xref: /linux/mm/filemap.c (revision b45e0c30bc58fb6fcaa42f1d1d813cefb8ab4117)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/mm/filemap.c
4  *
5  * Copyright (C) 1994-1999  Linus Torvalds
6  */
7 
8 /*
9  * This file handles the generic file mmap semantics used by
10  * most "normal" filesystems (but you don't /have/ to use this:
11  * the NFS filesystem used to do this differently, for example)
12  */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/mman.h>
25 #include <linux/pagemap.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/error-injection.h>
29 #include <linux/hash.h>
30 #include <linux/writeback.h>
31 #include <linux/backing-dev.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/cleancache.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include "internal.h"
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/filemap.h>
47 
48 /*
49  * FIXME: remove all knowledge of the buffer layer from the core VM
50  */
51 #include <linux/buffer_head.h> /* for try_to_free_buffers */
52 
53 #include <asm/mman.h>
54 
55 /*
56  * Shared mappings implemented 30.11.1994. It's not fully working yet,
57  * though.
58  *
59  * Shared mappings now work. 15.8.1995  Bruno.
60  *
61  * finished 'unifying' the page and buffer cache and SMP-threaded the
62  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
63  *
64  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
65  */
66 
67 /*
68  * Lock ordering:
69  *
70  *  ->i_mmap_rwsem		(truncate_pagecache)
71  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
72  *      ->swap_lock		(exclusive_swap_page, others)
73  *        ->i_pages lock
74  *
75  *  ->i_mutex
76  *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
77  *
78  *  ->mmap_sem
79  *    ->i_mmap_rwsem
80  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
81  *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
82  *
83  *  ->mmap_sem
84  *    ->lock_page		(access_process_vm)
85  *
86  *  ->i_mutex			(generic_perform_write)
87  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
88  *
89  *  bdi->wb.list_lock
90  *    sb_lock			(fs/fs-writeback.c)
91  *    ->i_pages lock		(__sync_single_inode)
92  *
93  *  ->i_mmap_rwsem
94  *    ->anon_vma.lock		(vma_adjust)
95  *
96  *  ->anon_vma.lock
97  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
98  *
99  *  ->page_table_lock or pte_lock
100  *    ->swap_lock		(try_to_unmap_one)
101  *    ->private_lock		(try_to_unmap_one)
102  *    ->i_pages lock		(try_to_unmap_one)
103  *    ->pgdat->lru_lock		(follow_page->mark_page_accessed)
104  *    ->pgdat->lru_lock		(check_pte_range->isolate_lru_page)
105  *    ->private_lock		(page_remove_rmap->set_page_dirty)
106  *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
107  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
108  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
109  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
110  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
111  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
112  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
113  *
114  * ->i_mmap_rwsem
115  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
116  */
117 
118 static void page_cache_delete(struct address_space *mapping,
119 				   struct page *page, void *shadow)
120 {
121 	XA_STATE(xas, &mapping->i_pages, page->index);
122 	unsigned int nr = 1;
123 
124 	mapping_set_update(&xas, mapping);
125 
126 	/* hugetlb pages are represented by a single entry in the xarray */
127 	if (!PageHuge(page)) {
128 		xas_set_order(&xas, page->index, compound_order(page));
129 		nr = 1U << compound_order(page);
130 	}
131 
132 	VM_BUG_ON_PAGE(!PageLocked(page), page);
133 	VM_BUG_ON_PAGE(PageTail(page), page);
134 	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
135 
136 	xas_store(&xas, shadow);
137 	xas_init_marks(&xas);
138 
139 	page->mapping = NULL;
140 	/* Leave page->index set: truncation lookup relies upon it */
141 
142 	if (shadow) {
143 		mapping->nrexceptional += nr;
144 		/*
145 		 * Make sure the nrexceptional update is committed before
146 		 * the nrpages update so that final truncate racing
147 		 * with reclaim does not see both counters 0 at the
148 		 * same time and miss a shadow entry.
149 		 */
150 		smp_wmb();
151 	}
152 	mapping->nrpages -= nr;
153 }
154 
155 static void unaccount_page_cache_page(struct address_space *mapping,
156 				      struct page *page)
157 {
158 	int nr;
159 
160 	/*
161 	 * if we're uptodate, flush out into the cleancache, otherwise
162 	 * invalidate any existing cleancache entries.  We can't leave
163 	 * stale data around in the cleancache once our page is gone
164 	 */
165 	if (PageUptodate(page) && PageMappedToDisk(page))
166 		cleancache_put_page(page);
167 	else
168 		cleancache_invalidate_page(mapping, page);
169 
170 	VM_BUG_ON_PAGE(PageTail(page), page);
171 	VM_BUG_ON_PAGE(page_mapped(page), page);
172 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
173 		int mapcount;
174 
175 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
176 			 current->comm, page_to_pfn(page));
177 		dump_page(page, "still mapped when deleted");
178 		dump_stack();
179 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
180 
181 		mapcount = page_mapcount(page);
182 		if (mapping_exiting(mapping) &&
183 		    page_count(page) >= mapcount + 2) {
184 			/*
185 			 * All vmas have already been torn down, so it's
186 			 * a good bet that actually the page is unmapped,
187 			 * and we'd prefer not to leak it: if we're wrong,
188 			 * some other bad page check should catch it later.
189 			 */
190 			page_mapcount_reset(page);
191 			page_ref_sub(page, mapcount);
192 		}
193 	}
194 
195 	/* hugetlb pages do not participate in page cache accounting. */
196 	if (PageHuge(page))
197 		return;
198 
199 	nr = hpage_nr_pages(page);
200 
201 	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
202 	if (PageSwapBacked(page)) {
203 		__mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
204 		if (PageTransHuge(page))
205 			__dec_node_page_state(page, NR_SHMEM_THPS);
206 	} else {
207 		VM_BUG_ON_PAGE(PageTransHuge(page), page);
208 	}
209 
210 	/*
211 	 * At this point page must be either written or cleaned by
212 	 * truncate.  Dirty page here signals a bug and loss of
213 	 * unwritten data.
214 	 *
215 	 * This fixes dirty accounting after removing the page entirely
216 	 * but leaves PageDirty set: it has no effect for truncated
217 	 * page and anyway will be cleared before returning page into
218 	 * buddy allocator.
219 	 */
220 	if (WARN_ON_ONCE(PageDirty(page)))
221 		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
222 }
223 
224 /*
225  * Delete a page from the page cache and free it. Caller has to make
226  * sure the page is locked and that nobody else uses it - or that usage
227  * is safe.  The caller must hold the i_pages lock.
228  */
229 void __delete_from_page_cache(struct page *page, void *shadow)
230 {
231 	struct address_space *mapping = page->mapping;
232 
233 	trace_mm_filemap_delete_from_page_cache(page);
234 
235 	unaccount_page_cache_page(mapping, page);
236 	page_cache_delete(mapping, page, shadow);
237 }
238 
239 static void page_cache_free_page(struct address_space *mapping,
240 				struct page *page)
241 {
242 	void (*freepage)(struct page *);
243 
244 	freepage = mapping->a_ops->freepage;
245 	if (freepage)
246 		freepage(page);
247 
248 	if (PageTransHuge(page) && !PageHuge(page)) {
249 		page_ref_sub(page, HPAGE_PMD_NR);
250 		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
251 	} else {
252 		put_page(page);
253 	}
254 }
255 
256 /**
257  * delete_from_page_cache - delete page from page cache
258  * @page: the page which the kernel is trying to remove from page cache
259  *
260  * This must be called only on pages that have been verified to be in the page
261  * cache and locked.  It will never put the page into the free list, the caller
262  * has a reference on the page.
263  */
264 void delete_from_page_cache(struct page *page)
265 {
266 	struct address_space *mapping = page_mapping(page);
267 	unsigned long flags;
268 
269 	BUG_ON(!PageLocked(page));
270 	xa_lock_irqsave(&mapping->i_pages, flags);
271 	__delete_from_page_cache(page, NULL);
272 	xa_unlock_irqrestore(&mapping->i_pages, flags);
273 
274 	page_cache_free_page(mapping, page);
275 }
276 EXPORT_SYMBOL(delete_from_page_cache);
277 
278 /*
279  * page_cache_delete_batch - delete several pages from page cache
280  * @mapping: the mapping to which pages belong
281  * @pvec: pagevec with pages to delete
282  *
283  * The function walks over mapping->i_pages and removes pages passed in @pvec
284  * from the mapping. The function expects @pvec to be sorted by page index.
285  * It tolerates holes in @pvec (mapping entries at those indices are not
286  * modified). The function expects only THP head pages to be present in the
287  * @pvec and takes care to delete all corresponding tail pages from the
288  * mapping as well.
289  *
290  * The function expects the i_pages lock to be held.
291  */
292 static void page_cache_delete_batch(struct address_space *mapping,
293 			     struct pagevec *pvec)
294 {
295 	XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
296 	int total_pages = 0;
297 	int i = 0, tail_pages = 0;
298 	struct page *page;
299 
300 	mapping_set_update(&xas, mapping);
301 	xas_for_each(&xas, page, ULONG_MAX) {
302 		if (i >= pagevec_count(pvec) && !tail_pages)
303 			break;
304 		if (xa_is_value(page))
305 			continue;
306 		if (!tail_pages) {
307 			/*
308 			 * Some page got inserted in our range? Skip it. We
309 			 * have our pages locked so they are protected from
310 			 * being removed.
311 			 */
312 			if (page != pvec->pages[i]) {
313 				VM_BUG_ON_PAGE(page->index >
314 						pvec->pages[i]->index, page);
315 				continue;
316 			}
317 			WARN_ON_ONCE(!PageLocked(page));
318 			if (PageTransHuge(page) && !PageHuge(page))
319 				tail_pages = HPAGE_PMD_NR - 1;
320 			page->mapping = NULL;
321 			/*
322 			 * Leave page->index set: truncation lookup relies
323 			 * upon it
324 			 */
325 			i++;
326 		} else {
327 			VM_BUG_ON_PAGE(page->index + HPAGE_PMD_NR - tail_pages
328 					!= pvec->pages[i]->index, page);
329 			tail_pages--;
330 		}
331 		xas_store(&xas, NULL);
332 		total_pages++;
333 	}
334 	mapping->nrpages -= total_pages;
335 }
336 
337 void delete_from_page_cache_batch(struct address_space *mapping,
338 				  struct pagevec *pvec)
339 {
340 	int i;
341 	unsigned long flags;
342 
343 	if (!pagevec_count(pvec))
344 		return;
345 
346 	xa_lock_irqsave(&mapping->i_pages, flags);
347 	for (i = 0; i < pagevec_count(pvec); i++) {
348 		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
349 
350 		unaccount_page_cache_page(mapping, pvec->pages[i]);
351 	}
352 	page_cache_delete_batch(mapping, pvec);
353 	xa_unlock_irqrestore(&mapping->i_pages, flags);
354 
355 	for (i = 0; i < pagevec_count(pvec); i++)
356 		page_cache_free_page(mapping, pvec->pages[i]);
357 }
358 
359 int filemap_check_errors(struct address_space *mapping)
360 {
361 	int ret = 0;
362 	/* Check for outstanding write errors */
363 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
364 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
365 		ret = -ENOSPC;
366 	if (test_bit(AS_EIO, &mapping->flags) &&
367 	    test_and_clear_bit(AS_EIO, &mapping->flags))
368 		ret = -EIO;
369 	return ret;
370 }
371 EXPORT_SYMBOL(filemap_check_errors);
372 
373 static int filemap_check_and_keep_errors(struct address_space *mapping)
374 {
375 	/* Check for outstanding write errors */
376 	if (test_bit(AS_EIO, &mapping->flags))
377 		return -EIO;
378 	if (test_bit(AS_ENOSPC, &mapping->flags))
379 		return -ENOSPC;
380 	return 0;
381 }
382 
383 /**
384  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
385  * @mapping:	address space structure to write
386  * @start:	offset in bytes where the range starts
387  * @end:	offset in bytes where the range ends (inclusive)
388  * @sync_mode:	enable synchronous operation
389  *
390  * Start writeback against all of a mapping's dirty pages that lie
391  * within the byte offsets <start, end> inclusive.
392  *
393  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
394  * opposed to a regular memory cleansing writeback.  The difference between
395  * these two operations is that if a dirty page/buffer is encountered, it must
396  * be waited upon, and not just skipped over.
397  *
398  * Return: %0 on success, negative error code otherwise.
399  */
400 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
401 				loff_t end, int sync_mode)
402 {
403 	int ret;
404 	struct writeback_control wbc = {
405 		.sync_mode = sync_mode,
406 		.nr_to_write = LONG_MAX,
407 		.range_start = start,
408 		.range_end = end,
409 	};
410 
411 	if (!mapping_cap_writeback_dirty(mapping))
412 		return 0;
413 
414 	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
415 	ret = do_writepages(mapping, &wbc);
416 	wbc_detach_inode(&wbc);
417 	return ret;
418 }
419 
420 static inline int __filemap_fdatawrite(struct address_space *mapping,
421 	int sync_mode)
422 {
423 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
424 }
425 
426 int filemap_fdatawrite(struct address_space *mapping)
427 {
428 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
429 }
430 EXPORT_SYMBOL(filemap_fdatawrite);
431 
432 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
433 				loff_t end)
434 {
435 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
436 }
437 EXPORT_SYMBOL(filemap_fdatawrite_range);
438 
439 /**
440  * filemap_flush - mostly a non-blocking flush
441  * @mapping:	target address_space
442  *
443  * This is a mostly non-blocking flush.  Not suitable for data-integrity
444  * purposes - I/O may not be started against all dirty pages.
445  *
446  * Return: %0 on success, negative error code otherwise.
447  */
448 int filemap_flush(struct address_space *mapping)
449 {
450 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
451 }
452 EXPORT_SYMBOL(filemap_flush);
453 
454 /**
455  * filemap_range_has_page - check if a page exists in range.
456  * @mapping:           address space within which to check
457  * @start_byte:        offset in bytes where the range starts
458  * @end_byte:          offset in bytes where the range ends (inclusive)
459  *
460  * Find at least one page in the range supplied, usually used to check if
461  * direct writing in this range will trigger a writeback.
462  *
463  * Return: %true if at least one page exists in the specified range,
464  * %false otherwise.
465  */
466 bool filemap_range_has_page(struct address_space *mapping,
467 			   loff_t start_byte, loff_t end_byte)
468 {
469 	struct page *page;
470 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
471 	pgoff_t max = end_byte >> PAGE_SHIFT;
472 
473 	if (end_byte < start_byte)
474 		return false;
475 
476 	rcu_read_lock();
477 	for (;;) {
478 		page = xas_find(&xas, max);
479 		if (xas_retry(&xas, page))
480 			continue;
481 		/* Shadow entries don't count */
482 		if (xa_is_value(page))
483 			continue;
484 		/*
485 		 * We don't need to try to pin this page; we're about to
486 		 * release the RCU lock anyway.  It is enough to know that
487 		 * there was a page here recently.
