xref: /linux/mm/filemap.c (revision a8fe58cec351c25e09c393bf46117c0c47b5a17c)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
39 
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
42 
43 /*
44  * FIXME: remove all knowledge of the buffer layer from the core VM
45  */
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47 
48 #include <asm/mman.h>
49 
50 /*
51  * Shared mappings implemented 30.11.1994. It's not fully working yet,
52  * though.
53  *
54  * Shared mappings now work. 15.8.1995  Bruno.
55  *
56  * finished 'unifying' the page and buffer cache and SMP-threaded the
57  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58  *
59  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60  */
61 
62 /*
63  * Lock ordering:
64  *
65  *  ->i_mmap_rwsem		(truncate_pagecache)
66  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
67  *      ->swap_lock		(exclusive_swap_page, others)
68  *        ->mapping->tree_lock
69  *
70  *  ->i_mutex
71  *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
72  *
73  *  ->mmap_sem
74  *    ->i_mmap_rwsem
75  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
76  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
77  *
78  *  ->mmap_sem
79  *    ->lock_page		(access_process_vm)
80  *
81  *  ->i_mutex			(generic_perform_write)
82  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
83  *
84  *  bdi->wb.list_lock
85  *    sb_lock			(fs/fs-writeback.c)
86  *    ->mapping->tree_lock	(__sync_single_inode)
87  *
88  *  ->i_mmap_rwsem
89  *    ->anon_vma.lock		(vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock		(try_to_unmap_one)
96  *    ->private_lock		(try_to_unmap_one)
97  *    ->tree_lock		(try_to_unmap_one)
98  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
99  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
100  *    ->private_lock		(page_remove_rmap->set_page_dirty)
101  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
102  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
103  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
104  *    ->memcg->move_lock	(page_remove_rmap->mem_cgroup_begin_page_stat)
105  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
106  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
107  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
108  *
109  * ->i_mmap_rwsem
110  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
111  */
112 
113 static void page_cache_tree_delete(struct address_space *mapping,
114 				   struct page *page, void *shadow)
115 {
116 	struct radix_tree_node *node;
117 	unsigned long index;
118 	unsigned int offset;
119 	unsigned int tag;
120 	void **slot;
121 
122 	VM_BUG_ON(!PageLocked(page));
123 
124 	__radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
125 
126 	if (shadow) {
127 		mapping->nrexceptional++;
128 		/*
129 		 * Make sure the nrexceptional update is committed before
130 		 * the nrpages update so that final truncate racing
131 		 * with reclaim does not see both counters 0 at the
132 		 * same time and miss a shadow entry.
133 		 */
134 		smp_wmb();
135 	}
136 	mapping->nrpages--;
137 
138 	if (!node) {
139 		/* Clear direct pointer tags in root node */
140 		mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
141 		radix_tree_replace_slot(slot, shadow);
142 		return;
143 	}
144 
145 	/* Clear tree tags for the removed page */
146 	index = page->index;
147 	offset = index & RADIX_TREE_MAP_MASK;
148 	for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
149 		if (test_bit(offset, node->tags[tag]))
150 			radix_tree_tag_clear(&mapping->page_tree, index, tag);
151 	}
152 
153 	/* Delete page, swap shadow entry */
154 	radix_tree_replace_slot(slot, shadow);
155 	workingset_node_pages_dec(node);
156 	if (shadow)
157 		workingset_node_shadows_inc(node);
158 	else
159 		if (__radix_tree_delete_node(&mapping->page_tree, node))
160 			return;
161 
162 	/*
163 	 * Track node that only contains shadow entries.
164 	 *
165 	 * Avoid acquiring the list_lru lock if already tracked.  The
166 	 * list_empty() test is safe as node->private_list is
167 	 * protected by mapping->tree_lock.
168 	 */
169 	if (!workingset_node_pages(node) &&
170 	    list_empty(&node->private_list)) {
171 		node->private_data = mapping;
172 		list_lru_add(&workingset_shadow_nodes, &node->private_list);
173 	}
174 }
175 
176 /*
177  * Delete a page from the page cache and free it. Caller has to make
178  * sure the page is locked and that nobody else uses it - or that usage
179  * is safe.  The caller must hold the mapping's tree_lock and
180  * mem_cgroup_begin_page_stat().
181  */
182 void __delete_from_page_cache(struct page *page, void *shadow,
183 			      struct mem_cgroup *memcg)
184 {
185 	struct address_space *mapping = page->mapping;
186 
187 	trace_mm_filemap_delete_from_page_cache(page);
188 	/*
189 	 * if we're uptodate, flush out into the cleancache, otherwise
190 	 * invalidate any existing cleancache entries.  We can't leave
191 	 * stale data around in the cleancache once our page is gone
192 	 */
193 	if (PageUptodate(page) && PageMappedToDisk(page))
194 		cleancache_put_page(page);
195 	else
196 		cleancache_invalidate_page(mapping, page);
197 
198 	page_cache_tree_delete(mapping, page, shadow);
199 
200 	page->mapping = NULL;
201 	/* Leave page->index set: truncation lookup relies upon it */
202 
203 	/* hugetlb pages do not participate in page cache accounting. */
204 	if (!PageHuge(page))
205 		__dec_zone_page_state(page, NR_FILE_PAGES);
206 	if (PageSwapBacked(page))
207 		__dec_zone_page_state(page, NR_SHMEM);
208 	VM_BUG_ON_PAGE(page_mapped(page), page);
209 
210 	/*
211 	 * At this point page must be either written or cleaned by truncate.
212 	 * Dirty page here signals a bug and loss of unwritten data.
213 	 *
214 	 * This fixes dirty accounting after removing the page entirely but
215 	 * leaves PageDirty set: it has no effect for truncated page and
216 	 * anyway will be cleared before returning page into buddy allocator.
217 	 */
218 	if (WARN_ON_ONCE(PageDirty(page)))
219 		account_page_cleaned(page, mapping, memcg,
220 				     inode_to_wb(mapping->host));
221 }
222 
223 /**
224  * delete_from_page_cache - delete page from page cache
225  * @page: the page which the kernel is trying to remove from page cache
226  *
227  * This must be called only on pages that have been verified to be in the page
228  * cache and locked.  It will never put the page into the free list, the caller
229  * has a reference on the page.
230  */
231 void delete_from_page_cache(struct page *page)
232 {
233 	struct address_space *mapping = page->mapping;
234 	struct mem_cgroup *memcg;
235 	unsigned long flags;
236 
237 	void (*freepage)(struct page *);
238 
239 	BUG_ON(!PageLocked(page));
240 
241 	freepage = mapping->a_ops->freepage;
242 
243 	memcg = mem_cgroup_begin_page_stat(page);
244 	spin_lock_irqsave(&mapping->tree_lock, flags);
245 	__delete_from_page_cache(page, NULL, memcg);
246 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
247 	mem_cgroup_end_page_stat(memcg);
248 
249 	if (freepage)
250 		freepage(page);
251 	page_cache_release(page);
252 }
253 EXPORT_SYMBOL(delete_from_page_cache);
254 
255 static int filemap_check_errors(struct address_space *mapping)
256 {
257 	int ret = 0;
258 	/* Check for outstanding write errors */
259 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
260 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
261 		ret = -ENOSPC;
262 	if (test_bit(AS_EIO, &mapping->flags) &&
263 	    test_and_clear_bit(AS_EIO, &mapping->flags))
264 		ret = -EIO;
265 	return ret;
266 }
267 
268 /**
269  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
270  * @mapping:	address space structure to write
271  * @start:	offset in bytes where the range starts
272  * @end:	offset in bytes where the range ends (inclusive)
273  * @sync_mode:	enable synchronous operation
274  *
275  * Start writeback against all of a mapping's dirty pages that lie
276  * within the byte offsets <start, end> inclusive.
277  *
278  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
279  * opposed to a regular memory cleansing writeback.  The difference between
280  * these two operations is that if a dirty page/buffer is encountered, it must
281  * be waited upon, and not just skipped over.
282  */
283 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
284 				loff_t end, int sync_mode)
285 {
286 	int ret;
287 	struct writeback_control wbc = {
288 		.sync_mode = sync_mode,
289 		.nr_to_write = LONG_MAX,
290 		.range_start = start,
291 		.range_end = end,
292 	};
293 
294 	if (!mapping_cap_writeback_dirty(mapping))
295 		return 0;
296 
297 	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
298 	ret = do_writepages(mapping, &wbc);
299 	wbc_detach_inode(&wbc);
300 	return ret;
301 }
302 
303 static inline int __filemap_fdatawrite(struct address_space *mapping,
304 	int sync_mode)
305 {
306 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
307 }
308 
309 int filemap_fdatawrite(struct address_space *mapping)
310 {
311 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
312 }
313 EXPORT_SYMBOL(filemap_fdatawrite);
314 
315 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
316 				loff_t end)
317 {
318 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
319 }
320 EXPORT_SYMBOL(filemap_fdatawrite_range);
321 
322 /**
323  * filemap_flush - mostly a non-blocking flush
324  * @mapping:	target address_space
325  *
326  * This is a mostly non-blocking flush.  Not suitable for data-integrity
327  * purposes - I/O may not be started against all dirty pages.
328  */
329 int filemap_flush(struct address_space *mapping)
330 {
331 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
332 }
333 EXPORT_SYMBOL(filemap_flush);
334 
335 static int __filemap_fdatawait_range(struct address_space *mapping,
336 				     loff_t start_byte, loff_t end_byte)
337 {
338 	pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
339 	pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
340 	struct pagevec pvec;
341 	int nr_pages;
342 	int ret = 0;
343 
344 	if (end_byte < start_byte)
345 		goto out;
346 
347 	pagevec_init(&pvec, 0);
348 	while ((index <= end) &&
349 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
350 			PAGECACHE_TAG_WRITEBACK,
351 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
352 		unsigned i;
353 
354 		for (i = 0; i < nr_pages; i++) {
355 			struct page *page = pvec.pages[i];
356 
357 			/* until radix tree lookup accepts end_index */
358 			if (page->index > end)
359 				continue;
360 
361 			wait_on_page_writeback(page);
362 			if (TestClearPageError(page))
363 				ret = -EIO;
364 		}
365 		pagevec_release(&pvec);
366 		cond_resched();
367 	}
368 out:
369 	return ret;
370 }
371 
372 /**
373  * filemap_fdatawait_range - wait for writeback to complete
374  * @mapping:		address space structure to wait for
375  * @start_byte:		offset in bytes where the range starts
376  * @end_byte:		offset in bytes where the range ends (inclusive)
377  *
378  * Walk the list of under-writeback pages of the given address space
379  * in the given range and wait for all of them.  Check error status of
380  * the address space and return it.
381  *
382  * Since the error status of the address space is cleared by this function,
383  * callers are responsible for checking the return value and handling and/or
384  * reporting the error.
385  */
386 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
387 			    loff_t end_byte)
388 {
389 	int ret, ret2;
390 
391 	ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
392 	ret2 = filemap_check_errors(mapping);
393 	if (!ret)
394 		ret = ret2;
395 
396 	return ret;
397 }
398 EXPORT_SYMBOL(filemap_fdatawait_range);
399 
400 /**
401  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
402  * @mapping: address space structure to wait for
403  *
404  * Walk the list of under-writeback pages of the given address space
405  * and wait for all of them.  Unlike filemap_fdatawait(), this function
406  * does not clear error status of the address space.
