xref: /linux/mm/filemap.c (revision b454cc6636d254fbf6049b73e9560aee76fb04a3)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/cpuset.h>
33 #include "filemap.h"
34 #include "internal.h"
35 
36 /*
37  * FIXME: remove all knowledge of the buffer layer from the core VM
38  */
39 #include <linux/buffer_head.h> /* for generic_osync_inode */
40 
41 #include <asm/mman.h>
42 
43 static ssize_t
44 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
45 	loff_t offset, unsigned long nr_segs);
46 
47 /*
48  * Shared mappings implemented 30.11.1994. It's not fully working yet,
49  * though.
50  *
51  * Shared mappings now work. 15.8.1995  Bruno.
52  *
53  * finished 'unifying' the page and buffer cache and SMP-threaded the
54  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55  *
56  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
57  */
58 
59 /*
60  * Lock ordering:
61  *
62  *  ->i_mmap_lock		(vmtruncate)
63  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
64  *      ->swap_lock		(exclusive_swap_page, others)
65  *        ->mapping->tree_lock
66  *
67  *  ->i_mutex
68  *    ->i_mmap_lock		(truncate->unmap_mapping_range)
69  *
70  *  ->mmap_sem
71  *    ->i_mmap_lock
72  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
73  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
74  *
75  *  ->mmap_sem
76  *    ->lock_page		(access_process_vm)
77  *
78  *  ->i_mutex			(generic_file_buffered_write)
79  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
80  *
81  *  ->i_mutex
82  *    ->i_alloc_sem             (various)
83  *
84  *  ->inode_lock
85  *    ->sb_lock			(fs/fs-writeback.c)
86  *    ->mapping->tree_lock	(__sync_single_inode)
87  *
88  *  ->i_mmap_lock
89  *    ->anon_vma.lock		(vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock		(try_to_unmap_one)
96  *    ->private_lock		(try_to_unmap_one)
97  *    ->tree_lock		(try_to_unmap_one)
98  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
99  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
100  *    ->private_lock		(page_remove_rmap->set_page_dirty)
101  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
102  *    ->inode_lock		(page_remove_rmap->set_page_dirty)
103  *    ->inode_lock		(zap_pte_range->set_page_dirty)
104  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
105  *
106  *  ->task->proc_lock
107  *    ->dcache_lock		(proc_pid_lookup)
108  */
109 
110 /*
111  * Remove a page from the page cache and free it. Caller has to make
112  * sure the page is locked and that nobody else uses it - or that usage
113  * is safe.  The caller must hold a write_lock on the mapping's tree_lock.
114  */
115 void __remove_from_page_cache(struct page *page)
116 {
117 	struct address_space *mapping = page->mapping;
118 
119 	radix_tree_delete(&mapping->page_tree, page->index);
120 	page->mapping = NULL;
121 	mapping->nrpages--;
122 	__dec_zone_page_state(page, NR_FILE_PAGES);
123 }
124 
125 void remove_from_page_cache(struct page *page)
126 {
127 	struct address_space *mapping = page->mapping;
128 
129 	BUG_ON(!PageLocked(page));
130 
131 	write_lock_irq(&mapping->tree_lock);
132 	__remove_from_page_cache(page);
133 	write_unlock_irq(&mapping->tree_lock);
134 }
135 
136 static int sync_page(void *word)
137 {
138 	struct address_space *mapping;
139 	struct page *page;
140 
141 	page = container_of((unsigned long *)word, struct page, flags);
142 
143 	/*
144 	 * page_mapping() is being called without PG_locked held.
145 	 * Some knowledge of the state and use of the page is used to
146 	 * reduce the requirements down to a memory barrier.
147 	 * The danger here is of a stale page_mapping() return value
148 	 * indicating a struct address_space different from the one it's
149 	 * associated with when it is associated with one.
150 	 * After smp_mb(), it's either the correct page_mapping() for
151 	 * the page, or an old page_mapping() and the page's own
152 	 * page_mapping() has gone NULL.
153 	 * The ->sync_page() address_space operation must tolerate
154 	 * page_mapping() going NULL. By an amazing coincidence,
155 	 * this comes about because none of the users of the page
156 	 * in the ->sync_page() methods make essential use of the
157 	 * page_mapping(), merely passing the page down to the backing
158 	 * device's unplug functions when it's non-NULL, which in turn
159 	 * ignore it for all cases but swap, where only page_private(page) is
160 	 * of interest. When page_mapping() does go NULL, the entire
161 	 * call stack gracefully ignores the page and returns.
162 	 * -- wli
163 	 */
164 	smp_mb();
165 	mapping = page_mapping(page);
166 	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
167 		mapping->a_ops->sync_page(page);
168 	io_schedule();
169 	return 0;
170 }
171 
172 /**
173  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
174  * @mapping:	address space structure to write
175  * @start:	offset in bytes where the range starts
176  * @end:	offset in bytes where the range ends (inclusive)
177  * @sync_mode:	enable synchronous operation
178  *
179  * Start writeback against all of a mapping's dirty pages that lie
180  * within the byte offsets <start, end> inclusive.
181  *
182  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
183  * opposed to a regular memory cleansing writeback.  The difference between
184  * these two operations is that if a dirty page/buffer is encountered, it must
185  * be waited upon, and not just skipped over.
186  */
187 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
188 				loff_t end, int sync_mode)
189 {
190 	int ret;
191 	struct writeback_control wbc = {
192 		.sync_mode = sync_mode,
193 		.nr_to_write = mapping->nrpages * 2,
194 		.range_start = start,
195 		.range_end = end,
196 	};
197 
198 	if (!mapping_cap_writeback_dirty(mapping))
199 		return 0;
200 
201 	ret = do_writepages(mapping, &wbc);
202 	return ret;
203 }
204 
205 static inline int __filemap_fdatawrite(struct address_space *mapping,
206 	int sync_mode)
207 {
208 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
209 }
210 
211 int filemap_fdatawrite(struct address_space *mapping)
212 {
213 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
214 }
215 EXPORT_SYMBOL(filemap_fdatawrite);
216 
217 static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
218 				loff_t end)
219 {
220 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
221 }
222 
223 /**
224  * filemap_flush - mostly a non-blocking flush
225  * @mapping:	target address_space
226  *
227  * This is a mostly non-blocking flush.  Not suitable for data-integrity
228  * purposes - I/O may not be started against all dirty pages.
229  */
230 int filemap_flush(struct address_space *mapping)
231 {
232 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
233 }
234 EXPORT_SYMBOL(filemap_flush);
235 
236 /**
237  * wait_on_page_writeback_range - wait for writeback to complete
238  * @mapping:	target address_space
239  * @start:	beginning page index
240  * @end:	ending page index
241  *
242  * Wait for writeback to complete against pages indexed by start->end
243  * inclusive
244  */
245 int wait_on_page_writeback_range(struct address_space *mapping,
246 				pgoff_t start, pgoff_t end)
247 {
248 	struct pagevec pvec;
249 	int nr_pages;
250 	int ret = 0;
251 	pgoff_t index;
252 
253 	if (end < start)
254 		return 0;
255 
256 	pagevec_init(&pvec, 0);
257 	index = start;
258 	while ((index <= end) &&
259 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
260 			PAGECACHE_TAG_WRITEBACK,
261 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
262 		unsigned i;
263 
264 		for (i = 0; i < nr_pages; i++) {
265 			struct page *page = pvec.pages[i];
266 
267 			/* until radix tree lookup accepts end_index */
268 			if (page->index > end)
269 				continue;
270 
271 			wait_on_page_writeback(page);
272 			if (PageError(page))
273 				ret = -EIO;
274 		}
275 		pagevec_release(&pvec);
276 		cond_resched();
277 	}
278 
279 	/* Check for outstanding write errors */
280 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
281 		ret = -ENOSPC;
282 	if (test_and_clear_bit(AS_EIO, &mapping->flags))
283 		ret = -EIO;
284 
285 	return ret;
286 }
287 
288 /**
289  * sync_page_range - write and wait on all pages in the passed range
290  * @inode:	target inode
291  * @mapping:	target address_space
292  * @pos:	beginning offset in pages to write
293  * @count:	number of bytes to write
294  *
295  * Write and wait upon all the pages in the passed range.  This is a "data
296  * integrity" operation.  It waits upon in-flight writeout before starting and
297  * waiting upon new writeout.  If there was an IO error, return it.
298  *
299  * We need to re-take i_mutex during the generic_osync_inode list walk because
300  * it is otherwise livelockable.
301  */
302 int sync_page_range(struct inode *inode, struct address_space *mapping,
303 			loff_t pos, loff_t count)
304 {
305 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
306 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
307 	int ret;
308 
309 	if (!mapping_cap_writeback_dirty(mapping) || !count)
310 		return 0;
311 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
312 	if (ret == 0) {
313 		mutex_lock(&inode->i_mutex);
314 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
315 		mutex_unlock(&inode->i_mutex);
316 	}
317 	if (ret == 0)
318 		ret = wait_on_page_writeback_range(mapping, start, end);
319 	return ret;
320 }
321 EXPORT_SYMBOL(sync_page_range);
322 
323 /**
324  * sync_page_range_nolock
325  * @inode:	target inode
326  * @mapping:	target address_space
327  * @pos:	beginning offset in pages to write
328  * @count:	number of bytes to write
329  *
330  * Note: Holding i_mutex across sync_page_range_nolock is not a good idea
331  * as it forces O_SYNC writers to different parts of the same file
332  * to be serialised right until io completion.
333  */
334 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
335 			   loff_t pos, loff_t count)
336 {
337 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
338 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
339 	int ret;
340 
341 	if (!mapping_cap_writeback_dirty(mapping) || !count)
342 		return 0;
343 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
344 	if (ret == 0)
345 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
346 	if (ret == 0)
347 		ret = wait_on_page_writeback_range(mapping, start, end);
348 	return ret;
349 }
350 EXPORT_SYMBOL(sync_page_range_nolock);
351 
352 /**
353  * filemap_fdatawait - wait for all under-writeback pages to complete
354  * @mapping: address space structure to wait for
355  *
356  * Walk the list of under-writeback pages of the given address space
357  * and wait for all of them.
