1 /* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12 #include <linux/export.h> 13 #include <linux/compiler.h> 14 #include <linux/dax.h> 15 #include <linux/fs.h> 16 #include <linux/sched/signal.h> 17 #include <linux/uaccess.h> 18 #include <linux/capability.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/gfp.h> 21 #include <linux/mm.h> 22 #include <linux/swap.h> 23 #include <linux/mman.h> 24 #include <linux/pagemap.h> 25 #include <linux/file.h> 26 #include <linux/uio.h> 27 #include <linux/hash.h> 28 #include <linux/writeback.h> 29 #include <linux/backing-dev.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/security.h> 33 #include <linux/cpuset.h> 34 #include <linux/hugetlb.h> 35 #include <linux/memcontrol.h> 36 #include <linux/cleancache.h> 37 #include <linux/shmem_fs.h> 38 #include <linux/rmap.h> 39 #include <linux/delayacct.h> 40 #include "internal.h" 41 42 #define CREATE_TRACE_POINTS 43 #include <trace/events/filemap.h> 44 45 /* 46 * FIXME: remove all knowledge of the buffer layer from the core VM 47 */ 48 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 49 50 #include <asm/mman.h> 51 52 /* 53 * Shared mappings implemented 30.11.1994. It's not fully working yet, 54 * though. 55 * 56 * Shared mappings now work. 15.8.1995 Bruno. 57 * 58 * finished 'unifying' the page and buffer cache and SMP-threaded the 59 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 60 * 61 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 62 */ 63 64 /* 65 * Lock ordering: 66 * 67 * ->i_mmap_rwsem (truncate_pagecache) 68 * ->private_lock (__free_pte->__set_page_dirty_buffers) 69 * ->swap_lock (exclusive_swap_page, others) 70 * ->i_pages lock 71 * 72 * ->i_mutex 73 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 74 * 75 * ->mmap_sem 76 * ->i_mmap_rwsem 77 * ->page_table_lock or pte_lock (various, mainly in memory.c) 78 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 79 * 80 * ->mmap_sem 81 * ->lock_page (access_process_vm) 82 * 83 * ->i_mutex (generic_perform_write) 84 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 85 * 86 * bdi->wb.list_lock 87 * sb_lock (fs/fs-writeback.c) 88 * ->i_pages lock (__sync_single_inode) 89 * 90 * ->i_mmap_rwsem 91 * ->anon_vma.lock (vma_adjust) 92 * 93 * ->anon_vma.lock 94 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 95 * 96 * ->page_table_lock or pte_lock 97 * ->swap_lock (try_to_unmap_one) 98 * ->private_lock (try_to_unmap_one) 99 * ->i_pages lock (try_to_unmap_one) 100 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed) 101 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page) 102 * ->private_lock (page_remove_rmap->set_page_dirty) 103 * ->i_pages lock (page_remove_rmap->set_page_dirty) 104 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 105 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 106 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) 107 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 108 * ->inode->i_lock (zap_pte_range->set_page_dirty) 109 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 110 * 111 * ->i_mmap_rwsem 112 * ->tasklist_lock (memory_failure, collect_procs_ao) 113 */ 114 115 static int page_cache_tree_insert(struct address_space *mapping, 116 struct page *page, void **shadowp) 117 { 118 struct radix_tree_node *node; 119 void **slot; 120 int error; 121 122 error = __radix_tree_create(&mapping->i_pages, page->index, 0, 123 &node, &slot); 124 if (error) 125 return error; 126 if (*slot) { 127 void *p; 128 129 p = radix_tree_deref_slot_protected(slot, 130 &mapping->i_pages.xa_lock); 131 if (!radix_tree_exceptional_entry(p)) 132 return -EEXIST; 133 134 mapping->nrexceptional--; 135 if (shadowp) 136 *shadowp = p; 137 } 138 __radix_tree_replace(&mapping->i_pages, node, slot, page, 139 workingset_lookup_update(mapping)); 140 mapping->nrpages++; 141 return 0; 142 } 143 144 static void page_cache_tree_delete(struct address_space *mapping, 145 struct page *page, void *shadow) 146 { 147 int i, nr; 148 149 /* hugetlb pages are represented by one entry in the radix tree */ 150 nr = PageHuge(page) ? 1 : hpage_nr_pages(page); 151 152 VM_BUG_ON_PAGE(!PageLocked(page), page); 153 VM_BUG_ON_PAGE(PageTail(page), page); 154 VM_BUG_ON_PAGE(nr != 1 && shadow, page); 155 156 for (i = 0; i < nr; i++) { 157 struct radix_tree_node *node; 158 void **slot; 159 160 __radix_tree_lookup(&mapping->i_pages, page->index + i, 161 &node, &slot); 162 163 VM_BUG_ON_PAGE(!node && nr != 1, page); 164 165 radix_tree_clear_tags(&mapping->i_pages, node, slot); 166 __radix_tree_replace(&mapping->i_pages, node, slot, shadow, 167 workingset_lookup_update(mapping)); 168 } 169 170 page->mapping = NULL; 171 /* Leave page->index set: truncation lookup relies upon it */ 172 173 if (shadow) { 174 mapping->nrexceptional += nr; 175 /* 176 * Make sure the nrexceptional update is committed before 177 * the nrpages update so that final truncate racing 178 * with reclaim does not see both counters 0 at the 179 * same time and miss a shadow entry. 180 */ 181 smp_wmb(); 182 } 183 mapping->nrpages -= nr; 184 } 185 186 static void unaccount_page_cache_page(struct address_space *mapping, 187 struct page *page) 188 { 189 int nr; 190 191 /* 192 * if we're uptodate, flush out into the cleancache, otherwise 193 * invalidate any existing cleancache entries. We can't leave 194 * stale data around in the cleancache once our page is gone 195 */ 196 if (PageUptodate(page) && PageMappedToDisk(page)) 197 cleancache_put_page(page); 198 else 199 cleancache_invalidate_page(mapping, page); 200 201 VM_BUG_ON_PAGE(PageTail(page), page); 202 VM_BUG_ON_PAGE(page_mapped(page), page); 203 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) { 204 int mapcount; 205 206 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 207 current->comm, page_to_pfn(page)); 208 dump_page(page, "still mapped when deleted"); 209 dump_stack(); 210 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 211 212 mapcount = page_mapcount(page); 213 if (mapping_exiting(mapping) && 214 page_count(page) >= mapcount + 2) { 215 /* 216 * All vmas have already been torn down, so it's 217 * a good bet that actually the page is unmapped, 218 * and we'd prefer not to leak it: if we're wrong, 219 * some other bad page check should catch it later. 220 */ 221 page_mapcount_reset(page); 222 page_ref_sub(page, mapcount); 223 } 224 } 225 226 /* hugetlb pages do not participate in page cache accounting. */ 227 if (PageHuge(page)) 228 return; 229 230 nr = hpage_nr_pages(page); 231 232 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr); 233 if (PageSwapBacked(page)) { 234 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr); 235 if (PageTransHuge(page)) 236 __dec_node_page_state(page, NR_SHMEM_THPS); 237 } else { 238 VM_BUG_ON_PAGE(PageTransHuge(page), page); 239 } 240 241 /* 242 * At this point page must be either written or cleaned by 243 * truncate. Dirty page here signals a bug and loss of 244 * unwritten data. 245 * 246 * This fixes dirty accounting after removing the page entirely 247 * but leaves PageDirty set: it has no effect for truncated 248 * page and anyway will be cleared before returning page into 249 * buddy allocator. 250 */ 251 if (WARN_ON_ONCE(PageDirty(page))) 252 account_page_cleaned(page, mapping, inode_to_wb(mapping->host)); 253 } 254 255 /* 256 * Delete a page from the page cache and free it. Caller has to make 257 * sure the page is locked and that nobody else uses it - or that usage 258 * is safe. The caller must hold the i_pages lock. 259 */ 260 void __delete_from_page_cache(struct page *page, void *shadow) 261 { 262 struct address_space *mapping = page->mapping; 263 264 trace_mm_filemap_delete_from_page_cache(page); 265 266 unaccount_page_cache_page(mapping, page); 267 page_cache_tree_delete(mapping, page, shadow); 268 } 269 270 static void page_cache_free_page(struct address_space *mapping, 271 struct page *page) 272 { 273 void (*freepage)(struct page *); 274 275 freepage = mapping->a_ops->freepage; 276 if (freepage) 277 freepage(page); 278 279 if (PageTransHuge(page) && !PageHuge(page)) { 280 page_ref_sub(page, HPAGE_PMD_NR); 281 VM_BUG_ON_PAGE(page_count(page) <= 0, page); 282 } else { 283 put_page(page); 284 } 285 } 286 287 /** 288 * delete_from_page_cache - delete page from page cache 289 * @page: the page which the kernel is trying to remove from page cache 290 * 291 * This must be called only on pages that have been verified to be in the page 292 * cache and locked. It will never put the page into the free list, the caller 293 * has a reference on the page. 294 */ 295 void delete_from_page_cache(struct page *page) 296 { 297 struct address_space *mapping = page_mapping(page); 298 unsigned long flags; 299 300 BUG_ON(!PageLocked(page)); 301 xa_lock_irqsave(&mapping->i_pages, flags); 302 __delete_from_page_cache(page, NULL); 303 xa_unlock_irqrestore(&mapping->i_pages, flags); 304 305 page_cache_free_page(mapping, page); 306 } 307 EXPORT_SYMBOL(delete_from_page_cache); 308 309 /* 310 * page_cache_tree_delete_batch - delete several pages from page cache 311 * @mapping: the mapping to which pages belong 312 * @pvec: pagevec with pages to delete 313 * 314 * The function walks over mapping->i_pages and removes pages passed in @pvec 315 * from the mapping. The function expects @pvec to be sorted by page index. 316 * It tolerates holes in @pvec (mapping entries at those indices are not 317 * modified). The function expects only THP head pages to be present in the 318 * @pvec and takes care to delete all corresponding tail pages from the 319 * mapping as well. 320 * 321 * The function expects the i_pages lock to be held. 322 */ 323 static void 324 page_cache_tree_delete_batch(struct address_space *mapping, 325 struct pagevec *pvec) 326 { 327 struct radix_tree_iter iter; 328 void **slot; 329 int total_pages = 0; 330 int i = 0, tail_pages = 0; 331 struct page *page; 332 pgoff_t start; 333 334 start = pvec->pages[0]->index; 335 radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) { 336 if (i >= pagevec_count(pvec) && !tail_pages) 337 break; 338 page = radix_tree_deref_slot_protected(slot, 339 &mapping->i_pages.xa_lock); 340 if (radix_tree_exceptional_entry(page)) 341 continue; 342 if (!tail_pages) { 343 /* 344 * Some page got inserted in our range? Skip it. We 345 * have our pages locked so they are protected from 346 * being removed. 347 */ 348 if (page != pvec->pages[i]) 349 continue; 350 WARN_ON_ONCE(!PageLocked(page)); 351 if (PageTransHuge(page) && !PageHuge(page)) 352 tail_pages = HPAGE_PMD_NR - 1; 353 page->mapping = NULL; 354 /* 355 * Leave page->index set: truncation lookup relies 356 * upon it 357 */ 358 i++; 359 } else { 360 tail_pages--; 361 } 362 radix_tree_clear_tags(&mapping->i_pages, iter.node, slot); 363 __radix_tree_replace(&mapping->i_pages, iter.node, slot, NULL, 364 workingset_lookup_update(mapping)); 365 total_pages++; 366 } 367 mapping->nrpages -= total_pages; 368 } 369 370 void delete_from_page_cache_batch(struct address_space *mapping, 371 struct pagevec *pvec) 372 { 373 int i; 374 unsigned long flags; 375 376 if (!pagevec_count(pvec)) 377 return; 378 379 xa_lock_irqsave(&mapping->i_pages, flags); 380 for (i = 0; i < pagevec_count(pvec); i++) { 381 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]); 382 383 unaccount_page_cache_page(mapping, pvec->pages[i]); 384 } 385 page_cache_tree_delete_batch(mapping, pvec); 386 xa_unlock_irqrestore(&mapping->i_pages, flags); 387 388 for (i = 0; i < pagevec_count(pvec); i++) 389 page_cache_free_page(mapping, pvec->pages[i]); 390 } 391 392 int filemap_check_errors(struct address_space *mapping) 393 { 394 int ret = 0; 395 /* Check for outstanding write errors */ 396 if (test_bit(AS_ENOSPC, &mapping->flags) && 397 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 398 ret = -ENOSPC; 399 if (test_bit(AS_EIO, &mapping->flags) && 400 test_and_clear_bit(AS_EIO, &mapping->flags)) 401 ret = -EIO; 402 return ret; 403 } 404 EXPORT_SYMBOL(filemap_check_errors); 405 406 static int filemap_check_and_keep_errors(struct address_space *mapping) 407 { 408 /* Check for outstanding write errors */ 409 if (test_bit(AS_EIO, &mapping->flags)) 410 return -EIO; 411 if (test_bit(AS_ENOSPC, &mapping->flags)) 412 return -ENOSPC; 413 return 0; 414 } 415 416 /** 417 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 418 * @mapping: address space structure to write 419 * @start: offset in bytes where the range starts 420 * @end: offset in bytes where the range ends (inclusive) 421 * @sync_mode: enable synchronous operation 422 * 423 * Start writeback against all of a mapping's dirty pages that lie 424 * within the byte offsets <start, end> inclusive. 