407  *
408  * Use this function if callers don't handle errors themselves.  Expected
409  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
410  * fsfreeze(8)
411  */
412 void filemap_fdatawait_keep_errors(struct address_space *mapping)
413 {
414 	loff_t i_size = i_size_read(mapping->host);
415 
416 	if (i_size == 0)
417 		return;
418 
419 	__filemap_fdatawait_range(mapping, 0, i_size - 1);
420 }
421 
422 /**
423  * filemap_fdatawait - wait for all under-writeback pages to complete
424  * @mapping: address space structure to wait for
425  *
426  * Walk the list of under-writeback pages of the given address space
427  * and wait for all of them.  Check error status of the address space
428  * and return it.
429  *
430  * Since the error status of the address space is cleared by this function,
431  * callers are responsible for checking the return value and handling and/or
432  * reporting the error.
433  */
434 int filemap_fdatawait(struct address_space *mapping)
435 {
436 	loff_t i_size = i_size_read(mapping->host);
437 
438 	if (i_size == 0)
439 		return 0;
440 
441 	return filemap_fdatawait_range(mapping, 0, i_size - 1);
442 }
443 EXPORT_SYMBOL(filemap_fdatawait);
444 
445 int filemap_write_and_wait(struct address_space *mapping)
446 {
447 	int err = 0;
448 
449 	if (mapping->nrpages) {
450 		err = filemap_fdatawrite(mapping);
451 		/*
452 		 * Even if the above returned error, the pages may be
453 		 * written partially (e.g. -ENOSPC), so we wait for it.
454 		 * But the -EIO is special case, it may indicate the worst
455 		 * thing (e.g. bug) happened, so we avoid waiting for it.
456 		 */
457 		if (err != -EIO) {
458 			int err2 = filemap_fdatawait(mapping);
459 			if (!err)
460 				err = err2;
461 		}
462 	} else {
463 		err = filemap_check_errors(mapping);
464 	}
465 	return err;
466 }
467 EXPORT_SYMBOL(filemap_write_and_wait);
468 
469 /**
470  * filemap_write_and_wait_range - write out & wait on a file range
471  * @mapping:	the address_space for the pages
472  * @lstart:	offset in bytes where the range starts
473  * @lend:	offset in bytes where the range ends (inclusive)
474  *
475  * Write out and wait upon file offsets lstart->lend, inclusive.
476  *
477  * Note that `lend' is inclusive (describes the last byte to be written) so
478  * that this function can be used to write to the very end-of-file (end = -1).
479  */
480 int filemap_write_and_wait_range(struct address_space *mapping,
481 				 loff_t lstart, loff_t lend)
482 {
483 	int err = 0;
484 
485 	if (dax_mapping(mapping) && mapping->nrexceptional) {
486 		err = dax_writeback_mapping_range(mapping, lstart, lend);
487 		if (err)
488 			return err;
489 	}
490 
491 	if (mapping->nrpages) {
492 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
493 						 WB_SYNC_ALL);
494 		/* See comment of filemap_write_and_wait() */
495 		if (err != -EIO) {
496 			int err2 = filemap_fdatawait_range(mapping,
497 						lstart, lend);
498 			if (!err)
499 				err = err2;
500 		}
501 	} else {
502 		err = filemap_check_errors(mapping);
503 	}
504 	return err;
505 }
506 EXPORT_SYMBOL(filemap_write_and_wait_range);
507 
508 /**
509  * replace_page_cache_page - replace a pagecache page with a new one
510  * @old:	page to be replaced
511  * @new:	page to replace with
512  * @gfp_mask:	allocation mode
513  *
514  * This function replaces a page in the pagecache with a new one.  On
515  * success it acquires the pagecache reference for the new page and
516  * drops it for the old page.  Both the old and new pages must be
517  * locked.  This function does not add the new page to the LRU, the
518  * caller must do that.
519  *
520  * The remove + add is atomic.  The only way this function can fail is
521  * memory allocation failure.
522  */
523 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
524 {
525 	int error;
526 
527 	VM_BUG_ON_PAGE(!PageLocked(old), old);
528 	VM_BUG_ON_PAGE(!PageLocked(new), new);
529 	VM_BUG_ON_PAGE(new->mapping, new);
530 
531 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
532 	if (!error) {
533 		struct address_space *mapping = old->mapping;
534 		void (*freepage)(struct page *);
535 		struct mem_cgroup *memcg;
536 		unsigned long flags;
537 
538 		pgoff_t offset = old->index;
539 		freepage = mapping->a_ops->freepage;
540 
541 		page_cache_get(new);
542 		new->mapping = mapping;
543 		new->index = offset;
544 
545 		memcg = mem_cgroup_begin_page_stat(old);
546 		spin_lock_irqsave(&mapping->tree_lock, flags);
547 		__delete_from_page_cache(old, NULL, memcg);
548 		error = radix_tree_insert(&mapping->page_tree, offset, new);
549 		BUG_ON(error);
550 		mapping->nrpages++;
551 
552 		/*
553 		 * hugetlb pages do not participate in page cache accounting.
554 		 */
555 		if (!PageHuge(new))
556 			__inc_zone_page_state(new, NR_FILE_PAGES);
557 		if (PageSwapBacked(new))
558 			__inc_zone_page_state(new, NR_SHMEM);
559 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
560 		mem_cgroup_end_page_stat(memcg);
561 		mem_cgroup_replace_page(old, new);
562 		radix_tree_preload_end();
563 		if (freepage)
564 			freepage(old);
565 		page_cache_release(old);
566 	}
567 
568 	return error;
569 }
570 EXPORT_SYMBOL_GPL(replace_page_cache_page);
571 
572 static int page_cache_tree_insert(struct address_space *mapping,
573 				  struct page *page, void **shadowp)
574 {
575 	struct radix_tree_node *node;
576 	void **slot;
577 	int error;
578 
579 	error = __radix_tree_create(&mapping->page_tree, page->index,
580 				    &node, &slot);
581 	if (error)
582 		return error;
583 	if (*slot) {
584 		void *p;
585 
586 		p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
587 		if (!radix_tree_exceptional_entry(p))
588 			return -EEXIST;
589 
590 		if (WARN_ON(dax_mapping(mapping)))
591 			return -EINVAL;
592 
593 		if (shadowp)
594 			*shadowp = p;
595 		mapping->nrexceptional--;
596 		if (node)
597 			workingset_node_shadows_dec(node);
598 	}
599 	radix_tree_replace_slot(slot, page);
600 	mapping->nrpages++;
601 	if (node) {
602 		workingset_node_pages_inc(node);
603 		/*
604 		 * Don't track node that contains actual pages.
605 		 *
606 		 * Avoid acquiring the list_lru lock if already
607 		 * untracked.  The list_empty() test is safe as
608 		 * node->private_list is protected by
609 		 * mapping->tree_lock.
610 		 */
611 		if (!list_empty(&node->private_list))
612 			list_lru_del(&workingset_shadow_nodes,
613 				     &node->private_list);
614 	}
615 	return 0;
616 }
617 
618 static int __add_to_page_cache_locked(struct page *page,
619 				      struct address_space *mapping,
620 				      pgoff_t offset, gfp_t gfp_mask,
621 				      void **shadowp)
622 {
623 	int huge = PageHuge(page);
624 	struct mem_cgroup *memcg;
625 	int error;
626 
627 	VM_BUG_ON_PAGE(!PageLocked(page), page);
628 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
629 
630 	if (!huge) {
631 		error = mem_cgroup_try_charge(page, current->mm,
632 					      gfp_mask, &memcg, false);
633 		if (error)
634 			return error;
635 	}
636 
637 	error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
638 	if (error) {
639 		if (!huge)
640 			mem_cgroup_cancel_charge(page, memcg, false);
641 		return error;
642 	}
643 
644 	page_cache_get(page);
645 	page->mapping = mapping;
646 	page->index = offset;
647 
648 	spin_lock_irq(&mapping->tree_lock);
649 	error = page_cache_tree_insert(mapping, page, shadowp);
650 	radix_tree_preload_end();
651 	if (unlikely(error))
652 		goto err_insert;
653 
654 	/* hugetlb pages do not participate in page cache accounting. */
655 	if (!huge)
656 		__inc_zone_page_state(page, NR_FILE_PAGES);
657 	spin_unlock_irq(&mapping->tree_lock);
658 	if (!huge)
659 		mem_cgroup_commit_charge(page, memcg, false, false);
660 	trace_mm_filemap_add_to_page_cache(page);
661 	return 0;
662 err_insert:
663 	page->mapping = NULL;
664 	/* Leave page->index set: truncation relies upon it */
665 	spin_unlock_irq(&mapping->tree_lock);
666 	if (!huge)
667 		mem_cgroup_cancel_charge(page, memcg, false);
668 	page_cache_release(page);
669 	return error;
670 }
671 
672 /**
673  * add_to_page_cache_locked - add a locked page to the pagecache
674  * @page:	page to add
675  * @mapping:	the page's address_space
676  * @offset:	page index
677  * @gfp_mask:	page allocation mode
678  *
679  * This function is used to add a page to the pagecache. It must be locked.
680  * This function does not add the page to the LRU.  The caller must do that.
681  */
682 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
683 		pgoff_t offset, gfp_t gfp_mask)
684 {
685 	return __add_to_page_cache_locked(page, mapping, offset,
686 					  gfp_mask, NULL);
687 }
688 EXPORT_SYMBOL(add_to_page_cache_locked);
689 
690 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
691 				pgoff_t offset, gfp_t gfp_mask)
692 {
693 	void *shadow = NULL;
694 	int ret;
695 
696 	__SetPageLocked(page);
697 	ret = __add_to_page_cache_locked(page, mapping, offset,
698 					 gfp_mask, &shadow);
699 	if (unlikely(ret))
700 		__ClearPageLocked(page);
701 	else {
702 		/*
703 		 * The page might have been evicted from cache only
704 		 * recently, in which case it should be activated like
705 		 * any other repeatedly accessed page.
706 		 */
707 		if (shadow && workingset_refault(shadow)) {
708 			SetPageActive(page);
709 			workingset_activation(page);
710 		} else
711 			ClearPageActive(page);
712 		lru_cache_add(page);
713 	}
714 	return ret;
715 }
716 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
717 
718 #ifdef CONFIG_NUMA
719 struct page *__page_cache_alloc(gfp_t gfp)
720 {
721 	int n;
722 	struct page *page;
723 
724 	if (cpuset_do_page_mem_spread()) {
725 		unsigned int cpuset_mems_cookie;
726 		do {
727 			cpuset_mems_cookie = read_mems_allowed_begin();
728 			n = cpuset_mem_spread_node();
729 			page = __alloc_pages_node(n, gfp, 0);
730 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
731 
732 		return page;
733 	}
734 	return alloc_pages(gfp, 0);
735 }
736 EXPORT_SYMBOL(__page_cache_alloc);
737 #endif
738 
739 /*
740  * In order to wait for pages to become available there must be
741  * waitqueues associated with pages. By using a hash table of
742  * waitqueues where the bucket discipline is to maintain all
743  * waiters on the same queue and wake all when any of the pages
744  * become available, and for the woken contexts to check to be
745  * sure the appropriate page became available, this saves space
746  * at a cost of "thundering herd" phenomena during rare hash
747  * collisions.
