xref: /linux/mm/filemap.c (revision b3b77c8caef1750ebeea1054e39e358550ea9f55)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/module.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include "internal.h"
38 
39 /*
40  * FIXME: remove all knowledge of the buffer layer from the core VM
41  */
42 #include <linux/buffer_head.h> /* for try_to_free_buffers */
43 
44 #include <asm/mman.h>
45 
46 /*
47  * Shared mappings implemented 30.11.1994. It's not fully working yet,
48  * though.
49  *
50  * Shared mappings now work. 15.8.1995  Bruno.
51  *
52  * finished 'unifying' the page and buffer cache and SMP-threaded the
53  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
54  *
55  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
56  */
57 
58 /*
59  * Lock ordering:
60  *
61  *  ->i_mmap_lock		(truncate_pagecache)
62  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
63  *      ->swap_lock		(exclusive_swap_page, others)
64  *        ->mapping->tree_lock
65  *
66  *  ->i_mutex
67  *    ->i_mmap_lock		(truncate->unmap_mapping_range)
68  *
69  *  ->mmap_sem
70  *    ->i_mmap_lock
71  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
72  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
73  *
74  *  ->mmap_sem
75  *    ->lock_page		(access_process_vm)
76  *
77  *  ->i_mutex			(generic_file_buffered_write)
78  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
79  *
80  *  ->i_mutex
81  *    ->i_alloc_sem             (various)
82  *
83  *  ->inode_lock
84  *    ->sb_lock			(fs/fs-writeback.c)
85  *    ->mapping->tree_lock	(__sync_single_inode)
86  *
87  *  ->i_mmap_lock
88  *    ->anon_vma.lock		(vma_adjust)
89  *
90  *  ->anon_vma.lock
91  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
92  *
93  *  ->page_table_lock or pte_lock
94  *    ->swap_lock		(try_to_unmap_one)
95  *    ->private_lock		(try_to_unmap_one)
96  *    ->tree_lock		(try_to_unmap_one)
97  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
98  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
99  *    ->private_lock		(page_remove_rmap->set_page_dirty)
100  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
101  *    ->inode_lock		(page_remove_rmap->set_page_dirty)
102  *    ->inode_lock		(zap_pte_range->set_page_dirty)
103  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
104  *
105  *  ->task->proc_lock
106  *    ->dcache_lock		(proc_pid_lookup)
107  *
108  *  (code doesn't rely on that order, so you could switch it around)
109  *  ->tasklist_lock             (memory_failure, collect_procs_ao)
110  *    ->i_mmap_lock
111  */
112 
113 /*
114  * Remove a page from the page cache and free it. Caller has to make
115  * sure the page is locked and that nobody else uses it - or that usage
116  * is safe.  The caller must hold the mapping's tree_lock.
117  */
118 void __remove_from_page_cache(struct page *page)
119 {
120 	struct address_space *mapping = page->mapping;
121 
122 	radix_tree_delete(&mapping->page_tree, page->index);
123 	page->mapping = NULL;
124 	mapping->nrpages--;
125 	__dec_zone_page_state(page, NR_FILE_PAGES);
126 	if (PageSwapBacked(page))
127 		__dec_zone_page_state(page, NR_SHMEM);
128 	BUG_ON(page_mapped(page));
129 
130 	/*
131 	 * Some filesystems seem to re-dirty the page even after
132 	 * the VM has canceled the dirty bit (eg ext3 journaling).
133 	 *
134 	 * Fix it up by doing a final dirty accounting check after
135 	 * having removed the page entirely.
136 	 */
137 	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
138 		dec_zone_page_state(page, NR_FILE_DIRTY);
139 		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
140 	}
141 }
142 
143 void remove_from_page_cache(struct page *page)
144 {
145 	struct address_space *mapping = page->mapping;
146 
147 	BUG_ON(!PageLocked(page));
148 
149 	spin_lock_irq(&mapping->tree_lock);
150 	__remove_from_page_cache(page);
151 	spin_unlock_irq(&mapping->tree_lock);
152 	mem_cgroup_uncharge_cache_page(page);
153 }
154 
155 static int sync_page(void *word)
156 {
157 	struct address_space *mapping;
158 	struct page *page;
159 
160 	page = container_of((unsigned long *)word, struct page, flags);
161 
162 	/*
163 	 * page_mapping() is being called without PG_locked held.
164 	 * Some knowledge of the state and use of the page is used to
165 	 * reduce the requirements down to a memory barrier.
166 	 * The danger here is of a stale page_mapping() return value
167 	 * indicating a struct address_space different from the one it's
168 	 * associated with when it is associated with one.
169 	 * After smp_mb(), it's either the correct page_mapping() for
170 	 * the page, or an old page_mapping() and the page's own
171 	 * page_mapping() has gone NULL.
172 	 * The ->sync_page() address_space operation must tolerate
173 	 * page_mapping() going NULL. By an amazing coincidence,
174 	 * this comes about because none of the users of the page
175 	 * in the ->sync_page() methods make essential use of the
176 	 * page_mapping(), merely passing the page down to the backing
177 	 * device's unplug functions when it's non-NULL, which in turn
178 	 * ignore it for all cases but swap, where only page_private(page) is
179 	 * of interest. When page_mapping() does go NULL, the entire
180 	 * call stack gracefully ignores the page and returns.
181 	 * -- wli
182 	 */
183 	smp_mb();
184 	mapping = page_mapping(page);
185 	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
186 		mapping->a_ops->sync_page(page);
187 	io_schedule();
188 	return 0;
189 }
190 
191 static int sync_page_killable(void *word)
192 {
193 	sync_page(word);
194 	return fatal_signal_pending(current) ? -EINTR : 0;
195 }
196 
197 /**
198  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
199  * @mapping:	address space structure to write
200  * @start:	offset in bytes where the range starts
201  * @end:	offset in bytes where the range ends (inclusive)
202  * @sync_mode:	enable synchronous operation
203  *
204  * Start writeback against all of a mapping's dirty pages that lie
205  * within the byte offsets <start, end> inclusive.
206  *
207  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
208  * opposed to a regular memory cleansing writeback.  The difference between
209  * these two operations is that if a dirty page/buffer is encountered, it must
210  * be waited upon, and not just skipped over.
211  */
212 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
213 				loff_t end, int sync_mode)
214 {
215 	int ret;
216 	struct writeback_control wbc = {
217 		.sync_mode = sync_mode,
218 		.nr_to_write = LONG_MAX,
219 		.range_start = start,
220 		.range_end = end,
221 	};
222 
223 	if (!mapping_cap_writeback_dirty(mapping))
224 		return 0;
225 
226 	ret = do_writepages(mapping, &wbc);
227 	return ret;
228 }
229 
230 static inline int __filemap_fdatawrite(struct address_space *mapping,
231 	int sync_mode)
232 {
233 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
234 }
235 
236 int filemap_fdatawrite(struct address_space *mapping)
237 {
238 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
239 }
240 EXPORT_SYMBOL(filemap_fdatawrite);
241 
242 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
243 				loff_t end)
244 {
245 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
246 }
247 EXPORT_SYMBOL(filemap_fdatawrite_range);
248 
249 /**
250  * filemap_flush - mostly a non-blocking flush
251  * @mapping:	target address_space
252  *
253  * This is a mostly non-blocking flush.  Not suitable for data-integrity
254  * purposes - I/O may not be started against all dirty pages.
255  */
256 int filemap_flush(struct address_space *mapping)
257 {
258 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
259 }
260 EXPORT_SYMBOL(filemap_flush);
261 
262 /**
263  * filemap_fdatawait_range - wait for writeback to complete
264  * @mapping:		address space structure to wait for
265  * @start_byte:		offset in bytes where the range starts
266  * @end_byte:		offset in bytes where the range ends (inclusive)
267  *
268  * Walk the list of under-writeback pages of the given address space
269  * in the given range and wait for all of them.
270  */
271 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
272 			    loff_t end_byte)
273 {
274 	pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
275 	pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
276 	struct pagevec pvec;
277 	int nr_pages;
278 	int ret = 0;
279 
280 	if (end_byte < start_byte)
281 		return 0;
282 
283 	pagevec_init(&pvec, 0);
284 	while ((index <= end) &&
285 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
286 			PAGECACHE_TAG_WRITEBACK,
287 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
288 		unsigned i;
289 
290 		for (i = 0; i < nr_pages; i++) {
291 			struct page *page = pvec.pages[i];
292 
293 			/* until radix tree lookup accepts end_index */
294 			if (page->index > end)
295 				continue;
296 
297 			wait_on_page_writeback(page);
298 			if (PageError(page))
299 				ret = -EIO;
300 		}
301 		pagevec_release(&pvec);
302 		cond_resched();
303 	}
304 
305 	/* Check for outstanding write errors */
306 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
307 		ret = -ENOSPC;
308 	if (test_and_clear_bit(AS_EIO, &mapping->flags))
309 		ret = -EIO;
310 
311 	return ret;
312 }
313 EXPORT_SYMBOL(filemap_fdatawait_range);
314 
315 /**
316  * filemap_fdatawait - wait for all under-writeback pages to complete
317  * @mapping: address space structure to wait for
318  *
319  * Walk the list of under-writeback pages of the given address space
320  * and wait for all of them.
321  */
322 int filemap_fdatawait(struct address_space *mapping)
323 {
324 	loff_t i_size = i_size_read(mapping->host);
325 
326 	if (i_size == 0)
327 		return 0;
328 
329 	return filemap_fdatawait_range(mapping, 0, i_size - 1);
330 }
331 EXPORT_SYMBOL(filemap_fdatawait);
332 
333 int filemap_write_and_wait(struct address_space *mapping)
334 {
335 	int err = 0;
336 
337 	if (mapping->nrpages) {
338 		err = filemap_fdatawrite(mapping);
339 		/*
340 		 * Even if the above returned error, the pages may be
341 		 * written partially (e.g. -ENOSPC), so we wait for it.
