xref: /linux/mm/filemap.c (revision a9ce09b15761e0f3a413a4a79097d17e19bd3ec1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/mm/filemap.c
4  *
5  * Copyright (C) 1994-1999  Linus Torvalds
6  */
7 
8 /*
9  * This file handles the generic file mmap semantics used by
10  * most "normal" filesystems (but you don't /have/ to use this:
11  * the NFS filesystem used to do this differently, for example)
12  */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/leafops.h>
25 #include <linux/syscalls.h>
26 #include <linux/mman.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
29 #include <linux/uio.h>
30 #include <linux/error-injection.h>
31 #include <linux/hash.h>
32 #include <linux/writeback.h>
33 #include <linux/backing-dev.h>
34 #include <linux/pagevec.h>
35 #include <linux/security.h>
36 #include <linux/cpuset.h>
37 #include <linux/hugetlb.h>
38 #include <linux/memcontrol.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include <linux/page_idle.h>
45 #include <linux/migrate.h>
46 #include <linux/pipe_fs_i.h>
47 #include <linux/splice.h>
48 #include <linux/rcupdate_wait.h>
49 #include <linux/sched/mm.h>
50 #include <linux/sysctl.h>
51 #include <linux/pgalloc.h>
52 
53 #include <asm/tlbflush.h>
54 #include "internal.h"
55 
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/filemap.h>
58 
59 /*
60  * FIXME: remove all knowledge of the buffer layer from the core VM
61  */
62 #include <linux/buffer_head.h> /* for try_to_free_buffers */
63 
64 #include <asm/mman.h>
65 
66 #include "swap.h"
67 
68 /*
69  * Shared mappings implemented 30.11.1994. It's not fully working yet,
70  * though.
71  *
72  * Shared mappings now work. 15.8.1995  Bruno.
73  *
74  * finished 'unifying' the page and buffer cache and SMP-threaded the
75  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
76  *
77  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
78  */
79 
80 /*
81  * Lock ordering:
82  *
83  *  ->i_mmap_rwsem		(truncate_pagecache)
84  *    ->private_lock		(__free_pte->block_dirty_folio)
85  *      ->swap_lock		(exclusive_swap_page, others)
86  *        ->i_pages lock
87  *
88  *  ->i_rwsem
89  *    ->invalidate_lock		(acquired by fs in truncate path)
90  *      ->i_mmap_rwsem		(truncate->unmap_mapping_range)
91  *
92  *  ->mmap_lock
93  *    ->i_mmap_rwsem
94  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
95  *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
96  *
97  *  ->mmap_lock
98  *    ->invalidate_lock		(filemap_fault)
99  *      ->lock_page		(filemap_fault, access_process_vm)
100  *
101  *  ->i_rwsem			(generic_perform_write)
102  *    ->mmap_lock		(fault_in_readable->do_page_fault)
103  *
104  *  bdi->wb.list_lock
105  *    sb_lock			(fs/fs-writeback.c)
106  *    ->i_pages lock		(__sync_single_inode)
107  *
108  *  ->i_mmap_rwsem
109  *    ->anon_vma.lock		(vma_merge)
110  *
111  *  ->anon_vma.lock
112  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
113  *
114  *  ->page_table_lock or pte_lock
115  *    ->swap_lock		(try_to_unmap_one)
116  *    ->private_lock		(try_to_unmap_one)
117  *    ->i_pages lock		(try_to_unmap_one)
118  *    ->lruvec->lru_lock	(follow_page_mask->mark_page_accessed)
119  *    ->lruvec->lru_lock	(check_pte_range->folio_isolate_lru)
120  *    ->private_lock		(folio_remove_rmap_pte->set_page_dirty)
121  *    ->i_pages lock		(folio_remove_rmap_pte->set_page_dirty)
122  *    bdi.wb->list_lock		(folio_remove_rmap_pte->set_page_dirty)
123  *    ->inode->i_lock		(folio_remove_rmap_pte->set_page_dirty)
124  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
125  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
126  *    ->private_lock		(zap_pte_range->block_dirty_folio)
127  */
128 
129 static void page_cache_delete(struct address_space *mapping,
130 				   struct folio *folio, void *shadow)
131 {
132 	XA_STATE(xas, &mapping->i_pages, folio->index);
133 	long nr = 1;
134 
135 	mapping_set_update(&xas, mapping);
136 
137 	xas_set_order(&xas, folio->index, folio_order(folio));
138 	nr = folio_nr_pages(folio);
139 
140 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
141 
142 	xas_store(&xas, shadow);
143 	xas_init_marks(&xas);
144 
145 	folio->mapping = NULL;
146 	/* Leave folio->index set: truncation lookup relies upon it */
147 	mapping->nrpages -= nr;
148 }
149 
150 static void filemap_unaccount_folio(struct address_space *mapping,
151 		struct folio *folio)
152 {
153 	long nr;
154 
155 	VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
156 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
157 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
158 			 current->comm, folio_pfn(folio));
159 		dump_page(&folio->page, "still mapped when deleted");
160 		dump_stack();
161 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
162 
163 		if (mapping_exiting(mapping) && !folio_test_large(folio)) {
164 			int mapcount = folio_mapcount(folio);
165 
166 			if (folio_ref_count(folio) >= mapcount + 2) {
167 				/*
168 				 * All vmas have already been torn down, so it's
169 				 * a good bet that actually the page is unmapped
170 				 * and we'd rather not leak it: if we're wrong,
171 				 * another bad page check should catch it later.
172 				 */
173 				atomic_set(&folio->_mapcount, -1);
174 				folio_ref_sub(folio, mapcount);
175 			}
176 		}
177 	}
178 
179 	/* hugetlb folios do not participate in page cache accounting. */
180 	if (folio_test_hugetlb(folio))
181 		return;
182 
183 	nr = folio_nr_pages(folio);
184 
185 	lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
186 	if (folio_test_swapbacked(folio)) {
187 		lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
188 		if (folio_test_pmd_mappable(folio))
189 			lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
190 	} else if (folio_test_pmd_mappable(folio)) {
191 		lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
192 		filemap_nr_thps_dec(mapping);
193 	}
194 	if (test_bit(AS_KERNEL_FILE, &folio->mapping->flags))
195 		mod_node_page_state(folio_pgdat(folio),
196 				    NR_KERNEL_FILE_PAGES, -nr);
197 
198 	/*
199 	 * At this point folio must be either written or cleaned by
200 	 * truncate.  Dirty folio here signals a bug and loss of
201 	 * unwritten data - on ordinary filesystems.
202 	 *
203 	 * But it's harmless on in-memory filesystems like tmpfs; and can
204 	 * occur when a driver which did get_user_pages() sets page dirty
205 	 * before putting it, while the inode is being finally evicted.
206 	 *
207 	 * Below fixes dirty accounting after removing the folio entirely
208 	 * but leaves the dirty flag set: it has no effect for truncated
209 	 * folio and anyway will be cleared before returning folio to
210 	 * buddy allocator.
211 	 */
212 	if (WARN_ON_ONCE(folio_test_dirty(folio) &&
213 			 mapping_can_writeback(mapping)))
214 		folio_account_cleaned(folio, inode_to_wb(mapping->host));
215 }
216 
217 /*
218  * Delete a page from the page cache and free it. Caller has to make
219  * sure the page is locked and that nobody else uses it - or that usage
220  * is safe.  The caller must hold the i_pages lock.
221  */
222 void __filemap_remove_folio(struct folio *folio, void *shadow)
223 {
224 	struct address_space *mapping = folio->mapping;
225 
226 	trace_mm_filemap_delete_from_page_cache(folio);
227 	filemap_unaccount_folio(mapping, folio);
228 	page_cache_delete(mapping, folio, shadow);
229 }
230 
231 void filemap_free_folio(struct address_space *mapping, struct folio *folio)
232 {
233 	void (*free_folio)(struct folio *);
234 
235 	free_folio = mapping->a_ops->free_folio;
236 	if (free_folio)
237 		free_folio(folio);
238 
239 	folio_put_refs(folio, folio_nr_pages(folio));
240 }
241 
242 /**
243  * filemap_remove_folio - Remove folio from page cache.
244  * @folio: The folio.
245  *
246  * This must be called only on folios that are locked and have been
247  * verified to be in the page cache.  It will never put the folio into
248  * the free list because the caller has a reference on the page.
249  */
250 void filemap_remove_folio(struct folio *folio)
251 {
252 	struct address_space *mapping = folio->mapping;
253 
254 	BUG_ON(!folio_test_locked(folio));
255 	spin_lock(&mapping->host->i_lock);
256 	xa_lock_irq(&mapping->i_pages);
257 	__filemap_remove_folio(folio, NULL);
258 	xa_unlock_irq(&mapping->i_pages);
259 	if (mapping_shrinkable(mapping))
260 		inode_add_lru(mapping->host);
261 	spin_unlock(&mapping->host->i_lock);
262 
263 	filemap_free_folio(mapping, folio);
264 }
265 
266 /*
267  * page_cache_delete_batch - delete several folios from page cache
268  * @mapping: the mapping to which folios belong
269  * @fbatch: batch of folios to delete
270  *
271  * The function walks over mapping->i_pages and removes folios passed in
272  * @fbatch from the mapping. The function expects @fbatch to be sorted
273  * by page index and is optimised for it to be dense.
274  * It tolerates holes in @fbatch (mapping entries at those indices are not
275  * modified).
276  *
277  * The function expects the i_pages lock to be held.
278  */
279 static void page_cache_delete_batch(struct address_space *mapping,
280 			     struct folio_batch *fbatch)
281 {
282 	XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
283 	long total_pages = 0;
284 	int i = 0;
285 	struct folio *folio;
286 
287 	mapping_set_update(&xas, mapping);
288 	xas_for_each(&xas, folio, ULONG_MAX) {
289 		if (i >= folio_batch_count(fbatch))
290 			break;
291 
292 		/* A swap/dax/shadow entry got inserted? Skip it. */
293 		if (xa_is_value(folio))
294 			continue;
295 		/*
296 		 * A page got inserted in our range? Skip it. We have our
297 		 * pages locked so they are protected from being removed.
298 		 * If we see a page whose index is higher than ours, it
299 		 * means our page has been removed, which shouldn't be
300 		 * possible because we're holding the PageLock.
301 		 */
302 		if (folio != fbatch->folios[i]) {
303 			VM_BUG_ON_FOLIO(folio->index >
304 					fbatch->folios[i]->index, folio);
305 			continue;
306 		}
307 
308 		WARN_ON_ONCE(!folio_test_locked(folio));
309 
310 		folio->mapping = NULL;
311 		/* Leave folio->index set: truncation lookup relies on it */
312 
313 		i++;
314 		xas_store(&xas, NULL);
315 		total_pages += folio_nr_pages(folio);
316 	}
317 	mapping->nrpages -= total_pages;
318 }
319 
320 void delete_from_page_cache_batch(struct address_space *mapping,
321 				  struct folio_batch *fbatch)
322 {
323 	int i;
324 
325 	if (!folio_batch_count(fbatch))
326 		return;
327 
328 	spin_lock(&mapping->host->i_lock);
329 	xa_lock_irq(&mapping->i_pages);
330 	for (i = 0; i < folio_batch_count(fbatch); i++) {
331 		struct folio *folio = fbatch->folios[i];
332 
333 		trace_mm_filemap_delete_from_page_cache(folio);
334 		filemap_unaccount_folio(mapping, folio);
335 	}
336 	page_cache_delete_batch(mapping, fbatch);
337 	xa_unlock_irq(&mapping->i_pages);
338 	if (mapping_shrinkable(mapping))
339 		inode_add_lru(mapping->host);
340 	spin_unlock(&mapping->host->i_lock);
341 
342 	for (i = 0; i < folio_batch_count(fbatch); i++)
343 		filemap_free_folio(mapping, fbatch->folios[i]);
344 }
345 
346 int filemap_check_errors(struct address_space *mapping)
347 {
348 	int ret = 0;
349 	/* Check for outstanding write errors */
350 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
351 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
352 		ret = -ENOSPC;
353 	if (test_bit(AS_EIO, &mapping->flags) &&
354 	    test_and_clear_bit(AS_EIO, &mapping->flags))
355 		ret = -EIO;
356 	return ret;
357 }
358 EXPORT_SYMBOL(filemap_check_errors);
359 
360 static int filemap_check_and_keep_errors(struct address_space *mapping)
361 {
362 	/* Check for outstanding write errors */
363 	if (test_bit(AS_EIO, &mapping->flags))
364 		return -EIO;
365 	if (test_bit(AS_ENOSPC, &mapping->flags))
366 		return -ENOSPC;
367 	return 0;
368 }
369 
370 /**
371  * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
372  * @mapping:	address space structure to write
373  * @wbc:	the writeback_control controlling the writeout
374  *
375  * Call writepages on the mapping using the provided wbc to control the
376  * writeout.
377  *
378  * Return: %0 on success, negative error code otherwise.
379  */
380 int filemap_fdatawrite_wbc(struct address_space *mapping,
381 			   struct writeback_control *wbc)
382 {
383 	int ret;
384 
385 	if (!mapping_can_writeback(mapping) ||
386 	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
387 		return 0;
388 
389 	wbc_attach_fdatawrite_inode(wbc, mapping->host);
390 	ret = do_writepages(mapping, wbc);
391 	wbc_detach_inode(wbc);
392 	return ret;
393 }
394 EXPORT_SYMBOL(filemap_fdatawrite_wbc);
395 
396 /**
397  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
398  * @mapping:	address space structure to write
399  * @start:	offset in bytes where the range starts
400  * @end:	offset in bytes where the range ends (inclusive)
401  * @sync_mode:	enable synchronous operation
402  *
403  * Start writeback against all of a mapping's dirty pages that lie
404  * within the byte offsets <start, end> inclusive.
405  *
406  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
407  * opposed to a regular memory cleansing writeback.  The difference between
408  * these two operations is that if a dirty page/buffer is encountered, it must
409  * be waited upon, and not just skipped over.
410  *
411  * Return: %0 on success, negative error code otherwise.
412  */
413 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
414 				loff_t end, int sync_mode)
415 {
416 	struct writeback_control wbc = {
417 		.sync_mode = sync_mode,
418 		.nr_to_write = LONG_MAX,
419 		.range_start = start,
420 		.range_end = end,
421 	};
422 
423 	return filemap_fdatawrite_wbc(mapping, &wbc);
424 }
425 
426 static inline int __filemap_fdatawrite(struct address_space *mapping,
427 	int sync_mode)
428 {
429 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
430 }
431 
432 int filemap_fdatawrite(struct address_space *mapping)
433 {
434 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
435 }
436 EXPORT_SYMBOL(filemap_fdatawrite);
437 
438 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
439 				loff_t end)
440 {
441 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
442 }
443 EXPORT_SYMBOL(filemap_fdatawrite_range);
444 
445 /**
446  * filemap_fdatawrite_range_kick - start writeback on a range
447  * @mapping:	target address_space
448  * @start:	index to start writeback on
449  * @end:	last (inclusive) index for writeback
450  *
451  * This is a non-integrity writeback helper, to start writing back folios
452  * for the indicated range.
453  *
454  * Return: %0 on success, negative error code otherwise.
455  */
456 int filemap_fdatawrite_range_kick(struct address_space *mapping, loff_t start,
457 				  loff_t end)
458 {
459 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_NONE);
460 }
461 EXPORT_SYMBOL_GPL(filemap_fdatawrite_range_kick);
462 
463 /**
464  * filemap_flush - mostly a non-blocking flush
465  * @mapping:	target address_space
466  *
467  * This is a mostly non-blocking flush.  Not suitable for data-integrity
468  * purposes - I/O may not be started against all dirty pages.
469  *
470  * Return: %0 on success, negative error code otherwise.
471  */
472 int filemap_flush(struct address_space *mapping)
473 {
474 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
475 }
476 EXPORT_SYMBOL(filemap_flush);
477 
478 /**
479  * filemap_range_has_page - check if a page exists in range.
480  * @mapping:           address space within which to check
481  * @start_byte:        offset in bytes where the range starts
482  * @end_byte:          offset in bytes where the range ends (inclusive)
483  *
484  * Find at least one page in the range supplied, usually used to check if
485  * direct writing in this range will trigger a writeback.
486  *
487  * Return: %true if at least one page exists in the specified range,
488  * %false otherwise.
489  */
490 bool filemap_range_has_page(struct address_space *mapping,
491 			   loff_t start_byte, loff_t end_byte)
492 {
493 	struct folio *folio;
494 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
495 	pgoff_t max = end_byte >> PAGE_SHIFT;
496 
497 	if (end_byte < start_byte)
498 		return false;
499 
500 	rcu_read_lock();
501 	for (;;) {
502 		folio = xas_find(&xas, max);
503 		if (xas_retry(&xas, folio))
504 			continue;
505 		/* Shadow entries don't count */
506 		if (xa_is_value(folio))
507 			continue;
508 		/*
509 		 * We don't need to try to pin this page; we're about to
510 		 * release the RCU lock anyway.  It is enough to know that
511 		 * there was a page here recently.
512 		 */
513 		break;
514 	}
515 	rcu_read_unlock();
516 
517 	return folio != NULL;
518 }
519 EXPORT_SYMBOL(filemap_range_has_page);
520 
521 static void __filemap_fdatawait_range(struct address_space *mapping,
522 				     loff_t start_byte, loff_t end_byte)
523 {
524 	pgoff_t index = start_byte >> PAGE_SHIFT;
525 	pgoff_t end = end_byte >> PAGE_SHIFT;
526 	struct folio_batch fbatch;
527 	unsigned nr_folios;
528 
529 	folio_batch_init(&fbatch);
530 
531 	while (index <= end) {
532 		unsigned i;
533 
534 		nr_folios = filemap_get_folios_tag(mapping, &index, end,
535 				PAGECACHE_TAG_WRITEBACK, &fbatch);
536 
537 		if (!nr_folios)
538 			break;
539 
540 		for (i = 0; i < nr_folios; i++) {
541 			struct folio *folio = fbatch.folios[i];
542 
543 			folio_wait_writeback(folio);
544 		}
545 		folio_batch_release(&fbatch);
546 		cond_resched();
547 	}
548 }
549 
550 /**
551  * filemap_fdatawait_range - wait for writeback to complete
552  * @mapping:		address space structure to wait for
553  * @start_byte:		offset in bytes where the range starts
554  * @end_byte:		offset in bytes where the range ends (inclusive)
555  *
556  * Walk the list of under-writeback pages of the given address space
557  * in the given range and wait for all of them.  Check error status of
558  * the address space and return it.
559  *
560  * Since the error status of the address space is cleared by this function,
561  * callers are responsible for checking the return value and handling and/or
562  * reporting the error.
563  *
564  * Return: error status of the address space.
565  */
566 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
567 			    loff_t end_byte)
568 {
569 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
570 	return filemap_check_errors(mapping);
571 }
572 EXPORT_SYMBOL(filemap_fdatawait_range);
573 
574 /**
575  * filemap_fdatawait_range_keep_errors - wait for writeback to complete
576  * @mapping:		address space structure to wait for
577  * @start_byte:		offset in bytes where the range starts
578  * @end_byte:		offset in bytes where the range ends (inclusive)
579  *
580  * Walk the list of under-writeback pages of the given address space in the
581  * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
582  * this function does not clear error status of the address space.
583  *
584  * Use this function if callers don't handle errors themselves.  Expected
585  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
586  * fsfreeze(8)
587  */
588 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
589 		loff_t start_byte, loff_t end_byte)
590 {
591 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
592 	return filemap_check_and_keep_errors(mapping);
593 }
594 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
595 
596 /**
597  * file_fdatawait_range - wait for writeback to complete
598  * @file:		file pointing to address space structure to wait for
599  * @start_byte:		offset in bytes where the range starts
600  * @end_byte:		offset in bytes where the range ends (inclusive)
601  *
602  * Walk the list of under-writeback pages of the address space that file
603  * refers to, in the given range and wait for all of them.  Check error
604  * status of the address space vs. the file->f_wb_err cursor and return it.
605  *
606  * Since the error status of the file is advanced by this function,
607  * callers are responsible for checking the return value and handling and/or
608  * reporting the error.
609  *
610  * Return: error status of the address space vs. the file->f_wb_err cursor.
611  */
612 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
613 {
614 	struct address_space *mapping = file->f_mapping;
615 
616 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
617 	return file_check_and_advance_wb_err(file);
618 }
619 EXPORT_SYMBOL(file_fdatawait_range);
620 
621 /**
622  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
623  * @mapping: address space structure to wait for
624  *
625  * Walk the list of under-writeback pages of the given address space
626  * and wait for all of them.  Unlike filemap_fdatawait(), this function
627  * does not clear error status of the address space.