748  */
749 wait_queue_head_t *page_waitqueue(struct page *page)
750 {
751 	const struct zone *zone = page_zone(page);
752 
753 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
754 }
755 EXPORT_SYMBOL(page_waitqueue);
756 
757 void wait_on_page_bit(struct page *page, int bit_nr)
758 {
759 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
760 
761 	if (test_bit(bit_nr, &page->flags))
762 		__wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
763 							TASK_UNINTERRUPTIBLE);
764 }
765 EXPORT_SYMBOL(wait_on_page_bit);
766 
767 int wait_on_page_bit_killable(struct page *page, int bit_nr)
768 {
769 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
770 
771 	if (!test_bit(bit_nr, &page->flags))
772 		return 0;
773 
774 	return __wait_on_bit(page_waitqueue(page), &wait,
775 			     bit_wait_io, TASK_KILLABLE);
776 }
777 
778 int wait_on_page_bit_killable_timeout(struct page *page,
779 				       int bit_nr, unsigned long timeout)
780 {
781 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
782 
783 	wait.key.timeout = jiffies + timeout;
784 	if (!test_bit(bit_nr, &page->flags))
785 		return 0;
786 	return __wait_on_bit(page_waitqueue(page), &wait,
787 			     bit_wait_io_timeout, TASK_KILLABLE);
788 }
789 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
790 
791 /**
792  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
793  * @page: Page defining the wait queue of interest
794  * @waiter: Waiter to add to the queue
795  *
796  * Add an arbitrary @waiter to the wait queue for the nominated @page.
797  */
798 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
799 {
800 	wait_queue_head_t *q = page_waitqueue(page);
801 	unsigned long flags;
802 
803 	spin_lock_irqsave(&q->lock, flags);
804 	__add_wait_queue(q, waiter);
805 	spin_unlock_irqrestore(&q->lock, flags);
806 }
807 EXPORT_SYMBOL_GPL(add_page_wait_queue);
808 
809 /**
810  * unlock_page - unlock a locked page
811  * @page: the page
812  *
813  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
814  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
815  * mechanism between PageLocked pages and PageWriteback pages is shared.
816  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
817  *
818  * The mb is necessary to enforce ordering between the clear_bit and the read
819  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
820  */
821 void unlock_page(struct page *page)
822 {
823 	page = compound_head(page);
824 	VM_BUG_ON_PAGE(!PageLocked(page), page);
825 	clear_bit_unlock(PG_locked, &page->flags);
826 	smp_mb__after_atomic();
827 	wake_up_page(page, PG_locked);
828 }
829 EXPORT_SYMBOL(unlock_page);
830 
831 /**
832  * end_page_writeback - end writeback against a page
833  * @page: the page
834  */
835 void end_page_writeback(struct page *page)
836 {
837 	/*
838 	 * TestClearPageReclaim could be used here but it is an atomic
839 	 * operation and overkill in this particular case. Failing to
840 	 * shuffle a page marked for immediate reclaim is too mild to
841 	 * justify taking an atomic operation penalty at the end of
842 	 * ever page writeback.
843 	 */
844 	if (PageReclaim(page)) {
845 		ClearPageReclaim(page);
846 		rotate_reclaimable_page(page);
847 	}
848 
849 	if (!test_clear_page_writeback(page))
850 		BUG();
851 
852 	smp_mb__after_atomic();
853 	wake_up_page(page, PG_writeback);
854 }
855 EXPORT_SYMBOL(end_page_writeback);
856 
857 /*
858  * After completing I/O on a page, call this routine to update the page
859  * flags appropriately
860  */
861 void page_endio(struct page *page, int rw, int err)
862 {
863 	if (rw == READ) {
864 		if (!err) {
865 			SetPageUptodate(page);
866 		} else {
867 			ClearPageUptodate(page);
868 			SetPageError(page);
869 		}
870 		unlock_page(page);
871 	} else { /* rw == WRITE */
872 		if (err) {
873 			SetPageError(page);
874 			if (page->mapping)
875 				mapping_set_error(page->mapping, err);
876 		}
877 		end_page_writeback(page);
878 	}
879 }
880 EXPORT_SYMBOL_GPL(page_endio);
881 
882 /**
883  * __lock_page - get a lock on the page, assuming we need to sleep to get it
884  * @page: the page to lock
885  */
886 void __lock_page(struct page *page)
887 {
888 	struct page *page_head = compound_head(page);
889 	DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
890 
891 	__wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
892 							TASK_UNINTERRUPTIBLE);
893 }
894 EXPORT_SYMBOL(__lock_page);
895 
896 int __lock_page_killable(struct page *page)
897 {
898 	struct page *page_head = compound_head(page);
899 	DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
900 
901 	return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
902 					bit_wait_io, TASK_KILLABLE);
903 }
904 EXPORT_SYMBOL_GPL(__lock_page_killable);
905 
906 /*
907  * Return values:
908  * 1 - page is locked; mmap_sem is still held.
909  * 0 - page is not locked.
910  *     mmap_sem has been released (up_read()), unless flags had both
911  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
912  *     which case mmap_sem is still held.
913  *
914  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
915  * with the page locked and the mmap_sem unperturbed.
916  */
917 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
918 			 unsigned int flags)
919 {
920 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
921 		/*
922 		 * CAUTION! In this case, mmap_sem is not released
923 		 * even though return 0.
924 		 */
925 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
926 			return 0;
927 
928 		up_read(&mm->mmap_sem);
929 		if (flags & FAULT_FLAG_KILLABLE)
930 			wait_on_page_locked_killable(page);
931 		else
932 			wait_on_page_locked(page);
933 		return 0;
934 	} else {
935 		if (flags & FAULT_FLAG_KILLABLE) {
936 			int ret;
937 
938 			ret = __lock_page_killable(page);
939 			if (ret) {
940 				up_read(&mm->mmap_sem);
941 				return 0;
942 			}
943 		} else
944 			__lock_page(page);
945 		return 1;
946 	}
947 }
948 
949 /**
950  * page_cache_next_hole - find the next hole (not-present entry)
951  * @mapping: mapping
952  * @index: index
953  * @max_scan: maximum range to search
954  *
955  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
956  * lowest indexed hole.
957  *
958  * Returns: the index of the hole if found, otherwise returns an index
959  * outside of the set specified (in which case 'return - index >=
960  * max_scan' will be true). In rare cases of index wrap-around, 0 will
961  * be returned.
962  *
963  * page_cache_next_hole may be called under rcu_read_lock. However,
964  * like radix_tree_gang_lookup, this will not atomically search a
965  * snapshot of the tree at a single point in time. For example, if a
966  * hole is created at index 5, then subsequently a hole is created at
967  * index 10, page_cache_next_hole covering both indexes may return 10
968  * if called under rcu_read_lock.
969  */
970 pgoff_t page_cache_next_hole(struct address_space *mapping,
971 			     pgoff_t index, unsigned long max_scan)
972 {
973 	unsigned long i;
974 
975 	for (i = 0; i < max_scan; i++) {
976 		struct page *page;
977 
978 		page = radix_tree_lookup(&mapping->page_tree, index);
979 		if (!page || radix_tree_exceptional_entry(page))
980 			break;
981 		index++;
982 		if (index == 0)
983 			break;
984 	}
985 
986 	return index;
987 }
988 EXPORT_SYMBOL(page_cache_next_hole);
989 
990 /**
991  * page_cache_prev_hole - find the prev hole (not-present entry)
992  * @mapping: mapping
993  * @index: index
994  * @max_scan: maximum range to search
995  *
996  * Search backwards in the range [max(index-max_scan+1, 0), index] for
997  * the first hole.
998  *
999  * Returns: the index of the hole if found, otherwise returns an index
1000  * outside of the set specified (in which case 'index - return >=
1001  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1002  * will be returned.
1003  *
1004  * page_cache_prev_hole may be called under rcu_read_lock. However,
1005  * like radix_tree_gang_lookup, this will not atomically search a
1006  * snapshot of the tree at a single point in time. For example, if a
1007  * hole is created at index 10, then subsequently a hole is created at
1008  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1009  * called under rcu_read_lock.
1010  */
1011 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1012 			     pgoff_t index, unsigned long max_scan)
1013 {
1014 	unsigned long i;
1015 
1016 	for (i = 0; i < max_scan; i++) {
1017 		struct page *page;
1018 
1019 		page = radix_tree_lookup(&mapping->page_tree, index);
1020 		if (!page || radix_tree_exceptional_entry(page))
1021 			break;
1022 		index--;
1023 		if (index == ULONG_MAX)
1024 			break;
1025 	}
1026 
1027 	return index;
1028 }
1029 EXPORT_SYMBOL(page_cache_prev_hole);
1030 
1031 /**
1032  * find_get_entry - find and get a page cache entry
1033  * @mapping: the address_space to search
1034  * @offset: the page cache index
1035  *
1036  * Looks up the page cache slot at @mapping & @offset.  If there is a
1037  * page cache page, it is returned with an increased refcount.
1038  *
1039  * If the slot holds a shadow entry of a previously evicted page, or a
1040  * swap entry from shmem/tmpfs, it is returned.
1041  *
1042  * Otherwise, %NULL is returned.
1043  */
1044 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1045 {
1046 	void **pagep;
1047 	struct page *page;
1048 
1049 	rcu_read_lock();
1050 repeat:
1051 	page = NULL;
1052 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1053 	if (pagep) {
1054 		page = radix_tree_deref_slot(pagep);
1055 		if (unlikely(!page))
1056 			goto out;
1057 		if (radix_tree_exception(page)) {
1058 			if (radix_tree_deref_retry(page))
1059 				goto repeat;
1060 			/*
1061 			 * A shadow entry of a recently evicted page,
1062 			 * or a swap entry from shmem/tmpfs.  Return
1063 			 * it without attempting to raise page count.
1064 			 */
1065 			goto out;
1066 		}
1067 		if (!page_cache_get_speculative(page))
1068 			goto repeat;
1069 
1070 		/*
1071 		 * Has the page moved?
1072 		 * This is part of the lockless pagecache protocol. See
1073 		 * include/linux/pagemap.h for details.
1074 		 */
1075 		if (unlikely(page != *pagep)) {
1076 			page_cache_release(page);
1077 			goto repeat;
1078 		}
1079 	}
1080 out:
1081 	rcu_read_unlock();
1082 
1083 	return page;
1084 }
1085 EXPORT_SYMBOL(find_get_entry);
1086 
1087 /**
1088  * find_lock_entry - locate, pin and lock a page cache entry
1089  * @mapping: the address_space to search
1090  * @offset: the page cache index
1091  *
1092  * Looks up the page cache slot at @mapping & @offset.  If there is a
1093  * page cache page, it is returned locked and with an increased
1094  * refcount.
1095  *
1096  * If the slot holds a shadow entry of a previously evicted page, or a
1097  * swap entry from shmem/tmpfs, it is returned.
1098  *
1099  * Otherwise, %NULL is returned.
1100  *
1101  * find_lock_entry() may sleep.
