1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/filemap.c 4 * 5 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 7 8 /* 9 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differently, for example) 12 */ 13 #include <linux/export.h> 14 #include <linux/compiler.h> 15 #include <linux/dax.h> 16 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 19 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 22 #include <linux/mm.h> 23 #include <linux/swap.h> 24 #include <linux/leafops.h> 25 #include <linux/syscalls.h> 26 #include <linux/mman.h> 27 #include <linux/pagemap.h> 28 #include <linux/file.h> 29 #include <linux/uio.h> 30 #include <linux/error-injection.h> 31 #include <linux/hash.h> 32 #include <linux/writeback.h> 33 #include <linux/backing-dev.h> 34 #include <linux/pagevec.h> 35 #include <linux/security.h> 36 #include <linux/cpuset.h> 37 #include <linux/hugetlb.h> 38 #include <linux/memcontrol.h> 39 #include <linux/shmem_fs.h> 40 #include <linux/rmap.h> 41 #include <linux/delayacct.h> 42 #include <linux/psi.h> 43 #include <linux/ramfs.h> 44 #include <linux/page_idle.h> 45 #include <linux/migrate.h> 46 #include <linux/pipe_fs_i.h> 47 #include <linux/splice.h> 48 #include <linux/rcupdate_wait.h> 49 #include <linux/sched/mm.h> 50 #include <linux/sysctl.h> 51 #include <linux/pgalloc.h> 52 53 #include <asm/tlbflush.h> 54 #include "internal.h" 55 56 #define CREATE_TRACE_POINTS 57 #include <trace/events/filemap.h> 58 59 /* 60 * FIXME: remove all knowledge of the buffer layer from the core VM 61 */ 62 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 63 64 #include <asm/mman.h> 65 66 #include "swap.h" 67 68 /* 69 * Shared mappings implemented 30.11.1994. It's not fully working yet, 70 * though. 71 * 72 * Shared mappings now work. 15.8.1995 Bruno. 73 * 74 * finished 'unifying' the page and buffer cache and SMP-threaded the 75 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 76 * 77 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 78 */ 79 80 /* 81 * Lock ordering: 82 * 83 * ->i_mmap_rwsem (truncate_pagecache) 84 * ->private_lock (__free_pte->block_dirty_folio) 85 * ->swap_lock (exclusive_swap_page, others) 86 * ->i_pages lock 87 * 88 * ->i_rwsem 89 * ->invalidate_lock (acquired by fs in truncate path) 90 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 91 * 92 * ->mmap_lock 93 * ->i_mmap_rwsem 94 * ->page_table_lock or pte_lock (various, mainly in memory.c) 95 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 96 * 97 * ->mmap_lock 98 * ->invalidate_lock (filemap_fault) 99 * ->lock_page (filemap_fault, access_process_vm) 100 * 101 * ->i_rwsem (generic_perform_write) 102 * ->mmap_lock (fault_in_readable->do_page_fault) 103 * 104 * bdi->wb.list_lock 105 * sb_lock (fs/fs-writeback.c) 106 * ->i_pages lock (__sync_single_inode) 107 * 108 * ->i_mmap_rwsem 109 * ->anon_vma.lock (vma_merge) 110 * 111 * ->anon_vma.lock 112 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 113 * 114 * ->page_table_lock or pte_lock 115 * ->swap_lock (try_to_unmap_one) 116 * ->private_lock (try_to_unmap_one) 117 * ->i_pages lock (try_to_unmap_one) 118 * ->lruvec->lru_lock (follow_page_mask->mark_page_accessed) 119 * ->lruvec->lru_lock (check_pte_range->folio_isolate_lru) 120 * ->private_lock (folio_remove_rmap_pte->set_page_dirty) 121 * ->i_pages lock (folio_remove_rmap_pte->set_page_dirty) 122 * bdi.wb->list_lock (folio_remove_rmap_pte->set_page_dirty) 123 * ->inode->i_lock (folio_remove_rmap_pte->set_page_dirty) 124 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 125 * ->inode->i_lock (zap_pte_range->set_page_dirty) 126 * ->private_lock (zap_pte_range->block_dirty_folio) 127 */ 128 129 static void page_cache_delete(struct address_space *mapping, 130 struct folio *folio, void *shadow) 131 { 132 XA_STATE(xas, &mapping->i_pages, folio->index); 133 long nr = 1; 134 135 mapping_set_update(&xas, mapping); 136 137 xas_set_order(&xas, folio->index, folio_order(folio)); 138 nr = folio_nr_pages(folio); 139 140 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 141 142 xas_store(&xas, shadow); 143 xas_init_marks(&xas); 144 145 folio->mapping = NULL; 146 /* Leave folio->index set: truncation lookup relies upon it */ 147 mapping->nrpages -= nr; 148 } 149 150 static void filemap_unaccount_folio(struct address_space *mapping, 151 struct folio *folio) 152 { 153 long nr; 154 155 VM_BUG_ON_FOLIO(folio_mapped(folio), folio); 156 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) { 157 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 158 current->comm, folio_pfn(folio)); 159 dump_page(&folio->page, "still mapped when deleted"); 160 dump_stack(); 161 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 162 163 if (mapping_exiting(mapping) && !folio_test_large(folio)) { 164 int mapcount = folio_mapcount(folio); 165 166 if (folio_ref_count(folio) >= mapcount + 2) { 167 /* 168 * All vmas have already been torn down, so it's 169 * a good bet that actually the page is unmapped 170 * and we'd rather not leak it: if we're wrong, 171 * another bad page check should catch it later. 172 */ 173 atomic_set(&folio->_mapcount, -1); 174 folio_ref_sub(folio, mapcount); 175 } 176 } 177 } 178 179 /* hugetlb folios do not participate in page cache accounting. */ 180 if (folio_test_hugetlb(folio)) 181 return; 182 183 nr = folio_nr_pages(folio); 184 185 lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 186 if (folio_test_swapbacked(folio)) { 187 lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 188 if (folio_test_pmd_mappable(folio)) 189 lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr); 190 } else if (folio_test_pmd_mappable(folio)) { 191 lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr); 192 filemap_nr_thps_dec(mapping); 193 } 194 if (test_bit(AS_KERNEL_FILE, &folio->mapping->flags)) 195 mod_node_page_state(folio_pgdat(folio), 196 NR_KERNEL_FILE_PAGES, -nr); 197 198 /* 199 * At this point folio must be either written or cleaned by 200 * truncate. Dirty folio here signals a bug and loss of 201 * unwritten data - on ordinary filesystems. 202 * 203 * But it's harmless on in-memory filesystems like tmpfs; and can 204 * occur when a driver which did get_user_pages() sets page dirty 205 * before putting it, while the inode is being finally evicted. 206 * 207 * Below fixes dirty accounting after removing the folio entirely 208 * but leaves the dirty flag set: it has no effect for truncated 209 * folio and anyway will be cleared before returning folio to 210 * buddy allocator. 211 */ 212 if (WARN_ON_ONCE(folio_test_dirty(folio) && 213 mapping_can_writeback(mapping))) 214 folio_account_cleaned(folio, inode_to_wb(mapping->host)); 215 } 216 217 /* 218 * Delete a page from the page cache and free it. Caller has to make 219 * sure the page is locked and that nobody else uses it - or that usage 220 * is safe. The caller must hold the i_pages lock. 221 */ 222 void __filemap_remove_folio(struct folio *folio, void *shadow) 223 { 224 struct address_space *mapping = folio->mapping; 225 226 trace_mm_filemap_delete_from_page_cache(folio); 227 filemap_unaccount_folio(mapping, folio); 228 page_cache_delete(mapping, folio, shadow); 229 } 230 231 void filemap_free_folio(struct address_space *mapping, struct folio *folio) 232 { 233 void (*free_folio)(struct folio *); 234 235 free_folio = mapping->a_ops->free_folio; 236 if (free_folio) 237 free_folio(folio); 238 239 folio_put_refs(folio, folio_nr_pages(folio)); 240 } 241 242 /** 243 * filemap_remove_folio - Remove folio from page cache. 244 * @folio: The folio. 245 * 246 * This must be called only on folios that are locked and have been 247 * verified to be in the page cache. It will never put the folio into 248 * the free list because the caller has a reference on the page. 249 */ 250 void filemap_remove_folio(struct folio *folio) 251 { 252 struct address_space *mapping = folio->mapping; 253 254 BUG_ON(!folio_test_locked(folio)); 255 spin_lock(&mapping->host->i_lock); 256 xa_lock_irq(&mapping->i_pages); 257 __filemap_remove_folio(folio, NULL); 258 xa_unlock_irq(&mapping->i_pages); 259 if (mapping_shrinkable(mapping)) 260 inode_lru_list_add(mapping->host); 261 spin_unlock(&mapping->host->i_lock); 262 263 filemap_free_folio(mapping, folio); 264 } 265 266 /* 267 * page_cache_delete_batch - delete several folios from page cache 268 * @mapping: the mapping to which folios belong 269 * @fbatch: batch of folios to delete 270 * 271 * The function walks over mapping->i_pages and removes folios passed in 272 * @fbatch from the mapping. The function expects @fbatch to be sorted 273 * by page index and is optimised for it to be dense. 274 * It tolerates holes in @fbatch (mapping entries at those indices are not 275 * modified). 276 * 277 * The function expects the i_pages lock to be held. 278 */ 279 static void page_cache_delete_batch(struct address_space *mapping, 280 struct folio_batch *fbatch) 281 { 282 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index); 283 long total_pages = 0; 284 int i = 0; 285 struct folio *folio; 286 287 mapping_set_update(&xas, mapping); 288 xas_for_each(&xas, folio, ULONG_MAX) { 289 if (i >= folio_batch_count(fbatch)) 290 break; 291 292 /* A swap/dax/shadow entry got inserted? Skip it. */ 293 if (xa_is_value(folio)) 294 continue; 295 /* 296 * A page got inserted in our range? Skip it. We have our 297 * pages locked so they are protected from being removed. 298 * If we see a page whose index is higher than ours, it 299 * means our page has been removed, which shouldn't be 300 * possible because we're holding the PageLock. 301 */ 302 if (folio != fbatch->folios[i]) { 303 VM_BUG_ON_FOLIO(folio->index > 304 fbatch->folios[i]->index, folio); 305 continue; 306 } 307 308 WARN_ON_ONCE(!folio_test_locked(folio)); 309 310 folio->mapping = NULL; 311 /* Leave folio->index set: truncation lookup relies on it */ 312 313 i++; 314 xas_store(&xas, NULL); 315 total_pages += folio_nr_pages(folio); 316 } 317 mapping->nrpages -= total_pages; 318 } 319 320 void delete_from_page_cache_batch(struct address_space *mapping, 321 struct folio_batch *fbatch) 322 { 323 int i; 324 325 if (!folio_batch_count(fbatch)) 326 return; 327 328 spin_lock(&mapping->host->i_lock); 329 xa_lock_irq(&mapping->i_pages); 330 for (i = 0; i < folio_batch_count(fbatch); i++) { 331 struct folio *folio = fbatch->folios[i]; 332 333 trace_mm_filemap_delete_from_page_cache(folio); 334 filemap_unaccount_folio(mapping, folio); 335 } 336 page_cache_delete_batch(mapping, fbatch); 337 xa_unlock_irq(&mapping->i_pages); 338 if (mapping_shrinkable(mapping)) 339 inode_lru_list_add(mapping->host); 340 spin_unlock(&mapping->host->i_lock); 341 342 for (i = 0; i < folio_batch_count(fbatch); i++) 343 filemap_free_folio(mapping, fbatch->folios[i]); 344 } 345 346 int filemap_check_errors(struct address_space *mapping) 347 { 348 int ret = 0; 349 /* Check for outstanding write errors */ 350 if (test_bit(AS_ENOSPC, &mapping->flags) && 351 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 352 ret = -ENOSPC; 353 if (test_bit(AS_EIO, &mapping->flags) && 354 test_and_clear_bit(AS_EIO, &mapping->flags)) 355 ret = -EIO; 356 return ret; 357 } 358 EXPORT_SYMBOL(filemap_check_errors); 359 360 static int filemap_check_and_keep_errors(struct address_space *mapping) 361 { 362 /* Check for outstanding write errors */ 363 if (test_bit(AS_EIO, &mapping->flags)) 364 return -EIO; 365 if (test_bit(AS_ENOSPC, &mapping->flags)) 366 return -ENOSPC; 367 return 0; 368 } 369 370 static int filemap_writeback(struct address_space *mapping, loff_t start, 371 loff_t end, enum writeback_sync_modes sync_mode, 372 long *nr_to_write) 373 { 374 struct writeback_control wbc = { 375 .sync_mode = sync_mode, 376 .nr_to_write = nr_to_write ? *nr_to_write : LONG_MAX, 377 .range_start = start, 378 .range_end = end, 379 }; 380 int ret; 381 382 if (!mapping_can_writeback(mapping) || 383 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 384 return 0; 385 386 wbc_attach_fdatawrite_inode(&wbc, mapping->host); 387 ret = do_writepages(mapping, &wbc); 388 wbc_detach_inode(&wbc); 389 390 if (!ret && nr_to_write) 391 *nr_to_write = wbc.nr_to_write; 392 return ret; 393 } 394 395 /** 396 * filemap_fdatawrite_range - start writeback on mapping dirty pages in range 397 * @mapping: address space structure to write 398 * @start: offset in bytes where the range starts 399 * @end: offset in bytes where the range ends (inclusive) 400 * 401 * Start writeback against all of a mapping's dirty pages that lie 402 * within the byte offsets <start, end> inclusive. 403 * 404 * This is a data integrity operation that waits upon dirty or in writeback 405 * pages. 406 * 407 * Return: %0 on success, negative error code otherwise. 408 */ 409 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 410 loff_t end) 411 { 412 return filemap_writeback(mapping, start, end, WB_SYNC_ALL, NULL); 413 } 414 EXPORT_SYMBOL(filemap_fdatawrite_range); 415 416 int filemap_fdatawrite(struct address_space *mapping) 417 { 418 return filemap_fdatawrite_range(mapping, 0, LLONG_MAX); 419 } 420 EXPORT_SYMBOL(filemap_fdatawrite); 421 422 /** 423 * filemap_flush_range - start writeback on a range 424 * @mapping: target address_space 425 * @start: index to start writeback on 426 * @end: last (inclusive) index for writeback 427 * 428 * This is a non-integrity writeback helper, to start writing back folios 429 * for the indicated range. 430 * 431 * Return: %0 on success, negative error code otherwise. 432 */ 433 int filemap_flush_range(struct address_space *mapping, loff_t start, 434 loff_t end) 435 { 436 return filemap_writeback(mapping, start, end, WB_SYNC_NONE, NULL); 437 } 438 EXPORT_SYMBOL_GPL(filemap_flush_range); 439 440 /** 441 * filemap_flush - mostly a non-blocking flush 442 * @mapping: target address_space 443 * 444 * This is a mostly non-blocking flush. Not suitable for data-integrity 445 * purposes - I/O may not be started against all dirty pages. 446 * 447 * Return: %0 on success, negative error code otherwise. 448 */ 449 int filemap_flush(struct address_space *mapping) 450 { 451 return filemap_flush_range(mapping, 0, LLONG_MAX); 452 } 453 EXPORT_SYMBOL(filemap_flush); 454 455 /* 456 * Start writeback on @nr_to_write pages from @mapping. No one but the existing 457 * btrfs caller should be using this. Talk to linux-mm if you think adding a 458 * new caller is a good idea. 459 */ 460 int filemap_flush_nr(struct address_space *mapping, long *nr_to_write) 461 { 462 return filemap_writeback(mapping, 0, LLONG_MAX, WB_SYNC_NONE, 463 nr_to_write); 464 } 465 EXPORT_SYMBOL_FOR_MODULES(filemap_flush_nr, "btrfs"); 466 467 /** 468 * filemap_range_has_page - check if a page exists in range. 469 * @mapping: address space within which to check 470 * @start_byte: offset in bytes where the range starts 471 * @end_byte: offset in bytes where the range ends (inclusive) 472 * 473 * Find at least one page in the range supplied, usually used to check if 474 * direct writing in this range will trigger a writeback. 475 * 476 * Return: %true if at least one page exists in the specified range, 477 * %false otherwise. 478 */ 479 bool filemap_range_has_page(struct address_space *mapping, 480 loff_t start_byte, loff_t end_byte) 481 { 482 struct folio *folio; 483 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 484 pgoff_t max = end_byte >> PAGE_SHIFT; 485 486 if (end_byte < start_byte) 487 return false; 488 489 rcu_read_lock(); 490 for (;;) { 491 folio = xas_find(&xas, max); 492 if (xas_retry(&xas, folio)) 493 continue; 494 /* Shadow entries don't count */ 495 if (xa_is_value(folio)) 496 continue; 497 /* 498 * We don't need to try to pin this page; we're about to 499 * release the RCU lock anyway. It is enough to know that 500 * there was a page here recently. 501 */ 502 break; 503 } 504 rcu_read_unlock(); 505 506 return folio != NULL; 507 } 508 EXPORT_SYMBOL(filemap_range_has_page); 509 510 static void __filemap_fdatawait_range(struct address_space *mapping, 511 loff_t start_byte, loff_t end_byte) 512 { 513 pgoff_t index = start_byte >> PAGE_SHIFT; 514 pgoff_t end = end_byte >> PAGE_SHIFT; 515 struct folio_batch fbatch; 516 unsigned nr_folios; 517 518 folio_batch_init(&fbatch); 519 520 while (index <= end) { 521 unsigned i; 522 523 nr_folios = filemap_get_folios_tag(mapping, &index, end, 524 PAGECACHE_TAG_WRITEBACK, &fbatch); 525 526 if (!nr_folios) 527 break; 528 529 for (i = 0; i < nr_folios; i++) { 530 struct folio *folio = fbatch.folios[i]; 531 532 folio_wait_writeback(folio); 533 } 534 folio_batch_release(&fbatch); 535 cond_resched(); 536 } 537 } 538 539 /** 540 * filemap_fdatawait_range - wait for writeback to complete 541 * @mapping: address space structure to wait for 542 * @start_byte: offset in bytes where the range starts 543 * @end_byte: offset in bytes where the range ends (inclusive) 544 * 545 * Walk the list of under-writeback pages of the given address space 546 * in the given range and wait for all of them. Check error status of 547 * the address space and return it. 548 * 549 * Since the error status of the address space is cleared by this function, 550 * callers are responsible for checking the return value and handling and/or 551 * reporting the error. 552 * 553 * Return: error status of the address space. 554 */ 555 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 556 loff_t end_byte) 557 { 558 __filemap_fdatawait_range(mapping, start_byte, end_byte); 559 return filemap_check_errors(mapping); 560 } 561 EXPORT_SYMBOL(filemap_fdatawait_range); 562 563 /** 564 * filemap_fdatawait_range_keep_errors - wait for writeback to complete 565 * @mapping: address space structure to wait for 566 * @start_byte: offset in bytes where the range starts 567 * @end_byte: offset in bytes where the range ends (inclusive) 568 * 569 * Walk the list of under-writeback pages of the given address space in the 570 * given range and wait for all of them. Unlike filemap_fdatawait_range(), 571 * this function does not clear error status of the address space. 572 * 573 * Use this function if callers don't handle errors themselves. Expected 574 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 575 * fsfreeze(8) 576 */ 577 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 578 loff_t start_byte, loff_t end_byte) 579 { 580 __filemap_fdatawait_range(mapping, start_byte, end_byte); 581 return filemap_check_and_keep_errors(mapping); 582 } 583 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); 584 585 /** 586 * file_fdatawait_range - wait for writeback to complete 587 * @file: file pointing to address space structure to wait for 588 * @start_byte: offset in bytes where the range starts 589 * @end_byte: offset in bytes where the range ends (inclusive) 590 * 591 * Walk the list of under-writeback pages of the address space that file 592 * refers to, in the given range and wait for all of them. Check error 593 * status of the address space vs. the file->f_wb_err cursor and return it. 594 * 595 * Since the error status of the file is advanced by this function, 596 * callers are responsible for checking the return value and handling and/or 597 * reporting the error. 