628  *
629  * Use this function if callers don't handle errors themselves.  Expected
630  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
631  * fsfreeze(8)
632  *
633  * Return: error status of the address space.
634  */
635 int filemap_fdatawait_keep_errors(struct address_space *mapping)
636 {
637 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
638 	return filemap_check_and_keep_errors(mapping);
639 }
640 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
641 
642 /* Returns true if writeback might be needed or already in progress. */
643 static bool mapping_needs_writeback(struct address_space *mapping)
644 {
645 	return mapping->nrpages;
646 }
647 
648 bool filemap_range_has_writeback(struct address_space *mapping,
649 				 loff_t start_byte, loff_t end_byte)
650 {
651 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
652 	pgoff_t max = end_byte >> PAGE_SHIFT;
653 	struct folio *folio;
654 
655 	if (end_byte < start_byte)
656 		return false;
657 
658 	rcu_read_lock();
659 	xas_for_each(&xas, folio, max) {
660 		if (xas_retry(&xas, folio))
661 			continue;
662 		if (xa_is_value(folio))
663 			continue;
664 		if (folio_test_dirty(folio) || folio_test_locked(folio) ||
665 				folio_test_writeback(folio))
666 			break;
667 	}
668 	rcu_read_unlock();
669 	return folio != NULL;
670 }
671 EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
672 
673 /**
674  * filemap_write_and_wait_range - write out & wait on a file range
675  * @mapping:	the address_space for the pages
676  * @lstart:	offset in bytes where the range starts
677  * @lend:	offset in bytes where the range ends (inclusive)
678  *
679  * Write out and wait upon file offsets lstart->lend, inclusive.
680  *
681  * Note that @lend is inclusive (describes the last byte to be written) so
682  * that this function can be used to write to the very end-of-file (end = -1).
683  *
684  * Return: error status of the address space.
685  */
686 int filemap_write_and_wait_range(struct address_space *mapping,
687 				 loff_t lstart, loff_t lend)
688 {
689 	int err = 0, err2;
690 
691 	if (lend < lstart)
692 		return 0;
693 
694 	if (mapping_needs_writeback(mapping)) {
695 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
696 						 WB_SYNC_ALL);
697 		/*
698 		 * Even if the above returned error, the pages may be
699 		 * written partially (e.g. -ENOSPC), so we wait for it.
700 		 * But the -EIO is special case, it may indicate the worst
701 		 * thing (e.g. bug) happened, so we avoid waiting for it.
702 		 */
703 		if (err != -EIO)
704 			__filemap_fdatawait_range(mapping, lstart, lend);
705 	}
706 	err2 = filemap_check_errors(mapping);
707 	if (!err)
708 		err = err2;
709 	return err;
710 }
711 EXPORT_SYMBOL(filemap_write_and_wait_range);
712 
713 void __filemap_set_wb_err(struct address_space *mapping, int err)
714 {
715 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
716 
717 	trace_filemap_set_wb_err(mapping, eseq);
718 }
719 EXPORT_SYMBOL(__filemap_set_wb_err);
720 
721 /**
722  * file_check_and_advance_wb_err - report wb error (if any) that was previously
723  * 				   and advance wb_err to current one
724  * @file: struct file on which the error is being reported
725  *
726  * When userland calls fsync (or something like nfsd does the equivalent), we
727  * want to report any writeback errors that occurred since the last fsync (or
728  * since the file was opened if there haven't been any).
729  *
730  * Grab the wb_err from the mapping. If it matches what we have in the file,
731  * then just quickly return 0. The file is all caught up.
732  *
733  * If it doesn't match, then take the mapping value, set the "seen" flag in
734  * it and try to swap it into place. If it works, or another task beat us
735  * to it with the new value, then update the f_wb_err and return the error
736  * portion. The error at this point must be reported via proper channels
737  * (a'la fsync, or NFS COMMIT operation, etc.).
738  *
739  * While we handle mapping->wb_err with atomic operations, the f_wb_err
740  * value is protected by the f_lock since we must ensure that it reflects
741  * the latest value swapped in for this file descriptor.
742  *
743  * Return: %0 on success, negative error code otherwise.
744  */
745 int file_check_and_advance_wb_err(struct file *file)
746 {
747 	int err = 0;
748 	errseq_t old = READ_ONCE(file->f_wb_err);
749 	struct address_space *mapping = file->f_mapping;
750 
751 	/* Locklessly handle the common case where nothing has changed */
752 	if (errseq_check(&mapping->wb_err, old)) {
753 		/* Something changed, must use slow path */
754 		spin_lock(&file->f_lock);
755 		old = file->f_wb_err;
756 		err = errseq_check_and_advance(&mapping->wb_err,
757 						&file->f_wb_err);
758 		trace_file_check_and_advance_wb_err(file, old);
759 		spin_unlock(&file->f_lock);
760 	}
761 
762 	/*
763 	 * We're mostly using this function as a drop in replacement for
764 	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
765 	 * that the legacy code would have had on these flags.
766 	 */
767 	clear_bit(AS_EIO, &mapping->flags);
768 	clear_bit(AS_ENOSPC, &mapping->flags);
769 	return err;
770 }
771 EXPORT_SYMBOL(file_check_and_advance_wb_err);
772 
773 /**
774  * file_write_and_wait_range - write out & wait on a file range
775  * @file:	file pointing to address_space with pages
776  * @lstart:	offset in bytes where the range starts
777  * @lend:	offset in bytes where the range ends (inclusive)
778  *
779  * Write out and wait upon file offsets lstart->lend, inclusive.
780  *
781  * Note that @lend is inclusive (describes the last byte to be written) so
782  * that this function can be used to write to the very end-of-file (end = -1).
783  *
784  * After writing out and waiting on the data, we check and advance the
785  * f_wb_err cursor to the latest value, and return any errors detected there.
786  *
787  * Return: %0 on success, negative error code otherwise.
788  */
789 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
790 {
791 	int err = 0, err2;
792 	struct address_space *mapping = file->f_mapping;
793 
794 	if (lend < lstart)
795 		return 0;
796 
797 	if (mapping_needs_writeback(mapping)) {
798 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
799 						 WB_SYNC_ALL);
800 		/* See comment of filemap_write_and_wait() */
801 		if (err != -EIO)
802 			__filemap_fdatawait_range(mapping, lstart, lend);
803 	}
804 	err2 = file_check_and_advance_wb_err(file);
805 	if (!err)
806 		err = err2;
807 	return err;
808 }
809 EXPORT_SYMBOL(file_write_and_wait_range);
810 
811 /**
812  * replace_page_cache_folio - replace a pagecache folio with a new one
813  * @old:	folio to be replaced
814  * @new:	folio to replace with
815  *
816  * This function replaces a folio in the pagecache with a new one.  On
817  * success it acquires the pagecache reference for the new folio and
818  * drops it for the old folio.  Both the old and new folios must be
819  * locked.  This function does not add the new folio to the LRU, the
820  * caller must do that.
821  *
822  * The remove + add is atomic.  This function cannot fail.
823  */
824 void replace_page_cache_folio(struct folio *old, struct folio *new)
825 {
826 	struct address_space *mapping = old->mapping;
827 	void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
828 	pgoff_t offset = old->index;
829 	XA_STATE(xas, &mapping->i_pages, offset);
830 
831 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
832 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
833 	VM_BUG_ON_FOLIO(new->mapping, new);
834 
835 	folio_get(new);
836 	new->mapping = mapping;
837 	new->index = offset;
838 
839 	mem_cgroup_replace_folio(old, new);
840 
841 	xas_lock_irq(&xas);
842 	xas_store(&xas, new);
843 
844 	old->mapping = NULL;
845 	/* hugetlb pages do not participate in page cache accounting. */
846 	if (!folio_test_hugetlb(old))
847 		lruvec_stat_sub_folio(old, NR_FILE_PAGES);
848 	if (!folio_test_hugetlb(new))
849 		lruvec_stat_add_folio(new, NR_FILE_PAGES);
850 	if (folio_test_swapbacked(old))
851 		lruvec_stat_sub_folio(old, NR_SHMEM);
852 	if (folio_test_swapbacked(new))
853 		lruvec_stat_add_folio(new, NR_SHMEM);
854 	xas_unlock_irq(&xas);
855 	if (free_folio)
856 		free_folio(old);
857 	folio_put(old);
858 }
859 EXPORT_SYMBOL_GPL(replace_page_cache_folio);
860 
861 noinline int __filemap_add_folio(struct address_space *mapping,
862 		struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
863 {
864 	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
865 	bool huge;
866 	long nr;
867 	unsigned int forder = folio_order(folio);
868 
869 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
870 	VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
871 	VM_BUG_ON_FOLIO(folio_order(folio) < mapping_min_folio_order(mapping),
872 			folio);
873 	mapping_set_update(&xas, mapping);
874 
875 	VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
876 	huge = folio_test_hugetlb(folio);
877 	nr = folio_nr_pages(folio);
878 
879 	gfp &= GFP_RECLAIM_MASK;
880 	folio_ref_add(folio, nr);
881 	folio->mapping = mapping;
882 	folio->index = xas.xa_index;
883 
884 	for (;;) {
885 		int order = -1;
886 		void *entry, *old = NULL;
887 
888 		xas_lock_irq(&xas);
889 		xas_for_each_conflict(&xas, entry) {
890 			old = entry;
891 			if (!xa_is_value(entry)) {
892 				xas_set_err(&xas, -EEXIST);
893 				goto unlock;
894 			}
895 			/*
896 			 * If a larger entry exists,
897 			 * it will be the first and only entry iterated.
898 			 */
899 			if (order == -1)
900 				order = xas_get_order(&xas);
901 		}
902 
903 		if (old) {
904 			if (order > 0 && order > forder) {
905 				unsigned int split_order = max(forder,
906 						xas_try_split_min_order(order));
907 
908 				/* How to handle large swap entries? */
909 				BUG_ON(shmem_mapping(mapping));
910 
911 				while (order > forder) {
912 					xas_set_order(&xas, index, split_order);
913 					xas_try_split(&xas, old, order);
914 					if (xas_error(&xas))
915 						goto unlock;
916 					order = split_order;
917 					split_order =
918 						max(xas_try_split_min_order(
919 							    split_order),
920 						    forder);
921 				}
922 				xas_reset(&xas);
923 			}
924 			if (shadowp)
925 				*shadowp = old;
926 		}
927 
928 		xas_store(&xas, folio);
929 		if (xas_error(&xas))
930 			goto unlock;
931 
932 		mapping->nrpages += nr;
933 
934 		/* hugetlb pages do not participate in page cache accounting */
935 		if (!huge) {
936 			lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
937 			if (folio_test_pmd_mappable(folio))
938 				lruvec_stat_mod_folio(folio,
939 						NR_FILE_THPS, nr);
940 		}
941 
942 unlock:
943 		xas_unlock_irq(&xas);
944 
945 		if (!xas_nomem(&xas, gfp))
946 			break;
947 	}
948 
949 	if (xas_error(&xas))
950 		goto error;
951 
952 	trace_mm_filemap_add_to_page_cache(folio);
953 	return 0;
954 error:
955 	folio->mapping = NULL;
956 	/* Leave folio->index set: truncation relies upon it */
957 	folio_put_refs(folio, nr);
958 	return xas_error(&xas);
959 }
960 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
961 
962 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
963 				pgoff_t index, gfp_t gfp)
964 {
965 	void *shadow = NULL;
966 	int ret;
967 	struct mem_cgroup *tmp;
968 	bool kernel_file = test_bit(AS_KERNEL_FILE, &mapping->flags);
969 
970 	if (kernel_file)
971 		tmp = set_active_memcg(root_mem_cgroup);
972 	ret = mem_cgroup_charge(folio, NULL, gfp);
973 	if (kernel_file)
974 		set_active_memcg(tmp);
975 	if (ret)
976 		return ret;
977 
978 	__folio_set_locked(folio);
979 	ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
980 	if (unlikely(ret)) {
981 		mem_cgroup_uncharge(folio);
982 		__folio_clear_locked(folio);
983 	} else {
984 		/*
985 		 * The folio might have been evicted from cache only
986 		 * recently, in which case it should be activated like
987 		 * any other repeatedly accessed folio.
988 		 * The exception is folios getting rewritten; evicting other
989 		 * data from the working set, only to cache data that will
990 		 * get overwritten with something else, is a waste of memory.
991 		 */
992 		WARN_ON_ONCE(folio_test_active(folio));
993 		if (!(gfp & __GFP_WRITE) && shadow)
994 			workingset_refault(folio, shadow);
995 		folio_add_lru(folio);
996 		if (kernel_file)
997 			mod_node_page_state(folio_pgdat(folio),
998 					    NR_KERNEL_FILE_PAGES,
999 					    folio_nr_pages(folio));
1000 	}
1001 	return ret;
1002 }
1003 EXPORT_SYMBOL_GPL(filemap_add_folio);
1004 
1005 #ifdef CONFIG_NUMA
1006 struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order)
1007 {
1008 	int n;
1009 	struct folio *folio;
1010 
1011 	if (cpuset_do_page_mem_spread()) {
1012 		unsigned int cpuset_mems_cookie;
1013 		do {
1014 			cpuset_mems_cookie = read_mems_allowed_begin();
1015 			n = cpuset_mem_spread_node();
1016 			folio = __folio_alloc_node_noprof(gfp, order, n);
1017 		} while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
1018 
1019 		return folio;
1020 	}
1021 	return folio_alloc_noprof(gfp, order);
1022 }
1023 EXPORT_SYMBOL(filemap_alloc_folio_noprof);
1024 #endif
1025 
1026 /*
1027  * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
1028  *
1029  * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
1030  *
1031  * @mapping1: the first mapping to lock
1032  * @mapping2: the second mapping to lock
1033  */
1034 void filemap_invalidate_lock_two(struct address_space *mapping1,
1035 				 struct address_space *mapping2)
1036 {
1037 	if (mapping1 > mapping2)
1038 		swap(mapping1, mapping2);
1039 	if (mapping1)
1040 		down_write(&mapping1->invalidate_lock);
1041 	if (mapping2 && mapping1 != mapping2)
1042 		down_write_nested(&mapping2->invalidate_lock, 1);
1043 }
1044 EXPORT_SYMBOL(filemap_invalidate_lock_two);
1045 
1046 /*
1047  * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1048  *
1049  * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1050  *
1051  * @mapping1: the first mapping to unlock
1052  * @mapping2: the second mapping to unlock
1053  */
1054 void filemap_invalidate_unlock_two(struct address_space *mapping1,
1055 				   struct address_space *mapping2)
1056 {
1057 	if (mapping1)
1058 		up_write(&mapping1->invalidate_lock);
1059 	if (mapping2 && mapping1 != mapping2)
1060 		up_write(&mapping2->invalidate_lock);
1061 }
1062 EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1063 
1064 /*
1065  * In order to wait for pages to become available there must be
1066  * waitqueues associated with pages. By using a hash table of
1067  * waitqueues where the bucket discipline is to maintain all
1068  * waiters on the same queue and wake all when any of the pages
1069  * become available, and for the woken contexts to check to be
1070  * sure the appropriate page became available, this saves space
1071  * at a cost of "thundering herd" phenomena during rare hash
1072  * collisions.
1073  */
1074 #define PAGE_WAIT_TABLE_BITS 8
1075 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1076 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1077 
1078 static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1079 {
1080 	return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1081 }
1082 
1083 /* How many times do we accept lock stealing from under a waiter? */
1084 static int sysctl_page_lock_unfairness = 5;
1085 static const struct ctl_table filemap_sysctl_table[] = {
1086 	{
1087 		.procname	= "page_lock_unfairness",
1088 		.data		= &sysctl_page_lock_unfairness,
1089 		.maxlen		= sizeof(sysctl_page_lock_unfairness),
1090 		.mode		= 0644,
1091 		.proc_handler	= proc_dointvec_minmax,
1092 		.extra1		= SYSCTL_ZERO,
1093 	}
1094 };
1095 
1096 void __init pagecache_init(void)
1097 {
1098 	int i;
1099 
1100 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1101 		init_waitqueue_head(&folio_wait_table[i]);
1102 
1103 	page_writeback_init();
1104 	register_sysctl_init("vm", filemap_sysctl_table);
1105 }
1106 
1107 /*
1108  * The page wait code treats the "wait->flags" somewhat unusually, because
1109  * we have multiple different kinds of waits, not just the usual "exclusive"
1110  * one.
1111  *
1112  * We have:
1113  *
1114  *  (a) no special bits set:
1115  *
1116  *	We're just waiting for the bit to be released, and when a waker
1117  *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1118  *	and remove it from the wait queue.
1119  *
1120  *	Simple and straightforward.
1121  *
1122  *  (b) WQ_FLAG_EXCLUSIVE:
1123  *
1124  *	The waiter is waiting to get the lock, and only one waiter should
1125  *	be woken up to avoid any thundering herd behavior. We'll set the
1126  *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1127  *
1128  *	This is the traditional exclusive wait.
1129  *
1130  *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1131  *
1132  *	The waiter is waiting to get the bit, and additionally wants the
1133  *	lock to be transferred to it for fair lock behavior. If the lock
1134  *	cannot be taken, we stop walking the wait queue without waking
1135  *	the waiter.
1136  *
1137  *	This is the "fair lock handoff" case, and in addition to setting
1138  *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1139  *	that it now has the lock.
1140  */
1141 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1142 {
1143 	unsigned int flags;
1144 	struct wait_page_key *key = arg;
1145 	struct wait_page_queue *wait_page
1146 		= container_of(wait, struct wait_page_queue, wait);
1147 
1148 	if (!wake_page_match(wait_page, key))
1149 		return 0;
1150 
1151 	/*
1152 	 * If it's a lock handoff wait, we get the bit for it, and
1153 	 * stop walking (and do not wake it up) if we can't.
1154 	 */
1155 	flags = wait->flags;
1156 	if (flags & WQ_FLAG_EXCLUSIVE) {
1157 		if (test_bit(key->bit_nr, &key->folio->flags.f))
1158 			return -1;
1159 		if (flags & WQ_FLAG_CUSTOM) {
1160 			if (test_and_set_bit(key->bit_nr, &key->folio->flags.f))
1161 				return -1;
1162 			flags |= WQ_FLAG_DONE;
1163 		}
1164 	}
1165 
1166 	/*
1167 	 * We are holding the wait-queue lock, but the waiter that
1168 	 * is waiting for this will be checking the flags without
1169 	 * any locking.
1170 	 *
1171 	 * So update the flags atomically, and wake up the waiter
1172 	 * afterwards to avoid any races. This store-release pairs
1173 	 * with the load-acquire in folio_wait_bit_common().
1174 	 */
1175 	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1176 	wake_up_state(wait->private, mode);
1177 
1178 	/*
1179 	 * Ok, we have successfully done what we're waiting for,
1180 	 * and we can unconditionally remove the wait entry.
1181 	 *
1182 	 * Note that this pairs with the "finish_wait()" in the
1183 	 * waiter, and has to be the absolute last thing we do.
1184 	 * After this list_del_init(&wait->entry) the wait entry
1185 	 * might be de-allocated and the process might even have
1186 	 * exited.
1187 	 */
1188 	list_del_init_careful(&wait->entry);
1189 	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1190 }
1191 
1192 static void folio_wake_bit(struct folio *folio, int bit_nr)
1193 {
1194 	wait_queue_head_t *q = folio_waitqueue(folio);
1195 	struct wait_page_key key;
1196 	unsigned long flags;
1197 
1198 	key.folio = folio;
1199 	key.bit_nr = bit_nr;
1200 	key.page_match = 0;
1201 
1202 	spin_lock_irqsave(&q->lock, flags);
1203 	__wake_up_locked_key(q, TASK_NORMAL, &key);
1204 
1205 	/*
1206 	 * It's possible to miss clearing waiters here, when we woke our page
1207 	 * waiters, but the hashed waitqueue has waiters for other pages on it.
1208 	 * That's okay, it's a rare case. The next waker will clear it.
1209 	 *
1210 	 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1211 	 * other), the flag may be cleared in the course of freeing the page;
1212 	 * but that is not required for correctness.
1213 	 */
1214 	if (!waitqueue_active(q) || !key.page_match)
1215 		folio_clear_waiters(folio);
1216 
1217 	spin_unlock_irqrestore(&q->lock, flags);
1218 }
1219 
1220 /*
1221  * A choice of three behaviors for folio_wait_bit_common():
1222  */
1223 enum behavior {
1224 	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1225 			 * __folio_lock() waiting on then setting PG_locked.
1226 			 */
1227 	SHARED,		/* Hold ref to page and check the bit when woken, like
1228 			 * folio_wait_writeback() waiting on PG_writeback.