1102  */
1103 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1104 {
1105 	struct page *page;
1106 
1107 repeat:
1108 	page = find_get_entry(mapping, offset);
1109 	if (page && !radix_tree_exception(page)) {
1110 		lock_page(page);
1111 		/* Has the page been truncated? */
1112 		if (unlikely(page->mapping != mapping)) {
1113 			unlock_page(page);
1114 			page_cache_release(page);
1115 			goto repeat;
1116 		}
1117 		VM_BUG_ON_PAGE(page->index != offset, page);
1118 	}
1119 	return page;
1120 }
1121 EXPORT_SYMBOL(find_lock_entry);
1122 
1123 /**
1124  * pagecache_get_page - find and get a page reference
1125  * @mapping: the address_space to search
1126  * @offset: the page index
1127  * @fgp_flags: PCG flags
1128  * @gfp_mask: gfp mask to use for the page cache data page allocation
1129  *
1130  * Looks up the page cache slot at @mapping & @offset.
1131  *
1132  * PCG flags modify how the page is returned.
1133  *
1134  * FGP_ACCESSED: the page will be marked accessed
1135  * FGP_LOCK: Page is return locked
1136  * FGP_CREAT: If page is not present then a new page is allocated using
1137  *		@gfp_mask and added to the page cache and the VM's LRU
1138  *		list. The page is returned locked and with an increased
1139  *		refcount. Otherwise, %NULL is returned.
1140  *
1141  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1142  * if the GFP flags specified for FGP_CREAT are atomic.
1143  *
1144  * If there is a page cache page, it is returned with an increased refcount.
1145  */
1146 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1147 	int fgp_flags, gfp_t gfp_mask)
1148 {
1149 	struct page *page;
1150 
1151 repeat:
1152 	page = find_get_entry(mapping, offset);
1153 	if (radix_tree_exceptional_entry(page))
1154 		page = NULL;
1155 	if (!page)
1156 		goto no_page;
1157 
1158 	if (fgp_flags & FGP_LOCK) {
1159 		if (fgp_flags & FGP_NOWAIT) {
1160 			if (!trylock_page(page)) {
1161 				page_cache_release(page);
1162 				return NULL;
1163 			}
1164 		} else {
1165 			lock_page(page);
1166 		}
1167 
1168 		/* Has the page been truncated? */
1169 		if (unlikely(page->mapping != mapping)) {
1170 			unlock_page(page);
1171 			page_cache_release(page);
1172 			goto repeat;
1173 		}
1174 		VM_BUG_ON_PAGE(page->index != offset, page);
1175 	}
1176 
1177 	if (page && (fgp_flags & FGP_ACCESSED))
1178 		mark_page_accessed(page);
1179 
1180 no_page:
1181 	if (!page && (fgp_flags & FGP_CREAT)) {
1182 		int err;
1183 		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1184 			gfp_mask |= __GFP_WRITE;
1185 		if (fgp_flags & FGP_NOFS)
1186 			gfp_mask &= ~__GFP_FS;
1187 
1188 		page = __page_cache_alloc(gfp_mask);
1189 		if (!page)
1190 			return NULL;
1191 
1192 		if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1193 			fgp_flags |= FGP_LOCK;
1194 
1195 		/* Init accessed so avoid atomic mark_page_accessed later */
1196 		if (fgp_flags & FGP_ACCESSED)
1197 			__SetPageReferenced(page);
1198 
1199 		err = add_to_page_cache_lru(page, mapping, offset,
1200 				gfp_mask & GFP_RECLAIM_MASK);
1201 		if (unlikely(err)) {
1202 			page_cache_release(page);
1203 			page = NULL;
1204 			if (err == -EEXIST)
1205 				goto repeat;
1206 		}
1207 	}
1208 
1209 	return page;
1210 }
1211 EXPORT_SYMBOL(pagecache_get_page);
1212 
1213 /**
1214  * find_get_entries - gang pagecache lookup
1215  * @mapping:	The address_space to search
1216  * @start:	The starting page cache index
1217  * @nr_entries:	The maximum number of entries
1218  * @entries:	Where the resulting entries are placed
1219  * @indices:	The cache indices corresponding to the entries in @entries
1220  *
1221  * find_get_entries() will search for and return a group of up to
1222  * @nr_entries entries in the mapping.  The entries are placed at
1223  * @entries.  find_get_entries() takes a reference against any actual
1224  * pages it returns.
1225  *
1226  * The search returns a group of mapping-contiguous page cache entries
1227  * with ascending indexes.  There may be holes in the indices due to
1228  * not-present pages.
1229  *
1230  * Any shadow entries of evicted pages, or swap entries from
1231  * shmem/tmpfs, are included in the returned array.
1232  *
1233  * find_get_entries() returns the number of pages and shadow entries
1234  * which were found.
1235  */
1236 unsigned find_get_entries(struct address_space *mapping,
1237 			  pgoff_t start, unsigned int nr_entries,
1238 			  struct page **entries, pgoff_t *indices)
1239 {
1240 	void **slot;
1241 	unsigned int ret = 0;
1242 	struct radix_tree_iter iter;
1243 
1244 	if (!nr_entries)
1245 		return 0;
1246 
1247 	rcu_read_lock();
1248 restart:
1249 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1250 		struct page *page;
1251 repeat:
1252 		page = radix_tree_deref_slot(slot);
1253 		if (unlikely(!page))
1254 			continue;
1255 		if (radix_tree_exception(page)) {
1256 			if (radix_tree_deref_retry(page))
1257 				goto restart;
1258 			/*
1259 			 * A shadow entry of a recently evicted page, a swap
1260 			 * entry from shmem/tmpfs or a DAX entry.  Return it
1261 			 * without attempting to raise page count.
1262 			 */
1263 			goto export;
1264 		}
1265 		if (!page_cache_get_speculative(page))
1266 			goto repeat;
1267 
1268 		/* Has the page moved? */
1269 		if (unlikely(page != *slot)) {
1270 			page_cache_release(page);
1271 			goto repeat;
1272 		}
1273 export:
1274 		indices[ret] = iter.index;
1275 		entries[ret] = page;
1276 		if (++ret == nr_entries)
1277 			break;
1278 	}
1279 	rcu_read_unlock();
1280 	return ret;
1281 }
1282 
1283 /**
1284  * find_get_pages - gang pagecache lookup
1285  * @mapping:	The address_space to search
1286  * @start:	The starting page index
1287  * @nr_pages:	The maximum number of pages
1288  * @pages:	Where the resulting pages are placed
1289  *
1290  * find_get_pages() will search for and return a group of up to
1291  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1292  * find_get_pages() takes a reference against the returned pages.
1293  *
1294  * The search returns a group of mapping-contiguous pages with ascending
1295  * indexes.  There may be holes in the indices due to not-present pages.
1296  *
1297  * find_get_pages() returns the number of pages which were found.
1298  */
1299 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1300 			    unsigned int nr_pages, struct page **pages)
1301 {
1302 	struct radix_tree_iter iter;
1303 	void **slot;
1304 	unsigned ret = 0;
1305 
1306 	if (unlikely(!nr_pages))
1307 		return 0;
1308 
1309 	rcu_read_lock();
1310 restart:
1311 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1312 		struct page *page;
1313 repeat:
1314 		page = radix_tree_deref_slot(slot);
1315 		if (unlikely(!page))
1316 			continue;
1317 
1318 		if (radix_tree_exception(page)) {
1319 			if (radix_tree_deref_retry(page)) {
1320 				/*
1321 				 * Transient condition which can only trigger
1322 				 * when entry at index 0 moves out of or back
1323 				 * to root: none yet gotten, safe to restart.
1324 				 */
1325 				WARN_ON(iter.index);
1326 				goto restart;
1327 			}
1328 			/*
1329 			 * A shadow entry of a recently evicted page,
1330 			 * or a swap entry from shmem/tmpfs.  Skip
1331 			 * over it.
1332 			 */
1333 			continue;
1334 		}
1335 
1336 		if (!page_cache_get_speculative(page))
1337 			goto repeat;
1338 
1339 		/* Has the page moved? */
1340 		if (unlikely(page != *slot)) {
1341 			page_cache_release(page);
1342 			goto repeat;
1343 		}
1344 
1345 		pages[ret] = page;
1346 		if (++ret == nr_pages)
1347 			break;
1348 	}
1349 
1350 	rcu_read_unlock();
1351 	return ret;
1352 }
1353 
1354 /**
1355  * find_get_pages_contig - gang contiguous pagecache lookup
1356  * @mapping:	The address_space to search
1357  * @index:	The starting page index
1358  * @nr_pages:	The maximum number of pages
1359  * @pages:	Where the resulting pages are placed
1360  *
1361  * find_get_pages_contig() works exactly like find_get_pages(), except
1362  * that the returned number of pages are guaranteed to be contiguous.
1363  *
1364  * find_get_pages_contig() returns the number of pages which were found.
1365  */
1366 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1367 			       unsigned int nr_pages, struct page **pages)
1368 {
1369 	struct radix_tree_iter iter;
1370 	void **slot;
1371 	unsigned int ret = 0;
1372 
1373 	if (unlikely(!nr_pages))
1374 		return 0;
1375 
1376 	rcu_read_lock();
1377 restart:
1378 	radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1379 		struct page *page;
1380 repeat:
1381 		page = radix_tree_deref_slot(slot);
1382 		/* The hole, there no reason to continue */
1383 		if (unlikely(!page))
1384 			break;
1385 
1386 		if (radix_tree_exception(page)) {
1387 			if (radix_tree_deref_retry(page)) {
1388 				/*
1389 				 * Transient condition which can only trigger
1390 				 * when entry at index 0 moves out of or back
1391 				 * to root: none yet gotten, safe to restart.
1392 				 */
1393 				goto restart;
1394 			}
1395 			/*
1396 			 * A shadow entry of a recently evicted page,
1397 			 * or a swap entry from shmem/tmpfs.  Stop
1398 			 * looking for contiguous pages.
1399 			 */
1400 			break;
1401 		}
1402 
1403 		if (!page_cache_get_speculative(page))
1404 			goto repeat;
1405 
1406 		/* Has the page moved? */
1407 		if (unlikely(page != *slot)) {
1408 			page_cache_release(page);
1409 			goto repeat;
1410 		}
1411 
1412 		/*
1413 		 * must check mapping and index after taking the ref.
1414 		 * otherwise we can get both false positives and false
1415 		 * negatives, which is just confusing to the caller.
1416 		 */
1417 		if (page->mapping == NULL || page->index != iter.index) {
1418 			page_cache_release(page);
1419 			break;
1420 		}
1421 
1422 		pages[ret] = page;
1423 		if (++ret == nr_pages)
1424 			break;
1425 	}
1426 	rcu_read_unlock();
1427 	return ret;
1428 }
1429 EXPORT_SYMBOL(find_get_pages_contig);
1430 
1431 /**
1432  * find_get_pages_tag - find and return pages that match @tag
1433  * @mapping:	the address_space to search
1434  * @index:	the starting page index
1435  * @tag:	the tag index
1436  * @nr_pages:	the maximum number of pages
1437  * @pages:	where the resulting pages are placed
1438  *
1439  * Like find_get_pages, except we only return pages which are tagged with
1440  * @tag.   We update @index to index the next page for the traversal.