358  */
359 int filemap_fdatawait(struct address_space *mapping)
360 {
361 	loff_t i_size = i_size_read(mapping->host);
362 
363 	if (i_size == 0)
364 		return 0;
365 
366 	return wait_on_page_writeback_range(mapping, 0,
367 				(i_size - 1) >> PAGE_CACHE_SHIFT);
368 }
369 EXPORT_SYMBOL(filemap_fdatawait);
370 
371 int filemap_write_and_wait(struct address_space *mapping)
372 {
373 	int err = 0;
374 
375 	if (mapping->nrpages) {
376 		err = filemap_fdatawrite(mapping);
377 		/*
378 		 * Even if the above returned error, the pages may be
379 		 * written partially (e.g. -ENOSPC), so we wait for it.
380 		 * But the -EIO is special case, it may indicate the worst
381 		 * thing (e.g. bug) happened, so we avoid waiting for it.
382 		 */
383 		if (err != -EIO) {
384 			int err2 = filemap_fdatawait(mapping);
385 			if (!err)
386 				err = err2;
387 		}
388 	}
389 	return err;
390 }
391 EXPORT_SYMBOL(filemap_write_and_wait);
392 
393 /**
394  * filemap_write_and_wait_range - write out & wait on a file range
395  * @mapping:	the address_space for the pages
396  * @lstart:	offset in bytes where the range starts
397  * @lend:	offset in bytes where the range ends (inclusive)
398  *
399  * Write out and wait upon file offsets lstart->lend, inclusive.
400  *
401  * Note that `lend' is inclusive (describes the last byte to be written) so
402  * that this function can be used to write to the very end-of-file (end = -1).
403  */
404 int filemap_write_and_wait_range(struct address_space *mapping,
405 				 loff_t lstart, loff_t lend)
406 {
407 	int err = 0;
408 
409 	if (mapping->nrpages) {
410 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
411 						 WB_SYNC_ALL);
412 		/* See comment of filemap_write_and_wait() */
413 		if (err != -EIO) {
414 			int err2 = wait_on_page_writeback_range(mapping,
415 						lstart >> PAGE_CACHE_SHIFT,
416 						lend >> PAGE_CACHE_SHIFT);
417 			if (!err)
418 				err = err2;
419 		}
420 	}
421 	return err;
422 }
423 
424 /**
425  * add_to_page_cache - add newly allocated pagecache pages
426  * @page:	page to add
427  * @mapping:	the page's address_space
428  * @offset:	page index
429  * @gfp_mask:	page allocation mode
430  *
431  * This function is used to add newly allocated pagecache pages;
432  * the page is new, so we can just run SetPageLocked() against it.
433  * The other page state flags were set by rmqueue().
434  *
435  * This function does not add the page to the LRU.  The caller must do that.
436  */
437 int add_to_page_cache(struct page *page, struct address_space *mapping,
438 		pgoff_t offset, gfp_t gfp_mask)
439 {
440 	int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
441 
442 	if (error == 0) {
443 		write_lock_irq(&mapping->tree_lock);
444 		error = radix_tree_insert(&mapping->page_tree, offset, page);
445 		if (!error) {
446 			page_cache_get(page);
447 			SetPageLocked(page);
448 			page->mapping = mapping;
449 			page->index = offset;
450 			mapping->nrpages++;
451 			__inc_zone_page_state(page, NR_FILE_PAGES);
452 		}
453 		write_unlock_irq(&mapping->tree_lock);
454 		radix_tree_preload_end();
455 	}
456 	return error;
457 }
458 EXPORT_SYMBOL(add_to_page_cache);
459 
460 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
461 				pgoff_t offset, gfp_t gfp_mask)
462 {
463 	int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
464 	if (ret == 0)
465 		lru_cache_add(page);
466 	return ret;
467 }
468 
469 #ifdef CONFIG_NUMA
470 struct page *__page_cache_alloc(gfp_t gfp)
471 {
472 	if (cpuset_do_page_mem_spread()) {
473 		int n = cpuset_mem_spread_node();
474 		return alloc_pages_node(n, gfp, 0);
475 	}
476 	return alloc_pages(gfp, 0);
477 }
478 EXPORT_SYMBOL(__page_cache_alloc);
479 #endif
480 
481 static int __sleep_on_page_lock(void *word)
482 {
483 	io_schedule();
484 	return 0;
485 }
486 
487 /*
488  * In order to wait for pages to become available there must be
489  * waitqueues associated with pages. By using a hash table of
490  * waitqueues where the bucket discipline is to maintain all
491  * waiters on the same queue and wake all when any of the pages
492  * become available, and for the woken contexts to check to be
493  * sure the appropriate page became available, this saves space
494  * at a cost of "thundering herd" phenomena during rare hash
495  * collisions.
496  */
497 static wait_queue_head_t *page_waitqueue(struct page *page)
498 {
499 	const struct zone *zone = page_zone(page);
500 
501 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
502 }
503 
504 static inline void wake_up_page(struct page *page, int bit)
505 {
506 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
507 }
508 
509 void fastcall wait_on_page_bit(struct page *page, int bit_nr)
510 {
511 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
512 
513 	if (test_bit(bit_nr, &page->flags))
514 		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
515 							TASK_UNINTERRUPTIBLE);
516 }
517 EXPORT_SYMBOL(wait_on_page_bit);
518 
519 /**
520  * unlock_page - unlock a locked page
521  * @page: the page
522  *
523  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
524  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
525  * mechananism between PageLocked pages and PageWriteback pages is shared.
526  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
527  *
528  * The first mb is necessary to safely close the critical section opened by the
529  * TestSetPageLocked(), the second mb is necessary to enforce ordering between
530  * the clear_bit and the read of the waitqueue (to avoid SMP races with a
531  * parallel wait_on_page_locked()).
532  */
533 void fastcall unlock_page(struct page *page)
534 {
535 	smp_mb__before_clear_bit();
536 	if (!TestClearPageLocked(page))
537 		BUG();
538 	smp_mb__after_clear_bit();
539 	wake_up_page(page, PG_locked);
540 }
541 EXPORT_SYMBOL(unlock_page);
542 
543 /**
544  * end_page_writeback - end writeback against a page
545  * @page: the page
546  */
547 void end_page_writeback(struct page *page)
548 {
549 	if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
550 		if (!test_clear_page_writeback(page))
551 			BUG();
552 	}
553 	smp_mb__after_clear_bit();
554 	wake_up_page(page, PG_writeback);
555 }
556 EXPORT_SYMBOL(end_page_writeback);
557 
558 /**
559  * __lock_page - get a lock on the page, assuming we need to sleep to get it
560  * @page: the page to lock
561  *
562  * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
563  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
564  * chances are that on the second loop, the block layer's plug list is empty,
565  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
566  */
567 void fastcall __lock_page(struct page *page)
568 {
569 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
570 
571 	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
572 							TASK_UNINTERRUPTIBLE);
573 }
574 EXPORT_SYMBOL(__lock_page);
575 
576 /*
577  * Variant of lock_page that does not require the caller to hold a reference
578  * on the page's mapping.
579  */
580 void fastcall __lock_page_nosync(struct page *page)
581 {
582 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
583 	__wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
584 							TASK_UNINTERRUPTIBLE);
585 }
586 
587 /**
588  * find_get_page - find and get a page reference
589  * @mapping: the address_space to search
590  * @offset: the page index
591  *
592  * Is there a pagecache struct page at the given (mapping, offset) tuple?
593  * If yes, increment its refcount and return it; if no, return NULL.
594  */
595 struct page * find_get_page(struct address_space *mapping, unsigned long offset)
596 {
597 	struct page *page;
598 
599 	read_lock_irq(&mapping->tree_lock);
600 	page = radix_tree_lookup(&mapping->page_tree, offset);
601 	if (page)
602 		page_cache_get(page);
603 	read_unlock_irq(&mapping->tree_lock);
604 	return page;
605 }
606 EXPORT_SYMBOL(find_get_page);
607 
608 /**
609  * find_trylock_page - find and lock a page
610  * @mapping: the address_space to search
611  * @offset: the page index
612  *
613  * Same as find_get_page(), but trylock it instead of incrementing the count.
614  */
615 struct page *find_trylock_page(struct address_space *mapping, unsigned long offset)
616 {
617 	struct page *page;
618 
619 	read_lock_irq(&mapping->tree_lock);
620 	page = radix_tree_lookup(&mapping->page_tree, offset);
621 	if (page && TestSetPageLocked(page))
622 		page = NULL;
623 	read_unlock_irq(&mapping->tree_lock);
624 	return page;
625 }
626 EXPORT_SYMBOL(find_trylock_page);
627 
628 /**
629  * find_lock_page - locate, pin and lock a pagecache page
630  * @mapping: the address_space to search
631  * @offset: the page index
632  *
633  * Locates the desired pagecache page, locks it, increments its reference
634  * count and returns its address.
635  *
636  * Returns zero if the page was not present. find_lock_page() may sleep.