1229 			 */
1230 	DROP,		/* Drop ref to page before wait, no check when woken,
1231 			 * like folio_put_wait_locked() on PG_locked.
1232 			 */
1233 };
1234 
1235 /*
1236  * Attempt to check (or get) the folio flag, and mark us done
1237  * if successful.
1238  */
1239 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1240 					struct wait_queue_entry *wait)
1241 {
1242 	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1243 		if (test_and_set_bit(bit_nr, &folio->flags.f))
1244 			return false;
1245 	} else if (test_bit(bit_nr, &folio->flags.f))
1246 		return false;
1247 
1248 	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1249 	return true;
1250 }
1251 
1252 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1253 		int state, enum behavior behavior)
1254 {
1255 	wait_queue_head_t *q = folio_waitqueue(folio);
1256 	int unfairness = sysctl_page_lock_unfairness;
1257 	struct wait_page_queue wait_page;
1258 	wait_queue_entry_t *wait = &wait_page.wait;
1259 	bool thrashing = false;
1260 	unsigned long pflags;
1261 	bool in_thrashing;
1262 
1263 	if (bit_nr == PG_locked &&
1264 	    !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1265 		delayacct_thrashing_start(&in_thrashing);
1266 		psi_memstall_enter(&pflags);
1267 		thrashing = true;
1268 	}
1269 
1270 	init_wait(wait);
1271 	wait->func = wake_page_function;
1272 	wait_page.folio = folio;
1273 	wait_page.bit_nr = bit_nr;
1274 
1275 repeat:
1276 	wait->flags = 0;
1277 	if (behavior == EXCLUSIVE) {
1278 		wait->flags = WQ_FLAG_EXCLUSIVE;
1279 		if (--unfairness < 0)
1280 			wait->flags |= WQ_FLAG_CUSTOM;
1281 	}
1282 
1283 	/*
1284 	 * Do one last check whether we can get the
1285 	 * page bit synchronously.
1286 	 *
1287 	 * Do the folio_set_waiters() marking before that
1288 	 * to let any waker we _just_ missed know they
1289 	 * need to wake us up (otherwise they'll never
1290 	 * even go to the slow case that looks at the
1291 	 * page queue), and add ourselves to the wait
1292 	 * queue if we need to sleep.
1293 	 *
1294 	 * This part needs to be done under the queue
1295 	 * lock to avoid races.
1296 	 */
1297 	spin_lock_irq(&q->lock);
1298 	folio_set_waiters(folio);
1299 	if (!folio_trylock_flag(folio, bit_nr, wait))
1300 		__add_wait_queue_entry_tail(q, wait);
1301 	spin_unlock_irq(&q->lock);
1302 
1303 	/*
1304 	 * From now on, all the logic will be based on
1305 	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1306 	 * see whether the page bit testing has already
1307 	 * been done by the wake function.
1308 	 *
1309 	 * We can drop our reference to the folio.
1310 	 */
1311 	if (behavior == DROP)
1312 		folio_put(folio);
1313 
1314 	/*
1315 	 * Note that until the "finish_wait()", or until
1316 	 * we see the WQ_FLAG_WOKEN flag, we need to
1317 	 * be very careful with the 'wait->flags', because
1318 	 * we may race with a waker that sets them.
1319 	 */
1320 	for (;;) {
1321 		unsigned int flags;
1322 
1323 		set_current_state(state);
1324 
1325 		/* Loop until we've been woken or interrupted */
1326 		flags = smp_load_acquire(&wait->flags);
1327 		if (!(flags & WQ_FLAG_WOKEN)) {
1328 			if (signal_pending_state(state, current))
1329 				break;
1330 
1331 			io_schedule();
1332 			continue;
1333 		}
1334 
1335 		/* If we were non-exclusive, we're done */
1336 		if (behavior != EXCLUSIVE)
1337 			break;
1338 
1339 		/* If the waker got the lock for us, we're done */
1340 		if (flags & WQ_FLAG_DONE)
1341 			break;
1342 
1343 		/*
1344 		 * Otherwise, if we're getting the lock, we need to
1345 		 * try to get it ourselves.
1346 		 *
1347 		 * And if that fails, we'll have to retry this all.
1348 		 */
1349 		if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1350 			goto repeat;
1351 
1352 		wait->flags |= WQ_FLAG_DONE;
1353 		break;
1354 	}
1355 
1356 	/*
1357 	 * If a signal happened, this 'finish_wait()' may remove the last
1358 	 * waiter from the wait-queues, but the folio waiters bit will remain
1359 	 * set. That's ok. The next wakeup will take care of it, and trying
1360 	 * to do it here would be difficult and prone to races.
1361 	 */
1362 	finish_wait(q, wait);
1363 
1364 	if (thrashing) {
1365 		delayacct_thrashing_end(&in_thrashing);
1366 		psi_memstall_leave(&pflags);
1367 	}
1368 
1369 	/*
1370 	 * NOTE! The wait->flags weren't stable until we've done the
1371 	 * 'finish_wait()', and we could have exited the loop above due
1372 	 * to a signal, and had a wakeup event happen after the signal
1373 	 * test but before the 'finish_wait()'.
1374 	 *
1375 	 * So only after the finish_wait() can we reliably determine
1376 	 * if we got woken up or not, so we can now figure out the final
1377 	 * return value based on that state without races.
1378 	 *
1379 	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1380 	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1381 	 */
1382 	if (behavior == EXCLUSIVE)
1383 		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1384 
1385 	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1386 }
1387 
1388 #ifdef CONFIG_MIGRATION
1389 /**
1390  * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1391  * @entry: migration swap entry.
1392  * @ptl: already locked ptl. This function will drop the lock.
1393  *
1394  * Wait for a migration entry referencing the given page to be removed. This is
1395  * equivalent to folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE) except
1396  * this can be called without taking a reference on the page. Instead this
1397  * should be called while holding the ptl for the migration entry referencing
1398  * the page.
1399  *
1400  * Returns after unlocking the ptl.
1401  *
1402  * This follows the same logic as folio_wait_bit_common() so see the comments
1403  * there.
1404  */
1405 void migration_entry_wait_on_locked(softleaf_t entry, spinlock_t *ptl)
1406 	__releases(ptl)
1407 {
1408 	struct wait_page_queue wait_page;
1409 	wait_queue_entry_t *wait = &wait_page.wait;
1410 	bool thrashing = false;
1411 	unsigned long pflags;
1412 	bool in_thrashing;
1413 	wait_queue_head_t *q;
1414 	struct folio *folio = softleaf_to_folio(entry);
1415 
1416 	q = folio_waitqueue(folio);
1417 	if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1418 		delayacct_thrashing_start(&in_thrashing);
1419 		psi_memstall_enter(&pflags);
1420 		thrashing = true;
1421 	}
1422 
1423 	init_wait(wait);
1424 	wait->func = wake_page_function;
1425 	wait_page.folio = folio;
1426 	wait_page.bit_nr = PG_locked;
1427 	wait->flags = 0;
1428 
1429 	spin_lock_irq(&q->lock);
1430 	folio_set_waiters(folio);
1431 	if (!folio_trylock_flag(folio, PG_locked, wait))
1432 		__add_wait_queue_entry_tail(q, wait);
1433 	spin_unlock_irq(&q->lock);
1434 
1435 	/*
1436 	 * If a migration entry exists for the page the migration path must hold
1437 	 * a valid reference to the page, and it must take the ptl to remove the
1438 	 * migration entry. So the page is valid until the ptl is dropped.
1439 	 */
1440 	spin_unlock(ptl);
1441 
1442 	for (;;) {
1443 		unsigned int flags;
1444 
1445 		set_current_state(TASK_UNINTERRUPTIBLE);
1446 
1447 		/* Loop until we've been woken or interrupted */
1448 		flags = smp_load_acquire(&wait->flags);
1449 		if (!(flags & WQ_FLAG_WOKEN)) {
1450 			if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1451 				break;
1452 
1453 			io_schedule();
1454 			continue;
1455 		}
1456 		break;
1457 	}
1458 
1459 	finish_wait(q, wait);
1460 
1461 	if (thrashing) {
1462 		delayacct_thrashing_end(&in_thrashing);
1463 		psi_memstall_leave(&pflags);
1464 	}
1465 }
1466 #endif
1467 
1468 void folio_wait_bit(struct folio *folio, int bit_nr)
1469 {
1470 	folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1471 }
1472 EXPORT_SYMBOL(folio_wait_bit);
1473 
1474 int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1475 {
1476 	return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1477 }
1478 EXPORT_SYMBOL(folio_wait_bit_killable);
1479 
1480 /**
1481  * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1482  * @folio: The folio to wait for.
1483  * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1484  *
1485  * The caller should hold a reference on @folio.  They expect the page to
1486  * become unlocked relatively soon, but do not wish to hold up migration
1487  * (for example) by holding the reference while waiting for the folio to
1488  * come unlocked.  After this function returns, the caller should not
1489  * dereference @folio.
1490  *
1491  * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1492  */
1493 static int folio_put_wait_locked(struct folio *folio, int state)
1494 {
1495 	return folio_wait_bit_common(folio, PG_locked, state, DROP);
1496 }
1497 
1498 /**
1499  * folio_unlock - Unlock a locked folio.
1500  * @folio: The folio.
1501  *
1502  * Unlocks the folio and wakes up any thread sleeping on the page lock.
1503  *
1504  * Context: May be called from interrupt or process context.  May not be
1505  * called from NMI context.
1506  */
1507 void folio_unlock(struct folio *folio)
1508 {
1509 	/* Bit 7 allows x86 to check the byte's sign bit */
1510 	BUILD_BUG_ON(PG_waiters != 7);
1511 	BUILD_BUG_ON(PG_locked > 7);
1512 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1513 	if (folio_xor_flags_has_waiters(folio, 1 << PG_locked))
1514 		folio_wake_bit(folio, PG_locked);
1515 }
1516 EXPORT_SYMBOL(folio_unlock);
1517 
1518 /**
1519  * folio_end_read - End read on a folio.
1520  * @folio: The folio.
1521  * @success: True if all reads completed successfully.
1522  *
1523  * When all reads against a folio have completed, filesystems should
1524  * call this function to let the pagecache know that no more reads
1525  * are outstanding.  This will unlock the folio and wake up any thread
1526  * sleeping on the lock.  The folio will also be marked uptodate if all
1527  * reads succeeded.
1528  *
1529  * Context: May be called from interrupt or process context.  May not be
1530  * called from NMI context.
1531  */
1532 void folio_end_read(struct folio *folio, bool success)
1533 {
1534 	unsigned long mask = 1 << PG_locked;
1535 
1536 	/* Must be in bottom byte for x86 to work */
1537 	BUILD_BUG_ON(PG_uptodate > 7);
1538 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1539 	VM_BUG_ON_FOLIO(success && folio_test_uptodate(folio), folio);
1540 
1541 	if (likely(success))
1542 		mask |= 1 << PG_uptodate;
1543 	if (folio_xor_flags_has_waiters(folio, mask))
1544 		folio_wake_bit(folio, PG_locked);
1545 }
1546 EXPORT_SYMBOL(folio_end_read);
1547 
1548 /**
1549  * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1550  * @folio: The folio.
1551  *
1552  * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1553  * it.  The folio reference held for PG_private_2 being set is released.
1554  *
1555  * This is, for example, used when a netfs folio is being written to a local
1556  * disk cache, thereby allowing writes to the cache for the same folio to be
1557  * serialised.
1558  */
1559 void folio_end_private_2(struct folio *folio)
1560 {
1561 	VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1562 	clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1563 	folio_wake_bit(folio, PG_private_2);
1564 	folio_put(folio);
1565 }
1566 EXPORT_SYMBOL(folio_end_private_2);
1567 
1568 /**
1569  * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1570  * @folio: The folio to wait on.
1571  *
1572  * Wait for PG_private_2 to be cleared on a folio.
1573  */
1574 void folio_wait_private_2(struct folio *folio)
1575 {
1576 	while (folio_test_private_2(folio))
1577 		folio_wait_bit(folio, PG_private_2);
1578 }
1579 EXPORT_SYMBOL(folio_wait_private_2);
1580 
1581 /**
1582  * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1583  * @folio: The folio to wait on.
1584  *
1585  * Wait for PG_private_2 to be cleared on a folio or until a fatal signal is
1586  * received by the calling task.
1587  *
1588  * Return:
1589  * - 0 if successful.
1590  * - -EINTR if a fatal signal was encountered.
1591  */
1592 int folio_wait_private_2_killable(struct folio *folio)
1593 {
1594 	int ret = 0;
1595 
1596 	while (folio_test_private_2(folio)) {
1597 		ret = folio_wait_bit_killable(folio, PG_private_2);
1598 		if (ret < 0)
1599 			break;
1600 	}
1601 
1602 	return ret;
1603 }
1604 EXPORT_SYMBOL(folio_wait_private_2_killable);
1605 
1606 static void filemap_end_dropbehind(struct folio *folio)
1607 {
1608 	struct address_space *mapping = folio->mapping;
1609 
1610 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1611 
1612 	if (folio_test_writeback(folio) || folio_test_dirty(folio))
1613 		return;
1614 	if (!folio_test_clear_dropbehind(folio))
1615 		return;
1616 	if (mapping)
1617 		folio_unmap_invalidate(mapping, folio, 0);
1618 }
1619 
1620 /*
1621  * If folio was marked as dropbehind, then pages should be dropped when writeback
1622  * completes. Do that now. If we fail, it's likely because of a big folio -
1623  * just reset dropbehind for that case and latter completions should invalidate.
1624  */
1625 void folio_end_dropbehind(struct folio *folio)
1626 {
1627 	if (!folio_test_dropbehind(folio))
1628 		return;
1629 
1630 	/*
1631 	 * Hitting !in_task() should not happen off RWF_DONTCACHE writeback,
1632 	 * but can happen if normal writeback just happens to find dirty folios
1633 	 * that were created as part of uncached writeback, and that writeback
1634 	 * would otherwise not need non-IRQ handling. Just skip the
1635 	 * invalidation in that case.
1636 	 */
1637 	if (in_task() && folio_trylock(folio)) {
1638 		filemap_end_dropbehind(folio);
1639 		folio_unlock(folio);
1640 	}
1641 }
1642 EXPORT_SYMBOL_GPL(folio_end_dropbehind);
1643 
1644 /**
1645  * folio_end_writeback_no_dropbehind - End writeback against a folio.
1646  * @folio: The folio.
1647  *
1648  * The folio must actually be under writeback.
1649  * This call is intended for filesystems that need to defer dropbehind.
1650  *
1651  * Context: May be called from process or interrupt context.
1652  */
1653 void folio_end_writeback_no_dropbehind(struct folio *folio)
1654 {
1655 	VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio);
1656 
1657 	/*
1658 	 * folio_test_clear_reclaim() could be used here but it is an
1659 	 * atomic operation and overkill in this particular case. Failing
1660 	 * to shuffle a folio marked for immediate reclaim is too mild
1661 	 * a gain to justify taking an atomic operation penalty at the
1662 	 * end of every folio writeback.
1663 	 */
1664 	if (folio_test_reclaim(folio)) {
1665 		folio_clear_reclaim(folio);
1666 		folio_rotate_reclaimable(folio);
1667 	}
1668 
1669 	if (__folio_end_writeback(folio))
1670 		folio_wake_bit(folio, PG_writeback);
1671 
1672 	acct_reclaim_writeback(folio);
1673 }
1674 EXPORT_SYMBOL_GPL(folio_end_writeback_no_dropbehind);
1675 
1676 /**
1677  * folio_end_writeback - End writeback against a folio.
1678  * @folio: The folio.
1679  *
1680  * The folio must actually be under writeback.
1681  *
1682  * Context: May be called from process or interrupt context.
1683  */
1684 void folio_end_writeback(struct folio *folio)
1685 {
1686 	VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio);
1687 
1688 	/*
1689 	 * Writeback does not hold a folio reference of its own, relying
1690 	 * on truncation to wait for the clearing of PG_writeback.
1691 	 * But here we must make sure that the folio is not freed and
1692 	 * reused before the folio_wake_bit().
1693 	 */
1694 	folio_get(folio);
1695 	folio_end_writeback_no_dropbehind(folio);
1696 	folio_end_dropbehind(folio);
1697 	folio_put(folio);
1698 }
1699 EXPORT_SYMBOL(folio_end_writeback);
1700 
1701 /**
1702  * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1703  * @folio: The folio to lock
1704  */
1705 void __folio_lock(struct folio *folio)
1706 {
1707 	folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1708 				EXCLUSIVE);
1709 }
1710 EXPORT_SYMBOL(__folio_lock);
1711 
1712 int __folio_lock_killable(struct folio *folio)
1713 {
1714 	return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1715 					EXCLUSIVE);
1716 }
1717 EXPORT_SYMBOL_GPL(__folio_lock_killable);
1718 
1719 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1720 {
1721 	struct wait_queue_head *q = folio_waitqueue(folio);
1722 	int ret;
1723 
1724 	wait->folio = folio;
1725 	wait->bit_nr = PG_locked;
1726 
1727 	spin_lock_irq(&q->lock);
1728 	__add_wait_queue_entry_tail(q, &wait->wait);
1729 	folio_set_waiters(folio);
1730 	ret = !folio_trylock(folio);
1731 	/*
1732 	 * If we were successful now, we know we're still on the
1733 	 * waitqueue as we're still under the lock. This means it's
1734 	 * safe to remove and return success, we know the callback
1735 	 * isn't going to trigger.
1736 	 */
1737 	if (!ret)
1738 		__remove_wait_queue(q, &wait->wait);
1739 	else
1740 		ret = -EIOCBQUEUED;
1741 	spin_unlock_irq(&q->lock);
1742 	return ret;
1743 }
1744 
1745 /*
1746  * Return values:
1747  * 0 - folio is locked.
1748  * non-zero - folio is not locked.
1749  *     mmap_lock or per-VMA lock has been released (mmap_read_unlock() or
1750  *     vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and
1751  *     FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held.
1752  *
1753  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0
1754  * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed.
1755  */
1756 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf)
1757 {
1758 	unsigned int flags = vmf->flags;
1759 
1760 	if (fault_flag_allow_retry_first(flags)) {
1761 		/*
1762 		 * CAUTION! In this case, mmap_lock/per-VMA lock is not
1763 		 * released even though returning VM_FAULT_RETRY.
1764 		 */
1765 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1766 			return VM_FAULT_RETRY;
1767 
1768 		release_fault_lock(vmf);
1769 		if (flags & FAULT_FLAG_KILLABLE)
1770 			folio_wait_locked_killable(folio);
1771 		else
1772 			folio_wait_locked(folio);
1773 		return VM_FAULT_RETRY;
1774 	}
1775 	if (flags & FAULT_FLAG_KILLABLE) {
1776 		bool ret;
1777 
1778 		ret = __folio_lock_killable(folio);
1779 		if (ret) {
1780 			release_fault_lock(vmf);
1781 			return VM_FAULT_RETRY;
1782 		}
1783 	} else {
1784 		__folio_lock(folio);
1785 	}
1786 
1787 	return 0;
1788 }
1789 
1790 /**
1791  * page_cache_next_miss() - Find the next gap in the page cache.
1792  * @mapping: Mapping.
1793  * @index: Index.
1794  * @max_scan: Maximum range to search.
1795  *
1796  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1797  * gap with the lowest index.
1798  *
1799  * This function may be called under the rcu_read_lock.  However, this will
1800  * not atomically search a snapshot of the cache at a single point in time.
1801  * For example, if a gap is created at index 5, then subsequently a gap is
1802  * created at index 10, page_cache_next_miss covering both indices may
1803  * return 10 if called under the rcu_read_lock.
1804  *
1805  * Return: The index of the gap if found, otherwise an index outside the
1806  * range specified (in which case 'return - index >= max_scan' will be true).
1807  * In the rare case of index wrap-around, 0 will be returned.
1808  */
1809 pgoff_t page_cache_next_miss(struct address_space *mapping,
1810 			     pgoff_t index, unsigned long max_scan)
1811 {
1812 	XA_STATE(xas, &mapping->i_pages, index);
1813 	unsigned long nr = max_scan;
1814 
1815 	while (nr--) {
1816 		void *entry = xas_next(&xas);
1817 		if (!entry || xa_is_value(entry))
1818 			return xas.xa_index;
1819 		if (xas.xa_index == 0)
1820 			return 0;
1821 	}
1822 
1823 	return index + max_scan;
1824 }
1825 EXPORT_SYMBOL(page_cache_next_miss);
1826 
1827 /**
1828  * page_cache_prev_miss() - Find the previous gap in the page cache.
1829  * @mapping: Mapping.