488 		 */
489 		break;
490 	}
491 	rcu_read_unlock();
492 
493 	return page != NULL;
494 }
495 EXPORT_SYMBOL(filemap_range_has_page);
496 
497 static void __filemap_fdatawait_range(struct address_space *mapping,
498 				     loff_t start_byte, loff_t end_byte)
499 {
500 	pgoff_t index = start_byte >> PAGE_SHIFT;
501 	pgoff_t end = end_byte >> PAGE_SHIFT;
502 	struct pagevec pvec;
503 	int nr_pages;
504 
505 	if (end_byte < start_byte)
506 		return;
507 
508 	pagevec_init(&pvec);
509 	while (index <= end) {
510 		unsigned i;
511 
512 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
513 				end, PAGECACHE_TAG_WRITEBACK);
514 		if (!nr_pages)
515 			break;
516 
517 		for (i = 0; i < nr_pages; i++) {
518 			struct page *page = pvec.pages[i];
519 
520 			wait_on_page_writeback(page);
521 			ClearPageError(page);
522 		}
523 		pagevec_release(&pvec);
524 		cond_resched();
525 	}
526 }
527 
528 /**
529  * filemap_fdatawait_range - wait for writeback to complete
530  * @mapping:		address space structure to wait for
531  * @start_byte:		offset in bytes where the range starts
532  * @end_byte:		offset in bytes where the range ends (inclusive)
533  *
534  * Walk the list of under-writeback pages of the given address space
535  * in the given range and wait for all of them.  Check error status of
536  * the address space and return it.
537  *
538  * Since the error status of the address space is cleared by this function,
539  * callers are responsible for checking the return value and handling and/or
540  * reporting the error.
541  *
542  * Return: error status of the address space.
543  */
544 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
545 			    loff_t end_byte)
546 {
547 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
548 	return filemap_check_errors(mapping);
549 }
550 EXPORT_SYMBOL(filemap_fdatawait_range);
551 
552 /**
553  * filemap_fdatawait_range_keep_errors - wait for writeback to complete
554  * @mapping:		address space structure to wait for
555  * @start_byte:		offset in bytes where the range starts
556  * @end_byte:		offset in bytes where the range ends (inclusive)
557  *
558  * Walk the list of under-writeback pages of the given address space in the
559  * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
560  * this function does not clear error status of the address space.
561  *
562  * Use this function if callers don't handle errors themselves.  Expected
563  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
564  * fsfreeze(8)
565  */
566 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
567 		loff_t start_byte, loff_t end_byte)
568 {
569 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
570 	return filemap_check_and_keep_errors(mapping);
571 }
572 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
573 
574 /**
575  * file_fdatawait_range - wait for writeback to complete
576  * @file:		file pointing to address space structure to wait for
577  * @start_byte:		offset in bytes where the range starts
578  * @end_byte:		offset in bytes where the range ends (inclusive)
579  *
580  * Walk the list of under-writeback pages of the address space that file
581  * refers to, in the given range and wait for all of them.  Check error
582  * status of the address space vs. the file->f_wb_err cursor and return it.
583  *
584  * Since the error status of the file is advanced by this function,
585  * callers are responsible for checking the return value and handling and/or
586  * reporting the error.
587  *
588  * Return: error status of the address space vs. the file->f_wb_err cursor.
589  */
590 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
591 {
592 	struct address_space *mapping = file->f_mapping;
593 
594 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
595 	return file_check_and_advance_wb_err(file);
596 }
597 EXPORT_SYMBOL(file_fdatawait_range);
598 
599 /**
600  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
601  * @mapping: address space structure to wait for
602  *
603  * Walk the list of under-writeback pages of the given address space
604  * and wait for all of them.  Unlike filemap_fdatawait(), this function
605  * does not clear error status of the address space.
606  *
607  * Use this function if callers don't handle errors themselves.  Expected
608  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
609  * fsfreeze(8)
610  *
611  * Return: error status of the address space.
612  */
613 int filemap_fdatawait_keep_errors(struct address_space *mapping)
614 {
615 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
616 	return filemap_check_and_keep_errors(mapping);
617 }
618 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
619 
620 static bool mapping_needs_writeback(struct address_space *mapping)
621 {
622 	return (!dax_mapping(mapping) && mapping->nrpages) ||
623 	    (dax_mapping(mapping) && mapping->nrexceptional);
624 }
625 
626 int filemap_write_and_wait(struct address_space *mapping)
627 {
628 	int err = 0;
629 
630 	if (mapping_needs_writeback(mapping)) {
631 		err = filemap_fdatawrite(mapping);
632 		/*
633 		 * Even if the above returned error, the pages may be
634 		 * written partially (e.g. -ENOSPC), so we wait for it.
635 		 * But the -EIO is special case, it may indicate the worst
636 		 * thing (e.g. bug) happened, so we avoid waiting for it.
637 		 */
638 		if (err != -EIO) {
639 			int err2 = filemap_fdatawait(mapping);
640 			if (!err)
641 				err = err2;
642 		} else {
643 			/* Clear any previously stored errors */
644 			filemap_check_errors(mapping);
645 		}
646 	} else {
647 		err = filemap_check_errors(mapping);
648 	}
649 	return err;
650 }
651 EXPORT_SYMBOL(filemap_write_and_wait);
652 
653 /**
654  * filemap_write_and_wait_range - write out & wait on a file range
655  * @mapping:	the address_space for the pages
656  * @lstart:	offset in bytes where the range starts
657  * @lend:	offset in bytes where the range ends (inclusive)
658  *
659  * Write out and wait upon file offsets lstart->lend, inclusive.
660  *
661  * Note that @lend is inclusive (describes the last byte to be written) so
662  * that this function can be used to write to the very end-of-file (end = -1).
663  *
664  * Return: error status of the address space.
665  */
666 int filemap_write_and_wait_range(struct address_space *mapping,
667 				 loff_t lstart, loff_t lend)
668 {
669 	int err = 0;
670 
671 	if (mapping_needs_writeback(mapping)) {
672 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
673 						 WB_SYNC_ALL);
674 		/* See comment of filemap_write_and_wait() */
675 		if (err != -EIO) {
676 			int err2 = filemap_fdatawait_range(mapping,
677 						lstart, lend);
678 			if (!err)
679 				err = err2;
680 		} else {
681 			/* Clear any previously stored errors */
682 			filemap_check_errors(mapping);
683 		}
684 	} else {
685 		err = filemap_check_errors(mapping);
686 	}
687 	return err;
688 }
689 EXPORT_SYMBOL(filemap_write_and_wait_range);
690 
691 void __filemap_set_wb_err(struct address_space *mapping, int err)
692 {
693 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
694 
695 	trace_filemap_set_wb_err(mapping, eseq);
696 }
697 EXPORT_SYMBOL(__filemap_set_wb_err);
698 
699 /**
700  * file_check_and_advance_wb_err - report wb error (if any) that was previously
701  * 				   and advance wb_err to current one
702  * @file: struct file on which the error is being reported
703  *
704  * When userland calls fsync (or something like nfsd does the equivalent), we
705  * want to report any writeback errors that occurred since the last fsync (or
706  * since the file was opened if there haven't been any).
707  *
708  * Grab the wb_err from the mapping. If it matches what we have in the file,
709  * then just quickly return 0. The file is all caught up.
710  *
711  * If it doesn't match, then take the mapping value, set the "seen" flag in
712  * it and try to swap it into place. If it works, or another task beat us
713  * to it with the new value, then update the f_wb_err and return the error
714  * portion. The error at this point must be reported via proper channels
715  * (a'la fsync, or NFS COMMIT operation, etc.).
716  *
717  * While we handle mapping->wb_err with atomic operations, the f_wb_err
718  * value is protected by the f_lock since we must ensure that it reflects
719  * the latest value swapped in for this file descriptor.
720  *
721  * Return: %0 on success, negative error code otherwise.
722  */
723 int file_check_and_advance_wb_err(struct file *file)
724 {
725 	int err = 0;
726 	errseq_t old = READ_ONCE(file->f_wb_err);
727 	struct address_space *mapping = file->f_mapping;
728 
729 	/* Locklessly handle the common case where nothing has changed */
730 	if (errseq_check(&mapping->wb_err, old)) {
731 		/* Something changed, must use slow path */
732 		spin_lock(&file->f_lock);
733 		old = file->f_wb_err;
734 		err = errseq_check_and_advance(&mapping->wb_err,
735 						&file->f_wb_err);
736 		trace_file_check_and_advance_wb_err(file, old);
737 		spin_unlock(&file->f_lock);
738 	}
739 
740 	/*
741 	 * We're mostly using this function as a drop in replacement for
742 	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
743 	 * that the legacy code would have had on these flags.
744 	 */
745 	clear_bit(AS_EIO, &mapping->flags);
746 	clear_bit(AS_ENOSPC, &mapping->flags);
747 	return err;
748 }
749 EXPORT_SYMBOL(file_check_and_advance_wb_err);
750 
751 /**
752  * file_write_and_wait_range - write out & wait on a file range
753  * @file:	file pointing to address_space with pages
754  * @lstart:	offset in bytes where the range starts
755  * @lend:	offset in bytes where the range ends (inclusive)
756  *
757  * Write out and wait upon file offsets lstart->lend, inclusive.
758  *
759  * Note that @lend is inclusive (describes the last byte to be written) so
760  * that this function can be used to write to the very end-of-file (end = -1).
761  *
762  * After writing out and waiting on the data, we check and advance the
763  * f_wb_err cursor to the latest value, and return any errors detected there.
764  *
765  * Return: %0 on success, negative error code otherwise.
766  */
767 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
768 {
769 	int err = 0, err2;
770 	struct address_space *mapping = file->f_mapping;
771 
772 	if (mapping_needs_writeback(mapping)) {
773 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
774 						 WB_SYNC_ALL);
775 		/* See comment of filemap_write_and_wait() */
776 		if (err != -EIO)
777 			__filemap_fdatawait_range(mapping, lstart, lend);
778 	}
779 	err2 = file_check_and_advance_wb_err(file);
780 	if (!err)
781 		err = err2;
782 	return err;
783 }
784 EXPORT_SYMBOL(file_write_and_wait_range);
785 
786 /**
787  * replace_page_cache_page - replace a pagecache page with a new one
788  * @old:	page to be replaced
789  * @new:	page to replace with
790  * @gfp_mask:	allocation mode
791  *
792  * This function replaces a page in the pagecache with a new one.  On
793  * success it acquires the pagecache reference for the new page and
794  * drops it for the old page.  Both the old and new pages must be
795  * locked.  This function does not add the new page to the LRU, the
796  * caller must do that.
797  *
798  * The remove + add is atomic.  This function cannot fail.
799  *
800  * Return: %0
801  */
802 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
803 {
804 	struct address_space *mapping = old->mapping;
805 	void (*freepage)(struct page *) = mapping->a_ops->freepage;
806 	pgoff_t offset = old->index;
807 	XA_STATE(xas, &mapping->i_pages, offset);
808 	unsigned long flags;
809 
810 	VM_BUG_ON_PAGE(!PageLocked(old), old);
811 	VM_BUG_ON_PAGE(!PageLocked(new), new);
812 	VM_BUG_ON_PAGE(new->mapping, new);
813 
814 	get_page(new);
815 	new->mapping = mapping;
816 	new->index = offset;
817 
818 	xas_lock_irqsave(&xas, flags);
819 	xas_store(&xas, new);
820 
821 	old->mapping = NULL;
822 	/* hugetlb pages do not participate in page cache accounting. */
823 	if (!PageHuge(old))
824 		__dec_node_page_state(new, NR_FILE_PAGES);
825 	if (!PageHuge(new))
826 		__inc_node_page_state(new, NR_FILE_PAGES);
827 	if (PageSwapBacked(old))
828 		__dec_node_page_state(new, NR_SHMEM);
829 	if (PageSwapBacked(new))
830 		__inc_node_page_state(new, NR_SHMEM);
831 	xas_unlock_irqrestore(&xas, flags);
832 	mem_cgroup_migrate(old, new);
833 	if (freepage)
834 		freepage(old);
835 	put_page(old);
836 
837 	return 0;
838 }
839 EXPORT_SYMBOL_GPL(replace_page_cache_page);
840 
841 static int __add_to_page_cache_locked(struct page *page,
842 				      struct address_space *mapping,
843 				      pgoff_t offset, gfp_t gfp_mask,
844 				      void **shadowp)
845 {
846 	XA_STATE(xas, &mapping->i_pages, offset);
847 	int huge = PageHuge(page);
848 	struct mem_cgroup *memcg;
849 	int error;
850 	void *old;
851 
852 	VM_BUG_ON_PAGE(!PageLocked(page), page);
853 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
854 	mapping_set_update(&xas, mapping);
855 
856 	if (!huge) {
857 		error = mem_cgroup_try_charge(page, current->mm,
858 					      gfp_mask, &memcg, false);
859 		if (error)
860 			return error;
861 	}
862 
863 	get_page(page);
864 	page->mapping = mapping;
865 	page->index = offset;
866 
867 	do {
868 		xas_lock_irq(&xas);
869 		old = xas_load(&xas);
870 		if (old && !xa_is_value(old))
871 			xas_set_err(&xas, -EEXIST);
872 		xas_store(&xas, page);
873 		if (xas_error(&xas))
874 			goto unlock;
875 
876 		if (xa_is_value(old)) {
877 			mapping->nrexceptional--;
878 			if (shadowp)
879 				*shadowp = old;
880 		}
881 		mapping->nrpages++;
882 
883 		/* hugetlb pages do not participate in page cache accounting */
884 		if (!huge)
885 			__inc_node_page_state(page, NR_FILE_PAGES);
886 unlock:
887 		xas_unlock_irq(&xas);
888 	} while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));
889 
890 	if (xas_error(&xas))
891 		goto error;
892 
893 	if (!huge)
894 		mem_cgroup_commit_charge(page, memcg, false, false);
895 	trace_mm_filemap_add_to_page_cache(page);
896 	return 0;
897 error:
898 	page->mapping = NULL;
899 	/* Leave page->index set: truncation relies upon it */
900 	if (!huge)
901 		mem_cgroup_cancel_charge(page, memcg, false);
902 	put_page(page);
903 	return xas_error(&xas);
904 }
905 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
906 
907 /**
908  * add_to_page_cache_locked - add a locked page to the pagecache
909  * @page:	page to add
910  * @mapping:	the page's address_space
911  * @offset:	page index
912  * @gfp_mask:	page allocation mode
913  *
914  * This function is used to add a page to the pagecache. It must be locked.
915  * This function does not add the page to the LRU.  The caller must do that.
916  *
917  * Return: %0 on success, negative error code otherwise.