598 * 599 * Return: error status of the address space vs. the file->f_wb_err cursor. 600 */ 601 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 602 { 603 struct address_space *mapping = file->f_mapping; 604 605 __filemap_fdatawait_range(mapping, start_byte, end_byte); 606 return file_check_and_advance_wb_err(file); 607 } 608 EXPORT_SYMBOL(file_fdatawait_range); 609 610 /** 611 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 612 * @mapping: address space structure to wait for 613 * 614 * Walk the list of under-writeback pages of the given address space 615 * and wait for all of them. Unlike filemap_fdatawait(), this function 616 * does not clear error status of the address space. 617 * 618 * Use this function if callers don't handle errors themselves. Expected 619 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 620 * fsfreeze(8) 621 * 622 * Return: error status of the address space. 623 */ 624 int filemap_fdatawait_keep_errors(struct address_space *mapping) 625 { 626 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 627 return filemap_check_and_keep_errors(mapping); 628 } 629 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 630 631 /* Returns true if writeback might be needed or already in progress. */ 632 static bool mapping_needs_writeback(struct address_space *mapping) 633 { 634 return mapping->nrpages; 635 } 636 637 bool filemap_range_has_writeback(struct address_space *mapping, 638 loff_t start_byte, loff_t end_byte) 639 { 640 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 641 pgoff_t max = end_byte >> PAGE_SHIFT; 642 struct folio *folio; 643 644 if (end_byte < start_byte) 645 return false; 646 647 rcu_read_lock(); 648 xas_for_each(&xas, folio, max) { 649 if (xas_retry(&xas, folio)) 650 continue; 651 if (xa_is_value(folio)) 652 continue; 653 if (folio_test_dirty(folio) || folio_test_locked(folio) || 654 folio_test_writeback(folio)) 655 break; 656 } 657 rcu_read_unlock(); 658 return folio != NULL; 659 } 660 EXPORT_SYMBOL_GPL(filemap_range_has_writeback); 661 662 /** 663 * filemap_write_and_wait_range - write out & wait on a file range 664 * @mapping: the address_space for the pages 665 * @lstart: offset in bytes where the range starts 666 * @lend: offset in bytes where the range ends (inclusive) 667 * 668 * Write out and wait upon file offsets lstart->lend, inclusive. 669 * 670 * Note that @lend is inclusive (describes the last byte to be written) so 671 * that this function can be used to write to the very end-of-file (end = -1). 672 * 673 * Return: error status of the address space. 674 */ 675 int filemap_write_and_wait_range(struct address_space *mapping, 676 loff_t lstart, loff_t lend) 677 { 678 int err = 0, err2; 679 680 if (lend < lstart) 681 return 0; 682 683 if (mapping_needs_writeback(mapping)) { 684 err = filemap_fdatawrite_range(mapping, lstart, lend); 685 /* 686 * Even if the above returned error, the pages may be 687 * written partially (e.g. -ENOSPC), so we wait for it. 688 * But the -EIO is special case, it may indicate the worst 689 * thing (e.g. bug) happened, so we avoid waiting for it. 690 */ 691 if (err != -EIO) 692 __filemap_fdatawait_range(mapping, lstart, lend); 693 } 694 err2 = filemap_check_errors(mapping); 695 if (!err) 696 err = err2; 697 return err; 698 } 699 EXPORT_SYMBOL(filemap_write_and_wait_range); 700 701 void __filemap_set_wb_err(struct address_space *mapping, int err) 702 { 703 errseq_t eseq = errseq_set(&mapping->wb_err, err); 704 705 trace_filemap_set_wb_err(mapping, eseq); 706 } 707 EXPORT_SYMBOL(__filemap_set_wb_err); 708 709 /** 710 * file_check_and_advance_wb_err - report wb error (if any) that was previously 711 * and advance wb_err to current one 712 * @file: struct file on which the error is being reported 713 * 714 * When userland calls fsync (or something like nfsd does the equivalent), we 715 * want to report any writeback errors that occurred since the last fsync (or 716 * since the file was opened if there haven't been any). 717 * 718 * Grab the wb_err from the mapping. If it matches what we have in the file, 719 * then just quickly return 0. The file is all caught up. 720 * 721 * If it doesn't match, then take the mapping value, set the "seen" flag in 722 * it and try to swap it into place. If it works, or another task beat us 723 * to it with the new value, then update the f_wb_err and return the error 724 * portion. The error at this point must be reported via proper channels 725 * (a'la fsync, or NFS COMMIT operation, etc.). 726 * 727 * While we handle mapping->wb_err with atomic operations, the f_wb_err 728 * value is protected by the f_lock since we must ensure that it reflects 729 * the latest value swapped in for this file descriptor. 730 * 731 * Return: %0 on success, negative error code otherwise. 732 */ 733 int file_check_and_advance_wb_err(struct file *file) 734 { 735 int err = 0; 736 errseq_t old = READ_ONCE(file->f_wb_err); 737 struct address_space *mapping = file->f_mapping; 738 739 /* Locklessly handle the common case where nothing has changed */ 740 if (errseq_check(&mapping->wb_err, old)) { 741 /* Something changed, must use slow path */ 742 spin_lock(&file->f_lock); 743 old = file->f_wb_err; 744 err = errseq_check_and_advance(&mapping->wb_err, 745 &file->f_wb_err); 746 trace_file_check_and_advance_wb_err(file, old); 747 spin_unlock(&file->f_lock); 748 } 749 750 /* 751 * We're mostly using this function as a drop in replacement for 752 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 753 * that the legacy code would have had on these flags. 754 */ 755 clear_bit(AS_EIO, &mapping->flags); 756 clear_bit(AS_ENOSPC, &mapping->flags); 757 return err; 758 } 759 EXPORT_SYMBOL(file_check_and_advance_wb_err); 760 761 /** 762 * file_write_and_wait_range - write out & wait on a file range 763 * @file: file pointing to address_space with pages 764 * @lstart: offset in bytes where the range starts 765 * @lend: offset in bytes where the range ends (inclusive) 766 * 767 * Write out and wait upon file offsets lstart->lend, inclusive. 768 * 769 * Note that @lend is inclusive (describes the last byte to be written) so 770 * that this function can be used to write to the very end-of-file (end = -1). 771 * 772 * After writing out and waiting on the data, we check and advance the 773 * f_wb_err cursor to the latest value, and return any errors detected there. 774 * 775 * Return: %0 on success, negative error code otherwise. 776 */ 777 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 778 { 779 int err = 0, err2; 780 struct address_space *mapping = file->f_mapping; 781 782 if (lend < lstart) 783 return 0; 784 785 if (mapping_needs_writeback(mapping)) { 786 err = filemap_fdatawrite_range(mapping, lstart, lend); 787 /* See comment of filemap_write_and_wait() */ 788 if (err != -EIO) 789 __filemap_fdatawait_range(mapping, lstart, lend); 790 } 791 err2 = file_check_and_advance_wb_err(file); 792 if (!err) 793 err = err2; 794 return err; 795 } 796 EXPORT_SYMBOL(file_write_and_wait_range); 797 798 /** 799 * replace_page_cache_folio - replace a pagecache folio with a new one 800 * @old: folio to be replaced 801 * @new: folio to replace with 802 * 803 * This function replaces a folio in the pagecache with a new one. On 804 * success it acquires the pagecache reference for the new folio and 805 * drops it for the old folio. Both the old and new folios must be 806 * locked. This function does not add the new folio to the LRU, the 807 * caller must do that. 808 * 809 * The remove + add is atomic. This function cannot fail. 810 */ 811 void replace_page_cache_folio(struct folio *old, struct folio *new) 812 { 813 struct address_space *mapping = old->mapping; 814 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio; 815 pgoff_t offset = old->index; 816 XA_STATE(xas, &mapping->i_pages, offset); 817 818 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 819 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 820 VM_BUG_ON_FOLIO(new->mapping, new); 821 822 folio_get(new); 823 new->mapping = mapping; 824 new->index = offset; 825 826 mem_cgroup_replace_folio(old, new); 827 828 xas_lock_irq(&xas); 829 xas_store(&xas, new); 830 831 old->mapping = NULL; 832 /* hugetlb pages do not participate in page cache accounting. */ 833 if (!folio_test_hugetlb(old)) 834 lruvec_stat_sub_folio(old, NR_FILE_PAGES); 835 if (!folio_test_hugetlb(new)) 836 lruvec_stat_add_folio(new, NR_FILE_PAGES); 837 if (folio_test_swapbacked(old)) 838 lruvec_stat_sub_folio(old, NR_SHMEM); 839 if (folio_test_swapbacked(new)) 840 lruvec_stat_add_folio(new, NR_SHMEM); 841 xas_unlock_irq(&xas); 842 if (free_folio) 843 free_folio(old); 844 folio_put(old); 845 } 846 EXPORT_SYMBOL_GPL(replace_page_cache_folio); 847 848 noinline int __filemap_add_folio(struct address_space *mapping, 849 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp) 850 { 851 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio)); 852 bool huge; 853 long nr; 854 unsigned int forder = folio_order(folio); 855 856 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 857 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio); 858 VM_BUG_ON_FOLIO(folio_order(folio) < mapping_min_folio_order(mapping), 859 folio); 860 mapping_set_update(&xas, mapping); 861 862 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio); 863 huge = folio_test_hugetlb(folio); 864 nr = folio_nr_pages(folio); 865 866 gfp &= GFP_RECLAIM_MASK; 867 folio_ref_add(folio, nr); 868 folio->mapping = mapping; 869 folio->index = xas.xa_index; 870 871 for (;;) { 872 int order = -1; 873 void *entry, *old = NULL; 874 875 xas_lock_irq(&xas); 876 xas_for_each_conflict(&xas, entry) { 877 old = entry; 878 if (!xa_is_value(entry)) { 879 xas_set_err(&xas, -EEXIST); 880 goto unlock; 881 } 882 /* 883 * If a larger entry exists, 884 * it will be the first and only entry iterated. 885 */ 886 if (order == -1) 887 order = xas_get_order(&xas); 888 } 889 890 if (old) { 891 if (order > 0 && order > forder) { 892 unsigned int split_order = max(forder, 893 xas_try_split_min_order(order)); 894 895 /* How to handle large swap entries? */ 896 BUG_ON(shmem_mapping(mapping)); 897 898 while (order > forder) { 899 xas_set_order(&xas, index, split_order); 900 xas_try_split(&xas, old, order); 901 if (xas_error(&xas)) 902 goto unlock; 903 order = split_order; 904 split_order = 905 max(xas_try_split_min_order( 906 split_order), 907 forder); 908 } 909 xas_reset(&xas); 910 } 911 if (shadowp) 912 *shadowp = old; 913 } 914 915 xas_store(&xas, folio); 916 if (xas_error(&xas)) 917 goto unlock; 918 919 mapping->nrpages += nr; 920 921 /* hugetlb pages do not participate in page cache accounting */ 922 if (!huge) { 923 lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 924 if (folio_test_pmd_mappable(folio)) 925 lruvec_stat_mod_folio(folio, 926 NR_FILE_THPS, nr); 927 } 928 929 unlock: 930 xas_unlock_irq(&xas); 931 932 if (!xas_nomem(&xas, gfp)) 933 break; 934 } 935 936 if (xas_error(&xas)) 937 goto error; 938 939 trace_mm_filemap_add_to_page_cache(folio); 940 return 0; 941 error: 942 folio->mapping = NULL; 943 /* Leave folio->index set: truncation relies upon it */ 944 folio_put_refs(folio, nr); 945 return xas_error(&xas); 946 } 947 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO); 948 949 int filemap_add_folio(struct address_space *mapping, struct folio *folio, 950 pgoff_t index, gfp_t gfp) 951 { 952 void *shadow = NULL; 953 int ret; 954 struct mem_cgroup *tmp; 955 bool kernel_file = test_bit(AS_KERNEL_FILE, &mapping->flags); 956 957 if (kernel_file) 958 tmp = set_active_memcg(root_mem_cgroup); 959 ret = mem_cgroup_charge(folio, NULL, gfp); 960 if (kernel_file) 961 set_active_memcg(tmp); 962 if (ret) 963 return ret; 964 965 __folio_set_locked(folio); 966 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow); 967 if (unlikely(ret)) { 968 mem_cgroup_uncharge(folio); 969 __folio_clear_locked(folio); 970 } else { 971 /* 972 * The folio might have been evicted from cache only 973 * recently, in which case it should be activated like 974 * any other repeatedly accessed folio. 975 * The exception is folios getting rewritten; evicting other 976 * data from the working set, only to cache data that will 977 * get overwritten with something else, is a waste of memory. 978 */ 979 WARN_ON_ONCE(folio_test_active(folio)); 980 if (!(gfp & __GFP_WRITE) && shadow) 981 workingset_refault(folio, shadow); 982 folio_add_lru(folio); 983 if (kernel_file) 984 mod_node_page_state(folio_pgdat(folio), 985 NR_KERNEL_FILE_PAGES, 986 folio_nr_pages(folio)); 987 } 988 return ret; 989 } 990 EXPORT_SYMBOL_GPL(filemap_add_folio); 991 992 #ifdef CONFIG_NUMA 993 struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order, 994 struct mempolicy *policy) 995 { 996 int n; 997 struct folio *folio; 998 999 if (policy) 1000 return folio_alloc_mpol_noprof(gfp, order, policy, 1001 NO_INTERLEAVE_INDEX, numa_node_id()); 1002 1003 if (cpuset_do_page_mem_spread()) { 1004 unsigned int cpuset_mems_cookie; 1005 do { 1006 cpuset_mems_cookie = read_mems_allowed_begin(); 1007 n = cpuset_mem_spread_node(); 1008 folio = __folio_alloc_node_noprof(gfp, order, n); 1009 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie)); 1010 1011 return folio; 1012 } 1013 return folio_alloc_noprof(gfp, order); 1014 } 1015 EXPORT_SYMBOL(filemap_alloc_folio_noprof); 1016 #endif 1017 1018 /* 1019 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings 1020 * 1021 * Lock exclusively invalidate_lock of any passed mapping that is not NULL. 1022 * 1023 * @mapping1: the first mapping to lock 1024 * @mapping2: the second mapping to lock 1025 */ 1026 void filemap_invalidate_lock_two(struct address_space *mapping1, 1027 struct address_space *mapping2) 1028 { 1029 if (mapping1 > mapping2) 1030 swap(mapping1, mapping2); 1031 if (mapping1) 1032 down_write(&mapping1->invalidate_lock); 1033 if (mapping2 && mapping1 != mapping2) 1034 down_write_nested(&mapping2->invalidate_lock, 1); 1035 } 1036 EXPORT_SYMBOL(filemap_invalidate_lock_two); 1037 1038 /* 1039 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings 1040 * 1041 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL. 1042 * 1043 * @mapping1: the first mapping to unlock 1044 * @mapping2: the second mapping to unlock 1045 */ 1046 void filemap_invalidate_unlock_two(struct address_space *mapping1, 1047 struct address_space *mapping2) 1048 { 1049 if (mapping1) 1050 up_write(&mapping1->invalidate_lock); 1051 if (mapping2 && mapping1 != mapping2) 1052 up_write(&mapping2->invalidate_lock); 1053 } 1054 EXPORT_SYMBOL(filemap_invalidate_unlock_two); 1055 1056 /* 1057 * In order to wait for pages to become available there must be 1058 * waitqueues associated with pages. By using a hash table of 1059 * waitqueues where the bucket discipline is to maintain all 1060 * waiters on the same queue and wake all when any of the pages 1061 * become available, and for the woken contexts to check to be 1062 * sure the appropriate page became available, this saves space 1063 * at a cost of "thundering herd" phenomena during rare hash 1064 * collisions. 1065 */ 1066 #define PAGE_WAIT_TABLE_BITS 8 1067 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 1068 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 1069 1070 static wait_queue_head_t *folio_waitqueue(struct folio *folio) 1071 { 1072 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)]; 1073 } 1074 1075 /* How many times do we accept lock stealing from under a waiter? */ 1076 static int sysctl_page_lock_unfairness = 5; 1077 static const struct ctl_table filemap_sysctl_table[] = { 1078 { 1079 .procname = "page_lock_unfairness", 1080 .data = &sysctl_page_lock_unfairness, 1081 .maxlen = sizeof(sysctl_page_lock_unfairness), 1082 .mode = 0644, 1083 .proc_handler = proc_dointvec_minmax, 1084 .extra1 = SYSCTL_ZERO, 1085 } 1086 }; 1087 1088 void __init pagecache_init(void) 1089 { 1090 int i; 1091 1092 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 1093 init_waitqueue_head(&folio_wait_table[i]); 1094 1095 page_writeback_init(); 1096 register_sysctl_init("vm", filemap_sysctl_table); 1097 } 1098 1099 /* 1100 * The page wait code treats the "wait->flags" somewhat unusually, because 1101 * we have multiple different kinds of waits, not just the usual "exclusive" 1102 * one. 1103 * 1104 * We have: 1105 * 1106 * (a) no special bits set: 1107 * 1108 * We're just waiting for the bit to be released, and when a waker 1109 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up, 1110 * and remove it from the wait queue. 1111 * 1112 * Simple and straightforward. 1113 * 1114 * (b) WQ_FLAG_EXCLUSIVE: 1115 * 1116 * The waiter is waiting to get the lock, and only one waiter should 1117 * be woken up to avoid any thundering herd behavior. We'll set the 1118 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue. 1119 * 1120 * This is the traditional exclusive wait. 1121 * 1122 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM: 1123 * 1124 * The waiter is waiting to get the bit, and additionally wants the 1125 * lock to be transferred to it for fair lock behavior. If the lock 1126 * cannot be taken, we stop walking the wait queue without waking 1127 * the waiter. 1128 * 1129 * This is the "fair lock handoff" case, and in addition to setting 1130 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see 1131 * that it now has the lock. 1132 */ 1133 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 1134 { 1135 unsigned int flags; 1136 struct wait_page_key *key = arg; 1137 struct wait_page_queue *wait_page 1138 = container_of(wait, struct wait_page_queue, wait); 1139 1140 if (!wake_page_match(wait_page, key)) 1141 return 0; 1142 1143 /* 1144 * If it's a lock handoff wait, we get the bit for it, and 1145 * stop walking (and do not wake it up) if we can't. 1146 */ 1147 flags = wait->flags; 1148 if (flags & WQ_FLAG_EXCLUSIVE) { 1149 if (test_bit(key->bit_nr, &key->folio->flags.f)) 1150 return -1; 1151 if (flags & WQ_FLAG_CUSTOM) { 1152 if (test_and_set_bit(key->bit_nr, &key->folio->flags.f)) 1153 return -1; 1154 flags |= WQ_FLAG_DONE; 1155 } 1156 } 1157 1158 /* 1159 * We are holding the wait-queue lock, but the waiter that 1160 * is waiting for this will be checking the flags without 1161 * any locking. 1162 * 1163 * So update the flags atomically, and wake up the waiter 1164 * afterwards to avoid any races. This store-release pairs 1165 * with the load-acquire in folio_wait_bit_common(). 1166 */ 1167 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN); 1168 wake_up_state(wait->private, mode); 1169 1170 /* 1171 * Ok, we have successfully done what we're waiting for, 1172 * and we can unconditionally remove the wait entry. 