1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/filemap.c 4 * 5 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 7 8 /* 9 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differently, for example) 12 */ 13 #include <linux/export.h> 14 #include <linux/compiler.h> 15 #include <linux/dax.h> 16 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 19 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 22 #include <linux/mm.h> 23 #include <linux/swap.h> 24 #include <linux/swapops.h> 25 #include <linux/syscalls.h> 26 #include <linux/mman.h> 27 #include <linux/pagemap.h> 28 #include <linux/file.h> 29 #include <linux/uio.h> 30 #include <linux/error-injection.h> 31 #include <linux/hash.h> 32 #include <linux/writeback.h> 33 #include <linux/backing-dev.h> 34 #include <linux/pagevec.h> 35 #include <linux/security.h> 36 #include <linux/cpuset.h> 37 #include <linux/hugetlb.h> 38 #include <linux/memcontrol.h> 39 #include <linux/shmem_fs.h> 40 #include <linux/rmap.h> 41 #include <linux/delayacct.h> 42 #include <linux/psi.h> 43 #include <linux/ramfs.h> 44 #include <linux/page_idle.h> 45 #include <linux/migrate.h> 46 #include <linux/pipe_fs_i.h> 47 #include <linux/splice.h> 48 #include <linux/rcupdate_wait.h> 49 #include <linux/sched/mm.h> 50 #include <linux/fsnotify.h> 51 #include <asm/pgalloc.h> 52 #include <asm/tlbflush.h> 53 #include "internal.h" 54 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/filemap.h> 57 58 /* 59 * FIXME: remove all knowledge of the buffer layer from the core VM 60 */ 61 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 62 63 #include <asm/mman.h> 64 65 #include "swap.h" 66 67 /* 68 * Shared mappings implemented 30.11.1994. It's not fully working yet, 69 * though. 70 * 71 * Shared mappings now work. 15.8.1995 Bruno. 72 * 73 * finished 'unifying' the page and buffer cache and SMP-threaded the 74 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 75 * 76 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 77 */ 78 79 /* 80 * Lock ordering: 81 * 82 * ->i_mmap_rwsem (truncate_pagecache) 83 * ->private_lock (__free_pte->block_dirty_folio) 84 * ->swap_lock (exclusive_swap_page, others) 85 * ->i_pages lock 86 * 87 * ->i_rwsem 88 * ->invalidate_lock (acquired by fs in truncate path) 89 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 90 * 91 * ->mmap_lock 92 * ->i_mmap_rwsem 93 * ->page_table_lock or pte_lock (various, mainly in memory.c) 94 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 95 * 96 * ->mmap_lock 97 * ->invalidate_lock (filemap_fault) 98 * ->lock_page (filemap_fault, access_process_vm) 99 * 100 * ->i_rwsem (generic_perform_write) 101 * ->mmap_lock (fault_in_readable->do_page_fault) 102 * 103 * bdi->wb.list_lock 104 * sb_lock (fs/fs-writeback.c) 105 * ->i_pages lock (__sync_single_inode) 106 * 107 * ->i_mmap_rwsem 108 * ->anon_vma.lock (vma_merge) 109 * 110 * ->anon_vma.lock 111 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 112 * 113 * ->page_table_lock or pte_lock 114 * ->swap_lock (try_to_unmap_one) 115 * ->private_lock (try_to_unmap_one) 116 * ->i_pages lock (try_to_unmap_one) 117 * ->lruvec->lru_lock (follow_page_mask->mark_page_accessed) 118 * ->lruvec->lru_lock (check_pte_range->folio_isolate_lru) 119 * ->private_lock (folio_remove_rmap_pte->set_page_dirty) 120 * ->i_pages lock (folio_remove_rmap_pte->set_page_dirty) 121 * bdi.wb->list_lock (folio_remove_rmap_pte->set_page_dirty) 122 * ->inode->i_lock (folio_remove_rmap_pte->set_page_dirty) 123 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 124 * ->inode->i_lock (zap_pte_range->set_page_dirty) 125 * ->private_lock (zap_pte_range->block_dirty_folio) 126 */ 127 128 static void page_cache_delete(struct address_space *mapping, 129 struct folio *folio, void *shadow) 130 { 131 XA_STATE(xas, &mapping->i_pages, folio->index); 132 long nr = 1; 133 134 mapping_set_update(&xas, mapping); 135 136 xas_set_order(&xas, folio->index, folio_order(folio)); 137 nr = folio_nr_pages(folio); 138 139 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 140 141 xas_store(&xas, shadow); 142 xas_init_marks(&xas); 143 144 folio->mapping = NULL; 145 /* Leave page->index set: truncation lookup relies upon it */ 146 mapping->nrpages -= nr; 147 } 148 149 static void filemap_unaccount_folio(struct address_space *mapping, 150 struct folio *folio) 151 { 152 long nr; 153 154 VM_BUG_ON_FOLIO(folio_mapped(folio), folio); 155 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) { 156 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 157 current->comm, folio_pfn(folio)); 158 dump_page(&folio->page, "still mapped when deleted"); 159 dump_stack(); 160 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 161 162 if (mapping_exiting(mapping) && !folio_test_large(folio)) { 163 int mapcount = folio_mapcount(folio); 164 165 if (folio_ref_count(folio) >= mapcount + 2) { 166 /* 167 * All vmas have already been torn down, so it's 168 * a good bet that actually the page is unmapped 169 * and we'd rather not leak it: if we're wrong, 170 * another bad page check should catch it later. 