918  */
919 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
920 		pgoff_t offset, gfp_t gfp_mask)
921 {
922 	return __add_to_page_cache_locked(page, mapping, offset,
923 					  gfp_mask, NULL);
924 }
925 EXPORT_SYMBOL(add_to_page_cache_locked);
926 
927 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
928 				pgoff_t offset, gfp_t gfp_mask)
929 {
930 	void *shadow = NULL;
931 	int ret;
932 
933 	__SetPageLocked(page);
934 	ret = __add_to_page_cache_locked(page, mapping, offset,
935 					 gfp_mask, &shadow);
936 	if (unlikely(ret))
937 		__ClearPageLocked(page);
938 	else {
939 		/*
940 		 * The page might have been evicted from cache only
941 		 * recently, in which case it should be activated like
942 		 * any other repeatedly accessed page.
943 		 * The exception is pages getting rewritten; evicting other
944 		 * data from the working set, only to cache data that will
945 		 * get overwritten with something else, is a waste of memory.
946 		 */
947 		WARN_ON_ONCE(PageActive(page));
948 		if (!(gfp_mask & __GFP_WRITE) && shadow)
949 			workingset_refault(page, shadow);
950 		lru_cache_add(page);
951 	}
952 	return ret;
953 }
954 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
955 
956 #ifdef CONFIG_NUMA
957 struct page *__page_cache_alloc(gfp_t gfp)
958 {
959 	int n;
960 	struct page *page;
961 
962 	if (cpuset_do_page_mem_spread()) {
963 		unsigned int cpuset_mems_cookie;
964 		do {
965 			cpuset_mems_cookie = read_mems_allowed_begin();
966 			n = cpuset_mem_spread_node();
967 			page = __alloc_pages_node(n, gfp, 0);
968 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
969 
970 		return page;
971 	}
972 	return alloc_pages(gfp, 0);
973 }
974 EXPORT_SYMBOL(__page_cache_alloc);
975 #endif
976 
977 /*
978  * In order to wait for pages to become available there must be
979  * waitqueues associated with pages. By using a hash table of
980  * waitqueues where the bucket discipline is to maintain all
981  * waiters on the same queue and wake all when any of the pages
982  * become available, and for the woken contexts to check to be
983  * sure the appropriate page became available, this saves space
984  * at a cost of "thundering herd" phenomena during rare hash
985  * collisions.
986  */
987 #define PAGE_WAIT_TABLE_BITS 8
988 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
989 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
990 
991 static wait_queue_head_t *page_waitqueue(struct page *page)
992 {
993 	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
994 }
995 
996 void __init pagecache_init(void)
997 {
998 	int i;
999 
1000 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1001 		init_waitqueue_head(&page_wait_table[i]);
1002 
1003 	page_writeback_init();
1004 }
1005 
1006 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
1007 struct wait_page_key {
1008 	struct page *page;
1009 	int bit_nr;
1010 	int page_match;
1011 };
1012 
1013 struct wait_page_queue {
1014 	struct page *page;
1015 	int bit_nr;
1016 	wait_queue_entry_t wait;
1017 };
1018 
1019 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1020 {
1021 	struct wait_page_key *key = arg;
1022 	struct wait_page_queue *wait_page
1023 		= container_of(wait, struct wait_page_queue, wait);
1024 
1025 	if (wait_page->page != key->page)
1026 	       return 0;
1027 	key->page_match = 1;
1028 
1029 	if (wait_page->bit_nr != key->bit_nr)
1030 		return 0;
1031 
1032 	/*
1033 	 * Stop walking if it's locked.
1034 	 * Is this safe if put_and_wait_on_page_locked() is in use?
1035 	 * Yes: the waker must hold a reference to this page, and if PG_locked
1036 	 * has now already been set by another task, that task must also hold
1037 	 * a reference to the *same usage* of this page; so there is no need
1038 	 * to walk on to wake even the put_and_wait_on_page_locked() callers.
1039 	 */
1040 	if (test_bit(key->bit_nr, &key->page->flags))
1041 		return -1;
1042 
1043 	return autoremove_wake_function(wait, mode, sync, key);
1044 }
1045 
1046 static void wake_up_page_bit(struct page *page, int bit_nr)
1047 {
1048 	wait_queue_head_t *q = page_waitqueue(page);
1049 	struct wait_page_key key;
1050 	unsigned long flags;
1051 	wait_queue_entry_t bookmark;
1052 
1053 	key.page = page;
1054 	key.bit_nr = bit_nr;
1055 	key.page_match = 0;
1056 
1057 	bookmark.flags = 0;
1058 	bookmark.private = NULL;
1059 	bookmark.func = NULL;
1060 	INIT_LIST_HEAD(&bookmark.entry);
1061 
1062 	spin_lock_irqsave(&q->lock, flags);
1063 	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1064 
1065 	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1066 		/*
1067 		 * Take a breather from holding the lock,
1068 		 * allow pages that finish wake up asynchronously
1069 		 * to acquire the lock and remove themselves
1070 		 * from wait queue
1071 		 */
1072 		spin_unlock_irqrestore(&q->lock, flags);
1073 		cpu_relax();
1074 		spin_lock_irqsave(&q->lock, flags);
1075 		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1076 	}
1077 
1078 	/*
1079 	 * It is possible for other pages to have collided on the waitqueue
1080 	 * hash, so in that case check for a page match. That prevents a long-
1081 	 * term waiter
1082 	 *
1083 	 * It is still possible to miss a case here, when we woke page waiters
1084 	 * and removed them from the waitqueue, but there are still other
1085 	 * page waiters.
1086 	 */
1087 	if (!waitqueue_active(q) || !key.page_match) {
1088 		ClearPageWaiters(page);
1089 		/*
1090 		 * It's possible to miss clearing Waiters here, when we woke
1091 		 * our page waiters, but the hashed waitqueue has waiters for
1092 		 * other pages on it.
1093 		 *
1094 		 * That's okay, it's a rare case. The next waker will clear it.
1095 		 */
1096 	}
1097 	spin_unlock_irqrestore(&q->lock, flags);
1098 }
1099 
1100 static void wake_up_page(struct page *page, int bit)
1101 {
1102 	if (!PageWaiters(page))
1103 		return;
1104 	wake_up_page_bit(page, bit);
1105 }
1106 
1107 /*
1108  * A choice of three behaviors for wait_on_page_bit_common():
1109  */
1110 enum behavior {
1111 	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1112 			 * __lock_page() waiting on then setting PG_locked.
1113 			 */
1114 	SHARED,		/* Hold ref to page and check the bit when woken, like
1115 			 * wait_on_page_writeback() waiting on PG_writeback.
1116 			 */
1117 	DROP,		/* Drop ref to page before wait, no check when woken,
1118 			 * like put_and_wait_on_page_locked() on PG_locked.
1119 			 */
1120 };
1121 
1122 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1123 	struct page *page, int bit_nr, int state, enum behavior behavior)
1124 {
1125 	struct wait_page_queue wait_page;
1126 	wait_queue_entry_t *wait = &wait_page.wait;
1127 	bool bit_is_set;
1128 	bool thrashing = false;
1129 	bool delayacct = false;
1130 	unsigned long pflags;
1131 	int ret = 0;
1132 
1133 	if (bit_nr == PG_locked &&
1134 	    !PageUptodate(page) && PageWorkingset(page)) {
1135 		if (!PageSwapBacked(page)) {
1136 			delayacct_thrashing_start();
1137 			delayacct = true;
1138 		}
1139 		psi_memstall_enter(&pflags);
1140 		thrashing = true;
1141 	}
1142 
1143 	init_wait(wait);
1144 	wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0;
1145 	wait->func = wake_page_function;
1146 	wait_page.page = page;
1147 	wait_page.bit_nr = bit_nr;
1148 
1149 	for (;;) {
1150 		spin_lock_irq(&q->lock);
1151 
1152 		if (likely(list_empty(&wait->entry))) {
1153 			__add_wait_queue_entry_tail(q, wait);
1154 			SetPageWaiters(page);
1155 		}
1156 
1157 		set_current_state(state);
1158 
1159 		spin_unlock_irq(&q->lock);
1160 
1161 		bit_is_set = test_bit(bit_nr, &page->flags);
1162 		if (behavior == DROP)
1163 			put_page(page);
1164 
1165 		if (likely(bit_is_set))
1166 			io_schedule();
1167 
1168 		if (behavior == EXCLUSIVE) {
1169 			if (!test_and_set_bit_lock(bit_nr, &page->flags))
1170 				break;
1171 		} else if (behavior == SHARED) {
1172 			if (!test_bit(bit_nr, &page->flags))
1173 				break;
1174 		}
1175 
1176 		if (signal_pending_state(state, current)) {
1177 			ret = -EINTR;
1178 			break;
1179 		}
1180 
1181 		if (behavior == DROP) {
1182 			/*
1183 			 * We can no longer safely access page->flags:
1184 			 * even if CONFIG_MEMORY_HOTREMOVE is not enabled,
1185 			 * there is a risk of waiting forever on a page reused
1186 			 * for something that keeps it locked indefinitely.
1187 			 * But best check for -EINTR above before breaking.
1188 			 */
1189 			break;
1190 		}
1191 	}
1192 
1193 	finish_wait(q, wait);
1194 
1195 	if (thrashing) {
1196 		if (delayacct)
1197 			delayacct_thrashing_end();
1198 		psi_memstall_leave(&pflags);
1199 	}
1200 
1201 	/*
1202 	 * A signal could leave PageWaiters set. Clearing it here if
1203 	 * !waitqueue_active would be possible (by open-coding finish_wait),
1204 	 * but still fail to catch it in the case of wait hash collision. We
1205 	 * already can fail to clear wait hash collision cases, so don't
1206 	 * bother with signals either.
1207 	 */
1208 
1209 	return ret;
1210 }
1211 
1212 void wait_on_page_bit(struct page *page, int bit_nr)
1213 {
1214 	wait_queue_head_t *q = page_waitqueue(page);
1215 	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1216 }
1217 EXPORT_SYMBOL(wait_on_page_bit);
1218 
1219 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1220 {
1221 	wait_queue_head_t *q = page_waitqueue(page);
1222 	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1223 }
1224 EXPORT_SYMBOL(wait_on_page_bit_killable);
1225 
1226 /**
1227  * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1228  * @page: The page to wait for.
1229  *
1230  * The caller should hold a reference on @page.  They expect the page to
1231  * become unlocked relatively soon, but do not wish to hold up migration
1232  * (for example) by holding the reference while waiting for the page to
1233  * come unlocked.  After this function returns, the caller should not
1234  * dereference @page.
1235  */
1236 void put_and_wait_on_page_locked(struct page *page)
1237 {
1238 	wait_queue_head_t *q;
1239 
1240 	page = compound_head(page);
1241 	q = page_waitqueue(page);
1242 	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
1243 }
1244 
1245 /**
1246  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1247  * @page: Page defining the wait queue of interest
1248  * @waiter: Waiter to add to the queue
1249  *
1250  * Add an arbitrary @waiter to the wait queue for the nominated @page.
1251  */
1252 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1253 {
1254 	wait_queue_head_t *q = page_waitqueue(page);
1255 	unsigned long flags;
1256 
1257 	spin_lock_irqsave(&q->lock, flags);
1258 	__add_wait_queue_entry_tail(q, waiter);
1259 	SetPageWaiters(page);
1260 	spin_unlock_irqrestore(&q->lock, flags);
1261 }
1262 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1263 
1264 #ifndef clear_bit_unlock_is_negative_byte
1265 
1266 /*
1267  * PG_waiters is the high bit in the same byte as PG_lock.
1268  *
1269  * On x86 (and on many other architectures), we can clear PG_lock and
1270  * test the sign bit at the same time. But if the architecture does
1271  * not support that special operation, we just do this all by hand
1272  * instead.
1273  *
1274  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1275  * being cleared, but a memory barrier should be unneccssary since it is
1276  * in the same byte as PG_locked.
1277  */
1278 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1279 {
1280 	clear_bit_unlock(nr, mem);
1281 	/* smp_mb__after_atomic(); */
1282 	return test_bit(PG_waiters, mem);
1283 }
1284 
1285 #endif
1286 
1287 /**
1288  * unlock_page - unlock a locked page
1289  * @page: the page
1290  *
1291  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1292  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1293  * mechanism between PageLocked pages and PageWriteback pages is shared.
1294  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1295  *
1296  * Note that this depends on PG_waiters being the sign bit in the byte
1297  * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1298  * clear the PG_locked bit and test PG_waiters at the same time fairly
1299  * portably (architectures that do LL/SC can test any bit, while x86 can
1300  * test the sign bit).
1301  */
1302 void unlock_page(struct page *page)
1303 {
1304 	BUILD_BUG_ON(PG_waiters != 7);
1305 	page = compound_head(page);
1306 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1307 	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1308 		wake_up_page_bit(page, PG_locked);
1309 }
1310 EXPORT_SYMBOL(unlock_page);
1311 
1312 /**
1313  * end_page_writeback - end writeback against a page
1314  * @page: the page
1315  */
1316 void end_page_writeback(struct page *page)
1317 {
1318 	/*
1319 	 * TestClearPageReclaim could be used here but it is an atomic
1320 	 * operation and overkill in this particular case. Failing to
1321 	 * shuffle a page marked for immediate reclaim is too mild to
1322 	 * justify taking an atomic operation penalty at the end of
1323 	 * ever page writeback.
1324 	 */
1325 	if (PageReclaim(page)) {
1326 		ClearPageReclaim(page);
1327 		rotate_reclaimable_page(page);
1328 	}
1329 
1330 	if (!test_clear_page_writeback(page))
1331 		BUG();
1332 
1333 	smp_mb__after_atomic();
1334 	wake_up_page(page, PG_writeback);
1335 }
1336 EXPORT_SYMBOL(end_page_writeback);
1337 
1338 /*
1339  * After completing I/O on a page, call this routine to update the page
1340  * flags appropriately
1341  */
1342 void page_endio(struct page *page, bool is_write, int err)
1343 {
1344 	if (!is_write) {
1345 		if (!err) {
1346 			SetPageUptodate(page);
1347 		} else {
1348 			ClearPageUptodate(page);
1349 			SetPageError(page);
1350 		}
1351 		unlock_page(page);
1352 	} else {
1353 		if (err) {
1354 			struct address_space *mapping;
1355 
1356 			SetPageError(page);
1357 			mapping = page_mapping(page);
1358 			if (mapping)
1359 				mapping_set_error(mapping, err);
1360 		}
1361 		end_page_writeback(page);
1362 	}
1363 }
1364 EXPORT_SYMBOL_GPL(page_endio);
1365 
1366 /**
1367  * __lock_page - get a lock on the page, assuming we need to sleep to get it
1368  * @__page: the page to lock
1369  */
1370 void __lock_page(struct page *__page)
1371 {
1372 	struct page *page = compound_head(__page);
1373 	wait_queue_head_t *q = page_waitqueue(page);
1374 	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1375 				EXCLUSIVE);
1376 }
1377 EXPORT_SYMBOL(__lock_page);
1378 
1379 int __lock_page_killable(struct page *__page)
1380 {
1381 	struct page *page = compound_head(__page);
1382 	wait_queue_head_t *q = page_waitqueue(page);
1383 	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1384 					EXCLUSIVE);
1385 }
1386 EXPORT_SYMBOL_GPL(__lock_page_killable);
1387 
1388 /*
1389  * Return values:
1390  * 1 - page is locked; mmap_sem is still held.