1441  */
1442 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1443 			int tag, unsigned int nr_pages, struct page **pages)
1444 {
1445 	struct radix_tree_iter iter;
1446 	void **slot;
1447 	unsigned ret = 0;
1448 
1449 	if (unlikely(!nr_pages))
1450 		return 0;
1451 
1452 	rcu_read_lock();
1453 restart:
1454 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1455 				   &iter, *index, tag) {
1456 		struct page *page;
1457 repeat:
1458 		page = radix_tree_deref_slot(slot);
1459 		if (unlikely(!page))
1460 			continue;
1461 
1462 		if (radix_tree_exception(page)) {
1463 			if (radix_tree_deref_retry(page)) {
1464 				/*
1465 				 * Transient condition which can only trigger
1466 				 * when entry at index 0 moves out of or back
1467 				 * to root: none yet gotten, safe to restart.
1468 				 */
1469 				goto restart;
1470 			}
1471 			/*
1472 			 * A shadow entry of a recently evicted page.
1473 			 *
1474 			 * Those entries should never be tagged, but
1475 			 * this tree walk is lockless and the tags are
1476 			 * looked up in bulk, one radix tree node at a
1477 			 * time, so there is a sizable window for page
1478 			 * reclaim to evict a page we saw tagged.
1479 			 *
1480 			 * Skip over it.
1481 			 */
1482 			continue;
1483 		}
1484 
1485 		if (!page_cache_get_speculative(page))
1486 			goto repeat;
1487 
1488 		/* Has the page moved? */
1489 		if (unlikely(page != *slot)) {
1490 			page_cache_release(page);
1491 			goto repeat;
1492 		}
1493 
1494 		pages[ret] = page;
1495 		if (++ret == nr_pages)
1496 			break;
1497 	}
1498 
1499 	rcu_read_unlock();
1500 
1501 	if (ret)
1502 		*index = pages[ret - 1]->index + 1;
1503 
1504 	return ret;
1505 }
1506 EXPORT_SYMBOL(find_get_pages_tag);
1507 
1508 /**
1509  * find_get_entries_tag - find and return entries that match @tag
1510  * @mapping:	the address_space to search
1511  * @start:	the starting page cache index
1512  * @tag:	the tag index
1513  * @nr_entries:	the maximum number of entries
1514  * @entries:	where the resulting entries are placed
1515  * @indices:	the cache indices corresponding to the entries in @entries
1516  *
1517  * Like find_get_entries, except we only return entries which are tagged with
1518  * @tag.
1519  */
1520 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1521 			int tag, unsigned int nr_entries,
1522 			struct page **entries, pgoff_t *indices)
1523 {
1524 	void **slot;
1525 	unsigned int ret = 0;
1526 	struct radix_tree_iter iter;
1527 
1528 	if (!nr_entries)
1529 		return 0;
1530 
1531 	rcu_read_lock();
1532 restart:
1533 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1534 				   &iter, start, tag) {
1535 		struct page *page;
1536 repeat:
1537 		page = radix_tree_deref_slot(slot);
1538 		if (unlikely(!page))
1539 			continue;
1540 		if (radix_tree_exception(page)) {
1541 			if (radix_tree_deref_retry(page)) {
1542 				/*
1543 				 * Transient condition which can only trigger
1544 				 * when entry at index 0 moves out of or back
1545 				 * to root: none yet gotten, safe to restart.
1546 				 */
1547 				goto restart;
1548 			}
1549 
1550 			/*
1551 			 * A shadow entry of a recently evicted page, a swap
1552 			 * entry from shmem/tmpfs or a DAX entry.  Return it
1553 			 * without attempting to raise page count.
1554 			 */
1555 			goto export;
1556 		}
1557 		if (!page_cache_get_speculative(page))
1558 			goto repeat;
1559 
1560 		/* Has the page moved? */
1561 		if (unlikely(page != *slot)) {
1562 			page_cache_release(page);
1563 			goto repeat;
1564 		}
1565 export:
1566 		indices[ret] = iter.index;
1567 		entries[ret] = page;
1568 		if (++ret == nr_entries)
1569 			break;
1570 	}
1571 	rcu_read_unlock();
1572 	return ret;
1573 }
1574 EXPORT_SYMBOL(find_get_entries_tag);
1575 
1576 /*
1577  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1578  * a _large_ part of the i/o request. Imagine the worst scenario:
1579  *
1580  *      ---R__________________________________________B__________
1581  *         ^ reading here                             ^ bad block(assume 4k)
1582  *
1583  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1584  * => failing the whole request => read(R) => read(R+1) =>
1585  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1586  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1587  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1588  *
1589  * It is going insane. Fix it by quickly scaling down the readahead size.
1590  */
1591 static void shrink_readahead_size_eio(struct file *filp,
1592 					struct file_ra_state *ra)
1593 {
1594 	ra->ra_pages /= 4;
1595 }
1596 
1597 /**
1598  * do_generic_file_read - generic file read routine
1599  * @filp:	the file to read
1600  * @ppos:	current file position
1601  * @iter:	data destination
1602  * @written:	already copied
1603  *
1604  * This is a generic file read routine, and uses the
1605  * mapping->a_ops->readpage() function for the actual low-level stuff.
1606  *
1607  * This is really ugly. But the goto's actually try to clarify some
1608  * of the logic when it comes to error handling etc.
1609  */
1610 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1611 		struct iov_iter *iter, ssize_t written)
1612 {
1613 	struct address_space *mapping = filp->f_mapping;
1614 	struct inode *inode = mapping->host;
1615 	struct file_ra_state *ra = &filp->f_ra;
1616 	pgoff_t index;
1617 	pgoff_t last_index;
1618 	pgoff_t prev_index;
1619 	unsigned long offset;      /* offset into pagecache page */
1620 	unsigned int prev_offset;
1621 	int error = 0;
1622 
1623 	index = *ppos >> PAGE_CACHE_SHIFT;
1624 	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1625 	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1626 	last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1627 	offset = *ppos & ~PAGE_CACHE_MASK;
1628 
1629 	for (;;) {
1630 		struct page *page;
1631 		pgoff_t end_index;
1632 		loff_t isize;
1633 		unsigned long nr, ret;
1634 
1635 		cond_resched();
1636 find_page:
1637 		page = find_get_page(mapping, index);
1638 		if (!page) {
1639 			page_cache_sync_readahead(mapping,
1640 					ra, filp,
1641 					index, last_index - index);
1642 			page = find_get_page(mapping, index);
1643 			if (unlikely(page == NULL))
1644 				goto no_cached_page;
1645 		}
1646 		if (PageReadahead(page)) {
1647 			page_cache_async_readahead(mapping,
1648 					ra, filp, page,
1649 					index, last_index - index);
1650 		}
1651 		if (!PageUptodate(page)) {
1652 			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1653 					!mapping->a_ops->is_partially_uptodate)
1654 				goto page_not_up_to_date;
1655 			if (!trylock_page(page))
1656 				goto page_not_up_to_date;
1657 			/* Did it get truncated before we got the lock? */
1658 			if (!page->mapping)
1659 				goto page_not_up_to_date_locked;
1660 			if (!mapping->a_ops->is_partially_uptodate(page,
1661 							offset, iter->count))
1662 				goto page_not_up_to_date_locked;
1663 			unlock_page(page);
1664 		}
1665 page_ok:
1666 		/*
1667 		 * i_size must be checked after we know the page is Uptodate.
1668 		 *
1669 		 * Checking i_size after the check allows us to calculate
1670 		 * the correct value for "nr", which means the zero-filled
1671 		 * part of the page is not copied back to userspace (unless
1672 		 * another truncate extends the file - this is desired though).
1673 		 */
1674 
1675 		isize = i_size_read(inode);
1676 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1677 		if (unlikely(!isize || index > end_index)) {
1678 			page_cache_release(page);
1679 			goto out;
1680 		}
1681 
1682 		/* nr is the maximum number of bytes to copy from this page */
1683 		nr = PAGE_CACHE_SIZE;
1684 		if (index == end_index) {
1685 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1686 			if (nr <= offset) {
1687 				page_cache_release(page);
1688 				goto out;
1689 			}
1690 		}
1691 		nr = nr - offset;
1692 
1693 		/* If users can be writing to this page using arbitrary
1694 		 * virtual addresses, take care about potential aliasing
1695 		 * before reading the page on the kernel side.
1696 		 */
1697 		if (mapping_writably_mapped(mapping))
1698 			flush_dcache_page(page);
1699 
1700 		/*
1701 		 * When a sequential read accesses a page several times,
1702 		 * only mark it as accessed the first time.
1703 		 */
1704 		if (prev_index != index || offset != prev_offset)
1705 			mark_page_accessed(page);
1706 		prev_index = index;
1707 
1708 		/*
1709 		 * Ok, we have the page, and it's up-to-date, so
1710 		 * now we can copy it to user space...
1711 		 */
1712 
1713 		ret = copy_page_to_iter(page, offset, nr, iter);
1714 		offset += ret;
1715 		index += offset >> PAGE_CACHE_SHIFT;
1716 		offset &= ~PAGE_CACHE_MASK;
1717 		prev_offset = offset;
1718 
1719 		page_cache_release(page);
1720 		written += ret;
1721 		if (!iov_iter_count(iter))
1722 			goto out;
1723 		if (ret < nr) {
1724 			error = -EFAULT;
1725 			goto out;
1726 		}
1727 		continue;
1728 
1729 page_not_up_to_date:
1730 		/* Get exclusive access to the page ... */
1731 		error = lock_page_killable(page);
1732 		if (unlikely(error))
1733 			goto readpage_error;
1734 
1735 page_not_up_to_date_locked:
1736 		/* Did it get truncated before we got the lock? */
1737 		if (!page->mapping) {
1738 			unlock_page(page);
1739 			page_cache_release(page);
1740 			continue;
1741 		}
1742 
1743 		/* Did somebody else fill it already? */
1744 		if (PageUptodate(page)) {
1745 			unlock_page(page);
1746 			goto page_ok;
1747 		}
1748 
1749 readpage:
1750 		/*
1751 		 * A previous I/O error may have been due to temporary
1752 		 * failures, eg. multipath errors.
1753 		 * PG_error will be set again if readpage fails.
1754 		 */
1755 		ClearPageError(page);
1756 		/* Start the actual read. The read will unlock the page. */
1757 		error = mapping->a_ops->readpage(filp, page);
1758 
1759 		if (unlikely(error)) {
1760 			if (error == AOP_TRUNCATED_PAGE) {
1761 				page_cache_release(page);
1762 				error = 0;
1763 				goto find_page;
1764 			}
1765 			goto readpage_error;
1766 		}
1767 
1768 		if (!PageUptodate(page)) {
1769 			error = lock_page_killable(page);
1770 			if (unlikely(error))
1771 				goto readpage_error;
1772 			if (!PageUptodate(page)) {
1773 				if (page->mapping == NULL) {
1774 					/*
1775 					 * invalidate_mapping_pages got it
1776 					 */
1777 					unlock_page(page);
1778 					page_cache_release(page);
1779 					goto find_page;
1780 				}
1781 				unlock_page(page);
1782 				shrink_readahead_size_eio(filp, ra);
1783 				error = -EIO;
1784 				goto readpage_error;
1785 			}
1786 			unlock_page(page);
1787 		}
1788 
1789 		goto page_ok;
1790 
1791 readpage_error:
1792 		/* UHHUH! A synchronous read error occurred. Report it */
1793 		page_cache_release(page);
1794 		goto out;
1795 
1796 no_cached_page:
1797 		/*
1798 		 * Ok, it wasn't cached, so we need to create a new
1799 		 * page..