637  */
638 struct page *find_lock_page(struct address_space *mapping,
639 				unsigned long offset)
640 {
641 	struct page *page;
642 
643 	read_lock_irq(&mapping->tree_lock);
644 repeat:
645 	page = radix_tree_lookup(&mapping->page_tree, offset);
646 	if (page) {
647 		page_cache_get(page);
648 		if (TestSetPageLocked(page)) {
649 			read_unlock_irq(&mapping->tree_lock);
650 			__lock_page(page);
651 			read_lock_irq(&mapping->tree_lock);
652 
653 			/* Has the page been truncated while we slept? */
654 			if (unlikely(page->mapping != mapping ||
655 				     page->index != offset)) {
656 				unlock_page(page);
657 				page_cache_release(page);
658 				goto repeat;
659 			}
660 		}
661 	}
662 	read_unlock_irq(&mapping->tree_lock);
663 	return page;
664 }
665 EXPORT_SYMBOL(find_lock_page);
666 
667 /**
668  * find_or_create_page - locate or add a pagecache page
669  * @mapping: the page's address_space
670  * @index: the page's index into the mapping
671  * @gfp_mask: page allocation mode
672  *
673  * Locates a page in the pagecache.  If the page is not present, a new page
674  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
675  * LRU list.  The returned page is locked and has its reference count
676  * incremented.
677  *
678  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
679  * allocation!
680  *
681  * find_or_create_page() returns the desired page's address, or zero on
682  * memory exhaustion.
683  */
684 struct page *find_or_create_page(struct address_space *mapping,
685 		unsigned long index, gfp_t gfp_mask)
686 {
687 	struct page *page, *cached_page = NULL;
688 	int err;
689 repeat:
690 	page = find_lock_page(mapping, index);
691 	if (!page) {
692 		if (!cached_page) {
693 			cached_page = alloc_page(gfp_mask);
694 			if (!cached_page)
695 				return NULL;
696 		}
697 		err = add_to_page_cache_lru(cached_page, mapping,
698 					index, gfp_mask);
699 		if (!err) {
700 			page = cached_page;
701 			cached_page = NULL;
702 		} else if (err == -EEXIST)
703 			goto repeat;
704 	}
705 	if (cached_page)
706 		page_cache_release(cached_page);
707 	return page;
708 }
709 EXPORT_SYMBOL(find_or_create_page);
710 
711 /**
712  * find_get_pages - gang pagecache lookup
713  * @mapping:	The address_space to search
714  * @start:	The starting page index
715  * @nr_pages:	The maximum number of pages
716  * @pages:	Where the resulting pages are placed
717  *
718  * find_get_pages() will search for and return a group of up to
719  * @nr_pages pages in the mapping.  The pages are placed at @pages.
720  * find_get_pages() takes a reference against the returned pages.
721  *
722  * The search returns a group of mapping-contiguous pages with ascending
723  * indexes.  There may be holes in the indices due to not-present pages.
724  *
725  * find_get_pages() returns the number of pages which were found.
726  */
727 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
728 			    unsigned int nr_pages, struct page **pages)
729 {
730 	unsigned int i;
731 	unsigned int ret;
732 
733 	read_lock_irq(&mapping->tree_lock);
734 	ret = radix_tree_gang_lookup(&mapping->page_tree,
735 				(void **)pages, start, nr_pages);
736 	for (i = 0; i < ret; i++)
737 		page_cache_get(pages[i]);
738 	read_unlock_irq(&mapping->tree_lock);
739 	return ret;
740 }
741 
742 /**
743  * find_get_pages_contig - gang contiguous pagecache lookup
744  * @mapping:	The address_space to search
745  * @index:	The starting page index
746  * @nr_pages:	The maximum number of pages
747  * @pages:	Where the resulting pages are placed
748  *
749  * find_get_pages_contig() works exactly like find_get_pages(), except
750  * that the returned number of pages are guaranteed to be contiguous.
751  *
752  * find_get_pages_contig() returns the number of pages which were found.
753  */
754 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
755 			       unsigned int nr_pages, struct page **pages)
756 {
757 	unsigned int i;
758 	unsigned int ret;
759 
760 	read_lock_irq(&mapping->tree_lock);
761 	ret = radix_tree_gang_lookup(&mapping->page_tree,
762 				(void **)pages, index, nr_pages);
763 	for (i = 0; i < ret; i++) {
764 		if (pages[i]->mapping == NULL || pages[i]->index != index)
765 			break;
766 
767 		page_cache_get(pages[i]);
768 		index++;
769 	}
770 	read_unlock_irq(&mapping->tree_lock);
771 	return i;
772 }
773 
774 /**
775  * find_get_pages_tag - find and return pages that match @tag
776  * @mapping:	the address_space to search
777  * @index:	the starting page index
778  * @tag:	the tag index
779  * @nr_pages:	the maximum number of pages
780  * @pages:	where the resulting pages are placed
781  *
782  * Like find_get_pages, except we only return pages which are tagged with
783  * @tag.   We update @index to index the next page for the traversal.
784  */
785 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
786 			int tag, unsigned int nr_pages, struct page **pages)
787 {
788 	unsigned int i;
789 	unsigned int ret;
790 
791 	read_lock_irq(&mapping->tree_lock);
792 	ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
793 				(void **)pages, *index, nr_pages, tag);
794 	for (i = 0; i < ret; i++)
795 		page_cache_get(pages[i]);
796 	if (ret)
797 		*index = pages[ret - 1]->index + 1;
798 	read_unlock_irq(&mapping->tree_lock);
799 	return ret;
800 }
801 
802 /**
803  * grab_cache_page_nowait - returns locked page at given index in given cache
804  * @mapping: target address_space
805  * @index: the page index
806  *
807  * Same as grab_cache_page, but do not wait if the page is unavailable.
808  * This is intended for speculative data generators, where the data can
809  * be regenerated if the page couldn't be grabbed.  This routine should
810  * be safe to call while holding the lock for another page.
811  *
812  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
813  * and deadlock against the caller's locked page.
814  */
815 struct page *
816 grab_cache_page_nowait(struct address_space *mapping, unsigned long index)
817 {
818 	struct page *page = find_get_page(mapping, index);
819 
820 	if (page) {
821 		if (!TestSetPageLocked(page))
822 			return page;
823 		page_cache_release(page);
824 		return NULL;
825 	}
826 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
827 	if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
828 		page_cache_release(page);
829 		page = NULL;
830 	}
831 	return page;
832 }
833 EXPORT_SYMBOL(grab_cache_page_nowait);
834 
835 /*
836  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
837  * a _large_ part of the i/o request. Imagine the worst scenario:
838  *
839  *      ---R__________________________________________B__________
840  *         ^ reading here                             ^ bad block(assume 4k)
841  *
842  * read(R) => miss => readahead(R...B) => media error => frustrating retries
843  * => failing the whole request => read(R) => read(R+1) =>
844  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
845  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
846  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
847  *
848  * It is going insane. Fix it by quickly scaling down the readahead size.
849  */
850 static void shrink_readahead_size_eio(struct file *filp,
851 					struct file_ra_state *ra)
852 {
853 	if (!ra->ra_pages)
854 		return;
855 
856 	ra->ra_pages /= 4;
857 }
858 
859 /**
860  * do_generic_mapping_read - generic file read routine
861  * @mapping:	address_space to be read
862  * @_ra:	file's readahead state
863  * @filp:	the file to read
864  * @ppos:	current file position
865  * @desc:	read_descriptor
866  * @actor:	read method
867  *
868  * This is a generic file read routine, and uses the
869  * mapping->a_ops->readpage() function for the actual low-level stuff.
870  *
871  * This is really ugly. But the goto's actually try to clarify some
872  * of the logic when it comes to error handling etc.
873  *
874  * Note the struct file* is only passed for the use of readpage.
875  * It may be NULL.
876  */
877 void do_generic_mapping_read(struct address_space *mapping,
878 			     struct file_ra_state *_ra,
879 			     struct file *filp,
880 			     loff_t *ppos,
881 			     read_descriptor_t *desc,
882 			     read_actor_t actor)
883 {
884 	struct inode *inode = mapping->host;
885 	unsigned long index;
886 	unsigned long end_index;
887 	unsigned long offset;
888 	unsigned long last_index;
889 	unsigned long next_index;
890 	unsigned long prev_index;
891 	loff_t isize;
892 	struct page *cached_page;
893 	int error;
894 	struct file_ra_state ra = *_ra;
895 
896 	cached_page = NULL;
897 	index = *ppos >> PAGE_CACHE_SHIFT;
898 	next_index = index;
899 	prev_index = ra.prev_page;
900 	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
901 	offset = *ppos & ~PAGE_CACHE_MASK;
902 
903 	isize = i_size_read(inode);
904 	if (!isize)
905 		goto out;
906 
907 	end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
908 	for (;;) {
909 		struct page *page;
910 		unsigned long nr, ret;
911 
912 		/* nr is the maximum number of bytes to copy from this page */
913 		nr = PAGE_CACHE_SIZE;
914 		if (index >= end_index) {
915 			if (index > end_index)
916 				goto out;
917 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
918 			if (nr <= offset) {
919 				goto out;
920 			}
921 		}
922 		nr = nr - offset;
923 
924 		cond_resched();
925 		if (index == next_index)
926 			next_index = page_cache_readahead(mapping, &ra, filp,
927 					index, last_index - index);
928 
929 find_page:
930 		page = find_get_page(mapping, index);
931 		if (unlikely(page == NULL)) {
932 			handle_ra_miss(mapping, &ra, index);
933 			goto no_cached_page;
934 		}
935 		if (!PageUptodate(page))
936 			goto page_not_up_to_date;
937 page_ok:
938 
939 		/* If users can be writing to this page using arbitrary
940 		 * virtual addresses, take care about potential aliasing
941 		 * before reading the page on the kernel side.
942 		 */
943 		if (mapping_writably_mapped(mapping))
944 			flush_dcache_page(page);
945 
946 		/*
947 		 * When (part of) the same page is read multiple times
948 		 * in succession, only mark it as accessed the first time.
949 		 */
950 		if (prev_index != index)
951 			mark_page_accessed(page);
952 		prev_index = index;
953 
954 		/*
955 		 * Ok, we have the page, and it's up-to-date, so
956 		 * now we can copy it to user space...
957 		 *
958 		 * The actor routine returns how many bytes were actually used..