1391  * 0 - page is not locked.
1392  *     mmap_sem has been released (up_read()), unless flags had both
1393  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1394  *     which case mmap_sem is still held.
1395  *
1396  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1397  * with the page locked and the mmap_sem unperturbed.
1398  */
1399 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1400 			 unsigned int flags)
1401 {
1402 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
1403 		/*
1404 		 * CAUTION! In this case, mmap_sem is not released
1405 		 * even though return 0.
1406 		 */
1407 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1408 			return 0;
1409 
1410 		up_read(&mm->mmap_sem);
1411 		if (flags & FAULT_FLAG_KILLABLE)
1412 			wait_on_page_locked_killable(page);
1413 		else
1414 			wait_on_page_locked(page);
1415 		return 0;
1416 	} else {
1417 		if (flags & FAULT_FLAG_KILLABLE) {
1418 			int ret;
1419 
1420 			ret = __lock_page_killable(page);
1421 			if (ret) {
1422 				up_read(&mm->mmap_sem);
1423 				return 0;
1424 			}
1425 		} else
1426 			__lock_page(page);
1427 		return 1;
1428 	}
1429 }
1430 
1431 /**
1432  * page_cache_next_miss() - Find the next gap in the page cache.
1433  * @mapping: Mapping.
1434  * @index: Index.
1435  * @max_scan: Maximum range to search.
1436  *
1437  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1438  * gap with the lowest index.
1439  *
1440  * This function may be called under the rcu_read_lock.  However, this will
1441  * not atomically search a snapshot of the cache at a single point in time.
1442  * For example, if a gap is created at index 5, then subsequently a gap is
1443  * created at index 10, page_cache_next_miss covering both indices may
1444  * return 10 if called under the rcu_read_lock.
1445  *
1446  * Return: The index of the gap if found, otherwise an index outside the
1447  * range specified (in which case 'return - index >= max_scan' will be true).
1448  * In the rare case of index wrap-around, 0 will be returned.
1449  */
1450 pgoff_t page_cache_next_miss(struct address_space *mapping,
1451 			     pgoff_t index, unsigned long max_scan)
1452 {
1453 	XA_STATE(xas, &mapping->i_pages, index);
1454 
1455 	while (max_scan--) {
1456 		void *entry = xas_next(&xas);
1457 		if (!entry || xa_is_value(entry))
1458 			break;
1459 		if (xas.xa_index == 0)
1460 			break;
1461 	}
1462 
1463 	return xas.xa_index;
1464 }
1465 EXPORT_SYMBOL(page_cache_next_miss);
1466 
1467 /**
1468  * page_cache_prev_miss() - Find the previous gap in the page cache.
1469  * @mapping: Mapping.
1470  * @index: Index.
1471  * @max_scan: Maximum range to search.
1472  *
1473  * Search the range [max(index - max_scan + 1, 0), index] for the
1474  * gap with the highest index.
1475  *
1476  * This function may be called under the rcu_read_lock.  However, this will
1477  * not atomically search a snapshot of the cache at a single point in time.
1478  * For example, if a gap is created at index 10, then subsequently a gap is
1479  * created at index 5, page_cache_prev_miss() covering both indices may
1480  * return 5 if called under the rcu_read_lock.
1481  *
1482  * Return: The index of the gap if found, otherwise an index outside the
1483  * range specified (in which case 'index - return >= max_scan' will be true).
1484  * In the rare case of wrap-around, ULONG_MAX will be returned.
1485  */
1486 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1487 			     pgoff_t index, unsigned long max_scan)
1488 {
1489 	XA_STATE(xas, &mapping->i_pages, index);
1490 
1491 	while (max_scan--) {
1492 		void *entry = xas_prev(&xas);
1493 		if (!entry || xa_is_value(entry))
1494 			break;
1495 		if (xas.xa_index == ULONG_MAX)
1496 			break;
1497 	}
1498 
1499 	return xas.xa_index;
1500 }
1501 EXPORT_SYMBOL(page_cache_prev_miss);
1502 
1503 /**
1504  * find_get_entry - find and get a page cache entry
1505  * @mapping: the address_space to search
1506  * @offset: the page cache index
1507  *
1508  * Looks up the page cache slot at @mapping & @offset.  If there is a
1509  * page cache page, it is returned with an increased refcount.
1510  *
1511  * If the slot holds a shadow entry of a previously evicted page, or a
1512  * swap entry from shmem/tmpfs, it is returned.
1513  *
1514  * Return: the found page or shadow entry, %NULL if nothing is found.
1515  */
1516 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1517 {
1518 	XA_STATE(xas, &mapping->i_pages, offset);
1519 	struct page *head, *page;
1520 
1521 	rcu_read_lock();
1522 repeat:
1523 	xas_reset(&xas);
1524 	page = xas_load(&xas);
1525 	if (xas_retry(&xas, page))
1526 		goto repeat;
1527 	/*
1528 	 * A shadow entry of a recently evicted page, or a swap entry from
1529 	 * shmem/tmpfs.  Return it without attempting to raise page count.
1530 	 */
1531 	if (!page || xa_is_value(page))
1532 		goto out;
1533 
1534 	head = compound_head(page);
1535 	if (!page_cache_get_speculative(head))
1536 		goto repeat;
1537 
1538 	/* The page was split under us? */
1539 	if (compound_head(page) != head) {
1540 		put_page(head);
1541 		goto repeat;
1542 	}
1543 
1544 	/*
1545 	 * Has the page moved?
1546 	 * This is part of the lockless pagecache protocol. See
1547 	 * include/linux/pagemap.h for details.
1548 	 */
1549 	if (unlikely(page != xas_reload(&xas))) {
1550 		put_page(head);
1551 		goto repeat;
1552 	}
1553 out:
1554 	rcu_read_unlock();
1555 
1556 	return page;
1557 }
1558 EXPORT_SYMBOL(find_get_entry);
1559 
1560 /**
1561  * find_lock_entry - locate, pin and lock a page cache entry
1562  * @mapping: the address_space to search
1563  * @offset: the page cache index
1564  *
1565  * Looks up the page cache slot at @mapping & @offset.  If there is a
1566  * page cache page, it is returned locked and with an increased
1567  * refcount.
1568  *
1569  * If the slot holds a shadow entry of a previously evicted page, or a
1570  * swap entry from shmem/tmpfs, it is returned.
1571  *
1572  * find_lock_entry() may sleep.
1573  *
1574  * Return: the found page or shadow entry, %NULL if nothing is found.
1575  */
1576 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1577 {
1578 	struct page *page;
1579 
1580 repeat:
1581 	page = find_get_entry(mapping, offset);
1582 	if (page && !xa_is_value(page)) {
1583 		lock_page(page);
1584 		/* Has the page been truncated? */
1585 		if (unlikely(page_mapping(page) != mapping)) {
1586 			unlock_page(page);
1587 			put_page(page);
1588 			goto repeat;
1589 		}
1590 		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1591 	}
1592 	return page;
1593 }
1594 EXPORT_SYMBOL(find_lock_entry);
1595 
1596 /**
1597  * pagecache_get_page - find and get a page reference
1598  * @mapping: the address_space to search
1599  * @offset: the page index
1600  * @fgp_flags: PCG flags
1601  * @gfp_mask: gfp mask to use for the page cache data page allocation
1602  *
1603  * Looks up the page cache slot at @mapping & @offset.
1604  *
1605  * PCG flags modify how the page is returned.
1606  *
1607  * @fgp_flags can be:
1608  *
1609  * - FGP_ACCESSED: the page will be marked accessed
1610  * - FGP_LOCK: Page is return locked
1611  * - FGP_CREAT: If page is not present then a new page is allocated using
1612  *   @gfp_mask and added to the page cache and the VM's LRU
1613  *   list. The page is returned locked and with an increased
1614  *   refcount.
1615  * - FGP_FOR_MMAP: Similar to FGP_CREAT, only we want to allow the caller to do
1616  *   its own locking dance if the page is already in cache, or unlock the page
1617  *   before returning if we had to add the page to pagecache.
1618  *
1619  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1620  * if the GFP flags specified for FGP_CREAT are atomic.
1621  *
1622  * If there is a page cache page, it is returned with an increased refcount.
1623  *
1624  * Return: the found page or %NULL otherwise.
1625  */
1626 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1627 	int fgp_flags, gfp_t gfp_mask)
1628 {
1629 	struct page *page;
1630 
1631 repeat:
1632 	page = find_get_entry(mapping, offset);
1633 	if (xa_is_value(page))
1634 		page = NULL;
1635 	if (!page)
1636 		goto no_page;
1637 
1638 	if (fgp_flags & FGP_LOCK) {
1639 		if (fgp_flags & FGP_NOWAIT) {
1640 			if (!trylock_page(page)) {
1641 				put_page(page);
1642 				return NULL;
1643 			}
1644 		} else {
1645 			lock_page(page);
1646 		}
1647 
1648 		/* Has the page been truncated? */
1649 		if (unlikely(page->mapping != mapping)) {
1650 			unlock_page(page);
1651 			put_page(page);
1652 			goto repeat;
1653 		}
1654 		VM_BUG_ON_PAGE(page->index != offset, page);
1655 	}
1656 
1657 	if (fgp_flags & FGP_ACCESSED)
1658 		mark_page_accessed(page);
1659 
1660 no_page:
1661 	if (!page && (fgp_flags & FGP_CREAT)) {
1662 		int err;
1663 		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1664 			gfp_mask |= __GFP_WRITE;
1665 		if (fgp_flags & FGP_NOFS)
1666 			gfp_mask &= ~__GFP_FS;
1667 
1668 		page = __page_cache_alloc(gfp_mask);
1669 		if (!page)
1670 			return NULL;
1671 
1672 		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1673 			fgp_flags |= FGP_LOCK;
1674 
1675 		/* Init accessed so avoid atomic mark_page_accessed later */
1676 		if (fgp_flags & FGP_ACCESSED)
1677 			__SetPageReferenced(page);
1678 
1679 		err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
1680 		if (unlikely(err)) {
1681 			put_page(page);
1682 			page = NULL;
1683 			if (err == -EEXIST)
1684 				goto repeat;
1685 		}
1686 
1687 		/*
1688 		 * add_to_page_cache_lru locks the page, and for mmap we expect
1689 		 * an unlocked page.
1690 		 */
1691 		if (page && (fgp_flags & FGP_FOR_MMAP))
1692 			unlock_page(page);
1693 	}
1694 
1695 	return page;
1696 }
1697 EXPORT_SYMBOL(pagecache_get_page);
1698 
1699 /**
1700  * find_get_entries - gang pagecache lookup
1701  * @mapping:	The address_space to search
1702  * @start:	The starting page cache index
1703  * @nr_entries:	The maximum number of entries
1704  * @entries:	Where the resulting entries are placed
1705  * @indices:	The cache indices corresponding to the entries in @entries
1706  *
1707  * find_get_entries() will search for and return a group of up to
1708  * @nr_entries entries in the mapping.  The entries are placed at
1709  * @entries.  find_get_entries() takes a reference against any actual
1710  * pages it returns.
1711  *
1712  * The search returns a group of mapping-contiguous page cache entries
1713  * with ascending indexes.  There may be holes in the indices due to
1714  * not-present pages.
1715  *
1716  * Any shadow entries of evicted pages, or swap entries from
1717  * shmem/tmpfs, are included in the returned array.
1718  *
1719  * Return: the number of pages and shadow entries which were found.
1720  */
1721 unsigned find_get_entries(struct address_space *mapping,
1722 			  pgoff_t start, unsigned int nr_entries,
1723 			  struct page **entries, pgoff_t *indices)
1724 {
1725 	XA_STATE(xas, &mapping->i_pages, start);
1726 	struct page *page;
1727 	unsigned int ret = 0;
1728 
1729 	if (!nr_entries)
1730 		return 0;
1731 
1732 	rcu_read_lock();
1733 	xas_for_each(&xas, page, ULONG_MAX) {
1734 		struct page *head;
1735 		if (xas_retry(&xas, page))
1736 			continue;
1737 		/*
1738 		 * A shadow entry of a recently evicted page, a swap
1739 		 * entry from shmem/tmpfs or a DAX entry.  Return it
1740 		 * without attempting to raise page count.
1741 		 */
1742 		if (xa_is_value(page))
1743 			goto export;
1744 
1745 		head = compound_head(page);
1746 		if (!page_cache_get_speculative(head))
1747 			goto retry;
1748 
1749 		/* The page was split under us? */
1750 		if (compound_head(page) != head)
1751 			goto put_page;
1752 
1753 		/* Has the page moved? */
1754 		if (unlikely(page != xas_reload(&xas)))
1755 			goto put_page;
1756 
1757 export:
1758 		indices[ret] = xas.xa_index;
1759 		entries[ret] = page;
1760 		if (++ret == nr_entries)
1761 			break;
1762 		continue;
1763 put_page:
1764 		put_page(head);
1765 retry:
1766 		xas_reset(&xas);
1767 	}
1768 	rcu_read_unlock();
1769 	return ret;
1770 }
1771 
1772 /**
1773  * find_get_pages_range - gang pagecache lookup
1774  * @mapping:	The address_space to search
1775  * @start:	The starting page index
1776  * @end:	The final page index (inclusive)
1777  * @nr_pages:	The maximum number of pages
1778  * @pages:	Where the resulting pages are placed
1779  *
1780  * find_get_pages_range() will search for and return a group of up to @nr_pages
1781  * pages in the mapping starting at index @start and up to index @end
1782  * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
1783  * a reference against the returned pages.
1784  *
1785  * The search returns a group of mapping-contiguous pages with ascending
1786  * indexes.  There may be holes in the indices due to not-present pages.
1787  * We also update @start to index the next page for the traversal.
1788  *
1789  * Return: the number of pages which were found. If this number is
1790  * smaller than @nr_pages, the end of specified range has been
1791  * reached.