425 * 426 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 427 * opposed to a regular memory cleansing writeback. The difference between 428 * these two operations is that if a dirty page/buffer is encountered, it must 429 * be waited upon, and not just skipped over. 430 */ 431 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 432 loff_t end, int sync_mode) 433 { 434 int ret; 435 struct writeback_control wbc = { 436 .sync_mode = sync_mode, 437 .nr_to_write = LONG_MAX, 438 .range_start = start, 439 .range_end = end, 440 }; 441 442 if (!mapping_cap_writeback_dirty(mapping)) 443 return 0; 444 445 wbc_attach_fdatawrite_inode(&wbc, mapping->host); 446 ret = do_writepages(mapping, &wbc); 447 wbc_detach_inode(&wbc); 448 return ret; 449 } 450 451 static inline int __filemap_fdatawrite(struct address_space *mapping, 452 int sync_mode) 453 { 454 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 455 } 456 457 int filemap_fdatawrite(struct address_space *mapping) 458 { 459 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 460 } 461 EXPORT_SYMBOL(filemap_fdatawrite); 462 463 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 464 loff_t end) 465 { 466 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 467 } 468 EXPORT_SYMBOL(filemap_fdatawrite_range); 469 470 /** 471 * filemap_flush - mostly a non-blocking flush 472 * @mapping: target address_space 473 * 474 * This is a mostly non-blocking flush. Not suitable for data-integrity 475 * purposes - I/O may not be started against all dirty pages. 476 */ 477 int filemap_flush(struct address_space *mapping) 478 { 479 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 480 } 481 EXPORT_SYMBOL(filemap_flush); 482 483 /** 484 * filemap_range_has_page - check if a page exists in range. 485 * @mapping: address space within which to check 486 * @start_byte: offset in bytes where the range starts 487 * @end_byte: offset in bytes where the range ends (inclusive) 488 * 489 * Find at least one page in the range supplied, usually used to check if 490 * direct writing in this range will trigger a writeback. 491 */ 492 bool filemap_range_has_page(struct address_space *mapping, 493 loff_t start_byte, loff_t end_byte) 494 { 495 pgoff_t index = start_byte >> PAGE_SHIFT; 496 pgoff_t end = end_byte >> PAGE_SHIFT; 497 struct page *page; 498 499 if (end_byte < start_byte) 500 return false; 501 502 if (mapping->nrpages == 0) 503 return false; 504 505 if (!find_get_pages_range(mapping, &index, end, 1, &page)) 506 return false; 507 put_page(page); 508 return true; 509 } 510 EXPORT_SYMBOL(filemap_range_has_page); 511 512 static void __filemap_fdatawait_range(struct address_space *mapping, 513 loff_t start_byte, loff_t end_byte) 514 { 515 pgoff_t index = start_byte >> PAGE_SHIFT; 516 pgoff_t end = end_byte >> PAGE_SHIFT; 517 struct pagevec pvec; 518 int nr_pages; 519 520 if (end_byte < start_byte) 521 return; 522 523 pagevec_init(&pvec); 524 while (index <= end) { 525 unsigned i; 526 527 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, 528 end, PAGECACHE_TAG_WRITEBACK); 529 if (!nr_pages) 530 break; 531 532 for (i = 0; i < nr_pages; i++) { 533 struct page *page = pvec.pages[i]; 534 535 wait_on_page_writeback(page); 536 ClearPageError(page); 537 } 538 pagevec_release(&pvec); 539 cond_resched(); 540 } 541 } 542 543 /** 544 * filemap_fdatawait_range - wait for writeback to complete 545 * @mapping: address space structure to wait for 546 * @start_byte: offset in bytes where the range starts 547 * @end_byte: offset in bytes where the range ends (inclusive) 548 * 549 * Walk the list of under-writeback pages of the given address space 550 * in the given range and wait for all of them. Check error status of 551 * the address space and return it. 552 * 553 * Since the error status of the address space is cleared by this function, 554 * callers are responsible for checking the return value and handling and/or 555 * reporting the error. 556 */ 557 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 558 loff_t end_byte) 559 { 560 __filemap_fdatawait_range(mapping, start_byte, end_byte); 561 return filemap_check_errors(mapping); 562 } 563 EXPORT_SYMBOL(filemap_fdatawait_range); 564 565 /** 566 * file_fdatawait_range - wait for writeback to complete 567 * @file: file pointing to address space structure to wait for 568 * @start_byte: offset in bytes where the range starts 569 * @end_byte: offset in bytes where the range ends (inclusive) 570 * 571 * Walk the list of under-writeback pages of the address space that file 572 * refers to, in the given range and wait for all of them. Check error 573 * status of the address space vs. the file->f_wb_err cursor and return it. 574 * 575 * Since the error status of the file is advanced by this function, 576 * callers are responsible for checking the return value and handling and/or 577 * reporting the error. 578 */ 579 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 580 { 581 struct address_space *mapping = file->f_mapping; 582 583 __filemap_fdatawait_range(mapping, start_byte, end_byte); 584 return file_check_and_advance_wb_err(file); 585 } 586 EXPORT_SYMBOL(file_fdatawait_range); 587 588 /** 589 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 590 * @mapping: address space structure to wait for 591 * 592 * Walk the list of under-writeback pages of the given address space 593 * and wait for all of them. Unlike filemap_fdatawait(), this function 594 * does not clear error status of the address space. 595 * 596 * Use this function if callers don't handle errors themselves. Expected 597 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 598 * fsfreeze(8) 599 */ 600 int filemap_fdatawait_keep_errors(struct address_space *mapping) 601 { 602 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 603 return filemap_check_and_keep_errors(mapping); 604 } 605 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 606 607 static bool mapping_needs_writeback(struct address_space *mapping) 608 { 609 return (!dax_mapping(mapping) && mapping->nrpages) || 610 (dax_mapping(mapping) && mapping->nrexceptional); 611 } 612 613 int filemap_write_and_wait(struct address_space *mapping) 614 { 615 int err = 0; 616 617 if (mapping_needs_writeback(mapping)) { 618 err = filemap_fdatawrite(mapping); 619 /* 620 * Even if the above returned error, the pages may be 621 * written partially (e.g. -ENOSPC), so we wait for it. 622 * But the -EIO is special case, it may indicate the worst 623 * thing (e.g. bug) happened, so we avoid waiting for it. 624 */ 625 if (err != -EIO) { 626 int err2 = filemap_fdatawait(mapping); 627 if (!err) 628 err = err2; 629 } else { 630 /* Clear any previously stored errors */ 631 filemap_check_errors(mapping); 632 } 633 } else { 634 err = filemap_check_errors(mapping); 635 } 636 return err; 637 } 638 EXPORT_SYMBOL(filemap_write_and_wait); 639 640 /** 641 * filemap_write_and_wait_range - write out & wait on a file range 642 * @mapping: the address_space for the pages 643 * @lstart: offset in bytes where the range starts 644 * @lend: offset in bytes where the range ends (inclusive) 645 * 646 * Write out and wait upon file offsets lstart->lend, inclusive. 647 * 648 * Note that @lend is inclusive (describes the last byte to be written) so 649 * that this function can be used to write to the very end-of-file (end = -1). 650 */ 651 int filemap_write_and_wait_range(struct address_space *mapping, 652 loff_t lstart, loff_t lend) 653 { 654 int err = 0; 655 656 if (mapping_needs_writeback(mapping)) { 657 err = __filemap_fdatawrite_range(mapping, lstart, lend, 658 WB_SYNC_ALL); 659 /* See comment of filemap_write_and_wait() */ 660 if (err != -EIO) { 661 int err2 = filemap_fdatawait_range(mapping, 662 lstart, lend); 663 if (!err) 664 err = err2; 665 } else { 666 /* Clear any previously stored errors */ 667 filemap_check_errors(mapping); 668 } 669 } else { 670 err = filemap_check_errors(mapping); 671 } 672 return err; 673 } 674 EXPORT_SYMBOL(filemap_write_and_wait_range); 675 676 void __filemap_set_wb_err(struct address_space *mapping, int err) 677 { 678 errseq_t eseq = errseq_set(&mapping->wb_err, err); 679 680 trace_filemap_set_wb_err(mapping, eseq); 681 } 682 EXPORT_SYMBOL(__filemap_set_wb_err); 683 684 /** 685 * file_check_and_advance_wb_err - report wb error (if any) that was previously 686 * and advance wb_err to current one 687 * @file: struct file on which the error is being reported 688 * 689 * When userland calls fsync (or something like nfsd does the equivalent), we 690 * want to report any writeback errors that occurred since the last fsync (or 691 * since the file was opened if there haven't been any). 692 * 693 * Grab the wb_err from the mapping. If it matches what we have in the file, 694 * then just quickly return 0. The file is all caught up. 695 * 696 * If it doesn't match, then take the mapping value, set the "seen" flag in 697 * it and try to swap it into place. If it works, or another task beat us 698 * to it with the new value, then update the f_wb_err and return the error 699 * portion. The error at this point must be reported via proper channels 700 * (a'la fsync, or NFS COMMIT operation, etc.). 701 * 702 * While we handle mapping->wb_err with atomic operations, the f_wb_err 703 * value is protected by the f_lock since we must ensure that it reflects 704 * the latest value swapped in for this file descriptor. 705 */ 706 int file_check_and_advance_wb_err(struct file *file) 707 { 708 int err = 0; 709 errseq_t old = READ_ONCE(file->f_wb_err); 710 struct address_space *mapping = file->f_mapping; 711 712 /* Locklessly handle the common case where nothing has changed */ 713 if (errseq_check(&mapping->wb_err, old)) { 714 /* Something changed, must use slow path */ 715 spin_lock(&file->f_lock); 716 old = file->f_wb_err; 717 err = errseq_check_and_advance(&mapping->wb_err, 718 &file->f_wb_err); 719 trace_file_check_and_advance_wb_err(file, old); 720 spin_unlock(&file->f_lock); 721 } 722 723 /* 724 * We're mostly using this function as a drop in replacement for 725 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 726 * that the legacy code would have had on these flags. 727 */ 728 clear_bit(AS_EIO, &mapping->flags); 729 clear_bit(AS_ENOSPC, &mapping->flags); 730 return err; 731 } 732 EXPORT_SYMBOL(file_check_and_advance_wb_err); 733 734 /** 735 * file_write_and_wait_range - write out & wait on a file range 736 * @file: file pointing to address_space with pages 737 * @lstart: offset in bytes where the range starts 738 * @lend: offset in bytes where the range ends (inclusive) 739 * 740 * Write out and wait upon file offsets lstart->lend, inclusive. 741 * 742 * Note that @lend is inclusive (describes the last byte to be written) so 743 * that this function can be used to write to the very end-of-file (end = -1). 744 * 745 * After writing out and waiting on the data, we check and advance the 746 * f_wb_err cursor to the latest value, and return any errors detected there. 747 */ 748 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 749 { 750 int err = 0, err2; 751 struct address_space *mapping = file->f_mapping; 752 753 if (mapping_needs_writeback(mapping)) { 754 err = __filemap_fdatawrite_range(mapping, lstart, lend, 755 WB_SYNC_ALL); 756 /* See comment of filemap_write_and_wait() */ 757 if (err != -EIO) 758 __filemap_fdatawait_range(mapping, lstart, lend); 759 } 760 err2 = file_check_and_advance_wb_err(file); 761 if (!err) 762 err = err2; 763 return err; 764 } 765 EXPORT_SYMBOL(file_write_and_wait_range); 766 767 /** 768 * replace_page_cache_page - replace a pagecache page with a new one 769 * @old: page to be replaced 770 * @new: page to replace with 771 * @gfp_mask: allocation mode 772 * 773 * This function replaces a page in the pagecache with a new one. On 774 * success it acquires the pagecache reference for the new page and 775 * drops it for the old page. Both the old and new pages must be 776 * locked. This function does not add the new page to the LRU, the 777 * caller must do that. 778 * 779 * The remove + add is atomic. The only way this function can fail is 780 * memory allocation failure. 