1830  * @index: Index.
1831  * @max_scan: Maximum range to search.
1832  *
1833  * Search the range [max(index - max_scan + 1, 0), index] for the
1834  * gap with the highest index.
1835  *
1836  * This function may be called under the rcu_read_lock.  However, this will
1837  * not atomically search a snapshot of the cache at a single point in time.
1838  * For example, if a gap is created at index 10, then subsequently a gap is
1839  * created at index 5, page_cache_prev_miss() covering both indices may
1840  * return 5 if called under the rcu_read_lock.
1841  *
1842  * Return: The index of the gap if found, otherwise an index outside the
1843  * range specified (in which case 'index - return >= max_scan' will be true).
1844  * In the rare case of wrap-around, ULONG_MAX will be returned.
1845  */
1846 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1847 			     pgoff_t index, unsigned long max_scan)
1848 {
1849 	XA_STATE(xas, &mapping->i_pages, index);
1850 
1851 	while (max_scan--) {
1852 		void *entry = xas_prev(&xas);
1853 		if (!entry || xa_is_value(entry))
1854 			break;
1855 		if (xas.xa_index == ULONG_MAX)
1856 			break;
1857 	}
1858 
1859 	return xas.xa_index;
1860 }
1861 EXPORT_SYMBOL(page_cache_prev_miss);
1862 
1863 /*
1864  * Lockless page cache protocol:
1865  * On the lookup side:
1866  * 1. Load the folio from i_pages
1867  * 2. Increment the refcount if it's not zero
1868  * 3. If the folio is not found by xas_reload(), put the refcount and retry
1869  *
1870  * On the removal side:
1871  * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1872  * B. Remove the page from i_pages
1873  * C. Return the page to the page allocator
1874  *
1875  * This means that any page may have its reference count temporarily
1876  * increased by a speculative page cache (or GUP-fast) lookup as it can
1877  * be allocated by another user before the RCU grace period expires.
1878  * Because the refcount temporarily acquired here may end up being the
1879  * last refcount on the page, any page allocation must be freeable by
1880  * folio_put().
1881  */
1882 
1883 /*
1884  * filemap_get_entry - Get a page cache entry.
1885  * @mapping: the address_space to search
1886  * @index: The page cache index.
1887  *
1888  * Looks up the page cache entry at @mapping & @index.  If it is a folio,
1889  * it is returned with an increased refcount.  If it is a shadow entry
1890  * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1891  * it is returned without further action.
1892  *
1893  * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1894  */
1895 void *filemap_get_entry(struct address_space *mapping, pgoff_t index)
1896 {
1897 	XA_STATE(xas, &mapping->i_pages, index);
1898 	struct folio *folio;
1899 
1900 	rcu_read_lock();
1901 repeat:
1902 	xas_reset(&xas);
1903 	folio = xas_load(&xas);
1904 	if (xas_retry(&xas, folio))
1905 		goto repeat;
1906 	/*
1907 	 * A shadow entry of a recently evicted page, or a swap entry from
1908 	 * shmem/tmpfs.  Return it without attempting to raise page count.
1909 	 */
1910 	if (!folio || xa_is_value(folio))
1911 		goto out;
1912 
1913 	if (!folio_try_get(folio))
1914 		goto repeat;
1915 
1916 	if (unlikely(folio != xas_reload(&xas))) {
1917 		folio_put(folio);
1918 		goto repeat;
1919 	}
1920 out:
1921 	rcu_read_unlock();
1922 
1923 	return folio;
1924 }
1925 
1926 /**
1927  * __filemap_get_folio - Find and get a reference to a folio.
1928  * @mapping: The address_space to search.
1929  * @index: The page index.
1930  * @fgp_flags: %FGP flags modify how the folio is returned.
1931  * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1932  *
1933  * Looks up the page cache entry at @mapping & @index.
1934  *
1935  * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1936  * if the %GFP flags specified for %FGP_CREAT are atomic.
1937  *
1938  * If this function returns a folio, it is returned with an increased refcount.
1939  *
1940  * Return: The found folio or an ERR_PTR() otherwise.
1941  */
1942 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1943 		fgf_t fgp_flags, gfp_t gfp)
1944 {
1945 	struct folio *folio;
1946 
1947 repeat:
1948 	folio = filemap_get_entry(mapping, index);
1949 	if (xa_is_value(folio))
1950 		folio = NULL;
1951 	if (!folio)
1952 		goto no_page;
1953 
1954 	if (fgp_flags & FGP_LOCK) {
1955 		if (fgp_flags & FGP_NOWAIT) {
1956 			if (!folio_trylock(folio)) {
1957 				folio_put(folio);
1958 				return ERR_PTR(-EAGAIN);
1959 			}
1960 		} else {
1961 			folio_lock(folio);
1962 		}
1963 
1964 		/* Has the page been truncated? */
1965 		if (unlikely(folio->mapping != mapping)) {
1966 			folio_unlock(folio);
1967 			folio_put(folio);
1968 			goto repeat;
1969 		}
1970 		VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1971 	}
1972 
1973 	if (fgp_flags & FGP_ACCESSED)
1974 		folio_mark_accessed(folio);
1975 	else if (fgp_flags & FGP_WRITE) {
1976 		/* Clear idle flag for buffer write */
1977 		if (folio_test_idle(folio))
1978 			folio_clear_idle(folio);
1979 	}
1980 
1981 	if (fgp_flags & FGP_STABLE)
1982 		folio_wait_stable(folio);
1983 no_page:
1984 	if (!folio && (fgp_flags & FGP_CREAT)) {
1985 		unsigned int min_order = mapping_min_folio_order(mapping);
1986 		unsigned int order = max(min_order, FGF_GET_ORDER(fgp_flags));
1987 		int err;
1988 		index = mapping_align_index(mapping, index);
1989 
1990 		if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1991 			gfp |= __GFP_WRITE;
1992 		if (fgp_flags & FGP_NOFS)
1993 			gfp &= ~__GFP_FS;
1994 		if (fgp_flags & FGP_NOWAIT) {
1995 			gfp &= ~GFP_KERNEL;
1996 			gfp |= GFP_NOWAIT;
1997 		}
1998 		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1999 			fgp_flags |= FGP_LOCK;
2000 
2001 		if (order > mapping_max_folio_order(mapping))
2002 			order = mapping_max_folio_order(mapping);
2003 		/* If we're not aligned, allocate a smaller folio */
2004 		if (index & ((1UL << order) - 1))
2005 			order = __ffs(index);
2006 
2007 		do {
2008 			gfp_t alloc_gfp = gfp;
2009 
2010 			err = -ENOMEM;
2011 			if (order > min_order)
2012 				alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN;
2013 			folio = filemap_alloc_folio(alloc_gfp, order);
2014 			if (!folio)
2015 				continue;
2016 
2017 			/* Init accessed so avoid atomic mark_page_accessed later */
2018 			if (fgp_flags & FGP_ACCESSED)
2019 				__folio_set_referenced(folio);
2020 			if (fgp_flags & FGP_DONTCACHE)
2021 				__folio_set_dropbehind(folio);
2022 
2023 			err = filemap_add_folio(mapping, folio, index, gfp);
2024 			if (!err)
2025 				break;
2026 			folio_put(folio);
2027 			folio = NULL;
2028 		} while (order-- > min_order);
2029 
2030 		if (err == -EEXIST)
2031 			goto repeat;
2032 		if (err) {
2033 			/*
2034 			 * When NOWAIT I/O fails to allocate folios this could
2035 			 * be due to a nonblocking memory allocation and not
2036 			 * because the system actually is out of memory.
2037 			 * Return -EAGAIN so that there caller retries in a
2038 			 * blocking fashion instead of propagating -ENOMEM
2039 			 * to the application.
2040 			 */
2041 			if ((fgp_flags & FGP_NOWAIT) && err == -ENOMEM)
2042 				err = -EAGAIN;
2043 			return ERR_PTR(err);
2044 		}
2045 		/*
2046 		 * filemap_add_folio locks the page, and for mmap
2047 		 * we expect an unlocked page.
2048 		 */
2049 		if (folio && (fgp_flags & FGP_FOR_MMAP))
2050 			folio_unlock(folio);
2051 	}
2052 
2053 	if (!folio)
2054 		return ERR_PTR(-ENOENT);
2055 	/* not an uncached lookup, clear uncached if set */
2056 	if (folio_test_dropbehind(folio) && !(fgp_flags & FGP_DONTCACHE))
2057 		folio_clear_dropbehind(folio);
2058 	return folio;
2059 }
2060 EXPORT_SYMBOL(__filemap_get_folio);
2061 
2062 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
2063 		xa_mark_t mark)
2064 {
2065 	struct folio *folio;
2066 
2067 retry:
2068 	if (mark == XA_PRESENT)
2069 		folio = xas_find(xas, max);
2070 	else
2071 		folio = xas_find_marked(xas, max, mark);
2072 
2073 	if (xas_retry(xas, folio))
2074 		goto retry;
2075 	/*
2076 	 * A shadow entry of a recently evicted page, a swap
2077 	 * entry from shmem/tmpfs or a DAX entry.  Return it
2078 	 * without attempting to raise page count.
2079 	 */
2080 	if (!folio || xa_is_value(folio))
2081 		return folio;
2082 
2083 	if (!folio_try_get(folio))
2084 		goto reset;
2085 
2086 	if (unlikely(folio != xas_reload(xas))) {
2087 		folio_put(folio);
2088 		goto reset;
2089 	}
2090 
2091 	return folio;
2092 reset:
2093 	xas_reset(xas);
2094 	goto retry;
2095 }
2096 
2097 /**
2098  * find_get_entries - gang pagecache lookup
2099  * @mapping:	The address_space to search
2100  * @start:	The starting page cache index
2101  * @end:	The final page index (inclusive).
2102  * @fbatch:	Where the resulting entries are placed.
2103  * @indices:	The cache indices corresponding to the entries in @entries
2104  *
2105  * find_get_entries() will search for and return a batch of entries in
2106  * the mapping.  The entries are placed in @fbatch.  find_get_entries()
2107  * takes a reference on any actual folios it returns.
2108  *
2109  * The entries have ascending indexes.  The indices may not be consecutive
2110  * due to not-present entries or large folios.
2111  *
2112  * Any shadow entries of evicted folios, or swap entries from
2113  * shmem/tmpfs, are included in the returned array.
2114  *
2115  * Return: The number of entries which were found.
2116  */
2117 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
2118 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2119 {
2120 	XA_STATE(xas, &mapping->i_pages, *start);
2121 	struct folio *folio;
2122 
2123 	rcu_read_lock();
2124 	while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2125 		indices[fbatch->nr] = xas.xa_index;
2126 		if (!folio_batch_add(fbatch, folio))
2127 			break;
2128 	}
2129 
2130 	if (folio_batch_count(fbatch)) {
2131 		unsigned long nr;
2132 		int idx = folio_batch_count(fbatch) - 1;
2133 
2134 		folio = fbatch->folios[idx];
2135 		if (!xa_is_value(folio))
2136 			nr = folio_nr_pages(folio);
2137 		else
2138 			nr = 1 << xa_get_order(&mapping->i_pages, indices[idx]);
2139 		*start = round_down(indices[idx] + nr, nr);
2140 	}
2141 	rcu_read_unlock();
2142 
2143 	return folio_batch_count(fbatch);
2144 }
2145 
2146 /**
2147  * find_lock_entries - Find a batch of pagecache entries.
2148  * @mapping:	The address_space to search.
2149  * @start:	The starting page cache index.
2150  * @end:	The final page index (inclusive).
2151  * @fbatch:	Where the resulting entries are placed.
2152  * @indices:	The cache indices of the entries in @fbatch.
2153  *
2154  * find_lock_entries() will return a batch of entries from @mapping.
2155  * Swap, shadow and DAX entries are included.  Folios are returned
2156  * locked and with an incremented refcount.  Folios which are locked
2157  * by somebody else or under writeback are skipped.  Folios which are
2158  * partially outside the range are not returned.
2159  *
2160  * The entries have ascending indexes.  The indices may not be consecutive
2161  * due to not-present entries, large folios, folios which could not be
2162  * locked or folios under writeback.
2163  *
2164  * Return: The number of entries which were found.
2165  */
2166 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
2167 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2168 {
2169 	XA_STATE(xas, &mapping->i_pages, *start);
2170 	struct folio *folio;
2171 
2172 	rcu_read_lock();
2173 	while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2174 		unsigned long base;
2175 		unsigned long nr;
2176 
2177 		if (!xa_is_value(folio)) {
2178 			nr = folio_nr_pages(folio);
2179 			base = folio->index;
2180 			/* Omit large folio which begins before the start */
2181 			if (base < *start)
2182 				goto put;
2183 			/* Omit large folio which extends beyond the end */
2184 			if (base + nr - 1 > end)
2185 				goto put;
2186 			if (!folio_trylock(folio))
2187 				goto put;
2188 			if (folio->mapping != mapping ||
2189 			    folio_test_writeback(folio))
2190 				goto unlock;
2191 			VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2192 					folio);
2193 		} else {
2194 			nr = 1 << xas_get_order(&xas);
2195 			base = xas.xa_index & ~(nr - 1);
2196 			/* Omit order>0 value which begins before the start */
2197 			if (base < *start)
2198 				continue;
2199 			/* Omit order>0 value which extends beyond the end */
2200 			if (base + nr - 1 > end)
2201 				break;
2202 		}
2203 
2204 		/* Update start now so that last update is correct on return */
2205 		*start = base + nr;
2206 		indices[fbatch->nr] = xas.xa_index;
2207 		if (!folio_batch_add(fbatch, folio))
2208 			break;
2209 		continue;
2210 unlock:
2211 		folio_unlock(folio);
2212 put:
2213 		folio_put(folio);
2214 	}
2215 	rcu_read_unlock();
2216 
2217 	return folio_batch_count(fbatch);
2218 }
2219 
2220 /**
2221  * filemap_get_folios - Get a batch of folios
2222  * @mapping:	The address_space to search
2223  * @start:	The starting page index
2224  * @end:	The final page index (inclusive)
2225  * @fbatch:	The batch to fill.
2226  *
2227  * Search for and return a batch of folios in the mapping starting at
2228  * index @start and up to index @end (inclusive).  The folios are returned
2229  * in @fbatch with an elevated reference count.
2230  *
2231  * Return: The number of folios which were found.
2232  * We also update @start to index the next folio for the traversal.
2233  */
2234 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2235 		pgoff_t end, struct folio_batch *fbatch)
2236 {
2237 	return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch);
2238 }
2239 EXPORT_SYMBOL(filemap_get_folios);
2240 
2241 /**
2242  * filemap_get_folios_contig - Get a batch of contiguous folios
2243  * @mapping:	The address_space to search
2244  * @start:	The starting page index
2245  * @end:	The final page index (inclusive)
2246  * @fbatch:	The batch to fill
2247  *
2248  * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2249  * except the returned folios are guaranteed to be contiguous. This may
2250  * not return all contiguous folios if the batch gets filled up.
2251  *
2252  * Return: The number of folios found.
2253  * Also update @start to be positioned for traversal of the next folio.
2254  */
2255 
2256 unsigned filemap_get_folios_contig(struct address_space *mapping,
2257 		pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
2258 {
2259 	XA_STATE(xas, &mapping->i_pages, *start);
2260 	unsigned long nr;
2261 	struct folio *folio;
2262 
2263 	rcu_read_lock();
2264 
2265 	for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2266 			folio = xas_next(&xas)) {
2267 		if (xas_retry(&xas, folio))
2268 			continue;
2269 		/*
2270 		 * If the entry has been swapped out, we can stop looking.
2271 		 * No current caller is looking for DAX entries.
2272 		 */
2273 		if (xa_is_value(folio))
2274 			goto update_start;
2275 
2276 		/* If we landed in the middle of a THP, continue at its end. */
2277 		if (xa_is_sibling(folio))
2278 			goto update_start;
2279 
2280 		if (!folio_try_get(folio))
2281 			goto retry;
2282 
2283 		if (unlikely(folio != xas_reload(&xas)))
2284 			goto put_folio;
2285 
2286 		if (!folio_batch_add(fbatch, folio)) {
2287 			nr = folio_nr_pages(folio);
2288 			*start = folio->index + nr;
2289 			goto out;
2290 		}
2291 		xas_advance(&xas, folio_next_index(folio) - 1);
2292 		continue;
2293 put_folio:
2294 		folio_put(folio);
2295 
2296 retry:
2297 		xas_reset(&xas);
2298 	}
2299 
2300 update_start:
2301 	nr = folio_batch_count(fbatch);
2302 
2303 	if (nr) {
2304 		folio = fbatch->folios[nr - 1];
2305 		*start = folio_next_index(folio);
2306 	}
2307 out:
2308 	rcu_read_unlock();
2309 	return folio_batch_count(fbatch);
2310 }
2311 EXPORT_SYMBOL(filemap_get_folios_contig);
2312 
2313 /**
2314  * filemap_get_folios_tag - Get a batch of folios matching @tag
2315  * @mapping:    The address_space to search
2316  * @start:      The starting page index
2317  * @end:        The final page index (inclusive)
2318  * @tag:        The tag index
2319  * @fbatch:     The batch to fill
2320  *
2321  * The first folio may start before @start; if it does, it will contain
2322  * @start.  The final folio may extend beyond @end; if it does, it will
2323  * contain @end.  The folios have ascending indices.  There may be gaps
2324  * between the folios if there are indices which have no folio in the
2325  * page cache.  If folios are added to or removed from the page cache
2326  * while this is running, they may or may not be found by this call.
2327  * Only returns folios that are tagged with @tag.
2328  *
2329  * Return: The number of folios found.
2330  * Also update @start to index the next folio for traversal.
2331  */
2332 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
2333 			pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
2334 {
2335 	XA_STATE(xas, &mapping->i_pages, *start);
2336 	struct folio *folio;
2337 
2338 	rcu_read_lock();
2339 	while ((folio = find_get_entry(&xas, end, tag)) != NULL) {
2340 		/*
2341 		 * Shadow entries should never be tagged, but this iteration
2342 		 * is lockless so there is a window for page reclaim to evict
2343 		 * a page we saw tagged. Skip over it.
2344 		 */
2345 		if (xa_is_value(folio))
2346 			continue;
2347 		if (!folio_batch_add(fbatch, folio)) {
2348 			unsigned long nr = folio_nr_pages(folio);
2349 			*start = folio->index + nr;
2350 			goto out;
2351 		}
2352 	}
2353 	/*
2354 	 * We come here when there is no page beyond @end. We take care to not
2355 	 * overflow the index @start as it confuses some of the callers. This
2356 	 * breaks the iteration when there is a page at index -1 but that is
2357 	 * already broke anyway.
2358 	 */
2359 	if (end == (pgoff_t)-1)
2360 		*start = (pgoff_t)-1;
2361 	else
2362 		*start = end + 1;
2363 out:
2364 	rcu_read_unlock();
2365 
2366 	return folio_batch_count(fbatch);
2367 }
2368 EXPORT_SYMBOL(filemap_get_folios_tag);
2369 
2370 /*
2371  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2372  * a _large_ part of the i/o request. Imagine the worst scenario:
2373  *
2374  *      ---R__________________________________________B__________
2375  *         ^ reading here                             ^ bad block(assume 4k)
2376  *
2377  * read(R) => miss => readahead(R...B) => media error => frustrating retries
2378  * => failing the whole request => read(R) => read(R+1) =>
2379  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2380  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2381  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2382  *
2383  * It is going insane. Fix it by quickly scaling down the readahead size.
2384  */
2385 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2386 {
2387 	ra->ra_pages /= 4;
2388 }
2389 
2390 /*
2391  * filemap_get_read_batch - Get a batch of folios for read
2392  *
2393  * Get a batch of folios which represent a contiguous range of bytes in
2394  * the file.  No exceptional entries will be returned.  If @index is in
2395  * the middle of a folio, the entire folio will be returned.  The last
2396  * folio in the batch may have the readahead flag set or the uptodate flag
2397  * clear so that the caller can take the appropriate action.