342 		 * But the -EIO is special case, it may indicate the worst
343 		 * thing (e.g. bug) happened, so we avoid waiting for it.
344 		 */
345 		if (err != -EIO) {
346 			int err2 = filemap_fdatawait(mapping);
347 			if (!err)
348 				err = err2;
349 		}
350 	}
351 	return err;
352 }
353 EXPORT_SYMBOL(filemap_write_and_wait);
354 
355 /**
356  * filemap_write_and_wait_range - write out & wait on a file range
357  * @mapping:	the address_space for the pages
358  * @lstart:	offset in bytes where the range starts
359  * @lend:	offset in bytes where the range ends (inclusive)
360  *
361  * Write out and wait upon file offsets lstart->lend, inclusive.
362  *
363  * Note that `lend' is inclusive (describes the last byte to be written) so
364  * that this function can be used to write to the very end-of-file (end = -1).
365  */
366 int filemap_write_and_wait_range(struct address_space *mapping,
367 				 loff_t lstart, loff_t lend)
368 {
369 	int err = 0;
370 
371 	if (mapping->nrpages) {
372 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
373 						 WB_SYNC_ALL);
374 		/* See comment of filemap_write_and_wait() */
375 		if (err != -EIO) {
376 			int err2 = filemap_fdatawait_range(mapping,
377 						lstart, lend);
378 			if (!err)
379 				err = err2;
380 		}
381 	}
382 	return err;
383 }
384 EXPORT_SYMBOL(filemap_write_and_wait_range);
385 
386 /**
387  * add_to_page_cache_locked - add a locked page to the pagecache
388  * @page:	page to add
389  * @mapping:	the page's address_space
390  * @offset:	page index
391  * @gfp_mask:	page allocation mode
392  *
393  * This function is used to add a page to the pagecache. It must be locked.
394  * This function does not add the page to the LRU.  The caller must do that.
395  */
396 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
397 		pgoff_t offset, gfp_t gfp_mask)
398 {
399 	int error;
400 
401 	VM_BUG_ON(!PageLocked(page));
402 
403 	error = mem_cgroup_cache_charge(page, current->mm,
404 					gfp_mask & GFP_RECLAIM_MASK);
405 	if (error)
406 		goto out;
407 
408 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
409 	if (error == 0) {
410 		page_cache_get(page);
411 		page->mapping = mapping;
412 		page->index = offset;
413 
414 		spin_lock_irq(&mapping->tree_lock);
415 		error = radix_tree_insert(&mapping->page_tree, offset, page);
416 		if (likely(!error)) {
417 			mapping->nrpages++;
418 			__inc_zone_page_state(page, NR_FILE_PAGES);
419 			if (PageSwapBacked(page))
420 				__inc_zone_page_state(page, NR_SHMEM);
421 			spin_unlock_irq(&mapping->tree_lock);
422 		} else {
423 			page->mapping = NULL;
424 			spin_unlock_irq(&mapping->tree_lock);
425 			mem_cgroup_uncharge_cache_page(page);
426 			page_cache_release(page);
427 		}
428 		radix_tree_preload_end();
429 	} else
430 		mem_cgroup_uncharge_cache_page(page);
431 out:
432 	return error;
433 }
434 EXPORT_SYMBOL(add_to_page_cache_locked);
435 
436 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
437 				pgoff_t offset, gfp_t gfp_mask)
438 {
439 	int ret;
440 
441 	/*
442 	 * Splice_read and readahead add shmem/tmpfs pages into the page cache
443 	 * before shmem_readpage has a chance to mark them as SwapBacked: they
444 	 * need to go on the anon lru below, and mem_cgroup_cache_charge
445 	 * (called in add_to_page_cache) needs to know where they're going too.
446 	 */
447 	if (mapping_cap_swap_backed(mapping))
448 		SetPageSwapBacked(page);
449 
450 	ret = add_to_page_cache(page, mapping, offset, gfp_mask);
451 	if (ret == 0) {
452 		if (page_is_file_cache(page))
453 			lru_cache_add_file(page);
454 		else
455 			lru_cache_add_anon(page);
456 	}
457 	return ret;
458 }
459 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
460 
461 #ifdef CONFIG_NUMA
462 struct page *__page_cache_alloc(gfp_t gfp)
463 {
464 	int n;
465 	struct page *page;
466 
467 	if (cpuset_do_page_mem_spread()) {
468 		get_mems_allowed();
469 		n = cpuset_mem_spread_node();
470 		page = alloc_pages_exact_node(n, gfp, 0);
471 		put_mems_allowed();
472 		return page;
473 	}
474 	return alloc_pages(gfp, 0);
475 }
476 EXPORT_SYMBOL(__page_cache_alloc);
477 #endif
478 
479 static int __sleep_on_page_lock(void *word)
480 {
481 	io_schedule();
482 	return 0;
483 }
484 
485 /*
486  * In order to wait for pages to become available there must be
487  * waitqueues associated with pages. By using a hash table of
488  * waitqueues where the bucket discipline is to maintain all
489  * waiters on the same queue and wake all when any of the pages
490  * become available, and for the woken contexts to check to be
491  * sure the appropriate page became available, this saves space
492  * at a cost of "thundering herd" phenomena during rare hash
493  * collisions.
494  */
495 static wait_queue_head_t *page_waitqueue(struct page *page)
496 {
497 	const struct zone *zone = page_zone(page);
498 
499 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
500 }
501 
502 static inline void wake_up_page(struct page *page, int bit)
503 {
504 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
505 }
506 
507 void wait_on_page_bit(struct page *page, int bit_nr)
508 {
509 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
510 
511 	if (test_bit(bit_nr, &page->flags))
512 		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
513 							TASK_UNINTERRUPTIBLE);
514 }
515 EXPORT_SYMBOL(wait_on_page_bit);
516 
517 /**
518  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
519  * @page: Page defining the wait queue of interest
520  * @waiter: Waiter to add to the queue
521  *
522  * Add an arbitrary @waiter to the wait queue for the nominated @page.
523  */
524 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
525 {
526 	wait_queue_head_t *q = page_waitqueue(page);
527 	unsigned long flags;
528 
529 	spin_lock_irqsave(&q->lock, flags);
530 	__add_wait_queue(q, waiter);
531 	spin_unlock_irqrestore(&q->lock, flags);
532 }
533 EXPORT_SYMBOL_GPL(add_page_wait_queue);
534 
535 /**
536  * unlock_page - unlock a locked page
537  * @page: the page
538  *
539  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
540  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
541  * mechananism between PageLocked pages and PageWriteback pages is shared.
542  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
543  *
544  * The mb is necessary to enforce ordering between the clear_bit and the read
545  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
546  */
547 void unlock_page(struct page *page)
548 {
549 	VM_BUG_ON(!PageLocked(page));
550 	clear_bit_unlock(PG_locked, &page->flags);
551 	smp_mb__after_clear_bit();
552 	wake_up_page(page, PG_locked);
553 }
554 EXPORT_SYMBOL(unlock_page);
555 
556 /**
557  * end_page_writeback - end writeback against a page
558  * @page: the page
559  */
560 void end_page_writeback(struct page *page)
561 {
562 	if (TestClearPageReclaim(page))
563 		rotate_reclaimable_page(page);
564 
565 	if (!test_clear_page_writeback(page))
566 		BUG();
567 
568 	smp_mb__after_clear_bit();
569 	wake_up_page(page, PG_writeback);
570 }
571 EXPORT_SYMBOL(end_page_writeback);
572 
573 /**
574  * __lock_page - get a lock on the page, assuming we need to sleep to get it
575  * @page: the page to lock
576  *
577  * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
578  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
579  * chances are that on the second loop, the block layer's plug list is empty,
580  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
581  */
582 void __lock_page(struct page *page)
583 {
584 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
585 
586 	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
587 							TASK_UNINTERRUPTIBLE);
588 }
589 EXPORT_SYMBOL(__lock_page);
590 
591 int __lock_page_killable(struct page *page)
592 {
593 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
594 
595 	return __wait_on_bit_lock(page_waitqueue(page), &wait,
596 					sync_page_killable, TASK_KILLABLE);
597 }
598 EXPORT_SYMBOL_GPL(__lock_page_killable);
599 
600 /**
601  * __lock_page_nosync - get a lock on the page, without calling sync_page()
602  * @page: the page to lock
603  *
604  * Variant of lock_page that does not require the caller to hold a reference
605  * on the page's mapping.
606  */
607 void __lock_page_nosync(struct page *page)
608 {
609 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
610 	__wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
611 							TASK_UNINTERRUPTIBLE);
612 }
613 
614 /**
615  * find_get_page - find and get a page reference
616  * @mapping: the address_space to search
617  * @offset: the page index
618  *
619  * Is there a pagecache struct page at the given (mapping, offset) tuple?
620  * If yes, increment its refcount and return it; if no, return NULL.
621  */
622 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
623 {
624 	void **pagep;
625 	struct page *page;
626 
627 	rcu_read_lock();
628 repeat:
629 	page = NULL;
630 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
631 	if (pagep) {
632 		page = radix_tree_deref_slot(pagep);
633 		if (unlikely(!page || page == RADIX_TREE_RETRY))
634 			goto repeat;
635 
636 		if (!page_cache_get_speculative(page))
637 			goto repeat;
638 
639 		/*
640 		 * Has the page moved?
641 		 * This is part of the lockless pagecache protocol. See
642 		 * include/linux/pagemap.h for details.
643 		 */
644 		if (unlikely(page != *pagep)) {
645 			page_cache_release(page);
646 			goto repeat;
647 		}
648 	}
649 	rcu_read_unlock();
650 
651 	return page;
652 }
653 EXPORT_SYMBOL(find_get_page);
654 
655 /**
656  * find_lock_page - locate, pin and lock a pagecache page
657  * @mapping: the address_space to search
658  * @offset: the page index
659  *
660  * Locates the desired pagecache page, locks it, increments its reference
661  * count and returns its address.