1173 * 1174 * Note that this pairs with the "finish_wait()" in the 1175 * waiter, and has to be the absolute last thing we do. 1176 * After this list_del_init(&wait->entry) the wait entry 1177 * might be de-allocated and the process might even have 1178 * exited. 1179 */ 1180 list_del_init_careful(&wait->entry); 1181 return (flags & WQ_FLAG_EXCLUSIVE) != 0; 1182 } 1183 1184 static void folio_wake_bit(struct folio *folio, int bit_nr) 1185 { 1186 wait_queue_head_t *q = folio_waitqueue(folio); 1187 struct wait_page_key key; 1188 unsigned long flags; 1189 1190 key.folio = folio; 1191 key.bit_nr = bit_nr; 1192 key.page_match = 0; 1193 1194 spin_lock_irqsave(&q->lock, flags); 1195 __wake_up_locked_key(q, TASK_NORMAL, &key); 1196 1197 /* 1198 * It's possible to miss clearing waiters here, when we woke our page 1199 * waiters, but the hashed waitqueue has waiters for other pages on it. 1200 * That's okay, it's a rare case. The next waker will clear it. 1201 * 1202 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE, 1203 * other), the flag may be cleared in the course of freeing the page; 1204 * but that is not required for correctness. 1205 */ 1206 if (!waitqueue_active(q) || !key.page_match) 1207 folio_clear_waiters(folio); 1208 1209 spin_unlock_irqrestore(&q->lock, flags); 1210 } 1211 1212 /* 1213 * A choice of three behaviors for folio_wait_bit_common(): 1214 */ 1215 enum behavior { 1216 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1217 * __folio_lock() waiting on then setting PG_locked. 1218 */ 1219 SHARED, /* Hold ref to page and check the bit when woken, like 1220 * folio_wait_writeback() waiting on PG_writeback. 1221 */ 1222 DROP, /* Drop ref to page before wait, no check when woken, 1223 * like folio_put_wait_locked() on PG_locked. 1224 */ 1225 }; 1226 1227 /* 1228 * Attempt to check (or get) the folio flag, and mark us done 1229 * if successful. 1230 */ 1231 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr, 1232 struct wait_queue_entry *wait) 1233 { 1234 if (wait->flags & WQ_FLAG_EXCLUSIVE) { 1235 if (test_and_set_bit(bit_nr, &folio->flags.f)) 1236 return false; 1237 } else if (test_bit(bit_nr, &folio->flags.f)) 1238 return false; 1239 1240 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE; 1241 return true; 1242 } 1243 1244 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr, 1245 int state, enum behavior behavior) 1246 { 1247 wait_queue_head_t *q = folio_waitqueue(folio); 1248 int unfairness = sysctl_page_lock_unfairness; 1249 struct wait_page_queue wait_page; 1250 wait_queue_entry_t *wait = &wait_page.wait; 1251 bool thrashing = false; 1252 unsigned long pflags; 1253 bool in_thrashing; 1254 1255 if (bit_nr == PG_locked && 1256 !folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1257 delayacct_thrashing_start(&in_thrashing); 1258 psi_memstall_enter(&pflags); 1259 thrashing = true; 1260 } 1261 1262 init_wait(wait); 1263 wait->func = wake_page_function; 1264 wait_page.folio = folio; 1265 wait_page.bit_nr = bit_nr; 1266 1267 repeat: 1268 wait->flags = 0; 1269 if (behavior == EXCLUSIVE) { 1270 wait->flags = WQ_FLAG_EXCLUSIVE; 1271 if (--unfairness < 0) 1272 wait->flags |= WQ_FLAG_CUSTOM; 1273 } 1274 1275 /* 1276 * Do one last check whether we can get the 1277 * page bit synchronously. 1278 * 1279 * Do the folio_set_waiters() marking before that 1280 * to let any waker we _just_ missed know they 1281 * need to wake us up (otherwise they'll never 1282 * even go to the slow case that looks at the 1283 * page queue), and add ourselves to the wait 1284 * queue if we need to sleep. 1285 * 1286 * This part needs to be done under the queue 1287 * lock to avoid races. 1288 */ 1289 spin_lock_irq(&q->lock); 1290 folio_set_waiters(folio); 1291 if (!folio_trylock_flag(folio, bit_nr, wait)) 1292 __add_wait_queue_entry_tail(q, wait); 1293 spin_unlock_irq(&q->lock); 1294 1295 /* 1296 * From now on, all the logic will be based on 1297 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to 1298 * see whether the page bit testing has already 1299 * been done by the wake function. 1300 * 1301 * We can drop our reference to the folio. 1302 */ 1303 if (behavior == DROP) 1304 folio_put(folio); 1305 1306 /* 1307 * Note that until the "finish_wait()", or until 1308 * we see the WQ_FLAG_WOKEN flag, we need to 1309 * be very careful with the 'wait->flags', because 1310 * we may race with a waker that sets them. 1311 */ 1312 for (;;) { 1313 unsigned int flags; 1314 1315 set_current_state(state); 1316 1317 /* Loop until we've been woken or interrupted */ 1318 flags = smp_load_acquire(&wait->flags); 1319 if (!(flags & WQ_FLAG_WOKEN)) { 1320 if (signal_pending_state(state, current)) 1321 break; 1322 1323 io_schedule(); 1324 continue; 1325 } 1326 1327 /* If we were non-exclusive, we're done */ 1328 if (behavior != EXCLUSIVE) 1329 break; 1330 1331 /* If the waker got the lock for us, we're done */ 1332 if (flags & WQ_FLAG_DONE) 1333 break; 1334 1335 /* 1336 * Otherwise, if we're getting the lock, we need to 1337 * try to get it ourselves. 1338 * 1339 * And if that fails, we'll have to retry this all. 1340 */ 1341 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0)))) 1342 goto repeat; 1343 1344 wait->flags |= WQ_FLAG_DONE; 1345 break; 1346 } 1347 1348 /* 1349 * If a signal happened, this 'finish_wait()' may remove the last 1350 * waiter from the wait-queues, but the folio waiters bit will remain 1351 * set. That's ok. The next wakeup will take care of it, and trying 1352 * to do it here would be difficult and prone to races. 1353 */ 1354 finish_wait(q, wait); 1355 1356 if (thrashing) { 1357 delayacct_thrashing_end(&in_thrashing); 1358 psi_memstall_leave(&pflags); 1359 } 1360 1361 /* 1362 * NOTE! The wait->flags weren't stable until we've done the 1363 * 'finish_wait()', and we could have exited the loop above due 1364 * to a signal, and had a wakeup event happen after the signal 1365 * test but before the 'finish_wait()'. 1366 * 1367 * So only after the finish_wait() can we reliably determine 1368 * if we got woken up or not, so we can now figure out the final 1369 * return value based on that state without races. 1370 * 1371 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive 1372 * waiter, but an exclusive one requires WQ_FLAG_DONE. 1373 */ 1374 if (behavior == EXCLUSIVE) 1375 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR; 1376 1377 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR; 1378 } 1379 1380 #ifdef CONFIG_MIGRATION 1381 /** 1382 * migration_entry_wait_on_locked - Wait for a migration entry to be removed 1383 * @entry: migration swap entry. 1384 * @ptl: already locked ptl. This function will drop the lock. 1385 * 1386 * Wait for a migration entry referencing the given page to be removed. This is 1387 * equivalent to folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE) except 1388 * this can be called without taking a reference on the page. Instead this 1389 * should be called while holding the ptl for the migration entry referencing 1390 * the page. 1391 * 1392 * Returns after unlocking the ptl. 1393 * 1394 * This follows the same logic as folio_wait_bit_common() so see the comments 1395 * there. 1396 */ 1397 void migration_entry_wait_on_locked(softleaf_t entry, spinlock_t *ptl) 1398 __releases(ptl) 1399 { 1400 struct wait_page_queue wait_page; 1401 wait_queue_entry_t *wait = &wait_page.wait; 1402 bool thrashing = false; 1403 unsigned long pflags; 1404 bool in_thrashing; 1405 wait_queue_head_t *q; 1406 struct folio *folio = softleaf_to_folio(entry); 1407 1408 q = folio_waitqueue(folio); 1409 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1410 delayacct_thrashing_start(&in_thrashing); 1411 psi_memstall_enter(&pflags); 1412 thrashing = true; 1413 } 1414 1415 init_wait(wait); 1416 wait->func = wake_page_function; 1417 wait_page.folio = folio; 1418 wait_page.bit_nr = PG_locked; 1419 wait->flags = 0; 1420 1421 spin_lock_irq(&q->lock); 1422 folio_set_waiters(folio); 1423 if (!folio_trylock_flag(folio, PG_locked, wait)) 1424 __add_wait_queue_entry_tail(q, wait); 1425 spin_unlock_irq(&q->lock); 1426 1427 /* 1428 * If a migration entry exists for the page the migration path must hold 1429 * a valid reference to the page, and it must take the ptl to remove the 1430 * migration entry. So the page is valid until the ptl is dropped. 1431 */ 1432 spin_unlock(ptl); 1433 1434 for (;;) { 1435 unsigned int flags; 1436 1437 set_current_state(TASK_UNINTERRUPTIBLE); 1438 1439 /* Loop until we've been woken or interrupted */ 1440 flags = smp_load_acquire(&wait->flags); 1441 if (!(flags & WQ_FLAG_WOKEN)) { 1442 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current)) 1443 break; 1444 1445 io_schedule(); 1446 continue; 1447 } 1448 break; 1449 } 1450 1451 finish_wait(q, wait); 1452 1453 if (thrashing) { 1454 delayacct_thrashing_end(&in_thrashing); 1455 psi_memstall_leave(&pflags); 1456 } 1457 } 1458 #endif 1459 1460 void folio_wait_bit(struct folio *folio, int bit_nr) 1461 { 1462 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1463 } 1464 EXPORT_SYMBOL(folio_wait_bit); 1465 1466 int folio_wait_bit_killable(struct folio *folio, int bit_nr) 1467 { 1468 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED); 1469 } 1470 EXPORT_SYMBOL(folio_wait_bit_killable); 1471 1472 /** 1473 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked 1474 * @folio: The folio to wait for. 1475 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc). 1476 * 1477 * The caller should hold a reference on @folio. They expect the page to 1478 * become unlocked relatively soon, but do not wish to hold up migration 1479 * (for example) by holding the reference while waiting for the folio to 1480 * come unlocked. After this function returns, the caller should not 1481 * dereference @folio. 1482 * 1483 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal. 1484 */ 1485 static int folio_put_wait_locked(struct folio *folio, int state) 1486 { 1487 return folio_wait_bit_common(folio, PG_locked, state, DROP); 1488 } 1489 1490 /** 1491 * folio_unlock - Unlock a locked folio. 1492 * @folio: The folio. 1493 * 1494 * Unlocks the folio and wakes up any thread sleeping on the page lock. 1495 * 1496 * Context: May be called from interrupt or process context. May not be 1497 * called from NMI context. 1498 */ 1499 void folio_unlock(struct folio *folio) 1500 { 1501 /* Bit 7 allows x86 to check the byte's sign bit */ 1502 BUILD_BUG_ON(PG_waiters != 7); 1503 BUILD_BUG_ON(PG_locked > 7); 1504 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1505 if (folio_xor_flags_has_waiters(folio, 1 << PG_locked)) 1506 folio_wake_bit(folio, PG_locked); 1507 } 1508 EXPORT_SYMBOL(folio_unlock); 1509 1510 /** 1511 * folio_end_read - End read on a folio. 1512 * @folio: The folio. 1513 * @success: True if all reads completed successfully. 1514 * 1515 * When all reads against a folio have completed, filesystems should 1516 * call this function to let the pagecache know that no more reads 1517 * are outstanding. This will unlock the folio and wake up any thread 1518 * sleeping on the lock. The folio will also be marked uptodate if all 1519 * reads succeeded. 1520 * 1521 * Context: May be called from interrupt or process context. May not be 1522 * called from NMI context. 1523 */ 1524 void folio_end_read(struct folio *folio, bool success) 1525 { 1526 unsigned long mask = 1 << PG_locked; 1527 1528 /* Must be in bottom byte for x86 to work */ 1529 BUILD_BUG_ON(PG_uptodate > 7); 1530 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1531 VM_BUG_ON_FOLIO(success && folio_test_uptodate(folio), folio); 1532 1533 if (likely(success)) 1534 mask |= 1 << PG_uptodate; 1535 if (folio_xor_flags_has_waiters(folio, mask)) 1536 folio_wake_bit(folio, PG_locked); 1537 } 1538 EXPORT_SYMBOL(folio_end_read); 1539 1540 /** 1541 * folio_end_private_2 - Clear PG_private_2 and wake any waiters. 1542 * @folio: The folio. 1543 * 1544 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for 1545 * it. The folio reference held for PG_private_2 being set is released. 1546 * 1547 * This is, for example, used when a netfs folio is being written to a local 1548 * disk cache, thereby allowing writes to the cache for the same folio to be 1549 * serialised. 1550 */ 1551 void folio_end_private_2(struct folio *folio) 1552 { 1553 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio); 1554 clear_bit_unlock(PG_private_2, folio_flags(folio, 0)); 1555 folio_wake_bit(folio, PG_private_2); 1556 folio_put(folio); 1557 } 1558 EXPORT_SYMBOL(folio_end_private_2); 1559 1560 /** 1561 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio. 1562 * @folio: The folio to wait on. 1563 * 1564 * Wait for PG_private_2 to be cleared on a folio. 1565 */ 1566 void folio_wait_private_2(struct folio *folio) 1567 { 1568 while (folio_test_private_2(folio)) 1569 folio_wait_bit(folio, PG_private_2); 1570 } 1571 EXPORT_SYMBOL(folio_wait_private_2); 1572 1573 /** 1574 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio. 1575 * @folio: The folio to wait on. 1576 * 1577 * Wait for PG_private_2 to be cleared on a folio or until a fatal signal is 1578 * received by the calling task. 1579 * 1580 * Return: 1581 * - 0 if successful. 1582 * - -EINTR if a fatal signal was encountered. 1583 */ 1584 int folio_wait_private_2_killable(struct folio *folio) 1585 { 1586 int ret = 0; 1587 1588 while (folio_test_private_2(folio)) { 1589 ret = folio_wait_bit_killable(folio, PG_private_2); 1590 if (ret < 0) 1591 break; 1592 } 1593 1594 return ret; 1595 } 1596 EXPORT_SYMBOL(folio_wait_private_2_killable); 1597 1598 static void filemap_end_dropbehind(struct folio *folio) 1599 { 1600 struct address_space *mapping = folio->mapping; 1601 1602 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1603 1604 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 1605 return; 1606 if (!folio_test_clear_dropbehind(folio)) 1607 return; 1608 if (mapping) 1609 folio_unmap_invalidate(mapping, folio, 0); 1610 } 1611 1612 /* 1613 * If folio was marked as dropbehind, then pages should be dropped when writeback 1614 * completes. Do that now. If we fail, it's likely because of a big folio - 1615 * just reset dropbehind for that case and latter completions should invalidate. 1616 */ 1617 void folio_end_dropbehind(struct folio *folio) 1618 { 1619 if (!folio_test_dropbehind(folio)) 1620 return; 1621 1622 /* 1623 * Hitting !in_task() should not happen off RWF_DONTCACHE writeback, 1624 * but can happen if normal writeback just happens to find dirty folios 1625 * that were created as part of uncached writeback, and that writeback 1626 * would otherwise not need non-IRQ handling. Just skip the 1627 * invalidation in that case. 1628 */ 1629 if (in_task() && folio_trylock(folio)) { 1630 filemap_end_dropbehind(folio); 1631 folio_unlock(folio); 1632 } 1633 } 1634 EXPORT_SYMBOL_GPL(folio_end_dropbehind); 1635 1636 /** 1637 * folio_end_writeback_no_dropbehind - End writeback against a folio. 1638 * @folio: The folio. 1639 * 1640 * The folio must actually be under writeback. 1641 * This call is intended for filesystems that need to defer dropbehind. 1642 * 1643 * Context: May be called from process or interrupt context. 1644 */ 1645 void folio_end_writeback_no_dropbehind(struct folio *folio) 1646 { 1647 VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio); 1648 1649 /* 1650 * folio_test_clear_reclaim() could be used here but it is an 1651 * atomic operation and overkill in this particular case. Failing 1652 * to shuffle a folio marked for immediate reclaim is too mild 1653 * a gain to justify taking an atomic operation penalty at the 1654 * end of every folio writeback. 1655 */ 1656 if (folio_test_reclaim(folio)) { 1657 folio_clear_reclaim(folio); 1658 folio_rotate_reclaimable(folio); 1659 } 1660 1661 if (__folio_end_writeback(folio)) 1662 folio_wake_bit(folio, PG_writeback); 1663 1664 acct_reclaim_writeback(folio); 1665 } 1666 EXPORT_SYMBOL_GPL(folio_end_writeback_no_dropbehind); 1667 1668 /** 1669 * folio_end_writeback - End writeback against a folio. 1670 * @folio: The folio. 1671 * 1672 * The folio must actually be under writeback. 1673 * 1674 * Context: May be called from process or interrupt context. 1675 */ 1676 void folio_end_writeback(struct folio *folio) 1677 { 1678 VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio); 1679 1680 /* 1681 * Writeback does not hold a folio reference of its own, relying 1682 * on truncation to wait for the clearing of PG_writeback. 1683 * But here we must make sure that the folio is not freed and 1684 * reused before the folio_wake_bit(). 1685 */ 1686 folio_get(folio); 1687 folio_end_writeback_no_dropbehind(folio); 1688 folio_end_dropbehind(folio); 1689 folio_put(folio); 1690 } 1691 EXPORT_SYMBOL(folio_end_writeback); 1692 1693 /** 1694 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it. 1695 * @folio: The folio to lock 1696 */ 1697 void __folio_lock(struct folio *folio) 1698 { 1699 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE, 1700 EXCLUSIVE); 1701 } 1702 EXPORT_SYMBOL(__folio_lock); 1703 1704 int __folio_lock_killable(struct folio *folio) 1705 { 1706 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE, 1707 EXCLUSIVE); 1708 } 1709 EXPORT_SYMBOL_GPL(__folio_lock_killable); 1710 1711 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait) 1712 { 1713 struct wait_queue_head *q = folio_waitqueue(folio); 1714 int ret; 1715 1716 wait->folio = folio; 1717 wait->bit_nr = PG_locked; 1718 1719 spin_lock_irq(&q->lock); 1720 __add_wait_queue_entry_tail(q, &wait->wait); 1721 folio_set_waiters(folio); 1722 ret = !folio_trylock(folio); 1723 /* 1724 * If we were successful now, we know we're still on the 1725 * waitqueue as we're still under the lock. This means it's 1726 * safe to remove and return success, we know the callback 1727 * isn't going to trigger. 1728 */ 1729 if (!ret) 1730 __remove_wait_queue(q, &wait->wait); 1731 else 1732 ret = -EIOCBQUEUED; 1733 spin_unlock_irq(&q->lock); 1734 return ret; 1735 } 1736 1737 /* 1738 * Return values: 1739 * 0 - folio is locked. 1740 * non-zero - folio is not locked. 1741 * mmap_lock or per-VMA lock has been released (mmap_read_unlock() or 1742 * vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and 1743 * FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held. 1744 * 1745 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0 1746 * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed. 1747 */ 1748 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf) 1749 { 1750 unsigned int flags = vmf->flags; 1751 1752 if (fault_flag_allow_retry_first(flags)) { 1753 /* 1754 * CAUTION! In this case, mmap_lock/per-VMA lock is not 1755 * released even though returning VM_FAULT_RETRY. 