2398  */
2399 static void filemap_get_read_batch(struct address_space *mapping,
2400 		pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2401 {
2402 	XA_STATE(xas, &mapping->i_pages, index);
2403 	struct folio *folio;
2404 
2405 	rcu_read_lock();
2406 	for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2407 		if (xas_retry(&xas, folio))
2408 			continue;
2409 		if (xas.xa_index > max || xa_is_value(folio))
2410 			break;
2411 		if (xa_is_sibling(folio))
2412 			break;
2413 		if (!folio_try_get(folio))
2414 			goto retry;
2415 
2416 		if (unlikely(folio != xas_reload(&xas)))
2417 			goto put_folio;
2418 
2419 		if (!folio_batch_add(fbatch, folio))
2420 			break;
2421 		if (!folio_test_uptodate(folio))
2422 			break;
2423 		if (folio_test_readahead(folio))
2424 			break;
2425 		xas_advance(&xas, folio_next_index(folio) - 1);
2426 		continue;
2427 put_folio:
2428 		folio_put(folio);
2429 retry:
2430 		xas_reset(&xas);
2431 	}
2432 	rcu_read_unlock();
2433 }
2434 
2435 static int filemap_read_folio(struct file *file, filler_t filler,
2436 		struct folio *folio)
2437 {
2438 	bool workingset = folio_test_workingset(folio);
2439 	unsigned long pflags;
2440 	int error;
2441 
2442 	/* Start the actual read. The read will unlock the page. */
2443 	if (unlikely(workingset))
2444 		psi_memstall_enter(&pflags);
2445 	error = filler(file, folio);
2446 	if (unlikely(workingset))
2447 		psi_memstall_leave(&pflags);
2448 	if (error)
2449 		return error;
2450 
2451 	error = folio_wait_locked_killable(folio);
2452 	if (error)
2453 		return error;
2454 	if (folio_test_uptodate(folio))
2455 		return 0;
2456 	if (file)
2457 		shrink_readahead_size_eio(&file->f_ra);
2458 	return -EIO;
2459 }
2460 
2461 static bool filemap_range_uptodate(struct address_space *mapping,
2462 		loff_t pos, size_t count, struct folio *folio,
2463 		bool need_uptodate)
2464 {
2465 	if (folio_test_uptodate(folio))
2466 		return true;
2467 	/* pipes can't handle partially uptodate pages */
2468 	if (need_uptodate)
2469 		return false;
2470 	if (!mapping->a_ops->is_partially_uptodate)
2471 		return false;
2472 	if (mapping->host->i_blkbits >= folio_shift(folio))
2473 		return false;
2474 
2475 	if (folio_pos(folio) > pos) {
2476 		count -= folio_pos(folio) - pos;
2477 		pos = 0;
2478 	} else {
2479 		pos -= folio_pos(folio);
2480 	}
2481 
2482 	if (pos == 0 && count >= folio_size(folio))
2483 		return false;
2484 
2485 	return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2486 }
2487 
2488 static int filemap_update_page(struct kiocb *iocb,
2489 		struct address_space *mapping, size_t count,
2490 		struct folio *folio, bool need_uptodate)
2491 {
2492 	int error;
2493 
2494 	if (iocb->ki_flags & IOCB_NOWAIT) {
2495 		if (!filemap_invalidate_trylock_shared(mapping))
2496 			return -EAGAIN;
2497 	} else {
2498 		filemap_invalidate_lock_shared(mapping);
2499 	}
2500 
2501 	if (!folio_trylock(folio)) {
2502 		error = -EAGAIN;
2503 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2504 			goto unlock_mapping;
2505 		if (!(iocb->ki_flags & IOCB_WAITQ)) {
2506 			filemap_invalidate_unlock_shared(mapping);
2507 			/*
2508 			 * This is where we usually end up waiting for a
2509 			 * previously submitted readahead to finish.
2510 			 */
2511 			folio_put_wait_locked(folio, TASK_KILLABLE);
2512 			return AOP_TRUNCATED_PAGE;
2513 		}
2514 		error = __folio_lock_async(folio, iocb->ki_waitq);
2515 		if (error)
2516 			goto unlock_mapping;
2517 	}
2518 
2519 	error = AOP_TRUNCATED_PAGE;
2520 	if (!folio->mapping)
2521 		goto unlock;
2522 
2523 	error = 0;
2524 	if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio,
2525 				   need_uptodate))
2526 		goto unlock;
2527 
2528 	error = -EAGAIN;
2529 	if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2530 		goto unlock;
2531 
2532 	error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2533 			folio);
2534 	goto unlock_mapping;
2535 unlock:
2536 	folio_unlock(folio);
2537 unlock_mapping:
2538 	filemap_invalidate_unlock_shared(mapping);
2539 	if (error == AOP_TRUNCATED_PAGE)
2540 		folio_put(folio);
2541 	return error;
2542 }
2543 
2544 static int filemap_create_folio(struct kiocb *iocb, struct folio_batch *fbatch)
2545 {
2546 	struct address_space *mapping = iocb->ki_filp->f_mapping;
2547 	struct folio *folio;
2548 	int error;
2549 	unsigned int min_order = mapping_min_folio_order(mapping);
2550 	pgoff_t index;
2551 
2552 	if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2553 		return -EAGAIN;
2554 
2555 	folio = filemap_alloc_folio(mapping_gfp_mask(mapping), min_order);
2556 	if (!folio)
2557 		return -ENOMEM;
2558 	if (iocb->ki_flags & IOCB_DONTCACHE)
2559 		__folio_set_dropbehind(folio);
2560 
2561 	/*
2562 	 * Protect against truncate / hole punch. Grabbing invalidate_lock
2563 	 * here assures we cannot instantiate and bring uptodate new
2564 	 * pagecache folios after evicting page cache during truncate
2565 	 * and before actually freeing blocks.	Note that we could
2566 	 * release invalidate_lock after inserting the folio into
2567 	 * the page cache as the locked folio would then be enough to
2568 	 * synchronize with hole punching. But there are code paths
2569 	 * such as filemap_update_page() filling in partially uptodate
2570 	 * pages or ->readahead() that need to hold invalidate_lock
2571 	 * while mapping blocks for IO so let's hold the lock here as
2572 	 * well to keep locking rules simple.
2573 	 */
2574 	filemap_invalidate_lock_shared(mapping);
2575 	index = (iocb->ki_pos >> (PAGE_SHIFT + min_order)) << min_order;
2576 	error = filemap_add_folio(mapping, folio, index,
2577 			mapping_gfp_constraint(mapping, GFP_KERNEL));
2578 	if (error == -EEXIST)
2579 		error = AOP_TRUNCATED_PAGE;
2580 	if (error)
2581 		goto error;
2582 
2583 	error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2584 					folio);
2585 	if (error)
2586 		goto error;
2587 
2588 	filemap_invalidate_unlock_shared(mapping);
2589 	folio_batch_add(fbatch, folio);
2590 	return 0;
2591 error:
2592 	filemap_invalidate_unlock_shared(mapping);
2593 	folio_put(folio);
2594 	return error;
2595 }
2596 
2597 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2598 		struct address_space *mapping, struct folio *folio,
2599 		pgoff_t last_index)
2600 {
2601 	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2602 
2603 	if (iocb->ki_flags & IOCB_NOIO)
2604 		return -EAGAIN;
2605 	if (iocb->ki_flags & IOCB_DONTCACHE)
2606 		ractl.dropbehind = 1;
2607 	page_cache_async_ra(&ractl, folio, last_index - folio->index);
2608 	return 0;
2609 }
2610 
2611 static int filemap_get_pages(struct kiocb *iocb, size_t count,
2612 		struct folio_batch *fbatch, bool need_uptodate)
2613 {
2614 	struct file *filp = iocb->ki_filp;
2615 	struct address_space *mapping = filp->f_mapping;
2616 	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2617 	pgoff_t last_index;
2618 	struct folio *folio;
2619 	unsigned int flags;
2620 	int err = 0;
2621 
2622 	/* "last_index" is the index of the folio beyond the end of the read */
2623 	last_index = round_up(iocb->ki_pos + count,
2624 			mapping_min_folio_nrbytes(mapping)) >> PAGE_SHIFT;
2625 retry:
2626 	if (fatal_signal_pending(current))
2627 		return -EINTR;
2628 
2629 	filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2630 	if (!folio_batch_count(fbatch)) {
2631 		DEFINE_READAHEAD(ractl, filp, &filp->f_ra, mapping, index);
2632 
2633 		if (iocb->ki_flags & IOCB_NOIO)
2634 			return -EAGAIN;
2635 		if (iocb->ki_flags & IOCB_NOWAIT)
2636 			flags = memalloc_noio_save();
2637 		if (iocb->ki_flags & IOCB_DONTCACHE)
2638 			ractl.dropbehind = 1;
2639 		page_cache_sync_ra(&ractl, last_index - index);
2640 		if (iocb->ki_flags & IOCB_NOWAIT)
2641 			memalloc_noio_restore(flags);
2642 		filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2643 	}
2644 	if (!folio_batch_count(fbatch)) {
2645 		err = filemap_create_folio(iocb, fbatch);
2646 		if (err == AOP_TRUNCATED_PAGE)
2647 			goto retry;
2648 		return err;
2649 	}
2650 
2651 	folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2652 	if (folio_test_readahead(folio)) {
2653 		err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2654 		if (err)
2655 			goto err;
2656 	}
2657 	if (!folio_test_uptodate(folio)) {
2658 		if (folio_batch_count(fbatch) > 1) {
2659 			err = -EAGAIN;
2660 			goto err;
2661 		}
2662 		err = filemap_update_page(iocb, mapping, count, folio,
2663 					  need_uptodate);
2664 		if (err)
2665 			goto err;
2666 	}
2667 
2668 	trace_mm_filemap_get_pages(mapping, index, last_index - 1);
2669 	return 0;
2670 err:
2671 	if (err < 0)
2672 		folio_put(folio);
2673 	if (likely(--fbatch->nr))
2674 		return 0;
2675 	if (err == AOP_TRUNCATED_PAGE)
2676 		goto retry;
2677 	return err;
2678 }
2679 
2680 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2681 {
2682 	unsigned int shift = folio_shift(folio);
2683 
2684 	return (pos1 >> shift == pos2 >> shift);
2685 }
2686 
2687 static void filemap_end_dropbehind_read(struct folio *folio)
2688 {
2689 	if (!folio_test_dropbehind(folio))
2690 		return;
2691 	if (folio_test_writeback(folio) || folio_test_dirty(folio))
2692 		return;
2693 	if (folio_trylock(folio)) {
2694 		filemap_end_dropbehind(folio);
2695 		folio_unlock(folio);
2696 	}
2697 }
2698 
2699 /**
2700  * filemap_read - Read data from the page cache.
2701  * @iocb: The iocb to read.
2702  * @iter: Destination for the data.
2703  * @already_read: Number of bytes already read by the caller.
2704  *
2705  * Copies data from the page cache.  If the data is not currently present,
2706  * uses the readahead and read_folio address_space operations to fetch it.
2707  *
2708  * Return: Total number of bytes copied, including those already read by
2709  * the caller.  If an error happens before any bytes are copied, returns
2710  * a negative error number.
2711  */
2712 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2713 		ssize_t already_read)
2714 {
2715 	struct file *filp = iocb->ki_filp;
2716 	struct file_ra_state *ra = &filp->f_ra;
2717 	struct address_space *mapping = filp->f_mapping;
2718 	struct inode *inode = mapping->host;
2719 	struct folio_batch fbatch;
2720 	int i, error = 0;
2721 	bool writably_mapped;
2722 	loff_t isize, end_offset;
2723 	loff_t last_pos = ra->prev_pos;
2724 
2725 	if (unlikely(iocb->ki_pos < 0))
2726 		return -EINVAL;
2727 	if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2728 		return 0;
2729 	if (unlikely(!iov_iter_count(iter)))
2730 		return 0;
2731 
2732 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes - iocb->ki_pos);
2733 	folio_batch_init(&fbatch);
2734 
2735 	do {
2736 		cond_resched();
2737 
2738 		/*
2739 		 * If we've already successfully copied some data, then we
2740 		 * can no longer safely return -EIOCBQUEUED. Hence mark
2741 		 * an async read NOWAIT at that point.
2742 		 */
2743 		if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2744 			iocb->ki_flags |= IOCB_NOWAIT;
2745 
2746 		if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2747 			break;
2748 
2749 		error = filemap_get_pages(iocb, iter->count, &fbatch, false);
2750 		if (error < 0)
2751 			break;
2752 
2753 		/*
2754 		 * i_size must be checked after we know the pages are Uptodate.
2755 		 *
2756 		 * Checking i_size after the check allows us to calculate
2757 		 * the correct value for "nr", which means the zero-filled
2758 		 * part of the page is not copied back to userspace (unless
2759 		 * another truncate extends the file - this is desired though).
2760 		 */
2761 		isize = i_size_read(inode);
2762 		if (unlikely(iocb->ki_pos >= isize))
2763 			goto put_folios;
2764 		end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2765 
2766 		/*
2767 		 * Once we start copying data, we don't want to be touching any
2768 		 * cachelines that might be contended:
2769 		 */
2770 		writably_mapped = mapping_writably_mapped(mapping);
2771 
2772 		/*
2773 		 * When a read accesses the same folio several times, only
2774 		 * mark it as accessed the first time.
2775 		 */
2776 		if (!pos_same_folio(iocb->ki_pos, last_pos - 1,
2777 				    fbatch.folios[0]))
2778 			folio_mark_accessed(fbatch.folios[0]);
2779 
2780 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2781 			struct folio *folio = fbatch.folios[i];
2782 			size_t fsize = folio_size(folio);
2783 			size_t offset = iocb->ki_pos & (fsize - 1);
2784 			size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2785 					     fsize - offset);
2786 			size_t copied;
2787 
2788 			if (end_offset < folio_pos(folio))
2789 				break;
2790 			if (i > 0)
2791 				folio_mark_accessed(folio);
2792 			/*
2793 			 * If users can be writing to this folio using arbitrary
2794 			 * virtual addresses, take care of potential aliasing
2795 			 * before reading the folio on the kernel side.
2796 			 */
2797 			if (writably_mapped)
2798 				flush_dcache_folio(folio);
2799 
2800 			copied = copy_folio_to_iter(folio, offset, bytes, iter);
2801 
2802 			already_read += copied;
2803 			iocb->ki_pos += copied;
2804 			last_pos = iocb->ki_pos;
2805 
2806 			if (copied < bytes) {
2807 				error = -EFAULT;
2808 				break;
2809 			}
2810 		}
2811 put_folios:
2812 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2813 			struct folio *folio = fbatch.folios[i];
2814 
2815 			filemap_end_dropbehind_read(folio);
2816 			folio_put(folio);
2817 		}
2818 		folio_batch_init(&fbatch);
2819 	} while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2820 
2821 	file_accessed(filp);
2822 	ra->prev_pos = last_pos;
2823 	return already_read ? already_read : error;
2824 }
2825 EXPORT_SYMBOL_GPL(filemap_read);
2826 
2827 int kiocb_write_and_wait(struct kiocb *iocb, size_t count)
2828 {
2829 	struct address_space *mapping = iocb->ki_filp->f_mapping;
2830 	loff_t pos = iocb->ki_pos;
2831 	loff_t end = pos + count - 1;
2832 
2833 	if (iocb->ki_flags & IOCB_NOWAIT) {
2834 		if (filemap_range_needs_writeback(mapping, pos, end))
2835 			return -EAGAIN;
2836 		return 0;
2837 	}
2838 
2839 	return filemap_write_and_wait_range(mapping, pos, end);
2840 }
2841 EXPORT_SYMBOL_GPL(kiocb_write_and_wait);
2842 
2843 int filemap_invalidate_pages(struct address_space *mapping,
2844 			     loff_t pos, loff_t end, bool nowait)
2845 {
2846 	int ret;
2847 
2848 	if (nowait) {
2849 		/* we could block if there are any pages in the range */
2850 		if (filemap_range_has_page(mapping, pos, end))
2851 			return -EAGAIN;
2852 	} else {
2853 		ret = filemap_write_and_wait_range(mapping, pos, end);
2854 		if (ret)
2855 			return ret;
2856 	}
2857 
2858 	/*
2859 	 * After a write we want buffered reads to be sure to go to disk to get
2860 	 * the new data.  We invalidate clean cached page from the region we're
2861 	 * about to write.  We do this *before* the write so that we can return
2862 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2863 	 */
2864 	return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT,
2865 					     end >> PAGE_SHIFT);
2866 }
2867 
2868 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count)
2869 {
2870 	struct address_space *mapping = iocb->ki_filp->f_mapping;
2871 
2872 	return filemap_invalidate_pages(mapping, iocb->ki_pos,
2873 					iocb->ki_pos + count - 1,
2874 					iocb->ki_flags & IOCB_NOWAIT);
2875 }
2876 EXPORT_SYMBOL_GPL(kiocb_invalidate_pages);
2877 
2878 /**
2879  * generic_file_read_iter - generic filesystem read routine
2880  * @iocb:	kernel I/O control block
2881  * @iter:	destination for the data read
2882  *
2883  * This is the "read_iter()" routine for all filesystems
2884  * that can use the page cache directly.
2885  *
2886  * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2887  * be returned when no data can be read without waiting for I/O requests
2888  * to complete; it doesn't prevent readahead.
2889  *
2890  * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2891  * requests shall be made for the read or for readahead.  When no data
2892  * can be read, -EAGAIN shall be returned.  When readahead would be
2893  * triggered, a partial, possibly empty read shall be returned.
2894  *
2895  * Return:
2896  * * number of bytes copied, even for partial reads
2897  * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2898  */
2899 ssize_t
2900 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2901 {
2902 	size_t count = iov_iter_count(iter);
2903 	ssize_t retval = 0;
2904 
2905 	if (!count)
2906 		return 0; /* skip atime */
2907 
2908 	if (iocb->ki_flags & IOCB_DIRECT) {
2909 		struct file *file = iocb->ki_filp;
2910 		struct address_space *mapping = file->f_mapping;
2911 		struct inode *inode = mapping->host;
2912 
2913 		retval = kiocb_write_and_wait(iocb, count);
2914 		if (retval < 0)
2915 			return retval;
2916 		file_accessed(file);
2917 
2918 		retval = mapping->a_ops->direct_IO(iocb, iter);
2919 		if (retval >= 0) {
2920 			iocb->ki_pos += retval;
2921 			count -= retval;
2922 		}
2923 		if (retval != -EIOCBQUEUED)
2924 			iov_iter_revert(iter, count - iov_iter_count(iter));
2925 
2926 		/*
2927 		 * Btrfs can have a short DIO read if we encounter
2928 		 * compressed extents, so if there was an error, or if
2929 		 * we've already read everything we wanted to, or if
2930 		 * there was a short read because we hit EOF, go ahead
2931 		 * and return.  Otherwise fallthrough to buffered io for
2932 		 * the rest of the read.  Buffered reads will not work for
2933 		 * DAX files, so don't bother trying.
2934 		 */
2935 		if (retval < 0 || !count || IS_DAX(inode))
2936 			return retval;
2937 		if (iocb->ki_pos >= i_size_read(inode))
2938 			return retval;
2939 	}
2940 
2941 	return filemap_read(iocb, iter, retval);
2942 }
2943 EXPORT_SYMBOL(generic_file_read_iter);
2944 
2945 /*
2946  * Splice subpages from a folio into a pipe.
2947  */
2948 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
2949 			      struct folio *folio, loff_t fpos, size_t size)
2950 {
2951 	struct page *page;
2952 	size_t spliced = 0, offset = offset_in_folio(folio, fpos);
2953 
2954 	page = folio_page(folio, offset / PAGE_SIZE);
2955 	size = min(size, folio_size(folio) - offset);
2956 	offset %= PAGE_SIZE;
2957 
2958 	while (spliced < size && !pipe_is_full(pipe)) {
2959 		struct pipe_buffer *buf = pipe_head_buf(pipe);
2960 		size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
2961 
2962 		*buf = (struct pipe_buffer) {
2963 			.ops	= &page_cache_pipe_buf_ops,
2964 			.page	= page,
2965 			.offset	= offset,
2966 			.len	= part,
2967 		};
2968 		folio_get(folio);
2969 		pipe->head++;
2970 		page++;
2971 		spliced += part;
2972 		offset = 0;
2973 	}
2974 
2975 	return spliced;
2976 }
2977 
2978 /**
2979  * filemap_splice_read -  Splice data from a file's pagecache into a pipe
2980  * @in: The file to read from
2981  * @ppos: Pointer to the file position to read from
2982  * @pipe: The pipe to splice into
2983  * @len: The amount to splice
2984  * @flags: The SPLICE_F_* flags
2985  *
2986  * This function gets folios from a file's pagecache and splices them into the
2987  * pipe.  Readahead will be called as necessary to fill more folios.  This may
2988  * be used for blockdevs also.
2989  *
2990  * Return: On success, the number of bytes read will be returned and *@ppos
2991  * will be updated if appropriate; 0 will be returned if there is no more data
2992  * to be read; -EAGAIN will be returned if the pipe had no space, and some
2993  * other negative error code will be returned on error.  A short read may occur
2994  * if the pipe has insufficient space, we reach the end of the data or we hit a
2995  * hole.