781 */ 782 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) 783 { 784 int error; 785 786 VM_BUG_ON_PAGE(!PageLocked(old), old); 787 VM_BUG_ON_PAGE(!PageLocked(new), new); 788 VM_BUG_ON_PAGE(new->mapping, new); 789 790 error = radix_tree_preload(gfp_mask & GFP_RECLAIM_MASK); 791 if (!error) { 792 struct address_space *mapping = old->mapping; 793 void (*freepage)(struct page *); 794 unsigned long flags; 795 796 pgoff_t offset = old->index; 797 freepage = mapping->a_ops->freepage; 798 799 get_page(new); 800 new->mapping = mapping; 801 new->index = offset; 802 803 xa_lock_irqsave(&mapping->i_pages, flags); 804 __delete_from_page_cache(old, NULL); 805 error = page_cache_tree_insert(mapping, new, NULL); 806 BUG_ON(error); 807 808 /* 809 * hugetlb pages do not participate in page cache accounting. 810 */ 811 if (!PageHuge(new)) 812 __inc_node_page_state(new, NR_FILE_PAGES); 813 if (PageSwapBacked(new)) 814 __inc_node_page_state(new, NR_SHMEM); 815 xa_unlock_irqrestore(&mapping->i_pages, flags); 816 mem_cgroup_migrate(old, new); 817 radix_tree_preload_end(); 818 if (freepage) 819 freepage(old); 820 put_page(old); 821 } 822 823 return error; 824 } 825 EXPORT_SYMBOL_GPL(replace_page_cache_page); 826 827 static int __add_to_page_cache_locked(struct page *page, 828 struct address_space *mapping, 829 pgoff_t offset, gfp_t gfp_mask, 830 void **shadowp) 831 { 832 int huge = PageHuge(page); 833 struct mem_cgroup *memcg; 834 int error; 835 836 VM_BUG_ON_PAGE(!PageLocked(page), page); 837 VM_BUG_ON_PAGE(PageSwapBacked(page), page); 838 839 if (!huge) { 840 error = mem_cgroup_try_charge(page, current->mm, 841 gfp_mask, &memcg, false); 842 if (error) 843 return error; 844 } 845 846 error = radix_tree_maybe_preload(gfp_mask & GFP_RECLAIM_MASK); 847 if (error) { 848 if (!huge) 849 mem_cgroup_cancel_charge(page, memcg, false); 850 return error; 851 } 852 853 get_page(page); 854 page->mapping = mapping; 855 page->index = offset; 856 857 xa_lock_irq(&mapping->i_pages); 858 error = page_cache_tree_insert(mapping, page, shadowp); 859 radix_tree_preload_end(); 860 if (unlikely(error)) 861 goto err_insert; 862 863 /* hugetlb pages do not participate in page cache accounting. */ 864 if (!huge) 865 __inc_node_page_state(page, NR_FILE_PAGES); 866 xa_unlock_irq(&mapping->i_pages); 867 if (!huge) 868 mem_cgroup_commit_charge(page, memcg, false, false); 869 trace_mm_filemap_add_to_page_cache(page); 870 return 0; 871 err_insert: 872 page->mapping = NULL; 873 /* Leave page->index set: truncation relies upon it */ 874 xa_unlock_irq(&mapping->i_pages); 875 if (!huge) 876 mem_cgroup_cancel_charge(page, memcg, false); 877 put_page(page); 878 return error; 879 } 880 881 /** 882 * add_to_page_cache_locked - add a locked page to the pagecache 883 * @page: page to add 884 * @mapping: the page's address_space 885 * @offset: page index 886 * @gfp_mask: page allocation mode 887 * 888 * This function is used to add a page to the pagecache. It must be locked. 889 * This function does not add the page to the LRU. The caller must do that. 890 */ 891 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 892 pgoff_t offset, gfp_t gfp_mask) 893 { 894 return __add_to_page_cache_locked(page, mapping, offset, 895 gfp_mask, NULL); 896 } 897 EXPORT_SYMBOL(add_to_page_cache_locked); 898 899 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 900 pgoff_t offset, gfp_t gfp_mask) 901 { 902 void *shadow = NULL; 903 int ret; 904 905 __SetPageLocked(page); 906 ret = __add_to_page_cache_locked(page, mapping, offset, 907 gfp_mask, &shadow); 908 if (unlikely(ret)) 909 __ClearPageLocked(page); 910 else { 911 /* 912 * The page might have been evicted from cache only 913 * recently, in which case it should be activated like 914 * any other repeatedly accessed page. 915 * The exception is pages getting rewritten; evicting other 916 * data from the working set, only to cache data that will 917 * get overwritten with something else, is a waste of memory. 918 */ 919 WARN_ON_ONCE(PageActive(page)); 920 if (!(gfp_mask & __GFP_WRITE) && shadow) 921 workingset_refault(page, shadow); 922 lru_cache_add(page); 923 } 924 return ret; 925 } 926 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 927 928 #ifdef CONFIG_NUMA 929 struct page *__page_cache_alloc(gfp_t gfp) 930 { 931 int n; 932 struct page *page; 933 934 if (cpuset_do_page_mem_spread()) { 935 unsigned int cpuset_mems_cookie; 936 do { 937 cpuset_mems_cookie = read_mems_allowed_begin(); 938 n = cpuset_mem_spread_node(); 939 page = __alloc_pages_node(n, gfp, 0); 940 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie)); 941 942 return page; 943 } 944 return alloc_pages(gfp, 0); 945 } 946 EXPORT_SYMBOL(__page_cache_alloc); 947 #endif 948 949 /* 950 * In order to wait for pages to become available there must be 951 * waitqueues associated with pages. By using a hash table of 952 * waitqueues where the bucket discipline is to maintain all 953 * waiters on the same queue and wake all when any of the pages 954 * become available, and for the woken contexts to check to be 955 * sure the appropriate page became available, this saves space 956 * at a cost of "thundering herd" phenomena during rare hash 957 * collisions. 958 */ 959 #define PAGE_WAIT_TABLE_BITS 8 960 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 961 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 962 963 static wait_queue_head_t *page_waitqueue(struct page *page) 964 { 965 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)]; 966 } 967 968 void __init pagecache_init(void) 969 { 970 int i; 971 972 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 973 init_waitqueue_head(&page_wait_table[i]); 974 975 page_writeback_init(); 976 } 977 978 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */ 979 struct wait_page_key { 980 struct page *page; 981 int bit_nr; 982 int page_match; 983 }; 984 985 struct wait_page_queue { 986 struct page *page; 987 int bit_nr; 988 wait_queue_entry_t wait; 989 }; 990 991 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 992 { 993 struct wait_page_key *key = arg; 994 struct wait_page_queue *wait_page 995 = container_of(wait, struct wait_page_queue, wait); 996 997 if (wait_page->page != key->page) 998 return 0; 999 key->page_match = 1; 1000 1001 if (wait_page->bit_nr != key->bit_nr) 1002 return 0; 1003 1004 /* Stop walking if it's locked */ 1005 if (test_bit(key->bit_nr, &key->page->flags)) 1006 return -1; 1007 1008 return autoremove_wake_function(wait, mode, sync, key); 1009 } 1010 1011 static void wake_up_page_bit(struct page *page, int bit_nr) 1012 { 1013 wait_queue_head_t *q = page_waitqueue(page); 1014 struct wait_page_key key; 1015 unsigned long flags; 1016 wait_queue_entry_t bookmark; 1017 1018 key.page = page; 1019 key.bit_nr = bit_nr; 1020 key.page_match = 0; 1021 1022 bookmark.flags = 0; 1023 bookmark.private = NULL; 1024 bookmark.func = NULL; 1025 INIT_LIST_HEAD(&bookmark.entry); 1026 1027 spin_lock_irqsave(&q->lock, flags); 1028 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1029 1030 while (bookmark.flags & WQ_FLAG_BOOKMARK) { 1031 /* 1032 * Take a breather from holding the lock, 1033 * allow pages that finish wake up asynchronously 1034 * to acquire the lock and remove themselves 1035 * from wait queue 1036 */ 1037 spin_unlock_irqrestore(&q->lock, flags); 1038 cpu_relax(); 1039 spin_lock_irqsave(&q->lock, flags); 1040 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1041 } 1042 1043 /* 1044 * It is possible for other pages to have collided on the waitqueue 1045 * hash, so in that case check for a page match. That prevents a long- 1046 * term waiter 1047 * 1048 * It is still possible to miss a case here, when we woke page waiters 1049 * and removed them from the waitqueue, but there are still other 1050 * page waiters. 1051 */ 1052 if (!waitqueue_active(q) || !key.page_match) { 1053 ClearPageWaiters(page); 1054 /* 1055 * It's possible to miss clearing Waiters here, when we woke 1056 * our page waiters, but the hashed waitqueue has waiters for 1057 * other pages on it. 1058 * 1059 * That's okay, it's a rare case. The next waker will clear it. 1060 */ 1061 } 1062 spin_unlock_irqrestore(&q->lock, flags); 1063 } 1064 1065 static void wake_up_page(struct page *page, int bit) 1066 { 1067 if (!PageWaiters(page)) 1068 return; 1069 wake_up_page_bit(page, bit); 1070 } 1071 1072 static inline int wait_on_page_bit_common(wait_queue_head_t *q, 1073 struct page *page, int bit_nr, int state, bool lock) 1074 { 1075 struct wait_page_queue wait_page; 1076 wait_queue_entry_t *wait = &wait_page.wait; 1077 bool thrashing = false; 1078 int ret = 0; 1079 1080 if (bit_nr == PG_locked && !PageSwapBacked(page) && 1081 !PageUptodate(page) && PageWorkingset(page)) { 1082 delayacct_thrashing_start(); 1083 thrashing = true; 1084 } 1085 1086 init_wait(wait); 1087 wait->flags = lock ? WQ_FLAG_EXCLUSIVE : 0; 1088 wait->func = wake_page_function; 1089 wait_page.page = page; 1090 wait_page.bit_nr = bit_nr; 1091 1092 for (;;) { 1093 spin_lock_irq(&q->lock); 1094 1095 if (likely(list_empty(&wait->entry))) { 1096 __add_wait_queue_entry_tail(q, wait); 1097 SetPageWaiters(page); 1098 } 1099 1100 set_current_state(state); 1101 1102 spin_unlock_irq(&q->lock); 1103 1104 if (likely(test_bit(bit_nr, &page->flags))) { 1105 io_schedule(); 1106 } 1107 1108 if (lock) { 1109 if (!test_and_set_bit_lock(bit_nr, &page->flags)) 1110 break; 1111 } else { 1112 if (!test_bit(bit_nr, &page->flags)) 1113 break; 1114 } 1115 1116 if (unlikely(signal_pending_state(state, current))) { 1117 ret = -EINTR; 1118 break; 1119 } 1120 } 1121 1122 finish_wait(q, wait); 1123 1124 if (thrashing) 1125 delayacct_thrashing_end(); 1126 1127 /* 1128 * A signal could leave PageWaiters set. Clearing it here if 1129 * !waitqueue_active would be possible (by open-coding finish_wait), 1130 * but still fail to catch it in the case of wait hash collision. We 1131 * already can fail to clear wait hash collision cases, so don't 1132 * bother with signals either. 1133 */ 1134 1135 return ret; 1136 } 1137 1138 void wait_on_page_bit(struct page *page, int bit_nr) 1139 { 1140 wait_queue_head_t *q = page_waitqueue(page); 1141 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false); 1142 } 1143 EXPORT_SYMBOL(wait_on_page_bit); 1144 1145 int wait_on_page_bit_killable(struct page *page, int bit_nr) 1146 { 1147 wait_queue_head_t *q = page_waitqueue(page); 1148 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false); 1149 } 1150 EXPORT_SYMBOL(wait_on_page_bit_killable); 1151 1152 /** 1153 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 1154 * @page: Page defining the wait queue of interest 1155 * @waiter: Waiter to add to the queue 1156 * 1157 * Add an arbitrary @waiter to the wait queue for the nominated @page. 1158 */ 1159 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter) 1160 { 1161 wait_queue_head_t *q = page_waitqueue(page); 1162 unsigned long flags; 1163 1164 spin_lock_irqsave(&q->lock, flags); 1165 __add_wait_queue_entry_tail(q, waiter); 1166 SetPageWaiters(page); 1167 spin_unlock_irqrestore(&q->lock, flags); 1168 } 1169 EXPORT_SYMBOL_GPL(add_page_wait_queue); 1170 1171 #ifndef clear_bit_unlock_is_negative_byte 1172 1173 /* 1174 * PG_waiters is the high bit in the same byte as PG_lock. 1175 * 1176 * On x86 (and on many other architectures), we can clear PG_lock and 1177 * test the sign bit at the same time. But if the architecture does 1178 * not support that special operation, we just do this all by hand 1179 * instead. 1180 * 1181 * The read of PG_waiters has to be after (or concurrently with) PG_locked 1182 * being cleared, but a memory barrier should be unneccssary since it is 1183 * in the same byte as PG_locked. 1184 */ 1185 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) 1186 { 1187 clear_bit_unlock(nr, mem); 1188 /* smp_mb__after_atomic(); */ 1189 return test_bit(PG_waiters, mem); 1190 } 1191 1192 #endif 1193 1194 /** 1195 * unlock_page - unlock a locked page 1196 * @page: the page 1197 * 1198 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 1199 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 1200 * mechanism between PageLocked pages and PageWriteback pages is shared. 1201 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 1202 * 1203 * Note that this depends on PG_waiters being the sign bit in the byte 1204 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to 1205 * clear the PG_locked bit and test PG_waiters at the same time fairly 1206 * portably (architectures that do LL/SC can test any bit, while x86 can 1207 * test the sign bit). 