1800 		 */
1801 		page = page_cache_alloc_cold(mapping);
1802 		if (!page) {
1803 			error = -ENOMEM;
1804 			goto out;
1805 		}
1806 		error = add_to_page_cache_lru(page, mapping, index,
1807 				mapping_gfp_constraint(mapping, GFP_KERNEL));
1808 		if (error) {
1809 			page_cache_release(page);
1810 			if (error == -EEXIST) {
1811 				error = 0;
1812 				goto find_page;
1813 			}
1814 			goto out;
1815 		}
1816 		goto readpage;
1817 	}
1818 
1819 out:
1820 	ra->prev_pos = prev_index;
1821 	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1822 	ra->prev_pos |= prev_offset;
1823 
1824 	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1825 	file_accessed(filp);
1826 	return written ? written : error;
1827 }
1828 
1829 /**
1830  * generic_file_read_iter - generic filesystem read routine
1831  * @iocb:	kernel I/O control block
1832  * @iter:	destination for the data read
1833  *
1834  * This is the "read_iter()" routine for all filesystems
1835  * that can use the page cache directly.
1836  */
1837 ssize_t
1838 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1839 {
1840 	struct file *file = iocb->ki_filp;
1841 	ssize_t retval = 0;
1842 	loff_t *ppos = &iocb->ki_pos;
1843 	loff_t pos = *ppos;
1844 
1845 	if (iocb->ki_flags & IOCB_DIRECT) {
1846 		struct address_space *mapping = file->f_mapping;
1847 		struct inode *inode = mapping->host;
1848 		size_t count = iov_iter_count(iter);
1849 		loff_t size;
1850 
1851 		if (!count)
1852 			goto out; /* skip atime */
1853 		size = i_size_read(inode);
1854 		retval = filemap_write_and_wait_range(mapping, pos,
1855 					pos + count - 1);
1856 		if (!retval) {
1857 			struct iov_iter data = *iter;
1858 			retval = mapping->a_ops->direct_IO(iocb, &data, pos);
1859 		}
1860 
1861 		if (retval > 0) {
1862 			*ppos = pos + retval;
1863 			iov_iter_advance(iter, retval);
1864 		}
1865 
1866 		/*
1867 		 * Btrfs can have a short DIO read if we encounter
1868 		 * compressed extents, so if there was an error, or if
1869 		 * we've already read everything we wanted to, or if
1870 		 * there was a short read because we hit EOF, go ahead
1871 		 * and return.  Otherwise fallthrough to buffered io for
1872 		 * the rest of the read.  Buffered reads will not work for
1873 		 * DAX files, so don't bother trying.
1874 		 */
1875 		if (retval < 0 || !iov_iter_count(iter) || *ppos >= size ||
1876 		    IS_DAX(inode)) {
1877 			file_accessed(file);
1878 			goto out;
1879 		}
1880 	}
1881 
1882 	retval = do_generic_file_read(file, ppos, iter, retval);
1883 out:
1884 	return retval;
1885 }
1886 EXPORT_SYMBOL(generic_file_read_iter);
1887 
1888 #ifdef CONFIG_MMU
1889 /**
1890  * page_cache_read - adds requested page to the page cache if not already there
1891  * @file:	file to read
1892  * @offset:	page index
1893  *
1894  * This adds the requested page to the page cache if it isn't already there,
1895  * and schedules an I/O to read in its contents from disk.
1896  */
1897 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1898 {
1899 	struct address_space *mapping = file->f_mapping;
1900 	struct page *page;
1901 	int ret;
1902 
1903 	do {
1904 		page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1905 		if (!page)
1906 			return -ENOMEM;
1907 
1908 		ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
1909 		if (ret == 0)
1910 			ret = mapping->a_ops->readpage(file, page);
1911 		else if (ret == -EEXIST)
1912 			ret = 0; /* losing race to add is OK */
1913 
1914 		page_cache_release(page);
1915 
1916 	} while (ret == AOP_TRUNCATED_PAGE);
1917 
1918 	return ret;
1919 }
1920 
1921 #define MMAP_LOTSAMISS  (100)
1922 
1923 /*
1924  * Synchronous readahead happens when we don't even find
1925  * a page in the page cache at all.
1926  */
1927 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1928 				   struct file_ra_state *ra,
1929 				   struct file *file,
1930 				   pgoff_t offset)
1931 {
1932 	struct address_space *mapping = file->f_mapping;
1933 
1934 	/* If we don't want any read-ahead, don't bother */
1935 	if (vma->vm_flags & VM_RAND_READ)
1936 		return;
1937 	if (!ra->ra_pages)
1938 		return;
1939 
1940 	if (vma->vm_flags & VM_SEQ_READ) {
1941 		page_cache_sync_readahead(mapping, ra, file, offset,
1942 					  ra->ra_pages);
1943 		return;
1944 	}
1945 
1946 	/* Avoid banging the cache line if not needed */
1947 	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1948 		ra->mmap_miss++;
1949 
1950 	/*
1951 	 * Do we miss much more than hit in this file? If so,
1952 	 * stop bothering with read-ahead. It will only hurt.
1953 	 */
1954 	if (ra->mmap_miss > MMAP_LOTSAMISS)
1955 		return;
1956 
1957 	/*
1958 	 * mmap read-around
1959 	 */
1960 	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
1961 	ra->size = ra->ra_pages;
1962 	ra->async_size = ra->ra_pages / 4;
1963 	ra_submit(ra, mapping, file);
1964 }
1965 
1966 /*
1967  * Asynchronous readahead happens when we find the page and PG_readahead,
1968  * so we want to possibly extend the readahead further..
1969  */
1970 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1971 				    struct file_ra_state *ra,
1972 				    struct file *file,
1973 				    struct page *page,
1974 				    pgoff_t offset)
1975 {
1976 	struct address_space *mapping = file->f_mapping;
1977 
1978 	/* If we don't want any read-ahead, don't bother */
1979 	if (vma->vm_flags & VM_RAND_READ)
1980 		return;
1981 	if (ra->mmap_miss > 0)
1982 		ra->mmap_miss--;
1983 	if (PageReadahead(page))
1984 		page_cache_async_readahead(mapping, ra, file,
1985 					   page, offset, ra->ra_pages);
1986 }
1987 
1988 /**
1989  * filemap_fault - read in file data for page fault handling
1990  * @vma:	vma in which the fault was taken
1991  * @vmf:	struct vm_fault containing details of the fault
1992  *
1993  * filemap_fault() is invoked via the vma operations vector for a
1994  * mapped memory region to read in file data during a page fault.
1995  *
1996  * The goto's are kind of ugly, but this streamlines the normal case of having
1997  * it in the page cache, and handles the special cases reasonably without
1998  * having a lot of duplicated code.
1999  *
2000  * vma->vm_mm->mmap_sem must be held on entry.
2001  *
2002  * If our return value has VM_FAULT_RETRY set, it's because
2003  * lock_page_or_retry() returned 0.
2004  * The mmap_sem has usually been released in this case.
2005  * See __lock_page_or_retry() for the exception.
2006  *
2007  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2008  * has not been released.
2009  *
2010  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2011  */
2012 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2013 {
2014 	int error;
2015 	struct file *file = vma->vm_file;
2016 	struct address_space *mapping = file->f_mapping;
2017 	struct file_ra_state *ra = &file->f_ra;
2018 	struct inode *inode = mapping->host;
2019 	pgoff_t offset = vmf->pgoff;
2020 	struct page *page;
2021 	loff_t size;
2022 	int ret = 0;
2023 
2024 	size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
2025 	if (offset >= size >> PAGE_CACHE_SHIFT)
2026 		return VM_FAULT_SIGBUS;
2027 
2028 	/*
2029 	 * Do we have something in the page cache already?
2030 	 */
2031 	page = find_get_page(mapping, offset);
2032 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2033 		/*
2034 		 * We found the page, so try async readahead before
2035 		 * waiting for the lock.
2036 		 */
2037 		do_async_mmap_readahead(vma, ra, file, page, offset);
2038 	} else if (!page) {
2039 		/* No page in the page cache at all */
2040 		do_sync_mmap_readahead(vma, ra, file, offset);
2041 		count_vm_event(PGMAJFAULT);
2042 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2043 		ret = VM_FAULT_MAJOR;
2044 retry_find:
2045 		page = find_get_page(mapping, offset);
2046 		if (!page)
2047 			goto no_cached_page;
2048 	}
2049 
2050 	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2051 		page_cache_release(page);
2052 		return ret | VM_FAULT_RETRY;
2053 	}
2054 
2055 	/* Did it get truncated? */
2056 	if (unlikely(page->mapping != mapping)) {
2057 		unlock_page(page);
2058 		put_page(page);
2059 		goto retry_find;
2060 	}
2061 	VM_BUG_ON_PAGE(page->index != offset, page);
2062 
2063 	/*
2064 	 * We have a locked page in the page cache, now we need to check
2065 	 * that it's up-to-date. If not, it is going to be due to an error.
2066 	 */
2067 	if (unlikely(!PageUptodate(page)))
2068 		goto page_not_uptodate;
2069 
2070 	/*
2071 	 * Found the page and have a reference on it.
2072 	 * We must recheck i_size under page lock.
2073 	 */
2074 	size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
2075 	if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
2076 		unlock_page(page);
2077 		page_cache_release(page);
2078 		return VM_FAULT_SIGBUS;
2079 	}
2080 
2081 	vmf->page = page;
2082 	return ret | VM_FAULT_LOCKED;
2083 
2084 no_cached_page:
2085 	/*
2086 	 * We're only likely to ever get here if MADV_RANDOM is in
2087 	 * effect.
2088 	 */
2089 	error = page_cache_read(file, offset, vmf->gfp_mask);
2090 
2091 	/*
2092 	 * The page we want has now been added to the page cache.
2093 	 * In the unlikely event that someone removed it in the
2094 	 * meantime, we'll just come back here and read it again.
2095 	 */
2096 	if (error >= 0)
2097 		goto retry_find;
2098 
2099 	/*
2100 	 * An error return from page_cache_read can result if the
2101 	 * system is low on memory, or a problem occurs while trying
2102 	 * to schedule I/O.
2103 	 */
2104 	if (error == -ENOMEM)
2105 		return VM_FAULT_OOM;
2106 	return VM_FAULT_SIGBUS;
2107 
2108 page_not_uptodate:
2109 	/*
2110 	 * Umm, take care of errors if the page isn't up-to-date.
2111 	 * Try to re-read it _once_. We do this synchronously,
2112 	 * because there really aren't any performance issues here
2113 	 * and we need to check for errors.