662  *
663  * Returns zero if the page was not present. find_lock_page() may sleep.
664  */
665 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
666 {
667 	struct page *page;
668 
669 repeat:
670 	page = find_get_page(mapping, offset);
671 	if (page) {
672 		lock_page(page);
673 		/* Has the page been truncated? */
674 		if (unlikely(page->mapping != mapping)) {
675 			unlock_page(page);
676 			page_cache_release(page);
677 			goto repeat;
678 		}
679 		VM_BUG_ON(page->index != offset);
680 	}
681 	return page;
682 }
683 EXPORT_SYMBOL(find_lock_page);
684 
685 /**
686  * find_or_create_page - locate or add a pagecache page
687  * @mapping: the page's address_space
688  * @index: the page's index into the mapping
689  * @gfp_mask: page allocation mode
690  *
691  * Locates a page in the pagecache.  If the page is not present, a new page
692  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
693  * LRU list.  The returned page is locked and has its reference count
694  * incremented.
695  *
696  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
697  * allocation!
698  *
699  * find_or_create_page() returns the desired page's address, or zero on
700  * memory exhaustion.
701  */
702 struct page *find_or_create_page(struct address_space *mapping,
703 		pgoff_t index, gfp_t gfp_mask)
704 {
705 	struct page *page;
706 	int err;
707 repeat:
708 	page = find_lock_page(mapping, index);
709 	if (!page) {
710 		page = __page_cache_alloc(gfp_mask);
711 		if (!page)
712 			return NULL;
713 		/*
714 		 * We want a regular kernel memory (not highmem or DMA etc)
715 		 * allocation for the radix tree nodes, but we need to honour
716 		 * the context-specific requirements the caller has asked for.
717 		 * GFP_RECLAIM_MASK collects those requirements.
718 		 */
719 		err = add_to_page_cache_lru(page, mapping, index,
720 			(gfp_mask & GFP_RECLAIM_MASK));
721 		if (unlikely(err)) {
722 			page_cache_release(page);
723 			page = NULL;
724 			if (err == -EEXIST)
725 				goto repeat;
726 		}
727 	}
728 	return page;
729 }
730 EXPORT_SYMBOL(find_or_create_page);
731 
732 /**
733  * find_get_pages - gang pagecache lookup
734  * @mapping:	The address_space to search
735  * @start:	The starting page index
736  * @nr_pages:	The maximum number of pages
737  * @pages:	Where the resulting pages are placed
738  *
739  * find_get_pages() will search for and return a group of up to
740  * @nr_pages pages in the mapping.  The pages are placed at @pages.
741  * find_get_pages() takes a reference against the returned pages.
742  *
743  * The search returns a group of mapping-contiguous pages with ascending
744  * indexes.  There may be holes in the indices due to not-present pages.
745  *
746  * find_get_pages() returns the number of pages which were found.
747  */
748 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
749 			    unsigned int nr_pages, struct page **pages)
750 {
751 	unsigned int i;
752 	unsigned int ret;
753 	unsigned int nr_found;
754 
755 	rcu_read_lock();
756 restart:
757 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
758 				(void ***)pages, start, nr_pages);
759 	ret = 0;
760 	for (i = 0; i < nr_found; i++) {
761 		struct page *page;
762 repeat:
763 		page = radix_tree_deref_slot((void **)pages[i]);
764 		if (unlikely(!page))
765 			continue;
766 		/*
767 		 * this can only trigger if nr_found == 1, making livelock
768 		 * a non issue.
769 		 */
770 		if (unlikely(page == RADIX_TREE_RETRY))
771 			goto restart;
772 
773 		if (!page_cache_get_speculative(page))
774 			goto repeat;
775 
776 		/* Has the page moved? */
777 		if (unlikely(page != *((void **)pages[i]))) {
778 			page_cache_release(page);
779 			goto repeat;
780 		}
781 
782 		pages[ret] = page;
783 		ret++;
784 	}
785 	rcu_read_unlock();
786 	return ret;
787 }
788 
789 /**
790  * find_get_pages_contig - gang contiguous pagecache lookup
791  * @mapping:	The address_space to search
792  * @index:	The starting page index
793  * @nr_pages:	The maximum number of pages
794  * @pages:	Where the resulting pages are placed
795  *
796  * find_get_pages_contig() works exactly like find_get_pages(), except
797  * that the returned number of pages are guaranteed to be contiguous.
798  *
799  * find_get_pages_contig() returns the number of pages which were found.
800  */
801 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
802 			       unsigned int nr_pages, struct page **pages)
803 {
804 	unsigned int i;
805 	unsigned int ret;
806 	unsigned int nr_found;
807 
808 	rcu_read_lock();
809 restart:
810 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
811 				(void ***)pages, index, nr_pages);
812 	ret = 0;
813 	for (i = 0; i < nr_found; i++) {
814 		struct page *page;
815 repeat:
816 		page = radix_tree_deref_slot((void **)pages[i]);
817 		if (unlikely(!page))
818 			continue;
819 		/*
820 		 * this can only trigger if nr_found == 1, making livelock
821 		 * a non issue.
822 		 */
823 		if (unlikely(page == RADIX_TREE_RETRY))
824 			goto restart;
825 
826 		if (page->mapping == NULL || page->index != index)
827 			break;
828 
829 		if (!page_cache_get_speculative(page))
830 			goto repeat;
831 
832 		/* Has the page moved? */
833 		if (unlikely(page != *((void **)pages[i]))) {
834 			page_cache_release(page);
835 			goto repeat;
836 		}
837 
838 		pages[ret] = page;
839 		ret++;
840 		index++;
841 	}
842 	rcu_read_unlock();
843 	return ret;
844 }
845 EXPORT_SYMBOL(find_get_pages_contig);
846 
847 /**
848  * find_get_pages_tag - find and return pages that match @tag
849  * @mapping:	the address_space to search
850  * @index:	the starting page index
851  * @tag:	the tag index
852  * @nr_pages:	the maximum number of pages
853  * @pages:	where the resulting pages are placed
854  *
855  * Like find_get_pages, except we only return pages which are tagged with
856  * @tag.   We update @index to index the next page for the traversal.
857  */
858 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
859 			int tag, unsigned int nr_pages, struct page **pages)
860 {
861 	unsigned int i;
862 	unsigned int ret;
863 	unsigned int nr_found;
864 
865 	rcu_read_lock();
866 restart:
867 	nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
868 				(void ***)pages, *index, nr_pages, tag);
869 	ret = 0;
870 	for (i = 0; i < nr_found; i++) {
871 		struct page *page;
872 repeat:
873 		page = radix_tree_deref_slot((void **)pages[i]);
874 		if (unlikely(!page))
875 			continue;
876 		/*
877 		 * this can only trigger if nr_found == 1, making livelock
878 		 * a non issue.
879 		 */
880 		if (unlikely(page == RADIX_TREE_RETRY))
881 			goto restart;
882 
883 		if (!page_cache_get_speculative(page))
884 			goto repeat;
885 
886 		/* Has the page moved? */
887 		if (unlikely(page != *((void **)pages[i]))) {
888 			page_cache_release(page);
889 			goto repeat;
890 		}
891 
892 		pages[ret] = page;
893 		ret++;
894 	}
895 	rcu_read_unlock();
896 
897 	if (ret)
898 		*index = pages[ret - 1]->index + 1;
899 
900 	return ret;
901 }
902 EXPORT_SYMBOL(find_get_pages_tag);
903 
904 /**
905  * grab_cache_page_nowait - returns locked page at given index in given cache
906  * @mapping: target address_space
907  * @index: the page index
908  *
909  * Same as grab_cache_page(), but do not wait if the page is unavailable.
910  * This is intended for speculative data generators, where the data can
911  * be regenerated if the page couldn't be grabbed.  This routine should
912  * be safe to call while holding the lock for another page.
913  *
914  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
915  * and deadlock against the caller's locked page.
916  */
917 struct page *
918 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
919 {
920 	struct page *page = find_get_page(mapping, index);
921 
922 	if (page) {
923 		if (trylock_page(page))
924 			return page;
925 		page_cache_release(page);
926 		return NULL;
927 	}
928 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
929 	if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
930 		page_cache_release(page);
931 		page = NULL;
932 	}
933 	return page;
934 }
935 EXPORT_SYMBOL(grab_cache_page_nowait);
936 
937 /*
938  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
939  * a _large_ part of the i/o request. Imagine the worst scenario:
940  *
941  *      ---R__________________________________________B__________
942  *         ^ reading here                             ^ bad block(assume 4k)
943  *
944  * read(R) => miss => readahead(R...B) => media error => frustrating retries
945  * => failing the whole request => read(R) => read(R+1) =>
946  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
947  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
948  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
949  *
950  * It is going insane. Fix it by quickly scaling down the readahead size.
951  */
952 static void shrink_readahead_size_eio(struct file *filp,
953 					struct file_ra_state *ra)
954 {
955 	ra->ra_pages /= 4;
956 }
957 
958 /**
959  * do_generic_file_read - generic file read routine
960  * @filp:	the file to read
961  * @ppos:	current file position
962  * @desc:	read_descriptor
963  * @actor:	read method
964  *
965  * This is a generic file read routine, and uses the
966  * mapping->a_ops->readpage() function for the actual low-level stuff.
967  *
968  * This is really ugly. But the goto's actually try to clarify some
969  * of the logic when it comes to error handling etc.