1792  */
1793 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1794 			      pgoff_t end, unsigned int nr_pages,
1795 			      struct page **pages)
1796 {
1797 	XA_STATE(xas, &mapping->i_pages, *start);
1798 	struct page *page;
1799 	unsigned ret = 0;
1800 
1801 	if (unlikely(!nr_pages))
1802 		return 0;
1803 
1804 	rcu_read_lock();
1805 	xas_for_each(&xas, page, end) {
1806 		struct page *head;
1807 		if (xas_retry(&xas, page))
1808 			continue;
1809 		/* Skip over shadow, swap and DAX entries */
1810 		if (xa_is_value(page))
1811 			continue;
1812 
1813 		head = compound_head(page);
1814 		if (!page_cache_get_speculative(head))
1815 			goto retry;
1816 
1817 		/* The page was split under us? */
1818 		if (compound_head(page) != head)
1819 			goto put_page;
1820 
1821 		/* Has the page moved? */
1822 		if (unlikely(page != xas_reload(&xas)))
1823 			goto put_page;
1824 
1825 		pages[ret] = page;
1826 		if (++ret == nr_pages) {
1827 			*start = xas.xa_index + 1;
1828 			goto out;
1829 		}
1830 		continue;
1831 put_page:
1832 		put_page(head);
1833 retry:
1834 		xas_reset(&xas);
1835 	}
1836 
1837 	/*
1838 	 * We come here when there is no page beyond @end. We take care to not
1839 	 * overflow the index @start as it confuses some of the callers. This
1840 	 * breaks the iteration when there is a page at index -1 but that is
1841 	 * already broken anyway.
1842 	 */
1843 	if (end == (pgoff_t)-1)
1844 		*start = (pgoff_t)-1;
1845 	else
1846 		*start = end + 1;
1847 out:
1848 	rcu_read_unlock();
1849 
1850 	return ret;
1851 }
1852 
1853 /**
1854  * find_get_pages_contig - gang contiguous pagecache lookup
1855  * @mapping:	The address_space to search
1856  * @index:	The starting page index
1857  * @nr_pages:	The maximum number of pages
1858  * @pages:	Where the resulting pages are placed
1859  *
1860  * find_get_pages_contig() works exactly like find_get_pages(), except
1861  * that the returned number of pages are guaranteed to be contiguous.
1862  *
1863  * Return: the number of pages which were found.
1864  */
1865 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1866 			       unsigned int nr_pages, struct page **pages)
1867 {
1868 	XA_STATE(xas, &mapping->i_pages, index);
1869 	struct page *page;
1870 	unsigned int ret = 0;
1871 
1872 	if (unlikely(!nr_pages))
1873 		return 0;
1874 
1875 	rcu_read_lock();
1876 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1877 		struct page *head;
1878 		if (xas_retry(&xas, page))
1879 			continue;
1880 		/*
1881 		 * If the entry has been swapped out, we can stop looking.
1882 		 * No current caller is looking for DAX entries.
1883 		 */
1884 		if (xa_is_value(page))
1885 			break;
1886 
1887 		head = compound_head(page);
1888 		if (!page_cache_get_speculative(head))
1889 			goto retry;
1890 
1891 		/* The page was split under us? */
1892 		if (compound_head(page) != head)
1893 			goto put_page;
1894 
1895 		/* Has the page moved? */
1896 		if (unlikely(page != xas_reload(&xas)))
1897 			goto put_page;
1898 
1899 		pages[ret] = page;
1900 		if (++ret == nr_pages)
1901 			break;
1902 		continue;
1903 put_page:
1904 		put_page(head);
1905 retry:
1906 		xas_reset(&xas);
1907 	}
1908 	rcu_read_unlock();
1909 	return ret;
1910 }
1911 EXPORT_SYMBOL(find_get_pages_contig);
1912 
1913 /**
1914  * find_get_pages_range_tag - find and return pages in given range matching @tag
1915  * @mapping:	the address_space to search
1916  * @index:	the starting page index
1917  * @end:	The final page index (inclusive)
1918  * @tag:	the tag index
1919  * @nr_pages:	the maximum number of pages
1920  * @pages:	where the resulting pages are placed
1921  *
1922  * Like find_get_pages, except we only return pages which are tagged with
1923  * @tag.   We update @index to index the next page for the traversal.
1924  *
1925  * Return: the number of pages which were found.
1926  */
1927 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1928 			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
1929 			struct page **pages)
1930 {
1931 	XA_STATE(xas, &mapping->i_pages, *index);
1932 	struct page *page;
1933 	unsigned ret = 0;
1934 
1935 	if (unlikely(!nr_pages))
1936 		return 0;
1937 
1938 	rcu_read_lock();
1939 	xas_for_each_marked(&xas, page, end, tag) {
1940 		struct page *head;
1941 		if (xas_retry(&xas, page))
1942 			continue;
1943 		/*
1944 		 * Shadow entries should never be tagged, but this iteration
1945 		 * is lockless so there is a window for page reclaim to evict
1946 		 * a page we saw tagged.  Skip over it.
1947 		 */
1948 		if (xa_is_value(page))
1949 			continue;
1950 
1951 		head = compound_head(page);
1952 		if (!page_cache_get_speculative(head))
1953 			goto retry;
1954 
1955 		/* The page was split under us? */
1956 		if (compound_head(page) != head)
1957 			goto put_page;
1958 
1959 		/* Has the page moved? */
1960 		if (unlikely(page != xas_reload(&xas)))
1961 			goto put_page;
1962 
1963 		pages[ret] = page;
1964 		if (++ret == nr_pages) {
1965 			*index = xas.xa_index + 1;
1966 			goto out;
1967 		}
1968 		continue;
1969 put_page:
1970 		put_page(head);
1971 retry:
1972 		xas_reset(&xas);
1973 	}
1974 
1975 	/*
1976 	 * We come here when we got to @end. We take care to not overflow the
1977 	 * index @index as it confuses some of the callers. This breaks the
1978 	 * iteration when there is a page at index -1 but that is already
1979 	 * broken anyway.
1980 	 */
1981 	if (end == (pgoff_t)-1)
1982 		*index = (pgoff_t)-1;
1983 	else
1984 		*index = end + 1;
1985 out:
1986 	rcu_read_unlock();
1987 
1988 	return ret;
1989 }
1990 EXPORT_SYMBOL(find_get_pages_range_tag);
1991 
1992 /*
1993  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1994  * a _large_ part of the i/o request. Imagine the worst scenario:
1995  *
1996  *      ---R__________________________________________B__________
1997  *         ^ reading here                             ^ bad block(assume 4k)
1998  *
1999  * read(R) => miss => readahead(R...B) => media error => frustrating retries
2000  * => failing the whole request => read(R) => read(R+1) =>
2001  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2002  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2003  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2004  *
2005  * It is going insane. Fix it by quickly scaling down the readahead size.
2006  */
2007 static void shrink_readahead_size_eio(struct file *filp,
2008 					struct file_ra_state *ra)
2009 {
2010 	ra->ra_pages /= 4;
2011 }
2012 
2013 /**
2014  * generic_file_buffered_read - generic file read routine
2015  * @iocb:	the iocb to read
2016  * @iter:	data destination
2017  * @written:	already copied
2018  *
2019  * This is a generic file read routine, and uses the
2020  * mapping->a_ops->readpage() function for the actual low-level stuff.
2021  *
2022  * This is really ugly. But the goto's actually try to clarify some
2023  * of the logic when it comes to error handling etc.
2024  *
2025  * Return:
2026  * * total number of bytes copied, including those the were already @written
2027  * * negative error code if nothing was copied
2028  */
2029 static ssize_t generic_file_buffered_read(struct kiocb *iocb,
2030 		struct iov_iter *iter, ssize_t written)
2031 {
2032 	struct file *filp = iocb->ki_filp;
2033 	struct address_space *mapping = filp->f_mapping;
2034 	struct inode *inode = mapping->host;
2035 	struct file_ra_state *ra = &filp->f_ra;
2036 	loff_t *ppos = &iocb->ki_pos;
2037 	pgoff_t index;
2038 	pgoff_t last_index;
2039 	pgoff_t prev_index;
2040 	unsigned long offset;      /* offset into pagecache page */
2041 	unsigned int prev_offset;
2042 	int error = 0;
2043 
2044 	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2045 		return 0;
2046 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2047 
2048 	index = *ppos >> PAGE_SHIFT;
2049 	prev_index = ra->prev_pos >> PAGE_SHIFT;
2050 	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2051 	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2052 	offset = *ppos & ~PAGE_MASK;
2053 
2054 	for (;;) {
2055 		struct page *page;
2056 		pgoff_t end_index;
2057 		loff_t isize;
2058 		unsigned long nr, ret;
2059 
2060 		cond_resched();
2061 find_page:
2062 		if (fatal_signal_pending(current)) {
2063 			error = -EINTR;
2064 			goto out;
2065 		}
2066 
2067 		page = find_get_page(mapping, index);
2068 		if (!page) {
2069 			if (iocb->ki_flags & IOCB_NOWAIT)
2070 				goto would_block;
2071 			page_cache_sync_readahead(mapping,
2072 					ra, filp,
2073 					index, last_index - index);
2074 			page = find_get_page(mapping, index);
2075 			if (unlikely(page == NULL))
2076 				goto no_cached_page;
2077 		}
2078 		if (PageReadahead(page)) {
2079 			page_cache_async_readahead(mapping,
2080 					ra, filp, page,
2081 					index, last_index - index);
2082 		}
2083 		if (!PageUptodate(page)) {
2084 			if (iocb->ki_flags & IOCB_NOWAIT) {
2085 				put_page(page);
2086 				goto would_block;
2087 			}
2088 
2089 			/*
2090 			 * See comment in do_read_cache_page on why
2091 			 * wait_on_page_locked is used to avoid unnecessarily
2092 			 * serialisations and why it's safe.
2093 			 */
2094 			error = wait_on_page_locked_killable(page);
2095 			if (unlikely(error))
2096 				goto readpage_error;
2097 			if (PageUptodate(page))
2098 				goto page_ok;
2099 
2100 			if (inode->i_blkbits == PAGE_SHIFT ||
2101 					!mapping->a_ops->is_partially_uptodate)
2102 				goto page_not_up_to_date;
2103 			/* pipes can't handle partially uptodate pages */
2104 			if (unlikely(iov_iter_is_pipe(iter)))
2105 				goto page_not_up_to_date;
2106 			if (!trylock_page(page))
2107 				goto page_not_up_to_date;
2108 			/* Did it get truncated before we got the lock? */
2109 			if (!page->mapping)
2110 				goto page_not_up_to_date_locked;
2111 			if (!mapping->a_ops->is_partially_uptodate(page,
2112 							offset, iter->count))
2113 				goto page_not_up_to_date_locked;
2114 			unlock_page(page);
2115 		}
2116 page_ok:
2117 		/*
2118 		 * i_size must be checked after we know the page is Uptodate.
2119 		 *
2120 		 * Checking i_size after the check allows us to calculate
2121 		 * the correct value for "nr", which means the zero-filled
2122 		 * part of the page is not copied back to userspace (unless
2123 		 * another truncate extends the file - this is desired though).
2124 		 */
2125 
2126 		isize = i_size_read(inode);
2127 		end_index = (isize - 1) >> PAGE_SHIFT;
2128 		if (unlikely(!isize || index > end_index)) {
2129 			put_page(page);
2130 			goto out;
2131 		}
2132 
2133 		/* nr is the maximum number of bytes to copy from this page */
2134 		nr = PAGE_SIZE;
2135 		if (index == end_index) {
2136 			nr = ((isize - 1) & ~PAGE_MASK) + 1;
2137 			if (nr <= offset) {
2138 				put_page(page);
2139 				goto out;
2140 			}
2141 		}
2142 		nr = nr - offset;
2143 
2144 		/* If users can be writing to this page using arbitrary
2145 		 * virtual addresses, take care about potential aliasing
2146 		 * before reading the page on the kernel side.
2147 		 */
2148 		if (mapping_writably_mapped(mapping))
2149 			flush_dcache_page(page);
2150 
2151 		/*
2152 		 * When a sequential read accesses a page several times,
2153 		 * only mark it as accessed the first time.
2154 		 */
2155 		if (prev_index != index || offset != prev_offset)
2156 			mark_page_accessed(page);
2157 		prev_index = index;
2158 
2159 		/*
2160 		 * Ok, we have the page, and it's up-to-date, so
2161 		 * now we can copy it to user space...
2162 		 */
2163 
2164 		ret = copy_page_to_iter(page, offset, nr, iter);
2165 		offset += ret;
2166 		index += offset >> PAGE_SHIFT;
2167 		offset &= ~PAGE_MASK;
2168 		prev_offset = offset;
2169 
2170 		put_page(page);
2171 		written += ret;
2172 		if (!iov_iter_count(iter))
2173 			goto out;
2174 		if (ret < nr) {
2175 			error = -EFAULT;
2176 			goto out;
2177 		}
2178 		continue;
2179 
2180 page_not_up_to_date:
2181 		/* Get exclusive access to the page ... */
2182 		error = lock_page_killable(page);
2183 		if (unlikely(error))
2184 			goto readpage_error;
2185 
2186 page_not_up_to_date_locked:
2187 		/* Did it get truncated before we got the lock? */
2188 		if (!page->mapping) {
2189 			unlock_page(page);
2190 			put_page(page);
2191 			continue;
2192 		}
2193 
2194 		/* Did somebody else fill it already? */
2195 		if (PageUptodate(page)) {
2196 			unlock_page(page);
2197 			goto page_ok;
2198 		}
2199 
2200 readpage:
2201 		/*
2202 		 * A previous I/O error may have been due to temporary
2203 		 * failures, eg. multipath errors.
2204 		 * PG_error will be set again if readpage fails.
2205 		 */
2206 		ClearPageError(page);
2207 		/* Start the actual read. The read will unlock the page. */
2208 		error = mapping->a_ops->readpage(filp, page);
2209 
2210 		if (unlikely(error)) {
2211 			if (error == AOP_TRUNCATED_PAGE) {
2212 				put_page(page);
2213 				error = 0;
2214 				goto find_page;
2215 			}
2216 			goto readpage_error;
2217 		}
2218 
2219 		if (!PageUptodate(page)) {
2220 			error = lock_page_killable(page);
2221 			if (unlikely(error))
2222 				goto readpage_error;
2223 			if (!PageUptodate(page)) {
2224 				if (page->mapping == NULL) {
2225 					/*
2226 					 * invalidate_mapping_pages got it
2227 					 */
2228 					unlock_page(page);
2229 					put_page(page);
2230 					goto find_page;
2231 				}
2232 				unlock_page(page);
2233 				shrink_readahead_size_eio(filp, ra);
2234 				error = -EIO;
2235 				goto readpage_error;
2236 			}
2237 			unlock_page(page);
2238 		}
2239 
2240 		goto page_ok;
2241 
2242 readpage_error:
2243 		/* UHHUH! A synchronous read error occurred. Report it */
2244 		put_page(page);
2245 		goto out;
2246 
2247 no_cached_page:
2248 		/*
2249 		 * Ok, it wasn't cached, so we need to create a new
2250 		 * page..