1208 */ 1209 void unlock_page(struct page *page) 1210 { 1211 BUILD_BUG_ON(PG_waiters != 7); 1212 page = compound_head(page); 1213 VM_BUG_ON_PAGE(!PageLocked(page), page); 1214 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags)) 1215 wake_up_page_bit(page, PG_locked); 1216 } 1217 EXPORT_SYMBOL(unlock_page); 1218 1219 /** 1220 * end_page_writeback - end writeback against a page 1221 * @page: the page 1222 */ 1223 void end_page_writeback(struct page *page) 1224 { 1225 /* 1226 * TestClearPageReclaim could be used here but it is an atomic 1227 * operation and overkill in this particular case. Failing to 1228 * shuffle a page marked for immediate reclaim is too mild to 1229 * justify taking an atomic operation penalty at the end of 1230 * ever page writeback. 1231 */ 1232 if (PageReclaim(page)) { 1233 ClearPageReclaim(page); 1234 rotate_reclaimable_page(page); 1235 } 1236 1237 if (!test_clear_page_writeback(page)) 1238 BUG(); 1239 1240 smp_mb__after_atomic(); 1241 wake_up_page(page, PG_writeback); 1242 } 1243 EXPORT_SYMBOL(end_page_writeback); 1244 1245 /* 1246 * After completing I/O on a page, call this routine to update the page 1247 * flags appropriately 1248 */ 1249 void page_endio(struct page *page, bool is_write, int err) 1250 { 1251 if (!is_write) { 1252 if (!err) { 1253 SetPageUptodate(page); 1254 } else { 1255 ClearPageUptodate(page); 1256 SetPageError(page); 1257 } 1258 unlock_page(page); 1259 } else { 1260 if (err) { 1261 struct address_space *mapping; 1262 1263 SetPageError(page); 1264 mapping = page_mapping(page); 1265 if (mapping) 1266 mapping_set_error(mapping, err); 1267 } 1268 end_page_writeback(page); 1269 } 1270 } 1271 EXPORT_SYMBOL_GPL(page_endio); 1272 1273 /** 1274 * __lock_page - get a lock on the page, assuming we need to sleep to get it 1275 * @__page: the page to lock 1276 */ 1277 void __lock_page(struct page *__page) 1278 { 1279 struct page *page = compound_head(__page); 1280 wait_queue_head_t *q = page_waitqueue(page); 1281 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true); 1282 } 1283 EXPORT_SYMBOL(__lock_page); 1284 1285 int __lock_page_killable(struct page *__page) 1286 { 1287 struct page *page = compound_head(__page); 1288 wait_queue_head_t *q = page_waitqueue(page); 1289 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true); 1290 } 1291 EXPORT_SYMBOL_GPL(__lock_page_killable); 1292 1293 /* 1294 * Return values: 1295 * 1 - page is locked; mmap_sem is still held. 1296 * 0 - page is not locked. 1297 * mmap_sem has been released (up_read()), unless flags had both 1298 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 1299 * which case mmap_sem is still held. 1300 * 1301 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1 1302 * with the page locked and the mmap_sem unperturbed. 1303 */ 1304 int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 1305 unsigned int flags) 1306 { 1307 if (flags & FAULT_FLAG_ALLOW_RETRY) { 1308 /* 1309 * CAUTION! In this case, mmap_sem is not released 1310 * even though return 0. 1311 */ 1312 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1313 return 0; 1314 1315 up_read(&mm->mmap_sem); 1316 if (flags & FAULT_FLAG_KILLABLE) 1317 wait_on_page_locked_killable(page); 1318 else 1319 wait_on_page_locked(page); 1320 return 0; 1321 } else { 1322 if (flags & FAULT_FLAG_KILLABLE) { 1323 int ret; 1324 1325 ret = __lock_page_killable(page); 1326 if (ret) { 1327 up_read(&mm->mmap_sem); 1328 return 0; 1329 } 1330 } else 1331 __lock_page(page); 1332 return 1; 1333 } 1334 } 1335 1336 /** 1337 * page_cache_next_hole - find the next hole (not-present entry) 1338 * @mapping: mapping 1339 * @index: index 1340 * @max_scan: maximum range to search 1341 * 1342 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the 1343 * lowest indexed hole. 1344 * 1345 * Returns: the index of the hole if found, otherwise returns an index 1346 * outside of the set specified (in which case 'return - index >= 1347 * max_scan' will be true). In rare cases of index wrap-around, 0 will 1348 * be returned. 1349 * 1350 * page_cache_next_hole may be called under rcu_read_lock. However, 1351 * like radix_tree_gang_lookup, this will not atomically search a 1352 * snapshot of the tree at a single point in time. For example, if a 1353 * hole is created at index 5, then subsequently a hole is created at 1354 * index 10, page_cache_next_hole covering both indexes may return 10 1355 * if called under rcu_read_lock. 1356 */ 1357 pgoff_t page_cache_next_hole(struct address_space *mapping, 1358 pgoff_t index, unsigned long max_scan) 1359 { 1360 unsigned long i; 1361 1362 for (i = 0; i < max_scan; i++) { 1363 struct page *page; 1364 1365 page = radix_tree_lookup(&mapping->i_pages, index); 1366 if (!page || radix_tree_exceptional_entry(page)) 1367 break; 1368 index++; 1369 if (index == 0) 1370 break; 1371 } 1372 1373 return index; 1374 } 1375 EXPORT_SYMBOL(page_cache_next_hole); 1376 1377 /** 1378 * page_cache_prev_hole - find the prev hole (not-present entry) 1379 * @mapping: mapping 1380 * @index: index 1381 * @max_scan: maximum range to search 1382 * 1383 * Search backwards in the range [max(index-max_scan+1, 0), index] for 1384 * the first hole. 1385 * 1386 * Returns: the index of the hole if found, otherwise returns an index 1387 * outside of the set specified (in which case 'index - return >= 1388 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX 1389 * will be returned. 1390 * 1391 * page_cache_prev_hole may be called under rcu_read_lock. However, 1392 * like radix_tree_gang_lookup, this will not atomically search a 1393 * snapshot of the tree at a single point in time. For example, if a 1394 * hole is created at index 10, then subsequently a hole is created at 1395 * index 5, page_cache_prev_hole covering both indexes may return 5 if 1396 * called under rcu_read_lock. 1397 */ 1398 pgoff_t page_cache_prev_hole(struct address_space *mapping, 1399 pgoff_t index, unsigned long max_scan) 1400 { 1401 unsigned long i; 1402 1403 for (i = 0; i < max_scan; i++) { 1404 struct page *page; 1405 1406 page = radix_tree_lookup(&mapping->i_pages, index); 1407 if (!page || radix_tree_exceptional_entry(page)) 1408 break; 1409 index--; 1410 if (index == ULONG_MAX) 1411 break; 1412 } 1413 1414 return index; 1415 } 1416 EXPORT_SYMBOL(page_cache_prev_hole); 1417 1418 /** 1419 * find_get_entry - find and get a page cache entry 1420 * @mapping: the address_space to search 1421 * @offset: the page cache index 1422 * 1423 * Looks up the page cache slot at @mapping & @offset. If there is a 1424 * page cache page, it is returned with an increased refcount. 1425 * 1426 * If the slot holds a shadow entry of a previously evicted page, or a 1427 * swap entry from shmem/tmpfs, it is returned. 1428 * 1429 * Otherwise, %NULL is returned. 1430 */ 1431 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset) 1432 { 1433 void **pagep; 1434 struct page *head, *page; 1435 1436 rcu_read_lock(); 1437 repeat: 1438 page = NULL; 1439 pagep = radix_tree_lookup_slot(&mapping->i_pages, offset); 1440 if (pagep) { 1441 page = radix_tree_deref_slot(pagep); 1442 if (unlikely(!page)) 1443 goto out; 1444 if (radix_tree_exception(page)) { 1445 if (radix_tree_deref_retry(page)) 1446 goto repeat; 1447 /* 1448 * A shadow entry of a recently evicted page, 1449 * or a swap entry from shmem/tmpfs. Return 1450 * it without attempting to raise page count. 1451 */ 1452 goto out; 1453 } 1454 1455 head = compound_head(page); 1456 if (!page_cache_get_speculative(head)) 1457 goto repeat; 1458 1459 /* The page was split under us? */ 1460 if (compound_head(page) != head) { 1461 put_page(head); 1462 goto repeat; 1463 } 1464 1465 /* 1466 * Has the page moved? 1467 * This is part of the lockless pagecache protocol. See 1468 * include/linux/pagemap.h for details. 1469 */ 1470 if (unlikely(page != *pagep)) { 1471 put_page(head); 1472 goto repeat; 1473 } 1474 } 1475 out: 1476 rcu_read_unlock(); 1477 1478 return page; 1479 } 1480 EXPORT_SYMBOL(find_get_entry); 1481 1482 /** 1483 * find_lock_entry - locate, pin and lock a page cache entry 1484 * @mapping: the address_space to search 1485 * @offset: the page cache index 1486 * 1487 * Looks up the page cache slot at @mapping & @offset. If there is a 1488 * page cache page, it is returned locked and with an increased 1489 * refcount. 1490 * 1491 * If the slot holds a shadow entry of a previously evicted page, or a 1492 * swap entry from shmem/tmpfs, it is returned. 1493 * 1494 * Otherwise, %NULL is returned. 1495 * 1496 * find_lock_entry() may sleep. 1497 */ 1498 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset) 1499 { 1500 struct page *page; 1501 1502 repeat: 1503 page = find_get_entry(mapping, offset); 1504 if (page && !radix_tree_exception(page)) { 1505 lock_page(page); 1506 /* Has the page been truncated? */ 1507 if (unlikely(page_mapping(page) != mapping)) { 1508 unlock_page(page); 1509 put_page(page); 1510 goto repeat; 1511 } 1512 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page); 1513 } 1514 return page; 1515 } 1516 EXPORT_SYMBOL(find_lock_entry); 1517 1518 /** 1519 * pagecache_get_page - find and get a page reference 1520 * @mapping: the address_space to search 1521 * @offset: the page index 1522 * @fgp_flags: PCG flags 1523 * @gfp_mask: gfp mask to use for the page cache data page allocation 1524 * 1525 * Looks up the page cache slot at @mapping & @offset. 1526 * 1527 * PCG flags modify how the page is returned. 1528 * 1529 * @fgp_flags can be: 1530 * 1531 * - FGP_ACCESSED: the page will be marked accessed 1532 * - FGP_LOCK: Page is return locked 1533 * - FGP_CREAT: If page is not present then a new page is allocated using 1534 * @gfp_mask and added to the page cache and the VM's LRU 1535 * list. The page is returned locked and with an increased 1536 * refcount. Otherwise, NULL is returned. 1537 * 1538 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even 1539 * if the GFP flags specified for FGP_CREAT are atomic. 1540 * 1541 * If there is a page cache page, it is returned with an increased refcount. 1542 */ 1543 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, 1544 int fgp_flags, gfp_t gfp_mask) 1545 { 1546 struct page *page; 1547 1548 repeat: 1549 page = find_get_entry(mapping, offset); 1550 if (radix_tree_exceptional_entry(page)) 1551 page = NULL; 1552 if (!page) 1553 goto no_page; 1554 1555 if (fgp_flags & FGP_LOCK) { 1556 if (fgp_flags & FGP_NOWAIT) { 1557 if (!trylock_page(page)) { 1558 put_page(page); 1559 return NULL; 1560 } 1561 } else { 1562 lock_page(page); 1563 } 1564 1565 /* Has the page been truncated? */ 1566 if (unlikely(page->mapping != mapping)) { 1567 unlock_page(page); 1568 put_page(page); 1569 goto repeat; 1570 } 1571 VM_BUG_ON_PAGE(page->index != offset, page); 1572 } 1573 1574 if (page && (fgp_flags & FGP_ACCESSED)) 1575 mark_page_accessed(page); 1576 1577 no_page: 1578 if (!page && (fgp_flags & FGP_CREAT)) { 1579 int err; 1580 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping)) 1581 gfp_mask |= __GFP_WRITE; 1582 if (fgp_flags & FGP_NOFS) 1583 gfp_mask &= ~__GFP_FS; 1584 1585 page = __page_cache_alloc(gfp_mask); 1586 if (!page) 1587 return NULL; 1588 1589 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK))) 1590 fgp_flags |= FGP_LOCK; 1591 1592 /* Init accessed so avoid atomic mark_page_accessed later */ 1593 if (fgp_flags & FGP_ACCESSED) 1594 __SetPageReferenced(page); 1595 1596 err = add_to_page_cache_lru(page, mapping, offset, gfp_mask); 1597 if (unlikely(err)) { 1598 put_page(page); 1599 page = NULL; 1600 if (err == -EEXIST) 1601 goto repeat; 1602 } 1603 } 1604 1605 return page; 1606 } 1607 EXPORT_SYMBOL(pagecache_get_page); 1608 1609 /** 1610 * find_get_entries - gang pagecache lookup 1611 * @mapping: The address_space to search 1612 * @start: The starting page cache index 1613 * @nr_entries: The maximum number of entries 1614 * @entries: Where the resulting entries are placed 1615 * @indices: The cache indices corresponding to the entries in @entries 1616 * 1617 * find_get_entries() will search for and return a group of up to 1618 * @nr_entries entries in the mapping. The entries are placed at 1619 * @entries. find_get_entries() takes a reference against any actual 1620 * pages it returns. 1621 * 1622 * The search returns a group of mapping-contiguous page cache entries 1623 * with ascending indexes. There may be holes in the indices due to 1624 * not-present pages. 1625 * 1626 * Any shadow entries of evicted pages, or swap entries from 1627 * shmem/tmpfs, are included in the returned array. 1628 * 1629 * find_get_entries() returns the number of pages and shadow entries 1630 * which were found. 