2996  */
2997 ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
2998 			    struct pipe_inode_info *pipe,
2999 			    size_t len, unsigned int flags)
3000 {
3001 	struct folio_batch fbatch;
3002 	struct kiocb iocb;
3003 	size_t total_spliced = 0, used, npages;
3004 	loff_t isize, end_offset;
3005 	bool writably_mapped;
3006 	int i, error = 0;
3007 
3008 	if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes))
3009 		return 0;
3010 
3011 	init_sync_kiocb(&iocb, in);
3012 	iocb.ki_pos = *ppos;
3013 
3014 	/* Work out how much data we can actually add into the pipe */
3015 	used = pipe_buf_usage(pipe);
3016 	npages = max_t(ssize_t, pipe->max_usage - used, 0);
3017 	len = min_t(size_t, len, npages * PAGE_SIZE);
3018 
3019 	folio_batch_init(&fbatch);
3020 
3021 	do {
3022 		cond_resched();
3023 
3024 		if (*ppos >= i_size_read(in->f_mapping->host))
3025 			break;
3026 
3027 		iocb.ki_pos = *ppos;
3028 		error = filemap_get_pages(&iocb, len, &fbatch, true);
3029 		if (error < 0)
3030 			break;
3031 
3032 		/*
3033 		 * i_size must be checked after we know the pages are Uptodate.
3034 		 *
3035 		 * Checking i_size after the check allows us to calculate
3036 		 * the correct value for "nr", which means the zero-filled
3037 		 * part of the page is not copied back to userspace (unless
3038 		 * another truncate extends the file - this is desired though).
3039 		 */
3040 		isize = i_size_read(in->f_mapping->host);
3041 		if (unlikely(*ppos >= isize))
3042 			break;
3043 		end_offset = min_t(loff_t, isize, *ppos + len);
3044 
3045 		/*
3046 		 * Once we start copying data, we don't want to be touching any
3047 		 * cachelines that might be contended:
3048 		 */
3049 		writably_mapped = mapping_writably_mapped(in->f_mapping);
3050 
3051 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
3052 			struct folio *folio = fbatch.folios[i];
3053 			size_t n;
3054 
3055 			if (folio_pos(folio) >= end_offset)
3056 				goto out;
3057 			folio_mark_accessed(folio);
3058 
3059 			/*
3060 			 * If users can be writing to this folio using arbitrary
3061 			 * virtual addresses, take care of potential aliasing
3062 			 * before reading the folio on the kernel side.
3063 			 */
3064 			if (writably_mapped)
3065 				flush_dcache_folio(folio);
3066 
3067 			n = min_t(loff_t, len, isize - *ppos);
3068 			n = splice_folio_into_pipe(pipe, folio, *ppos, n);
3069 			if (!n)
3070 				goto out;
3071 			len -= n;
3072 			total_spliced += n;
3073 			*ppos += n;
3074 			in->f_ra.prev_pos = *ppos;
3075 			if (pipe_is_full(pipe))
3076 				goto out;
3077 		}
3078 
3079 		folio_batch_release(&fbatch);
3080 	} while (len);
3081 
3082 out:
3083 	folio_batch_release(&fbatch);
3084 	file_accessed(in);
3085 
3086 	return total_spliced ? total_spliced : error;
3087 }
3088 EXPORT_SYMBOL(filemap_splice_read);
3089 
3090 static inline loff_t folio_seek_hole_data(struct xa_state *xas,
3091 		struct address_space *mapping, struct folio *folio,
3092 		loff_t start, loff_t end, bool seek_data)
3093 {
3094 	const struct address_space_operations *ops = mapping->a_ops;
3095 	size_t offset, bsz = i_blocksize(mapping->host);
3096 
3097 	if (xa_is_value(folio) || folio_test_uptodate(folio))
3098 		return seek_data ? start : end;
3099 	if (!ops->is_partially_uptodate)
3100 		return seek_data ? end : start;
3101 
3102 	xas_pause(xas);
3103 	rcu_read_unlock();
3104 	folio_lock(folio);
3105 	if (unlikely(folio->mapping != mapping))
3106 		goto unlock;
3107 
3108 	offset = offset_in_folio(folio, start) & ~(bsz - 1);
3109 
3110 	do {
3111 		if (ops->is_partially_uptodate(folio, offset, bsz) ==
3112 							seek_data)
3113 			break;
3114 		start = (start + bsz) & ~((u64)bsz - 1);
3115 		offset += bsz;
3116 	} while (offset < folio_size(folio));
3117 unlock:
3118 	folio_unlock(folio);
3119 	rcu_read_lock();
3120 	return start;
3121 }
3122 
3123 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
3124 {
3125 	if (xa_is_value(folio))
3126 		return PAGE_SIZE << xas_get_order(xas);
3127 	return folio_size(folio);
3128 }
3129 
3130 /**
3131  * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3132  * @mapping: Address space to search.
3133  * @start: First byte to consider.
3134  * @end: Limit of search (exclusive).
3135  * @whence: Either SEEK_HOLE or SEEK_DATA.
3136  *
3137  * If the page cache knows which blocks contain holes and which blocks
3138  * contain data, your filesystem can use this function to implement
3139  * SEEK_HOLE and SEEK_DATA.  This is useful for filesystems which are
3140  * entirely memory-based such as tmpfs, and filesystems which support
3141  * unwritten extents.
3142  *
3143  * Return: The requested offset on success, or -ENXIO if @whence specifies
3144  * SEEK_DATA and there is no data after @start.  There is an implicit hole
3145  * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
3146  * and @end contain data.
3147  */
3148 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
3149 		loff_t end, int whence)
3150 {
3151 	XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
3152 	pgoff_t max = (end - 1) >> PAGE_SHIFT;
3153 	bool seek_data = (whence == SEEK_DATA);
3154 	struct folio *folio;
3155 
3156 	if (end <= start)
3157 		return -ENXIO;
3158 
3159 	rcu_read_lock();
3160 	while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
3161 		loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
3162 		size_t seek_size;
3163 
3164 		if (start < pos) {
3165 			if (!seek_data)
3166 				goto unlock;
3167 			start = pos;
3168 		}
3169 
3170 		seek_size = seek_folio_size(&xas, folio);
3171 		pos = round_up((u64)pos + 1, seek_size);
3172 		start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
3173 				seek_data);
3174 		if (start < pos)
3175 			goto unlock;
3176 		if (start >= end)
3177 			break;
3178 		if (seek_size > PAGE_SIZE)
3179 			xas_set(&xas, pos >> PAGE_SHIFT);
3180 		if (!xa_is_value(folio))
3181 			folio_put(folio);
3182 	}
3183 	if (seek_data)
3184 		start = -ENXIO;
3185 unlock:
3186 	rcu_read_unlock();
3187 	if (folio && !xa_is_value(folio))
3188 		folio_put(folio);
3189 	if (start > end)
3190 		return end;
3191 	return start;
3192 }
3193 
3194 #ifdef CONFIG_MMU
3195 #define MMAP_LOTSAMISS  (100)
3196 /*
3197  * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
3198  * @vmf - the vm_fault for this fault.
3199  * @folio - the folio to lock.
3200  * @fpin - the pointer to the file we may pin (or is already pinned).
3201  *
3202  * This works similar to lock_folio_or_retry in that it can drop the
3203  * mmap_lock.  It differs in that it actually returns the folio locked
3204  * if it returns 1 and 0 if it couldn't lock the folio.  If we did have
3205  * to drop the mmap_lock then fpin will point to the pinned file and
3206  * needs to be fput()'ed at a later point.
3207  */
3208 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
3209 				     struct file **fpin)
3210 {
3211 	if (folio_trylock(folio))
3212 		return 1;
3213 
3214 	/*
3215 	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
3216 	 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
3217 	 * is supposed to work. We have way too many special cases..
3218 	 */
3219 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3220 		return 0;
3221 
3222 	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
3223 	if (vmf->flags & FAULT_FLAG_KILLABLE) {
3224 		if (__folio_lock_killable(folio)) {
3225 			/*
3226 			 * We didn't have the right flags to drop the
3227 			 * fault lock, but all fault_handlers only check
3228 			 * for fatal signals if we return VM_FAULT_RETRY,
3229 			 * so we need to drop the fault lock here and
3230 			 * return 0 if we don't have a fpin.
3231 			 */
3232 			if (*fpin == NULL)
3233 				release_fault_lock(vmf);
3234 			return 0;
3235 		}
3236 	} else
3237 		__folio_lock(folio);
3238 
3239 	return 1;
3240 }
3241 
3242 /*
3243  * Synchronous readahead happens when we don't even find a page in the page
3244  * cache at all.  We don't want to perform IO under the mmap sem, so if we have
3245  * to drop the mmap sem we return the file that was pinned in order for us to do
3246  * that.  If we didn't pin a file then we return NULL.  The file that is
3247  * returned needs to be fput()'ed when we're done with it.
3248  */
3249 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
3250 {
3251 	struct file *file = vmf->vma->vm_file;
3252 	struct file_ra_state *ra = &file->f_ra;
3253 	struct address_space *mapping = file->f_mapping;
3254 	DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
3255 	struct file *fpin = NULL;
3256 	vm_flags_t vm_flags = vmf->vma->vm_flags;
3257 	bool force_thp_readahead = false;
3258 	unsigned short mmap_miss;
3259 
3260 	/* Use the readahead code, even if readahead is disabled */
3261 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3262 	    (vm_flags & VM_HUGEPAGE) && HPAGE_PMD_ORDER <= MAX_PAGECACHE_ORDER)
3263 		force_thp_readahead = true;
3264 
3265 	if (!force_thp_readahead) {
3266 		/*
3267 		 * If we don't want any read-ahead, don't bother.
3268 		 * VM_EXEC case below is already intended for random access.
3269 		 */
3270 		if ((vm_flags & (VM_RAND_READ | VM_EXEC)) == VM_RAND_READ)
3271 			return fpin;
3272 
3273 		if (!ra->ra_pages)
3274 			return fpin;
3275 
3276 		if (vm_flags & VM_SEQ_READ) {
3277 			fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3278 			page_cache_sync_ra(&ractl, ra->ra_pages);
3279 			return fpin;
3280 		}
3281 	}
3282 
3283 	if (!(vm_flags & VM_SEQ_READ)) {
3284 		/* Avoid banging the cache line if not needed */
3285 		mmap_miss = READ_ONCE(ra->mmap_miss);
3286 		if (mmap_miss < MMAP_LOTSAMISS * 10)
3287 			WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3288 
3289 		/*
3290 		 * Do we miss much more than hit in this file? If so,
3291 		 * stop bothering with read-ahead. It will only hurt.
3292 		 */
3293 		if (mmap_miss > MMAP_LOTSAMISS)
3294 			return fpin;
3295 	}
3296 
3297 	if (force_thp_readahead) {
3298 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3299 		ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3300 		ra->size = HPAGE_PMD_NR;
3301 		/*
3302 		 * Fetch two PMD folios, so we get the chance to actually
3303 		 * readahead, unless we've been told not to.
3304 		 */
3305 		if (!(vm_flags & VM_RAND_READ))
3306 			ra->size *= 2;
3307 		ra->async_size = HPAGE_PMD_NR;
3308 		ra->order = HPAGE_PMD_ORDER;
3309 		page_cache_ra_order(&ractl, ra);
3310 		return fpin;
3311 	}
3312 
3313 	if (vm_flags & VM_EXEC) {
3314 		/*
3315 		 * Allow arch to request a preferred minimum folio order for
3316 		 * executable memory. This can often be beneficial to
3317 		 * performance if (e.g.) arm64 can contpte-map the folio.
3318 		 * Executable memory rarely benefits from readahead, due to its
3319 		 * random access nature, so set async_size to 0.
3320 		 *
3321 		 * Limit to the boundaries of the VMA to avoid reading in any
3322 		 * pad that might exist between sections, which would be a waste
3323 		 * of memory.
3324 		 */
3325 		struct vm_area_struct *vma = vmf->vma;
3326 		unsigned long start = vma->vm_pgoff;
3327 		unsigned long end = start + vma_pages(vma);
3328 		unsigned long ra_end;
3329 
3330 		ra->order = exec_folio_order();
3331 		ra->start = round_down(vmf->pgoff, 1UL << ra->order);
3332 		ra->start = max(ra->start, start);
3333 		ra_end = round_up(ra->start + ra->ra_pages, 1UL << ra->order);
3334 		ra_end = min(ra_end, end);
3335 		ra->size = ra_end - ra->start;
3336 		ra->async_size = 0;
3337 	} else {
3338 		/*
3339 		 * mmap read-around
3340 		 */
3341 		ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3342 		ra->size = ra->ra_pages;
3343 		ra->async_size = ra->ra_pages / 4;
3344 		ra->order = 0;
3345 	}
3346 
3347 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3348 	ractl._index = ra->start;
3349 	page_cache_ra_order(&ractl, ra);
3350 	return fpin;
3351 }
3352 
3353 /*
3354  * Asynchronous readahead happens when we find the page and PG_readahead,
3355  * so we want to possibly extend the readahead further.  We return the file that
3356  * was pinned if we have to drop the mmap_lock in order to do IO.
3357  */
3358 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3359 					    struct folio *folio)
3360 {
3361 	struct file *file = vmf->vma->vm_file;
3362 	struct file_ra_state *ra = &file->f_ra;
3363 	DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3364 	struct file *fpin = NULL;
3365 	unsigned short mmap_miss;
3366 
3367 	/* If we don't want any read-ahead, don't bother */
3368 	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3369 		return fpin;
3370 
3371 	/*
3372 	 * If the folio is locked, we're likely racing against another fault.
3373 	 * Don't touch the mmap_miss counter to avoid decreasing it multiple
3374 	 * times for a single folio and break the balance with mmap_miss
3375 	 * increase in do_sync_mmap_readahead().
3376 	 */
3377 	if (likely(!folio_test_locked(folio))) {
3378 		mmap_miss = READ_ONCE(ra->mmap_miss);
3379 		if (mmap_miss)
3380 			WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3381 	}
3382 
3383 	if (folio_test_readahead(folio)) {
3384 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3385 		page_cache_async_ra(&ractl, folio, ra->ra_pages);
3386 	}
3387 	return fpin;
3388 }
3389 
3390 static vm_fault_t filemap_fault_recheck_pte_none(struct vm_fault *vmf)
3391 {
3392 	struct vm_area_struct *vma = vmf->vma;
3393 	vm_fault_t ret = 0;
3394 	pte_t *ptep;
3395 
3396 	/*
3397 	 * We might have COW'ed a pagecache folio and might now have an mlocked
3398 	 * anon folio mapped. The original pagecache folio is not mlocked and
3399 	 * might have been evicted. During a read+clear/modify/write update of
3400 	 * the PTE, such as done in do_numa_page()/change_pte_range(), we
3401 	 * temporarily clear the PTE under PT lock and might detect it here as
3402 	 * "none" when not holding the PT lock.
3403 	 *
3404 	 * Not rechecking the PTE under PT lock could result in an unexpected
3405 	 * major fault in an mlock'ed region. Recheck only for this special
3406 	 * scenario while holding the PT lock, to not degrade non-mlocked
3407 	 * scenarios. Recheck the PTE without PT lock firstly, thereby reducing
3408 	 * the number of times we hold PT lock.
3409 	 */
3410 	if (!(vma->vm_flags & VM_LOCKED))
3411 		return 0;
3412 
3413 	if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
3414 		return 0;
3415 
3416 	ptep = pte_offset_map_ro_nolock(vma->vm_mm, vmf->pmd, vmf->address,
3417 					&vmf->ptl);
3418 	if (unlikely(!ptep))
3419 		return VM_FAULT_NOPAGE;
3420 
3421 	if (unlikely(!pte_none(ptep_get_lockless(ptep)))) {
3422 		ret = VM_FAULT_NOPAGE;
3423 	} else {
3424 		spin_lock(vmf->ptl);
3425 		if (unlikely(!pte_none(ptep_get(ptep))))
3426 			ret = VM_FAULT_NOPAGE;
3427 		spin_unlock(vmf->ptl);
3428 	}
3429 	pte_unmap(ptep);
3430 	return ret;
3431 }
3432 
3433 /**
3434  * filemap_fault - read in file data for page fault handling
3435  * @vmf:	struct vm_fault containing details of the fault
3436  *
3437  * filemap_fault() is invoked via the vma operations vector for a
3438  * mapped memory region to read in file data during a page fault.
3439  *
3440  * The goto's are kind of ugly, but this streamlines the normal case of having
3441  * it in the page cache, and handles the special cases reasonably without
3442  * having a lot of duplicated code.
3443  *
3444  * vma->vm_mm->mmap_lock must be held on entry.
3445  *
3446  * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3447  * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3448  *
3449  * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3450  * has not been released.
3451  *
3452  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3453  *
3454  * Return: bitwise-OR of %VM_FAULT_ codes.
3455  */
3456 vm_fault_t filemap_fault(struct vm_fault *vmf)
3457 {
3458 	int error;
3459 	struct file *file = vmf->vma->vm_file;
3460 	struct file *fpin = NULL;
3461 	struct address_space *mapping = file->f_mapping;
3462 	struct inode *inode = mapping->host;
3463 	pgoff_t max_idx, index = vmf->pgoff;
3464 	struct folio *folio;
3465 	vm_fault_t ret = 0;
3466 	bool mapping_locked = false;
3467 
3468 	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3469 	if (unlikely(index >= max_idx))
3470 		return VM_FAULT_SIGBUS;
3471 
3472 	trace_mm_filemap_fault(mapping, index);
3473 
3474 	/*
3475 	 * Do we have something in the page cache already?
3476 	 */
3477 	folio = filemap_get_folio(mapping, index);
3478 	if (likely(!IS_ERR(folio))) {
3479 		/*
3480 		 * We found the page, so try async readahead before waiting for
3481 		 * the lock.
3482 		 */
3483 		if (!(vmf->flags & FAULT_FLAG_TRIED))
3484 			fpin = do_async_mmap_readahead(vmf, folio);
3485 		if (unlikely(!folio_test_uptodate(folio))) {
3486 			filemap_invalidate_lock_shared(mapping);
3487 			mapping_locked = true;
3488 		}
3489 	} else {
3490 		ret = filemap_fault_recheck_pte_none(vmf);
3491 		if (unlikely(ret))
3492 			return ret;
3493 
3494 		/* No page in the page cache at all */
3495 		count_vm_event(PGMAJFAULT);
3496 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3497 		ret = VM_FAULT_MAJOR;
3498 		fpin = do_sync_mmap_readahead(vmf);
3499 retry_find:
3500 		/*
3501 		 * See comment in filemap_create_folio() why we need
3502 		 * invalidate_lock
3503 		 */
3504 		if (!mapping_locked) {
3505 			filemap_invalidate_lock_shared(mapping);
3506 			mapping_locked = true;
3507 		}
3508 		folio = __filemap_get_folio(mapping, index,
3509 					  FGP_CREAT|FGP_FOR_MMAP,
3510 					  vmf->gfp_mask);
3511 		if (IS_ERR(folio)) {
3512 			if (fpin)
3513 				goto out_retry;
3514 			filemap_invalidate_unlock_shared(mapping);
3515 			return VM_FAULT_OOM;
3516 		}
3517 	}
3518 
3519 	if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3520 		goto out_retry;
3521 
3522 	/* Did it get truncated? */
3523 	if (unlikely(folio->mapping != mapping)) {
3524 		folio_unlock(folio);
3525 		folio_put(folio);
3526 		goto retry_find;
3527 	}
3528 	VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3529 
3530 	/*
3531 	 * We have a locked folio in the page cache, now we need to check
3532 	 * that it's up-to-date. If not, it is going to be due to an error,
3533 	 * or because readahead was otherwise unable to retrieve it.
3534 	 */
3535 	if (unlikely(!folio_test_uptodate(folio))) {
3536 		/*
3537 		 * If the invalidate lock is not held, the folio was in cache
3538 		 * and uptodate and now it is not. Strange but possible since we
3539 		 * didn't hold the page lock all the time. Let's drop
3540 		 * everything, get the invalidate lock and try again.
3541 		 */
3542 		if (!mapping_locked) {
3543 			folio_unlock(folio);
3544 			folio_put(folio);
3545 			goto retry_find;
3546 		}
3547 
3548 		/*
3549 		 * OK, the folio is really not uptodate. This can be because the
3550 		 * VMA has the VM_RAND_READ flag set, or because an error
3551 		 * arose. Let's read it in directly.
3552 		 */
3553 		goto page_not_uptodate;
3554 	}
3555 
3556 	/*
3557 	 * We've made it this far and we had to drop our mmap_lock, now is the
3558 	 * time to return to the upper layer and have it re-find the vma and
3559 	 * redo the fault.