2251 		 */
2252 		page = page_cache_alloc(mapping);
2253 		if (!page) {
2254 			error = -ENOMEM;
2255 			goto out;
2256 		}
2257 		error = add_to_page_cache_lru(page, mapping, index,
2258 				mapping_gfp_constraint(mapping, GFP_KERNEL));
2259 		if (error) {
2260 			put_page(page);
2261 			if (error == -EEXIST) {
2262 				error = 0;
2263 				goto find_page;
2264 			}
2265 			goto out;
2266 		}
2267 		goto readpage;
2268 	}
2269 
2270 would_block:
2271 	error = -EAGAIN;
2272 out:
2273 	ra->prev_pos = prev_index;
2274 	ra->prev_pos <<= PAGE_SHIFT;
2275 	ra->prev_pos |= prev_offset;
2276 
2277 	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2278 	file_accessed(filp);
2279 	return written ? written : error;
2280 }
2281 
2282 /**
2283  * generic_file_read_iter - generic filesystem read routine
2284  * @iocb:	kernel I/O control block
2285  * @iter:	destination for the data read
2286  *
2287  * This is the "read_iter()" routine for all filesystems
2288  * that can use the page cache directly.
2289  * Return:
2290  * * number of bytes copied, even for partial reads
2291  * * negative error code if nothing was read
2292  */
2293 ssize_t
2294 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2295 {
2296 	size_t count = iov_iter_count(iter);
2297 	ssize_t retval = 0;
2298 
2299 	if (!count)
2300 		goto out; /* skip atime */
2301 
2302 	if (iocb->ki_flags & IOCB_DIRECT) {
2303 		struct file *file = iocb->ki_filp;
2304 		struct address_space *mapping = file->f_mapping;
2305 		struct inode *inode = mapping->host;
2306 		loff_t size;
2307 
2308 		size = i_size_read(inode);
2309 		if (iocb->ki_flags & IOCB_NOWAIT) {
2310 			if (filemap_range_has_page(mapping, iocb->ki_pos,
2311 						   iocb->ki_pos + count - 1))
2312 				return -EAGAIN;
2313 		} else {
2314 			retval = filemap_write_and_wait_range(mapping,
2315 						iocb->ki_pos,
2316 					        iocb->ki_pos + count - 1);
2317 			if (retval < 0)
2318 				goto out;
2319 		}
2320 
2321 		file_accessed(file);
2322 
2323 		retval = mapping->a_ops->direct_IO(iocb, iter);
2324 		if (retval >= 0) {
2325 			iocb->ki_pos += retval;
2326 			count -= retval;
2327 		}
2328 		iov_iter_revert(iter, count - iov_iter_count(iter));
2329 
2330 		/*
2331 		 * Btrfs can have a short DIO read if we encounter
2332 		 * compressed extents, so if there was an error, or if
2333 		 * we've already read everything we wanted to, or if
2334 		 * there was a short read because we hit EOF, go ahead
2335 		 * and return.  Otherwise fallthrough to buffered io for
2336 		 * the rest of the read.  Buffered reads will not work for
2337 		 * DAX files, so don't bother trying.
2338 		 */
2339 		if (retval < 0 || !count || iocb->ki_pos >= size ||
2340 		    IS_DAX(inode))
2341 			goto out;
2342 	}
2343 
2344 	retval = generic_file_buffered_read(iocb, iter, retval);
2345 out:
2346 	return retval;
2347 }
2348 EXPORT_SYMBOL(generic_file_read_iter);
2349 
2350 #ifdef CONFIG_MMU
2351 #define MMAP_LOTSAMISS  (100)
2352 static struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
2353 					     struct file *fpin)
2354 {
2355 	int flags = vmf->flags;
2356 
2357 	if (fpin)
2358 		return fpin;
2359 
2360 	/*
2361 	 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
2362 	 * anything, so we only pin the file and drop the mmap_sem if only
2363 	 * FAULT_FLAG_ALLOW_RETRY is set.
2364 	 */
2365 	if ((flags & (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT)) ==
2366 	    FAULT_FLAG_ALLOW_RETRY) {
2367 		fpin = get_file(vmf->vma->vm_file);
2368 		up_read(&vmf->vma->vm_mm->mmap_sem);
2369 	}
2370 	return fpin;
2371 }
2372 
2373 /*
2374  * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_sem
2375  * @vmf - the vm_fault for this fault.
2376  * @page - the page to lock.
2377  * @fpin - the pointer to the file we may pin (or is already pinned).
2378  *
2379  * This works similar to lock_page_or_retry in that it can drop the mmap_sem.
2380  * It differs in that it actually returns the page locked if it returns 1 and 0
2381  * if it couldn't lock the page.  If we did have to drop the mmap_sem then fpin
2382  * will point to the pinned file and needs to be fput()'ed at a later point.
2383  */
2384 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2385 				     struct file **fpin)
2386 {
2387 	if (trylock_page(page))
2388 		return 1;
2389 
2390 	/*
2391 	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2392 	 * the mmap_sem still held. That's how FAULT_FLAG_RETRY_NOWAIT
2393 	 * is supposed to work. We have way too many special cases..
2394 	 */
2395 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2396 		return 0;
2397 
2398 	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2399 	if (vmf->flags & FAULT_FLAG_KILLABLE) {
2400 		if (__lock_page_killable(page)) {
2401 			/*
2402 			 * We didn't have the right flags to drop the mmap_sem,
2403 			 * but all fault_handlers only check for fatal signals
2404 			 * if we return VM_FAULT_RETRY, so we need to drop the
2405 			 * mmap_sem here and return 0 if we don't have a fpin.
2406 			 */
2407 			if (*fpin == NULL)
2408 				up_read(&vmf->vma->vm_mm->mmap_sem);
2409 			return 0;
2410 		}
2411 	} else
2412 		__lock_page(page);
2413 	return 1;
2414 }
2415 
2416 
2417 /*
2418  * Synchronous readahead happens when we don't even find a page in the page
2419  * cache at all.  We don't want to perform IO under the mmap sem, so if we have
2420  * to drop the mmap sem we return the file that was pinned in order for us to do
2421  * that.  If we didn't pin a file then we return NULL.  The file that is
2422  * returned needs to be fput()'ed when we're done with it.
2423  */
2424 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2425 {
2426 	struct file *file = vmf->vma->vm_file;
2427 	struct file_ra_state *ra = &file->f_ra;
2428 	struct address_space *mapping = file->f_mapping;
2429 	struct file *fpin = NULL;
2430 	pgoff_t offset = vmf->pgoff;
2431 
2432 	/* If we don't want any read-ahead, don't bother */
2433 	if (vmf->vma->vm_flags & VM_RAND_READ)
2434 		return fpin;
2435 	if (!ra->ra_pages)
2436 		return fpin;
2437 
2438 	if (vmf->vma->vm_flags & VM_SEQ_READ) {
2439 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2440 		page_cache_sync_readahead(mapping, ra, file, offset,
2441 					  ra->ra_pages);
2442 		return fpin;
2443 	}
2444 
2445 	/* Avoid banging the cache line if not needed */
2446 	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2447 		ra->mmap_miss++;
2448 
2449 	/*
2450 	 * Do we miss much more than hit in this file? If so,
2451 	 * stop bothering with read-ahead. It will only hurt.
2452 	 */
2453 	if (ra->mmap_miss > MMAP_LOTSAMISS)
2454 		return fpin;
2455 
2456 	/*
2457 	 * mmap read-around
2458 	 */
2459 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2460 	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2461 	ra->size = ra->ra_pages;
2462 	ra->async_size = ra->ra_pages / 4;
2463 	ra_submit(ra, mapping, file);
2464 	return fpin;
2465 }
2466 
2467 /*
2468  * Asynchronous readahead happens when we find the page and PG_readahead,
2469  * so we want to possibly extend the readahead further.  We return the file that
2470  * was pinned if we have to drop the mmap_sem in order to do IO.
2471  */
2472 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2473 					    struct page *page)
2474 {
2475 	struct file *file = vmf->vma->vm_file;
2476 	struct file_ra_state *ra = &file->f_ra;
2477 	struct address_space *mapping = file->f_mapping;
2478 	struct file *fpin = NULL;
2479 	pgoff_t offset = vmf->pgoff;
2480 
2481 	/* If we don't want any read-ahead, don't bother */
2482 	if (vmf->vma->vm_flags & VM_RAND_READ)
2483 		return fpin;
2484 	if (ra->mmap_miss > 0)
2485 		ra->mmap_miss--;
2486 	if (PageReadahead(page)) {
2487 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2488 		page_cache_async_readahead(mapping, ra, file,
2489 					   page, offset, ra->ra_pages);
2490 	}
2491 	return fpin;
2492 }
2493 
2494 /**
2495  * filemap_fault - read in file data for page fault handling
2496  * @vmf:	struct vm_fault containing details of the fault
2497  *
2498  * filemap_fault() is invoked via the vma operations vector for a
2499  * mapped memory region to read in file data during a page fault.
2500  *
2501  * The goto's are kind of ugly, but this streamlines the normal case of having
2502  * it in the page cache, and handles the special cases reasonably without
2503  * having a lot of duplicated code.
2504  *
2505  * vma->vm_mm->mmap_sem must be held on entry.
2506  *
2507  * If our return value has VM_FAULT_RETRY set, it's because the mmap_sem
2508  * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
2509  *
2510  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2511  * has not been released.
2512  *
2513  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2514  *
2515  * Return: bitwise-OR of %VM_FAULT_ codes.
2516  */
2517 vm_fault_t filemap_fault(struct vm_fault *vmf)
2518 {
2519 	int error;
2520 	struct file *file = vmf->vma->vm_file;
2521 	struct file *fpin = NULL;
2522 	struct address_space *mapping = file->f_mapping;
2523 	struct file_ra_state *ra = &file->f_ra;
2524 	struct inode *inode = mapping->host;
2525 	pgoff_t offset = vmf->pgoff;
2526 	pgoff_t max_off;
2527 	struct page *page;
2528 	vm_fault_t ret = 0;
2529 
2530 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2531 	if (unlikely(offset >= max_off))
2532 		return VM_FAULT_SIGBUS;
2533 
2534 	/*
2535 	 * Do we have something in the page cache already?
2536 	 */
2537 	page = find_get_page(mapping, offset);
2538 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2539 		/*
2540 		 * We found the page, so try async readahead before
2541 		 * waiting for the lock.
2542 		 */
2543 		fpin = do_async_mmap_readahead(vmf, page);
2544 	} else if (!page) {
2545 		/* No page in the page cache at all */
2546 		count_vm_event(PGMAJFAULT);
2547 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2548 		ret = VM_FAULT_MAJOR;
2549 		fpin = do_sync_mmap_readahead(vmf);
2550 retry_find:
2551 		page = pagecache_get_page(mapping, offset,
2552 					  FGP_CREAT|FGP_FOR_MMAP,
2553 					  vmf->gfp_mask);
2554 		if (!page) {
2555 			if (fpin)
2556 				goto out_retry;
2557 			return vmf_error(-ENOMEM);
2558 		}
2559 	}
2560 
2561 	if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2562 		goto out_retry;
2563 
2564 	/* Did it get truncated? */
2565 	if (unlikely(page->mapping != mapping)) {
2566 		unlock_page(page);
2567 		put_page(page);
2568 		goto retry_find;
2569 	}
2570 	VM_BUG_ON_PAGE(page->index != offset, page);
2571 
2572 	/*
2573 	 * We have a locked page in the page cache, now we need to check
2574 	 * that it's up-to-date. If not, it is going to be due to an error.
2575 	 */
2576 	if (unlikely(!PageUptodate(page)))
2577 		goto page_not_uptodate;
2578 
2579 	/*
2580 	 * We've made it this far and we had to drop our mmap_sem, now is the
2581 	 * time to return to the upper layer and have it re-find the vma and
2582 	 * redo the fault.
2583 	 */
2584 	if (fpin) {
2585 		unlock_page(page);
2586 		goto out_retry;
2587 	}
2588 
2589 	/*
2590 	 * Found the page and have a reference on it.
2591 	 * We must recheck i_size under page lock.
2592 	 */
2593 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2594 	if (unlikely(offset >= max_off)) {
2595 		unlock_page(page);
2596 		put_page(page);
2597 		return VM_FAULT_SIGBUS;
2598 	}
2599 
2600 	vmf->page = page;
2601 	return ret | VM_FAULT_LOCKED;
2602 
2603 page_not_uptodate:
2604 	/*
2605 	 * Umm, take care of errors if the page isn't up-to-date.
2606 	 * Try to re-read it _once_. We do this synchronously,
2607 	 * because there really aren't any performance issues here
2608 	 * and we need to check for errors.
2609 	 */
2610 	ClearPageError(page);
2611 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2612 	error = mapping->a_ops->readpage(file, page);
2613 	if (!error) {
2614 		wait_on_page_locked(page);
2615 		if (!PageUptodate(page))
2616 			error = -EIO;
2617 	}
2618 	if (fpin)
2619 		goto out_retry;
2620 	put_page(page);
2621 
2622 	if (!error || error == AOP_TRUNCATED_PAGE)
2623 		goto retry_find;
2624 
2625 	/* Things didn't work out. Return zero to tell the mm layer so. */
2626 	shrink_readahead_size_eio(file, ra);
2627 	return VM_FAULT_SIGBUS;
2628 
2629 out_retry:
2630 	/*
2631 	 * We dropped the mmap_sem, we need to return to the fault handler to
2632 	 * re-find the vma and come back and find our hopefully still populated
2633 	 * page.
2634 	 */
2635 	if (page)
2636 		put_page(page);
2637 	if (fpin)
2638 		fput(fpin);
2639 	return ret | VM_FAULT_RETRY;
2640 }
2641 EXPORT_SYMBOL(filemap_fault);
2642 
2643 void filemap_map_pages(struct vm_fault *vmf,
2644 		pgoff_t start_pgoff, pgoff_t end_pgoff)
2645 {
2646 	struct file *file = vmf->vma->vm_file;
2647 	struct address_space *mapping = file->f_mapping;
2648 	pgoff_t last_pgoff = start_pgoff;
2649 	unsigned long max_idx;
2650 	XA_STATE(xas, &mapping->i_pages, start_pgoff);
2651 	struct page *head, *page;
2652 
2653 	rcu_read_lock();
2654 	xas_for_each(&xas, page, end_pgoff) {
2655 		if (xas_retry(&xas, page))
2656 			continue;
2657 		if (xa_is_value(page))
2658 			goto next;
2659 
2660 		head = compound_head(page);
2661 
2662 		/*
2663 		 * Check for a locked page first, as a speculative
2664 		 * reference may adversely influence page migration.