1631 */ 1632 unsigned find_get_entries(struct address_space *mapping, 1633 pgoff_t start, unsigned int nr_entries, 1634 struct page **entries, pgoff_t *indices) 1635 { 1636 void **slot; 1637 unsigned int ret = 0; 1638 struct radix_tree_iter iter; 1639 1640 if (!nr_entries) 1641 return 0; 1642 1643 rcu_read_lock(); 1644 radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) { 1645 struct page *head, *page; 1646 repeat: 1647 page = radix_tree_deref_slot(slot); 1648 if (unlikely(!page)) 1649 continue; 1650 if (radix_tree_exception(page)) { 1651 if (radix_tree_deref_retry(page)) { 1652 slot = radix_tree_iter_retry(&iter); 1653 continue; 1654 } 1655 /* 1656 * A shadow entry of a recently evicted page, a swap 1657 * entry from shmem/tmpfs or a DAX entry. Return it 1658 * without attempting to raise page count. 1659 */ 1660 goto export; 1661 } 1662 1663 head = compound_head(page); 1664 if (!page_cache_get_speculative(head)) 1665 goto repeat; 1666 1667 /* The page was split under us? */ 1668 if (compound_head(page) != head) { 1669 put_page(head); 1670 goto repeat; 1671 } 1672 1673 /* Has the page moved? */ 1674 if (unlikely(page != *slot)) { 1675 put_page(head); 1676 goto repeat; 1677 } 1678 export: 1679 indices[ret] = iter.index; 1680 entries[ret] = page; 1681 if (++ret == nr_entries) 1682 break; 1683 } 1684 rcu_read_unlock(); 1685 return ret; 1686 } 1687 1688 /** 1689 * find_get_pages_range - gang pagecache lookup 1690 * @mapping: The address_space to search 1691 * @start: The starting page index 1692 * @end: The final page index (inclusive) 1693 * @nr_pages: The maximum number of pages 1694 * @pages: Where the resulting pages are placed 1695 * 1696 * find_get_pages_range() will search for and return a group of up to @nr_pages 1697 * pages in the mapping starting at index @start and up to index @end 1698 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes 1699 * a reference against the returned pages. 1700 * 1701 * The search returns a group of mapping-contiguous pages with ascending 1702 * indexes. There may be holes in the indices due to not-present pages. 1703 * We also update @start to index the next page for the traversal. 1704 * 1705 * find_get_pages_range() returns the number of pages which were found. If this 1706 * number is smaller than @nr_pages, the end of specified range has been 1707 * reached. 1708 */ 1709 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, 1710 pgoff_t end, unsigned int nr_pages, 1711 struct page **pages) 1712 { 1713 struct radix_tree_iter iter; 1714 void **slot; 1715 unsigned ret = 0; 1716 1717 if (unlikely(!nr_pages)) 1718 return 0; 1719 1720 rcu_read_lock(); 1721 radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, *start) { 1722 struct page *head, *page; 1723 1724 if (iter.index > end) 1725 break; 1726 repeat: 1727 page = radix_tree_deref_slot(slot); 1728 if (unlikely(!page)) 1729 continue; 1730 1731 if (radix_tree_exception(page)) { 1732 if (radix_tree_deref_retry(page)) { 1733 slot = radix_tree_iter_retry(&iter); 1734 continue; 1735 } 1736 /* 1737 * A shadow entry of a recently evicted page, 1738 * or a swap entry from shmem/tmpfs. Skip 1739 * over it. 1740 */ 1741 continue; 1742 } 1743 1744 head = compound_head(page); 1745 if (!page_cache_get_speculative(head)) 1746 goto repeat; 1747 1748 /* The page was split under us? */ 1749 if (compound_head(page) != head) { 1750 put_page(head); 1751 goto repeat; 1752 } 1753 1754 /* Has the page moved? */ 1755 if (unlikely(page != *slot)) { 1756 put_page(head); 1757 goto repeat; 1758 } 1759 1760 pages[ret] = page; 1761 if (++ret == nr_pages) { 1762 *start = pages[ret - 1]->index + 1; 1763 goto out; 1764 } 1765 } 1766 1767 /* 1768 * We come here when there is no page beyond @end. We take care to not 1769 * overflow the index @start as it confuses some of the callers. This 1770 * breaks the iteration when there is page at index -1 but that is 1771 * already broken anyway. 1772 */ 1773 if (end == (pgoff_t)-1) 1774 *start = (pgoff_t)-1; 1775 else 1776 *start = end + 1; 1777 out: 1778 rcu_read_unlock(); 1779 1780 return ret; 1781 } 1782 1783 /** 1784 * find_get_pages_contig - gang contiguous pagecache lookup 1785 * @mapping: The address_space to search 1786 * @index: The starting page index 1787 * @nr_pages: The maximum number of pages 1788 * @pages: Where the resulting pages are placed 1789 * 1790 * find_get_pages_contig() works exactly like find_get_pages(), except 1791 * that the returned number of pages are guaranteed to be contiguous. 1792 * 1793 * find_get_pages_contig() returns the number of pages which were found. 1794 */ 1795 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 1796 unsigned int nr_pages, struct page **pages) 1797 { 1798 struct radix_tree_iter iter; 1799 void **slot; 1800 unsigned int ret = 0; 1801 1802 if (unlikely(!nr_pages)) 1803 return 0; 1804 1805 rcu_read_lock(); 1806 radix_tree_for_each_contig(slot, &mapping->i_pages, &iter, index) { 1807 struct page *head, *page; 1808 repeat: 1809 page = radix_tree_deref_slot(slot); 1810 /* The hole, there no reason to continue */ 1811 if (unlikely(!page)) 1812 break; 1813 1814 if (radix_tree_exception(page)) { 1815 if (radix_tree_deref_retry(page)) { 1816 slot = radix_tree_iter_retry(&iter); 1817 continue; 1818 } 1819 /* 1820 * A shadow entry of a recently evicted page, 1821 * or a swap entry from shmem/tmpfs. Stop 1822 * looking for contiguous pages. 1823 */ 1824 break; 1825 } 1826 1827 head = compound_head(page); 1828 if (!page_cache_get_speculative(head)) 1829 goto repeat; 1830 1831 /* The page was split under us? */ 1832 if (compound_head(page) != head) { 1833 put_page(head); 1834 goto repeat; 1835 } 1836 1837 /* Has the page moved? */ 1838 if (unlikely(page != *slot)) { 1839 put_page(head); 1840 goto repeat; 1841 } 1842 1843 /* 1844 * must check mapping and index after taking the ref. 1845 * otherwise we can get both false positives and false 1846 * negatives, which is just confusing to the caller. 1847 */ 1848 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) { 1849 put_page(page); 1850 break; 1851 } 1852 1853 pages[ret] = page; 1854 if (++ret == nr_pages) 1855 break; 1856 } 1857 rcu_read_unlock(); 1858 return ret; 1859 } 1860 EXPORT_SYMBOL(find_get_pages_contig); 1861 1862 /** 1863 * find_get_pages_range_tag - find and return pages in given range matching @tag 1864 * @mapping: the address_space to search 1865 * @index: the starting page index 1866 * @end: The final page index (inclusive) 1867 * @tag: the tag index 1868 * @nr_pages: the maximum number of pages 1869 * @pages: where the resulting pages are placed 1870 * 1871 * Like find_get_pages, except we only return pages which are tagged with 1872 * @tag. We update @index to index the next page for the traversal. 1873 */ 1874 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, 1875 pgoff_t end, int tag, unsigned int nr_pages, 1876 struct page **pages) 1877 { 1878 struct radix_tree_iter iter; 1879 void **slot; 1880 unsigned ret = 0; 1881 1882 if (unlikely(!nr_pages)) 1883 return 0; 1884 1885 rcu_read_lock(); 1886 radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, *index, tag) { 1887 struct page *head, *page; 1888 1889 if (iter.index > end) 1890 break; 1891 repeat: 1892 page = radix_tree_deref_slot(slot); 1893 if (unlikely(!page)) 1894 continue; 1895 1896 if (radix_tree_exception(page)) { 1897 if (radix_tree_deref_retry(page)) { 1898 slot = radix_tree_iter_retry(&iter); 1899 continue; 1900 } 1901 /* 1902 * A shadow entry of a recently evicted page. 1903 * 1904 * Those entries should never be tagged, but 1905 * this tree walk is lockless and the tags are 1906 * looked up in bulk, one radix tree node at a 1907 * time, so there is a sizable window for page 1908 * reclaim to evict a page we saw tagged. 1909 * 1910 * Skip over it. 1911 */ 1912 continue; 1913 } 1914 1915 head = compound_head(page); 1916 if (!page_cache_get_speculative(head)) 1917 goto repeat; 1918 1919 /* The page was split under us? */ 1920 if (compound_head(page) != head) { 1921 put_page(head); 1922 goto repeat; 1923 } 1924 1925 /* Has the page moved? */ 1926 if (unlikely(page != *slot)) { 1927 put_page(head); 1928 goto repeat; 1929 } 1930 1931 pages[ret] = page; 1932 if (++ret == nr_pages) { 1933 *index = pages[ret - 1]->index + 1; 1934 goto out; 1935 } 1936 } 1937 1938 /* 1939 * We come here when we got at @end. We take care to not overflow the 1940 * index @index as it confuses some of the callers. This breaks the 1941 * iteration when there is page at index -1 but that is already broken 1942 * anyway. 1943 */ 1944 if (end == (pgoff_t)-1) 1945 *index = (pgoff_t)-1; 1946 else 1947 *index = end + 1; 1948 out: 1949 rcu_read_unlock(); 1950 1951 return ret; 1952 } 1953 EXPORT_SYMBOL(find_get_pages_range_tag); 1954 1955 /** 1956 * find_get_entries_tag - find and return entries that match @tag 1957 * @mapping: the address_space to search 1958 * @start: the starting page cache index 1959 * @tag: the tag index 1960 * @nr_entries: the maximum number of entries 1961 * @entries: where the resulting entries are placed 1962 * @indices: the cache indices corresponding to the entries in @entries 1963 * 1964 * Like find_get_entries, except we only return entries which are tagged with 1965 * @tag. 1966 */ 1967 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start, 1968 int tag, unsigned int nr_entries, 1969 struct page **entries, pgoff_t *indices) 1970 { 1971 void **slot; 1972 unsigned int ret = 0; 1973 struct radix_tree_iter iter; 1974 1975 if (!nr_entries) 1976 return 0; 1977 1978 rcu_read_lock(); 1979 radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, start, tag) { 1980 struct page *head, *page; 1981 repeat: 1982 page = radix_tree_deref_slot(slot); 1983 if (unlikely(!page)) 1984 continue; 1985 if (radix_tree_exception(page)) { 1986 if (radix_tree_deref_retry(page)) { 1987 slot = radix_tree_iter_retry(&iter); 1988 continue; 1989 } 1990 1991 /* 1992 * A shadow entry of a recently evicted page, a swap 1993 * entry from shmem/tmpfs or a DAX entry. Return it 1994 * without attempting to raise page count. 1995 */ 1996 goto export; 1997 } 1998 1999 head = compound_head(page); 2000 if (!page_cache_get_speculative(head)) 2001 goto repeat; 2002 2003 /* The page was split under us? */ 2004 if (compound_head(page) != head) { 2005 put_page(head); 2006 goto repeat; 2007 } 2008 2009 /* Has the page moved? */ 2010 if (unlikely(page != *slot)) { 2011 put_page(head); 2012 goto repeat; 2013 } 2014 export: 2015 indices[ret] = iter.index; 2016 entries[ret] = page; 2017 if (++ret == nr_entries) 2018 break; 2019 } 2020 rcu_read_unlock(); 2021 return ret; 2022 } 2023 EXPORT_SYMBOL(find_get_entries_tag); 2024 2025 /* 2026 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 2027 * a _large_ part of the i/o request. Imagine the worst scenario: 2028 * 2029 * ---R__________________________________________B__________ 2030 * ^ reading here ^ bad block(assume 4k) 2031 * 2032 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2033 * => failing the whole request => read(R) => read(R+1) => 2034 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2035 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2036 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2037 * 2038 * It is going insane. Fix it by quickly scaling down the readahead size. 2039 */ 2040 static void shrink_readahead_size_eio(struct file *filp, 2041 struct file_ra_state *ra) 2042 { 2043 ra->ra_pages /= 4; 2044 } 2045 2046 /** 2047 * generic_file_buffered_read - generic file read routine 2048 * @iocb: the iocb to read 2049 * @iter: data destination 2050 * @written: already copied 2051 * 2052 * This is a generic file read routine, and uses the 2053 * mapping->a_ops->readpage() function for the actual low-level stuff. 