1756 */ 1757 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1758 return VM_FAULT_RETRY; 1759 1760 release_fault_lock(vmf); 1761 if (flags & FAULT_FLAG_KILLABLE) 1762 folio_wait_locked_killable(folio); 1763 else 1764 folio_wait_locked(folio); 1765 return VM_FAULT_RETRY; 1766 } 1767 if (flags & FAULT_FLAG_KILLABLE) { 1768 bool ret; 1769 1770 ret = __folio_lock_killable(folio); 1771 if (ret) { 1772 release_fault_lock(vmf); 1773 return VM_FAULT_RETRY; 1774 } 1775 } else { 1776 __folio_lock(folio); 1777 } 1778 1779 return 0; 1780 } 1781 1782 /** 1783 * page_cache_next_miss() - Find the next gap in the page cache. 1784 * @mapping: Mapping. 1785 * @index: Index. 1786 * @max_scan: Maximum range to search. 1787 * 1788 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1789 * gap with the lowest index. 1790 * 1791 * This function may be called under the rcu_read_lock. However, this will 1792 * not atomically search a snapshot of the cache at a single point in time. 1793 * For example, if a gap is created at index 5, then subsequently a gap is 1794 * created at index 10, page_cache_next_miss covering both indices may 1795 * return 10 if called under the rcu_read_lock. 1796 * 1797 * Return: The index of the gap if found, otherwise an index outside the 1798 * range specified (in which case 'return - index >= max_scan' will be true). 1799 * In the rare case of index wrap-around, 0 will be returned. 1800 */ 1801 pgoff_t page_cache_next_miss(struct address_space *mapping, 1802 pgoff_t index, unsigned long max_scan) 1803 { 1804 XA_STATE(xas, &mapping->i_pages, index); 1805 unsigned long nr = max_scan; 1806 1807 while (nr--) { 1808 void *entry = xas_next(&xas); 1809 if (!entry || xa_is_value(entry)) 1810 return xas.xa_index; 1811 if (xas.xa_index == 0) 1812 return 0; 1813 } 1814 1815 return index + max_scan; 1816 } 1817 EXPORT_SYMBOL(page_cache_next_miss); 1818 1819 /** 1820 * page_cache_prev_miss() - Find the previous gap in the page cache. 1821 * @mapping: Mapping. 1822 * @index: Index. 1823 * @max_scan: Maximum range to search. 1824 * 1825 * Search the range [max(index - max_scan + 1, 0), index] for the 1826 * gap with the highest index. 1827 * 1828 * This function may be called under the rcu_read_lock. However, this will 1829 * not atomically search a snapshot of the cache at a single point in time. 1830 * For example, if a gap is created at index 10, then subsequently a gap is 1831 * created at index 5, page_cache_prev_miss() covering both indices may 1832 * return 5 if called under the rcu_read_lock. 1833 * 1834 * Return: The index of the gap if found, otherwise an index outside the 1835 * range specified (in which case 'index - return >= max_scan' will be true). 1836 * In the rare case of wrap-around, ULONG_MAX will be returned. 1837 */ 1838 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1839 pgoff_t index, unsigned long max_scan) 1840 { 1841 XA_STATE(xas, &mapping->i_pages, index); 1842 1843 while (max_scan--) { 1844 void *entry = xas_prev(&xas); 1845 if (!entry || xa_is_value(entry)) 1846 break; 1847 if (xas.xa_index == ULONG_MAX) 1848 break; 1849 } 1850 1851 return xas.xa_index; 1852 } 1853 EXPORT_SYMBOL(page_cache_prev_miss); 1854 1855 /* 1856 * Lockless page cache protocol: 1857 * On the lookup side: 1858 * 1. Load the folio from i_pages 1859 * 2. Increment the refcount if it's not zero 1860 * 3. If the folio is not found by xas_reload(), put the refcount and retry 1861 * 1862 * On the removal side: 1863 * A. Freeze the page (by zeroing the refcount if nobody else has a reference) 1864 * B. Remove the page from i_pages 1865 * C. Return the page to the page allocator 1866 * 1867 * This means that any page may have its reference count temporarily 1868 * increased by a speculative page cache (or GUP-fast) lookup as it can 1869 * be allocated by another user before the RCU grace period expires. 1870 * Because the refcount temporarily acquired here may end up being the 1871 * last refcount on the page, any page allocation must be freeable by 1872 * folio_put(). 1873 */ 1874 1875 /* 1876 * filemap_get_entry - Get a page cache entry. 1877 * @mapping: the address_space to search 1878 * @index: The page cache index. 1879 * 1880 * Looks up the page cache entry at @mapping & @index. If it is a folio, 1881 * it is returned with an increased refcount. If it is a shadow entry 1882 * of a previously evicted folio, or a swap entry from shmem/tmpfs, 1883 * it is returned without further action. 1884 * 1885 * Return: The folio, swap or shadow entry, %NULL if nothing is found. 1886 */ 1887 void *filemap_get_entry(struct address_space *mapping, pgoff_t index) 1888 { 1889 XA_STATE(xas, &mapping->i_pages, index); 1890 struct folio *folio; 1891 1892 rcu_read_lock(); 1893 repeat: 1894 xas_reset(&xas); 1895 folio = xas_load(&xas); 1896 if (xas_retry(&xas, folio)) 1897 goto repeat; 1898 /* 1899 * A shadow entry of a recently evicted page, or a swap entry from 1900 * shmem/tmpfs. Return it without attempting to raise page count. 1901 */ 1902 if (!folio || xa_is_value(folio)) 1903 goto out; 1904 1905 if (!folio_try_get(folio)) 1906 goto repeat; 1907 1908 if (unlikely(folio != xas_reload(&xas))) { 1909 folio_put(folio); 1910 goto repeat; 1911 } 1912 out: 1913 rcu_read_unlock(); 1914 1915 return folio; 1916 } 1917 1918 /** 1919 * __filemap_get_folio_mpol - Find and get a reference to a folio. 1920 * @mapping: The address_space to search. 1921 * @index: The page index. 1922 * @fgp_flags: %FGP flags modify how the folio is returned. 1923 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified. 1924 * @policy: NUMA memory allocation policy to follow. 1925 * 1926 * Looks up the page cache entry at @mapping & @index. 1927 * 1928 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even 1929 * if the %GFP flags specified for %FGP_CREAT are atomic. 1930 * 1931 * If this function returns a folio, it is returned with an increased refcount. 1932 * 1933 * Return: The found folio or an ERR_PTR() otherwise. 1934 */ 1935 struct folio *__filemap_get_folio_mpol(struct address_space *mapping, 1936 pgoff_t index, fgf_t fgp_flags, gfp_t gfp, struct mempolicy *policy) 1937 { 1938 struct folio *folio; 1939 1940 repeat: 1941 folio = filemap_get_entry(mapping, index); 1942 if (xa_is_value(folio)) 1943 folio = NULL; 1944 if (!folio) 1945 goto no_page; 1946 1947 if (fgp_flags & FGP_LOCK) { 1948 if (fgp_flags & FGP_NOWAIT) { 1949 if (!folio_trylock(folio)) { 1950 folio_put(folio); 1951 return ERR_PTR(-EAGAIN); 1952 } 1953 } else { 1954 folio_lock(folio); 1955 } 1956 1957 /* Has the page been truncated? */ 1958 if (unlikely(folio->mapping != mapping)) { 1959 folio_unlock(folio); 1960 folio_put(folio); 1961 goto repeat; 1962 } 1963 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 1964 } 1965 1966 if (fgp_flags & FGP_ACCESSED) 1967 folio_mark_accessed(folio); 1968 else if (fgp_flags & FGP_WRITE) { 1969 /* Clear idle flag for buffer write */ 1970 if (folio_test_idle(folio)) 1971 folio_clear_idle(folio); 1972 } 1973 1974 if (fgp_flags & FGP_STABLE) 1975 folio_wait_stable(folio); 1976 no_page: 1977 if (!folio && (fgp_flags & FGP_CREAT)) { 1978 unsigned int min_order = mapping_min_folio_order(mapping); 1979 unsigned int order = max(min_order, FGF_GET_ORDER(fgp_flags)); 1980 int err; 1981 index = mapping_align_index(mapping, index); 1982 1983 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping)) 1984 gfp |= __GFP_WRITE; 1985 if (fgp_flags & FGP_NOFS) 1986 gfp &= ~__GFP_FS; 1987 if (fgp_flags & FGP_NOWAIT) { 1988 gfp &= ~GFP_KERNEL; 1989 gfp |= GFP_NOWAIT; 1990 } 1991 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 1992 fgp_flags |= FGP_LOCK; 1993 1994 if (order > mapping_max_folio_order(mapping)) 1995 order = mapping_max_folio_order(mapping); 1996 /* If we're not aligned, allocate a smaller folio */ 1997 if (index & ((1UL << order) - 1)) 1998 order = __ffs(index); 1999 2000 do { 2001 gfp_t alloc_gfp = gfp; 2002 2003 err = -ENOMEM; 2004 if (order > min_order) 2005 alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN; 2006 folio = filemap_alloc_folio(alloc_gfp, order, policy); 2007 if (!folio) 2008 continue; 2009 2010 /* Init accessed so avoid atomic mark_page_accessed later */ 2011 if (fgp_flags & FGP_ACCESSED) 2012 __folio_set_referenced(folio); 2013 if (fgp_flags & FGP_DONTCACHE) 2014 __folio_set_dropbehind(folio); 2015 2016 err = filemap_add_folio(mapping, folio, index, gfp); 2017 if (!err) 2018 break; 2019 folio_put(folio); 2020 folio = NULL; 2021 } while (order-- > min_order); 2022 2023 if (err == -EEXIST) 2024 goto repeat; 2025 if (err) { 2026 /* 2027 * When NOWAIT I/O fails to allocate folios this could 2028 * be due to a nonblocking memory allocation and not 2029 * because the system actually is out of memory. 2030 * Return -EAGAIN so that there caller retries in a 2031 * blocking fashion instead of propagating -ENOMEM 2032 * to the application. 2033 */ 2034 if ((fgp_flags & FGP_NOWAIT) && err == -ENOMEM) 2035 err = -EAGAIN; 2036 return ERR_PTR(err); 2037 } 2038 /* 2039 * filemap_add_folio locks the page, and for mmap 2040 * we expect an unlocked page. 2041 */ 2042 if (folio && (fgp_flags & FGP_FOR_MMAP)) 2043 folio_unlock(folio); 2044 } 2045 2046 if (!folio) 2047 return ERR_PTR(-ENOENT); 2048 /* not an uncached lookup, clear uncached if set */ 2049 if (folio_test_dropbehind(folio) && !(fgp_flags & FGP_DONTCACHE)) 2050 folio_clear_dropbehind(folio); 2051 return folio; 2052 } 2053 EXPORT_SYMBOL(__filemap_get_folio_mpol); 2054 2055 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max, 2056 xa_mark_t mark) 2057 { 2058 struct folio *folio; 2059 2060 retry: 2061 if (mark == XA_PRESENT) 2062 folio = xas_find(xas, max); 2063 else 2064 folio = xas_find_marked(xas, max, mark); 2065 2066 if (xas_retry(xas, folio)) 2067 goto retry; 2068 /* 2069 * A shadow entry of a recently evicted page, a swap 2070 * entry from shmem/tmpfs or a DAX entry. Return it 2071 * without attempting to raise page count. 2072 */ 2073 if (!folio || xa_is_value(folio)) 2074 return folio; 2075 2076 if (!folio_try_get(folio)) 2077 goto reset; 2078 2079 if (unlikely(folio != xas_reload(xas))) { 2080 folio_put(folio); 2081 goto reset; 2082 } 2083 2084 return folio; 2085 reset: 2086 xas_reset(xas); 2087 goto retry; 2088 } 2089 2090 /** 2091 * find_get_entries - gang pagecache lookup 2092 * @mapping: The address_space to search 2093 * @start: The starting page cache index 2094 * @end: The final page index (inclusive). 2095 * @fbatch: Where the resulting entries are placed. 2096 * @indices: The cache indices corresponding to the entries in @entries 2097 * 2098 * find_get_entries() will search for and return a batch of entries in 2099 * the mapping. The entries are placed in @fbatch. find_get_entries() 2100 * takes a reference on any actual folios it returns. 2101 * 2102 * The entries have ascending indexes. The indices may not be consecutive 2103 * due to not-present entries or large folios. 2104 * 2105 * Any shadow entries of evicted folios, or swap entries from 2106 * shmem/tmpfs, are included in the returned array. 2107 * 2108 * Return: The number of entries which were found. 2109 */ 2110 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start, 2111 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2112 { 2113 XA_STATE(xas, &mapping->i_pages, *start); 2114 struct folio *folio; 2115 2116 rcu_read_lock(); 2117 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) { 2118 indices[fbatch->nr] = xas.xa_index; 2119 if (!folio_batch_add(fbatch, folio)) 2120 break; 2121 } 2122 2123 if (folio_batch_count(fbatch)) { 2124 unsigned long nr; 2125 int idx = folio_batch_count(fbatch) - 1; 2126 2127 folio = fbatch->folios[idx]; 2128 if (!xa_is_value(folio)) 2129 nr = folio_nr_pages(folio); 2130 else 2131 nr = 1 << xa_get_order(&mapping->i_pages, indices[idx]); 2132 *start = round_down(indices[idx] + nr, nr); 2133 } 2134 rcu_read_unlock(); 2135 2136 return folio_batch_count(fbatch); 2137 } 2138 2139 /** 2140 * find_lock_entries - Find a batch of pagecache entries. 2141 * @mapping: The address_space to search. 2142 * @start: The starting page cache index. 2143 * @end: The final page index (inclusive). 2144 * @fbatch: Where the resulting entries are placed. 2145 * @indices: The cache indices of the entries in @fbatch. 2146 * 2147 * find_lock_entries() will return a batch of entries from @mapping. 2148 * Swap, shadow and DAX entries are included. Folios are returned 2149 * locked and with an incremented refcount. Folios which are locked 2150 * by somebody else or under writeback are skipped. Folios which are 2151 * partially outside the range are not returned. 2152 * 2153 * The entries have ascending indexes. The indices may not be consecutive 2154 * due to not-present entries, large folios, folios which could not be 2155 * locked or folios under writeback. 2156 * 2157 * Return: The number of entries which were found. 2158 */ 2159 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start, 2160 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2161 { 2162 XA_STATE(xas, &mapping->i_pages, *start); 2163 struct folio *folio; 2164 2165 rcu_read_lock(); 2166 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) { 2167 unsigned long base; 2168 unsigned long nr; 2169 2170 if (!xa_is_value(folio)) { 2171 nr = folio_nr_pages(folio); 2172 base = folio->index; 2173 /* Omit large folio which begins before the start */ 2174 if (base < *start) 2175 goto put; 2176 /* Omit large folio which extends beyond the end */ 2177 if (base + nr - 1 > end) 2178 goto put; 2179 if (!folio_trylock(folio)) 2180 goto put; 2181 if (folio->mapping != mapping || 2182 folio_test_writeback(folio)) 2183 goto unlock; 2184 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index), 2185 folio); 2186 } else { 2187 nr = 1 << xas_get_order(&xas); 2188 base = xas.xa_index & ~(nr - 1); 2189 /* Omit order>0 value which begins before the start */ 2190 if (base < *start) 2191 continue; 2192 /* Omit order>0 value which extends beyond the end */ 2193 if (base + nr - 1 > end) 2194 break; 2195 } 2196 2197 /* Update start now so that last update is correct on return */ 2198 *start = base + nr; 2199 indices[fbatch->nr] = xas.xa_index; 2200 if (!folio_batch_add(fbatch, folio)) 2201 break; 2202 continue; 2203 unlock: 2204 folio_unlock(folio); 2205 put: 2206 folio_put(folio); 2207 } 2208 rcu_read_unlock(); 2209 2210 return folio_batch_count(fbatch); 2211 } 2212 2213 /** 2214 * filemap_get_folios - Get a batch of folios 2215 * @mapping: The address_space to search 2216 * @start: The starting page index 2217 * @end: The final page index (inclusive) 2218 * @fbatch: The batch to fill. 2219 * 2220 * Search for and return a batch of folios in the mapping starting at 2221 * index @start and up to index @end (inclusive). The folios are returned 2222 * in @fbatch with an elevated reference count. 2223 * 2224 * Return: The number of folios which were found. 2225 * We also update @start to index the next folio for the traversal. 2226 */ 2227 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start, 2228 pgoff_t end, struct folio_batch *fbatch) 2229 { 2230 return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch); 2231 } 2232 EXPORT_SYMBOL(filemap_get_folios); 2233 2234 /** 2235 * filemap_get_folios_contig - Get a batch of contiguous folios 2236 * @mapping: The address_space to search 2237 * @start: The starting page index 2238 * @end: The final page index (inclusive) 2239 * @fbatch: The batch to fill 2240 * 2241 * filemap_get_folios_contig() works exactly like filemap_get_folios(), 2242 * except the returned folios are guaranteed to be contiguous. This may 2243 * not return all contiguous folios if the batch gets filled up. 2244 * 2245 * Return: The number of folios found. 2246 * Also update @start to be positioned for traversal of the next folio. 2247 */ 2248 2249 unsigned filemap_get_folios_contig(struct address_space *mapping, 2250 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch) 2251 { 2252 XA_STATE(xas, &mapping->i_pages, *start); 2253 unsigned long nr; 2254 struct folio *folio; 2255 2256 rcu_read_lock(); 2257 2258 for (folio = xas_load(&xas); folio && xas.xa_index <= end; 2259 folio = xas_next(&xas)) { 2260 if (xas_retry(&xas, folio)) 2261 continue; 2262 /* 2263 * If the entry has been swapped out, we can stop looking. 2264 * No current caller is looking for DAX entries. 2265 */ 2266 if (xa_is_value(folio)) 2267 goto update_start; 2268 2269 /* If we landed in the middle of a THP, continue at its end. */ 2270 if (xa_is_sibling(folio)) 2271 goto update_start; 2272 2273 if (!folio_try_get(folio)) 2274 goto retry; 2275 2276 if (unlikely(folio != xas_reload(&xas))) 2277 goto put_folio; 2278 2279 if (!folio_batch_add(fbatch, folio)) { 2280 nr = folio_nr_pages(folio); 2281 *start = folio->index + nr; 2282 goto out; 2283 } 2284 xas_advance(&xas, folio_next_index(folio) - 1); 2285 continue; 2286 put_folio: 2287 folio_put(folio); 2288 2289 retry: 2290 xas_reset(&xas); 2291 } 2292 2293 update_start: 2294 nr = folio_batch_count(fbatch); 2295 2296 if (nr) { 2297 folio = fbatch->folios[nr - 1]; 2298 *start = folio_next_index(folio); 2299 } 2300 out: 2301 rcu_read_unlock(); 2302 return folio_batch_count(fbatch); 2303 } 2304 EXPORT_SYMBOL(filemap_get_folios_contig); 2305 2306 /** 2307 * filemap_get_folios_tag - Get a batch of folios matching @tag 2308 * @mapping: The address_space to search 2309 * @start: The starting page index 2310 * @end: The final page index (inclusive) 2311 * @tag: The tag index 2312 * @fbatch: The batch to fill 2313 * 2314 * The first folio may start before @start; if it does, it will contain 2315 * @start. The final folio may extend beyond @end; if it does, it will 2316 * contain @end. The folios have ascending indices. There may be gaps 2317 * between the folios if there are indices which have no folio in the 2318 * page cache. If folios are added to or removed from the page cache 2319 * while this is running, they may or may not be found by this call. 2320 * Only returns folios that are tagged with @tag. 2321 * 2322 * Return: The number of folios found. 2323 * Also update @start to index the next folio for traversal. 2324 */ 2325 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start, 2326 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch) 2327 { 2328 XA_STATE(xas, &mapping->i_pages, *start); 2329 struct folio *folio; 2330 2331 rcu_read_lock(); 2332 while ((folio = find_get_entry(&xas, end, tag)) != NULL) { 2333 /* 2334 * Shadow entries should never be tagged, but this iteration 2335 * is lockless so there is a window for page reclaim to evict 2336 * a page we saw tagged. Skip over it. 2337 */ 2338 if (xa_is_value(folio)) 2339 continue; 2340 if (!folio_batch_add(fbatch, folio)) { 2341 unsigned long nr = folio_nr_pages(folio); 2342 *start = folio->index + nr; 2343 goto out; 2344 } 2345 } 2346 /* 2347 * We come here when there is no page beyond @end. We take care to not 2348 * overflow the index @start as it confuses some of the callers. This 2349 * breaks the iteration when there is a page at index -1 but that is 2350 * already broke anyway. 