171 */ 172 atomic_set(&folio->_mapcount, -1); 173 folio_ref_sub(folio, mapcount); 174 } 175 } 176 } 177 178 /* hugetlb folios do not participate in page cache accounting. */ 179 if (folio_test_hugetlb(folio)) 180 return; 181 182 nr = folio_nr_pages(folio); 183 184 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 185 if (folio_test_swapbacked(folio)) { 186 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 187 if (folio_test_pmd_mappable(folio)) 188 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr); 189 } else if (folio_test_pmd_mappable(folio)) { 190 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr); 191 filemap_nr_thps_dec(mapping); 192 } 193 194 /* 195 * At this point folio must be either written or cleaned by 196 * truncate. Dirty folio here signals a bug and loss of 197 * unwritten data - on ordinary filesystems. 198 * 199 * But it's harmless on in-memory filesystems like tmpfs; and can 200 * occur when a driver which did get_user_pages() sets page dirty 201 * before putting it, while the inode is being finally evicted. 202 * 203 * Below fixes dirty accounting after removing the folio entirely 204 * but leaves the dirty flag set: it has no effect for truncated 205 * folio and anyway will be cleared before returning folio to 206 * buddy allocator. 207 */ 208 if (WARN_ON_ONCE(folio_test_dirty(folio) && 209 mapping_can_writeback(mapping))) 210 folio_account_cleaned(folio, inode_to_wb(mapping->host)); 211 } 212 213 /* 214 * Delete a page from the page cache and free it. Caller has to make 215 * sure the page is locked and that nobody else uses it - or that usage 216 * is safe. The caller must hold the i_pages lock. 217 */ 218 void __filemap_remove_folio(struct folio *folio, void *shadow) 219 { 220 struct address_space *mapping = folio->mapping; 221 222 trace_mm_filemap_delete_from_page_cache(folio); 223 filemap_unaccount_folio(mapping, folio); 224 page_cache_delete(mapping, folio, shadow); 225 } 226 227 void filemap_free_folio(struct address_space *mapping, struct folio *folio) 228 { 229 void (*free_folio)(struct folio *); 230 231 free_folio = mapping->a_ops->free_folio; 232 if (free_folio) 233 free_folio(folio); 234 235 folio_put_refs(folio, folio_nr_pages(folio)); 236 } 237 238 /** 239 * filemap_remove_folio - Remove folio from page cache. 240 * @folio: The folio. 241 * 242 * This must be called only on folios that are locked and have been 243 * verified to be in the page cache. It will never put the folio into 244 * the free list because the caller has a reference on the page. 245 */ 246 void filemap_remove_folio(struct folio *folio) 247 { 248 struct address_space *mapping = folio->mapping; 249 250 BUG_ON(!folio_test_locked(folio)); 251 spin_lock(&mapping->host->i_lock); 252 xa_lock_irq(&mapping->i_pages); 253 __filemap_remove_folio(folio, NULL); 254 xa_unlock_irq(&mapping->i_pages); 255 if (mapping_shrinkable(mapping)) 256 inode_add_lru(mapping->host); 257 spin_unlock(&mapping->host->i_lock); 258 259 filemap_free_folio(mapping, folio); 260 } 261 262 /* 263 * page_cache_delete_batch - delete several folios from page cache 264 * @mapping: the mapping to which folios belong 265 * @fbatch: batch of folios to delete 266 * 267 * The function walks over mapping->i_pages and removes folios passed in 268 * @fbatch from the mapping. The function expects @fbatch to be sorted 269 * by page index and is optimised for it to be dense. 270 * It tolerates holes in @fbatch (mapping entries at those indices are not 271 * modified). 272 * 273 * The function expects the i_pages lock to be held. 274 */ 275 static void page_cache_delete_batch(struct address_space *mapping, 276 struct folio_batch *fbatch) 277 { 278 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index); 279 long total_pages = 0; 280 int i = 0; 281 struct folio *folio; 282 283 mapping_set_update(&xas, mapping); 284 xas_for_each(&xas, folio, ULONG_MAX) { 285 if (i >= folio_batch_count(fbatch)) 286 break; 287 288 /* A swap/dax/shadow entry got inserted? Skip it. */ 289 if (xa_is_value(folio)) 290 continue; 291 /* 292 * A page got inserted in our range? Skip it. We have our 293 * pages locked so they are protected from being removed. 294 * If we see a page whose index is higher than ours, it 295 * means our page has been removed, which shouldn't be 296 * possible because we're holding the PageLock. 297 */ 298 if (folio != fbatch->folios[i]) { 299 VM_BUG_ON_FOLIO(folio->index > 300 fbatch->folios[i]->index, folio); 301 continue; 302 } 303 304 WARN_ON_ONCE(!folio_test_locked(folio)); 305 306 folio->mapping = NULL; 307 /* Leave folio->index set: truncation lookup relies on it */ 308 309 i++; 310 xas_store(&xas, NULL); 311 total_pages += folio_nr_pages(folio); 312 } 313 mapping->nrpages -= total_pages; 314 } 315 316 void delete_from_page_cache_batch(struct address_space *mapping, 317 struct folio_batch *fbatch) 318 { 319 int i; 320 321 if (!folio_batch_count(fbatch)) 322 return; 323 324 spin_lock(&mapping->host->i_lock); 325 xa_lock_irq(&mapping->i_pages); 326 for (i = 0; i < folio_batch_count(fbatch); i++) { 327 struct folio *folio = fbatch->folios[i]; 328 329 trace_mm_filemap_delete_from_page_cache(folio); 330 filemap_unaccount_folio(mapping, folio); 331 } 332 page_cache_delete_batch(mapping, fbatch); 333 xa_unlock_irq(&mapping->i_pages); 334 if (mapping_shrinkable(mapping)) 335 inode_add_lru(mapping->host); 336 spin_unlock(&mapping->host->i_lock); 337 338 for (i = 0; i < folio_batch_count(fbatch); i++) 339 filemap_free_folio(mapping, fbatch->folios[i]); 340 } 341 342 int filemap_check_errors(struct address_space *mapping) 343 { 344 int ret = 0; 345 /* Check for outstanding write errors */ 346 if (test_bit(AS_ENOSPC, &mapping->flags) && 