959 		 * NOTE! This may not be the same as how much of a user buffer
960 		 * we filled up (we may be padding etc), so we can only update
961 		 * "pos" here (the actor routine has to update the user buffer
962 		 * pointers and the remaining count).
963 		 */
964 		ret = actor(desc, page, offset, nr);
965 		offset += ret;
966 		index += offset >> PAGE_CACHE_SHIFT;
967 		offset &= ~PAGE_CACHE_MASK;
968 
969 		page_cache_release(page);
970 		if (ret == nr && desc->count)
971 			continue;
972 		goto out;
973 
974 page_not_up_to_date:
975 		/* Get exclusive access to the page ... */
976 		lock_page(page);
977 
978 		/* Did it get truncated before we got the lock? */
979 		if (!page->mapping) {
980 			unlock_page(page);
981 			page_cache_release(page);
982 			continue;
983 		}
984 
985 		/* Did somebody else fill it already? */
986 		if (PageUptodate(page)) {
987 			unlock_page(page);
988 			goto page_ok;
989 		}
990 
991 readpage:
992 		/* Start the actual read. The read will unlock the page. */
993 		error = mapping->a_ops->readpage(filp, page);
994 
995 		if (unlikely(error)) {
996 			if (error == AOP_TRUNCATED_PAGE) {
997 				page_cache_release(page);
998 				goto find_page;
999 			}
1000 			goto readpage_error;
1001 		}
1002 
1003 		if (!PageUptodate(page)) {
1004 			lock_page(page);
1005 			if (!PageUptodate(page)) {
1006 				if (page->mapping == NULL) {
1007 					/*
1008 					 * invalidate_inode_pages got it
1009 					 */
1010 					unlock_page(page);
1011 					page_cache_release(page);
1012 					goto find_page;
1013 				}
1014 				unlock_page(page);
1015 				error = -EIO;
1016 				shrink_readahead_size_eio(filp, &ra);
1017 				goto readpage_error;
1018 			}
1019 			unlock_page(page);
1020 		}
1021 
1022 		/*
1023 		 * i_size must be checked after we have done ->readpage.
1024 		 *
1025 		 * Checking i_size after the readpage allows us to calculate
1026 		 * the correct value for "nr", which means the zero-filled
1027 		 * part of the page is not copied back to userspace (unless
1028 		 * another truncate extends the file - this is desired though).
1029 		 */
1030 		isize = i_size_read(inode);
1031 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1032 		if (unlikely(!isize || index > end_index)) {
1033 			page_cache_release(page);
1034 			goto out;
1035 		}
1036 
1037 		/* nr is the maximum number of bytes to copy from this page */
1038 		nr = PAGE_CACHE_SIZE;
1039 		if (index == end_index) {
1040 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1041 			if (nr <= offset) {
1042 				page_cache_release(page);
1043 				goto out;
1044 			}
1045 		}
1046 		nr = nr - offset;
1047 		goto page_ok;
1048 
1049 readpage_error:
1050 		/* UHHUH! A synchronous read error occurred. Report it */
1051 		desc->error = error;
1052 		page_cache_release(page);
1053 		goto out;
1054 
1055 no_cached_page:
1056 		/*
1057 		 * Ok, it wasn't cached, so we need to create a new
1058 		 * page..
1059 		 */
1060 		if (!cached_page) {
1061 			cached_page = page_cache_alloc_cold(mapping);
1062 			if (!cached_page) {
1063 				desc->error = -ENOMEM;
1064 				goto out;
1065 			}
1066 		}
1067 		error = add_to_page_cache_lru(cached_page, mapping,
1068 						index, GFP_KERNEL);
1069 		if (error) {
1070 			if (error == -EEXIST)
1071 				goto find_page;
1072 			desc->error = error;
1073 			goto out;
1074 		}
1075 		page = cached_page;
1076 		cached_page = NULL;
1077 		goto readpage;
1078 	}
1079 
1080 out:
1081 	*_ra = ra;
1082 
1083 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1084 	if (cached_page)
1085 		page_cache_release(cached_page);
1086 	if (filp)
1087 		file_accessed(filp);
1088 }
1089 EXPORT_SYMBOL(do_generic_mapping_read);
1090 
1091 int file_read_actor(read_descriptor_t *desc, struct page *page,
1092 			unsigned long offset, unsigned long size)
1093 {
1094 	char *kaddr;
1095 	unsigned long left, count = desc->count;
1096 
1097 	if (size > count)
1098 		size = count;
1099 
1100 	/*
1101 	 * Faults on the destination of a read are common, so do it before
1102 	 * taking the kmap.
1103 	 */
1104 	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1105 		kaddr = kmap_atomic(page, KM_USER0);
1106 		left = __copy_to_user_inatomic(desc->arg.buf,
1107 						kaddr + offset, size);
1108 		kunmap_atomic(kaddr, KM_USER0);
1109 		if (left == 0)
1110 			goto success;
1111 	}
1112 
1113 	/* Do it the slow way */
1114 	kaddr = kmap(page);
1115 	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1116 	kunmap(page);
1117 
1118 	if (left) {
1119 		size -= left;
1120 		desc->error = -EFAULT;
1121 	}
1122 success:
1123 	desc->count = count - size;
1124 	desc->written += size;
1125 	desc->arg.buf += size;
1126 	return size;
1127 }
1128 
1129 /**
1130  * generic_file_aio_read - generic filesystem read routine
1131  * @iocb:	kernel I/O control block
1132  * @iov:	io vector request
1133  * @nr_segs:	number of segments in the iovec
1134  * @pos:	current file position
1135  *
1136  * This is the "read()" routine for all filesystems
1137  * that can use the page cache directly.
1138  */
1139 ssize_t
1140 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1141 		unsigned long nr_segs, loff_t pos)
1142 {
1143 	struct file *filp = iocb->ki_filp;
1144 	ssize_t retval;
1145 	unsigned long seg;
1146 	size_t count;
1147 	loff_t *ppos = &iocb->ki_pos;
1148 
1149 	count = 0;
1150 	for (seg = 0; seg < nr_segs; seg++) {
1151 		const struct iovec *iv = &iov[seg];
1152 
1153 		/*
1154 		 * If any segment has a negative length, or the cumulative
1155 		 * length ever wraps negative then return -EINVAL.
1156 		 */
1157 		count += iv->iov_len;
1158 		if (unlikely((ssize_t)(count|iv->iov_len) < 0))
1159 			return -EINVAL;
1160 		if (access_ok(VERIFY_WRITE, iv->iov_base, iv->iov_len))
1161 			continue;
1162 		if (seg == 0)
1163 			return -EFAULT;
1164 		nr_segs = seg;
1165 		count -= iv->iov_len;	/* This segment is no good */
1166 		break;
1167 	}
1168 
1169 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1170 	if (filp->f_flags & O_DIRECT) {
1171 		loff_t size;
1172 		struct address_space *mapping;
1173 		struct inode *inode;
1174 
1175 		mapping = filp->f_mapping;
1176 		inode = mapping->host;
1177 		retval = 0;
1178 		if (!count)
1179 			goto out; /* skip atime */
1180 		size = i_size_read(inode);
1181 		if (pos < size) {
1182 			retval = generic_file_direct_IO(READ, iocb,
1183 						iov, pos, nr_segs);
1184 			if (retval > 0)
1185 				*ppos = pos + retval;
1186 		}
1187 		if (likely(retval != 0)) {
1188 			file_accessed(filp);
1189 			goto out;
1190 		}
1191 	}
1192 
1193 	retval = 0;
1194 	if (count) {
1195 		for (seg = 0; seg < nr_segs; seg++) {
1196 			read_descriptor_t desc;
1197 
1198 			desc.written = 0;
1199 			desc.arg.buf = iov[seg].iov_base;
1200 			desc.count = iov[seg].iov_len;
1201 			if (desc.count == 0)
1202 				continue;
1203 			desc.error = 0;
1204 			do_generic_file_read(filp,ppos,&desc,file_read_actor);
1205 			retval += desc.written;
1206 			if (desc.error) {
1207 				retval = retval ?: desc.error;
1208 				break;
1209 			}
1210 		}
1211 	}
1212 out:
1213 	return retval;
1214 }
1215 EXPORT_SYMBOL(generic_file_aio_read);
1216 
1217 int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size)
1218 {
1219 	ssize_t written;
1220 	unsigned long count = desc->count;
1221 	struct file *file = desc->arg.data;
1222 
1223 	if (size > count)
1224 		size = count;
1225 
1226 	written = file->f_op->sendpage(file, page, offset,
1227 				       size, &file->f_pos, size<count);
1228 	if (written < 0) {
1229 		desc->error = written;
1230 		written = 0;
1231 	}
1232 	desc->count = count - written;
1233 	desc->written += written;
1234 	return written;
1235 }
1236 
1237 ssize_t generic_file_sendfile(struct file *in_file, loff_t *ppos,
1238 			 size_t count, read_actor_t actor, void *target)
1239 {
1240 	read_descriptor_t desc;
1241 
1242 	if (!count)
1243 		return 0;
1244 
1245 	desc.written = 0;
1246 	desc.count = count;
1247 	desc.arg.data = target;
1248 	desc.error = 0;
1249 
1250 	do_generic_file_read(in_file, ppos, &desc, actor);
1251 	if (desc.written)
1252 		return desc.written;
1253 	return desc.error;
1254 }
1255 EXPORT_SYMBOL(generic_file_sendfile);
1256 
1257 static ssize_t
1258 do_readahead(struct address_space *mapping, struct file *filp,
1259 	     unsigned long index, unsigned long nr)
1260 {
1261 	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1262 		return -EINVAL;
1263 
1264 	force_page_cache_readahead(mapping, filp, index,
1265 					max_sane_readahead(nr));
1266 	return 0;
1267 }
1268 
1269 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1270 {
1271 	ssize_t ret;
1272 	struct file *file;
1273 
1274 	ret = -EBADF;
1275 	file = fget(fd);
1276 	if (file) {
1277 		if (file->f_mode & FMODE_READ) {
1278 			struct address_space *mapping = file->f_mapping;
1279 			unsigned long start = offset >> PAGE_CACHE_SHIFT;
1280 			unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1281 			unsigned long len = end - start + 1;
1282 			ret = do_readahead(mapping, file, start, len);
1283 		}
1284 		fput(file);
1285 	}
1286 	return ret;
1287 }
1288 
1289 #ifdef CONFIG_MMU
1290 static int FASTCALL(page_cache_read(struct file * file, unsigned long offset));
1291 /**
1292  * page_cache_read - adds requested page to the page cache if not already there
1293  * @file:	file to read
1294  * @offset:	page index
1295  *
1296  * This adds the requested page to the page cache if it isn't already there,
1297  * and schedules an I/O to read in its contents from disk.