2054 * 2055 * This is really ugly. But the goto's actually try to clarify some 2056 * of the logic when it comes to error handling etc. 2057 */ 2058 static ssize_t generic_file_buffered_read(struct kiocb *iocb, 2059 struct iov_iter *iter, ssize_t written) 2060 { 2061 struct file *filp = iocb->ki_filp; 2062 struct address_space *mapping = filp->f_mapping; 2063 struct inode *inode = mapping->host; 2064 struct file_ra_state *ra = &filp->f_ra; 2065 loff_t *ppos = &iocb->ki_pos; 2066 pgoff_t index; 2067 pgoff_t last_index; 2068 pgoff_t prev_index; 2069 unsigned long offset; /* offset into pagecache page */ 2070 unsigned int prev_offset; 2071 int error = 0; 2072 2073 if (unlikely(*ppos >= inode->i_sb->s_maxbytes)) 2074 return 0; 2075 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 2076 2077 index = *ppos >> PAGE_SHIFT; 2078 prev_index = ra->prev_pos >> PAGE_SHIFT; 2079 prev_offset = ra->prev_pos & (PAGE_SIZE-1); 2080 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT; 2081 offset = *ppos & ~PAGE_MASK; 2082 2083 for (;;) { 2084 struct page *page; 2085 pgoff_t end_index; 2086 loff_t isize; 2087 unsigned long nr, ret; 2088 2089 cond_resched(); 2090 find_page: 2091 if (fatal_signal_pending(current)) { 2092 error = -EINTR; 2093 goto out; 2094 } 2095 2096 page = find_get_page(mapping, index); 2097 if (!page) { 2098 if (iocb->ki_flags & IOCB_NOWAIT) 2099 goto would_block; 2100 page_cache_sync_readahead(mapping, 2101 ra, filp, 2102 index, last_index - index); 2103 page = find_get_page(mapping, index); 2104 if (unlikely(page == NULL)) 2105 goto no_cached_page; 2106 } 2107 if (PageReadahead(page)) { 2108 page_cache_async_readahead(mapping, 2109 ra, filp, page, 2110 index, last_index - index); 2111 } 2112 if (!PageUptodate(page)) { 2113 if (iocb->ki_flags & IOCB_NOWAIT) { 2114 put_page(page); 2115 goto would_block; 2116 } 2117 2118 /* 2119 * See comment in do_read_cache_page on why 2120 * wait_on_page_locked is used to avoid unnecessarily 2121 * serialisations and why it's safe. 2122 */ 2123 error = wait_on_page_locked_killable(page); 2124 if (unlikely(error)) 2125 goto readpage_error; 2126 if (PageUptodate(page)) 2127 goto page_ok; 2128 2129 if (inode->i_blkbits == PAGE_SHIFT || 2130 !mapping->a_ops->is_partially_uptodate) 2131 goto page_not_up_to_date; 2132 /* pipes can't handle partially uptodate pages */ 2133 if (unlikely(iter->type & ITER_PIPE)) 2134 goto page_not_up_to_date; 2135 if (!trylock_page(page)) 2136 goto page_not_up_to_date; 2137 /* Did it get truncated before we got the lock? */ 2138 if (!page->mapping) 2139 goto page_not_up_to_date_locked; 2140 if (!mapping->a_ops->is_partially_uptodate(page, 2141 offset, iter->count)) 2142 goto page_not_up_to_date_locked; 2143 unlock_page(page); 2144 } 2145 page_ok: 2146 /* 2147 * i_size must be checked after we know the page is Uptodate. 2148 * 2149 * Checking i_size after the check allows us to calculate 2150 * the correct value for "nr", which means the zero-filled 2151 * part of the page is not copied back to userspace (unless 2152 * another truncate extends the file - this is desired though). 2153 */ 2154 2155 isize = i_size_read(inode); 2156 end_index = (isize - 1) >> PAGE_SHIFT; 2157 if (unlikely(!isize || index > end_index)) { 2158 put_page(page); 2159 goto out; 2160 } 2161 2162 /* nr is the maximum number of bytes to copy from this page */ 2163 nr = PAGE_SIZE; 2164 if (index == end_index) { 2165 nr = ((isize - 1) & ~PAGE_MASK) + 1; 2166 if (nr <= offset) { 2167 put_page(page); 2168 goto out; 2169 } 2170 } 2171 nr = nr - offset; 2172 2173 /* If users can be writing to this page using arbitrary 2174 * virtual addresses, take care about potential aliasing 2175 * before reading the page on the kernel side. 2176 */ 2177 if (mapping_writably_mapped(mapping)) 2178 flush_dcache_page(page); 2179 2180 /* 2181 * When a sequential read accesses a page several times, 2182 * only mark it as accessed the first time. 2183 */ 2184 if (prev_index != index || offset != prev_offset) 2185 mark_page_accessed(page); 2186 prev_index = index; 2187 2188 /* 2189 * Ok, we have the page, and it's up-to-date, so 2190 * now we can copy it to user space... 2191 */ 2192 2193 ret = copy_page_to_iter(page, offset, nr, iter); 2194 offset += ret; 2195 index += offset >> PAGE_SHIFT; 2196 offset &= ~PAGE_MASK; 2197 prev_offset = offset; 2198 2199 put_page(page); 2200 written += ret; 2201 if (!iov_iter_count(iter)) 2202 goto out; 2203 if (ret < nr) { 2204 error = -EFAULT; 2205 goto out; 2206 } 2207 continue; 2208 2209 page_not_up_to_date: 2210 /* Get exclusive access to the page ... */ 2211 error = lock_page_killable(page); 2212 if (unlikely(error)) 2213 goto readpage_error; 2214 2215 page_not_up_to_date_locked: 2216 /* Did it get truncated before we got the lock? */ 2217 if (!page->mapping) { 2218 unlock_page(page); 2219 put_page(page); 2220 continue; 2221 } 2222 2223 /* Did somebody else fill it already? */ 2224 if (PageUptodate(page)) { 2225 unlock_page(page); 2226 goto page_ok; 2227 } 2228 2229 readpage: 2230 /* 2231 * A previous I/O error may have been due to temporary 2232 * failures, eg. multipath errors. 2233 * PG_error will be set again if readpage fails. 2234 */ 2235 ClearPageError(page); 2236 /* Start the actual read. The read will unlock the page. */ 2237 error = mapping->a_ops->readpage(filp, page); 2238 2239 if (unlikely(error)) { 2240 if (error == AOP_TRUNCATED_PAGE) { 2241 put_page(page); 2242 error = 0; 2243 goto find_page; 2244 } 2245 goto readpage_error; 2246 } 2247 2248 if (!PageUptodate(page)) { 2249 error = lock_page_killable(page); 2250 if (unlikely(error)) 2251 goto readpage_error; 2252 if (!PageUptodate(page)) { 2253 if (page->mapping == NULL) { 2254 /* 2255 * invalidate_mapping_pages got it 2256 */ 2257 unlock_page(page); 2258 put_page(page); 2259 goto find_page; 2260 } 2261 unlock_page(page); 2262 shrink_readahead_size_eio(filp, ra); 2263 error = -EIO; 2264 goto readpage_error; 2265 } 2266 unlock_page(page); 2267 } 2268 2269 goto page_ok; 2270 2271 readpage_error: 2272 /* UHHUH! A synchronous read error occurred. Report it */ 2273 put_page(page); 2274 goto out; 2275 2276 no_cached_page: 2277 /* 2278 * Ok, it wasn't cached, so we need to create a new 2279 * page.. 2280 */ 2281 page = page_cache_alloc(mapping); 2282 if (!page) { 2283 error = -ENOMEM; 2284 goto out; 2285 } 2286 error = add_to_page_cache_lru(page, mapping, index, 2287 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2288 if (error) { 2289 put_page(page); 2290 if (error == -EEXIST) { 2291 error = 0; 2292 goto find_page; 2293 } 2294 goto out; 2295 } 2296 goto readpage; 2297 } 2298 2299 would_block: 2300 error = -EAGAIN; 2301 out: 2302 ra->prev_pos = prev_index; 2303 ra->prev_pos <<= PAGE_SHIFT; 2304 ra->prev_pos |= prev_offset; 2305 2306 *ppos = ((loff_t)index << PAGE_SHIFT) + offset; 2307 file_accessed(filp); 2308 return written ? written : error; 2309 } 2310 2311 /** 2312 * generic_file_read_iter - generic filesystem read routine 2313 * @iocb: kernel I/O control block 2314 * @iter: destination for the data read 2315 * 2316 * This is the "read_iter()" routine for all filesystems 2317 * that can use the page cache directly. 2318 */ 2319 ssize_t 2320 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2321 { 2322 size_t count = iov_iter_count(iter); 2323 ssize_t retval = 0; 2324 2325 if (!count) 2326 goto out; /* skip atime */ 2327 2328 if (iocb->ki_flags & IOCB_DIRECT) { 2329 struct file *file = iocb->ki_filp; 2330 struct address_space *mapping = file->f_mapping; 2331 struct inode *inode = mapping->host; 2332 loff_t size; 2333 2334 size = i_size_read(inode); 2335 if (iocb->ki_flags & IOCB_NOWAIT) { 2336 if (filemap_range_has_page(mapping, iocb->ki_pos, 2337 iocb->ki_pos + count - 1)) 2338 return -EAGAIN; 2339 } else { 2340 retval = filemap_write_and_wait_range(mapping, 2341 iocb->ki_pos, 2342 iocb->ki_pos + count - 1); 2343 if (retval < 0) 2344 goto out; 2345 } 2346 2347 file_accessed(file); 2348 2349 retval = mapping->a_ops->direct_IO(iocb, iter); 2350 if (retval >= 0) { 2351 iocb->ki_pos += retval; 2352 count -= retval; 2353 } 2354 iov_iter_revert(iter, count - iov_iter_count(iter)); 2355 2356 /* 2357 * Btrfs can have a short DIO read if we encounter 2358 * compressed extents, so if there was an error, or if 2359 * we've already read everything we wanted to, or if 2360 * there was a short read because we hit EOF, go ahead 2361 * and return. Otherwise fallthrough to buffered io for 2362 * the rest of the read. Buffered reads will not work for 2363 * DAX files, so don't bother trying. 2364 */ 2365 if (retval < 0 || !count || iocb->ki_pos >= size || 2366 IS_DAX(inode)) 2367 goto out; 2368 } 2369 2370 retval = generic_file_buffered_read(iocb, iter, retval); 2371 out: 2372 return retval; 2373 } 2374 EXPORT_SYMBOL(generic_file_read_iter); 2375 2376 #ifdef CONFIG_MMU 2377 /** 2378 * page_cache_read - adds requested page to the page cache if not already there 2379 * @file: file to read 2380 * @offset: page index 2381 * @gfp_mask: memory allocation flags 2382 * 2383 * This adds the requested page to the page cache if it isn't already there, 2384 * and schedules an I/O to read in its contents from disk. 2385 */ 2386 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask) 2387 { 2388 struct address_space *mapping = file->f_mapping; 2389 struct page *page; 2390 int ret; 2391 2392 do { 2393 page = __page_cache_alloc(gfp_mask); 2394 if (!page) 2395 return -ENOMEM; 2396 2397 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask); 2398 if (ret == 0) 2399 ret = mapping->a_ops->readpage(file, page); 2400 else if (ret == -EEXIST) 2401 ret = 0; /* losing race to add is OK */ 2402 2403 put_page(page); 2404 2405 } while (ret == AOP_TRUNCATED_PAGE); 2406 2407 return ret; 2408 } 2409 2410 #define MMAP_LOTSAMISS (100) 2411 2412 /* 2413 * Synchronous readahead happens when we don't even find 2414 * a page in the page cache at all. 2415 */ 2416 static void do_sync_mmap_readahead(struct vm_area_struct *vma, 2417 struct file_ra_state *ra, 2418 struct file *file, 2419 pgoff_t offset) 2420 { 2421 struct address_space *mapping = file->f_mapping; 2422 2423 /* If we don't want any read-ahead, don't bother */ 2424 if (vma->vm_flags & VM_RAND_READ) 2425 return; 2426 if (!ra->ra_pages) 2427 return; 2428 2429 if (vma->vm_flags & VM_SEQ_READ) { 2430 page_cache_sync_readahead(mapping, ra, file, offset, 2431 ra->ra_pages); 2432 return; 2433 } 2434 2435 /* Avoid banging the cache line if not needed */ 2436 if (ra->mmap_miss < MMAP_LOTSAMISS * 10) 2437 ra->mmap_miss++; 2438 2439 /* 2440 * Do we miss much more than hit in this file? If so, 2441 * stop bothering with read-ahead. It will only hurt. 2442 */ 2443 if (ra->mmap_miss > MMAP_LOTSAMISS) 2444 return; 2445 2446 /* 2447 * mmap read-around 2448 */ 2449 ra->start = max_t(long, 0, offset - ra->ra_pages / 2); 2450 ra->size = ra->ra_pages; 2451 ra->async_size = ra->ra_pages / 4; 2452 ra_submit(ra, mapping, file); 2453 } 2454 2455 /* 2456 * Asynchronous readahead happens when we find the page and PG_readahead, 2457 * so we want to possibly extend the readahead further.. 2458 */ 2459 static void do_async_mmap_readahead(struct vm_area_struct *vma, 2460 struct file_ra_state *ra, 2461 struct file *file, 2462 struct page *page, 2463 pgoff_t offset) 2464 { 2465 struct address_space *mapping = file->f_mapping; 2466 2467 /* If we don't want any read-ahead, don't bother */ 2468 if (vma->vm_flags & VM_RAND_READ) 2469 return; 2470 if (ra->mmap_miss > 0) 2471 ra->mmap_miss--; 2472 if (PageReadahead(page)) 2473 page_cache_async_readahead(mapping, ra, file, 2474 page, offset, ra->ra_pages); 2475 } 2476 2477 /** 2478 * filemap_fault - read in file data for page fault handling 2479 * @vmf: struct vm_fault containing details of the fault 2480 * 2481 * filemap_fault() is invoked via the vma operations vector for a 2482 * mapped memory region to read in file data during a page fault. 2483 * 2484 * The goto's are kind of ugly, but this streamlines the normal case of having 2485 * it in the page cache, and handles the special cases reasonably without 2486 * having a lot of duplicated code. 2487 * 2488 * vma->vm_mm->mmap_sem must be held on entry. 2489 * 2490 * If our return value has VM_FAULT_RETRY set, it's because 2491 * lock_page_or_retry() returned 0. 2492 * The mmap_sem has usually been released in this case. 2493 * See __lock_page_or_retry() for the exception. 2494 * 2495 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem 2496 * has not been released. 2497 * 2498 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 2499 */ 2500 vm_fault_t filemap_fault(struct vm_fault *vmf) 2501 { 2502 int error; 2503 struct file *file = vmf->vma->vm_file; 2504 struct address_space *mapping = file->f_mapping; 2505 struct file_ra_state *ra = &file->f_ra; 2506 struct inode *inode = mapping->host; 2507 pgoff_t offset = vmf->pgoff; 2508 pgoff_t max_off; 2509 struct page *page; 2510 vm_fault_t ret = 0; 2511 2512 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2513 if (unlikely(offset >= max_off)) 2514 return VM_FAULT_SIGBUS; 2515 2516 /* 2517 * Do we have something in the page cache already? 