970  */
971 static void do_generic_file_read(struct file *filp, loff_t *ppos,
972 		read_descriptor_t *desc, read_actor_t actor)
973 {
974 	struct address_space *mapping = filp->f_mapping;
975 	struct inode *inode = mapping->host;
976 	struct file_ra_state *ra = &filp->f_ra;
977 	pgoff_t index;
978 	pgoff_t last_index;
979 	pgoff_t prev_index;
980 	unsigned long offset;      /* offset into pagecache page */
981 	unsigned int prev_offset;
982 	int error;
983 
984 	index = *ppos >> PAGE_CACHE_SHIFT;
985 	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
986 	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
987 	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
988 	offset = *ppos & ~PAGE_CACHE_MASK;
989 
990 	for (;;) {
991 		struct page *page;
992 		pgoff_t end_index;
993 		loff_t isize;
994 		unsigned long nr, ret;
995 
996 		cond_resched();
997 find_page:
998 		page = find_get_page(mapping, index);
999 		if (!page) {
1000 			page_cache_sync_readahead(mapping,
1001 					ra, filp,
1002 					index, last_index - index);
1003 			page = find_get_page(mapping, index);
1004 			if (unlikely(page == NULL))
1005 				goto no_cached_page;
1006 		}
1007 		if (PageReadahead(page)) {
1008 			page_cache_async_readahead(mapping,
1009 					ra, filp, page,
1010 					index, last_index - index);
1011 		}
1012 		if (!PageUptodate(page)) {
1013 			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1014 					!mapping->a_ops->is_partially_uptodate)
1015 				goto page_not_up_to_date;
1016 			if (!trylock_page(page))
1017 				goto page_not_up_to_date;
1018 			if (!mapping->a_ops->is_partially_uptodate(page,
1019 								desc, offset))
1020 				goto page_not_up_to_date_locked;
1021 			unlock_page(page);
1022 		}
1023 page_ok:
1024 		/*
1025 		 * i_size must be checked after we know the page is Uptodate.
1026 		 *
1027 		 * Checking i_size after the check allows us to calculate
1028 		 * the correct value for "nr", which means the zero-filled
1029 		 * part of the page is not copied back to userspace (unless
1030 		 * another truncate extends the file - this is desired though).
1031 		 */
1032 
1033 		isize = i_size_read(inode);
1034 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1035 		if (unlikely(!isize || index > end_index)) {
1036 			page_cache_release(page);
1037 			goto out;
1038 		}
1039 
1040 		/* nr is the maximum number of bytes to copy from this page */
1041 		nr = PAGE_CACHE_SIZE;
1042 		if (index == end_index) {
1043 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1044 			if (nr <= offset) {
1045 				page_cache_release(page);
1046 				goto out;
1047 			}
1048 		}
1049 		nr = nr - offset;
1050 
1051 		/* If users can be writing to this page using arbitrary
1052 		 * virtual addresses, take care about potential aliasing
1053 		 * before reading the page on the kernel side.
1054 		 */
1055 		if (mapping_writably_mapped(mapping))
1056 			flush_dcache_page(page);
1057 
1058 		/*
1059 		 * When a sequential read accesses a page several times,
1060 		 * only mark it as accessed the first time.
1061 		 */
1062 		if (prev_index != index || offset != prev_offset)
1063 			mark_page_accessed(page);
1064 		prev_index = index;
1065 
1066 		/*
1067 		 * Ok, we have the page, and it's up-to-date, so
1068 		 * now we can copy it to user space...
1069 		 *
1070 		 * The actor routine returns how many bytes were actually used..
1071 		 * NOTE! This may not be the same as how much of a user buffer
1072 		 * we filled up (we may be padding etc), so we can only update
1073 		 * "pos" here (the actor routine has to update the user buffer
1074 		 * pointers and the remaining count).
1075 		 */
1076 		ret = actor(desc, page, offset, nr);
1077 		offset += ret;
1078 		index += offset >> PAGE_CACHE_SHIFT;
1079 		offset &= ~PAGE_CACHE_MASK;
1080 		prev_offset = offset;
1081 
1082 		page_cache_release(page);
1083 		if (ret == nr && desc->count)
1084 			continue;
1085 		goto out;
1086 
1087 page_not_up_to_date:
1088 		/* Get exclusive access to the page ... */
1089 		error = lock_page_killable(page);
1090 		if (unlikely(error))
1091 			goto readpage_error;
1092 
1093 page_not_up_to_date_locked:
1094 		/* Did it get truncated before we got the lock? */
1095 		if (!page->mapping) {
1096 			unlock_page(page);
1097 			page_cache_release(page);
1098 			continue;
1099 		}
1100 
1101 		/* Did somebody else fill it already? */
1102 		if (PageUptodate(page)) {
1103 			unlock_page(page);
1104 			goto page_ok;
1105 		}
1106 
1107 readpage:
1108 		/* Start the actual read. The read will unlock the page. */
1109 		error = mapping->a_ops->readpage(filp, page);
1110 
1111 		if (unlikely(error)) {
1112 			if (error == AOP_TRUNCATED_PAGE) {
1113 				page_cache_release(page);
1114 				goto find_page;
1115 			}
1116 			goto readpage_error;
1117 		}
1118 
1119 		if (!PageUptodate(page)) {
1120 			error = lock_page_killable(page);
1121 			if (unlikely(error))
1122 				goto readpage_error;
1123 			if (!PageUptodate(page)) {
1124 				if (page->mapping == NULL) {
1125 					/*
1126 					 * invalidate_mapping_pages got it
1127 					 */
1128 					unlock_page(page);
1129 					page_cache_release(page);
1130 					goto find_page;
1131 				}
1132 				unlock_page(page);
1133 				shrink_readahead_size_eio(filp, ra);
1134 				error = -EIO;
1135 				goto readpage_error;
1136 			}
1137 			unlock_page(page);
1138 		}
1139 
1140 		goto page_ok;
1141 
1142 readpage_error:
1143 		/* UHHUH! A synchronous read error occurred. Report it */
1144 		desc->error = error;
1145 		page_cache_release(page);
1146 		goto out;
1147 
1148 no_cached_page:
1149 		/*
1150 		 * Ok, it wasn't cached, so we need to create a new
1151 		 * page..
1152 		 */
1153 		page = page_cache_alloc_cold(mapping);
1154 		if (!page) {
1155 			desc->error = -ENOMEM;
1156 			goto out;
1157 		}
1158 		error = add_to_page_cache_lru(page, mapping,
1159 						index, GFP_KERNEL);
1160 		if (error) {
1161 			page_cache_release(page);
1162 			if (error == -EEXIST)
1163 				goto find_page;
1164 			desc->error = error;
1165 			goto out;
1166 		}
1167 		goto readpage;
1168 	}
1169 
1170 out:
1171 	ra->prev_pos = prev_index;
1172 	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1173 	ra->prev_pos |= prev_offset;
1174 
1175 	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1176 	file_accessed(filp);
1177 }
1178 
1179 int file_read_actor(read_descriptor_t *desc, struct page *page,
1180 			unsigned long offset, unsigned long size)
1181 {
1182 	char *kaddr;
1183 	unsigned long left, count = desc->count;
1184 
1185 	if (size > count)
1186 		size = count;
1187 
1188 	/*
1189 	 * Faults on the destination of a read are common, so do it before
1190 	 * taking the kmap.
1191 	 */
1192 	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1193 		kaddr = kmap_atomic(page, KM_USER0);
1194 		left = __copy_to_user_inatomic(desc->arg.buf,
1195 						kaddr + offset, size);
1196 		kunmap_atomic(kaddr, KM_USER0);
1197 		if (left == 0)
1198 			goto success;
1199 	}
1200 
1201 	/* Do it the slow way */
1202 	kaddr = kmap(page);
1203 	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1204 	kunmap(page);
1205 
1206 	if (left) {
1207 		size -= left;
1208 		desc->error = -EFAULT;
1209 	}
1210 success:
1211 	desc->count = count - size;
1212 	desc->written += size;
1213 	desc->arg.buf += size;
1214 	return size;
1215 }
1216 
1217 /*
1218  * Performs necessary checks before doing a write
1219  * @iov:	io vector request
1220  * @nr_segs:	number of segments in the iovec
1221  * @count:	number of bytes to write
1222  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1223  *
1224  * Adjust number of segments and amount of bytes to write (nr_segs should be
1225  * properly initialized first). Returns appropriate error code that caller
1226  * should return or zero in case that write should be allowed.
1227  */
1228 int generic_segment_checks(const struct iovec *iov,
1229 			unsigned long *nr_segs, size_t *count, int access_flags)
1230 {
1231 	unsigned long   seg;
1232 	size_t cnt = 0;
1233 	for (seg = 0; seg < *nr_segs; seg++) {
1234 		const struct iovec *iv = &iov[seg];
1235 
1236 		/*
1237 		 * If any segment has a negative length, or the cumulative
1238 		 * length ever wraps negative then return -EINVAL.
1239 		 */
1240 		cnt += iv->iov_len;
1241 		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1242 			return -EINVAL;
1243 		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1244 			continue;
1245 		if (seg == 0)
1246 			return -EFAULT;
1247 		*nr_segs = seg;
1248 		cnt -= iv->iov_len;	/* This segment is no good */
1249 		break;
1250 	}
1251 	*count = cnt;
1252 	return 0;
1253 }
1254 EXPORT_SYMBOL(generic_segment_checks);
1255 
1256 /**
1257  * generic_file_aio_read - generic filesystem read routine
1258  * @iocb:	kernel I/O control block
1259  * @iov:	io vector request
1260  * @nr_segs:	number of segments in the iovec
1261  * @pos:	current file position
1262  *
1263  * This is the "read()" routine for all filesystems
1264  * that can use the page cache directly.