1298  */
1299 static int fastcall page_cache_read(struct file * file, unsigned long offset)
1300 {
1301 	struct address_space *mapping = file->f_mapping;
1302 	struct page *page;
1303 	int ret;
1304 
1305 	do {
1306 		page = page_cache_alloc_cold(mapping);
1307 		if (!page)
1308 			return -ENOMEM;
1309 
1310 		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1311 		if (ret == 0)
1312 			ret = mapping->a_ops->readpage(file, page);
1313 		else if (ret == -EEXIST)
1314 			ret = 0; /* losing race to add is OK */
1315 
1316 		page_cache_release(page);
1317 
1318 	} while (ret == AOP_TRUNCATED_PAGE);
1319 
1320 	return ret;
1321 }
1322 
1323 #define MMAP_LOTSAMISS  (100)
1324 
1325 /**
1326  * filemap_nopage - read in file data for page fault handling
1327  * @area:	the applicable vm_area
1328  * @address:	target address to read in
1329  * @type:	returned with VM_FAULT_{MINOR,MAJOR} if not %NULL
1330  *
1331  * filemap_nopage() is invoked via the vma operations vector for a
1332  * mapped memory region to read in file data during a page fault.
1333  *
1334  * The goto's are kind of ugly, but this streamlines the normal case of having
1335  * it in the page cache, and handles the special cases reasonably without
1336  * having a lot of duplicated code.
1337  */
1338 struct page *filemap_nopage(struct vm_area_struct *area,
1339 				unsigned long address, int *type)
1340 {
1341 	int error;
1342 	struct file *file = area->vm_file;
1343 	struct address_space *mapping = file->f_mapping;
1344 	struct file_ra_state *ra = &file->f_ra;
1345 	struct inode *inode = mapping->host;
1346 	struct page *page;
1347 	unsigned long size, pgoff;
1348 	int did_readaround = 0, majmin = VM_FAULT_MINOR;
1349 
1350 	pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff;
1351 
1352 retry_all:
1353 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1354 	if (pgoff >= size)
1355 		goto outside_data_content;
1356 
1357 	/* If we don't want any read-ahead, don't bother */
1358 	if (VM_RandomReadHint(area))
1359 		goto no_cached_page;
1360 
1361 	/*
1362 	 * The readahead code wants to be told about each and every page
1363 	 * so it can build and shrink its windows appropriately
1364 	 *
1365 	 * For sequential accesses, we use the generic readahead logic.
1366 	 */
1367 	if (VM_SequentialReadHint(area))
1368 		page_cache_readahead(mapping, ra, file, pgoff, 1);
1369 
1370 	/*
1371 	 * Do we have something in the page cache already?
1372 	 */
1373 retry_find:
1374 	page = find_get_page(mapping, pgoff);
1375 	if (!page) {
1376 		unsigned long ra_pages;
1377 
1378 		if (VM_SequentialReadHint(area)) {
1379 			handle_ra_miss(mapping, ra, pgoff);
1380 			goto no_cached_page;
1381 		}
1382 		ra->mmap_miss++;
1383 
1384 		/*
1385 		 * Do we miss much more than hit in this file? If so,
1386 		 * stop bothering with read-ahead. It will only hurt.
1387 		 */
1388 		if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS)
1389 			goto no_cached_page;
1390 
1391 		/*
1392 		 * To keep the pgmajfault counter straight, we need to
1393 		 * check did_readaround, as this is an inner loop.
1394 		 */
1395 		if (!did_readaround) {
1396 			majmin = VM_FAULT_MAJOR;
1397 			count_vm_event(PGMAJFAULT);
1398 		}
1399 		did_readaround = 1;
1400 		ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1401 		if (ra_pages) {
1402 			pgoff_t start = 0;
1403 
1404 			if (pgoff > ra_pages / 2)
1405 				start = pgoff - ra_pages / 2;
1406 			do_page_cache_readahead(mapping, file, start, ra_pages);
1407 		}
1408 		page = find_get_page(mapping, pgoff);
1409 		if (!page)
1410 			goto no_cached_page;
1411 	}
1412 
1413 	if (!did_readaround)
1414 		ra->mmap_hit++;
1415 
1416 	/*
1417 	 * Ok, found a page in the page cache, now we need to check
1418 	 * that it's up-to-date.
1419 	 */
1420 	if (!PageUptodate(page))
1421 		goto page_not_uptodate;
1422 
1423 success:
1424 	/*
1425 	 * Found the page and have a reference on it.
1426 	 */
1427 	mark_page_accessed(page);
1428 	if (type)
1429 		*type = majmin;
1430 	return page;
1431 
1432 outside_data_content:
1433 	/*
1434 	 * An external ptracer can access pages that normally aren't
1435 	 * accessible..
1436 	 */
1437 	if (area->vm_mm == current->mm)
1438 		return NOPAGE_SIGBUS;
1439 	/* Fall through to the non-read-ahead case */
1440 no_cached_page:
1441 	/*
1442 	 * We're only likely to ever get here if MADV_RANDOM is in
1443 	 * effect.
1444 	 */
1445 	error = page_cache_read(file, pgoff);
1446 
1447 	/*
1448 	 * The page we want has now been added to the page cache.
1449 	 * In the unlikely event that someone removed it in the
1450 	 * meantime, we'll just come back here and read it again.
1451 	 */
1452 	if (error >= 0)
1453 		goto retry_find;
1454 
1455 	/*
1456 	 * An error return from page_cache_read can result if the
1457 	 * system is low on memory, or a problem occurs while trying
1458 	 * to schedule I/O.
1459 	 */
1460 	if (error == -ENOMEM)
1461 		return NOPAGE_OOM;
1462 	return NOPAGE_SIGBUS;
1463 
1464 page_not_uptodate:
1465 	if (!did_readaround) {
1466 		majmin = VM_FAULT_MAJOR;
1467 		count_vm_event(PGMAJFAULT);
1468 	}
1469 	lock_page(page);
1470 
1471 	/* Did it get unhashed while we waited for it? */
1472 	if (!page->mapping) {
1473 		unlock_page(page);
1474 		page_cache_release(page);
1475 		goto retry_all;
1476 	}
1477 
1478 	/* Did somebody else get it up-to-date? */
1479 	if (PageUptodate(page)) {
1480 		unlock_page(page);
1481 		goto success;
1482 	}
1483 
1484 	error = mapping->a_ops->readpage(file, page);
1485 	if (!error) {
1486 		wait_on_page_locked(page);
1487 		if (PageUptodate(page))
1488 			goto success;
1489 	} else if (error == AOP_TRUNCATED_PAGE) {
1490 		page_cache_release(page);
1491 		goto retry_find;
1492 	}
1493 
1494 	/*
1495 	 * Umm, take care of errors if the page isn't up-to-date.
1496 	 * Try to re-read it _once_. We do this synchronously,
1497 	 * because there really aren't any performance issues here
1498 	 * and we need to check for errors.
1499 	 */
1500 	lock_page(page);
1501 
1502 	/* Somebody truncated the page on us? */
1503 	if (!page->mapping) {
1504 		unlock_page(page);
1505 		page_cache_release(page);
1506 		goto retry_all;
1507 	}
1508 
1509 	/* Somebody else successfully read it in? */
1510 	if (PageUptodate(page)) {
1511 		unlock_page(page);
1512 		goto success;
1513 	}
1514 	ClearPageError(page);
1515 	error = mapping->a_ops->readpage(file, page);
1516 	if (!error) {
1517 		wait_on_page_locked(page);
1518 		if (PageUptodate(page))
1519 			goto success;
1520 	} else if (error == AOP_TRUNCATED_PAGE) {
1521 		page_cache_release(page);
1522 		goto retry_find;
1523 	}
1524 
1525 	/*
1526 	 * Things didn't work out. Return zero to tell the
1527 	 * mm layer so, possibly freeing the page cache page first.
1528 	 */
1529 	shrink_readahead_size_eio(file, ra);
1530 	page_cache_release(page);
1531 	return NOPAGE_SIGBUS;
1532 }
1533 EXPORT_SYMBOL(filemap_nopage);
1534 
1535 static struct page * filemap_getpage(struct file *file, unsigned long pgoff,
1536 					int nonblock)
1537 {
1538 	struct address_space *mapping = file->f_mapping;
1539 	struct page *page;
1540 	int error;
1541 
1542 	/*
1543 	 * Do we have something in the page cache already?
1544 	 */
1545 retry_find:
1546 	page = find_get_page(mapping, pgoff);
1547 	if (!page) {
1548 		if (nonblock)
1549 			return NULL;
1550 		goto no_cached_page;
1551 	}
1552 
1553 	/*
1554 	 * Ok, found a page in the page cache, now we need to check
1555 	 * that it's up-to-date.
1556 	 */
1557 	if (!PageUptodate(page)) {
1558 		if (nonblock) {
1559 			page_cache_release(page);
1560 			return NULL;
1561 		}
1562 		goto page_not_uptodate;
1563 	}
1564 
1565 success:
1566 	/*
1567 	 * Found the page and have a reference on it.