347 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 348 ret = -ENOSPC; 349 if (test_bit(AS_EIO, &mapping->flags) && 350 test_and_clear_bit(AS_EIO, &mapping->flags)) 351 ret = -EIO; 352 return ret; 353 } 354 EXPORT_SYMBOL(filemap_check_errors); 355 356 static int filemap_check_and_keep_errors(struct address_space *mapping) 357 { 358 /* Check for outstanding write errors */ 359 if (test_bit(AS_EIO, &mapping->flags)) 360 return -EIO; 361 if (test_bit(AS_ENOSPC, &mapping->flags)) 362 return -ENOSPC; 363 return 0; 364 } 365 366 /** 367 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range 368 * @mapping: address space structure to write 369 * @wbc: the writeback_control controlling the writeout 370 * 371 * Call writepages on the mapping using the provided wbc to control the 372 * writeout. 373 * 374 * Return: %0 on success, negative error code otherwise. 375 */ 376 int filemap_fdatawrite_wbc(struct address_space *mapping, 377 struct writeback_control *wbc) 378 { 379 int ret; 380 381 if (!mapping_can_writeback(mapping) || 382 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 383 return 0; 384 385 wbc_attach_fdatawrite_inode(wbc, mapping->host); 386 ret = do_writepages(mapping, wbc); 387 wbc_detach_inode(wbc); 388 return ret; 389 } 390 EXPORT_SYMBOL(filemap_fdatawrite_wbc); 391 392 /** 393 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 394 * @mapping: address space structure to write 395 * @start: offset in bytes where the range starts 396 * @end: offset in bytes where the range ends (inclusive) 397 * @sync_mode: enable synchronous operation 398 * 399 * Start writeback against all of a mapping's dirty pages that lie 400 * within the byte offsets <start, end> inclusive. 401 * 402 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 403 * opposed to a regular memory cleansing writeback. The difference between 404 * these two operations is that if a dirty page/buffer is encountered, it must 405 * be waited upon, and not just skipped over. 406 * 407 * Return: %0 on success, negative error code otherwise. 408 */ 409 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 410 loff_t end, int sync_mode) 411 { 412 struct writeback_control wbc = { 413 .sync_mode = sync_mode, 414 .nr_to_write = LONG_MAX, 415 .range_start = start, 416 .range_end = end, 417 }; 418 419 return filemap_fdatawrite_wbc(mapping, &wbc); 420 } 421 422 static inline int __filemap_fdatawrite(struct address_space *mapping, 423 int sync_mode) 424 { 425 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 426 } 427 428 int filemap_fdatawrite(struct address_space *mapping) 429 { 430 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 431 } 432 EXPORT_SYMBOL(filemap_fdatawrite); 433 434 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 435 loff_t end) 436 { 437 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 438 } 439 EXPORT_SYMBOL(filemap_fdatawrite_range); 440 441 /** 442 * filemap_fdatawrite_range_kick - start writeback on a range 443 * @mapping: target address_space 444 * @start: index to start writeback on 445 * @end: last (inclusive) index for writeback 446 * 447 * This is a non-integrity writeback helper, to start writing back folios 448 * for the indicated range. 449 * 450 * Return: %0 on success, negative error code otherwise. 451 */ 452 int filemap_fdatawrite_range_kick(struct address_space *mapping, loff_t start, 453 loff_t end) 454 { 455 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_NONE); 456 } 457 EXPORT_SYMBOL_GPL(filemap_fdatawrite_range_kick); 458 459 /** 460 * filemap_flush - mostly a non-blocking flush 461 * @mapping: target address_space 462 * 463 * This is a mostly non-blocking flush. Not suitable for data-integrity 464 * purposes - I/O may not be started against all dirty pages. 465 * 466 * Return: %0 on success, negative error code otherwise. 467 */ 468 int filemap_flush(struct address_space *mapping) 469 { 470 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 471 } 472 EXPORT_SYMBOL(filemap_flush); 473 474 /** 475 * filemap_range_has_page - check if a page exists in range. 476 * @mapping: address space within which to check 477 * @start_byte: offset in bytes where the range starts 478 * @end_byte: offset in bytes where the range ends (inclusive) 479 * 480 * Find at least one page in the range supplied, usually used to check if 481 * direct writing in this range will trigger a writeback. 482 * 483 * Return: %true if at least one page exists in the specified range, 484 * %false otherwise. 485 */ 486 bool filemap_range_has_page(struct address_space *mapping, 487 loff_t start_byte, loff_t end_byte) 488 { 489 struct folio *folio; 490 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 491 pgoff_t max = end_byte >> PAGE_SHIFT; 492 493 if (end_byte < start_byte) 494 return false; 495 496 rcu_read_lock(); 497 for (;;) { 498 folio = xas_find(&xas, max); 499 if (xas_retry(&xas, folio)) 500 continue; 501 /* Shadow entries don't count */ 502 if (xa_is_value(folio)) 503 continue; 504 /* 505 * We don't need to try to pin this page; we're about to 506 * release the RCU lock anyway. It is enough to know that 507 * there was a page here recently. 