2351 */ 2352 if (end == (pgoff_t)-1) 2353 *start = (pgoff_t)-1; 2354 else 2355 *start = end + 1; 2356 out: 2357 rcu_read_unlock(); 2358 2359 return folio_batch_count(fbatch); 2360 } 2361 EXPORT_SYMBOL(filemap_get_folios_tag); 2362 2363 /** 2364 * filemap_get_folios_dirty - Get a batch of dirty folios 2365 * @mapping: The address_space to search 2366 * @start: The starting folio index 2367 * @end: The final folio index (inclusive) 2368 * @fbatch: The batch to fill 2369 * 2370 * filemap_get_folios_dirty() works exactly like filemap_get_folios(), except 2371 * the returned folios are presumed to be dirty or undergoing writeback. Dirty 2372 * state is presumed because we don't block on folio lock nor want to miss 2373 * folios. Callers that need to can recheck state upon locking the folio. 2374 * 2375 * This may not return all dirty folios if the batch gets filled up. 2376 * 2377 * Return: The number of folios found. 2378 * Also update @start to be positioned for traversal of the next folio. 2379 */ 2380 unsigned filemap_get_folios_dirty(struct address_space *mapping, pgoff_t *start, 2381 pgoff_t end, struct folio_batch *fbatch) 2382 { 2383 XA_STATE(xas, &mapping->i_pages, *start); 2384 struct folio *folio; 2385 2386 rcu_read_lock(); 2387 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) { 2388 if (xa_is_value(folio)) 2389 continue; 2390 if (folio_trylock(folio)) { 2391 bool clean = !folio_test_dirty(folio) && 2392 !folio_test_writeback(folio); 2393 folio_unlock(folio); 2394 if (clean) { 2395 folio_put(folio); 2396 continue; 2397 } 2398 } 2399 if (!folio_batch_add(fbatch, folio)) { 2400 unsigned long nr = folio_nr_pages(folio); 2401 *start = folio->index + nr; 2402 goto out; 2403 } 2404 } 2405 /* 2406 * We come here when there is no folio beyond @end. We take care to not 2407 * overflow the index @start as it confuses some of the callers. This 2408 * breaks the iteration when there is a folio at index -1 but that is 2409 * already broke anyway. 2410 */ 2411 if (end == (pgoff_t)-1) 2412 *start = (pgoff_t)-1; 2413 else 2414 *start = end + 1; 2415 out: 2416 rcu_read_unlock(); 2417 2418 return folio_batch_count(fbatch); 2419 } 2420 2421 /* 2422 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 2423 * a _large_ part of the i/o request. Imagine the worst scenario: 2424 * 2425 * ---R__________________________________________B__________ 2426 * ^ reading here ^ bad block(assume 4k) 2427 * 2428 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2429 * => failing the whole request => read(R) => read(R+1) => 2430 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2431 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2432 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2433 * 2434 * It is going insane. Fix it by quickly scaling down the readahead size. 2435 */ 2436 static void shrink_readahead_size_eio(struct file_ra_state *ra) 2437 { 2438 ra->ra_pages /= 4; 2439 } 2440 2441 /* 2442 * filemap_get_read_batch - Get a batch of folios for read 2443 * 2444 * Get a batch of folios which represent a contiguous range of bytes in 2445 * the file. No exceptional entries will be returned. If @index is in 2446 * the middle of a folio, the entire folio will be returned. The last 2447 * folio in the batch may have the readahead flag set or the uptodate flag 2448 * clear so that the caller can take the appropriate action. 2449 */ 2450 static void filemap_get_read_batch(struct address_space *mapping, 2451 pgoff_t index, pgoff_t max, struct folio_batch *fbatch) 2452 { 2453 XA_STATE(xas, &mapping->i_pages, index); 2454 struct folio *folio; 2455 2456 rcu_read_lock(); 2457 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) { 2458 if (xas_retry(&xas, folio)) 2459 continue; 2460 if (xas.xa_index > max || xa_is_value(folio)) 2461 break; 2462 if (xa_is_sibling(folio)) 2463 break; 2464 if (!folio_try_get(folio)) 2465 goto retry; 2466 2467 if (unlikely(folio != xas_reload(&xas))) 2468 goto put_folio; 2469 2470 if (!folio_batch_add(fbatch, folio)) 2471 break; 2472 if (!folio_test_uptodate(folio)) 2473 break; 2474 if (folio_test_readahead(folio)) 2475 break; 2476 xas_advance(&xas, folio_next_index(folio) - 1); 2477 continue; 2478 put_folio: 2479 folio_put(folio); 2480 retry: 2481 xas_reset(&xas); 2482 } 2483 rcu_read_unlock(); 2484 } 2485 2486 static int filemap_read_folio(struct file *file, filler_t filler, 2487 struct folio *folio) 2488 { 2489 bool workingset = folio_test_workingset(folio); 2490 unsigned long pflags; 2491 int error; 2492 2493 /* Start the actual read. The read will unlock the page. */ 2494 if (unlikely(workingset)) 2495 psi_memstall_enter(&pflags); 2496 error = filler(file, folio); 2497 if (unlikely(workingset)) 2498 psi_memstall_leave(&pflags); 2499 if (error) 2500 return error; 2501 2502 error = folio_wait_locked_killable(folio); 2503 if (error) 2504 return error; 2505 if (folio_test_uptodate(folio)) 2506 return 0; 2507 if (file) 2508 shrink_readahead_size_eio(&file->f_ra); 2509 return -EIO; 2510 } 2511 2512 static bool filemap_range_uptodate(struct address_space *mapping, 2513 loff_t pos, size_t count, struct folio *folio, 2514 bool need_uptodate) 2515 { 2516 if (folio_test_uptodate(folio)) 2517 return true; 2518 /* pipes can't handle partially uptodate pages */ 2519 if (need_uptodate) 2520 return false; 2521 if (!mapping->a_ops->is_partially_uptodate) 2522 return false; 2523 if (mapping->host->i_blkbits >= folio_shift(folio)) 2524 return false; 2525 2526 if (folio_pos(folio) > pos) { 2527 count -= folio_pos(folio) - pos; 2528 pos = 0; 2529 } else { 2530 pos -= folio_pos(folio); 2531 } 2532 2533 if (pos == 0 && count >= folio_size(folio)) 2534 return false; 2535 2536 return mapping->a_ops->is_partially_uptodate(folio, pos, count); 2537 } 2538 2539 static int filemap_update_page(struct kiocb *iocb, 2540 struct address_space *mapping, size_t count, 2541 struct folio *folio, bool need_uptodate) 2542 { 2543 int error; 2544 2545 if (iocb->ki_flags & IOCB_NOWAIT) { 2546 if (!filemap_invalidate_trylock_shared(mapping)) 2547 return -EAGAIN; 2548 } else { 2549 filemap_invalidate_lock_shared(mapping); 2550 } 2551 2552 if (!folio_trylock(folio)) { 2553 error = -EAGAIN; 2554 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) 2555 goto unlock_mapping; 2556 if (!(iocb->ki_flags & IOCB_WAITQ)) { 2557 filemap_invalidate_unlock_shared(mapping); 2558 /* 2559 * This is where we usually end up waiting for a 2560 * previously submitted readahead to finish. 2561 */ 2562 folio_put_wait_locked(folio, TASK_KILLABLE); 2563 return AOP_TRUNCATED_PAGE; 2564 } 2565 error = __folio_lock_async(folio, iocb->ki_waitq); 2566 if (error) 2567 goto unlock_mapping; 2568 } 2569 2570 error = AOP_TRUNCATED_PAGE; 2571 if (!folio->mapping) 2572 goto unlock; 2573 2574 error = 0; 2575 if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio, 2576 need_uptodate)) 2577 goto unlock; 2578 2579 error = -EAGAIN; 2580 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ)) 2581 goto unlock; 2582 2583 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio, 2584 folio); 2585 goto unlock_mapping; 2586 unlock: 2587 folio_unlock(folio); 2588 unlock_mapping: 2589 filemap_invalidate_unlock_shared(mapping); 2590 if (error == AOP_TRUNCATED_PAGE) 2591 folio_put(folio); 2592 return error; 2593 } 2594 2595 static int filemap_create_folio(struct kiocb *iocb, struct folio_batch *fbatch) 2596 { 2597 struct address_space *mapping = iocb->ki_filp->f_mapping; 2598 struct folio *folio; 2599 int error; 2600 unsigned int min_order = mapping_min_folio_order(mapping); 2601 pgoff_t index; 2602 2603 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ)) 2604 return -EAGAIN; 2605 2606 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), min_order, NULL); 2607 if (!folio) 2608 return -ENOMEM; 2609 if (iocb->ki_flags & IOCB_DONTCACHE) 2610 __folio_set_dropbehind(folio); 2611 2612 /* 2613 * Protect against truncate / hole punch. Grabbing invalidate_lock 2614 * here assures we cannot instantiate and bring uptodate new 2615 * pagecache folios after evicting page cache during truncate 2616 * and before actually freeing blocks. Note that we could 2617 * release invalidate_lock after inserting the folio into 2618 * the page cache as the locked folio would then be enough to 2619 * synchronize with hole punching. But there are code paths 2620 * such as filemap_update_page() filling in partially uptodate 2621 * pages or ->readahead() that need to hold invalidate_lock 2622 * while mapping blocks for IO so let's hold the lock here as 2623 * well to keep locking rules simple. 2624 */ 2625 filemap_invalidate_lock_shared(mapping); 2626 index = (iocb->ki_pos >> (PAGE_SHIFT + min_order)) << min_order; 2627 error = filemap_add_folio(mapping, folio, index, 2628 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2629 if (error == -EEXIST) 2630 error = AOP_TRUNCATED_PAGE; 2631 if (error) 2632 goto error; 2633 2634 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio, 2635 folio); 2636 if (error) 2637 goto error; 2638 2639 filemap_invalidate_unlock_shared(mapping); 2640 folio_batch_add(fbatch, folio); 2641 return 0; 2642 error: 2643 filemap_invalidate_unlock_shared(mapping); 2644 folio_put(folio); 2645 return error; 2646 } 2647 2648 static int filemap_readahead(struct kiocb *iocb, struct file *file, 2649 struct address_space *mapping, struct folio *folio, 2650 pgoff_t last_index) 2651 { 2652 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index); 2653 2654 if (iocb->ki_flags & IOCB_NOIO) 2655 return -EAGAIN; 2656 if (iocb->ki_flags & IOCB_DONTCACHE) 2657 ractl.dropbehind = 1; 2658 page_cache_async_ra(&ractl, folio, last_index - folio->index); 2659 return 0; 2660 } 2661 2662 static int filemap_get_pages(struct kiocb *iocb, size_t count, 2663 struct folio_batch *fbatch, bool need_uptodate) 2664 { 2665 struct file *filp = iocb->ki_filp; 2666 struct address_space *mapping = filp->f_mapping; 2667 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT; 2668 pgoff_t last_index; 2669 struct folio *folio; 2670 unsigned int flags; 2671 int err = 0; 2672 2673 /* "last_index" is the index of the folio beyond the end of the read */ 2674 last_index = round_up(iocb->ki_pos + count, 2675 mapping_min_folio_nrbytes(mapping)) >> PAGE_SHIFT; 2676 retry: 2677 if (fatal_signal_pending(current)) 2678 return -EINTR; 2679 2680 filemap_get_read_batch(mapping, index, last_index - 1, fbatch); 2681 if (!folio_batch_count(fbatch)) { 2682 DEFINE_READAHEAD(ractl, filp, &filp->f_ra, mapping, index); 2683 2684 if (iocb->ki_flags & IOCB_NOIO) 2685 return -EAGAIN; 2686 if (iocb->ki_flags & IOCB_NOWAIT) 2687 flags = memalloc_noio_save(); 2688 if (iocb->ki_flags & IOCB_DONTCACHE) 2689 ractl.dropbehind = 1; 2690 page_cache_sync_ra(&ractl, last_index - index); 2691 if (iocb->ki_flags & IOCB_NOWAIT) 2692 memalloc_noio_restore(flags); 2693 filemap_get_read_batch(mapping, index, last_index - 1, fbatch); 2694 } 2695 if (!folio_batch_count(fbatch)) { 2696 err = filemap_create_folio(iocb, fbatch); 2697 if (err == AOP_TRUNCATED_PAGE) 2698 goto retry; 2699 return err; 2700 } 2701 2702 folio = fbatch->folios[folio_batch_count(fbatch) - 1]; 2703 if (folio_test_readahead(folio)) { 2704 err = filemap_readahead(iocb, filp, mapping, folio, last_index); 2705 if (err) 2706 goto err; 2707 } 2708 if (!folio_test_uptodate(folio)) { 2709 if (folio_batch_count(fbatch) > 1) { 2710 err = -EAGAIN; 2711 goto err; 2712 } 2713 err = filemap_update_page(iocb, mapping, count, folio, 2714 need_uptodate); 2715 if (err) 2716 goto err; 2717 } 2718 2719 trace_mm_filemap_get_pages(mapping, index, last_index - 1); 2720 return 0; 2721 err: 2722 if (err < 0) 2723 folio_put(folio); 2724 if (likely(--fbatch->nr)) 2725 return 0; 2726 if (err == AOP_TRUNCATED_PAGE) 2727 goto retry; 2728 return err; 2729 } 2730 2731 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio) 2732 { 2733 unsigned int shift = folio_shift(folio); 2734 2735 return (pos1 >> shift == pos2 >> shift); 2736 } 2737 2738 static void filemap_end_dropbehind_read(struct folio *folio) 2739 { 2740 if (!folio_test_dropbehind(folio)) 2741 return; 2742 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 2743 return; 2744 if (folio_trylock(folio)) { 2745 filemap_end_dropbehind(folio); 2746 folio_unlock(folio); 2747 } 2748 } 2749 2750 /** 2751 * filemap_read - Read data from the page cache. 2752 * @iocb: The iocb to read. 2753 * @iter: Destination for the data. 2754 * @already_read: Number of bytes already read by the caller. 2755 * 2756 * Copies data from the page cache. If the data is not currently present, 2757 * uses the readahead and read_folio address_space operations to fetch it. 2758 * 2759 * Return: Total number of bytes copied, including those already read by 2760 * the caller. If an error happens before any bytes are copied, returns 2761 * a negative error number. 2762 */ 2763 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter, 2764 ssize_t already_read) 2765 { 2766 struct file *filp = iocb->ki_filp; 2767 struct file_ra_state *ra = &filp->f_ra; 2768 struct address_space *mapping = filp->f_mapping; 2769 struct inode *inode = mapping->host; 2770 struct folio_batch fbatch; 2771 int i, error = 0; 2772 bool writably_mapped; 2773 loff_t isize, end_offset; 2774 loff_t last_pos = ra->prev_pos; 2775 2776 if (unlikely(iocb->ki_pos < 0)) 2777 return -EINVAL; 2778 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes)) 2779 return 0; 2780 if (unlikely(!iov_iter_count(iter))) 2781 return 0; 2782 2783 iov_iter_truncate(iter, inode->i_sb->s_maxbytes - iocb->ki_pos); 2784 folio_batch_init(&fbatch); 2785 2786 do { 2787 cond_resched(); 2788 2789 /* 2790 * If we've already successfully copied some data, then we 2791 * can no longer safely return -EIOCBQUEUED. Hence mark 2792 * an async read NOWAIT at that point. 2793 */ 2794 if ((iocb->ki_flags & IOCB_WAITQ) && already_read) 2795 iocb->ki_flags |= IOCB_NOWAIT; 2796 2797 if (unlikely(iocb->ki_pos >= i_size_read(inode))) 2798 break; 2799 2800 error = filemap_get_pages(iocb, iter->count, &fbatch, false); 2801 if (error < 0) 2802 break; 2803 2804 /* 2805 * i_size must be checked after we know the pages are Uptodate. 2806 * 2807 * Checking i_size after the check allows us to calculate 2808 * the correct value for "nr", which means the zero-filled 2809 * part of the page is not copied back to userspace (unless 2810 * another truncate extends the file - this is desired though). 2811 */ 2812 isize = i_size_read(inode); 2813 if (unlikely(iocb->ki_pos >= isize)) 2814 goto put_folios; 2815 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count); 2816 2817 /* 2818 * Once we start copying data, we don't want to be touching any 2819 * cachelines that might be contended: 2820 */ 2821 writably_mapped = mapping_writably_mapped(mapping); 2822 2823 /* 2824 * When a read accesses the same folio several times, only 2825 * mark it as accessed the first time. 2826 */ 2827 if (!pos_same_folio(iocb->ki_pos, last_pos - 1, 2828 fbatch.folios[0])) 2829 folio_mark_accessed(fbatch.folios[0]); 2830 2831 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2832 struct folio *folio = fbatch.folios[i]; 2833 size_t fsize = folio_size(folio); 2834 size_t offset = iocb->ki_pos & (fsize - 1); 2835 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos, 2836 fsize - offset); 2837 size_t copied; 2838 2839 if (end_offset < folio_pos(folio)) 2840 break; 2841 if (i > 0) 2842 folio_mark_accessed(folio); 2843 /* 2844 * If users can be writing to this folio using arbitrary 2845 * virtual addresses, take care of potential aliasing 2846 * before reading the folio on the kernel side. 2847 */ 2848 if (writably_mapped) 2849 flush_dcache_folio(folio); 2850 2851 copied = copy_folio_to_iter(folio, offset, bytes, iter); 2852 2853 already_read += copied; 2854 iocb->ki_pos += copied; 2855 last_pos = iocb->ki_pos; 2856 2857 if (copied < bytes) { 2858 error = -EFAULT; 2859 break; 2860 } 2861 } 2862 put_folios: 2863 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2864 struct folio *folio = fbatch.folios[i]; 2865 2866 filemap_end_dropbehind_read(folio); 2867 folio_put(folio); 2868 } 2869 folio_batch_init(&fbatch); 2870 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error); 2871 2872 file_accessed(filp); 2873 ra->prev_pos = last_pos; 2874 return already_read ? already_read : error; 2875 } 2876 EXPORT_SYMBOL_GPL(filemap_read); 2877 2878 int kiocb_write_and_wait(struct kiocb *iocb, size_t count) 2879 { 2880 struct address_space *mapping = iocb->ki_filp->f_mapping; 2881 loff_t pos = iocb->ki_pos; 2882 loff_t end = pos + count - 1; 2883 2884 if (iocb->ki_flags & IOCB_NOWAIT) { 2885 if (filemap_range_needs_writeback(mapping, pos, end)) 2886 return -EAGAIN; 2887 return 0; 2888 } 2889 2890 return filemap_write_and_wait_range(mapping, pos, end); 2891 } 2892 EXPORT_SYMBOL_GPL(kiocb_write_and_wait); 2893 2894 int filemap_invalidate_pages(struct address_space *mapping, 2895 loff_t pos, loff_t end, bool nowait) 2896 { 2897 int ret; 2898 2899 if (nowait) { 2900 /* we could block if there are any pages in the range */ 2901 if (filemap_range_has_page(mapping, pos, end)) 2902 return -EAGAIN; 2903 } else { 2904 ret = filemap_write_and_wait_range(mapping, pos, end); 2905 if (ret) 2906 return ret; 2907 } 2908 2909 /* 2910 * After a write we want buffered reads to be sure to go to disk to get 2911 * the new data. We invalidate clean cached page from the region we're 2912 * about to write. We do this *before* the write so that we can return 2913 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2914 */ 2915 return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, 2916 end >> PAGE_SHIFT); 2917 } 2918 2919 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count) 2920 { 2921 struct address_space *mapping = iocb->ki_filp->f_mapping; 2922 2923 return filemap_invalidate_pages(mapping, iocb->ki_pos, 2924 iocb->ki_pos + count - 1, 2925 iocb->ki_flags & IOCB_NOWAIT); 2926 } 2927 EXPORT_SYMBOL_GPL(kiocb_invalidate_pages); 2928 2929 /** 2930 * generic_file_read_iter - generic filesystem read routine 2931 * @iocb: kernel I/O control block 2932 * @iter: destination for the data read 2933 * 2934 * This is the "read_iter()" routine for all filesystems 2935 * that can use the page cache directly. 2936 * 2937 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall 2938 * be returned when no data can be read without waiting for I/O requests 2939 * to complete; it doesn't prevent readahead. 2940 * 2941 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O 2942 * requests shall be made for the read or for readahead. When no data 2943 * can be read, -EAGAIN shall be returned. When readahead would be 2944 * triggered, a partial, possibly empty read shall be returned. 