2665 		 */
2666 		if (PageLocked(head))
2667 			goto next;
2668 		if (!page_cache_get_speculative(head))
2669 			goto next;
2670 
2671 		/* The page was split under us? */
2672 		if (compound_head(page) != head)
2673 			goto skip;
2674 
2675 		/* Has the page moved? */
2676 		if (unlikely(page != xas_reload(&xas)))
2677 			goto skip;
2678 
2679 		if (!PageUptodate(page) ||
2680 				PageReadahead(page) ||
2681 				PageHWPoison(page))
2682 			goto skip;
2683 		if (!trylock_page(page))
2684 			goto skip;
2685 
2686 		if (page->mapping != mapping || !PageUptodate(page))
2687 			goto unlock;
2688 
2689 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2690 		if (page->index >= max_idx)
2691 			goto unlock;
2692 
2693 		if (file->f_ra.mmap_miss > 0)
2694 			file->f_ra.mmap_miss--;
2695 
2696 		vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
2697 		if (vmf->pte)
2698 			vmf->pte += xas.xa_index - last_pgoff;
2699 		last_pgoff = xas.xa_index;
2700 		if (alloc_set_pte(vmf, NULL, page))
2701 			goto unlock;
2702 		unlock_page(page);
2703 		goto next;
2704 unlock:
2705 		unlock_page(page);
2706 skip:
2707 		put_page(page);
2708 next:
2709 		/* Huge page is mapped? No need to proceed. */
2710 		if (pmd_trans_huge(*vmf->pmd))
2711 			break;
2712 	}
2713 	rcu_read_unlock();
2714 }
2715 EXPORT_SYMBOL(filemap_map_pages);
2716 
2717 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2718 {
2719 	struct page *page = vmf->page;
2720 	struct inode *inode = file_inode(vmf->vma->vm_file);
2721 	vm_fault_t ret = VM_FAULT_LOCKED;
2722 
2723 	sb_start_pagefault(inode->i_sb);
2724 	file_update_time(vmf->vma->vm_file);
2725 	lock_page(page);
2726 	if (page->mapping != inode->i_mapping) {
2727 		unlock_page(page);
2728 		ret = VM_FAULT_NOPAGE;
2729 		goto out;
2730 	}
2731 	/*
2732 	 * We mark the page dirty already here so that when freeze is in
2733 	 * progress, we are guaranteed that writeback during freezing will
2734 	 * see the dirty page and writeprotect it again.
2735 	 */
2736 	set_page_dirty(page);
2737 	wait_for_stable_page(page);
2738 out:
2739 	sb_end_pagefault(inode->i_sb);
2740 	return ret;
2741 }
2742 
2743 const struct vm_operations_struct generic_file_vm_ops = {
2744 	.fault		= filemap_fault,
2745 	.map_pages	= filemap_map_pages,
2746 	.page_mkwrite	= filemap_page_mkwrite,
2747 };
2748 
2749 /* This is used for a general mmap of a disk file */
2750 
2751 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2752 {
2753 	struct address_space *mapping = file->f_mapping;
2754 
2755 	if (!mapping->a_ops->readpage)
2756 		return -ENOEXEC;
2757 	file_accessed(file);
2758 	vma->vm_ops = &generic_file_vm_ops;
2759 	return 0;
2760 }
2761 
2762 /*
2763  * This is for filesystems which do not implement ->writepage.
2764  */
2765 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2766 {
2767 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2768 		return -EINVAL;
2769 	return generic_file_mmap(file, vma);
2770 }
2771 #else
2772 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2773 {
2774 	return VM_FAULT_SIGBUS;
2775 }
2776 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2777 {
2778 	return -ENOSYS;
2779 }
2780 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2781 {
2782 	return -ENOSYS;
2783 }
2784 #endif /* CONFIG_MMU */
2785 
2786 EXPORT_SYMBOL(filemap_page_mkwrite);
2787 EXPORT_SYMBOL(generic_file_mmap);
2788 EXPORT_SYMBOL(generic_file_readonly_mmap);
2789 
2790 static struct page *wait_on_page_read(struct page *page)
2791 {
2792 	if (!IS_ERR(page)) {
2793 		wait_on_page_locked(page);
2794 		if (!PageUptodate(page)) {
2795 			put_page(page);
2796 			page = ERR_PTR(-EIO);
2797 		}
2798 	}
2799 	return page;
2800 }
2801 
2802 static struct page *do_read_cache_page(struct address_space *mapping,
2803 				pgoff_t index,
2804 				int (*filler)(void *, struct page *),
2805 				void *data,
2806 				gfp_t gfp)
2807 {
2808 	struct page *page;
2809 	int err;
2810 repeat:
2811 	page = find_get_page(mapping, index);
2812 	if (!page) {
2813 		page = __page_cache_alloc(gfp);
2814 		if (!page)
2815 			return ERR_PTR(-ENOMEM);
2816 		err = add_to_page_cache_lru(page, mapping, index, gfp);
2817 		if (unlikely(err)) {
2818 			put_page(page);
2819 			if (err == -EEXIST)
2820 				goto repeat;
2821 			/* Presumably ENOMEM for xarray node */
2822 			return ERR_PTR(err);
2823 		}
2824 
2825 filler:
2826 		if (filler)
2827 			err = filler(data, page);
2828 		else
2829 			err = mapping->a_ops->readpage(data, page);
2830 
2831 		if (err < 0) {
2832 			put_page(page);
2833 			return ERR_PTR(err);
2834 		}
2835 
2836 		page = wait_on_page_read(page);
2837 		if (IS_ERR(page))
2838 			return page;
2839 		goto out;
2840 	}
2841 	if (PageUptodate(page))
2842 		goto out;
2843 
2844 	/*
2845 	 * Page is not up to date and may be locked due one of the following
2846 	 * case a: Page is being filled and the page lock is held
2847 	 * case b: Read/write error clearing the page uptodate status
2848 	 * case c: Truncation in progress (page locked)
2849 	 * case d: Reclaim in progress
2850 	 *
2851 	 * Case a, the page will be up to date when the page is unlocked.
2852 	 *    There is no need to serialise on the page lock here as the page
2853 	 *    is pinned so the lock gives no additional protection. Even if the
2854 	 *    the page is truncated, the data is still valid if PageUptodate as
2855 	 *    it's a race vs truncate race.
2856 	 * Case b, the page will not be up to date
2857 	 * Case c, the page may be truncated but in itself, the data may still
2858 	 *    be valid after IO completes as it's a read vs truncate race. The
2859 	 *    operation must restart if the page is not uptodate on unlock but
2860 	 *    otherwise serialising on page lock to stabilise the mapping gives
2861 	 *    no additional guarantees to the caller as the page lock is
2862 	 *    released before return.
2863 	 * Case d, similar to truncation. If reclaim holds the page lock, it
2864 	 *    will be a race with remove_mapping that determines if the mapping
2865 	 *    is valid on unlock but otherwise the data is valid and there is
2866 	 *    no need to serialise with page lock.
2867 	 *
2868 	 * As the page lock gives no additional guarantee, we optimistically
2869 	 * wait on the page to be unlocked and check if it's up to date and
2870 	 * use the page if it is. Otherwise, the page lock is required to
2871 	 * distinguish between the different cases. The motivation is that we
2872 	 * avoid spurious serialisations and wakeups when multiple processes
2873 	 * wait on the same page for IO to complete.
2874 	 */
2875 	wait_on_page_locked(page);
2876 	if (PageUptodate(page))
2877 		goto out;
2878 
2879 	/* Distinguish between all the cases under the safety of the lock */
2880 	lock_page(page);
2881 
2882 	/* Case c or d, restart the operation */
2883 	if (!page->mapping) {
2884 		unlock_page(page);
2885 		put_page(page);
2886 		goto repeat;
2887 	}
2888 
2889 	/* Someone else locked and filled the page in a very small window */
2890 	if (PageUptodate(page)) {
2891 		unlock_page(page);
2892 		goto out;
2893 	}
2894 	goto filler;
2895 
2896 out:
2897 	mark_page_accessed(page);
2898 	return page;
2899 }
2900 
2901 /**
2902  * read_cache_page - read into page cache, fill it if needed
2903  * @mapping:	the page's address_space
2904  * @index:	the page index
2905  * @filler:	function to perform the read
2906  * @data:	first arg to filler(data, page) function, often left as NULL
2907  *
2908  * Read into the page cache. If a page already exists, and PageUptodate() is
2909  * not set, try to fill the page and wait for it to become unlocked.
2910  *
2911  * If the page does not get brought uptodate, return -EIO.
2912  *
2913  * Return: up to date page on success, ERR_PTR() on failure.
2914  */
2915 struct page *read_cache_page(struct address_space *mapping,
2916 				pgoff_t index,
2917 				int (*filler)(void *, struct page *),
2918 				void *data)
2919 {
2920 	return do_read_cache_page(mapping, index, filler, data,
2921 			mapping_gfp_mask(mapping));
2922 }
2923 EXPORT_SYMBOL(read_cache_page);
2924 
2925 /**
2926  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2927  * @mapping:	the page's address_space
2928  * @index:	the page index
2929  * @gfp:	the page allocator flags to use if allocating
2930  *
2931  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2932  * any new page allocations done using the specified allocation flags.
2933  *
2934  * If the page does not get brought uptodate, return -EIO.
2935  *
2936  * Return: up to date page on success, ERR_PTR() on failure.
2937  */
2938 struct page *read_cache_page_gfp(struct address_space *mapping,
2939 				pgoff_t index,
2940 				gfp_t gfp)
2941 {
2942 	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
2943 }
2944 EXPORT_SYMBOL(read_cache_page_gfp);
2945 
2946 /*
2947  * Don't operate on ranges the page cache doesn't support, and don't exceed the
2948  * LFS limits.  If pos is under the limit it becomes a short access.  If it
2949  * exceeds the limit we return -EFBIG.
2950  */
2951 static int generic_write_check_limits(struct file *file, loff_t pos,
2952 				      loff_t *count)
2953 {
2954 	struct inode *inode = file->f_mapping->host;
2955 	loff_t max_size = inode->i_sb->s_maxbytes;
2956 	loff_t limit = rlimit(RLIMIT_FSIZE);
2957 
2958 	if (limit != RLIM_INFINITY) {
2959 		if (pos >= limit) {
2960 			send_sig(SIGXFSZ, current, 0);
2961 			return -EFBIG;
2962 		}
2963 		*count = min(*count, limit - pos);
2964 	}
2965 
2966 	if (!(file->f_flags & O_LARGEFILE))
2967 		max_size = MAX_NON_LFS;
2968 
2969 	if (unlikely(pos >= max_size))
2970 		return -EFBIG;
2971 
2972 	*count = min(*count, max_size - pos);
2973 
2974 	return 0;
2975 }
2976 
2977 /*
2978  * Performs necessary checks before doing a write
2979  *
2980  * Can adjust writing position or amount of bytes to write.
2981  * Returns appropriate error code that caller should return or
2982  * zero in case that write should be allowed.
2983  */
2984 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2985 {
2986 	struct file *file = iocb->ki_filp;
2987 	struct inode *inode = file->f_mapping->host;
2988 	loff_t count;
2989 	int ret;
2990 
2991 	if (IS_SWAPFILE(inode))
2992 		return -ETXTBSY;
2993 
2994 	if (!iov_iter_count(from))
2995 		return 0;
2996 
2997 	/* FIXME: this is for backwards compatibility with 2.4 */
2998 	if (iocb->ki_flags & IOCB_APPEND)
2999 		iocb->ki_pos = i_size_read(inode);
3000 
3001 	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
3002 		return -EINVAL;
3003 
3004 	count = iov_iter_count(from);
3005 	ret = generic_write_check_limits(file, iocb->ki_pos, &count);
3006 	if (ret)
3007 		return ret;
3008 
3009 	iov_iter_truncate(from, count);
3010 	return iov_iter_count(from);
3011 }
3012 EXPORT_SYMBOL(generic_write_checks);
3013 
3014 /*
3015  * Performs necessary checks before doing a clone.
3016  *
3017  * Can adjust amount of bytes to clone via @req_count argument.
3018  * Returns appropriate error code that caller should return or
3019  * zero in case the clone should be allowed.
3020  */
3021 int generic_remap_checks(struct file *file_in, loff_t pos_in,
3022 			 struct file *file_out, loff_t pos_out,
3023 			 loff_t *req_count, unsigned int remap_flags)
3024 {
3025 	struct inode *inode_in = file_in->f_mapping->host;
3026 	struct inode *inode_out = file_out->f_mapping->host;
3027 	uint64_t count = *req_count;
3028 	uint64_t bcount;
3029 	loff_t size_in, size_out;
3030 	loff_t bs = inode_out->i_sb->s_blocksize;
3031 	int ret;
3032 
3033 	/* The start of both ranges must be aligned to an fs block. */
3034 	if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
3035 		return -EINVAL;
3036 
3037 	/* Ensure offsets don't wrap. */
3038 	if (pos_in + count < pos_in || pos_out + count < pos_out)
3039 		return -EINVAL;
3040 
3041 	size_in = i_size_read(inode_in);
3042 	size_out = i_size_read(inode_out);
3043 
3044 	/* Dedupe requires both ranges to be within EOF. */
3045 	if ((remap_flags & REMAP_FILE_DEDUP) &&
3046 	    (pos_in >= size_in || pos_in + count > size_in ||
3047 	     pos_out >= size_out || pos_out + count > size_out))
3048 		return -EINVAL;
3049 
3050 	/* Ensure the infile range is within the infile. */
3051 	if (pos_in >= size_in)
3052 		return -EINVAL;
3053 	count = min(count, size_in - (uint64_t)pos_in);
3054 
3055 	ret = generic_write_check_limits(file_out, pos_out, &count);
3056 	if (ret)
3057 		return ret;
3058 
3059 	/*
3060 	 * If the user wanted us to link to the infile's EOF, round up to the
3061 	 * next block boundary for this check.
3062 	 *
3063 	 * Otherwise, make sure the count is also block-aligned, having
3064 	 * already confirmed the starting offsets' block alignment.
3065 	 */
3066 	if (pos_in + count == size_in) {
3067 		bcount = ALIGN(size_in, bs) - pos_in;
3068 	} else {
3069 		if (!IS_ALIGNED(count, bs))
3070 			count = ALIGN_DOWN(count, bs);
3071 		bcount = count;
3072 	}
3073 
3074 	/* Don't allow overlapped cloning within the same file. */
3075 	if (inode_in == inode_out &&
3076 	    pos_out + bcount > pos_in &&
3077 	    pos_out < pos_in + bcount)
3078 		return -EINVAL;
3079 
3080 	/*
3081 	 * We shortened the request but the caller can't deal with that, so
3082 	 * bounce the request back to userspace.
3083 	 */
3084 	if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
3085 		return -EINVAL;
3086 
3087 	*req_count = count;
3088 	return 0;
3089 }
3090 
3091 
3092 /*
3093  * Performs common checks before doing a file copy/clone
3094  * from @file_in to @file_out.
3095  */
3096 int generic_file_rw_checks(struct file *file_in, struct file *file_out)
3097 {
3098 	struct inode *inode_in = file_inode(file_in);
3099 	struct inode *inode_out = file_inode(file_out);
3100 
3101 	/* Don't copy dirs, pipes, sockets... */
3102 	if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode))
3103 		return -EISDIR;
3104 	if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode))
3105 		return -EINVAL;
3106 
3107 	if (!(file_in->f_mode & FMODE_READ) ||
3108 	    !(file_out->f_mode & FMODE_WRITE) ||
3109 	    (file_out->f_flags & O_APPEND))
3110 		return -EBADF;
3111 
3112 	return 0;
3113 }
3114 
3115 /*
3116  * Performs necessary checks before doing a file copy
3117  *
3118  * Can adjust amount of bytes to copy via @req_count argument.