1568 	 */
1569 	mark_page_accessed(page);
1570 	return page;
1571 
1572 no_cached_page:
1573 	error = page_cache_read(file, pgoff);
1574 
1575 	/*
1576 	 * The page we want has now been added to the page cache.
1577 	 * In the unlikely event that someone removed it in the
1578 	 * meantime, we'll just come back here and read it again.
1579 	 */
1580 	if (error >= 0)
1581 		goto retry_find;
1582 
1583 	/*
1584 	 * An error return from page_cache_read can result if the
1585 	 * system is low on memory, or a problem occurs while trying
1586 	 * to schedule I/O.
1587 	 */
1588 	return NULL;
1589 
1590 page_not_uptodate:
1591 	lock_page(page);
1592 
1593 	/* Did it get truncated while we waited for it? */
1594 	if (!page->mapping) {
1595 		unlock_page(page);
1596 		goto err;
1597 	}
1598 
1599 	/* Did somebody else get it up-to-date? */
1600 	if (PageUptodate(page)) {
1601 		unlock_page(page);
1602 		goto success;
1603 	}
1604 
1605 	error = mapping->a_ops->readpage(file, page);
1606 	if (!error) {
1607 		wait_on_page_locked(page);
1608 		if (PageUptodate(page))
1609 			goto success;
1610 	} else if (error == AOP_TRUNCATED_PAGE) {
1611 		page_cache_release(page);
1612 		goto retry_find;
1613 	}
1614 
1615 	/*
1616 	 * Umm, take care of errors if the page isn't up-to-date.
1617 	 * Try to re-read it _once_. We do this synchronously,
1618 	 * because there really aren't any performance issues here
1619 	 * and we need to check for errors.
1620 	 */
1621 	lock_page(page);
1622 
1623 	/* Somebody truncated the page on us? */
1624 	if (!page->mapping) {
1625 		unlock_page(page);
1626 		goto err;
1627 	}
1628 	/* Somebody else successfully read it in? */
1629 	if (PageUptodate(page)) {
1630 		unlock_page(page);
1631 		goto success;
1632 	}
1633 
1634 	ClearPageError(page);
1635 	error = mapping->a_ops->readpage(file, page);
1636 	if (!error) {
1637 		wait_on_page_locked(page);
1638 		if (PageUptodate(page))
1639 			goto success;
1640 	} else if (error == AOP_TRUNCATED_PAGE) {
1641 		page_cache_release(page);
1642 		goto retry_find;
1643 	}
1644 
1645 	/*
1646 	 * Things didn't work out. Return zero to tell the
1647 	 * mm layer so, possibly freeing the page cache page first.
1648 	 */
1649 err:
1650 	page_cache_release(page);
1651 
1652 	return NULL;
1653 }
1654 
1655 int filemap_populate(struct vm_area_struct *vma, unsigned long addr,
1656 		unsigned long len, pgprot_t prot, unsigned long pgoff,
1657 		int nonblock)
1658 {
1659 	struct file *file = vma->vm_file;
1660 	struct address_space *mapping = file->f_mapping;
1661 	struct inode *inode = mapping->host;
1662 	unsigned long size;
1663 	struct mm_struct *mm = vma->vm_mm;
1664 	struct page *page;
1665 	int err;
1666 
1667 	if (!nonblock)
1668 		force_page_cache_readahead(mapping, vma->vm_file,
1669 					pgoff, len >> PAGE_CACHE_SHIFT);
1670 
1671 repeat:
1672 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1673 	if (pgoff + (len >> PAGE_CACHE_SHIFT) > size)
1674 		return -EINVAL;
1675 
1676 	page = filemap_getpage(file, pgoff, nonblock);
1677 
1678 	/* XXX: This is wrong, a filesystem I/O error may have happened. Fix that as
1679 	 * done in shmem_populate calling shmem_getpage */
1680 	if (!page && !nonblock)
1681 		return -ENOMEM;
1682 
1683 	if (page) {
1684 		err = install_page(mm, vma, addr, page, prot);
1685 		if (err) {
1686 			page_cache_release(page);
1687 			return err;
1688 		}
1689 	} else if (vma->vm_flags & VM_NONLINEAR) {
1690 		/* No page was found just because we can't read it in now (being
1691 		 * here implies nonblock != 0), but the page may exist, so set
1692 		 * the PTE to fault it in later. */
1693 		err = install_file_pte(mm, vma, addr, pgoff, prot);
1694 		if (err)
1695 			return err;
1696 	}
1697 
1698 	len -= PAGE_SIZE;
1699 	addr += PAGE_SIZE;
1700 	pgoff++;
1701 	if (len)
1702 		goto repeat;
1703 
1704 	return 0;
1705 }
1706 EXPORT_SYMBOL(filemap_populate);
1707 
1708 struct vm_operations_struct generic_file_vm_ops = {
1709 	.nopage		= filemap_nopage,
1710 	.populate	= filemap_populate,
1711 };
1712 
1713 /* This is used for a general mmap of a disk file */
1714 
1715 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1716 {
1717 	struct address_space *mapping = file->f_mapping;
1718 
1719 	if (!mapping->a_ops->readpage)
1720 		return -ENOEXEC;
1721 	file_accessed(file);
1722 	vma->vm_ops = &generic_file_vm_ops;
1723 	return 0;
1724 }
1725 
1726 /*
1727  * This is for filesystems which do not implement ->writepage.
1728  */
1729 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1730 {
1731 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1732 		return -EINVAL;
1733 	return generic_file_mmap(file, vma);
1734 }
1735 #else
1736 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1737 {
1738 	return -ENOSYS;
1739 }
1740 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1741 {
1742 	return -ENOSYS;
1743 }
1744 #endif /* CONFIG_MMU */
1745 
1746 EXPORT_SYMBOL(generic_file_mmap);
1747 EXPORT_SYMBOL(generic_file_readonly_mmap);
1748 
1749 static inline struct page *__read_cache_page(struct address_space *mapping,
1750 				unsigned long index,
1751 				int (*filler)(void *,struct page*),
1752 				void *data)
1753 {
1754 	struct page *page, *cached_page = NULL;
1755 	int err;
1756 repeat:
1757 	page = find_get_page(mapping, index);
1758 	if (!page) {
1759 		if (!cached_page) {
1760 			cached_page = page_cache_alloc_cold(mapping);
1761 			if (!cached_page)
1762 				return ERR_PTR(-ENOMEM);
1763 		}
1764 		err = add_to_page_cache_lru(cached_page, mapping,
1765 					index, GFP_KERNEL);
1766 		if (err == -EEXIST)
1767 			goto repeat;
1768 		if (err < 0) {
1769 			/* Presumably ENOMEM for radix tree node */
1770 			page_cache_release(cached_page);
1771 			return ERR_PTR(err);
1772 		}
1773 		page = cached_page;
1774 		cached_page = NULL;
1775 		err = filler(data, page);
1776 		if (err < 0) {
1777 			page_cache_release(page);
1778 			page = ERR_PTR(err);
1779 		}
1780 	}
1781 	if (cached_page)
1782 		page_cache_release(cached_page);
1783 	return page;
1784 }
1785 
1786 /**
1787  * read_cache_page - read into page cache, fill it if needed
1788  * @mapping:	the page's address_space
1789  * @index:	the page index
1790  * @filler:	function to perform the read
1791  * @data:	destination for read data
1792  *
1793  * Read into the page cache. If a page already exists,
1794  * and PageUptodate() is not set, try to fill the page.
1795  */
1796 struct page *read_cache_page(struct address_space *mapping,
1797 				unsigned long index,
1798 				int (*filler)(void *,struct page*),
1799 				void *data)
1800 {
1801 	struct page *page;
1802 	int err;
1803 
1804 retry:
1805 	page = __read_cache_page(mapping, index, filler, data);
1806 	if (IS_ERR(page))
1807 		goto out;
1808 	mark_page_accessed(page);
1809 	if (PageUptodate(page))
1810 		goto out;
1811 
1812 	lock_page(page);
1813 	if (!page->mapping) {
1814 		unlock_page(page);
1815 		page_cache_release(page);
1816 		goto retry;
1817 	}
1818 	if (PageUptodate(page)) {
1819 		unlock_page(page);
1820 		goto out;
1821 	}
1822 	err = filler(data, page);
1823 	if (err < 0) {
1824 		page_cache_release(page);
1825 		page = ERR_PTR(err);
1826 	}
1827  out:
1828 	return page;
1829 }
1830 EXPORT_SYMBOL(read_cache_page);
1831 
1832 /*
1833  * If the page was newly created, increment its refcount and add it to the
1834  * caller's lru-buffering pagevec.  This function is specifically for
1835  * generic_file_write().