1265  */
1266 ssize_t
1267 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1268 		unsigned long nr_segs, loff_t pos)
1269 {
1270 	struct file *filp = iocb->ki_filp;
1271 	ssize_t retval;
1272 	unsigned long seg;
1273 	size_t count;
1274 	loff_t *ppos = &iocb->ki_pos;
1275 
1276 	count = 0;
1277 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1278 	if (retval)
1279 		return retval;
1280 
1281 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1282 	if (filp->f_flags & O_DIRECT) {
1283 		loff_t size;
1284 		struct address_space *mapping;
1285 		struct inode *inode;
1286 
1287 		mapping = filp->f_mapping;
1288 		inode = mapping->host;
1289 		if (!count)
1290 			goto out; /* skip atime */
1291 		size = i_size_read(inode);
1292 		if (pos < size) {
1293 			retval = filemap_write_and_wait_range(mapping, pos,
1294 					pos + iov_length(iov, nr_segs) - 1);
1295 			if (!retval) {
1296 				retval = mapping->a_ops->direct_IO(READ, iocb,
1297 							iov, pos, nr_segs);
1298 			}
1299 			if (retval > 0)
1300 				*ppos = pos + retval;
1301 			if (retval) {
1302 				file_accessed(filp);
1303 				goto out;
1304 			}
1305 		}
1306 	}
1307 
1308 	for (seg = 0; seg < nr_segs; seg++) {
1309 		read_descriptor_t desc;
1310 
1311 		desc.written = 0;
1312 		desc.arg.buf = iov[seg].iov_base;
1313 		desc.count = iov[seg].iov_len;
1314 		if (desc.count == 0)
1315 			continue;
1316 		desc.error = 0;
1317 		do_generic_file_read(filp, ppos, &desc, file_read_actor);
1318 		retval += desc.written;
1319 		if (desc.error) {
1320 			retval = retval ?: desc.error;
1321 			break;
1322 		}
1323 		if (desc.count > 0)
1324 			break;
1325 	}
1326 out:
1327 	return retval;
1328 }
1329 EXPORT_SYMBOL(generic_file_aio_read);
1330 
1331 static ssize_t
1332 do_readahead(struct address_space *mapping, struct file *filp,
1333 	     pgoff_t index, unsigned long nr)
1334 {
1335 	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1336 		return -EINVAL;
1337 
1338 	force_page_cache_readahead(mapping, filp, index, nr);
1339 	return 0;
1340 }
1341 
1342 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1343 {
1344 	ssize_t ret;
1345 	struct file *file;
1346 
1347 	ret = -EBADF;
1348 	file = fget(fd);
1349 	if (file) {
1350 		if (file->f_mode & FMODE_READ) {
1351 			struct address_space *mapping = file->f_mapping;
1352 			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1353 			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1354 			unsigned long len = end - start + 1;
1355 			ret = do_readahead(mapping, file, start, len);
1356 		}
1357 		fput(file);
1358 	}
1359 	return ret;
1360 }
1361 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1362 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1363 {
1364 	return SYSC_readahead((int) fd, offset, (size_t) count);
1365 }
1366 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1367 #endif
1368 
1369 #ifdef CONFIG_MMU
1370 /**
1371  * page_cache_read - adds requested page to the page cache if not already there
1372  * @file:	file to read
1373  * @offset:	page index
1374  *
1375  * This adds the requested page to the page cache if it isn't already there,
1376  * and schedules an I/O to read in its contents from disk.
1377  */
1378 static int page_cache_read(struct file *file, pgoff_t offset)
1379 {
1380 	struct address_space *mapping = file->f_mapping;
1381 	struct page *page;
1382 	int ret;
1383 
1384 	do {
1385 		page = page_cache_alloc_cold(mapping);
1386 		if (!page)
1387 			return -ENOMEM;
1388 
1389 		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1390 		if (ret == 0)
1391 			ret = mapping->a_ops->readpage(file, page);
1392 		else if (ret == -EEXIST)
1393 			ret = 0; /* losing race to add is OK */
1394 
1395 		page_cache_release(page);
1396 
1397 	} while (ret == AOP_TRUNCATED_PAGE);
1398 
1399 	return ret;
1400 }
1401 
1402 #define MMAP_LOTSAMISS  (100)
1403 
1404 /*
1405  * Synchronous readahead happens when we don't even find
1406  * a page in the page cache at all.
1407  */
1408 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1409 				   struct file_ra_state *ra,
1410 				   struct file *file,
1411 				   pgoff_t offset)
1412 {
1413 	unsigned long ra_pages;
1414 	struct address_space *mapping = file->f_mapping;
1415 
1416 	/* If we don't want any read-ahead, don't bother */
1417 	if (VM_RandomReadHint(vma))
1418 		return;
1419 
1420 	if (VM_SequentialReadHint(vma) ||
1421 			offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) {
1422 		page_cache_sync_readahead(mapping, ra, file, offset,
1423 					  ra->ra_pages);
1424 		return;
1425 	}
1426 
1427 	if (ra->mmap_miss < INT_MAX)
1428 		ra->mmap_miss++;
1429 
1430 	/*
1431 	 * Do we miss much more than hit in this file? If so,
1432 	 * stop bothering with read-ahead. It will only hurt.
1433 	 */
1434 	if (ra->mmap_miss > MMAP_LOTSAMISS)
1435 		return;
1436 
1437 	/*
1438 	 * mmap read-around
1439 	 */
1440 	ra_pages = max_sane_readahead(ra->ra_pages);
1441 	if (ra_pages) {
1442 		ra->start = max_t(long, 0, offset - ra_pages/2);
1443 		ra->size = ra_pages;
1444 		ra->async_size = 0;
1445 		ra_submit(ra, mapping, file);
1446 	}
1447 }
1448 
1449 /*
1450  * Asynchronous readahead happens when we find the page and PG_readahead,
1451  * so we want to possibly extend the readahead further..
1452  */
1453 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1454 				    struct file_ra_state *ra,
1455 				    struct file *file,
1456 				    struct page *page,
1457 				    pgoff_t offset)
1458 {
1459 	struct address_space *mapping = file->f_mapping;
1460 
1461 	/* If we don't want any read-ahead, don't bother */
1462 	if (VM_RandomReadHint(vma))
1463 		return;
1464 	if (ra->mmap_miss > 0)
1465 		ra->mmap_miss--;
1466 	if (PageReadahead(page))
1467 		page_cache_async_readahead(mapping, ra, file,
1468 					   page, offset, ra->ra_pages);
1469 }
1470 
1471 /**
1472  * filemap_fault - read in file data for page fault handling
1473  * @vma:	vma in which the fault was taken
1474  * @vmf:	struct vm_fault containing details of the fault
1475  *
1476  * filemap_fault() is invoked via the vma operations vector for a
1477  * mapped memory region to read in file data during a page fault.
1478  *
1479  * The goto's are kind of ugly, but this streamlines the normal case of having
1480  * it in the page cache, and handles the special cases reasonably without
1481  * having a lot of duplicated code.
1482  */
1483 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1484 {
1485 	int error;
1486 	struct file *file = vma->vm_file;
1487 	struct address_space *mapping = file->f_mapping;
1488 	struct file_ra_state *ra = &file->f_ra;
1489 	struct inode *inode = mapping->host;
1490 	pgoff_t offset = vmf->pgoff;
1491 	struct page *page;
1492 	pgoff_t size;
1493 	int ret = 0;
1494 
1495 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1496 	if (offset >= size)
1497 		return VM_FAULT_SIGBUS;
1498 
1499 	/*
1500 	 * Do we have something in the page cache already?
1501 	 */
1502 	page = find_get_page(mapping, offset);
1503 	if (likely(page)) {
1504 		/*
1505 		 * We found the page, so try async readahead before
1506 		 * waiting for the lock.
1507 		 */
1508 		do_async_mmap_readahead(vma, ra, file, page, offset);
1509 		lock_page(page);
1510 
1511 		/* Did it get truncated? */
1512 		if (unlikely(page->mapping != mapping)) {
1513 			unlock_page(page);
1514 			put_page(page);
1515 			goto no_cached_page;
1516 		}
1517 	} else {
1518 		/* No page in the page cache at all */
1519 		do_sync_mmap_readahead(vma, ra, file, offset);
1520 		count_vm_event(PGMAJFAULT);
1521 		ret = VM_FAULT_MAJOR;
1522 retry_find:
1523 		page = find_lock_page(mapping, offset);
1524 		if (!page)
1525 			goto no_cached_page;
1526 	}
1527 
1528 	/*
1529 	 * We have a locked page in the page cache, now we need to check
1530 	 * that it's up-to-date. If not, it is going to be due to an error.
1531 	 */
1532 	if (unlikely(!PageUptodate(page)))
1533 		goto page_not_uptodate;
1534 
1535 	/*
1536 	 * Found the page and have a reference on it.
1537 	 * We must recheck i_size under page lock.
1538 	 */
1539 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1540 	if (unlikely(offset >= size)) {
1541 		unlock_page(page);
1542 		page_cache_release(page);
1543 		return VM_FAULT_SIGBUS;
1544 	}
1545 
1546 	ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT;
1547 	vmf->page = page;
1548 	return ret | VM_FAULT_LOCKED;
1549 
1550 no_cached_page:
1551 	/*
1552 	 * We're only likely to ever get here if MADV_RANDOM is in
1553 	 * effect.
1554 	 */
1555 	error = page_cache_read(file, offset);
1556 
1557 	/*
1558 	 * The page we want has now been added to the page cache.
1559 	 * In the unlikely event that someone removed it in the
1560 	 * meantime, we'll just come back here and read it again.
1561 	 */
1562 	if (error >= 0)
1563 		goto retry_find;
1564 
1565 	/*
1566 	 * An error return from page_cache_read can result if the
1567 	 * system is low on memory, or a problem occurs while trying
1568 	 * to schedule I/O.
1569 	 */
1570 	if (error == -ENOMEM)
1571 		return VM_FAULT_OOM;
1572 	return VM_FAULT_SIGBUS;
1573 
1574 page_not_uptodate:
1575 	/*
1576 	 * Umm, take care of errors if the page isn't up-to-date.
1577 	 * Try to re-read it _once_. We do this synchronously,
1578 	 * because there really aren't any performance issues here
1579 	 * and we need to check for errors.