3560 	 */
3561 	if (fpin) {
3562 		folio_unlock(folio);
3563 		goto out_retry;
3564 	}
3565 	if (mapping_locked)
3566 		filemap_invalidate_unlock_shared(mapping);
3567 
3568 	/*
3569 	 * Found the page and have a reference on it.
3570 	 * We must recheck i_size under page lock.
3571 	 */
3572 	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3573 	if (unlikely(index >= max_idx)) {
3574 		folio_unlock(folio);
3575 		folio_put(folio);
3576 		return VM_FAULT_SIGBUS;
3577 	}
3578 
3579 	vmf->page = folio_file_page(folio, index);
3580 	return ret | VM_FAULT_LOCKED;
3581 
3582 page_not_uptodate:
3583 	/*
3584 	 * Umm, take care of errors if the page isn't up-to-date.
3585 	 * Try to re-read it _once_. We do this synchronously,
3586 	 * because there really aren't any performance issues here
3587 	 * and we need to check for errors.
3588 	 */
3589 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3590 	error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
3591 	if (fpin)
3592 		goto out_retry;
3593 	folio_put(folio);
3594 
3595 	if (!error || error == AOP_TRUNCATED_PAGE)
3596 		goto retry_find;
3597 	filemap_invalidate_unlock_shared(mapping);
3598 
3599 	return VM_FAULT_SIGBUS;
3600 
3601 out_retry:
3602 	/*
3603 	 * We dropped the mmap_lock, we need to return to the fault handler to
3604 	 * re-find the vma and come back and find our hopefully still populated
3605 	 * page.
3606 	 */
3607 	if (!IS_ERR(folio))
3608 		folio_put(folio);
3609 	if (mapping_locked)
3610 		filemap_invalidate_unlock_shared(mapping);
3611 	if (fpin)
3612 		fput(fpin);
3613 	return ret | VM_FAULT_RETRY;
3614 }
3615 EXPORT_SYMBOL(filemap_fault);
3616 
3617 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio,
3618 		pgoff_t start)
3619 {
3620 	struct mm_struct *mm = vmf->vma->vm_mm;
3621 
3622 	/* Huge page is mapped? No need to proceed. */
3623 	if (pmd_trans_huge(*vmf->pmd)) {
3624 		folio_unlock(folio);
3625 		folio_put(folio);
3626 		return true;
3627 	}
3628 
3629 	if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) {
3630 		struct page *page = folio_file_page(folio, start);
3631 		vm_fault_t ret = do_set_pmd(vmf, folio, page);
3632 		if (!ret) {
3633 			/* The page is mapped successfully, reference consumed. */
3634 			folio_unlock(folio);
3635 			return true;
3636 		}
3637 	}
3638 
3639 	if (pmd_none(*vmf->pmd) && vmf->prealloc_pte)
3640 		pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3641 
3642 	return false;
3643 }
3644 
3645 static struct folio *next_uptodate_folio(struct xa_state *xas,
3646 		struct address_space *mapping, pgoff_t end_pgoff)
3647 {
3648 	struct folio *folio = xas_next_entry(xas, end_pgoff);
3649 	unsigned long max_idx;
3650 
3651 	do {
3652 		if (!folio)
3653 			return NULL;
3654 		if (xas_retry(xas, folio))
3655 			continue;
3656 		if (xa_is_value(folio))
3657 			continue;
3658 		if (!folio_try_get(folio))
3659 			continue;
3660 		if (folio_test_locked(folio))
3661 			goto skip;
3662 		/* Has the page moved or been split? */
3663 		if (unlikely(folio != xas_reload(xas)))
3664 			goto skip;
3665 		if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3666 			goto skip;
3667 		if (!folio_trylock(folio))
3668 			goto skip;
3669 		if (folio->mapping != mapping)
3670 			goto unlock;
3671 		if (!folio_test_uptodate(folio))
3672 			goto unlock;
3673 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3674 		if (xas->xa_index >= max_idx)
3675 			goto unlock;
3676 		return folio;
3677 unlock:
3678 		folio_unlock(folio);
3679 skip:
3680 		folio_put(folio);
3681 	} while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3682 
3683 	return NULL;
3684 }
3685 
3686 /*
3687  * Map page range [start_page, start_page + nr_pages) of folio.
3688  * start_page is gotten from start by folio_page(folio, start)
3689  */
3690 static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf,
3691 			struct folio *folio, unsigned long start,
3692 			unsigned long addr, unsigned int nr_pages,
3693 			unsigned long *rss, unsigned short *mmap_miss,
3694 			pgoff_t file_end)
3695 {
3696 	struct address_space *mapping = folio->mapping;
3697 	unsigned int ref_from_caller = 1;
3698 	vm_fault_t ret = 0;
3699 	struct page *page = folio_page(folio, start);
3700 	unsigned int count = 0;
3701 	pte_t *old_ptep = vmf->pte;
3702 	unsigned long addr0;
3703 
3704 	/*
3705 	 * Map the large folio fully where possible:
3706 	 *
3707 	 *  - The folio is fully within size of the file or belong
3708 	 *    to shmem/tmpfs;
3709 	 *  - The folio doesn't cross VMA boundary;
3710 	 *  - The folio doesn't cross page table boundary;
3711 	 */
3712 	addr0 = addr - start * PAGE_SIZE;
3713 	if ((file_end >= folio_next_index(folio) || shmem_mapping(mapping)) &&
3714 	    folio_within_vma(folio, vmf->vma) &&
3715 	    (addr0 & PMD_MASK) == ((addr0 + folio_size(folio) - 1) & PMD_MASK)) {
3716 		vmf->pte -= start;
3717 		page -= start;
3718 		addr = addr0;
3719 		nr_pages = folio_nr_pages(folio);
3720 	}
3721 
3722 	do {
3723 		if (PageHWPoison(page + count))
3724 			goto skip;
3725 
3726 		/*
3727 		 * If there are too many folios that are recently evicted
3728 		 * in a file, they will probably continue to be evicted.
3729 		 * In such situation, read-ahead is only a waste of IO.
3730 		 * Don't decrease mmap_miss in this scenario to make sure
3731 		 * we can stop read-ahead.
3732 		 */
3733 		if (!folio_test_workingset(folio))
3734 			(*mmap_miss)++;
3735 
3736 		/*
3737 		 * NOTE: If there're PTE markers, we'll leave them to be
3738 		 * handled in the specific fault path, and it'll prohibit the
3739 		 * fault-around logic.
3740 		 */
3741 		if (!pte_none(ptep_get(&vmf->pte[count])))
3742 			goto skip;
3743 
3744 		count++;
3745 		continue;
3746 skip:
3747 		if (count) {
3748 			set_pte_range(vmf, folio, page, count, addr);
3749 			*rss += count;
3750 			folio_ref_add(folio, count - ref_from_caller);
3751 			ref_from_caller = 0;
3752 			if (in_range(vmf->address, addr, count * PAGE_SIZE))
3753 				ret = VM_FAULT_NOPAGE;
3754 		}
3755 
3756 		count++;
3757 		page += count;
3758 		vmf->pte += count;
3759 		addr += count * PAGE_SIZE;
3760 		count = 0;
3761 	} while (--nr_pages > 0);
3762 
3763 	if (count) {
3764 		set_pte_range(vmf, folio, page, count, addr);
3765 		*rss += count;
3766 		folio_ref_add(folio, count - ref_from_caller);
3767 		ref_from_caller = 0;
3768 		if (in_range(vmf->address, addr, count * PAGE_SIZE))
3769 			ret = VM_FAULT_NOPAGE;
3770 	}
3771 
3772 	vmf->pte = old_ptep;
3773 	if (ref_from_caller)
3774 		/* Locked folios cannot get truncated. */
3775 		folio_ref_dec(folio);
3776 
3777 	return ret;
3778 }
3779 
3780 static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf,
3781 		struct folio *folio, unsigned long addr,
3782 		unsigned long *rss, unsigned short *mmap_miss)
3783 {
3784 	vm_fault_t ret = 0;
3785 	struct page *page = &folio->page;
3786 
3787 	if (PageHWPoison(page))
3788 		goto out;
3789 
3790 	/* See comment of filemap_map_folio_range() */
3791 	if (!folio_test_workingset(folio))
3792 		(*mmap_miss)++;
3793 
3794 	/*
3795 	 * NOTE: If there're PTE markers, we'll leave them to be
3796 	 * handled in the specific fault path, and it'll prohibit
3797 	 * the fault-around logic.
3798 	 */
3799 	if (!pte_none(ptep_get(vmf->pte)))
3800 		goto out;
3801 
3802 	if (vmf->address == addr)
3803 		ret = VM_FAULT_NOPAGE;
3804 
3805 	set_pte_range(vmf, folio, page, 1, addr);
3806 	(*rss)++;
3807 	return ret;
3808 
3809 out:
3810 	/* Locked folios cannot get truncated. */
3811 	folio_ref_dec(folio);
3812 	return ret;
3813 }
3814 
3815 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3816 			     pgoff_t start_pgoff, pgoff_t end_pgoff)
3817 {
3818 	struct vm_area_struct *vma = vmf->vma;
3819 	struct file *file = vma->vm_file;
3820 	struct address_space *mapping = file->f_mapping;
3821 	pgoff_t file_end, last_pgoff = start_pgoff;
3822 	unsigned long addr;
3823 	XA_STATE(xas, &mapping->i_pages, start_pgoff);
3824 	struct folio *folio;
3825 	vm_fault_t ret = 0;
3826 	unsigned long rss = 0;
3827 	unsigned int nr_pages = 0, folio_type;
3828 	unsigned short mmap_miss = 0, mmap_miss_saved;
3829 
3830 	rcu_read_lock();
3831 	folio = next_uptodate_folio(&xas, mapping, end_pgoff);
3832 	if (!folio)
3833 		goto out;
3834 
3835 	file_end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE) - 1;
3836 	end_pgoff = min(end_pgoff, file_end);
3837 
3838 	/*
3839 	 * Do not allow to map with PMD across i_size to preserve
3840 	 * SIGBUS semantics.
3841 	 *
3842 	 * Make an exception for shmem/tmpfs that for long time
3843 	 * intentionally mapped with PMDs across i_size.
3844 	 */
3845 	if ((file_end >= folio_next_index(folio) || shmem_mapping(mapping)) &&
3846 	    filemap_map_pmd(vmf, folio, start_pgoff)) {
3847 		ret = VM_FAULT_NOPAGE;
3848 		goto out;
3849 	}
3850 
3851 	addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3852 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3853 	if (!vmf->pte) {
3854 		folio_unlock(folio);
3855 		folio_put(folio);
3856 		goto out;
3857 	}
3858 
3859 	folio_type = mm_counter_file(folio);
3860 	do {
3861 		unsigned long end;
3862 
3863 		addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3864 		vmf->pte += xas.xa_index - last_pgoff;
3865 		last_pgoff = xas.xa_index;
3866 		end = folio_next_index(folio) - 1;
3867 		nr_pages = min(end, end_pgoff) - xas.xa_index + 1;
3868 
3869 		if (!folio_test_large(folio))
3870 			ret |= filemap_map_order0_folio(vmf,
3871 					folio, addr, &rss, &mmap_miss);
3872 		else
3873 			ret |= filemap_map_folio_range(vmf, folio,
3874 					xas.xa_index - folio->index, addr,
3875 					nr_pages, &rss, &mmap_miss, file_end);
3876 
3877 		folio_unlock(folio);
3878 	} while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL);
3879 	add_mm_counter(vma->vm_mm, folio_type, rss);
3880 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3881 	trace_mm_filemap_map_pages(mapping, start_pgoff, end_pgoff);
3882 out:
3883 	rcu_read_unlock();
3884 
3885 	mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss);
3886 	if (mmap_miss >= mmap_miss_saved)
3887 		WRITE_ONCE(file->f_ra.mmap_miss, 0);
3888 	else
3889 		WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss);
3890 
3891 	return ret;
3892 }
3893 EXPORT_SYMBOL(filemap_map_pages);
3894 
3895 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3896 {
3897 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3898 	struct folio *folio = page_folio(vmf->page);
3899 	vm_fault_t ret = VM_FAULT_LOCKED;
3900 
3901 	sb_start_pagefault(mapping->host->i_sb);
3902 	file_update_time(vmf->vma->vm_file);
3903 	folio_lock(folio);
3904 	if (folio->mapping != mapping) {
3905 		folio_unlock(folio);
3906 		ret = VM_FAULT_NOPAGE;
3907 		goto out;
3908 	}
3909 	/*
3910 	 * We mark the folio dirty already here so that when freeze is in
3911 	 * progress, we are guaranteed that writeback during freezing will
3912 	 * see the dirty folio and writeprotect it again.
3913 	 */
3914 	folio_mark_dirty(folio);
3915 	folio_wait_stable(folio);
3916 out:
3917 	sb_end_pagefault(mapping->host->i_sb);
3918 	return ret;
3919 }
3920 
3921 const struct vm_operations_struct generic_file_vm_ops = {
3922 	.fault		= filemap_fault,
3923 	.map_pages	= filemap_map_pages,
3924 	.page_mkwrite	= filemap_page_mkwrite,
3925 };
3926 
3927 /* This is used for a general mmap of a disk file */
3928 
3929 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3930 {
3931 	struct address_space *mapping = file->f_mapping;
3932 
3933 	if (!mapping->a_ops->read_folio)
3934 		return -ENOEXEC;
3935 	file_accessed(file);
3936 	vma->vm_ops = &generic_file_vm_ops;
3937 	return 0;
3938 }
3939 
3940 int generic_file_mmap_prepare(struct vm_area_desc *desc)
3941 {
3942 	struct file *file = desc->file;
3943 	struct address_space *mapping = file->f_mapping;
3944 
3945 	if (!mapping->a_ops->read_folio)
3946 		return -ENOEXEC;
3947 	file_accessed(file);
3948 	desc->vm_ops = &generic_file_vm_ops;
3949 	return 0;
3950 }
3951 
3952 /*
3953  * This is for filesystems which do not implement ->writepage.
3954  */
3955 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3956 {
3957 	if (vma_is_shared_maywrite(vma))
3958 		return -EINVAL;
3959 	return generic_file_mmap(file, vma);
3960 }
3961 
3962 int generic_file_readonly_mmap_prepare(struct vm_area_desc *desc)
3963 {
3964 	if (is_shared_maywrite(desc->vm_flags))
3965 		return -EINVAL;
3966 	return generic_file_mmap_prepare(desc);
3967 }
3968 #else
3969 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3970 {
3971 	return VM_FAULT_SIGBUS;
3972 }
3973 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3974 {
3975 	return -ENOSYS;
3976 }
3977 int generic_file_mmap_prepare(struct vm_area_desc *desc)
3978 {
3979 	return -ENOSYS;
3980 }
3981 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3982 {
3983 	return -ENOSYS;
3984 }
3985 int generic_file_readonly_mmap_prepare(struct vm_area_desc *desc)
3986 {
3987 	return -ENOSYS;
3988 }
3989 #endif /* CONFIG_MMU */
3990 
3991 EXPORT_SYMBOL(filemap_page_mkwrite);
3992 EXPORT_SYMBOL(generic_file_mmap);
3993 EXPORT_SYMBOL(generic_file_mmap_prepare);
3994 EXPORT_SYMBOL(generic_file_readonly_mmap);
3995 EXPORT_SYMBOL(generic_file_readonly_mmap_prepare);
3996 
3997 static struct folio *do_read_cache_folio(struct address_space *mapping,
3998 		pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
3999 {
4000 	struct folio *folio;
4001 	int err;
4002 
4003 	if (!filler)
4004 		filler = mapping->a_ops->read_folio;
4005 repeat:
4006 	folio = filemap_get_folio(mapping, index);
4007 	if (IS_ERR(folio)) {
4008 		folio = filemap_alloc_folio(gfp,
4009 					    mapping_min_folio_order(mapping));
4010 		if (!folio)
4011 			return ERR_PTR(-ENOMEM);
4012 		index = mapping_align_index(mapping, index);
4013 		err = filemap_add_folio(mapping, folio, index, gfp);
4014 		if (unlikely(err)) {
4015 			folio_put(folio);
4016 			if (err == -EEXIST)
4017 				goto repeat;
4018 			/* Presumably ENOMEM for xarray node */
4019 			return ERR_PTR(err);
4020 		}
4021 
4022 		goto filler;
4023 	}
4024 	if (folio_test_uptodate(folio))
4025 		goto out;
4026 
4027 	if (!folio_trylock(folio)) {
4028 		folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
4029 		goto repeat;
4030 	}
4031 
4032 	/* Folio was truncated from mapping */
4033 	if (!folio->mapping) {
4034 		folio_unlock(folio);
4035 		folio_put(folio);
4036 		goto repeat;
4037 	}
4038 
4039 	/* Someone else locked and filled the page in a very small window */
4040 	if (folio_test_uptodate(folio)) {
4041 		folio_unlock(folio);
4042 		goto out;
4043 	}
4044 
4045 filler:
4046 	err = filemap_read_folio(file, filler, folio);
4047 	if (err) {
4048 		folio_put(folio);
4049 		if (err == AOP_TRUNCATED_PAGE)
4050 			goto repeat;
4051 		return ERR_PTR(err);
4052 	}
4053 
4054 out:
4055 	folio_mark_accessed(folio);
4056 	return folio;
4057 }
4058 
4059 /**
4060  * read_cache_folio - Read into page cache, fill it if needed.
4061  * @mapping: The address_space to read from.
4062  * @index: The index to read.
4063  * @filler: Function to perform the read, or NULL to use aops->read_folio().
4064  * @file: Passed to filler function, may be NULL if not required.
4065  *
4066  * Read one page into the page cache.  If it succeeds, the folio returned
4067  * will contain @index, but it may not be the first page of the folio.
4068  *
4069  * If the filler function returns an error, it will be returned to the
4070  * caller.
4071  *
4072  * Context: May sleep.  Expects mapping->invalidate_lock to be held.
4073  * Return: An uptodate folio on success, ERR_PTR() on failure.
4074  */
4075 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
4076 		filler_t filler, struct file *file)
4077 {
4078 	return do_read_cache_folio(mapping, index, filler, file,
4079 			mapping_gfp_mask(mapping));
4080 }
4081 EXPORT_SYMBOL(read_cache_folio);
4082 
4083 /**
4084  * mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
4085  * @mapping:	The address_space for the folio.
4086  * @index:	The index that the allocated folio will contain.
4087  * @gfp:	The page allocator flags to use if allocating.
4088  *
4089  * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
4090  * any new memory allocations done using the specified allocation flags.
4091  *
4092  * The most likely error from this function is EIO, but ENOMEM is
4093  * possible and so is EINTR.  If ->read_folio returns another error,
4094  * that will be returned to the caller.
4095  *
4096  * The function expects mapping->invalidate_lock to be already held.
4097  *
4098  * Return: Uptodate folio on success, ERR_PTR() on failure.
4099  */
4100 struct folio *mapping_read_folio_gfp(struct address_space *mapping,
4101 		pgoff_t index, gfp_t gfp)
4102 {
4103 	return do_read_cache_folio(mapping, index, NULL, NULL, gfp);
4104 }
4105 EXPORT_SYMBOL(mapping_read_folio_gfp);
4106 
4107 static struct page *do_read_cache_page(struct address_space *mapping,
4108 		pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
4109 {
4110 	struct folio *folio;
4111 
4112 	folio = do_read_cache_folio(mapping, index, filler, file, gfp);
4113 	if (IS_ERR(folio))
4114 		return &folio->page;
4115 	return folio_file_page(folio, index);
4116 }
4117 
4118 struct page *read_cache_page(struct address_space *mapping,
4119 			pgoff_t index, filler_t *filler, struct file *file)
4120 {
4121 	return do_read_cache_page(mapping, index, filler, file,
4122 			mapping_gfp_mask(mapping));
4123 }
4124 EXPORT_SYMBOL(read_cache_page);
4125 
4126 /**
4127  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
4128  * @mapping:	the page's address_space
4129  * @index:	the page index
4130  * @gfp:	the page allocator flags to use if allocating
4131  *
4132  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
4133  * any new page allocations done using the specified allocation flags.
4134  *
4135  * If the page does not get brought uptodate, return -EIO.
4136  *
4137  * The function expects mapping->invalidate_lock to be already held.
4138  *
4139  * Return: up to date page on success, ERR_PTR() on failure.
4140  */
4141 struct page *read_cache_page_gfp(struct address_space *mapping,
4142 				pgoff_t index,
4143 				gfp_t gfp)
4144 {
4145 	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
4146 }
4147 EXPORT_SYMBOL(read_cache_page_gfp);
4148 
4149 /*
4150  * Warn about a page cache invalidation failure during a direct I/O write.