1836  */
1837 static inline struct page *
1838 __grab_cache_page(struct address_space *mapping, unsigned long index,
1839 			struct page **cached_page, struct pagevec *lru_pvec)
1840 {
1841 	int err;
1842 	struct page *page;
1843 repeat:
1844 	page = find_lock_page(mapping, index);
1845 	if (!page) {
1846 		if (!*cached_page) {
1847 			*cached_page = page_cache_alloc(mapping);
1848 			if (!*cached_page)
1849 				return NULL;
1850 		}
1851 		err = add_to_page_cache(*cached_page, mapping,
1852 					index, GFP_KERNEL);
1853 		if (err == -EEXIST)
1854 			goto repeat;
1855 		if (err == 0) {
1856 			page = *cached_page;
1857 			page_cache_get(page);
1858 			if (!pagevec_add(lru_pvec, page))
1859 				__pagevec_lru_add(lru_pvec);
1860 			*cached_page = NULL;
1861 		}
1862 	}
1863 	return page;
1864 }
1865 
1866 /*
1867  * The logic we want is
1868  *
1869  *	if suid or (sgid and xgrp)
1870  *		remove privs
1871  */
1872 int should_remove_suid(struct dentry *dentry)
1873 {
1874 	mode_t mode = dentry->d_inode->i_mode;
1875 	int kill = 0;
1876 
1877 	/* suid always must be killed */
1878 	if (unlikely(mode & S_ISUID))
1879 		kill = ATTR_KILL_SUID;
1880 
1881 	/*
1882 	 * sgid without any exec bits is just a mandatory locking mark; leave
1883 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1884 	 */
1885 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1886 		kill |= ATTR_KILL_SGID;
1887 
1888 	if (unlikely(kill && !capable(CAP_FSETID)))
1889 		return kill;
1890 
1891 	return 0;
1892 }
1893 EXPORT_SYMBOL(should_remove_suid);
1894 
1895 int __remove_suid(struct dentry *dentry, int kill)
1896 {
1897 	struct iattr newattrs;
1898 
1899 	newattrs.ia_valid = ATTR_FORCE | kill;
1900 	return notify_change(dentry, &newattrs);
1901 }
1902 
1903 int remove_suid(struct dentry *dentry)
1904 {
1905 	int kill = should_remove_suid(dentry);
1906 
1907 	if (unlikely(kill))
1908 		return __remove_suid(dentry, kill);
1909 
1910 	return 0;
1911 }
1912 EXPORT_SYMBOL(remove_suid);
1913 
1914 size_t
1915 __filemap_copy_from_user_iovec_inatomic(char *vaddr,
1916 			const struct iovec *iov, size_t base, size_t bytes)
1917 {
1918 	size_t copied = 0, left = 0;
1919 
1920 	while (bytes) {
1921 		char __user *buf = iov->iov_base + base;
1922 		int copy = min(bytes, iov->iov_len - base);
1923 
1924 		base = 0;
1925 		left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1926 		copied += copy;
1927 		bytes -= copy;
1928 		vaddr += copy;
1929 		iov++;
1930 
1931 		if (unlikely(left))
1932 			break;
1933 	}
1934 	return copied - left;
1935 }
1936 
1937 /*
1938  * Performs necessary checks before doing a write
1939  *
1940  * Can adjust writing position or amount of bytes to write.
1941  * Returns appropriate error code that caller should return or
1942  * zero in case that write should be allowed.
1943  */
1944 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1945 {
1946 	struct inode *inode = file->f_mapping->host;
1947 	unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1948 
1949         if (unlikely(*pos < 0))
1950                 return -EINVAL;
1951 
1952 	if (!isblk) {
1953 		/* FIXME: this is for backwards compatibility with 2.4 */
1954 		if (file->f_flags & O_APPEND)
1955                         *pos = i_size_read(inode);
1956 
1957 		if (limit != RLIM_INFINITY) {
1958 			if (*pos >= limit) {
1959 				send_sig(SIGXFSZ, current, 0);
1960 				return -EFBIG;
1961 			}
1962 			if (*count > limit - (typeof(limit))*pos) {
1963 				*count = limit - (typeof(limit))*pos;
1964 			}
1965 		}
1966 	}
1967 
1968 	/*
1969 	 * LFS rule
1970 	 */
1971 	if (unlikely(*pos + *count > MAX_NON_LFS &&
1972 				!(file->f_flags & O_LARGEFILE))) {
1973 		if (*pos >= MAX_NON_LFS) {
1974 			send_sig(SIGXFSZ, current, 0);
1975 			return -EFBIG;
1976 		}
1977 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1978 			*count = MAX_NON_LFS - (unsigned long)*pos;
1979 		}
1980 	}
1981 
1982 	/*
1983 	 * Are we about to exceed the fs block limit ?
1984 	 *
1985 	 * If we have written data it becomes a short write.  If we have
1986 	 * exceeded without writing data we send a signal and return EFBIG.
1987 	 * Linus frestrict idea will clean these up nicely..
1988 	 */
1989 	if (likely(!isblk)) {
1990 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1991 			if (*count || *pos > inode->i_sb->s_maxbytes) {
1992 				send_sig(SIGXFSZ, current, 0);
1993 				return -EFBIG;
1994 			}
1995 			/* zero-length writes at ->s_maxbytes are OK */
1996 		}
1997 
1998 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1999 			*count = inode->i_sb->s_maxbytes - *pos;
2000 	} else {
2001 #ifdef CONFIG_BLOCK
2002 		loff_t isize;
2003 		if (bdev_read_only(I_BDEV(inode)))
2004 			return -EPERM;
2005 		isize = i_size_read(inode);
2006 		if (*pos >= isize) {
2007 			if (*count || *pos > isize)
2008 				return -ENOSPC;
2009 		}
2010 
2011 		if (*pos + *count > isize)
2012 			*count = isize - *pos;
2013 #else
2014 		return -EPERM;
2015 #endif
2016 	}
2017 	return 0;
2018 }
2019 EXPORT_SYMBOL(generic_write_checks);
2020 
2021 ssize_t
2022 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2023 		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2024 		size_t count, size_t ocount)
2025 {
2026 	struct file	*file = iocb->ki_filp;
2027 	struct address_space *mapping = file->f_mapping;
2028 	struct inode	*inode = mapping->host;
2029 	ssize_t		written;
2030 
2031 	if (count != ocount)
2032 		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2033 
2034 	written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2035 	if (written > 0) {
2036 		loff_t end = pos + written;
2037 		if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2038 			i_size_write(inode,  end);
2039 			mark_inode_dirty(inode);
2040 		}
2041 		*ppos = end;
2042 	}
2043 
2044 	/*
2045 	 * Sync the fs metadata but not the minor inode changes and
2046 	 * of course not the data as we did direct DMA for the IO.
2047 	 * i_mutex is held, which protects generic_osync_inode() from
2048 	 * livelocking.  AIO O_DIRECT ops attempt to sync metadata here.
2049 	 */
2050 	if ((written >= 0 || written == -EIOCBQUEUED) &&
2051 	    ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2052 		int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2053 		if (err < 0)
2054 			written = err;
2055 	}
2056 	return written;
2057 }
2058 EXPORT_SYMBOL(generic_file_direct_write);
2059 
2060 ssize_t
2061 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2062 		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2063 		size_t count, ssize_t written)
2064 {
2065 	struct file *file = iocb->ki_filp;
2066 	struct address_space * mapping = file->f_mapping;
2067 	const struct address_space_operations *a_ops = mapping->a_ops;
2068 	struct inode 	*inode = mapping->host;
2069 	long		status = 0;
2070 	struct page	*page;
2071 	struct page	*cached_page = NULL;
2072 	size_t		bytes;
2073 	struct pagevec	lru_pvec;
2074 	const struct iovec *cur_iov = iov; /* current iovec */
2075 	size_t		iov_base = 0;	   /* offset in the current iovec */
2076 	char __user	*buf;
2077 
2078 	pagevec_init(&lru_pvec, 0);
2079 
2080 	/*
2081 	 * handle partial DIO write.  Adjust cur_iov if needed.
2082 	 */
2083 	if (likely(nr_segs == 1))
2084 		buf = iov->iov_base + written;
2085 	else {
2086 		filemap_set_next_iovec(&cur_iov, &iov_base, written);
2087 		buf = cur_iov->iov_base + iov_base;
2088 	}
2089 
2090 	do {
2091 		unsigned long index;
2092 		unsigned long offset;
2093 		size_t copied;
2094 
2095 		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
2096 		index = pos >> PAGE_CACHE_SHIFT;
2097 		bytes = PAGE_CACHE_SIZE - offset;
2098 
2099 		/* Limit the size of the copy to the caller's write size */
2100 		bytes = min(bytes, count);
2101 
2102 		/*
2103 		 * Limit the size of the copy to that of the current segment,
2104 		 * because fault_in_pages_readable() doesn't know how to walk
2105 		 * segments.
2106 		 */
2107 		bytes = min(bytes, cur_iov->iov_len - iov_base);
2108 
2109 		/*
2110 		 * Bring in the user page that we will copy from _first_.
2111 		 * Otherwise there's a nasty deadlock on copying from the
2112 		 * same page as we're writing to, without it being marked
2113 		 * up-to-date.
2114 		 */
2115 		fault_in_pages_readable(buf, bytes);
2116 
2117 		page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec);
2118 		if (!page) {
2119 			status = -ENOMEM;
2120 			break;
2121 		}
2122 
2123 		if (unlikely(bytes == 0)) {
2124 			status = 0;
2125 			copied = 0;
2126 			goto zero_length_segment;
2127 		}
2128 
2129 		status = a_ops->prepare_write(file, page, offset, offset+bytes);
2130 		if (unlikely(status)) {
2131 			loff_t isize = i_size_read(inode);
2132 
2133 			if (status != AOP_TRUNCATED_PAGE)
2134 				unlock_page(page);
2135 			page_cache_release(page);
2136 			if (status == AOP_TRUNCATED_PAGE)
2137 				continue;
2138 			/*
2139 			 * prepare_write() may have instantiated a few blocks
2140 			 * outside i_size.  Trim these off again.