1580 	 */
1581 	ClearPageError(page);
1582 	error = mapping->a_ops->readpage(file, page);
1583 	if (!error) {
1584 		wait_on_page_locked(page);
1585 		if (!PageUptodate(page))
1586 			error = -EIO;
1587 	}
1588 	page_cache_release(page);
1589 
1590 	if (!error || error == AOP_TRUNCATED_PAGE)
1591 		goto retry_find;
1592 
1593 	/* Things didn't work out. Return zero to tell the mm layer so. */
1594 	shrink_readahead_size_eio(file, ra);
1595 	return VM_FAULT_SIGBUS;
1596 }
1597 EXPORT_SYMBOL(filemap_fault);
1598 
1599 const struct vm_operations_struct generic_file_vm_ops = {
1600 	.fault		= filemap_fault,
1601 };
1602 
1603 /* This is used for a general mmap of a disk file */
1604 
1605 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1606 {
1607 	struct address_space *mapping = file->f_mapping;
1608 
1609 	if (!mapping->a_ops->readpage)
1610 		return -ENOEXEC;
1611 	file_accessed(file);
1612 	vma->vm_ops = &generic_file_vm_ops;
1613 	vma->vm_flags |= VM_CAN_NONLINEAR;
1614 	return 0;
1615 }
1616 
1617 /*
1618  * This is for filesystems which do not implement ->writepage.
1619  */
1620 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1621 {
1622 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1623 		return -EINVAL;
1624 	return generic_file_mmap(file, vma);
1625 }
1626 #else
1627 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1628 {
1629 	return -ENOSYS;
1630 }
1631 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1632 {
1633 	return -ENOSYS;
1634 }
1635 #endif /* CONFIG_MMU */
1636 
1637 EXPORT_SYMBOL(generic_file_mmap);
1638 EXPORT_SYMBOL(generic_file_readonly_mmap);
1639 
1640 static struct page *__read_cache_page(struct address_space *mapping,
1641 				pgoff_t index,
1642 				int (*filler)(void *,struct page*),
1643 				void *data,
1644 				gfp_t gfp)
1645 {
1646 	struct page *page;
1647 	int err;
1648 repeat:
1649 	page = find_get_page(mapping, index);
1650 	if (!page) {
1651 		page = __page_cache_alloc(gfp | __GFP_COLD);
1652 		if (!page)
1653 			return ERR_PTR(-ENOMEM);
1654 		err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1655 		if (unlikely(err)) {
1656 			page_cache_release(page);
1657 			if (err == -EEXIST)
1658 				goto repeat;
1659 			/* Presumably ENOMEM for radix tree node */
1660 			return ERR_PTR(err);
1661 		}
1662 		err = filler(data, page);
1663 		if (err < 0) {
1664 			page_cache_release(page);
1665 			page = ERR_PTR(err);
1666 		}
1667 	}
1668 	return page;
1669 }
1670 
1671 static struct page *do_read_cache_page(struct address_space *mapping,
1672 				pgoff_t index,
1673 				int (*filler)(void *,struct page*),
1674 				void *data,
1675 				gfp_t gfp)
1676 
1677 {
1678 	struct page *page;
1679 	int err;
1680 
1681 retry:
1682 	page = __read_cache_page(mapping, index, filler, data, gfp);
1683 	if (IS_ERR(page))
1684 		return page;
1685 	if (PageUptodate(page))
1686 		goto out;
1687 
1688 	lock_page(page);
1689 	if (!page->mapping) {
1690 		unlock_page(page);
1691 		page_cache_release(page);
1692 		goto retry;
1693 	}
1694 	if (PageUptodate(page)) {
1695 		unlock_page(page);
1696 		goto out;
1697 	}
1698 	err = filler(data, page);
1699 	if (err < 0) {
1700 		page_cache_release(page);
1701 		return ERR_PTR(err);
1702 	}
1703 out:
1704 	mark_page_accessed(page);
1705 	return page;
1706 }
1707 
1708 /**
1709  * read_cache_page_async - read into page cache, fill it if needed
1710  * @mapping:	the page's address_space
1711  * @index:	the page index
1712  * @filler:	function to perform the read
1713  * @data:	destination for read data
1714  *
1715  * Same as read_cache_page, but don't wait for page to become unlocked
1716  * after submitting it to the filler.
1717  *
1718  * Read into the page cache. If a page already exists, and PageUptodate() is
1719  * not set, try to fill the page but don't wait for it to become unlocked.
1720  *
1721  * If the page does not get brought uptodate, return -EIO.
1722  */
1723 struct page *read_cache_page_async(struct address_space *mapping,
1724 				pgoff_t index,
1725 				int (*filler)(void *,struct page*),
1726 				void *data)
1727 {
1728 	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1729 }
1730 EXPORT_SYMBOL(read_cache_page_async);
1731 
1732 static struct page *wait_on_page_read(struct page *page)
1733 {
1734 	if (!IS_ERR(page)) {
1735 		wait_on_page_locked(page);
1736 		if (!PageUptodate(page)) {
1737 			page_cache_release(page);
1738 			page = ERR_PTR(-EIO);
1739 		}
1740 	}
1741 	return page;
1742 }
1743 
1744 /**
1745  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1746  * @mapping:	the page's address_space
1747  * @index:	the page index
1748  * @gfp:	the page allocator flags to use if allocating
1749  *
1750  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1751  * any new page allocations done using the specified allocation flags. Note
1752  * that the Radix tree operations will still use GFP_KERNEL, so you can't
1753  * expect to do this atomically or anything like that - but you can pass in
1754  * other page requirements.
1755  *
1756  * If the page does not get brought uptodate, return -EIO.
1757  */
1758 struct page *read_cache_page_gfp(struct address_space *mapping,
1759 				pgoff_t index,
1760 				gfp_t gfp)
1761 {
1762 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1763 
1764 	return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1765 }
1766 EXPORT_SYMBOL(read_cache_page_gfp);
1767 
1768 /**
1769  * read_cache_page - read into page cache, fill it if needed
1770  * @mapping:	the page's address_space
1771  * @index:	the page index
1772  * @filler:	function to perform the read
1773  * @data:	destination for read data
1774  *
1775  * Read into the page cache. If a page already exists, and PageUptodate() is
1776  * not set, try to fill the page then wait for it to become unlocked.
1777  *
1778  * If the page does not get brought uptodate, return -EIO.
1779  */
1780 struct page *read_cache_page(struct address_space *mapping,
1781 				pgoff_t index,
1782 				int (*filler)(void *,struct page*),
1783 				void *data)
1784 {
1785 	return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1786 }
1787 EXPORT_SYMBOL(read_cache_page);
1788 
1789 /*
1790  * The logic we want is
1791  *
1792  *	if suid or (sgid and xgrp)
1793  *		remove privs
1794  */
1795 int should_remove_suid(struct dentry *dentry)
1796 {
1797 	mode_t mode = dentry->d_inode->i_mode;
1798 	int kill = 0;
1799 
1800 	/* suid always must be killed */
1801 	if (unlikely(mode & S_ISUID))
1802 		kill = ATTR_KILL_SUID;
1803 
1804 	/*
1805 	 * sgid without any exec bits is just a mandatory locking mark; leave
1806 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1807 	 */
1808 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1809 		kill |= ATTR_KILL_SGID;
1810 
1811 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1812 		return kill;
1813 
1814 	return 0;
1815 }
1816 EXPORT_SYMBOL(should_remove_suid);
1817 
1818 static int __remove_suid(struct dentry *dentry, int kill)
1819 {
1820 	struct iattr newattrs;
1821 
1822 	newattrs.ia_valid = ATTR_FORCE | kill;
1823 	return notify_change(dentry, &newattrs);
1824 }
1825 
1826 int file_remove_suid(struct file *file)
1827 {
1828 	struct dentry *dentry = file->f_path.dentry;
1829 	int killsuid = should_remove_suid(dentry);
1830 	int killpriv = security_inode_need_killpriv(dentry);
1831 	int error = 0;
1832 
1833 	if (killpriv < 0)
1834 		return killpriv;
1835 	if (killpriv)
1836 		error = security_inode_killpriv(dentry);
1837 	if (!error && killsuid)
1838 		error = __remove_suid(dentry, killsuid);
1839 
1840 	return error;
1841 }
1842 EXPORT_SYMBOL(file_remove_suid);
1843 
1844 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1845 			const struct iovec *iov, size_t base, size_t bytes)
1846 {
1847 	size_t copied = 0, left = 0;
1848 
1849 	while (bytes) {
1850 		char __user *buf = iov->iov_base + base;
1851 		int copy = min(bytes, iov->iov_len - base);
1852 
1853 		base = 0;
1854 		left = __copy_from_user_inatomic(vaddr, buf, copy);
1855 		copied += copy;
1856 		bytes -= copy;
1857 		vaddr += copy;
1858 		iov++;
1859 
1860 		if (unlikely(left))
1861 			break;
1862 	}
1863 	return copied - left;
1864 }
1865 
1866 /*
1867  * Copy as much as we can into the page and return the number of bytes which
1868  * were successfully copied.  If a fault is encountered then return the number of
1869  * bytes which were copied.
1870  */
1871 size_t iov_iter_copy_from_user_atomic(struct page *page,
1872 		struct iov_iter *i, unsigned long offset, size_t bytes)
1873 {
1874 	char *kaddr;
1875 	size_t copied;
1876 
1877 	BUG_ON(!in_atomic());
1878 	kaddr = kmap_atomic(page, KM_USER0);
1879 	if (likely(i->nr_segs == 1)) {
1880 		int left;
1881 		char __user *buf = i->iov->iov_base + i->iov_offset;
1882 		left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
1883 		copied = bytes - left;
1884 	} else {
1885 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1886 						i->iov, i->iov_offset, bytes);
1887 	}
1888 	kunmap_atomic(kaddr, KM_USER0);
1889 
1890 	return copied;
1891 }
1892 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1893 
1894 /*
1895  * This has the same sideeffects and return value as
1896  * iov_iter_copy_from_user_atomic().