4151  */
4152 static void dio_warn_stale_pagecache(struct file *filp)
4153 {
4154 	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
4155 	char pathname[128];
4156 	char *path;
4157 
4158 	errseq_set(&filp->f_mapping->wb_err, -EIO);
4159 	if (__ratelimit(&_rs)) {
4160 		path = file_path(filp, pathname, sizeof(pathname));
4161 		if (IS_ERR(path))
4162 			path = "(unknown)";
4163 		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
4164 		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
4165 			current->comm);
4166 	}
4167 }
4168 
4169 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count)
4170 {
4171 	struct address_space *mapping = iocb->ki_filp->f_mapping;
4172 
4173 	if (mapping->nrpages &&
4174 	    invalidate_inode_pages2_range(mapping,
4175 			iocb->ki_pos >> PAGE_SHIFT,
4176 			(iocb->ki_pos + count - 1) >> PAGE_SHIFT))
4177 		dio_warn_stale_pagecache(iocb->ki_filp);
4178 }
4179 
4180 ssize_t
4181 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
4182 {
4183 	struct address_space *mapping = iocb->ki_filp->f_mapping;
4184 	size_t write_len = iov_iter_count(from);
4185 	ssize_t written;
4186 
4187 	/*
4188 	 * If a page can not be invalidated, return 0 to fall back
4189 	 * to buffered write.
4190 	 */
4191 	written = kiocb_invalidate_pages(iocb, write_len);
4192 	if (written) {
4193 		if (written == -EBUSY)
4194 			return 0;
4195 		return written;
4196 	}
4197 
4198 	written = mapping->a_ops->direct_IO(iocb, from);
4199 
4200 	/*
4201 	 * Finally, try again to invalidate clean pages which might have been
4202 	 * cached by non-direct readahead, or faulted in by get_user_pages()
4203 	 * if the source of the write was an mmap'ed region of the file
4204 	 * we're writing.  Either one is a pretty crazy thing to do,
4205 	 * so we don't support it 100%.  If this invalidation
4206 	 * fails, tough, the write still worked...
4207 	 *
4208 	 * Most of the time we do not need this since dio_complete() will do
4209 	 * the invalidation for us. However there are some file systems that
4210 	 * do not end up with dio_complete() being called, so let's not break
4211 	 * them by removing it completely.
4212 	 *
4213 	 * Noticeable example is a blkdev_direct_IO().
4214 	 *
4215 	 * Skip invalidation for async writes or if mapping has no pages.
4216 	 */
4217 	if (written > 0) {
4218 		struct inode *inode = mapping->host;
4219 		loff_t pos = iocb->ki_pos;
4220 
4221 		kiocb_invalidate_post_direct_write(iocb, written);
4222 		pos += written;
4223 		write_len -= written;
4224 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
4225 			i_size_write(inode, pos);
4226 			mark_inode_dirty(inode);
4227 		}
4228 		iocb->ki_pos = pos;
4229 	}
4230 	if (written != -EIOCBQUEUED)
4231 		iov_iter_revert(from, write_len - iov_iter_count(from));
4232 	return written;
4233 }
4234 EXPORT_SYMBOL(generic_file_direct_write);
4235 
4236 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
4237 {
4238 	struct file *file = iocb->ki_filp;
4239 	loff_t pos = iocb->ki_pos;
4240 	struct address_space *mapping = file->f_mapping;
4241 	const struct address_space_operations *a_ops = mapping->a_ops;
4242 	size_t chunk = mapping_max_folio_size(mapping);
4243 	long status = 0;
4244 	ssize_t written = 0;
4245 
4246 	do {
4247 		struct folio *folio;
4248 		size_t offset;		/* Offset into folio */
4249 		size_t bytes;		/* Bytes to write to folio */
4250 		size_t copied;		/* Bytes copied from user */
4251 		void *fsdata = NULL;
4252 
4253 		bytes = iov_iter_count(i);
4254 retry:
4255 		offset = pos & (chunk - 1);
4256 		bytes = min(chunk - offset, bytes);
4257 		balance_dirty_pages_ratelimited(mapping);
4258 
4259 		if (fatal_signal_pending(current)) {
4260 			status = -EINTR;
4261 			break;
4262 		}
4263 
4264 		status = a_ops->write_begin(iocb, mapping, pos, bytes,
4265 						&folio, &fsdata);
4266 		if (unlikely(status < 0))
4267 			break;
4268 
4269 		offset = offset_in_folio(folio, pos);
4270 		if (bytes > folio_size(folio) - offset)
4271 			bytes = folio_size(folio) - offset;
4272 
4273 		if (mapping_writably_mapped(mapping))
4274 			flush_dcache_folio(folio);
4275 
4276 		/*
4277 		 * Faults here on mmap()s can recurse into arbitrary
4278 		 * filesystem code. Lots of locks are held that can
4279 		 * deadlock. Use an atomic copy to avoid deadlocking
4280 		 * in page fault handling.
4281 		 */
4282 		copied = copy_folio_from_iter_atomic(folio, offset, bytes, i);
4283 		flush_dcache_folio(folio);
4284 
4285 		status = a_ops->write_end(iocb, mapping, pos, bytes, copied,
4286 						folio, fsdata);
4287 		if (unlikely(status != copied)) {
4288 			iov_iter_revert(i, copied - max(status, 0L));
4289 			if (unlikely(status < 0))
4290 				break;
4291 		}
4292 		cond_resched();
4293 
4294 		if (unlikely(status == 0)) {
4295 			/*
4296 			 * A short copy made ->write_end() reject the
4297 			 * thing entirely.  Might be memory poisoning
4298 			 * halfway through, might be a race with munmap,
4299 			 * might be severe memory pressure.
4300 			 */
4301 			if (chunk > PAGE_SIZE)
4302 				chunk /= 2;
4303 			if (copied) {
4304 				bytes = copied;
4305 				goto retry;
4306 			}
4307 
4308 			/*
4309 			 * 'folio' is now unlocked and faults on it can be
4310 			 * handled. Ensure forward progress by trying to
4311 			 * fault it in now.
4312 			 */
4313 			if (fault_in_iov_iter_readable(i, bytes) == bytes) {
4314 				status = -EFAULT;
4315 				break;
4316 			}
4317 		} else {
4318 			pos += status;
4319 			written += status;
4320 		}
4321 	} while (iov_iter_count(i));
4322 
4323 	if (!written)
4324 		return status;
4325 	iocb->ki_pos += written;
4326 	return written;
4327 }
4328 EXPORT_SYMBOL(generic_perform_write);
4329 
4330 /**
4331  * __generic_file_write_iter - write data to a file
4332  * @iocb:	IO state structure (file, offset, etc.)
4333  * @from:	iov_iter with data to write
4334  *
4335  * This function does all the work needed for actually writing data to a
4336  * file. It does all basic checks, removes SUID from the file, updates
4337  * modification times and calls proper subroutines depending on whether we
4338  * do direct IO or a standard buffered write.
4339  *
4340  * It expects i_rwsem to be grabbed unless we work on a block device or similar
4341  * object which does not need locking at all.
4342  *
4343  * This function does *not* take care of syncing data in case of O_SYNC write.
4344  * A caller has to handle it. This is mainly due to the fact that we want to
4345  * avoid syncing under i_rwsem.
4346  *
4347  * Return:
4348  * * number of bytes written, even for truncated writes
4349  * * negative error code if no data has been written at all
4350  */
4351 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4352 {
4353 	struct file *file = iocb->ki_filp;
4354 	struct address_space *mapping = file->f_mapping;
4355 	struct inode *inode = mapping->host;
4356 	ssize_t ret;
4357 
4358 	ret = file_remove_privs(file);
4359 	if (ret)
4360 		return ret;
4361 
4362 	ret = file_update_time(file);
4363 	if (ret)
4364 		return ret;
4365 
4366 	if (iocb->ki_flags & IOCB_DIRECT) {
4367 		ret = generic_file_direct_write(iocb, from);
4368 		/*
4369 		 * If the write stopped short of completing, fall back to
4370 		 * buffered writes.  Some filesystems do this for writes to
4371 		 * holes, for example.  For DAX files, a buffered write will
4372 		 * not succeed (even if it did, DAX does not handle dirty
4373 		 * page-cache pages correctly).
4374 		 */
4375 		if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode))
4376 			return ret;
4377 		return direct_write_fallback(iocb, from, ret,
4378 				generic_perform_write(iocb, from));
4379 	}
4380 
4381 	return generic_perform_write(iocb, from);
4382 }
4383 EXPORT_SYMBOL(__generic_file_write_iter);
4384 
4385 /**
4386  * generic_file_write_iter - write data to a file
4387  * @iocb:	IO state structure
4388  * @from:	iov_iter with data to write
4389  *
4390  * This is a wrapper around __generic_file_write_iter() to be used by most
4391  * filesystems. It takes care of syncing the file in case of O_SYNC file
4392  * and acquires i_rwsem as needed.
4393  * Return:
4394  * * negative error code if no data has been written at all of
4395  *   vfs_fsync_range() failed for a synchronous write
4396  * * number of bytes written, even for truncated writes
4397  */
4398 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4399 {
4400 	struct file *file = iocb->ki_filp;
4401 	struct inode *inode = file->f_mapping->host;
4402 	ssize_t ret;
4403 
4404 	inode_lock(inode);
4405 	ret = generic_write_checks(iocb, from);
4406 	if (ret > 0)
4407 		ret = __generic_file_write_iter(iocb, from);
4408 	inode_unlock(inode);
4409 
4410 	if (ret > 0)
4411 		ret = generic_write_sync(iocb, ret);
4412 	return ret;
4413 }
4414 EXPORT_SYMBOL(generic_file_write_iter);
4415 
4416 /**
4417  * filemap_release_folio() - Release fs-specific metadata on a folio.
4418  * @folio: The folio which the kernel is trying to free.
4419  * @gfp: Memory allocation flags (and I/O mode).
4420  *
4421  * The address_space is trying to release any data attached to a folio
4422  * (presumably at folio->private).
4423  *
4424  * This will also be called if the private_2 flag is set on a page,
4425  * indicating that the folio has other metadata associated with it.
4426  *
4427  * The @gfp argument specifies whether I/O may be performed to release
4428  * this page (__GFP_IO), and whether the call may block
4429  * (__GFP_RECLAIM & __GFP_FS).
4430  *
4431  * Return: %true if the release was successful, otherwise %false.
4432  */
4433 bool filemap_release_folio(struct folio *folio, gfp_t gfp)
4434 {
4435 	struct address_space * const mapping = folio->mapping;
4436 
4437 	BUG_ON(!folio_test_locked(folio));
4438 	if (!folio_needs_release(folio))
4439 		return true;
4440 	if (folio_test_writeback(folio))
4441 		return false;
4442 
4443 	if (mapping && mapping->a_ops->release_folio)
4444 		return mapping->a_ops->release_folio(folio, gfp);
4445 	return try_to_free_buffers(folio);
4446 }
4447 EXPORT_SYMBOL(filemap_release_folio);
4448 
4449 /**
4450  * filemap_invalidate_inode - Invalidate/forcibly write back a range of an inode's pagecache
4451  * @inode: The inode to flush
4452  * @flush: Set to write back rather than simply invalidate.
4453  * @start: First byte to in range.
4454  * @end: Last byte in range (inclusive), or LLONG_MAX for everything from start
4455  *       onwards.
4456  *
4457  * Invalidate all the folios on an inode that contribute to the specified
4458  * range, possibly writing them back first.  Whilst the operation is
4459  * undertaken, the invalidate lock is held to prevent new folios from being
4460  * installed.
4461  */
4462 int filemap_invalidate_inode(struct inode *inode, bool flush,
4463 			     loff_t start, loff_t end)
4464 {
4465 	struct address_space *mapping = inode->i_mapping;
4466 	pgoff_t first = start >> PAGE_SHIFT;
4467 	pgoff_t last = end >> PAGE_SHIFT;
4468 	pgoff_t nr = end == LLONG_MAX ? ULONG_MAX : last - first + 1;
4469 
4470 	if (!mapping || !mapping->nrpages || end < start)
4471 		goto out;
4472 
4473 	/* Prevent new folios from being added to the inode. */
4474 	filemap_invalidate_lock(mapping);
4475 
4476 	if (!mapping->nrpages)
4477 		goto unlock;
4478 
4479 	unmap_mapping_pages(mapping, first, nr, false);
4480 
4481 	/* Write back the data if we're asked to. */
4482 	if (flush) {
4483 		struct writeback_control wbc = {
4484 			.sync_mode	= WB_SYNC_ALL,
4485 			.nr_to_write	= LONG_MAX,
4486 			.range_start	= start,
4487 			.range_end	= end,
4488 		};
4489 
4490 		filemap_fdatawrite_wbc(mapping, &wbc);
4491 	}
4492 
4493 	/* Wait for writeback to complete on all folios and discard. */
4494 	invalidate_inode_pages2_range(mapping, start / PAGE_SIZE, end / PAGE_SIZE);
4495 
4496 unlock:
4497 	filemap_invalidate_unlock(mapping);
4498 out:
4499 	return filemap_check_errors(mapping);
4500 }
4501 EXPORT_SYMBOL_GPL(filemap_invalidate_inode);
4502 
4503 #ifdef CONFIG_CACHESTAT_SYSCALL
4504 /**
4505  * filemap_cachestat() - compute the page cache statistics of a mapping
4506  * @mapping:	The mapping to compute the statistics for.
4507  * @first_index:	The starting page cache index.
4508  * @last_index:	The final page index (inclusive).
4509  * @cs:	the cachestat struct to write the result to.
4510  *
4511  * This will query the page cache statistics of a mapping in the
4512  * page range of [first_index, last_index] (inclusive). The statistics
4513  * queried include: number of dirty pages, number of pages marked for
4514  * writeback, and the number of (recently) evicted pages.
4515  */
4516 static void filemap_cachestat(struct address_space *mapping,
4517 		pgoff_t first_index, pgoff_t last_index, struct cachestat *cs)
4518 {
4519 	XA_STATE(xas, &mapping->i_pages, first_index);
4520 	struct folio *folio;
4521 
4522 	/* Flush stats (and potentially sleep) outside the RCU read section. */
4523 	mem_cgroup_flush_stats_ratelimited(NULL);
4524 
4525 	rcu_read_lock();
4526 	xas_for_each(&xas, folio, last_index) {
4527 		int order;
4528 		unsigned long nr_pages;
4529 		pgoff_t folio_first_index, folio_last_index;
4530 
4531 		/*
4532 		 * Don't deref the folio. It is not pinned, and might
4533 		 * get freed (and reused) underneath us.
4534 		 *
4535 		 * We *could* pin it, but that would be expensive for
4536 		 * what should be a fast and lightweight syscall.
4537 		 *
4538 		 * Instead, derive all information of interest from
4539 		 * the rcu-protected xarray.
4540 		 */
4541 
4542 		if (xas_retry(&xas, folio))
4543 			continue;
4544 
4545 		order = xas_get_order(&xas);
4546 		nr_pages = 1 << order;
4547 		folio_first_index = round_down(xas.xa_index, 1 << order);
4548 		folio_last_index = folio_first_index + nr_pages - 1;
4549 
4550 		/* Folios might straddle the range boundaries, only count covered pages */
4551 		if (folio_first_index < first_index)
4552 			nr_pages -= first_index - folio_first_index;
4553 
4554 		if (folio_last_index > last_index)
4555 			nr_pages -= folio_last_index - last_index;
4556 
4557 		if (xa_is_value(folio)) {
4558 			/* page is evicted */
4559 			void *shadow = (void *)folio;
4560 			bool workingset; /* not used */
4561 
4562 			cs->nr_evicted += nr_pages;
4563 
4564 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */
4565 			if (shmem_mapping(mapping)) {
4566 				/* shmem file - in swap cache */
4567 				swp_entry_t swp = radix_to_swp_entry(folio);
4568 
4569 				/* swapin error results in poisoned entry */
4570 				if (!softleaf_is_swap(swp))
4571 					goto resched;
4572 
4573 				/*
4574 				 * Getting a swap entry from the shmem
4575 				 * inode means we beat
4576 				 * shmem_unuse(). rcu_read_lock()
4577 				 * ensures swapoff waits for us before
4578 				 * freeing the swapper space. However,
4579 				 * we can race with swapping and
4580 				 * invalidation, so there might not be
4581 				 * a shadow in the swapcache (yet).
4582 				 */
4583 				shadow = swap_cache_get_shadow(swp);
4584 				if (!shadow)
4585 					goto resched;
4586 			}
4587 #endif
4588 			if (workingset_test_recent(shadow, true, &workingset, false))
4589 				cs->nr_recently_evicted += nr_pages;
4590 
4591 			goto resched;
4592 		}
4593 
4594 		/* page is in cache */
4595 		cs->nr_cache += nr_pages;
4596 
4597 		if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY))
4598 			cs->nr_dirty += nr_pages;
4599 
4600 		if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK))
4601 			cs->nr_writeback += nr_pages;
4602 
4603 resched:
4604 		if (need_resched()) {
4605 			xas_pause(&xas);
4606 			cond_resched_rcu();
4607 		}
4608 	}
4609 	rcu_read_unlock();
4610 }
4611 
4612 /*
4613  * See mincore: reveal pagecache information only for files
4614  * that the calling process has write access to, or could (if
4615  * tried) open for writing.
4616  */
4617 static inline bool can_do_cachestat(struct file *f)
4618 {
4619 	if (f->f_mode & FMODE_WRITE)
4620 		return true;
4621 	if (inode_owner_or_capable(file_mnt_idmap(f), file_inode(f)))
4622 		return true;
4623 	return file_permission(f, MAY_WRITE) == 0;
4624 }
4625 
4626 /*
4627  * The cachestat(2) system call.
4628  *
4629  * cachestat() returns the page cache statistics of a file in the
4630  * bytes range specified by `off` and `len`: number of cached pages,
4631  * number of dirty pages, number of pages marked for writeback,
4632  * number of evicted pages, and number of recently evicted pages.
4633  *
4634  * An evicted page is a page that is previously in the page cache
4635  * but has been evicted since. A page is recently evicted if its last
4636  * eviction was recent enough that its reentry to the cache would
4637  * indicate that it is actively being used by the system, and that
4638  * there is memory pressure on the system.
4639  *
4640  * `off` and `len` must be non-negative integers. If `len` > 0,
4641  * the queried range is [`off`, `off` + `len`]. If `len` == 0,
4642  * we will query in the range from `off` to the end of the file.
4643  *
4644  * The `flags` argument is unused for now, but is included for future
4645  * extensibility. User should pass 0 (i.e no flag specified).
4646  *
4647  * Currently, hugetlbfs is not supported.
4648  *
4649  * Because the status of a page can change after cachestat() checks it
4650  * but before it returns to the application, the returned values may
4651  * contain stale information.
4652  *
4653  * return values:
4654  *  zero        - success
4655  *  -EFAULT     - cstat or cstat_range points to an illegal address
4656  *  -EINVAL     - invalid flags
4657  *  -EBADF      - invalid file descriptor
4658  *  -EOPNOTSUPP - file descriptor is of a hugetlbfs file
4659  */
4660 SYSCALL_DEFINE4(cachestat, unsigned int, fd,
4661 		struct cachestat_range __user *, cstat_range,
4662 		struct cachestat __user *, cstat, unsigned int, flags)
4663 {
4664 	CLASS(fd, f)(fd);
4665 	struct address_space *mapping;
4666 	struct cachestat_range csr;
4667 	struct cachestat cs;
4668 	pgoff_t first_index, last_index;
4669 
4670 	if (fd_empty(f))
4671 		return -EBADF;
4672 
4673 	if (copy_from_user(&csr, cstat_range,
4674 			sizeof(struct cachestat_range)))
4675 		return -EFAULT;
4676 
4677 	/* hugetlbfs is not supported */
4678 	if (is_file_hugepages(fd_file(f)))
4679 		return -EOPNOTSUPP;
4680 
4681 	if (!can_do_cachestat(fd_file(f)))
4682 		return -EPERM;
4683 
4684 	if (flags != 0)
4685 		return -EINVAL;
4686 
4687 	first_index = csr.off >> PAGE_SHIFT;
4688 	last_index =
4689 		csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT;
4690 	memset(&cs, 0, sizeof(struct cachestat));
4691 	mapping = fd_file(f)->f_mapping;
4692 	filemap_cachestat(mapping, first_index, last_index, &cs);
4693 
4694 	if (copy_to_user(cstat, &cs, sizeof(struct cachestat)))
4695 		return -EFAULT;
4696 
4697 	return 0;
4698 }
4699 #endif /* CONFIG_CACHESTAT_SYSCALL */
4700