2114 	 */
2115 	ClearPageError(page);
2116 	error = mapping->a_ops->readpage(file, page);
2117 	if (!error) {
2118 		wait_on_page_locked(page);
2119 		if (!PageUptodate(page))
2120 			error = -EIO;
2121 	}
2122 	page_cache_release(page);
2123 
2124 	if (!error || error == AOP_TRUNCATED_PAGE)
2125 		goto retry_find;
2126 
2127 	/* Things didn't work out. Return zero to tell the mm layer so. */
2128 	shrink_readahead_size_eio(file, ra);
2129 	return VM_FAULT_SIGBUS;
2130 }
2131 EXPORT_SYMBOL(filemap_fault);
2132 
2133 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2134 {
2135 	struct radix_tree_iter iter;
2136 	void **slot;
2137 	struct file *file = vma->vm_file;
2138 	struct address_space *mapping = file->f_mapping;
2139 	loff_t size;
2140 	struct page *page;
2141 	unsigned long address = (unsigned long) vmf->virtual_address;
2142 	unsigned long addr;
2143 	pte_t *pte;
2144 
2145 	rcu_read_lock();
2146 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2147 		if (iter.index > vmf->max_pgoff)
2148 			break;
2149 repeat:
2150 		page = radix_tree_deref_slot(slot);
2151 		if (unlikely(!page))
2152 			goto next;
2153 		if (radix_tree_exception(page)) {
2154 			if (radix_tree_deref_retry(page))
2155 				break;
2156 			else
2157 				goto next;
2158 		}
2159 
2160 		if (!page_cache_get_speculative(page))
2161 			goto repeat;
2162 
2163 		/* Has the page moved? */
2164 		if (unlikely(page != *slot)) {
2165 			page_cache_release(page);
2166 			goto repeat;
2167 		}
2168 
2169 		if (!PageUptodate(page) ||
2170 				PageReadahead(page) ||
2171 				PageHWPoison(page))
2172 			goto skip;
2173 		if (!trylock_page(page))
2174 			goto skip;
2175 
2176 		if (page->mapping != mapping || !PageUptodate(page))
2177 			goto unlock;
2178 
2179 		size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2180 		if (page->index >= size >> PAGE_CACHE_SHIFT)
2181 			goto unlock;
2182 
2183 		pte = vmf->pte + page->index - vmf->pgoff;
2184 		if (!pte_none(*pte))
2185 			goto unlock;
2186 
2187 		if (file->f_ra.mmap_miss > 0)
2188 			file->f_ra.mmap_miss--;
2189 		addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2190 		do_set_pte(vma, addr, page, pte, false, false);
2191 		unlock_page(page);
2192 		goto next;
2193 unlock:
2194 		unlock_page(page);
2195 skip:
2196 		page_cache_release(page);
2197 next:
2198 		if (iter.index == vmf->max_pgoff)
2199 			break;
2200 	}
2201 	rcu_read_unlock();
2202 }
2203 EXPORT_SYMBOL(filemap_map_pages);
2204 
2205 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2206 {
2207 	struct page *page = vmf->page;
2208 	struct inode *inode = file_inode(vma->vm_file);
2209 	int ret = VM_FAULT_LOCKED;
2210 
2211 	sb_start_pagefault(inode->i_sb);
2212 	file_update_time(vma->vm_file);
2213 	lock_page(page);
2214 	if (page->mapping != inode->i_mapping) {
2215 		unlock_page(page);
2216 		ret = VM_FAULT_NOPAGE;
2217 		goto out;
2218 	}
2219 	/*
2220 	 * We mark the page dirty already here so that when freeze is in
2221 	 * progress, we are guaranteed that writeback during freezing will
2222 	 * see the dirty page and writeprotect it again.
2223 	 */
2224 	set_page_dirty(page);
2225 	wait_for_stable_page(page);
2226 out:
2227 	sb_end_pagefault(inode->i_sb);
2228 	return ret;
2229 }
2230 EXPORT_SYMBOL(filemap_page_mkwrite);
2231 
2232 const struct vm_operations_struct generic_file_vm_ops = {
2233 	.fault		= filemap_fault,
2234 	.map_pages	= filemap_map_pages,
2235 	.page_mkwrite	= filemap_page_mkwrite,
2236 };
2237 
2238 /* This is used for a general mmap of a disk file */
2239 
2240 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2241 {
2242 	struct address_space *mapping = file->f_mapping;
2243 
2244 	if (!mapping->a_ops->readpage)
2245 		return -ENOEXEC;
2246 	file_accessed(file);
2247 	vma->vm_ops = &generic_file_vm_ops;
2248 	return 0;
2249 }
2250 
2251 /*
2252  * This is for filesystems which do not implement ->writepage.
2253  */
2254 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2255 {
2256 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2257 		return -EINVAL;
2258 	return generic_file_mmap(file, vma);
2259 }
2260 #else
2261 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2262 {
2263 	return -ENOSYS;
2264 }
2265 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2266 {
2267 	return -ENOSYS;
2268 }
2269 #endif /* CONFIG_MMU */
2270 
2271 EXPORT_SYMBOL(generic_file_mmap);
2272 EXPORT_SYMBOL(generic_file_readonly_mmap);
2273 
2274 static struct page *wait_on_page_read(struct page *page)
2275 {
2276 	if (!IS_ERR(page)) {
2277 		wait_on_page_locked(page);
2278 		if (!PageUptodate(page)) {
2279 			page_cache_release(page);
2280 			page = ERR_PTR(-EIO);
2281 		}
2282 	}
2283 	return page;
2284 }
2285 
2286 static struct page *__read_cache_page(struct address_space *mapping,
2287 				pgoff_t index,
2288 				int (*filler)(void *, struct page *),
2289 				void *data,
2290 				gfp_t gfp)
2291 {
2292 	struct page *page;
2293 	int err;
2294 repeat:
2295 	page = find_get_page(mapping, index);
2296 	if (!page) {
2297 		page = __page_cache_alloc(gfp | __GFP_COLD);
2298 		if (!page)
2299 			return ERR_PTR(-ENOMEM);
2300 		err = add_to_page_cache_lru(page, mapping, index, gfp);
2301 		if (unlikely(err)) {
2302 			page_cache_release(page);
2303 			if (err == -EEXIST)
2304 				goto repeat;
2305 			/* Presumably ENOMEM for radix tree node */
2306 			return ERR_PTR(err);
2307 		}
2308 		err = filler(data, page);
2309 		if (err < 0) {
2310 			page_cache_release(page);
2311 			page = ERR_PTR(err);
2312 		} else {
2313 			page = wait_on_page_read(page);
2314 		}
2315 	}
2316 	return page;
2317 }
2318 
2319 static struct page *do_read_cache_page(struct address_space *mapping,
2320 				pgoff_t index,
2321 				int (*filler)(void *, struct page *),
2322 				void *data,
2323 				gfp_t gfp)
2324 
2325 {
2326 	struct page *page;
2327 	int err;
2328 
2329 retry:
2330 	page = __read_cache_page(mapping, index, filler, data, gfp);
2331 	if (IS_ERR(page))
2332 		return page;
2333 	if (PageUptodate(page))
2334 		goto out;
2335 
2336 	lock_page(page);
2337 	if (!page->mapping) {
2338 		unlock_page(page);
2339 		page_cache_release(page);
2340 		goto retry;
2341 	}
2342 	if (PageUptodate(page)) {
2343 		unlock_page(page);
2344 		goto out;
2345 	}
2346 	err = filler(data, page);
2347 	if (err < 0) {
2348 		page_cache_release(page);
2349 		return ERR_PTR(err);
2350 	} else {
2351 		page = wait_on_page_read(page);
2352 		if (IS_ERR(page))
2353 			return page;
2354 	}
2355 out:
2356 	mark_page_accessed(page);
2357 	return page;
2358 }
2359 
2360 /**
2361  * read_cache_page - read into page cache, fill it if needed
2362  * @mapping:	the page's address_space
2363  * @index:	the page index
2364  * @filler:	function to perform the read
2365  * @data:	first arg to filler(data, page) function, often left as NULL
2366  *
2367  * Read into the page cache. If a page already exists, and PageUptodate() is
2368  * not set, try to fill the page and wait for it to become unlocked.
2369  *
2370  * If the page does not get brought uptodate, return -EIO.
2371  */
2372 struct page *read_cache_page(struct address_space *mapping,
2373 				pgoff_t index,
2374 				int (*filler)(void *, struct page *),
2375 				void *data)
2376 {
2377 	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2378 }
2379 EXPORT_SYMBOL(read_cache_page);
2380 
2381 /**
2382  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2383  * @mapping:	the page's address_space
2384  * @index:	the page index
2385  * @gfp:	the page allocator flags to use if allocating
2386  *
2387  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2388  * any new page allocations done using the specified allocation flags.
2389  *
2390  * If the page does not get brought uptodate, return -EIO.
2391  */
2392 struct page *read_cache_page_gfp(struct address_space *mapping,
2393 				pgoff_t index,
2394 				gfp_t gfp)
2395 {
2396 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2397 
2398 	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2399 }
2400 EXPORT_SYMBOL(read_cache_page_gfp);
2401 
2402 /*
2403  * Performs necessary checks before doing a write
2404  *
2405  * Can adjust writing position or amount of bytes to write.
2406  * Returns appropriate error code that caller should return or
2407  * zero in case that write should be allowed.
2408  */
2409 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2410 {
2411 	struct file *file = iocb->ki_filp;
2412 	struct inode *inode = file->f_mapping->host;
2413 	unsigned long limit = rlimit(RLIMIT_FSIZE);
2414 	loff_t pos;
2415 
2416 	if (!iov_iter_count(from))
2417 		return 0;
2418 
2419 	/* FIXME: this is for backwards compatibility with 2.4 */
2420 	if (iocb->ki_flags & IOCB_APPEND)
2421 		iocb->ki_pos = i_size_read(inode);
2422 
2423 	pos = iocb->ki_pos;
2424 
2425 	if (limit != RLIM_INFINITY) {
2426 		if (iocb->ki_pos >= limit) {
2427 			send_sig(SIGXFSZ, current, 0);
2428 			return -EFBIG;
2429 		}
2430 		iov_iter_truncate(from, limit - (unsigned long)pos);
2431 	}
2432 
2433 	/*
2434 	 * LFS rule
2435 	 */
2436 	if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2437 				!(file->f_flags & O_LARGEFILE))) {
2438 		if (pos >= MAX_NON_LFS)
2439 			return -EFBIG;
2440 		iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2441 	}
2442 
2443 	/*
2444 	 * Are we about to exceed the fs block limit ?
2445 	 *
2446 	 * If we have written data it becomes a short write.  If we have
2447 	 * exceeded without writing data we send a signal and return EFBIG.
2448 	 * Linus frestrict idea will clean these up nicely..