2945 * 2946 * Return: 2947 * * number of bytes copied, even for partial reads 2948 * * negative error code (or 0 if IOCB_NOIO) if nothing was read 2949 */ 2950 ssize_t 2951 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2952 { 2953 size_t count = iov_iter_count(iter); 2954 ssize_t retval = 0; 2955 2956 if (!count) 2957 return 0; /* skip atime */ 2958 2959 if (iocb->ki_flags & IOCB_DIRECT) { 2960 struct file *file = iocb->ki_filp; 2961 struct address_space *mapping = file->f_mapping; 2962 struct inode *inode = mapping->host; 2963 2964 retval = kiocb_write_and_wait(iocb, count); 2965 if (retval < 0) 2966 return retval; 2967 file_accessed(file); 2968 2969 retval = mapping->a_ops->direct_IO(iocb, iter); 2970 if (retval >= 0) { 2971 iocb->ki_pos += retval; 2972 count -= retval; 2973 } 2974 if (retval != -EIOCBQUEUED) 2975 iov_iter_revert(iter, count - iov_iter_count(iter)); 2976 2977 /* 2978 * Btrfs can have a short DIO read if we encounter 2979 * compressed extents, so if there was an error, or if 2980 * we've already read everything we wanted to, or if 2981 * there was a short read because we hit EOF, go ahead 2982 * and return. Otherwise fallthrough to buffered io for 2983 * the rest of the read. Buffered reads will not work for 2984 * DAX files, so don't bother trying. 2985 */ 2986 if (retval < 0 || !count || IS_DAX(inode)) 2987 return retval; 2988 if (iocb->ki_pos >= i_size_read(inode)) 2989 return retval; 2990 } 2991 2992 return filemap_read(iocb, iter, retval); 2993 } 2994 EXPORT_SYMBOL(generic_file_read_iter); 2995 2996 /* 2997 * Splice subpages from a folio into a pipe. 2998 */ 2999 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe, 3000 struct folio *folio, loff_t fpos, size_t size) 3001 { 3002 struct page *page; 3003 size_t spliced = 0, offset = offset_in_folio(folio, fpos); 3004 3005 page = folio_page(folio, offset / PAGE_SIZE); 3006 size = min(size, folio_size(folio) - offset); 3007 offset %= PAGE_SIZE; 3008 3009 while (spliced < size && !pipe_is_full(pipe)) { 3010 struct pipe_buffer *buf = pipe_head_buf(pipe); 3011 size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced); 3012 3013 *buf = (struct pipe_buffer) { 3014 .ops = &page_cache_pipe_buf_ops, 3015 .page = page, 3016 .offset = offset, 3017 .len = part, 3018 }; 3019 folio_get(folio); 3020 pipe->head++; 3021 page++; 3022 spliced += part; 3023 offset = 0; 3024 } 3025 3026 return spliced; 3027 } 3028 3029 /** 3030 * filemap_splice_read - Splice data from a file's pagecache into a pipe 3031 * @in: The file to read from 3032 * @ppos: Pointer to the file position to read from 3033 * @pipe: The pipe to splice into 3034 * @len: The amount to splice 3035 * @flags: The SPLICE_F_* flags 3036 * 3037 * This function gets folios from a file's pagecache and splices them into the 3038 * pipe. Readahead will be called as necessary to fill more folios. This may 3039 * be used for blockdevs also. 3040 * 3041 * Return: On success, the number of bytes read will be returned and *@ppos 3042 * will be updated if appropriate; 0 will be returned if there is no more data 3043 * to be read; -EAGAIN will be returned if the pipe had no space, and some 3044 * other negative error code will be returned on error. A short read may occur 3045 * if the pipe has insufficient space, we reach the end of the data or we hit a 3046 * hole. 3047 */ 3048 ssize_t filemap_splice_read(struct file *in, loff_t *ppos, 3049 struct pipe_inode_info *pipe, 3050 size_t len, unsigned int flags) 3051 { 3052 struct folio_batch fbatch; 3053 struct kiocb iocb; 3054 size_t total_spliced = 0, used, npages; 3055 loff_t isize, end_offset; 3056 bool writably_mapped; 3057 int i, error = 0; 3058 3059 if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes)) 3060 return 0; 3061 3062 init_sync_kiocb(&iocb, in); 3063 iocb.ki_pos = *ppos; 3064 3065 /* Work out how much data we can actually add into the pipe */ 3066 used = pipe_buf_usage(pipe); 3067 npages = max_t(ssize_t, pipe->max_usage - used, 0); 3068 len = min_t(size_t, len, npages * PAGE_SIZE); 3069 3070 folio_batch_init(&fbatch); 3071 3072 do { 3073 cond_resched(); 3074 3075 if (*ppos >= i_size_read(in->f_mapping->host)) 3076 break; 3077 3078 iocb.ki_pos = *ppos; 3079 error = filemap_get_pages(&iocb, len, &fbatch, true); 3080 if (error < 0) 3081 break; 3082 3083 /* 3084 * i_size must be checked after we know the pages are Uptodate. 3085 * 3086 * Checking i_size after the check allows us to calculate 3087 * the correct value for "nr", which means the zero-filled 3088 * part of the page is not copied back to userspace (unless 3089 * another truncate extends the file - this is desired though). 3090 */ 3091 isize = i_size_read(in->f_mapping->host); 3092 if (unlikely(*ppos >= isize)) 3093 break; 3094 end_offset = min_t(loff_t, isize, *ppos + len); 3095 3096 /* 3097 * Once we start copying data, we don't want to be touching any 3098 * cachelines that might be contended: 3099 */ 3100 writably_mapped = mapping_writably_mapped(in->f_mapping); 3101 3102 for (i = 0; i < folio_batch_count(&fbatch); i++) { 3103 struct folio *folio = fbatch.folios[i]; 3104 size_t n; 3105 3106 if (folio_pos(folio) >= end_offset) 3107 goto out; 3108 folio_mark_accessed(folio); 3109 3110 /* 3111 * If users can be writing to this folio using arbitrary 3112 * virtual addresses, take care of potential aliasing 3113 * before reading the folio on the kernel side. 3114 */ 3115 if (writably_mapped) 3116 flush_dcache_folio(folio); 3117 3118 n = min_t(loff_t, len, isize - *ppos); 3119 n = splice_folio_into_pipe(pipe, folio, *ppos, n); 3120 if (!n) 3121 goto out; 3122 len -= n; 3123 total_spliced += n; 3124 *ppos += n; 3125 in->f_ra.prev_pos = *ppos; 3126 if (pipe_is_full(pipe)) 3127 goto out; 3128 } 3129 3130 folio_batch_release(&fbatch); 3131 } while (len); 3132 3133 out: 3134 folio_batch_release(&fbatch); 3135 file_accessed(in); 3136 3137 return total_spliced ? total_spliced : error; 3138 } 3139 EXPORT_SYMBOL(filemap_splice_read); 3140 3141 static inline loff_t folio_seek_hole_data(struct xa_state *xas, 3142 struct address_space *mapping, struct folio *folio, 3143 loff_t start, loff_t end, bool seek_data) 3144 { 3145 const struct address_space_operations *ops = mapping->a_ops; 3146 size_t offset, bsz = i_blocksize(mapping->host); 3147 3148 if (xa_is_value(folio) || folio_test_uptodate(folio)) 3149 return seek_data ? start : end; 3150 if (!ops->is_partially_uptodate) 3151 return seek_data ? end : start; 3152 3153 xas_pause(xas); 3154 rcu_read_unlock(); 3155 folio_lock(folio); 3156 if (unlikely(folio->mapping != mapping)) 3157 goto unlock; 3158 3159 offset = offset_in_folio(folio, start) & ~(bsz - 1); 3160 3161 do { 3162 if (ops->is_partially_uptodate(folio, offset, bsz) == 3163 seek_data) 3164 break; 3165 start = (start + bsz) & ~((u64)bsz - 1); 3166 offset += bsz; 3167 } while (offset < folio_size(folio)); 3168 unlock: 3169 folio_unlock(folio); 3170 rcu_read_lock(); 3171 return start; 3172 } 3173 3174 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio) 3175 { 3176 if (xa_is_value(folio)) 3177 return PAGE_SIZE << xas_get_order(xas); 3178 return folio_size(folio); 3179 } 3180 3181 /** 3182 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache. 3183 * @mapping: Address space to search. 3184 * @start: First byte to consider. 3185 * @end: Limit of search (exclusive). 3186 * @whence: Either SEEK_HOLE or SEEK_DATA. 3187 * 3188 * If the page cache knows which blocks contain holes and which blocks 3189 * contain data, your filesystem can use this function to implement 3190 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are 3191 * entirely memory-based such as tmpfs, and filesystems which support 3192 * unwritten extents. 3193 * 3194 * Return: The requested offset on success, or -ENXIO if @whence specifies 3195 * SEEK_DATA and there is no data after @start. There is an implicit hole 3196 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start 3197 * and @end contain data. 3198 */ 3199 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start, 3200 loff_t end, int whence) 3201 { 3202 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT); 3203 pgoff_t max = (end - 1) >> PAGE_SHIFT; 3204 bool seek_data = (whence == SEEK_DATA); 3205 struct folio *folio; 3206 3207 if (end <= start) 3208 return -ENXIO; 3209 3210 rcu_read_lock(); 3211 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) { 3212 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT; 3213 size_t seek_size; 3214 3215 if (start < pos) { 3216 if (!seek_data) 3217 goto unlock; 3218 start = pos; 3219 } 3220 3221 seek_size = seek_folio_size(&xas, folio); 3222 pos = round_up((u64)pos + 1, seek_size); 3223 start = folio_seek_hole_data(&xas, mapping, folio, start, pos, 3224 seek_data); 3225 if (start < pos) 3226 goto unlock; 3227 if (start >= end) 3228 break; 3229 if (seek_size > PAGE_SIZE) 3230 xas_set(&xas, pos >> PAGE_SHIFT); 3231 if (!xa_is_value(folio)) 3232 folio_put(folio); 3233 } 3234 if (seek_data) 3235 start = -ENXIO; 3236 unlock: 3237 rcu_read_unlock(); 3238 if (folio && !xa_is_value(folio)) 3239 folio_put(folio); 3240 if (start > end) 3241 return end; 3242 return start; 3243 } 3244 3245 #ifdef CONFIG_MMU 3246 #define MMAP_LOTSAMISS (100) 3247 /* 3248 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock 3249 * @vmf - the vm_fault for this fault. 3250 * @folio - the folio to lock. 3251 * @fpin - the pointer to the file we may pin (or is already pinned). 3252 * 3253 * This works similar to lock_folio_or_retry in that it can drop the 3254 * mmap_lock. It differs in that it actually returns the folio locked 3255 * if it returns 1 and 0 if it couldn't lock the folio. If we did have 3256 * to drop the mmap_lock then fpin will point to the pinned file and 3257 * needs to be fput()'ed at a later point. 3258 */ 3259 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio, 3260 struct file **fpin) 3261 { 3262 if (folio_trylock(folio)) 3263 return 1; 3264 3265 /* 3266 * NOTE! This will make us return with VM_FAULT_RETRY, but with 3267 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT 3268 * is supposed to work. We have way too many special cases.. 3269 */ 3270 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 3271 return 0; 3272 3273 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 3274 if (vmf->flags & FAULT_FLAG_KILLABLE) { 3275 if (__folio_lock_killable(folio)) { 3276 /* 3277 * We didn't have the right flags to drop the 3278 * fault lock, but all fault_handlers only check 3279 * for fatal signals if we return VM_FAULT_RETRY, 3280 * so we need to drop the fault lock here and 3281 * return 0 if we don't have a fpin. 3282 */ 3283 if (*fpin == NULL) 3284 release_fault_lock(vmf); 3285 return 0; 3286 } 3287 } else 3288 __folio_lock(folio); 3289 3290 return 1; 3291 } 3292 3293 /* 3294 * Synchronous readahead happens when we don't even find a page in the page 3295 * cache at all. We don't want to perform IO under the mmap sem, so if we have 3296 * to drop the mmap sem we return the file that was pinned in order for us to do 3297 * that. If we didn't pin a file then we return NULL. The file that is 3298 * returned needs to be fput()'ed when we're done with it. 3299 */ 3300 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 3301 { 3302 struct file *file = vmf->vma->vm_file; 3303 struct file_ra_state *ra = &file->f_ra; 3304 struct address_space *mapping = file->f_mapping; 3305 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff); 3306 struct file *fpin = NULL; 3307 vm_flags_t vm_flags = vmf->vma->vm_flags; 3308 bool force_thp_readahead = false; 3309 unsigned short mmap_miss; 3310 3311 /* Use the readahead code, even if readahead is disabled */ 3312 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 3313 (vm_flags & VM_HUGEPAGE) && HPAGE_PMD_ORDER <= MAX_PAGECACHE_ORDER) 3314 force_thp_readahead = true; 3315 3316 if (!force_thp_readahead) { 3317 /* 3318 * If we don't want any read-ahead, don't bother. 3319 * VM_EXEC case below is already intended for random access. 3320 */ 3321 if ((vm_flags & (VM_RAND_READ | VM_EXEC)) == VM_RAND_READ) 3322 return fpin; 3323 3324 if (!ra->ra_pages) 3325 return fpin; 3326 3327 if (vm_flags & VM_SEQ_READ) { 3328 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3329 page_cache_sync_ra(&ractl, ra->ra_pages); 3330 return fpin; 3331 } 3332 } 3333 3334 if (!(vm_flags & VM_SEQ_READ)) { 3335 /* Avoid banging the cache line if not needed */ 3336 mmap_miss = READ_ONCE(ra->mmap_miss); 3337 if (mmap_miss < MMAP_LOTSAMISS * 10) 3338 WRITE_ONCE(ra->mmap_miss, ++mmap_miss); 3339 3340 /* 3341 * Do we miss much more than hit in this file? If so, 3342 * stop bothering with read-ahead. It will only hurt. 3343 */ 3344 if (mmap_miss > MMAP_LOTSAMISS) 3345 return fpin; 3346 } 3347 3348 if (force_thp_readahead) { 3349 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3350 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1); 3351 ra->size = HPAGE_PMD_NR; 3352 /* 3353 * Fetch two PMD folios, so we get the chance to actually 3354 * readahead, unless we've been told not to. 3355 */ 3356 if (!(vm_flags & VM_RAND_READ)) 3357 ra->size *= 2; 3358 ra->async_size = HPAGE_PMD_NR; 3359 ra->order = HPAGE_PMD_ORDER; 3360 page_cache_ra_order(&ractl, ra); 3361 return fpin; 3362 } 3363 3364 if (vm_flags & VM_EXEC) { 3365 /* 3366 * Allow arch to request a preferred minimum folio order for 3367 * executable memory. This can often be beneficial to 3368 * performance if (e.g.) arm64 can contpte-map the folio. 3369 * Executable memory rarely benefits from readahead, due to its 3370 * random access nature, so set async_size to 0. 3371 * 3372 * Limit to the boundaries of the VMA to avoid reading in any 3373 * pad that might exist between sections, which would be a waste 3374 * of memory. 3375 */ 3376 struct vm_area_struct *vma = vmf->vma; 3377 unsigned long start = vma->vm_pgoff; 3378 unsigned long end = start + vma_pages(vma); 3379 unsigned long ra_end; 3380 3381 ra->order = exec_folio_order(); 3382 ra->start = round_down(vmf->pgoff, 1UL << ra->order); 3383 ra->start = max(ra->start, start); 3384 ra_end = round_up(ra->start + ra->ra_pages, 1UL << ra->order); 3385 ra_end = min(ra_end, end); 3386 ra->size = ra_end - ra->start; 3387 ra->async_size = 0; 3388 } else { 3389 /* 3390 * mmap read-around 3391 */ 3392 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2); 3393 ra->size = ra->ra_pages; 3394 ra->async_size = ra->ra_pages / 4; 3395 ra->order = 0; 3396 } 3397 3398 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3399 ractl._index = ra->start; 3400 page_cache_ra_order(&ractl, ra); 3401 return fpin; 3402 } 3403 3404 /* 3405 * Asynchronous readahead happens when we find the page and PG_readahead, 3406 * so we want to possibly extend the readahead further. We return the file that 3407 * was pinned if we have to drop the mmap_lock in order to do IO. 3408 */ 3409 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 3410 struct folio *folio) 3411 { 3412 struct file *file = vmf->vma->vm_file; 3413 struct file_ra_state *ra = &file->f_ra; 3414 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff); 3415 struct file *fpin = NULL; 3416 unsigned short mmap_miss; 3417 3418 /* If we don't want any read-ahead, don't bother */ 3419 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages) 3420 return fpin; 3421 3422 /* 3423 * If the folio is locked, we're likely racing against another fault. 3424 * Don't touch the mmap_miss counter to avoid decreasing it multiple 3425 * times for a single folio and break the balance with mmap_miss 3426 * increase in do_sync_mmap_readahead(). 3427 */ 3428 if (likely(!folio_test_locked(folio))) { 3429 mmap_miss = READ_ONCE(ra->mmap_miss); 3430 if (mmap_miss) 3431 WRITE_ONCE(ra->mmap_miss, --mmap_miss); 3432 } 3433 3434 if (folio_test_readahead(folio)) { 3435 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3436 page_cache_async_ra(&ractl, folio, ra->ra_pages); 3437 } 3438 return fpin; 3439 } 3440 3441 static vm_fault_t filemap_fault_recheck_pte_none(struct vm_fault *vmf) 3442 { 3443 struct vm_area_struct *vma = vmf->vma; 3444 vm_fault_t ret = 0; 3445 pte_t *ptep; 3446 3447 /* 3448 * We might have COW'ed a pagecache folio and might now have an mlocked 3449 * anon folio mapped. The original pagecache folio is not mlocked and 3450 * might have been evicted. During a read+clear/modify/write update of 3451 * the PTE, such as done in do_numa_page()/change_pte_range(), we 3452 * temporarily clear the PTE under PT lock and might detect it here as 3453 * "none" when not holding the PT lock. 3454 * 3455 * Not rechecking the PTE under PT lock could result in an unexpected 3456 * major fault in an mlock'ed region. Recheck only for this special 3457 * scenario while holding the PT lock, to not degrade non-mlocked 3458 * scenarios. Recheck the PTE without PT lock firstly, thereby reducing 3459 * the number of times we hold PT lock. 3460 */ 3461 if (!(vma->vm_flags & VM_LOCKED)) 3462 return 0; 3463 3464 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 3465 return 0; 3466 3467 ptep = pte_offset_map_ro_nolock(vma->vm_mm, vmf->pmd, vmf->address, 3468 &vmf->ptl); 3469 if (unlikely(!ptep)) 3470 return VM_FAULT_NOPAGE; 3471 3472 if (unlikely(!pte_none(ptep_get_lockless(ptep)))) { 3473 ret = VM_FAULT_NOPAGE; 3474 } else { 3475 spin_lock(vmf->ptl); 3476 if (unlikely(!pte_none(ptep_get(ptep)))) 3477 ret = VM_FAULT_NOPAGE; 3478 spin_unlock(vmf->ptl); 3479 } 3480 pte_unmap(ptep); 3481 return ret; 3482 } 3483 3484 /** 3485 * filemap_fault - read in file data for page fault handling 3486 * @vmf: struct vm_fault containing details of the fault 3487 * 3488 * filemap_fault() is invoked via the vma operations vector for a 3489 * mapped memory region to read in file data during a page fault. 3490 * 3491 * The goto's are kind of ugly, but this streamlines the normal case of having 3492 * it in the page cache, and handles the special cases reasonably without 3493 * having a lot of duplicated code. 3494 * 3495 * vma->vm_mm->mmap_lock must be held on entry. 3496 * 3497 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock 3498 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap(). 3499 * 3500 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock 3501 * has not been released. 3502 * 3503 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 3504 * 3505 * Return: bitwise-OR of %VM_FAULT_ codes. 3506 */ 3507 vm_fault_t filemap_fault(struct vm_fault *vmf) 3508 { 3509 int error; 3510 struct file *file = vmf->vma->vm_file; 3511 struct file *fpin = NULL; 3512 struct address_space *mapping = file->f_mapping; 3513 struct inode *inode = mapping->host; 3514 pgoff_t max_idx, index = vmf->pgoff; 3515 struct folio *folio; 3516 vm_fault_t ret = 0; 3517 bool mapping_locked = false; 3518 3519 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3520 if (unlikely(index >= max_idx)) 3521 return VM_FAULT_SIGBUS; 3522 3523 trace_mm_filemap_fault(mapping, index); 3524 3525 /* 3526 * Do we have something in the page cache already? 3527 */ 3528 folio = filemap_get_folio(mapping, index); 3529 if (likely(!IS_ERR(folio))) { 3530 /* 3531 * We found the page, so try async readahead before waiting for 3532 * the lock. 3533 */ 3534 if (!