508 */ 509 break; 510 } 511 rcu_read_unlock(); 512 513 return folio != NULL; 514 } 515 EXPORT_SYMBOL(filemap_range_has_page); 516 517 static void __filemap_fdatawait_range(struct address_space *mapping, 518 loff_t start_byte, loff_t end_byte) 519 { 520 pgoff_t index = start_byte >> PAGE_SHIFT; 521 pgoff_t end = end_byte >> PAGE_SHIFT; 522 struct folio_batch fbatch; 523 unsigned nr_folios; 524 525 folio_batch_init(&fbatch); 526 527 while (index <= end) { 528 unsigned i; 529 530 nr_folios = filemap_get_folios_tag(mapping, &index, end, 531 PAGECACHE_TAG_WRITEBACK, &fbatch); 532 533 if (!nr_folios) 534 break; 535 536 for (i = 0; i < nr_folios; i++) { 537 struct folio *folio = fbatch.folios[i]; 538 539 folio_wait_writeback(folio); 540 } 541 folio_batch_release(&fbatch); 542 cond_resched(); 543 } 544 } 545 546 /** 547 * filemap_fdatawait_range - wait for writeback to complete 548 * @mapping: address space structure to wait for 549 * @start_byte: offset in bytes where the range starts 550 * @end_byte: offset in bytes where the range ends (inclusive) 551 * 552 * Walk the list of under-writeback pages of the given address space 553 * in the given range and wait for all of them. Check error status of 554 * the address space and return it. 555 * 556 * Since the error status of the address space is cleared by this function, 557 * callers are responsible for checking the return value and handling and/or 558 * reporting the error. 559 * 560 * Return: error status of the address space. 561 */ 562 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 563 loff_t end_byte) 564 { 565 __filemap_fdatawait_range(mapping, start_byte, end_byte); 566 return filemap_check_errors(mapping); 567 } 568 EXPORT_SYMBOL(filemap_fdatawait_range); 569 570 /** 571 * filemap_fdatawait_range_keep_errors - wait for writeback to complete 572 * @mapping: address space structure to wait for 573 * @start_byte: offset in bytes where the range starts 574 * @end_byte: offset in bytes where the range ends (inclusive) 575 * 576 * Walk the list of under-writeback pages of the given address space in the 577 * given range and wait for all of them. Unlike filemap_fdatawait_range(), 578 * this function does not clear error status of the address space. 579 * 580 * Use this function if callers don't handle errors themselves. Expected 581 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 582 * fsfreeze(8) 583 */ 584 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 585 loff_t start_byte, loff_t end_byte) 586 { 587 __filemap_fdatawait_range(mapping, start_byte, end_byte); 588 return filemap_check_and_keep_errors(mapping); 589 } 590 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); 591 592 /** 593 * file_fdatawait_range - wait for writeback to complete 594 * @file: file pointing to address space structure to wait for 595 * @start_byte: offset in bytes where the range starts 596 * @end_byte: offset in bytes where the range ends (inclusive) 597 * 598 * Walk the list of under-writeback pages of the address space that file 599 * refers to, in the given range and wait for all of them. Check error 600 * status of the address space vs. the file->f_wb_err cursor and return it. 601 * 602 * Since the error status of the file is advanced by this function, 603 * callers are responsible for checking the return value and handling and/or 604 * reporting the error. 605 * 606 * Return: error status of the address space vs. the file->f_wb_err cursor. 607 */ 608 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 609 { 610 struct address_space *mapping = file->f_mapping; 611 612 __filemap_fdatawait_range(mapping, start_byte, end_byte); 613 return file_check_and_advance_wb_err(file); 614 } 615 EXPORT_SYMBOL(file_fdatawait_range); 616 617 /** 618 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 619 * @mapping: address space structure to wait for 620 * 621 * Walk the list of under-writeback pages of the given address space 622 * and wait for all of them. Unlike filemap_fdatawait(), this function 623 * does not clear error status of the address space. 624 * 625 * Use this function if callers don't handle errors themselves. Expected 626 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 627 * fsfreeze(8) 628 * 629 * Return: error status of the address space. 630 */ 631 int filemap_fdatawait_keep_errors(struct address_space *mapping) 632 { 633 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 634 return filemap_check_and_keep_errors(mapping); 635 } 636 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 637 638 /* Returns true if writeback might be needed or already in progress. */ 639 static bool mapping_needs_writeback(struct address_space *mapping) 640 { 641 return mapping->nrpages; 642 } 643 644 bool filemap_range_has_writeback(struct address_space *mapping, 645 loff_t start_byte, loff_t end_byte) 646 { 647 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 648 pgoff_t max = end_byte >> PAGE_SHIFT; 649 struct folio *folio; 650 651 if (end_byte < start_byte) 652 return false; 653 654 rcu_read_lock(); 655 xas_for_each(&xas, folio, max) { 656 if (xas_retry(&xas, folio)) 657 continue; 658 if (xa_is_value(folio)) 659 continue; 660 if (folio_test_dirty(folio) || folio_test_locked(folio) || 661 folio_test_writeback(folio)) 662 break; 663 } 664 rcu_read_unlock(); 665 return folio != NULL; 666 } 667 EXPORT_SYMBOL_GPL(filemap_range_has_writeback); 668 669 /** 670 * filemap_write_and_wait_range - write out & wait on a file range 671 * @mapping: the address_space for the pages 672 * @lstart: offset in bytes where the range starts 673 * @lend: offset in bytes where the range ends (inclusive) 674 * 675 * Write out and wait upon file offsets lstart->lend, inclusive. 