
3363  * @iocb:	IO state structure (file, offset, etc.)
3364  * @from:	iov_iter with data to write
3365  *
3366  * This function does all the work needed for actually writing data to a
3367  * file. It does all basic checks, removes SUID from the file, updates
3368  * modification times and calls proper subroutines depending on whether we
3369  * do direct IO or a standard buffered write.
3370  *
3371  * It expects i_mutex to be grabbed unless we work on a block device or similar
3372  * object which does not need locking at all.
3373  *
3374  * This function does *not* take care of syncing data in case of O_SYNC write.
3375  * A caller has to handle it. This is mainly due to the fact that we want to
3376  * avoid syncing under i_mutex.
3377  *
3378  * Return:
3379  * * number of bytes written, even for truncated writes
3380  * * negative error code if no data has been written at all
3381  */
3382 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3383 {
3384 	struct file *file = iocb->ki_filp;
3385 	struct address_space * mapping = file->f_mapping;
3386 	struct inode 	*inode = mapping->host;
3387 	ssize_t		written = 0;
3388 	ssize_t		err;
3389 	ssize_t		status;
3390 
3391 	/* We can write back this queue in page reclaim */
3392 	current->backing_dev_info = inode_to_bdi(inode);
3393 	err = file_remove_privs(file);
3394 	if (err)
3395 		goto out;
3396 
3397 	err = file_update_time(file);
3398 	if (err)
3399 		goto out;
3400 
3401 	if (iocb->ki_flags & IOCB_DIRECT) {
3402 		loff_t pos, endbyte;
3403 
3404 		written = generic_file_direct_write(iocb, from);
3405 		/*
3406 		 * If the write stopped short of completing, fall back to
3407 		 * buffered writes.  Some filesystems do this for writes to
3408 		 * holes, for example.  For DAX files, a buffered write will
3409 		 * not succeed (even if it did, DAX does not handle dirty
3410 		 * page-cache pages correctly).
3411 		 */
3412 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3413 			goto out;
3414 
3415 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3416 		/*
3417 		 * If generic_perform_write() returned a synchronous error
3418 		 * then we want to return the number of bytes which were
3419 		 * direct-written, or the error code if that was zero.  Note
3420 		 * that this differs from normal direct-io semantics, which
3421 		 * will return -EFOO even if some bytes were written.
3422 		 */
3423 		if (unlikely(status < 0)) {
3424 			err = status;
3425 			goto out;
3426 		}
3427 		/*
3428 		 * We need to ensure that the page cache pages are written to
3429 		 * disk and invalidated to preserve the expected O_DIRECT
3430 		 * semantics.
3431 		 */
3432 		endbyte = pos + status - 1;
3433 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3434 		if (err == 0) {
3435 			iocb->ki_pos = endbyte + 1;
3436 			written += status;
3437 			invalidate_mapping_pages(mapping,
3438 						 pos >> PAGE_SHIFT,
3439 						 endbyte >> PAGE_SHIFT);
3440 		} else {
3441 			/*
3442 			 * We don't know how much we wrote, so just return
3443 			 * the number of bytes which were direct-written
3444 			 */
3445 		}
3446 	} else {
3447 		written = generic_perform_write(file, from, iocb->ki_pos);
3448 		if (likely(written > 0))
3449 			iocb->ki_pos += written;
3450 	}
3451 out:
3452 	current->backing_dev_info = NULL;
3453 	return written ? written : err;
3454 }
3455 EXPORT_SYMBOL(__generic_file_write_iter);
3456 
3457 /**
3458  * generic_file_write_iter - write data to a file
3459  * @iocb:	IO state structure
3460  * @from:	iov_iter with data to write
3461  *
3462  * This is a wrapper around __generic_file_write_iter() to be used by most
3463  * filesystems. It takes care of syncing the file in case of O_SYNC file
3464  * and acquires i_mutex as needed.
3465  * Return:
3466  * * negative error code if no data has been written at all of
3467  *   vfs_fsync_range() failed for a synchronous write
3468  * * number of bytes written, even for truncated writes
3469  */
3470 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3471 {
3472 	struct file *file = iocb->ki_filp;
3473 	struct inode *inode = file->f_mapping->host;
3474 	ssize_t ret;
3475 
3476 	inode_lock(inode);
3477 	ret = generic_write_checks(iocb, from);
3478 	if (ret > 0)
3479 		ret = __generic_file_write_iter(iocb, from);
3480 	inode_unlock(inode);
3481 
3482 	if (ret > 0)
3483 		ret = generic_write_sync(iocb, ret);
3484 	return ret;
3485 }
3486 EXPORT_SYMBOL(generic_file_write_iter);
3487 
3488 /**
3489  * try_to_release_page() - release old fs-specific metadata on a page
3490  *
3491  * @page: the page which the kernel is trying to free
3492  * @gfp_mask: memory allocation flags (and I/O mode)
3493  *
3494  * The address_space is to try to release any data against the page
3495  * (presumably at page->private).
3496  *
3497  * This may also be called if PG_fscache is set on a page, indicating that the
3498  * page is known to the local caching routines.
3499  *
3500  * The @gfp_mask argument specifies whether I/O may be performed to release
3501  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3502  *
3503  * Return: %1 if the release was successful, otherwise return zero.
3504  */
3505 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3506 {
3507 	struct address_space * const mapping = page->mapping;
3508 
3509 	BUG_ON(!PageLocked(page));
3510 	if (PageWriteback(page))
3511 		return 0;
3512 
3513 	if (mapping && mapping->a_ops->releasepage)
3514 		return mapping->a_ops->releasepage(page, gfp_mask);
3515 	return try_to_free_buffers(page);
3516 }
3517 
3518 EXPORT_SYMBOL(try_to_release_page);
3519