(vmf->flags & FAULT_FLAG_TRIED)) 3535 fpin = do_async_mmap_readahead(vmf, folio); 3536 if (unlikely(!folio_test_uptodate(folio))) { 3537 filemap_invalidate_lock_shared(mapping); 3538 mapping_locked = true; 3539 } 3540 } else { 3541 ret = filemap_fault_recheck_pte_none(vmf); 3542 if (unlikely(ret)) 3543 return ret; 3544 3545 /* No page in the page cache at all */ 3546 count_vm_event(PGMAJFAULT); 3547 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 3548 ret = VM_FAULT_MAJOR; 3549 fpin = do_sync_mmap_readahead(vmf); 3550 retry_find: 3551 /* 3552 * See comment in filemap_create_folio() why we need 3553 * invalidate_lock 3554 */ 3555 if (!mapping_locked) { 3556 filemap_invalidate_lock_shared(mapping); 3557 mapping_locked = true; 3558 } 3559 folio = __filemap_get_folio(mapping, index, 3560 FGP_CREAT|FGP_FOR_MMAP, 3561 vmf->gfp_mask); 3562 if (IS_ERR(folio)) { 3563 if (fpin) 3564 goto out_retry; 3565 filemap_invalidate_unlock_shared(mapping); 3566 return VM_FAULT_OOM; 3567 } 3568 } 3569 3570 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin)) 3571 goto out_retry; 3572 3573 /* Did it get truncated? */ 3574 if (unlikely(folio->mapping != mapping)) { 3575 folio_unlock(folio); 3576 folio_put(folio); 3577 goto retry_find; 3578 } 3579 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 3580 3581 /* 3582 * We have a locked folio in the page cache, now we need to check 3583 * that it's up-to-date. If not, it is going to be due to an error, 3584 * or because readahead was otherwise unable to retrieve it. 3585 */ 3586 if (unlikely(!folio_test_uptodate(folio))) { 3587 /* 3588 * If the invalidate lock is not held, the folio was in cache 3589 * and uptodate and now it is not. Strange but possible since we 3590 * didn't hold the page lock all the time. Let's drop 3591 * everything, get the invalidate lock and try again. 3592 */ 3593 if (!mapping_locked) { 3594 folio_unlock(folio); 3595 folio_put(folio); 3596 goto retry_find; 3597 } 3598 3599 /* 3600 * OK, the folio is really not uptodate. This can be because the 3601 * VMA has the VM_RAND_READ flag set, or because an error 3602 * arose. Let's read it in directly. 3603 */ 3604 goto page_not_uptodate; 3605 } 3606 3607 /* 3608 * We've made it this far and we had to drop our mmap_lock, now is the 3609 * time to return to the upper layer and have it re-find the vma and 3610 * redo the fault. 3611 */ 3612 if (fpin) { 3613 folio_unlock(folio); 3614 goto out_retry; 3615 } 3616 if (mapping_locked) 3617 filemap_invalidate_unlock_shared(mapping); 3618 3619 /* 3620 * Found the page and have a reference on it. 3621 * We must recheck i_size under page lock. 3622 */ 3623 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3624 if (unlikely(index >= max_idx)) { 3625 folio_unlock(folio); 3626 folio_put(folio); 3627 return VM_FAULT_SIGBUS; 3628 } 3629 3630 vmf->page = folio_file_page(folio, index); 3631 return ret | VM_FAULT_LOCKED; 3632 3633 page_not_uptodate: 3634 /* 3635 * Umm, take care of errors if the page isn't up-to-date. 3636 * Try to re-read it _once_. We do this synchronously, 3637 * because there really aren't any performance issues here 3638 * and we need to check for errors. 3639 */ 3640 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3641 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio); 3642 if (fpin) 3643 goto out_retry; 3644 folio_put(folio); 3645 3646 if (!error || error == AOP_TRUNCATED_PAGE) 3647 goto retry_find; 3648 filemap_invalidate_unlock_shared(mapping); 3649 3650 return VM_FAULT_SIGBUS; 3651 3652 out_retry: 3653 /* 3654 * We dropped the mmap_lock, we need to return to the fault handler to 3655 * re-find the vma and come back and find our hopefully still populated 3656 * page. 3657 */ 3658 if (!IS_ERR(folio)) 3659 folio_put(folio); 3660 if (mapping_locked) 3661 filemap_invalidate_unlock_shared(mapping); 3662 if (fpin) 3663 fput(fpin); 3664 return ret | VM_FAULT_RETRY; 3665 } 3666 EXPORT_SYMBOL(filemap_fault); 3667 3668 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio, 3669 pgoff_t start) 3670 { 3671 struct mm_struct *mm = vmf->vma->vm_mm; 3672 3673 /* Huge page is mapped? No need to proceed. */ 3674 if (pmd_trans_huge(*vmf->pmd)) { 3675 folio_unlock(folio); 3676 folio_put(folio); 3677 return true; 3678 } 3679 3680 if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) { 3681 struct page *page = folio_file_page(folio, start); 3682 vm_fault_t ret = do_set_pmd(vmf, folio, page); 3683 if (!ret) { 3684 /* The page is mapped successfully, reference consumed. */ 3685 folio_unlock(folio); 3686 return true; 3687 } 3688 } 3689 3690 if (pmd_none(*vmf->pmd) && vmf->prealloc_pte) 3691 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte); 3692 3693 return false; 3694 } 3695 3696 static struct folio *next_uptodate_folio(struct xa_state *xas, 3697 struct address_space *mapping, pgoff_t end_pgoff) 3698 { 3699 struct folio *folio = xas_next_entry(xas, end_pgoff); 3700 unsigned long max_idx; 3701 3702 do { 3703 if (!folio) 3704 return NULL; 3705 if (xas_retry(xas, folio)) 3706 continue; 3707 if (xa_is_value(folio)) 3708 continue; 3709 if (!folio_try_get(folio)) 3710 continue; 3711 if (folio_test_locked(folio)) 3712 goto skip; 3713 /* Has the page moved or been split? */ 3714 if (unlikely(folio != xas_reload(xas))) 3715 goto skip; 3716 if (!folio_test_uptodate(folio) || folio_test_readahead(folio)) 3717 goto skip; 3718 if (!folio_trylock(folio)) 3719 goto skip; 3720 if (folio->mapping != mapping) 3721 goto unlock; 3722 if (!folio_test_uptodate(folio)) 3723 goto unlock; 3724 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3725 if (xas->xa_index >= max_idx) 3726 goto unlock; 3727 return folio; 3728 unlock: 3729 folio_unlock(folio); 3730 skip: 3731 folio_put(folio); 3732 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL); 3733 3734 return NULL; 3735 } 3736 3737 /* 3738 * Map page range [start_page, start_page + nr_pages) of folio. 3739 * start_page is gotten from start by folio_page(folio, start) 3740 */ 3741 static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf, 3742 struct folio *folio, unsigned long start, 3743 unsigned long addr, unsigned int nr_pages, 3744 unsigned long *rss, unsigned short *mmap_miss, 3745 pgoff_t file_end) 3746 { 3747 struct address_space *mapping = folio->mapping; 3748 unsigned int ref_from_caller = 1; 3749 vm_fault_t ret = 0; 3750 struct page *page = folio_page(folio, start); 3751 unsigned int count = 0; 3752 pte_t *old_ptep = vmf->pte; 3753 unsigned long addr0; 3754 3755 /* 3756 * Map the large folio fully where possible: 3757 * 3758 * - The folio is fully within size of the file or belong 3759 * to shmem/tmpfs; 3760 * - The folio doesn't cross VMA boundary; 3761 * - The folio doesn't cross page table boundary; 3762 */ 3763 addr0 = addr - start * PAGE_SIZE; 3764 if ((file_end >= folio_next_index(folio) || shmem_mapping(mapping)) && 3765 folio_within_vma(folio, vmf->vma) && 3766 (addr0 & PMD_MASK) == ((addr0 + folio_size(folio) - 1) & PMD_MASK)) { 3767 vmf->pte -= start; 3768 page -= start; 3769 addr = addr0; 3770 nr_pages = folio_nr_pages(folio); 3771 } 3772 3773 do { 3774 if (PageHWPoison(page + count)) 3775 goto skip; 3776 3777 /* 3778 * If there are too many folios that are recently evicted 3779 * in a file, they will probably continue to be evicted. 3780 * In such situation, read-ahead is only a waste of IO. 3781 * Don't decrease mmap_miss in this scenario to make sure 3782 * we can stop read-ahead. 3783 */ 3784 if (!folio_test_workingset(folio)) 3785 (*mmap_miss)++; 3786 3787 /* 3788 * NOTE: If there're PTE markers, we'll leave them to be 3789 * handled in the specific fault path, and it'll prohibit the 3790 * fault-around logic. 3791 */ 3792 if (!pte_none(ptep_get(&vmf->pte[count]))) 3793 goto skip; 3794 3795 count++; 3796 continue; 3797 skip: 3798 if (count) { 3799 set_pte_range(vmf, folio, page, count, addr); 3800 *rss += count; 3801 folio_ref_add(folio, count - ref_from_caller); 3802 ref_from_caller = 0; 3803 if (in_range(vmf->address, addr, count * PAGE_SIZE)) 3804 ret = VM_FAULT_NOPAGE; 3805 } 3806 3807 count++; 3808 page += count; 3809 vmf->pte += count; 3810 addr += count * PAGE_SIZE; 3811 count = 0; 3812 } while (--nr_pages > 0); 3813 3814 if (count) { 3815 set_pte_range(vmf, folio, page, count, addr); 3816 *rss += count; 3817 folio_ref_add(folio, count - ref_from_caller); 3818 ref_from_caller = 0; 3819 if (in_range(vmf->address, addr, count * PAGE_SIZE)) 3820 ret = VM_FAULT_NOPAGE; 3821 } 3822 3823 vmf->pte = old_ptep; 3824 if (ref_from_caller) 3825 /* Locked folios cannot get truncated. */ 3826 folio_ref_dec(folio); 3827 3828 return ret; 3829 } 3830 3831 static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf, 3832 struct folio *folio, unsigned long addr, 3833 unsigned long *rss, unsigned short *mmap_miss) 3834 { 3835 vm_fault_t ret = 0; 3836 struct page *page = &folio->page; 3837 3838 if (PageHWPoison(page)) 3839 goto out; 3840 3841 /* See comment of filemap_map_folio_range() */ 3842 if (!folio_test_workingset(folio)) 3843 (*mmap_miss)++; 3844 3845 /* 3846 * NOTE: If there're PTE markers, we'll leave them to be 3847 * handled in the specific fault path, and it'll prohibit 3848 * the fault-around logic. 3849 */ 3850 if (!pte_none(ptep_get(vmf->pte))) 3851 goto out; 3852 3853 if (vmf->address == addr) 3854 ret = VM_FAULT_NOPAGE; 3855 3856 set_pte_range(vmf, folio, page, 1, addr); 3857 (*rss)++; 3858 return ret; 3859 3860 out: 3861 /* Locked folios cannot get truncated. */ 3862 folio_ref_dec(folio); 3863 return ret; 3864 } 3865 3866 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3867 pgoff_t start_pgoff, pgoff_t end_pgoff) 3868 { 3869 struct vm_area_struct *vma = vmf->vma; 3870 struct file *file = vma->vm_file; 3871 struct address_space *mapping = file->f_mapping; 3872 pgoff_t file_end, last_pgoff = start_pgoff; 3873 unsigned long addr; 3874 XA_STATE(xas, &mapping->i_pages, start_pgoff); 3875 struct folio *folio; 3876 vm_fault_t ret = 0; 3877 unsigned long rss = 0; 3878 unsigned int nr_pages = 0, folio_type; 3879 unsigned short mmap_miss = 0, mmap_miss_saved; 3880 3881 rcu_read_lock(); 3882 folio = next_uptodate_folio(&xas, mapping, end_pgoff); 3883 if (!folio) 3884 goto out; 3885 3886 file_end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE) - 1; 3887 end_pgoff = min(end_pgoff, file_end); 3888 3889 /* 3890 * Do not allow to map with PMD across i_size to preserve 3891 * SIGBUS semantics. 3892 * 3893 * Make an exception for shmem/tmpfs that for long time 3894 * intentionally mapped with PMDs across i_size. 3895 */ 3896 if ((file_end >= folio_next_index(folio) || shmem_mapping(mapping)) && 3897 filemap_map_pmd(vmf, folio, start_pgoff)) { 3898 ret = VM_FAULT_NOPAGE; 3899 goto out; 3900 } 3901 3902 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT); 3903 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 3904 if (!vmf->pte) { 3905 folio_unlock(folio); 3906 folio_put(folio); 3907 goto out; 3908 } 3909 3910 folio_type = mm_counter_file(folio); 3911 do { 3912 unsigned long end; 3913 3914 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 3915 vmf->pte += xas.xa_index - last_pgoff; 3916 last_pgoff = xas.xa_index; 3917 end = folio_next_index(folio) - 1; 3918 nr_pages = min(end, end_pgoff) - xas.xa_index + 1; 3919 3920 if (!folio_test_large(folio)) 3921 ret |= filemap_map_order0_folio(vmf, 3922 folio, addr, &rss, &mmap_miss); 3923 else 3924 ret |= filemap_map_folio_range(vmf, folio, 3925 xas.xa_index - folio->index, addr, 3926 nr_pages, &rss, &mmap_miss, file_end); 3927 3928 folio_unlock(folio); 3929 } while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL); 3930 add_mm_counter(vma->vm_mm, folio_type, rss); 3931 pte_unmap_unlock(vmf->pte, vmf->ptl); 3932 trace_mm_filemap_map_pages(mapping, start_pgoff, end_pgoff); 3933 out: 3934 rcu_read_unlock(); 3935 3936 mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss); 3937 if (mmap_miss >= mmap_miss_saved) 3938 WRITE_ONCE(file->f_ra.mmap_miss, 0); 3939 else 3940 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss); 3941 3942 return ret; 3943 } 3944 EXPORT_SYMBOL(filemap_map_pages); 3945 3946 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3947 { 3948 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 3949 struct folio *folio = page_folio(vmf->page); 3950 vm_fault_t ret = VM_FAULT_LOCKED; 3951 3952 sb_start_pagefault(mapping->host->i_sb); 3953 file_update_time(vmf->vma->vm_file); 3954 folio_lock(folio); 3955 if (folio->mapping != mapping) { 3956 folio_unlock(folio); 3957 ret = VM_FAULT_NOPAGE; 3958 goto out; 3959 } 3960 /* 3961 * We mark the folio dirty already here so that when freeze is in 3962 * progress, we are guaranteed that writeback during freezing will 3963 * see the dirty folio and writeprotect it again. 3964 */ 3965 folio_mark_dirty(folio); 3966 folio_wait_stable(folio); 3967 out: 3968 sb_end_pagefault(mapping->host->i_sb); 3969 return ret; 3970 } 3971 3972 const struct vm_operations_struct generic_file_vm_ops = { 3973 .fault = filemap_fault, 3974 .map_pages = filemap_map_pages, 3975 .page_mkwrite = filemap_page_mkwrite, 3976 }; 3977 3978 /* This is used for a general mmap of a disk file */ 3979 3980 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3981 { 3982 struct address_space *mapping = file->f_mapping; 3983 3984 if (!mapping->a_ops->read_folio) 3985 return -ENOEXEC; 3986 file_accessed(file); 3987 vma->vm_ops = &generic_file_vm_ops; 3988 return 0; 3989 } 3990 3991 int generic_file_mmap_prepare(struct vm_area_desc *desc) 3992 { 3993 struct file *file = desc->file; 3994 struct address_space *mapping = file->f_mapping; 3995 3996 if (!mapping->a_ops->read_folio) 3997 return -ENOEXEC; 3998 file_accessed(file); 3999 desc->vm_ops = &generic_file_vm_ops; 4000 return 0; 4001 } 4002 4003 /* 4004 * This is for filesystems which do not implement ->writepage. 4005 */ 4006 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 4007 { 4008 if (vma_is_shared_maywrite(vma)) 4009 return -EINVAL; 4010 return generic_file_mmap(file, vma); 4011 } 4012 4013 int generic_file_readonly_mmap_prepare(struct vm_area_desc *desc) 4014 { 4015 if (is_shared_maywrite(desc->vm_flags)) 4016 return -EINVAL; 4017 return generic_file_mmap_prepare(desc); 4018 } 4019 #else 4020 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 4021 { 4022 return VM_FAULT_SIGBUS; 4023 } 4024 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 4025 { 4026 return -ENOSYS; 4027 } 4028 int generic_file_mmap_prepare(struct vm_area_desc *desc) 4029 { 4030 return -ENOSYS; 4031 } 4032 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 4033 { 4034 return -ENOSYS; 4035 } 4036 int generic_file_readonly_mmap_prepare(struct vm_area_desc *desc) 4037 { 4038 return -ENOSYS; 4039 } 4040 #endif /* CONFIG_MMU */ 4041 4042 EXPORT_SYMBOL(filemap_page_mkwrite); 4043 EXPORT_SYMBOL(generic_file_mmap); 4044 EXPORT_SYMBOL(generic_file_mmap_prepare); 4045 EXPORT_SYMBOL(generic_file_readonly_mmap); 4046 EXPORT_SYMBOL(generic_file_readonly_mmap_prepare); 4047 4048 static struct folio *do_read_cache_folio(struct address_space *mapping, 4049 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp) 4050 { 4051 struct folio *folio; 4052 int err; 4053 4054 if (!filler) 4055 filler = mapping->a_ops->read_folio; 4056 repeat: 4057 folio = filemap_get_folio(mapping, index); 4058 if (IS_ERR(folio)) { 4059 folio = filemap_alloc_folio(gfp, mapping_min_folio_order(mapping), NULL); 4060 if (!folio) 4061 return ERR_PTR(-ENOMEM); 4062 index = mapping_align_index(mapping, index); 4063 err = filemap_add_folio(mapping, folio, index, gfp); 4064 if (unlikely(err)) { 4065 folio_put(folio); 4066 if (err == -EEXIST) 4067 goto repeat; 4068 /* Presumably ENOMEM for xarray node */ 4069 return ERR_PTR(err); 4070 } 4071 4072 goto filler; 4073 } 4074 if (folio_test_uptodate(folio)) 4075 goto out; 4076 4077 if (!folio_trylock(folio)) { 4078 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE); 4079 goto repeat; 4080 } 4081 4082 /* Folio was truncated from mapping */ 4083 if (!folio->mapping) { 4084 folio_unlock(folio); 4085 folio_put(folio); 4086 goto repeat; 4087 } 4088 4089 /* Someone else locked and filled the page in a very small window */ 4090 if (folio_test_uptodate(folio)) { 4091 folio_unlock(folio); 4092 goto out; 4093 } 4094 4095 filler: 4096 err = filemap_read_folio(file, filler, folio); 4097 if (err) { 4098 folio_put(folio); 4099 if (err == AOP_TRUNCATED_PAGE) 4100 goto repeat; 4101 return ERR_PTR(err); 4102 } 4103 4104 out: 4105 folio_mark_accessed(folio); 4106 return folio; 4107 } 4108 4109 /** 4110 * read_cache_folio - Read into page cache, fill it if needed. 4111 * @mapping: The address_space to read from. 4112 * @index: The index to read. 4113 * @filler: Function to perform the read, or NULL to use aops->read_folio(). 4114 * @file: Passed to filler function, may be NULL if not required. 4115 * 4116 * Read one page into the page cache. If it succeeds, the folio returned 4117 * will contain @index, but it may not be the first page of the folio. 4118 * 4119 * If the filler function returns an error, it will be returned to the 4120 * caller. 4121 * 4122 * Context: May sleep. Expects mapping->invalidate_lock to be held. 4123 * Return: An uptodate folio on success, ERR_PTR() on failure. 4124 */ 4125 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index, 4126 filler_t filler, struct file *file) 4127 { 4128 return do_read_cache_folio(mapping, index, filler, file, 4129 mapping_gfp_mask(mapping)); 4130 } 4131 EXPORT_SYMBOL(read_cache_folio); 4132 4133 /** 4134 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags. 4135 * @mapping: The address_space for the folio. 4136 * @index: The index that the allocated folio will contain. 4137 * @gfp: The page allocator flags to use if allocating. 4138 * 4139 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with 4140 * any new memory allocations done using the specified allocation flags. 4141 * 4142 * The most likely error from this function is EIO, but ENOMEM is 4143 * possible and so is EINTR. If ->read_folio returns another error, 4144 * that will be returned to the caller. 4145 * 4146 * The function expects mapping->invalidate_lock to be already held. 4147 * 4148 * Return: Uptodate folio on success, ERR_PTR() on failure. 4149 */ 4150 struct folio *mapping_read_folio_gfp(struct address_space *mapping, 4151 pgoff_t index, gfp_t gfp) 4152 { 4153 return do_read_cache_folio(mapping, index, NULL, NULL, gfp); 4154 } 4155 EXPORT_SYMBOL(mapping_read_folio_gfp); 4156 4157 static struct page *do_read_cache_page(struct address_space *mapping, 4158 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp) 4159 { 4160 struct folio *folio; 4161 4162 folio = do_read_cache_folio(mapping, index, filler, file, gfp); 4163 if (IS_ERR(folio)) 4164 return &folio->page; 4165 return folio_file_page(folio, index); 4166 } 4167 4168 struct page *read_cache_page(struct address_space *mapping, 4169 pgoff_t index, filler_t *filler, struct file *file) 4170 { 4171 return do_read_cache_page(mapping, index, filler, file, 4172 mapping_gfp_mask(mapping)); 4173 } 4174 EXPORT_SYMBOL(read_cache_page); 4175 4176 /** 4177 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 4178 * @mapping: the page's address_space 4179 * @index: the page index 4180 * @gfp: the page allocator flags to use if allocating 4181 * 4182 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 4183 * any new page allocations done using the specified allocation flags. 