1897  * The difference is that it attempts to resolve faults.
1898  * Page must not be locked.
1899  */
1900 size_t iov_iter_copy_from_user(struct page *page,
1901 		struct iov_iter *i, unsigned long offset, size_t bytes)
1902 {
1903 	char *kaddr;
1904 	size_t copied;
1905 
1906 	kaddr = kmap(page);
1907 	if (likely(i->nr_segs == 1)) {
1908 		int left;
1909 		char __user *buf = i->iov->iov_base + i->iov_offset;
1910 		left = __copy_from_user(kaddr + offset, buf, bytes);
1911 		copied = bytes - left;
1912 	} else {
1913 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1914 						i->iov, i->iov_offset, bytes);
1915 	}
1916 	kunmap(page);
1917 	return copied;
1918 }
1919 EXPORT_SYMBOL(iov_iter_copy_from_user);
1920 
1921 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1922 {
1923 	BUG_ON(i->count < bytes);
1924 
1925 	if (likely(i->nr_segs == 1)) {
1926 		i->iov_offset += bytes;
1927 		i->count -= bytes;
1928 	} else {
1929 		const struct iovec *iov = i->iov;
1930 		size_t base = i->iov_offset;
1931 
1932 		/*
1933 		 * The !iov->iov_len check ensures we skip over unlikely
1934 		 * zero-length segments (without overruning the iovec).
1935 		 */
1936 		while (bytes || unlikely(i->count && !iov->iov_len)) {
1937 			int copy;
1938 
1939 			copy = min(bytes, iov->iov_len - base);
1940 			BUG_ON(!i->count || i->count < copy);
1941 			i->count -= copy;
1942 			bytes -= copy;
1943 			base += copy;
1944 			if (iov->iov_len == base) {
1945 				iov++;
1946 				base = 0;
1947 			}
1948 		}
1949 		i->iov = iov;
1950 		i->iov_offset = base;
1951 	}
1952 }
1953 EXPORT_SYMBOL(iov_iter_advance);
1954 
1955 /*
1956  * Fault in the first iovec of the given iov_iter, to a maximum length
1957  * of bytes. Returns 0 on success, or non-zero if the memory could not be
1958  * accessed (ie. because it is an invalid address).
1959  *
1960  * writev-intensive code may want this to prefault several iovecs -- that
1961  * would be possible (callers must not rely on the fact that _only_ the
1962  * first iovec will be faulted with the current implementation).
1963  */
1964 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1965 {
1966 	char __user *buf = i->iov->iov_base + i->iov_offset;
1967 	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1968 	return fault_in_pages_readable(buf, bytes);
1969 }
1970 EXPORT_SYMBOL(iov_iter_fault_in_readable);
1971 
1972 /*
1973  * Return the count of just the current iov_iter segment.
1974  */
1975 size_t iov_iter_single_seg_count(struct iov_iter *i)
1976 {
1977 	const struct iovec *iov = i->iov;
1978 	if (i->nr_segs == 1)
1979 		return i->count;
1980 	else
1981 		return min(i->count, iov->iov_len - i->iov_offset);
1982 }
1983 EXPORT_SYMBOL(iov_iter_single_seg_count);
1984 
1985 /*
1986  * Performs necessary checks before doing a write
1987  *
1988  * Can adjust writing position or amount of bytes to write.
1989  * Returns appropriate error code that caller should return or
1990  * zero in case that write should be allowed.
1991  */
1992 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1993 {
1994 	struct inode *inode = file->f_mapping->host;
1995 	unsigned long limit = rlimit(RLIMIT_FSIZE);
1996 
1997         if (unlikely(*pos < 0))
1998                 return -EINVAL;
1999 
2000 	if (!isblk) {
2001 		/* FIXME: this is for backwards compatibility with 2.4 */
2002 		if (file->f_flags & O_APPEND)
2003                         *pos = i_size_read(inode);
2004 
2005 		if (limit != RLIM_INFINITY) {
2006 			if (*pos >= limit) {
2007 				send_sig(SIGXFSZ, current, 0);
2008 				return -EFBIG;
2009 			}
2010 			if (*count > limit - (typeof(limit))*pos) {
2011 				*count = limit - (typeof(limit))*pos;
2012 			}
2013 		}
2014 	}
2015 
2016 	/*
2017 	 * LFS rule
2018 	 */
2019 	if (unlikely(*pos + *count > MAX_NON_LFS &&
2020 				!(file->f_flags & O_LARGEFILE))) {
2021 		if (*pos >= MAX_NON_LFS) {
2022 			return -EFBIG;
2023 		}
2024 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2025 			*count = MAX_NON_LFS - (unsigned long)*pos;
2026 		}
2027 	}
2028 
2029 	/*
2030 	 * Are we about to exceed the fs block limit ?
2031 	 *
2032 	 * If we have written data it becomes a short write.  If we have
2033 	 * exceeded without writing data we send a signal and return EFBIG.
2034 	 * Linus frestrict idea will clean these up nicely..
2035 	 */
2036 	if (likely(!isblk)) {
2037 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2038 			if (*count || *pos > inode->i_sb->s_maxbytes) {
2039 				return -EFBIG;
2040 			}
2041 			/* zero-length writes at ->s_maxbytes are OK */
2042 		}
2043 
2044 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2045 			*count = inode->i_sb->s_maxbytes - *pos;
2046 	} else {
2047 #ifdef CONFIG_BLOCK
2048 		loff_t isize;
2049 		if (bdev_read_only(I_BDEV(inode)))
2050 			return -EPERM;
2051 		isize = i_size_read(inode);
2052 		if (*pos >= isize) {
2053 			if (*count || *pos > isize)
2054 				return -ENOSPC;
2055 		}
2056 
2057 		if (*pos + *count > isize)
2058 			*count = isize - *pos;
2059 #else
2060 		return -EPERM;
2061 #endif
2062 	}
2063 	return 0;
2064 }
2065 EXPORT_SYMBOL(generic_write_checks);
2066 
2067 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2068 				loff_t pos, unsigned len, unsigned flags,
2069 				struct page **pagep, void **fsdata)
2070 {
2071 	const struct address_space_operations *aops = mapping->a_ops;
2072 
2073 	return aops->write_begin(file, mapping, pos, len, flags,
2074 							pagep, fsdata);
2075 }
2076 EXPORT_SYMBOL(pagecache_write_begin);
2077 
2078 int pagecache_write_end(struct file *file, struct address_space *mapping,
2079 				loff_t pos, unsigned len, unsigned copied,
2080 				struct page *page, void *fsdata)
2081 {
2082 	const struct address_space_operations *aops = mapping->a_ops;
2083 
2084 	mark_page_accessed(page);
2085 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2086 }
2087 EXPORT_SYMBOL(pagecache_write_end);
2088 
2089 ssize_t
2090 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2091 		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2092 		size_t count, size_t ocount)
2093 {
2094 	struct file	*file = iocb->ki_filp;
2095 	struct address_space *mapping = file->f_mapping;
2096 	struct inode	*inode = mapping->host;
2097 	ssize_t		written;
2098 	size_t		write_len;
2099 	pgoff_t		end;
2100 
2101 	if (count != ocount)
2102 		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2103 
2104 	write_len = iov_length(iov, *nr_segs);
2105 	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2106 
2107 	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2108 	if (written)
2109 		goto out;
2110 
2111 	/*
2112 	 * After a write we want buffered reads to be sure to go to disk to get
2113 	 * the new data.  We invalidate clean cached page from the region we're
2114 	 * about to write.  We do this *before* the write so that we can return
2115 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2116 	 */
2117 	if (mapping->nrpages) {
2118 		written = invalidate_inode_pages2_range(mapping,
2119 					pos >> PAGE_CACHE_SHIFT, end);
2120 		/*
2121 		 * If a page can not be invalidated, return 0 to fall back
2122 		 * to buffered write.
2123 		 */
2124 		if (written) {
2125 			if (written == -EBUSY)
2126 				return 0;
2127 			goto out;
2128 		}
2129 	}
2130 
2131 	written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2132 
2133 	/*
2134 	 * Finally, try again to invalidate clean pages which might have been
2135 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2136 	 * if the source of the write was an mmap'ed region of the file
2137 	 * we're writing.  Either one is a pretty crazy thing to do,
2138 	 * so we don't support it 100%.  If this invalidation
2139 	 * fails, tough, the write still worked...
2140 	 */
2141 	if (mapping->nrpages) {
2142 		invalidate_inode_pages2_range(mapping,
2143 					      pos >> PAGE_CACHE_SHIFT, end);
2144 	}
2145 
2146 	if (written > 0) {
2147 		loff_t end = pos + written;
2148 		if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2149 			i_size_write(inode,  end);
2150 			mark_inode_dirty(inode);
2151 		}
2152 		*ppos = end;
2153 	}
2154 out:
2155 	return written;
2156 }
2157 EXPORT_SYMBOL(generic_file_direct_write);
2158 
2159 /*
2160  * Find or create a page at the given pagecache position. Return the locked
2161  * page. This function is specifically for buffered writes.