676 * 677 * Note that @lend is inclusive (describes the last byte to be written) so 678 * that this function can be used to write to the very end-of-file (end = -1). 679 * 680 * Return: error status of the address space. 681 */ 682 int filemap_write_and_wait_range(struct address_space *mapping, 683 loff_t lstart, loff_t lend) 684 { 685 int err = 0, err2; 686 687 if (lend < lstart) 688 return 0; 689 690 if (mapping_needs_writeback(mapping)) { 691 err = __filemap_fdatawrite_range(mapping, lstart, lend, 692 WB_SYNC_ALL); 693 /* 694 * Even if the above returned error, the pages may be 695 * written partially (e.g. -ENOSPC), so we wait for it. 696 * But the -EIO is special case, it may indicate the worst 697 * thing (e.g. bug) happened, so we avoid waiting for it. 698 */ 699 if (err != -EIO) 700 __filemap_fdatawait_range(mapping, lstart, lend); 701 } 702 err2 = filemap_check_errors(mapping); 703 if (!err) 704 err = err2; 705 return err; 706 } 707 EXPORT_SYMBOL(filemap_write_and_wait_range); 708 709 void __filemap_set_wb_err(struct address_space *mapping, int err) 710 { 711 errseq_t eseq = errseq_set(&mapping->wb_err, err); 712 713 trace_filemap_set_wb_err(mapping, eseq); 714 } 715 EXPORT_SYMBOL(__filemap_set_wb_err); 716 717 /** 718 * file_check_and_advance_wb_err - report wb error (if any) that was previously 719 * and advance wb_err to current one 720 * @file: struct file on which the error is being reported 721 * 722 * When userland calls fsync (or something like nfsd does the equivalent), we 723 * want to report any writeback errors that occurred since the last fsync (or 724 * since the file was opened if there haven't been any). 725 * 726 * Grab the wb_err from the mapping. If it matches what we have in the file, 727 * then just quickly return 0. The file is all caught up. 728 * 729 * If it doesn't match, then take the mapping value, set the "seen" flag in 730 * it and try to swap it into place. If it works, or another task beat us 731 * to it with the new value, then update the f_wb_err and return the error 732 * portion. The error at this point must be reported via proper channels 733 * (a'la fsync, or NFS COMMIT operation, etc.). 734 * 735 * While we handle mapping->wb_err with atomic operations, the f_wb_err 736 * value is protected by the f_lock since we must ensure that it reflects 737 * the latest value swapped in for this file descriptor. 738 * 739 * Return: %0 on success, negative error code otherwise. 740 */ 741 int file_check_and_advance_wb_err(struct file *file) 742 { 743 int err = 0; 744 errseq_t old = READ_ONCE(file->f_wb_err); 745 struct address_space *mapping = file->f_mapping; 746 747 /* Locklessly handle the common case where nothing has changed */ 748 if (errseq_check(&mapping->wb_err, old)) { 749 /* Something changed, must use slow path */ 750 spin_lock(&file->f_lock); 751 old = file->f_wb_err; 752 err = errseq_check_and_advance(&mapping->wb_err, 753 &file->f_wb_err); 754 trace_file_check_and_advance_wb_err(file, old); 755 spin_unlock(&file->f_lock); 756 } 757 758 /* 759 * We're mostly using this function as a drop in replacement for 760 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 761 * that the legacy code would have had on these flags. 762 */ 763 clear_bit(AS_EIO, &mapping->flags); 764 clear_bit(AS_ENOSPC, &mapping->flags); 765 return err; 766 } 767 EXPORT_SYMBOL(file_check_and_advance_wb_err); 768 769 /** 770 * file_write_and_wait_range - write out & wait on a file range 771 * @file: file pointing to address_space with pages 772 * @lstart: offset in bytes where the range starts 773 * @lend: offset in bytes where the range ends (inclusive) 774 * 775 * Write out and wait upon file offsets lstart->lend, inclusive. 776 * 777 * Note that @lend is inclusive (describes the last byte to be written) so 778 * that this function can be used to write to the very end-of-file (end = -1). 779 * 780 * After writing out and waiting on the data, we check and advance the 781 * f_wb_err cursor to the latest value, and return any errors detected there. 782 * 783 * Return: %0 on success, negative error code otherwise. 784 */ 785 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 786 { 787 int err = 0, err2; 788 struct address_space *mapping = file->f_mapping; 789 790 if (lend < lstart) 791 return 0; 792 793 if (mapping_needs_writeback(mapping)) { 794 err = __filemap_fdatawrite_range(mapping, lstart, lend, 795 WB_SYNC_ALL); 796 /* See comment of filemap_write_and_wait() */ 797 if (err != -EIO) 798 __filemap_fdatawait_range(mapping, lstart, lend); 799 } 800 err2 = file_check_and_advance_wb_err(file); 801 if (!err) 802 err = err2; 803 return err; 804 } 805 EXPORT_SYMBOL(file_write_and_wait_range); 806 807 /** 808 * replace_page_cache_folio - replace a pagecache folio with a new one 809 * @old: folio to be replaced 810 * @new: folio to replace with 811 * 812 * This function replaces a folio in the pagecache with a new one. On 813 * success it acquires the pagecache reference for the new folio and 814 * drops it for the old folio. Both the old and new folios must be 815 * locked. This function does not add the new folio to the LRU, the 816 * caller must do that. 817 * 818 * The remove + add is atomic. This function cannot fail. 819 */ 820 void replace_page_cache_folio(struct folio *old, struct folio *new) 821 { 822 struct address_space *mapping = old->mapping; 823 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio; 824 pgoff_t offset = old->index; 825 XA_STATE(xas, &mapping->i_pages, offset); 826 827 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 828 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 829 VM_BUG_ON_FOLIO(new->mapping, new); 830 831 folio_get(new); 832 new->mapping = mapping; 833 new->index = offset; 834 835 mem_cgroup_replace_folio(old, new); 836 837 xas_lock_irq(&xas); 838 xas_store(&xas, new); 839 840 old->mapping = NULL; 841 /* hugetlb pages do not participate in page cache accounting. */ 842 if (!folio_test_hugetlb(old)) 843 __lruvec_stat_sub_folio(old, NR_FILE_PAGES); 844 if (!folio_test_hugetlb(new)) 845 __lruvec_stat_add_folio(new, NR_FILE_PAGES); 846 if (folio_test_swapbacked(old)) 847 __lruvec_stat_sub_folio(old, NR_SHMEM); 848 if (folio_test_swapbacked(new)) 849 __lruvec_stat_add_folio(new, NR_SHMEM); 850 xas_unlock_irq(&xas); 851 if (free_folio) 852 free_folio(old); 853 folio_put(old); 854 } 855 EXPORT_SYMBOL_GPL(replace_page_cache_folio); 856 857 noinline int __filemap_add_folio(struct address_space *mapping, 858 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp) 859 { 860 XA_STATE(xas, &mapping->i_pages, index); 861 void *alloced_shadow = NULL; 862 int alloced_order = 0; 863 bool huge; 864 long nr; 865 866 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 867 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio); 868 VM_BUG_ON_FOLIO(folio_order(folio) < mapping_min_folio_order(mapping), 869 folio); 870 mapping_set_update(&xas, mapping); 871 872 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio); 873 xas_set_order(&xas, index, folio_order(folio)); 874 huge = folio_test_hugetlb(folio); 875 nr = folio_nr_pages(folio); 876 877 gfp &= GFP_RECLAIM_MASK; 878 folio_ref_add(folio, nr); 879 folio->mapping = mapping; 880 folio->index = xas.xa_index; 881 882 for (;;) { 883 int order = -1, split_order = 0; 884 void *entry, *old = NULL; 885 886 xas_lock_irq(&xas); 887 xas_for_each_conflict(&xas, entry) { 888 old = entry; 889 if (!xa_is_value(entry)) { 890 xas_set_err(&xas, -EEXIST); 891 goto unlock; 892 } 893 /* 894 * If a larger entry exists, 895 * it will be the first and only entry iterated. 896 */ 897 if (order == -1) 898 order = xas_get_order(&xas); 899 } 900 901 /* entry may have changed before we re-acquire the lock */ 902 if (alloced_order && (old != alloced_shadow || order != alloced_order)) { 903 xas_destroy(&xas); 904 alloced_order = 0; 905 } 906 907 if (old) { 908 if (order > 0 && order > folio_order(folio)) { 909 /* How to handle large swap entries? */ 910 BUG_ON(shmem_mapping(mapping)); 911 if (!alloced_order) { 912 split_order = order; 913 goto unlock; 914 } 915 xas_split(&xas, old, order); 916 xas_reset(&xas); 917 } 918 if (shadowp) 919 *shadowp = old; 920 } 921 922 xas_store(&xas, folio); 923 if (xas_error(&xas)) 924 goto unlock; 925 926 mapping->nrpages += nr; 927 928 /* hugetlb pages do not participate in page cache accounting */ 929 if (!huge) { 930 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 931 if (folio_test_pmd_mappable(folio)) 932 __lruvec_stat_mod_folio(folio, 933 NR_FILE_THPS, nr); 934 } 935 936 unlock: 937 xas_unlock_irq(&xas); 938 939 /* split needed, alloc here and retry. */ 940 if (split_order) { 941 xas_split_alloc(&xas, old, split_order, gfp); 942 if (xas_error(&xas)) 943 goto error; 944 alloced_shadow = old; 945 alloced_order = split_order; 946 xas_reset(&xas); 947 continue; 948 } 949 950 if (!xas_nomem(&xas, gfp)) 951 break; 952 } 953 954 if (xas_error(&xas)) 955 goto error; 956 957 trace_mm_filemap_add_to_page_cache(folio); 958 return 0; 959 error: 960 folio->mapping = NULL; 961 /* Leave page->index set: truncation relies upon it */ 962 folio_put_refs(folio, nr); 963 return xas_error(&xas); 964 } 965 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO); 966 967 int filemap_add_folio(struct address_space *mapping, struct folio *folio, 968 pgoff_t index, gfp_t gfp) 969 { 970 void *shadow = NULL; 971 int ret; 972 973 ret = mem_cgroup_charge(folio, NULL, gfp); 974 if (ret) 975 return ret; 976 977 __folio_set_locked(folio); 978 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow); 979 if (unlikely(ret)) { 980 mem_cgroup_uncharge(folio); 981 __folio_clear_locked(folio); 982 } else { 983 /* 984 * The folio might have been evicted from cache only 985 * recently, in which case it should be activated like 986 * any other repeatedly accessed folio. 987 * The exception is folios getting rewritten; evicting other 988 * data from the working set, only to cache data that will 989 * get overwritten with something else, is a waste of memory. 990 */ 991 WARN_ON_ONCE(folio_test_active(folio)); 992 if (!