2518 */ 2519 page = find_get_page(mapping, offset); 2520 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { 2521 /* 2522 * We found the page, so try async readahead before 2523 * waiting for the lock. 2524 */ 2525 do_async_mmap_readahead(vmf->vma, ra, file, page, offset); 2526 } else if (!page) { 2527 /* No page in the page cache at all */ 2528 do_sync_mmap_readahead(vmf->vma, ra, file, offset); 2529 count_vm_event(PGMAJFAULT); 2530 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 2531 ret = VM_FAULT_MAJOR; 2532 retry_find: 2533 page = find_get_page(mapping, offset); 2534 if (!page) 2535 goto no_cached_page; 2536 } 2537 2538 if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) { 2539 put_page(page); 2540 return ret | VM_FAULT_RETRY; 2541 } 2542 2543 /* Did it get truncated? */ 2544 if (unlikely(page->mapping != mapping)) { 2545 unlock_page(page); 2546 put_page(page); 2547 goto retry_find; 2548 } 2549 VM_BUG_ON_PAGE(page->index != offset, page); 2550 2551 /* 2552 * We have a locked page in the page cache, now we need to check 2553 * that it's up-to-date. If not, it is going to be due to an error. 2554 */ 2555 if (unlikely(!PageUptodate(page))) 2556 goto page_not_uptodate; 2557 2558 /* 2559 * Found the page and have a reference on it. 2560 * We must recheck i_size under page lock. 2561 */ 2562 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2563 if (unlikely(offset >= max_off)) { 2564 unlock_page(page); 2565 put_page(page); 2566 return VM_FAULT_SIGBUS; 2567 } 2568 2569 vmf->page = page; 2570 return ret | VM_FAULT_LOCKED; 2571 2572 no_cached_page: 2573 /* 2574 * We're only likely to ever get here if MADV_RANDOM is in 2575 * effect. 2576 */ 2577 error = page_cache_read(file, offset, vmf->gfp_mask); 2578 2579 /* 2580 * The page we want has now been added to the page cache. 2581 * In the unlikely event that someone removed it in the 2582 * meantime, we'll just come back here and read it again. 2583 */ 2584 if (error >= 0) 2585 goto retry_find; 2586 2587 /* 2588 * An error return from page_cache_read can result if the 2589 * system is low on memory, or a problem occurs while trying 2590 * to schedule I/O. 2591 */ 2592 if (error == -ENOMEM) 2593 return VM_FAULT_OOM; 2594 return VM_FAULT_SIGBUS; 2595 2596 page_not_uptodate: 2597 /* 2598 * Umm, take care of errors if the page isn't up-to-date. 2599 * Try to re-read it _once_. We do this synchronously, 2600 * because there really aren't any performance issues here 2601 * and we need to check for errors. 2602 */ 2603 ClearPageError(page); 2604 error = mapping->a_ops->readpage(file, page); 2605 if (!error) { 2606 wait_on_page_locked(page); 2607 if (!PageUptodate(page)) 2608 error = -EIO; 2609 } 2610 put_page(page); 2611 2612 if (!error || error == AOP_TRUNCATED_PAGE) 2613 goto retry_find; 2614 2615 /* Things didn't work out. Return zero to tell the mm layer so. */ 2616 shrink_readahead_size_eio(file, ra); 2617 return VM_FAULT_SIGBUS; 2618 } 2619 EXPORT_SYMBOL(filemap_fault); 2620 2621 void filemap_map_pages(struct vm_fault *vmf, 2622 pgoff_t start_pgoff, pgoff_t end_pgoff) 2623 { 2624 struct radix_tree_iter iter; 2625 void **slot; 2626 struct file *file = vmf->vma->vm_file; 2627 struct address_space *mapping = file->f_mapping; 2628 pgoff_t last_pgoff = start_pgoff; 2629 unsigned long max_idx; 2630 struct page *head, *page; 2631 2632 rcu_read_lock(); 2633 radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start_pgoff) { 2634 if (iter.index > end_pgoff) 2635 break; 2636 repeat: 2637 page = radix_tree_deref_slot(slot); 2638 if (unlikely(!page)) 2639 goto next; 2640 if (radix_tree_exception(page)) { 2641 if (radix_tree_deref_retry(page)) { 2642 slot = radix_tree_iter_retry(&iter); 2643 continue; 2644 } 2645 goto next; 2646 } 2647 2648 head = compound_head(page); 2649 if (!page_cache_get_speculative(head)) 2650 goto repeat; 2651 2652 /* The page was split under us? */ 2653 if (compound_head(page) != head) { 2654 put_page(head); 2655 goto repeat; 2656 } 2657 2658 /* Has the page moved? */ 2659 if (unlikely(page != *slot)) { 2660 put_page(head); 2661 goto repeat; 2662 } 2663 2664 if (!PageUptodate(page) || 2665 PageReadahead(page) || 2666 PageHWPoison(page)) 2667 goto skip; 2668 if (!trylock_page(page)) 2669 goto skip; 2670 2671 if (page->mapping != mapping || !PageUptodate(page)) 2672 goto unlock; 2673 2674 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 2675 if (page->index >= max_idx) 2676 goto unlock; 2677 2678 if (file->f_ra.mmap_miss > 0) 2679 file->f_ra.mmap_miss--; 2680 2681 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT; 2682 if (vmf->pte) 2683 vmf->pte += iter.index - last_pgoff; 2684 last_pgoff = iter.index; 2685 if (alloc_set_pte(vmf, NULL, page)) 2686 goto unlock; 2687 unlock_page(page); 2688 goto next; 2689 unlock: 2690 unlock_page(page); 2691 skip: 2692 put_page(page); 2693 next: 2694 /* Huge page is mapped? No need to proceed. */ 2695 if (pmd_trans_huge(*vmf->pmd)) 2696 break; 2697 if (iter.index == end_pgoff) 2698 break; 2699 } 2700 rcu_read_unlock(); 2701 } 2702 EXPORT_SYMBOL(filemap_map_pages); 2703 2704 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 2705 { 2706 struct page *page = vmf->page; 2707 struct inode *inode = file_inode(vmf->vma->vm_file); 2708 vm_fault_t ret = VM_FAULT_LOCKED; 2709 2710 sb_start_pagefault(inode->i_sb); 2711 file_update_time(vmf->vma->vm_file); 2712 lock_page(page); 2713 if (page->mapping != inode->i_mapping) { 2714 unlock_page(page); 2715 ret = VM_FAULT_NOPAGE; 2716 goto out; 2717 } 2718 /* 2719 * We mark the page dirty already here so that when freeze is in 2720 * progress, we are guaranteed that writeback during freezing will 2721 * see the dirty page and writeprotect it again. 2722 */ 2723 set_page_dirty(page); 2724 wait_for_stable_page(page); 2725 out: 2726 sb_end_pagefault(inode->i_sb); 2727 return ret; 2728 } 2729 2730 const struct vm_operations_struct generic_file_vm_ops = { 2731 .fault = filemap_fault, 2732 .map_pages = filemap_map_pages, 2733 .page_mkwrite = filemap_page_mkwrite, 2734 }; 2735 2736 /* This is used for a general mmap of a disk file */ 2737 2738 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2739 { 2740 struct address_space *mapping = file->f_mapping; 2741 2742 if (!mapping->a_ops->readpage) 2743 return -ENOEXEC; 2744 file_accessed(file); 2745 vma->vm_ops = &generic_file_vm_ops; 2746 return 0; 2747 } 2748 2749 /* 2750 * This is for filesystems which do not implement ->writepage. 2751 */ 2752 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 2753 { 2754 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 2755 return -EINVAL; 2756 return generic_file_mmap(file, vma); 2757 } 2758 #else 2759 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 2760 { 2761 return VM_FAULT_SIGBUS; 2762 } 2763 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2764 { 2765 return -ENOSYS; 2766 } 2767 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 2768 { 2769 return -ENOSYS; 2770 } 2771 #endif /* CONFIG_MMU */ 2772 2773 EXPORT_SYMBOL(filemap_page_mkwrite); 2774 EXPORT_SYMBOL(generic_file_mmap); 2775 EXPORT_SYMBOL(generic_file_readonly_mmap); 2776 2777 static struct page *wait_on_page_read(struct page *page) 2778 { 2779 if (!IS_ERR(page)) { 2780 wait_on_page_locked(page); 2781 if (!PageUptodate(page)) { 2782 put_page(page); 2783 page = ERR_PTR(-EIO); 2784 } 2785 } 2786 return page; 2787 } 2788 2789 static struct page *do_read_cache_page(struct address_space *mapping, 2790 pgoff_t index, 2791 int (*filler)(void *, struct page *), 2792 void *data, 2793 gfp_t gfp) 2794 { 2795 struct page *page; 2796 int err; 2797 repeat: 2798 page = find_get_page(mapping, index); 2799 if (!page) { 2800 page = __page_cache_alloc(gfp); 2801 if (!page) 2802 return ERR_PTR(-ENOMEM); 2803 err = add_to_page_cache_lru(page, mapping, index, gfp); 2804 if (unlikely(err)) { 2805 put_page(page); 2806 if (err == -EEXIST) 2807 goto repeat; 2808 /* Presumably ENOMEM for radix tree node */ 2809 return ERR_PTR(err); 2810 } 2811 2812 filler: 2813 err = filler(data, page); 2814 if (err < 0) { 2815 put_page(page); 2816 return ERR_PTR(err); 2817 } 2818 2819 page = wait_on_page_read(page); 2820 if (IS_ERR(page)) 2821 return page; 2822 goto out; 2823 } 2824 if (PageUptodate(page)) 2825 goto out; 2826 2827 /* 2828 * Page is not up to date and may be locked due one of the following 2829 * case a: Page is being filled and the page lock is held 2830 * case b: Read/write error clearing the page uptodate status 2831 * case c: Truncation in progress (page locked) 2832 * case d: Reclaim in progress 2833 * 2834 * Case a, the page will be up to date when the page is unlocked. 2835 * There is no need to serialise on the page lock here as the page 2836 * is pinned so the lock gives no additional protection. Even if the 2837 * the page is truncated, the data is still valid if PageUptodate as 2838 * it's a race vs truncate race. 2839 * Case b, the page will not be up to date 2840 * Case c, the page may be truncated but in itself, the data may still 2841 * be valid after IO completes as it's a read vs truncate race. The 2842 * operation must restart if the page is not uptodate on unlock but 2843 * otherwise serialising on page lock to stabilise the mapping gives 2844 * no additional guarantees to the caller as the page lock is 2845 * released before return. 2846 * Case d, similar to truncation. If reclaim holds the page lock, it 2847 * will be a race with remove_mapping that determines if the mapping 2848 * is valid on unlock but otherwise the data is valid and there is 2849 * no need to serialise with page lock. 2850 * 2851 * As the page lock gives no additional guarantee, we optimistically 2852 * wait on the page to be unlocked and check if it's up to date and 2853 * use the page if it is. Otherwise, the page lock is required to 2854 * distinguish between the different cases. The motivation is that we 2855 * avoid spurious serialisations and wakeups when multiple processes 2856 * wait on the same page for IO to complete. 2857 */ 2858 wait_on_page_locked(page); 2859 if (PageUptodate(page)) 2860 goto out; 2861 2862 /* Distinguish between all the cases under the safety of the lock */ 2863 lock_page(page); 2864 2865 /* Case c or d, restart the operation */ 2866 if (!page->mapping) { 2867 unlock_page(page); 2868 put_page(page); 2869 goto repeat; 2870 } 2871 2872 /* Someone else locked and filled the page in a very small window */ 2873 if (PageUptodate(page)) { 2874 unlock_page(page); 2875 goto out; 2876 } 2877 goto filler; 2878 2879 out: 2880 mark_page_accessed(page); 2881 return page; 2882 } 2883 2884 /** 2885 * read_cache_page - read into page cache, fill it if needed 2886 * @mapping: the page's address_space 2887 * @index: the page index 2888 * @filler: function to perform the read 2889 * @data: first arg to filler(data, page) function, often left as NULL 2890 * 2891 * Read into the page cache. If a page already exists, and PageUptodate() is 2892 * not set, try to fill the page and wait for it to become unlocked. 2893 * 2894 * If the page does not get brought uptodate, return -EIO. 2895 */ 2896 struct page *read_cache_page(struct address_space *mapping, 2897 pgoff_t index, 2898 int (*filler)(void *, struct page *), 2899 void *data) 2900 { 2901 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping)); 2902 } 2903 EXPORT_SYMBOL(read_cache_page); 2904 2905 /** 2906 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 2907 * @mapping: the page's address_space 2908 * @index: the page index 2909 * @gfp: the page allocator flags to use if allocating 2910 * 2911 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 2912 * any new page allocations done using the specified allocation flags. 2913 * 2914 * If the page does not get brought uptodate, return -EIO. 2915 */ 2916 struct page *read_cache_page_gfp(struct address_space *mapping, 2917 pgoff_t index, 2918 gfp_t gfp) 2919 { 2920 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 2921 2922 return do_read_cache_page(mapping, index, filler, NULL, gfp); 2923 } 2924 EXPORT_SYMBOL(read_cache_page_gfp); 2925 2926 /* 2927 * Performs necessary checks before doing a write 2928 * 2929 * Can adjust writing position or amount of bytes to write. 2930 * Returns appropriate error code that caller should return or 2931 * zero in case that write should be allowed. 2932 */ 2933 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from) 2934 { 2935 struct file *file = iocb->ki_filp; 2936 struct inode *inode = file->f_mapping->host; 2937 unsigned long limit = rlimit(RLIMIT_FSIZE); 2938 loff_t pos; 2939 2940 if (!iov_iter_count(from)) 2941 return 0; 2942 2943 /* FIXME: this is for backwards compatibility with 2.4 */ 2944 if (iocb->ki_flags & IOCB_APPEND) 2945 iocb->ki_pos = i_size_read(inode); 2946 2947 pos = iocb->ki_pos; 2948 2949 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT)) 2950 return -EINVAL; 2951 2952 if (limit != RLIM_INFINITY) { 2953 if (iocb->ki_pos >= limit) { 2954 send_sig(SIGXFSZ, current, 0); 2955 return -EFBIG; 2956 } 2957 iov_iter_truncate(from, limit - (unsigned long)pos); 2958 } 2959 2960 /* 2961 * LFS rule 2962 */ 2963 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS && 2964 !