2162  */
2163 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2164 					pgoff_t index, unsigned flags)
2165 {
2166 	int status;
2167 	struct page *page;
2168 	gfp_t gfp_notmask = 0;
2169 	if (flags & AOP_FLAG_NOFS)
2170 		gfp_notmask = __GFP_FS;
2171 repeat:
2172 	page = find_lock_page(mapping, index);
2173 	if (likely(page))
2174 		return page;
2175 
2176 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2177 	if (!page)
2178 		return NULL;
2179 	status = add_to_page_cache_lru(page, mapping, index,
2180 						GFP_KERNEL & ~gfp_notmask);
2181 	if (unlikely(status)) {
2182 		page_cache_release(page);
2183 		if (status == -EEXIST)
2184 			goto repeat;
2185 		return NULL;
2186 	}
2187 	return page;
2188 }
2189 EXPORT_SYMBOL(grab_cache_page_write_begin);
2190 
2191 static ssize_t generic_perform_write(struct file *file,
2192 				struct iov_iter *i, loff_t pos)
2193 {
2194 	struct address_space *mapping = file->f_mapping;
2195 	const struct address_space_operations *a_ops = mapping->a_ops;
2196 	long status = 0;
2197 	ssize_t written = 0;
2198 	unsigned int flags = 0;
2199 
2200 	/*
2201 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2202 	 */
2203 	if (segment_eq(get_fs(), KERNEL_DS))
2204 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2205 
2206 	do {
2207 		struct page *page;
2208 		pgoff_t index;		/* Pagecache index for current page */
2209 		unsigned long offset;	/* Offset into pagecache page */
2210 		unsigned long bytes;	/* Bytes to write to page */
2211 		size_t copied;		/* Bytes copied from user */
2212 		void *fsdata;
2213 
2214 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2215 		index = pos >> PAGE_CACHE_SHIFT;
2216 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2217 						iov_iter_count(i));
2218 
2219 again:
2220 
2221 		/*
2222 		 * Bring in the user page that we will copy from _first_.
2223 		 * Otherwise there's a nasty deadlock on copying from the
2224 		 * same page as we're writing to, without it being marked
2225 		 * up-to-date.
2226 		 *
2227 		 * Not only is this an optimisation, but it is also required
2228 		 * to check that the address is actually valid, when atomic
2229 		 * usercopies are used, below.
2230 		 */
2231 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2232 			status = -EFAULT;
2233 			break;
2234 		}
2235 
2236 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2237 						&page, &fsdata);
2238 		if (unlikely(status))
2239 			break;
2240 
2241 		if (mapping_writably_mapped(mapping))
2242 			flush_dcache_page(page);
2243 
2244 		pagefault_disable();
2245 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2246 		pagefault_enable();
2247 		flush_dcache_page(page);
2248 
2249 		mark_page_accessed(page);
2250 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2251 						page, fsdata);
2252 		if (unlikely(status < 0))
2253 			break;
2254 		copied = status;
2255 
2256 		cond_resched();
2257 
2258 		iov_iter_advance(i, copied);
2259 		if (unlikely(copied == 0)) {
2260 			/*
2261 			 * If we were unable to copy any data at all, we must
2262 			 * fall back to a single segment length write.
2263 			 *
2264 			 * If we didn't fallback here, we could livelock
2265 			 * because not all segments in the iov can be copied at
2266 			 * once without a pagefault.
2267 			 */
2268 			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2269 						iov_iter_single_seg_count(i));
2270 			goto again;
2271 		}
2272 		pos += copied;
2273 		written += copied;
2274 
2275 		balance_dirty_pages_ratelimited(mapping);
2276 
2277 	} while (iov_iter_count(i));
2278 
2279 	return written ? written : status;
2280 }
2281 
2282 ssize_t
2283 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2284 		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2285 		size_t count, ssize_t written)
2286 {
2287 	struct file *file = iocb->ki_filp;
2288 	ssize_t status;
2289 	struct iov_iter i;
2290 
2291 	iov_iter_init(&i, iov, nr_segs, count, written);
2292 	status = generic_perform_write(file, &i, pos);
2293 
2294 	if (likely(status >= 0)) {
2295 		written += status;
2296 		*ppos = pos + status;
2297   	}
2298 
2299 	return written ? written : status;
2300 }
2301 EXPORT_SYMBOL(generic_file_buffered_write);
2302 
2303 /**
2304  * __generic_file_aio_write - write data to a file
2305  * @iocb:	IO state structure (file, offset, etc.)
2306  * @iov:	vector with data to write
2307  * @nr_segs:	number of segments in the vector
2308  * @ppos:	position where to write
2309  *
2310  * This function does all the work needed for actually writing data to a
2311  * file. It does all basic checks, removes SUID from the file, updates
2312  * modification times and calls proper subroutines depending on whether we
2313  * do direct IO or a standard buffered write.
2314  *
2315  * It expects i_mutex to be grabbed unless we work on a block device or similar
2316  * object which does not need locking at all.
2317  *
2318  * This function does *not* take care of syncing data in case of O_SYNC write.
2319  * A caller has to handle it. This is mainly due to the fact that we want to
2320  * avoid syncing under i_mutex.
2321  */
2322 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2323 				 unsigned long nr_segs, loff_t *ppos)
2324 {
2325 	struct file *file = iocb->ki_filp;
2326 	struct address_space * mapping = file->f_mapping;
2327 	size_t ocount;		/* original count */
2328 	size_t count;		/* after file limit checks */
2329 	struct inode 	*inode = mapping->host;
2330 	loff_t		pos;
2331 	ssize_t		written;
2332 	ssize_t		err;
2333 
2334 	ocount = 0;
2335 	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2336 	if (err)
2337 		return err;
2338 
2339 	count = ocount;
2340 	pos = *ppos;
2341 
2342 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2343 
2344 	/* We can write back this queue in page reclaim */
2345 	current->backing_dev_info = mapping->backing_dev_info;
2346 	written = 0;
2347 
2348 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2349 	if (err)
2350 		goto out;
2351 
2352 	if (count == 0)
2353 		goto out;
2354 
2355 	err = file_remove_suid(file);
2356 	if (err)
2357 		goto out;
2358 
2359 	file_update_time(file);
2360 
2361 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2362 	if (unlikely(file->f_flags & O_DIRECT)) {
2363 		loff_t endbyte;
2364 		ssize_t written_buffered;
2365 
2366 		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2367 							ppos, count, ocount);
2368 		if (written < 0 || written == count)
2369 			goto out;
2370 		/*
2371 		 * direct-io write to a hole: fall through to buffered I/O
2372 		 * for completing the rest of the request.
2373 		 */
2374 		pos += written;
2375 		count -= written;
2376 		written_buffered = generic_file_buffered_write(iocb, iov,
2377 						nr_segs, pos, ppos, count,
2378 						written);
2379 		/*
2380 		 * If generic_file_buffered_write() retuned a synchronous error
2381 		 * then we want to return the number of bytes which were
2382 		 * direct-written, or the error code if that was zero.  Note
2383 		 * that this differs from normal direct-io semantics, which
2384 		 * will return -EFOO even if some bytes were written.
2385 		 */
2386 		if (written_buffered < 0) {
2387 			err = written_buffered;
2388 			goto out;
2389 		}
2390 
2391 		/*
2392 		 * We need to ensure that the page cache pages are written to
2393 		 * disk and invalidated to preserve the expected O_DIRECT
2394 		 * semantics.
2395 		 */
2396 		endbyte = pos + written_buffered - written - 1;
2397 		err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2398 		if (err == 0) {
2399 			written = written_buffered;
2400 			invalidate_mapping_pages(mapping,
2401 						 pos >> PAGE_CACHE_SHIFT,
2402 						 endbyte >> PAGE_CACHE_SHIFT);
2403 		} else {
2404 			/*
2405 			 * We don't know how much we wrote, so just return
2406 			 * the number of bytes which were direct-written
2407 			 */
2408 		}
2409 	} else {
2410 		written = generic_file_buffered_write(iocb, iov, nr_segs,
2411 				pos, ppos, count, written);
2412 	}
2413 out:
2414 	current->backing_dev_info = NULL;
2415 	return written ? written : err;
2416 }
2417 EXPORT_SYMBOL(__generic_file_aio_write);
2418 
2419 /**
2420  * generic_file_aio_write - write data to a file
2421  * @iocb:	IO state structure
2422  * @iov:	vector with data to write
2423  * @nr_segs:	number of segments in the vector
2424  * @pos:	position in file where to write
2425  *
2426  * This is a wrapper around __generic_file_aio_write() to be used by most
2427  * filesystems. It takes care of syncing the file in case of O_SYNC file
2428  * and acquires i_mutex as needed.
2429  */
2430 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2431 		unsigned long nr_segs, loff_t pos)
2432 {
2433 	struct file *file = iocb->ki_filp;
2434 	struct inode *inode = file->f_mapping->host;
2435 	ssize_t ret;
2436 
2437 	BUG_ON(iocb->ki_pos != pos);
2438 
2439 	mutex_lock(&inode->i_mutex);
2440 	ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2441 	mutex_unlock(&inode->i_mutex);
2442 
2443 	if (ret > 0 || ret == -EIOCBQUEUED) {
2444 		ssize_t err;
2445 
2446 		err = generic_write_sync(file, pos, ret);
2447 		if (err < 0 && ret > 0)
2448 			ret = err;
2449 	}
2450 	return ret;
2451 }
2452 EXPORT_SYMBOL(generic_file_aio_write);
2453 
2454 /**
2455  * try_to_release_page() - release old fs-specific metadata on a page
2456  *
2457  * @page: the page which the kernel is trying to free
2458  * @gfp_mask: memory allocation flags (and I/O mode)
2459  *
2460  * The address_space is to try to release any data against the page
2461  * (presumably at page->private).  If the release was successful, return `1'.
2462  * Otherwise return zero.
2463  *
2464  * This may also be called if PG_fscache is set on a page, indicating that the
2465  * page is known to the local caching routines.
2466  *
2467  * The @gfp_mask argument specifies whether I/O may be performed to release
2468  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2469  *
2470  */
2471 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2472 {
2473 	struct address_space * const mapping = page->mapping;
2474 
2475 	BUG_ON(!PageLocked(page));
2476 	if (PageWriteback(page))
2477 		return 0;
2478 
2479 	if (mapping && mapping->a_ops->releasepage)
2480 		return mapping->a_ops->releasepage(page, gfp_mask);
2481 	return try_to_free_buffers(page);
2482 }
2483 
2484 EXPORT_SYMBOL(try_to_release_page);
2485