2141 			 */
2142 			if (pos + bytes > isize)
2143 				vmtruncate(inode, isize);
2144 			break;
2145 		}
2146 		if (likely(nr_segs == 1))
2147 			copied = filemap_copy_from_user(page, offset,
2148 							buf, bytes);
2149 		else
2150 			copied = filemap_copy_from_user_iovec(page, offset,
2151 						cur_iov, iov_base, bytes);
2152 		flush_dcache_page(page);
2153 		status = a_ops->commit_write(file, page, offset, offset+bytes);
2154 		if (status == AOP_TRUNCATED_PAGE) {
2155 			page_cache_release(page);
2156 			continue;
2157 		}
2158 zero_length_segment:
2159 		if (likely(copied >= 0)) {
2160 			if (!status)
2161 				status = copied;
2162 
2163 			if (status >= 0) {
2164 				written += status;
2165 				count -= status;
2166 				pos += status;
2167 				buf += status;
2168 				if (unlikely(nr_segs > 1)) {
2169 					filemap_set_next_iovec(&cur_iov,
2170 							&iov_base, status);
2171 					if (count)
2172 						buf = cur_iov->iov_base +
2173 							iov_base;
2174 				} else {
2175 					iov_base += status;
2176 				}
2177 			}
2178 		}
2179 		if (unlikely(copied != bytes))
2180 			if (status >= 0)
2181 				status = -EFAULT;
2182 		unlock_page(page);
2183 		mark_page_accessed(page);
2184 		page_cache_release(page);
2185 		if (status < 0)
2186 			break;
2187 		balance_dirty_pages_ratelimited(mapping);
2188 		cond_resched();
2189 	} while (count);
2190 	*ppos = pos;
2191 
2192 	if (cached_page)
2193 		page_cache_release(cached_page);
2194 
2195 	/*
2196 	 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
2197 	 */
2198 	if (likely(status >= 0)) {
2199 		if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2200 			if (!a_ops->writepage || !is_sync_kiocb(iocb))
2201 				status = generic_osync_inode(inode, mapping,
2202 						OSYNC_METADATA|OSYNC_DATA);
2203 		}
2204   	}
2205 
2206 	/*
2207 	 * If we get here for O_DIRECT writes then we must have fallen through
2208 	 * to buffered writes (block instantiation inside i_size).  So we sync
2209 	 * the file data here, to try to honour O_DIRECT expectations.
2210 	 */
2211 	if (unlikely(file->f_flags & O_DIRECT) && written)
2212 		status = filemap_write_and_wait(mapping);
2213 
2214 	pagevec_lru_add(&lru_pvec);
2215 	return written ? written : status;
2216 }
2217 EXPORT_SYMBOL(generic_file_buffered_write);
2218 
2219 static ssize_t
2220 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2221 				unsigned long nr_segs, loff_t *ppos)
2222 {
2223 	struct file *file = iocb->ki_filp;
2224 	struct address_space * mapping = file->f_mapping;
2225 	size_t ocount;		/* original count */
2226 	size_t count;		/* after file limit checks */
2227 	struct inode 	*inode = mapping->host;
2228 	unsigned long	seg;
2229 	loff_t		pos;
2230 	ssize_t		written;
2231 	ssize_t		err;
2232 
2233 	ocount = 0;
2234 	for (seg = 0; seg < nr_segs; seg++) {
2235 		const struct iovec *iv = &iov[seg];
2236 
2237 		/*
2238 		 * If any segment has a negative length, or the cumulative
2239 		 * length ever wraps negative then return -EINVAL.
2240 		 */
2241 		ocount += iv->iov_len;
2242 		if (unlikely((ssize_t)(ocount|iv->iov_len) < 0))
2243 			return -EINVAL;
2244 		if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len))
2245 			continue;
2246 		if (seg == 0)
2247 			return -EFAULT;
2248 		nr_segs = seg;
2249 		ocount -= iv->iov_len;	/* This segment is no good */
2250 		break;
2251 	}
2252 
2253 	count = ocount;
2254 	pos = *ppos;
2255 
2256 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2257 
2258 	/* We can write back this queue in page reclaim */
2259 	current->backing_dev_info = mapping->backing_dev_info;
2260 	written = 0;
2261 
2262 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2263 	if (err)
2264 		goto out;
2265 
2266 	if (count == 0)
2267 		goto out;
2268 
2269 	err = remove_suid(file->f_path.dentry);
2270 	if (err)
2271 		goto out;
2272 
2273 	file_update_time(file);
2274 
2275 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2276 	if (unlikely(file->f_flags & O_DIRECT)) {
2277 		loff_t endbyte;
2278 		ssize_t written_buffered;
2279 
2280 		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2281 							ppos, count, ocount);
2282 		if (written < 0 || written == count)
2283 			goto out;
2284 		/*
2285 		 * direct-io write to a hole: fall through to buffered I/O
2286 		 * for completing the rest of the request.
2287 		 */
2288 		pos += written;
2289 		count -= written;
2290 		written_buffered = generic_file_buffered_write(iocb, iov,
2291 						nr_segs, pos, ppos, count,
2292 						written);
2293 		/*
2294 		 * If generic_file_buffered_write() retuned a synchronous error
2295 		 * then we want to return the number of bytes which were
2296 		 * direct-written, or the error code if that was zero.  Note
2297 		 * that this differs from normal direct-io semantics, which
2298 		 * will return -EFOO even if some bytes were written.
2299 		 */
2300 		if (written_buffered < 0) {
2301 			err = written_buffered;
2302 			goto out;
2303 		}
2304 
2305 		/*
2306 		 * We need to ensure that the page cache pages are written to
2307 		 * disk and invalidated to preserve the expected O_DIRECT
2308 		 * semantics.
2309 		 */
2310 		endbyte = pos + written_buffered - written - 1;
2311 		err = do_sync_file_range(file, pos, endbyte,
2312 					 SYNC_FILE_RANGE_WAIT_BEFORE|
2313 					 SYNC_FILE_RANGE_WRITE|
2314 					 SYNC_FILE_RANGE_WAIT_AFTER);
2315 		if (err == 0) {
2316 			written = written_buffered;
2317 			invalidate_mapping_pages(mapping,
2318 						 pos >> PAGE_CACHE_SHIFT,
2319 						 endbyte >> PAGE_CACHE_SHIFT);
2320 		} else {
2321 			/*
2322 			 * We don't know how much we wrote, so just return
2323 			 * the number of bytes which were direct-written
2324 			 */
2325 		}
2326 	} else {
2327 		written = generic_file_buffered_write(iocb, iov, nr_segs,
2328 				pos, ppos, count, written);
2329 	}
2330 out:
2331 	current->backing_dev_info = NULL;
2332 	return written ? written : err;
2333 }
2334 
2335 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2336 		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2337 {
2338 	struct file *file = iocb->ki_filp;
2339 	struct address_space *mapping = file->f_mapping;
2340 	struct inode *inode = mapping->host;
2341 	ssize_t ret;
2342 
2343 	BUG_ON(iocb->ki_pos != pos);
2344 
2345 	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2346 			&iocb->ki_pos);
2347 
2348 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2349 		ssize_t err;
2350 
2351 		err = sync_page_range_nolock(inode, mapping, pos, ret);
2352 		if (err < 0)
2353 			ret = err;
2354 	}
2355 	return ret;
2356 }
2357 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2358 
2359 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2360 		unsigned long nr_segs, loff_t pos)
2361 {
2362 	struct file *file = iocb->ki_filp;
2363 	struct address_space *mapping = file->f_mapping;
2364 	struct inode *inode = mapping->host;
2365 	ssize_t ret;
2366 
2367 	BUG_ON(iocb->ki_pos != pos);
2368 
2369 	mutex_lock(&inode->i_mutex);
2370 	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2371 			&iocb->ki_pos);
2372 	mutex_unlock(&inode->i_mutex);
2373 
2374 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2375 		ssize_t err;
2376 
2377 		err = sync_page_range(inode, mapping, pos, ret);
2378 		if (err < 0)
2379 			ret = err;
2380 	}
2381 	return ret;
2382 }
2383 EXPORT_SYMBOL(generic_file_aio_write);
2384 
2385 /*
2386  * Called under i_mutex for writes to S_ISREG files.   Returns -EIO if something
2387  * went wrong during pagecache shootdown.
2388  */
2389 static ssize_t
2390 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2391 	loff_t offset, unsigned long nr_segs)
2392 {
2393 	struct file *file = iocb->ki_filp;
2394 	struct address_space *mapping = file->f_mapping;
2395 	ssize_t retval;
2396 	size_t write_len = 0;
2397 
2398 	/*
2399 	 * If it's a write, unmap all mmappings of the file up-front.  This
2400 	 * will cause any pte dirty bits to be propagated into the pageframes
2401 	 * for the subsequent filemap_write_and_wait().
2402 	 */
2403 	if (rw == WRITE) {
2404 		write_len = iov_length(iov, nr_segs);
2405 	       	if (mapping_mapped(mapping))
2406 			unmap_mapping_range(mapping, offset, write_len, 0);
2407 	}
2408 
2409 	retval = filemap_write_and_wait(mapping);
2410 	if (retval == 0) {
2411 		retval = mapping->a_ops->direct_IO(rw, iocb, iov,
2412 						offset, nr_segs);
2413 		if (rw == WRITE && mapping->nrpages) {
2414 			pgoff_t end = (offset + write_len - 1)
2415 						>> PAGE_CACHE_SHIFT;
2416 			int err = invalidate_inode_pages2_range(mapping,
2417 					offset >> PAGE_CACHE_SHIFT, end);
2418 			if (err)
2419 				retval = err;
2420 		}
2421 	}
2422 	return retval;
2423 }
2424 
2425 /**
2426  * try_to_release_page() - release old fs-specific metadata on a page
2427  *
2428  * @page: the page which the kernel is trying to free
2429  * @gfp_mask: memory allocation flags (and I/O mode)
2430  *
2431  * The address_space is to try to release any data against the page
2432  * (presumably at page->private).  If the release was successful, return `1'.
2433  * Otherwise return zero.
2434  *
2435  * The @gfp_mask argument specifies whether I/O may be performed to release
2436  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2437  *
2438  * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2439  */
2440 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2441 {
2442 	struct address_space * const mapping = page->mapping;
2443 
2444 	BUG_ON(!PageLocked(page));
2445 	if (PageWriteback(page))
2446 		return 0;
2447 
2448 	if (mapping && mapping->a_ops->releasepage)
2449 		return mapping->a_ops->releasepage(page, gfp_mask);
2450 	return try_to_free_buffers(page);
2451 }
2452 
2453 EXPORT_SYMBOL(try_to_release_page);
2454