4184 * 4185 * If the page does not get brought uptodate, return -EIO. 4186 * 4187 * The function expects mapping->invalidate_lock to be already held. 4188 * 4189 * Return: up to date page on success, ERR_PTR() on failure. 4190 */ 4191 struct page *read_cache_page_gfp(struct address_space *mapping, 4192 pgoff_t index, 4193 gfp_t gfp) 4194 { 4195 return do_read_cache_page(mapping, index, NULL, NULL, gfp); 4196 } 4197 EXPORT_SYMBOL(read_cache_page_gfp); 4198 4199 /* 4200 * Warn about a page cache invalidation failure during a direct I/O write. 4201 */ 4202 static void dio_warn_stale_pagecache(struct file *filp) 4203 { 4204 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 4205 char pathname[128]; 4206 char *path; 4207 4208 errseq_set(&filp->f_mapping->wb_err, -EIO); 4209 if (__ratelimit(&_rs)) { 4210 path = file_path(filp, pathname, sizeof(pathname)); 4211 if (IS_ERR(path)) 4212 path = "(unknown)"; 4213 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); 4214 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, 4215 current->comm); 4216 } 4217 } 4218 4219 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count) 4220 { 4221 struct address_space *mapping = iocb->ki_filp->f_mapping; 4222 4223 if (mapping->nrpages && 4224 invalidate_inode_pages2_range(mapping, 4225 iocb->ki_pos >> PAGE_SHIFT, 4226 (iocb->ki_pos + count - 1) >> PAGE_SHIFT)) 4227 dio_warn_stale_pagecache(iocb->ki_filp); 4228 } 4229 4230 ssize_t 4231 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 4232 { 4233 struct address_space *mapping = iocb->ki_filp->f_mapping; 4234 size_t write_len = iov_iter_count(from); 4235 ssize_t written; 4236 4237 /* 4238 * If a page can not be invalidated, return 0 to fall back 4239 * to buffered write. 4240 */ 4241 written = kiocb_invalidate_pages(iocb, write_len); 4242 if (written) { 4243 if (written == -EBUSY) 4244 return 0; 4245 return written; 4246 } 4247 4248 written = mapping->a_ops->direct_IO(iocb, from); 4249 4250 /* 4251 * Finally, try again to invalidate clean pages which might have been 4252 * cached by non-direct readahead, or faulted in by get_user_pages() 4253 * if the source of the write was an mmap'ed region of the file 4254 * we're writing. Either one is a pretty crazy thing to do, 4255 * so we don't support it 100%. If this invalidation 4256 * fails, tough, the write still worked... 4257 * 4258 * Most of the time we do not need this since dio_complete() will do 4259 * the invalidation for us. However there are some file systems that 4260 * do not end up with dio_complete() being called, so let's not break 4261 * them by removing it completely. 4262 * 4263 * Noticeable example is a blkdev_direct_IO(). 4264 * 4265 * Skip invalidation for async writes or if mapping has no pages. 4266 */ 4267 if (written > 0) { 4268 struct inode *inode = mapping->host; 4269 loff_t pos = iocb->ki_pos; 4270 4271 kiocb_invalidate_post_direct_write(iocb, written); 4272 pos += written; 4273 write_len -= written; 4274 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 4275 i_size_write(inode, pos); 4276 mark_inode_dirty(inode); 4277 } 4278 iocb->ki_pos = pos; 4279 } 4280 if (written != -EIOCBQUEUED) 4281 iov_iter_revert(from, write_len - iov_iter_count(from)); 4282 return written; 4283 } 4284 EXPORT_SYMBOL(generic_file_direct_write); 4285 4286 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i) 4287 { 4288 struct file *file = iocb->ki_filp; 4289 loff_t pos = iocb->ki_pos; 4290 struct address_space *mapping = file->f_mapping; 4291 const struct address_space_operations *a_ops = mapping->a_ops; 4292 size_t chunk = mapping_max_folio_size(mapping); 4293 long status = 0; 4294 ssize_t written = 0; 4295 4296 do { 4297 struct folio *folio; 4298 size_t offset; /* Offset into folio */ 4299 size_t bytes; /* Bytes to write to folio */ 4300 size_t copied; /* Bytes copied from user */ 4301 void *fsdata = NULL; 4302 4303 bytes = iov_iter_count(i); 4304 retry: 4305 offset = pos & (chunk - 1); 4306 bytes = min(chunk - offset, bytes); 4307 balance_dirty_pages_ratelimited(mapping); 4308 4309 if (fatal_signal_pending(current)) { 4310 status = -EINTR; 4311 break; 4312 } 4313 4314 status = a_ops->write_begin(iocb, mapping, pos, bytes, 4315 &folio, &fsdata); 4316 if (unlikely(status < 0)) 4317 break; 4318 4319 offset = offset_in_folio(folio, pos); 4320 if (bytes > folio_size(folio) - offset) 4321 bytes = folio_size(folio) - offset; 4322 4323 if (mapping_writably_mapped(mapping)) 4324 flush_dcache_folio(folio); 4325 4326 /* 4327 * Faults here on mmap()s can recurse into arbitrary 4328 * filesystem code. Lots of locks are held that can 4329 * deadlock. Use an atomic copy to avoid deadlocking 4330 * in page fault handling. 4331 */ 4332 copied = copy_folio_from_iter_atomic(folio, offset, bytes, i); 4333 flush_dcache_folio(folio); 4334 4335 status = a_ops->write_end(iocb, mapping, pos, bytes, copied, 4336 folio, fsdata); 4337 if (unlikely(status != copied)) { 4338 iov_iter_revert(i, copied - max(status, 0L)); 4339 if (unlikely(status < 0)) 4340 break; 4341 } 4342 cond_resched(); 4343 4344 if (unlikely(status == 0)) { 4345 /* 4346 * A short copy made ->write_end() reject the 4347 * thing entirely. Might be memory poisoning 4348 * halfway through, might be a race with munmap, 4349 * might be severe memory pressure. 4350 */ 4351 if (chunk > PAGE_SIZE) 4352 chunk /= 2; 4353 if (copied) { 4354 bytes = copied; 4355 goto retry; 4356 } 4357 4358 /* 4359 * 'folio' is now unlocked and faults on it can be 4360 * handled. Ensure forward progress by trying to 4361 * fault it in now. 4362 */ 4363 if (fault_in_iov_iter_readable(i, bytes) == bytes) { 4364 status = -EFAULT; 4365 break; 4366 } 4367 } else { 4368 pos += status; 4369 written += status; 4370 } 4371 } while (iov_iter_count(i)); 4372 4373 if (!written) 4374 return status; 4375 iocb->ki_pos += written; 4376 return written; 4377 } 4378 EXPORT_SYMBOL(generic_perform_write); 4379 4380 /** 4381 * __generic_file_write_iter - write data to a file 4382 * @iocb: IO state structure (file, offset, etc.) 4383 * @from: iov_iter with data to write 4384 * 4385 * This function does all the work needed for actually writing data to a 4386 * file. It does all basic checks, removes SUID from the file, updates 4387 * modification times and calls proper subroutines depending on whether we 4388 * do direct IO or a standard buffered write. 4389 * 4390 * It expects i_rwsem to be grabbed unless we work on a block device or similar 4391 * object which does not need locking at all. 4392 * 4393 * This function does *not* take care of syncing data in case of O_SYNC write. 4394 * A caller has to handle it. This is mainly due to the fact that we want to 4395 * avoid syncing under i_rwsem. 4396 * 4397 * Return: 4398 * * number of bytes written, even for truncated writes 4399 * * negative error code if no data has been written at all 4400 */ 4401 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4402 { 4403 struct file *file = iocb->ki_filp; 4404 struct address_space *mapping = file->f_mapping; 4405 struct inode *inode = mapping->host; 4406 ssize_t ret; 4407 4408 ret = file_remove_privs(file); 4409 if (ret) 4410 return ret; 4411 4412 ret = file_update_time(file); 4413 if (ret) 4414 return ret; 4415 4416 if (iocb->ki_flags & IOCB_DIRECT) { 4417 ret = generic_file_direct_write(iocb, from); 4418 /* 4419 * If the write stopped short of completing, fall back to 4420 * buffered writes. Some filesystems do this for writes to 4421 * holes, for example. For DAX files, a buffered write will 4422 * not succeed (even if it did, DAX does not handle dirty 4423 * page-cache pages correctly). 4424 */ 4425 if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode)) 4426 return ret; 4427 return direct_write_fallback(iocb, from, ret, 4428 generic_perform_write(iocb, from)); 4429 } 4430 4431 return generic_perform_write(iocb, from); 4432 } 4433 EXPORT_SYMBOL(__generic_file_write_iter); 4434 4435 /** 4436 * generic_file_write_iter - write data to a file 4437 * @iocb: IO state structure 4438 * @from: iov_iter with data to write 4439 * 4440 * This is a wrapper around __generic_file_write_iter() to be used by most 4441 * filesystems. It takes care of syncing the file in case of O_SYNC file 4442 * and acquires i_rwsem as needed. 4443 * Return: 4444 * * negative error code if no data has been written at all of 4445 * vfs_fsync_range() failed for a synchronous write 4446 * * number of bytes written, even for truncated writes 4447 */ 4448 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4449 { 4450 struct file *file = iocb->ki_filp; 4451 struct inode *inode = file->f_mapping->host; 4452 ssize_t ret; 4453 4454 inode_lock(inode); 4455 ret = generic_write_checks(iocb, from); 4456 if (ret > 0) 4457 ret = __generic_file_write_iter(iocb, from); 4458 inode_unlock(inode); 4459 4460 if (ret > 0) 4461 ret = generic_write_sync(iocb, ret); 4462 return ret; 4463 } 4464 EXPORT_SYMBOL(generic_file_write_iter); 4465 4466 /** 4467 * filemap_release_folio() - Release fs-specific metadata on a folio. 4468 * @folio: The folio which the kernel is trying to free. 4469 * @gfp: Memory allocation flags (and I/O mode). 4470 * 4471 * The address_space is trying to release any data attached to a folio 4472 * (presumably at folio->private). 4473 * 4474 * This will also be called if the private_2 flag is set on a page, 4475 * indicating that the folio has other metadata associated with it. 4476 * 4477 * The @gfp argument specifies whether I/O may be performed to release 4478 * this page (__GFP_IO), and whether the call may block 4479 * (__GFP_RECLAIM & __GFP_FS). 4480 * 4481 * Return: %true if the release was successful, otherwise %false. 4482 */ 4483 bool filemap_release_folio(struct folio *folio, gfp_t gfp) 4484 { 4485 struct address_space * const mapping = folio->mapping; 4486 4487 BUG_ON(!folio_test_locked(folio)); 4488 if (!folio_needs_release(folio)) 4489 return true; 4490 if (folio_test_writeback(folio)) 4491 return false; 4492 4493 if (mapping && mapping->a_ops->release_folio) 4494 return mapping->a_ops->release_folio(folio, gfp); 4495 return try_to_free_buffers(folio); 4496 } 4497 EXPORT_SYMBOL(filemap_release_folio); 4498 4499 /** 4500 * filemap_invalidate_inode - Invalidate/forcibly write back a range of an inode's pagecache 4501 * @inode: The inode to flush 4502 * @flush: Set to write back rather than simply invalidate. 4503 * @start: First byte to in range. 4504 * @end: Last byte in range (inclusive), or LLONG_MAX for everything from start 4505 * onwards. 4506 * 4507 * Invalidate all the folios on an inode that contribute to the specified 4508 * range, possibly writing them back first. Whilst the operation is 4509 * undertaken, the invalidate lock is held to prevent new folios from being 4510 * installed. 4511 */ 4512 int filemap_invalidate_inode(struct inode *inode, bool flush, 4513 loff_t start, loff_t end) 4514 { 4515 struct address_space *mapping = inode->i_mapping; 4516 pgoff_t first = start >> PAGE_SHIFT; 4517 pgoff_t last = end >> PAGE_SHIFT; 4518 pgoff_t nr = end == LLONG_MAX ? ULONG_MAX : last - first + 1; 4519 4520 if (!mapping || !mapping->nrpages || end < start) 4521 goto out; 4522 4523 /* Prevent new folios from being added to the inode. */ 4524 filemap_invalidate_lock(mapping); 4525 4526 if (!mapping->nrpages) 4527 goto unlock; 4528 4529 unmap_mapping_pages(mapping, first, nr, false); 4530 4531 /* Write back the data if we're asked to. */ 4532 if (flush) 4533 filemap_fdatawrite_range(mapping, start, end); 4534 4535 /* Wait for writeback to complete on all folios and discard. */ 4536 invalidate_inode_pages2_range(mapping, start / PAGE_SIZE, end / PAGE_SIZE); 4537 4538 unlock: 4539 filemap_invalidate_unlock(mapping); 4540 out: 4541 return filemap_check_errors(mapping); 4542 } 4543 EXPORT_SYMBOL_GPL(filemap_invalidate_inode); 4544 4545 #ifdef CONFIG_CACHESTAT_SYSCALL 4546 /** 4547 * filemap_cachestat() - compute the page cache statistics of a mapping 4548 * @mapping: The mapping to compute the statistics for. 4549 * @first_index: The starting page cache index. 4550 * @last_index: The final page index (inclusive). 4551 * @cs: the cachestat struct to write the result to. 4552 * 4553 * This will query the page cache statistics of a mapping in the 4554 * page range of [first_index, last_index] (inclusive). The statistics 4555 * queried include: number of dirty pages, number of pages marked for 4556 * writeback, and the number of (recently) evicted pages. 4557 */ 4558 static void filemap_cachestat(struct address_space *mapping, 4559 pgoff_t first_index, pgoff_t last_index, struct cachestat *cs) 4560 { 4561 XA_STATE(xas, &mapping->i_pages, first_index); 4562 struct folio *folio; 4563 4564 /* Flush stats (and potentially sleep) outside the RCU read section. */ 4565 mem_cgroup_flush_stats_ratelimited(NULL); 4566 4567 rcu_read_lock(); 4568 xas_for_each(&xas, folio, last_index) { 4569 int order; 4570 unsigned long nr_pages; 4571 pgoff_t folio_first_index, folio_last_index; 4572 4573 /* 4574 * Don't deref the folio. It is not pinned, and might 4575 * get freed (and reused) underneath us. 4576 * 4577 * We *could* pin it, but that would be expensive for 4578 * what should be a fast and lightweight syscall. 4579 * 4580 * Instead, derive all information of interest from 4581 * the rcu-protected xarray. 4582 */ 4583 4584 if (xas_retry(&xas, folio)) 4585 continue; 4586 4587 order = xas_get_order(&xas); 4588 nr_pages = 1 << order; 4589 folio_first_index = round_down(xas.xa_index, 1 << order); 4590 folio_last_index = folio_first_index + nr_pages - 1; 4591 4592 /* Folios might straddle the range boundaries, only count covered pages */ 4593 if (folio_first_index < first_index) 4594 nr_pages -= first_index - folio_first_index; 4595 4596 if (folio_last_index > last_index) 4597 nr_pages -= folio_last_index - last_index; 4598 4599 if (xa_is_value(folio)) { 4600 /* page is evicted */ 4601 void *shadow = (void *)folio; 4602 bool workingset; /* not used */ 4603 4604 cs->nr_evicted += nr_pages; 4605 4606 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */ 4607 if (shmem_mapping(mapping)) { 4608 /* shmem file - in swap cache */ 4609 swp_entry_t swp = radix_to_swp_entry(folio); 4610 4611 /* swapin error results in poisoned entry */ 4612 if (!softleaf_is_swap(swp)) 4613 goto resched; 4614 4615 /* 4616 * Getting a swap entry from the shmem 4617 * inode means we beat 4618 * shmem_unuse(). rcu_read_lock() 4619 * ensures swapoff waits for us before 4620 * freeing the swapper space. However, 4621 * we can race with swapping and 4622 * invalidation, so there might not be 4623 * a shadow in the swapcache (yet). 4624 */ 4625 shadow = swap_cache_get_shadow(swp); 4626 if (!shadow) 4627 goto resched; 4628 } 4629 #endif 4630 if (workingset_test_recent(shadow, true, &workingset, false)) 4631 cs->nr_recently_evicted += nr_pages; 4632 4633 goto resched; 4634 } 4635 4636 /* page is in cache */ 4637 cs->nr_cache += nr_pages; 4638 4639 if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY)) 4640 cs->nr_dirty += nr_pages; 4641 4642 if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK)) 4643 cs->nr_writeback += nr_pages; 4644 4645 resched: 4646 if (need_resched()) { 4647 xas_pause(&xas); 4648 cond_resched_rcu(); 4649 } 4650 } 4651 rcu_read_unlock(); 4652 } 4653 4654 /* 4655 * See mincore: reveal pagecache information only for files 4656 * that the calling process has write access to, or could (if 4657 * tried) open for writing. 4658 */ 4659 static inline bool can_do_cachestat(struct file *f) 4660 { 4661 if (f->f_mode & FMODE_WRITE) 4662 return true; 4663 if (inode_owner_or_capable(file_mnt_idmap(f), file_inode(f))) 4664 return true; 4665 return file_permission(f, MAY_WRITE) == 0; 4666 } 4667 4668 /* 4669 * The cachestat(2) system call. 4670 * 4671 * cachestat() returns the page cache statistics of a file in the 4672 * bytes range specified by `off` and `len`: number of cached pages, 4673 * number of dirty pages, number of pages marked for writeback, 4674 * number of evicted pages, and number of recently evicted pages. 4675 * 4676 * An evicted page is a page that is previously in the page cache 4677 * but has been evicted since. A page is recently evicted if its last 4678 * eviction was recent enough that its reentry to the cache would 4679 * indicate that it is actively being used by the system, and that 4680 * there is memory pressure on the system. 4681 * 4682 * `off` and `len` must be non-negative integers. If `len` > 0, 4683 * the queried range is [`off`, `off` + `len`]. If `len` == 0, 4684 * we will query in the range from `off` to the end of the file. 4685 * 4686 * The `flags` argument is unused for now, but is included for future 4687 * extensibility. User should pass 0 (i.e no flag specified). 4688 * 4689 * Currently, hugetlbfs is not supported. 4690 * 4691 * Because the status of a page can change after cachestat() checks it 4692 * but before it returns to the application, the returned values may 4693 * contain stale information. 4694 * 4695 * return values: 4696 * zero - success 4697 * -EFAULT - cstat or cstat_range points to an illegal address 4698 * -EINVAL - invalid flags 4699 * -EBADF - invalid file descriptor 4700 * -EOPNOTSUPP - file descriptor is of a hugetlbfs file 4701 */ 4702 SYSCALL_DEFINE4(cachestat, unsigned int, fd, 4703 struct cachestat_range __user *, cstat_range, 4704 struct cachestat __user *, cstat, unsigned int, flags) 4705 { 4706 CLASS(fd, f)(fd); 4707 struct address_space *mapping; 4708 struct cachestat_range csr; 4709 struct cachestat cs; 4710 pgoff_t first_index, last_index; 4711 4712 if (fd_empty(f)) 4713 return -EBADF; 4714 4715 if (copy_from_user(&csr, cstat_range, 4716 sizeof(struct cachestat_range))) 4717 return -EFAULT; 4718 4719 /* hugetlbfs is not supported */ 4720 if (is_file_hugepages(fd_file(f))) 4721 return -EOPNOTSUPP; 4722 4723 if (!can_do_cachestat(fd_file(f))) 4724 return -EPERM; 4725 4726 if (flags != 0) 4727 return -EINVAL; 4728 4729 first_index = csr.off >> PAGE_SHIFT; 4730 last_index = 4731 csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT; 4732 memset(&cs, 0, sizeof(struct cachestat)); 4733 mapping = fd_file(f)->f_mapping; 4734 filemap_cachestat(mapping, first_index, last_index, &cs); 4735 4736 if (copy_to_user(cstat, &cs, sizeof(struct cachestat))) 4737 return -EFAULT; 4738 4739 return 0; 4740 } 4741 #endif /* CONFIG_CACHESTAT_SYSCALL */ 4742