3119  * Returns appropriate error code that caller should return or
3120  * zero in case the copy should be allowed.
3121  */
3122 int generic_copy_file_checks(struct file *file_in, loff_t pos_in,
3123 			     struct file *file_out, loff_t pos_out,
3124 			     size_t *req_count, unsigned int flags)
3125 {
3126 	struct inode *inode_in = file_inode(file_in);
3127 	struct inode *inode_out = file_inode(file_out);
3128 	uint64_t count = *req_count;
3129 	loff_t size_in;
3130 	int ret;
3131 
3132 	ret = generic_file_rw_checks(file_in, file_out);
3133 	if (ret)
3134 		return ret;
3135 
3136 	/* Don't touch certain kinds of inodes */
3137 	if (IS_IMMUTABLE(inode_out))
3138 		return -EPERM;
3139 
3140 	if (IS_SWAPFILE(inode_in) || IS_SWAPFILE(inode_out))
3141 		return -ETXTBSY;
3142 
3143 	/* Ensure offsets don't wrap. */
3144 	if (pos_in + count < pos_in || pos_out + count < pos_out)
3145 		return -EOVERFLOW;
3146 
3147 	/* Shorten the copy to EOF */
3148 	size_in = i_size_read(inode_in);
3149 	if (pos_in >= size_in)
3150 		count = 0;
3151 	else
3152 		count = min(count, size_in - (uint64_t)pos_in);
3153 
3154 	ret = generic_write_check_limits(file_out, pos_out, &count);
3155 	if (ret)
3156 		return ret;
3157 
3158 	/* Don't allow overlapped copying within the same file. */
3159 	if (inode_in == inode_out &&
3160 	    pos_out + count > pos_in &&
3161 	    pos_out < pos_in + count)
3162 		return -EINVAL;
3163 
3164 	*req_count = count;
3165 	return 0;
3166 }
3167 
3168 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3169 				loff_t pos, unsigned len, unsigned flags,
3170 				struct page **pagep, void **fsdata)
3171 {
3172 	const struct address_space_operations *aops = mapping->a_ops;
3173 
3174 	return aops->write_begin(file, mapping, pos, len, flags,
3175 							pagep, fsdata);
3176 }
3177 EXPORT_SYMBOL(pagecache_write_begin);
3178 
3179 int pagecache_write_end(struct file *file, struct address_space *mapping,
3180 				loff_t pos, unsigned len, unsigned copied,
3181 				struct page *page, void *fsdata)
3182 {
3183 	const struct address_space_operations *aops = mapping->a_ops;
3184 
3185 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3186 }
3187 EXPORT_SYMBOL(pagecache_write_end);
3188 
3189 ssize_t
3190 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3191 {
3192 	struct file	*file = iocb->ki_filp;
3193 	struct address_space *mapping = file->f_mapping;
3194 	struct inode	*inode = mapping->host;
3195 	loff_t		pos = iocb->ki_pos;
3196 	ssize_t		written;
3197 	size_t		write_len;
3198 	pgoff_t		end;
3199 
3200 	write_len = iov_iter_count(from);
3201 	end = (pos + write_len - 1) >> PAGE_SHIFT;
3202 
3203 	if (iocb->ki_flags & IOCB_NOWAIT) {
3204 		/* If there are pages to writeback, return */
3205 		if (filemap_range_has_page(inode->i_mapping, pos,
3206 					   pos + write_len - 1))
3207 			return -EAGAIN;
3208 	} else {
3209 		written = filemap_write_and_wait_range(mapping, pos,
3210 							pos + write_len - 1);
3211 		if (written)
3212 			goto out;
3213 	}
3214 
3215 	/*
3216 	 * After a write we want buffered reads to be sure to go to disk to get
3217 	 * the new data.  We invalidate clean cached page from the region we're
3218 	 * about to write.  We do this *before* the write so that we can return
3219 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3220 	 */
3221 	written = invalidate_inode_pages2_range(mapping,
3222 					pos >> PAGE_SHIFT, end);
3223 	/*
3224 	 * If a page can not be invalidated, return 0 to fall back
3225 	 * to buffered write.
3226 	 */
3227 	if (written) {
3228 		if (written == -EBUSY)
3229 			return 0;
3230 		goto out;
3231 	}
3232 
3233 	written = mapping->a_ops->direct_IO(iocb, from);
3234 
3235 	/*
3236 	 * Finally, try again to invalidate clean pages which might have been
3237 	 * cached by non-direct readahead, or faulted in by get_user_pages()
3238 	 * if the source of the write was an mmap'ed region of the file
3239 	 * we're writing.  Either one is a pretty crazy thing to do,
3240 	 * so we don't support it 100%.  If this invalidation
3241 	 * fails, tough, the write still worked...
3242 	 *
3243 	 * Most of the time we do not need this since dio_complete() will do
3244 	 * the invalidation for us. However there are some file systems that
3245 	 * do not end up with dio_complete() being called, so let's not break
3246 	 * them by removing it completely
3247 	 */
3248 	if (mapping->nrpages)
3249 		invalidate_inode_pages2_range(mapping,
3250 					pos >> PAGE_SHIFT, end);
3251 
3252 	if (written > 0) {
3253 		pos += written;
3254 		write_len -= written;
3255 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3256 			i_size_write(inode, pos);
3257 			mark_inode_dirty(inode);
3258 		}
3259 		iocb->ki_pos = pos;
3260 	}
3261 	iov_iter_revert(from, write_len - iov_iter_count(from));
3262 out:
3263 	return written;
3264 }
3265 EXPORT_SYMBOL(generic_file_direct_write);
3266 
3267 /*
3268  * Find or create a page at the given pagecache position. Return the locked
3269  * page. This function is specifically for buffered writes.
3270  */
3271 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3272 					pgoff_t index, unsigned flags)
3273 {
3274 	struct page *page;
3275 	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3276 
3277 	if (flags & AOP_FLAG_NOFS)
3278 		fgp_flags |= FGP_NOFS;
3279 
3280 	page = pagecache_get_page(mapping, index, fgp_flags,
3281 			mapping_gfp_mask(mapping));
3282 	if (page)
3283 		wait_for_stable_page(page);
3284 
3285 	return page;
3286 }
3287 EXPORT_SYMBOL(grab_cache_page_write_begin);
3288 
3289 ssize_t generic_perform_write(struct file *file,
3290 				struct iov_iter *i, loff_t pos)
3291 {
3292 	struct address_space *mapping = file->f_mapping;
3293 	const struct address_space_operations *a_ops = mapping->a_ops;
3294 	long status = 0;
3295 	ssize_t written = 0;
3296 	unsigned int flags = 0;
3297 
3298 	do {
3299 		struct page *page;
3300 		unsigned long offset;	/* Offset into pagecache page */
3301 		unsigned long bytes;	/* Bytes to write to page */
3302 		size_t copied;		/* Bytes copied from user */
3303 		void *fsdata;
3304 
3305 		offset = (pos & (PAGE_SIZE - 1));
3306 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3307 						iov_iter_count(i));
3308 
3309 again:
3310 		/*
3311 		 * Bring in the user page that we will copy from _first_.
3312 		 * Otherwise there's a nasty deadlock on copying from the
3313 		 * same page as we're writing to, without it being marked
3314 		 * up-to-date.
3315 		 *
3316 		 * Not only is this an optimisation, but it is also required
3317 		 * to check that the address is actually valid, when atomic
3318 		 * usercopies are used, below.
3319 		 */
3320 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3321 			status = -EFAULT;
3322 			break;
3323 		}
3324 
3325 		if (fatal_signal_pending(current)) {
3326 			status = -EINTR;
3327 			break;
3328 		}
3329 
3330 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3331 						&page, &fsdata);
3332 		if (unlikely(status < 0))
3333 			break;
3334 
3335 		if (mapping_writably_mapped(mapping))
3336 			flush_dcache_page(page);
3337 
3338 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3339 		flush_dcache_page(page);
3340 
3341 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3342 						page, fsdata);
3343 		if (unlikely(status < 0))
3344 			break;
3345 		copied = status;
3346 
3347 		cond_resched();
3348 
3349 		iov_iter_advance(i, copied);
3350 		if (unlikely(copied == 0)) {
3351 			/*
3352 			 * If we were unable to copy any data at all, we must
3353 			 * fall back to a single segment length write.
3354 			 *
3355 			 * If we didn't fallback here, we could livelock
3356 			 * because not all segments in the iov can be copied at
3357 			 * once without a pagefault.
3358 			 */
3359 			bytes = min_t(unsigned long, PAGE_SIZE - offset,
3360 						iov_iter_single_seg_count(i));
3361 			goto again;
3362 		}
3363 		pos += copied;
3364 		written += copied;
3365 
3366 		balance_dirty_pages_ratelimited(mapping);
3367 	} while (iov_iter_count(i));
3368 
3369 	return written ? written : status;
3370 }
3371 EXPORT_SYMBOL(generic_perform_write);
3372 
3373 /**
3374  * __generic_file_write_iter - write data to a file
3375  * @iocb:	IO state structure (file, offset, etc.)
3376  * @from:	iov_iter with data to write
3377  *
3378  * This function does all the work needed for actually writing data to a
3379  * file. It does all basic checks, removes SUID from the file, updates
3380  * modification times and calls proper subroutines depending on whether we
3381  * do direct IO or a standard buffered write.
3382  *
3383  * It expects i_mutex to be grabbed unless we work on a block device or similar
3384  * object which does not need locking at all.
3385  *
3386  * This function does *not* take care of syncing data in case of O_SYNC write.
3387  * A caller has to handle it. This is mainly due to the fact that we want to
3388  * avoid syncing under i_mutex.
3389  *
3390  * Return:
3391  * * number of bytes written, even for truncated writes
3392  * * negative error code if no data has been written at all
3393  */
3394 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3395 {
3396 	struct file *file = iocb->ki_filp;
3397 	struct address_space * mapping = file->f_mapping;
3398 	struct inode 	*inode = mapping->host;
3399 	ssize_t		written = 0;
3400 	ssize_t		err;
3401 	ssize_t		status;
3402 
3403 	/* We can write back this queue in page reclaim */
3404 	current->backing_dev_info = inode_to_bdi(inode);
3405 	err = file_remove_privs(file);
3406 	if (err)
3407 		goto out;
3408 
3409 	err = file_update_time(file);
3410 	if (err)
3411 		goto out;
3412 
3413 	if (iocb->ki_flags & IOCB_DIRECT) {
3414 		loff_t pos, endbyte;
3415 
3416 		written = generic_file_direct_write(iocb, from);
3417 		/*
3418 		 * If the write stopped short of completing, fall back to
3419 		 * buffered writes.  Some filesystems do this for writes to
3420 		 * holes, for example.  For DAX files, a buffered write will
3421 		 * not succeed (even if it did, DAX does not handle dirty
3422 		 * page-cache pages correctly).
3423 		 */
3424 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3425 			goto out;
3426 
3427 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3428 		/*
3429 		 * If generic_perform_write() returned a synchronous error
3430 		 * then we want to return the number of bytes which were
3431 		 * direct-written, or the error code if that was zero.  Note
3432 		 * that this differs from normal direct-io semantics, which
3433 		 * will return -EFOO even if some bytes were written.
3434 		 */
3435 		if (unlikely(status < 0)) {
3436 			err = status;
3437 			goto out;
3438 		}
3439 		/*
3440 		 * We need to ensure that the page cache pages are written to
3441 		 * disk and invalidated to preserve the expected O_DIRECT
3442 		 * semantics.
3443 		 */
3444 		endbyte = pos + status - 1;
3445 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3446 		if (err == 0) {
3447 			iocb->ki_pos = endbyte + 1;
3448 			written += status;
3449 			invalidate_mapping_pages(mapping,
3450 						 pos >> PAGE_SHIFT,
3451 						 endbyte >> PAGE_SHIFT);
3452 		} else {
3453 			/*
3454 			 * We don't know how much we wrote, so just return
3455 			 * the number of bytes which were direct-written
3456 			 */
3457 		}
3458 	} else {
3459 		written = generic_perform_write(file, from, iocb->ki_pos);
3460 		if (likely(written > 0))
3461 			iocb->ki_pos += written;
3462 	}
3463 out:
3464 	current->backing_dev_info = NULL;
3465 	return written ? written : err;
3466 }
3467 EXPORT_SYMBOL(__generic_file_write_iter);
3468 
3469 /**
3470  * generic_file_write_iter - write data to a file
3471  * @iocb:	IO state structure
3472  * @from:	iov_iter with data to write
3473  *
3474  * This is a wrapper around __generic_file_write_iter() to be used by most
3475  * filesystems. It takes care of syncing the file in case of O_SYNC file
3476  * and acquires i_mutex as needed.
3477  * Return:
3478  * * negative error code if no data has been written at all of
3479  *   vfs_fsync_range() failed for a synchronous write
3480  * * number of bytes written, even for truncated writes
3481  */
3482 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3483 {
3484 	struct file *file = iocb->ki_filp;
3485 	struct inode *inode = file->f_mapping->host;
3486 	ssize_t ret;
3487 
3488 	inode_lock(inode);
3489 	ret = generic_write_checks(iocb, from);
3490 	if (ret > 0)
3491 		ret = __generic_file_write_iter(iocb, from);
3492 	inode_unlock(inode);
3493 
3494 	if (ret > 0)
3495 		ret = generic_write_sync(iocb, ret);
3496 	return ret;
3497 }
3498 EXPORT_SYMBOL(generic_file_write_iter);
3499 
3500 /**
3501  * try_to_release_page() - release old fs-specific metadata on a page
3502  *
3503  * @page: the page which the kernel is trying to free
3504  * @gfp_mask: memory allocation flags (and I/O mode)
3505  *
3506  * The address_space is to try to release any data against the page
3507  * (presumably at page->private).
3508  *
3509  * This may also be called if PG_fscache is set on a page, indicating that the
3510  * page is known to the local caching routines.
3511  *
3512  * The @gfp_mask argument specifies whether I/O may be performed to release
3513  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3514  *
3515  * Return: %1 if the release was successful, otherwise return zero.
3516  */
3517 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3518 {
3519 	struct address_space * const mapping = page->mapping;
3520 
3521 	BUG_ON(!PageLocked(page));
3522 	if (PageWriteback(page))
3523 		return 0;
3524 
3525 	if (mapping && mapping->a_ops->releasepage)
3526 		return mapping->a_ops->releasepage(page, gfp_mask);
3527 	return try_to_free_buffers(page);
3528 }
3529 
3530 EXPORT_SYMBOL(try_to_release_page);
3531