(gfp & __GFP_WRITE) && shadow) 993 workingset_refault(folio, shadow); 994 folio_add_lru(folio); 995 } 996 return ret; 997 } 998 EXPORT_SYMBOL_GPL(filemap_add_folio); 999 1000 #ifdef CONFIG_NUMA 1001 struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order) 1002 { 1003 int n; 1004 struct folio *folio; 1005 1006 if (cpuset_do_page_mem_spread()) { 1007 unsigned int cpuset_mems_cookie; 1008 do { 1009 cpuset_mems_cookie = read_mems_allowed_begin(); 1010 n = cpuset_mem_spread_node(); 1011 folio = __folio_alloc_node_noprof(gfp, order, n); 1012 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie)); 1013 1014 return folio; 1015 } 1016 return folio_alloc_noprof(gfp, order); 1017 } 1018 EXPORT_SYMBOL(filemap_alloc_folio_noprof); 1019 #endif 1020 1021 /* 1022 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings 1023 * 1024 * Lock exclusively invalidate_lock of any passed mapping that is not NULL. 1025 * 1026 * @mapping1: the first mapping to lock 1027 * @mapping2: the second mapping to lock 1028 */ 1029 void filemap_invalidate_lock_two(struct address_space *mapping1, 1030 struct address_space *mapping2) 1031 { 1032 if (mapping1 > mapping2) 1033 swap(mapping1, mapping2); 1034 if (mapping1) 1035 down_write(&mapping1->invalidate_lock); 1036 if (mapping2 && mapping1 != mapping2) 1037 down_write_nested(&mapping2->invalidate_lock, 1); 1038 } 1039 EXPORT_SYMBOL(filemap_invalidate_lock_two); 1040 1041 /* 1042 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings 1043 * 1044 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL. 1045 * 1046 * @mapping1: the first mapping to unlock 1047 * @mapping2: the second mapping to unlock 1048 */ 1049 void filemap_invalidate_unlock_two(struct address_space *mapping1, 1050 struct address_space *mapping2) 1051 { 1052 if (mapping1) 1053 up_write(&mapping1->invalidate_lock); 1054 if (mapping2 && mapping1 != mapping2) 1055 up_write(&mapping2->invalidate_lock); 1056 } 1057 EXPORT_SYMBOL(filemap_invalidate_unlock_two); 1058 1059 /* 1060 * In order to wait for pages to become available there must be 1061 * waitqueues associated with pages. By using a hash table of 1062 * waitqueues where the bucket discipline is to maintain all 1063 * waiters on the same queue and wake all when any of the pages 1064 * become available, and for the woken contexts to check to be 1065 * sure the appropriate page became available, this saves space 1066 * at a cost of "thundering herd" phenomena during rare hash 1067 * collisions. 1068 */ 1069 #define PAGE_WAIT_TABLE_BITS 8 1070 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 1071 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 1072 1073 static wait_queue_head_t *folio_waitqueue(struct folio *folio) 1074 { 1075 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)]; 1076 } 1077 1078 void __init pagecache_init(void) 1079 { 1080 int i; 1081 1082 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 1083 init_waitqueue_head(&folio_wait_table[i]); 1084 1085 page_writeback_init(); 1086 } 1087 1088 /* 1089 * The page wait code treats the "wait->flags" somewhat unusually, because 1090 * we have multiple different kinds of waits, not just the usual "exclusive" 1091 * one. 1092 * 1093 * We have: 1094 * 1095 * (a) no special bits set: 1096 * 1097 * We're just waiting for the bit to be released, and when a waker 1098 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up, 1099 * and remove it from the wait queue. 1100 * 1101 * Simple and straightforward. 1102 * 1103 * (b) WQ_FLAG_EXCLUSIVE: 1104 * 1105 * The waiter is waiting to get the lock, and only one waiter should 1106 * be woken up to avoid any thundering herd behavior. We'll set the 1107 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue. 1108 * 1109 * This is the traditional exclusive wait. 1110 * 1111 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM: 1112 * 1113 * The waiter is waiting to get the bit, and additionally wants the 1114 * lock to be transferred to it for fair lock behavior. If the lock 1115 * cannot be taken, we stop walking the wait queue without waking 1116 * the waiter. 1117 * 1118 * This is the "fair lock handoff" case, and in addition to setting 1119 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see 1120 * that it now has the lock. 1121 */ 1122 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 1123 { 1124 unsigned int flags; 1125 struct wait_page_key *key = arg; 1126 struct wait_page_queue *wait_page 1127 = container_of(wait, struct wait_page_queue, wait); 1128 1129 if (!wake_page_match(wait_page, key)) 1130 return 0; 1131 1132 /* 1133 * If it's a lock handoff wait, we get the bit for it, and 1134 * stop walking (and do not wake it up) if we can't. 1135 */ 1136 flags = wait->flags; 1137 if (flags & WQ_FLAG_EXCLUSIVE) { 1138 if (test_bit(key->bit_nr, &key->folio->flags)) 1139 return -1; 1140 if (flags & WQ_FLAG_CUSTOM) { 1141 if (test_and_set_bit(key->bit_nr, &key->folio->flags)) 1142 return -1; 1143 flags |= WQ_FLAG_DONE; 1144 } 1145 } 1146 1147 /* 1148 * We are holding the wait-queue lock, but the waiter that 1149 * is waiting for this will be checking the flags without 1150 * any locking. 1151 * 1152 * So update the flags atomically, and wake up the waiter 1153 * afterwards to avoid any races. This store-release pairs 1154 * with the load-acquire in folio_wait_bit_common(). 1155 */ 1156 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN); 1157 wake_up_state(wait->private, mode); 1158 1159 /* 1160 * Ok, we have successfully done what we're waiting for, 1161 * and we can unconditionally remove the wait entry. 1162 * 1163 * Note that this pairs with the "finish_wait()" in the 1164 * waiter, and has to be the absolute last thing we do. 1165 * After this list_del_init(&wait->entry) the wait entry 1166 * might be de-allocated and the process might even have 1167 * exited. 