(file->f_flags & O_LARGEFILE))) { 2965 if (pos >= MAX_NON_LFS) 2966 return -EFBIG; 2967 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos); 2968 } 2969 2970 /* 2971 * Are we about to exceed the fs block limit ? 2972 * 2973 * If we have written data it becomes a short write. If we have 2974 * exceeded without writing data we send a signal and return EFBIG. 2975 * Linus frestrict idea will clean these up nicely.. 2976 */ 2977 if (unlikely(pos >= inode->i_sb->s_maxbytes)) 2978 return -EFBIG; 2979 2980 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos); 2981 return iov_iter_count(from); 2982 } 2983 EXPORT_SYMBOL(generic_write_checks); 2984 2985 int pagecache_write_begin(struct file *file, struct address_space *mapping, 2986 loff_t pos, unsigned len, unsigned flags, 2987 struct page **pagep, void **fsdata) 2988 { 2989 const struct address_space_operations *aops = mapping->a_ops; 2990 2991 return aops->write_begin(file, mapping, pos, len, flags, 2992 pagep, fsdata); 2993 } 2994 EXPORT_SYMBOL(pagecache_write_begin); 2995 2996 int pagecache_write_end(struct file *file, struct address_space *mapping, 2997 loff_t pos, unsigned len, unsigned copied, 2998 struct page *page, void *fsdata) 2999 { 3000 const struct address_space_operations *aops = mapping->a_ops; 3001 3002 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 3003 } 3004 EXPORT_SYMBOL(pagecache_write_end); 3005 3006 ssize_t 3007 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 3008 { 3009 struct file *file = iocb->ki_filp; 3010 struct address_space *mapping = file->f_mapping; 3011 struct inode *inode = mapping->host; 3012 loff_t pos = iocb->ki_pos; 3013 ssize_t written; 3014 size_t write_len; 3015 pgoff_t end; 3016 3017 write_len = iov_iter_count(from); 3018 end = (pos + write_len - 1) >> PAGE_SHIFT; 3019 3020 if (iocb->ki_flags & IOCB_NOWAIT) { 3021 /* If there are pages to writeback, return */ 3022 if (filemap_range_has_page(inode->i_mapping, pos, 3023 pos + iov_iter_count(from))) 3024 return -EAGAIN; 3025 } else { 3026 written = filemap_write_and_wait_range(mapping, pos, 3027 pos + write_len - 1); 3028 if (written) 3029 goto out; 3030 } 3031 3032 /* 3033 * After a write we want buffered reads to be sure to go to disk to get 3034 * the new data. We invalidate clean cached page from the region we're 3035 * about to write. We do this *before* the write so that we can return 3036 * without clobbering -EIOCBQUEUED from ->direct_IO(). 3037 */ 3038 written = invalidate_inode_pages2_range(mapping, 3039 pos >> PAGE_SHIFT, end); 3040 /* 3041 * If a page can not be invalidated, return 0 to fall back 3042 * to buffered write. 3043 */ 3044 if (written) { 3045 if (written == -EBUSY) 3046 return 0; 3047 goto out; 3048 } 3049 3050 written = mapping->a_ops->direct_IO(iocb, from); 3051 3052 /* 3053 * Finally, try again to invalidate clean pages which might have been 3054 * cached by non-direct readahead, or faulted in by get_user_pages() 3055 * if the source of the write was an mmap'ed region of the file 3056 * we're writing. Either one is a pretty crazy thing to do, 3057 * so we don't support it 100%. If this invalidation 3058 * fails, tough, the write still worked... 3059 * 3060 * Most of the time we do not need this since dio_complete() will do 3061 * the invalidation for us. However there are some file systems that 3062 * do not end up with dio_complete() being called, so let's not break 3063 * them by removing it completely 3064 */ 3065 if (mapping->nrpages) 3066 invalidate_inode_pages2_range(mapping, 3067 pos >> PAGE_SHIFT, end); 3068 3069 if (written > 0) { 3070 pos += written; 3071 write_len -= written; 3072 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 3073 i_size_write(inode, pos); 3074 mark_inode_dirty(inode); 3075 } 3076 iocb->ki_pos = pos; 3077 } 3078 iov_iter_revert(from, write_len - iov_iter_count(from)); 3079 out: 3080 return written; 3081 } 3082 EXPORT_SYMBOL(generic_file_direct_write); 3083 3084 /* 3085 * Find or create a page at the given pagecache position. Return the locked 3086 * page. This function is specifically for buffered writes. 3087 */ 3088 struct page *grab_cache_page_write_begin(struct address_space *mapping, 3089 pgoff_t index, unsigned flags) 3090 { 3091 struct page *page; 3092 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT; 3093 3094 if (flags & AOP_FLAG_NOFS) 3095 fgp_flags |= FGP_NOFS; 3096 3097 page = pagecache_get_page(mapping, index, fgp_flags, 3098 mapping_gfp_mask(mapping)); 3099 if (page) 3100 wait_for_stable_page(page); 3101 3102 return page; 3103 } 3104 EXPORT_SYMBOL(grab_cache_page_write_begin); 3105 3106 ssize_t generic_perform_write(struct file *file, 3107 struct iov_iter *i, loff_t pos) 3108 { 3109 struct address_space *mapping = file->f_mapping; 3110 const struct address_space_operations *a_ops = mapping->a_ops; 3111 long status = 0; 3112 ssize_t written = 0; 3113 unsigned int flags = 0; 3114 3115 do { 3116 struct page *page; 3117 unsigned long offset; /* Offset into pagecache page */ 3118 unsigned long bytes; /* Bytes to write to page */ 3119 size_t copied; /* Bytes copied from user */ 3120 void *fsdata; 3121 3122 offset = (pos & (PAGE_SIZE - 1)); 3123 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3124 iov_iter_count(i)); 3125 3126 again: 3127 /* 3128 * Bring in the user page that we will copy from _first_. 3129 * Otherwise there's a nasty deadlock on copying from the 3130 * same page as we're writing to, without it being marked 3131 * up-to-date. 3132 * 3133 * Not only is this an optimisation, but it is also required 3134 * to check that the address is actually valid, when atomic 3135 * usercopies are used, below. 3136 */ 3137 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 3138 status = -EFAULT; 3139 break; 3140 } 3141 3142 if (fatal_signal_pending(current)) { 3143 status = -EINTR; 3144 break; 3145 } 3146 3147 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 3148 &page, &fsdata); 3149 if (unlikely(status < 0)) 3150 break; 3151 3152 if (mapping_writably_mapped(mapping)) 3153 flush_dcache_page(page); 3154 3155 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 3156 flush_dcache_page(page); 3157 3158 status = a_ops->write_end(file, mapping, pos, bytes, copied, 3159 page, fsdata); 3160 if (unlikely(status < 0)) 3161 break; 3162 copied = status; 3163 3164 cond_resched(); 3165 3166 iov_iter_advance(i, copied); 3167 if (unlikely(copied == 0)) { 3168 /* 3169 * If we were unable to copy any data at all, we must 3170 * fall back to a single segment length write. 3171 * 3172 * If we didn't fallback here, we could livelock 3173 * because not all segments in the iov can be copied at 3174 * once without a pagefault. 3175 */ 3176 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3177 iov_iter_single_seg_count(i)); 3178 goto again; 3179 } 3180 pos += copied; 3181 written += copied; 3182 3183 balance_dirty_pages_ratelimited(mapping); 3184 } while (iov_iter_count(i)); 3185 3186 return written ? written : status; 3187 } 3188 EXPORT_SYMBOL(generic_perform_write); 3189 3190 /** 3191 * __generic_file_write_iter - write data to a file 3192 * @iocb: IO state structure (file, offset, etc.) 3193 * @from: iov_iter with data to write 3194 * 3195 * This function does all the work needed for actually writing data to a 3196 * file. It does all basic checks, removes SUID from the file, updates 3197 * modification times and calls proper subroutines depending on whether we 3198 * do direct IO or a standard buffered write. 3199 * 3200 * It expects i_mutex to be grabbed unless we work on a block device or similar 3201 * object which does not need locking at all. 3202 * 3203 * This function does *not* take care of syncing data in case of O_SYNC write. 3204 * A caller has to handle it. This is mainly due to the fact that we want to 3205 * avoid syncing under i_mutex. 3206 */ 3207 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3208 { 3209 struct file *file = iocb->ki_filp; 3210 struct address_space * mapping = file->f_mapping; 3211 struct inode *inode = mapping->host; 3212 ssize_t written = 0; 3213 ssize_t err; 3214 ssize_t status; 3215 3216 /* We can write back this queue in page reclaim */ 3217 current->backing_dev_info = inode_to_bdi(inode); 3218 err = file_remove_privs(file); 3219 if (err) 3220 goto out; 3221 3222 err = file_update_time(file); 3223 if (err) 3224 goto out; 3225 3226 if (iocb->ki_flags & IOCB_DIRECT) { 3227 loff_t pos, endbyte; 3228 3229 written = generic_file_direct_write(iocb, from); 3230 /* 3231 * If the write stopped short of completing, fall back to 3232 * buffered writes. Some filesystems do this for writes to 3233 * holes, for example. For DAX files, a buffered write will 3234 * not succeed (even if it did, DAX does not handle dirty 3235 * page-cache pages correctly). 3236 */ 3237 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) 3238 goto out; 3239 3240 status = generic_perform_write(file, from, pos = iocb->ki_pos); 3241 /* 3242 * If generic_perform_write() returned a synchronous error 3243 * then we want to return the number of bytes which were 3244 * direct-written, or the error code if that was zero. Note 3245 * that this differs from normal direct-io semantics, which 3246 * will return -EFOO even if some bytes were written. 3247 */ 3248 if (unlikely(status < 0)) { 3249 err = status; 3250 goto out; 3251 } 3252 /* 3253 * We need to ensure that the page cache pages are written to 3254 * disk and invalidated to preserve the expected O_DIRECT 3255 * semantics. 3256 */ 3257 endbyte = pos + status - 1; 3258 err = filemap_write_and_wait_range(mapping, pos, endbyte); 3259 if (err == 0) { 3260 iocb->ki_pos = endbyte + 1; 3261 written += status; 3262 invalidate_mapping_pages(mapping, 3263 pos >> PAGE_SHIFT, 3264 endbyte >> PAGE_SHIFT); 3265 } else { 3266 /* 3267 * We don't know how much we wrote, so just return 3268 * the number of bytes which were direct-written 3269 */ 3270 } 3271 } else { 3272 written = generic_perform_write(file, from, iocb->ki_pos); 3273 if (likely(written > 0)) 3274 iocb->ki_pos += written; 3275 } 3276 out: 3277 current->backing_dev_info = NULL; 3278 return written ? written : err; 3279 } 3280 EXPORT_SYMBOL(__generic_file_write_iter); 3281 3282 /** 3283 * generic_file_write_iter - write data to a file 3284 * @iocb: IO state structure 3285 * @from: iov_iter with data to write 3286 * 3287 * This is a wrapper around __generic_file_write_iter() to be used by most 3288 * filesystems. It takes care of syncing the file in case of O_SYNC file 3289 * and acquires i_mutex as needed. 3290 */ 3291 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3292 { 3293 struct file *file = iocb->ki_filp; 3294 struct inode *inode = file->f_mapping->host; 3295 ssize_t ret; 3296 3297 inode_lock(inode); 3298 ret = generic_write_checks(iocb, from); 3299 if (ret > 0) 3300 ret = __generic_file_write_iter(iocb, from); 3301 inode_unlock(inode); 3302 3303 if (ret > 0) 3304 ret = generic_write_sync(iocb, ret); 3305 return ret; 3306 } 3307 EXPORT_SYMBOL(generic_file_write_iter); 3308 3309 /** 3310 * try_to_release_page() - release old fs-specific metadata on a page 3311 * 3312 * @page: the page which the kernel is trying to free 3313 * @gfp_mask: memory allocation flags (and I/O mode) 3314 * 3315 * The address_space is to try to release any data against the page 3316 * (presumably at page->private). If the release was successful, return '1'. 3317 * Otherwise return zero. 3318 * 3319 * This may also be called if PG_fscache is set on a page, indicating that the 3320 * page is known to the local caching routines. 3321 * 3322 * The @gfp_mask argument specifies whether I/O may be performed to release 3323 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS). 3324 * 3325 */ 3326 int try_to_release_page(struct page *page, gfp_t gfp_mask) 3327 { 3328 struct address_space * const mapping = page->mapping; 3329 3330 BUG_ON(!PageLocked(page)); 3331 if (PageWriteback(page)) 3332 return 0; 3333 3334 if (mapping && mapping->a_ops->releasepage) 3335 return mapping->a_ops->releasepage(page, gfp_mask); 3336 return try_to_free_buffers(page); 3337 } 3338 3339 EXPORT_SYMBOL(try_to_release_page); 3340