2449 	 */
2450 	if (unlikely(pos >= inode->i_sb->s_maxbytes))
2451 		return -EFBIG;
2452 
2453 	iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2454 	return iov_iter_count(from);
2455 }
2456 EXPORT_SYMBOL(generic_write_checks);
2457 
2458 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2459 				loff_t pos, unsigned len, unsigned flags,
2460 				struct page **pagep, void **fsdata)
2461 {
2462 	const struct address_space_operations *aops = mapping->a_ops;
2463 
2464 	return aops->write_begin(file, mapping, pos, len, flags,
2465 							pagep, fsdata);
2466 }
2467 EXPORT_SYMBOL(pagecache_write_begin);
2468 
2469 int pagecache_write_end(struct file *file, struct address_space *mapping,
2470 				loff_t pos, unsigned len, unsigned copied,
2471 				struct page *page, void *fsdata)
2472 {
2473 	const struct address_space_operations *aops = mapping->a_ops;
2474 
2475 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2476 }
2477 EXPORT_SYMBOL(pagecache_write_end);
2478 
2479 ssize_t
2480 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
2481 {
2482 	struct file	*file = iocb->ki_filp;
2483 	struct address_space *mapping = file->f_mapping;
2484 	struct inode	*inode = mapping->host;
2485 	ssize_t		written;
2486 	size_t		write_len;
2487 	pgoff_t		end;
2488 	struct iov_iter data;
2489 
2490 	write_len = iov_iter_count(from);
2491 	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2492 
2493 	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2494 	if (written)
2495 		goto out;
2496 
2497 	/*
2498 	 * After a write we want buffered reads to be sure to go to disk to get
2499 	 * the new data.  We invalidate clean cached page from the region we're
2500 	 * about to write.  We do this *before* the write so that we can return
2501 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2502 	 */
2503 	if (mapping->nrpages) {
2504 		written = invalidate_inode_pages2_range(mapping,
2505 					pos >> PAGE_CACHE_SHIFT, end);
2506 		/*
2507 		 * If a page can not be invalidated, return 0 to fall back
2508 		 * to buffered write.
2509 		 */
2510 		if (written) {
2511 			if (written == -EBUSY)
2512 				return 0;
2513 			goto out;
2514 		}
2515 	}
2516 
2517 	data = *from;
2518 	written = mapping->a_ops->direct_IO(iocb, &data, pos);
2519 
2520 	/*
2521 	 * Finally, try again to invalidate clean pages which might have been
2522 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2523 	 * if the source of the write was an mmap'ed region of the file
2524 	 * we're writing.  Either one is a pretty crazy thing to do,
2525 	 * so we don't support it 100%.  If this invalidation
2526 	 * fails, tough, the write still worked...
2527 	 */
2528 	if (mapping->nrpages) {
2529 		invalidate_inode_pages2_range(mapping,
2530 					      pos >> PAGE_CACHE_SHIFT, end);
2531 	}
2532 
2533 	if (written > 0) {
2534 		pos += written;
2535 		iov_iter_advance(from, written);
2536 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2537 			i_size_write(inode, pos);
2538 			mark_inode_dirty(inode);
2539 		}
2540 		iocb->ki_pos = pos;
2541 	}
2542 out:
2543 	return written;
2544 }
2545 EXPORT_SYMBOL(generic_file_direct_write);
2546 
2547 /*
2548  * Find or create a page at the given pagecache position. Return the locked
2549  * page. This function is specifically for buffered writes.
2550  */
2551 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2552 					pgoff_t index, unsigned flags)
2553 {
2554 	struct page *page;
2555 	int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2556 
2557 	if (flags & AOP_FLAG_NOFS)
2558 		fgp_flags |= FGP_NOFS;
2559 
2560 	page = pagecache_get_page(mapping, index, fgp_flags,
2561 			mapping_gfp_mask(mapping));
2562 	if (page)
2563 		wait_for_stable_page(page);
2564 
2565 	return page;
2566 }
2567 EXPORT_SYMBOL(grab_cache_page_write_begin);
2568 
2569 ssize_t generic_perform_write(struct file *file,
2570 				struct iov_iter *i, loff_t pos)
2571 {
2572 	struct address_space *mapping = file->f_mapping;
2573 	const struct address_space_operations *a_ops = mapping->a_ops;
2574 	long status = 0;
2575 	ssize_t written = 0;
2576 	unsigned int flags = 0;
2577 
2578 	/*
2579 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2580 	 */
2581 	if (!iter_is_iovec(i))
2582 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2583 
2584 	do {
2585 		struct page *page;
2586 		unsigned long offset;	/* Offset into pagecache page */
2587 		unsigned long bytes;	/* Bytes to write to page */
2588 		size_t copied;		/* Bytes copied from user */
2589 		void *fsdata;
2590 
2591 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2592 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2593 						iov_iter_count(i));
2594 
2595 again:
2596 		/*
2597 		 * Bring in the user page that we will copy from _first_.
2598 		 * Otherwise there's a nasty deadlock on copying from the
2599 		 * same page as we're writing to, without it being marked
2600 		 * up-to-date.
2601 		 *
2602 		 * Not only is this an optimisation, but it is also required
2603 		 * to check that the address is actually valid, when atomic
2604 		 * usercopies are used, below.
2605 		 */
2606 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2607 			status = -EFAULT;
2608 			break;
2609 		}
2610 
2611 		if (fatal_signal_pending(current)) {
2612 			status = -EINTR;
2613 			break;
2614 		}
2615 
2616 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2617 						&page, &fsdata);
2618 		if (unlikely(status < 0))
2619 			break;
2620 
2621 		if (mapping_writably_mapped(mapping))
2622 			flush_dcache_page(page);
2623 
2624 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2625 		flush_dcache_page(page);
2626 
2627 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2628 						page, fsdata);
2629 		if (unlikely(status < 0))
2630 			break;
2631 		copied = status;
2632 
2633 		cond_resched();
2634 
2635 		iov_iter_advance(i, copied);
2636 		if (unlikely(copied == 0)) {
2637 			/*
2638 			 * If we were unable to copy any data at all, we must
2639 			 * fall back to a single segment length write.
2640 			 *
2641 			 * If we didn't fallback here, we could livelock
2642 			 * because not all segments in the iov can be copied at
2643 			 * once without a pagefault.
2644 			 */
2645 			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2646 						iov_iter_single_seg_count(i));
2647 			goto again;
2648 		}
2649 		pos += copied;
2650 		written += copied;
2651 
2652 		balance_dirty_pages_ratelimited(mapping);
2653 	} while (iov_iter_count(i));
2654 
2655 	return written ? written : status;
2656 }
2657 EXPORT_SYMBOL(generic_perform_write);
2658 
2659 /**
2660  * __generic_file_write_iter - write data to a file
2661  * @iocb:	IO state structure (file, offset, etc.)
2662  * @from:	iov_iter with data to write
2663  *
2664  * This function does all the work needed for actually writing data to a
2665  * file. It does all basic checks, removes SUID from the file, updates
2666  * modification times and calls proper subroutines depending on whether we
2667  * do direct IO or a standard buffered write.
2668  *
2669  * It expects i_mutex to be grabbed unless we work on a block device or similar
2670  * object which does not need locking at all.
2671  *
2672  * This function does *not* take care of syncing data in case of O_SYNC write.
2673  * A caller has to handle it. This is mainly due to the fact that we want to
2674  * avoid syncing under i_mutex.
2675  */
2676 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2677 {
2678 	struct file *file = iocb->ki_filp;
2679 	struct address_space * mapping = file->f_mapping;
2680 	struct inode 	*inode = mapping->host;
2681 	ssize_t		written = 0;
2682 	ssize_t		err;
2683 	ssize_t		status;
2684 
2685 	/* We can write back this queue in page reclaim */
2686 	current->backing_dev_info = inode_to_bdi(inode);
2687 	err = file_remove_privs(file);
2688 	if (err)
2689 		goto out;
2690 
2691 	err = file_update_time(file);
2692 	if (err)
2693 		goto out;
2694 
2695 	if (iocb->ki_flags & IOCB_DIRECT) {
2696 		loff_t pos, endbyte;
2697 
2698 		written = generic_file_direct_write(iocb, from, iocb->ki_pos);
2699 		/*
2700 		 * If the write stopped short of completing, fall back to
2701 		 * buffered writes.  Some filesystems do this for writes to
2702 		 * holes, for example.  For DAX files, a buffered write will
2703 		 * not succeed (even if it did, DAX does not handle dirty
2704 		 * page-cache pages correctly).
2705 		 */
2706 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2707 			goto out;
2708 
2709 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
2710 		/*
2711 		 * If generic_perform_write() returned a synchronous error
2712 		 * then we want to return the number of bytes which were
2713 		 * direct-written, or the error code if that was zero.  Note
2714 		 * that this differs from normal direct-io semantics, which
2715 		 * will return -EFOO even if some bytes were written.
2716 		 */
2717 		if (unlikely(status < 0)) {
2718 			err = status;
2719 			goto out;
2720 		}
2721 		/*
2722 		 * We need to ensure that the page cache pages are written to
2723 		 * disk and invalidated to preserve the expected O_DIRECT
2724 		 * semantics.
2725 		 */
2726 		endbyte = pos + status - 1;
2727 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
2728 		if (err == 0) {
2729 			iocb->ki_pos = endbyte + 1;
2730 			written += status;
2731 			invalidate_mapping_pages(mapping,
2732 						 pos >> PAGE_CACHE_SHIFT,
2733 						 endbyte >> PAGE_CACHE_SHIFT);
2734 		} else {
2735 			/*
2736 			 * We don't know how much we wrote, so just return
2737 			 * the number of bytes which were direct-written
2738 			 */
2739 		}
2740 	} else {
2741 		written = generic_perform_write(file, from, iocb->ki_pos);
2742 		if (likely(written > 0))
2743 			iocb->ki_pos += written;
2744 	}
2745 out:
2746 	current->backing_dev_info = NULL;
2747 	return written ? written : err;
2748 }
2749 EXPORT_SYMBOL(__generic_file_write_iter);
2750 
2751 /**
2752  * generic_file_write_iter - write data to a file
2753  * @iocb:	IO state structure
2754  * @from:	iov_iter with data to write
2755  *
2756  * This is a wrapper around __generic_file_write_iter() to be used by most
2757  * filesystems. It takes care of syncing the file in case of O_SYNC file
2758  * and acquires i_mutex as needed.
2759  */
2760 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2761 {
2762 	struct file *file = iocb->ki_filp;
2763 	struct inode *inode = file->f_mapping->host;
2764 	ssize_t ret;
2765 
2766 	inode_lock(inode);
2767 	ret = generic_write_checks(iocb, from);
2768 	if (ret > 0)
2769 		ret = __generic_file_write_iter(iocb, from);
2770 	inode_unlock(inode);
2771 
2772 	if (ret > 0) {
2773 		ssize_t err;
2774 
2775 		err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2776 		if (err < 0)
2777 			ret = err;
2778 	}
2779 	return ret;
2780 }
2781 EXPORT_SYMBOL(generic_file_write_iter);
2782 
2783 /**
2784  * try_to_release_page() - release old fs-specific metadata on a page
2785  *
2786  * @page: the page which the kernel is trying to free
2787  * @gfp_mask: memory allocation flags (and I/O mode)
2788  *
2789  * The address_space is to try to release any data against the page
2790  * (presumably at page->private).  If the release was successful, return `1'.
2791  * Otherwise return zero.
2792  *
2793  * This may also be called if PG_fscache is set on a page, indicating that the
2794  * page is known to the local caching routines.
2795  *
2796  * The @gfp_mask argument specifies whether I/O may be performed to release
2797  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2798  *
2799  */
2800 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2801 {
2802 	struct address_space * const mapping = page->mapping;
2803 
2804 	BUG_ON(!PageLocked(page));
2805 	if (PageWriteback(page))
2806 		return 0;
2807 
2808 	if (mapping && mapping->a_ops->releasepage)
2809 		return mapping->a_ops->releasepage(page, gfp_mask);
2810 	return try_to_free_buffers(page);
2811 }
2812 
2813 EXPORT_SYMBOL(try_to_release_page);
2814