1168 */ 1169 list_del_init_careful(&wait->entry); 1170 return (flags & WQ_FLAG_EXCLUSIVE) != 0; 1171 } 1172 1173 static void folio_wake_bit(struct folio *folio, int bit_nr) 1174 { 1175 wait_queue_head_t *q = folio_waitqueue(folio); 1176 struct wait_page_key key; 1177 unsigned long flags; 1178 1179 key.folio = folio; 1180 key.bit_nr = bit_nr; 1181 key.page_match = 0; 1182 1183 spin_lock_irqsave(&q->lock, flags); 1184 __wake_up_locked_key(q, TASK_NORMAL, &key); 1185 1186 /* 1187 * It's possible to miss clearing waiters here, when we woke our page 1188 * waiters, but the hashed waitqueue has waiters for other pages on it. 1189 * That's okay, it's a rare case. The next waker will clear it. 1190 * 1191 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE, 1192 * other), the flag may be cleared in the course of freeing the page; 1193 * but that is not required for correctness. 1194 */ 1195 if (!waitqueue_active(q) || !key.page_match) 1196 folio_clear_waiters(folio); 1197 1198 spin_unlock_irqrestore(&q->lock, flags); 1199 } 1200 1201 /* 1202 * A choice of three behaviors for folio_wait_bit_common(): 1203 */ 1204 enum behavior { 1205 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1206 * __folio_lock() waiting on then setting PG_locked. 1207 */ 1208 SHARED, /* Hold ref to page and check the bit when woken, like 1209 * folio_wait_writeback() waiting on PG_writeback. 1210 */ 1211 DROP, /* Drop ref to page before wait, no check when woken, 1212 * like folio_put_wait_locked() on PG_locked. 1213 */ 1214 }; 1215 1216 /* 1217 * Attempt to check (or get) the folio flag, and mark us done 1218 * if successful. 1219 */ 1220 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr, 1221 struct wait_queue_entry *wait) 1222 { 1223 if (wait->flags & WQ_FLAG_EXCLUSIVE) { 1224 if (test_and_set_bit(bit_nr, &folio->flags)) 1225 return false; 1226 } else if (test_bit(bit_nr, &folio->flags)) 1227 return false; 1228 1229 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE; 1230 return true; 1231 } 1232 1233 /* How many times do we accept lock stealing from under a waiter? */ 1234 int sysctl_page_lock_unfairness = 5; 1235 1236 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr, 1237 int state, enum behavior behavior) 1238 { 1239 wait_queue_head_t *q = folio_waitqueue(folio); 1240 int unfairness = sysctl_page_lock_unfairness; 1241 struct wait_page_queue wait_page; 1242 wait_queue_entry_t *wait = &wait_page.wait; 1243 bool thrashing = false; 1244 unsigned long pflags; 1245 bool in_thrashing; 1246 1247 if (bit_nr == PG_locked && 1248 !folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1249 delayacct_thrashing_start(&in_thrashing); 1250 psi_memstall_enter(&pflags); 1251 thrashing = true; 1252 } 1253 1254 init_wait(wait); 1255 wait->func = wake_page_function; 1256 wait_page.folio = folio; 1257 wait_page.bit_nr = bit_nr; 1258 1259 repeat: 1260 wait->flags = 0; 1261 if (behavior == EXCLUSIVE) { 1262 wait->flags = WQ_FLAG_EXCLUSIVE; 1263 if (--unfairness < 0) 1264 wait->flags |= WQ_FLAG_CUSTOM; 1265 } 1266 1267 /* 1268 * Do one last check whether we can get the 1269 * page bit synchronously. 1270 * 1271 * Do the folio_set_waiters() marking before that 1272 * to let any waker we _just_ missed know they 1273 * need to wake us up (otherwise they'll never 1274 * even go to the slow case that looks at the 1275 * page queue), and add ourselves to the wait 1276 * queue if we need to sleep. 1277 * 1278 * This part needs to be done under the queue 1279 * lock to avoid races. 1280 */ 1281 spin_lock_irq(&q->lock); 1282 folio_set_waiters(folio); 1283 if (!folio_trylock_flag(folio, bit_nr, wait)) 1284 __add_wait_queue_entry_tail(q, wait); 1285 spin_unlock_irq(&q->lock); 1286 1287 /* 1288 * From now on, all the logic will be based on 1289 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to 1290 * see whether the page bit testing has already 1291 * been done by the wake function. 1292 * 1293 * We can drop our reference to the folio. 1294 */ 1295 if (behavior == DROP) 1296 folio_put(folio); 1297 1298 /* 1299 * Note that until the "finish_wait()", or until 1300 * we see the WQ_FLAG_WOKEN flag, we need to 1301 * be very careful with the 'wait->flags', because 1302 * we may race with a waker that sets them. 1303 */ 1304 for (;;) { 1305 unsigned int flags; 1306 1307 set_current_state(state); 1308 1309 /* Loop until we've been woken or interrupted */ 1310 flags = smp_load_acquire(&wait->flags); 1311 if (!(flags & WQ_FLAG_WOKEN)) { 1312 if (signal_pending_state(state, current)) 1313 break; 1314 1315 io_schedule(); 1316 continue; 1317 } 1318 1319 /* If we were non-exclusive, we're done */ 1320 if (behavior != EXCLUSIVE) 1321 break; 1322 1323 /* If the waker got the lock for us, we're done */ 1324 if (flags & WQ_FLAG_DONE) 1325 break; 1326 1327 /* 1328 * Otherwise, if we're getting the lock, we need to 1329 * try to get it ourselves. 1330 * 1331 * And if that fails, we'll have to retry this all. 1332 */ 1333 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0)))) 1334 goto repeat; 1335 1336 wait->flags |= WQ_FLAG_DONE; 1337 break; 1338 } 1339 1340 /* 1341 * If a signal happened, this 'finish_wait()' may remove the last 1342 * waiter from the wait-queues, but the folio waiters bit will remain 1343 * set. That's ok. The next wakeup will take care of it, and trying 1344 * to do it here would be difficult and prone to races. 1345 */ 1346 finish_wait(q, wait); 1347 1348 if (thrashing) { 1349 delayacct_thrashing_end(&in_thrashing); 1350 psi_memstall_leave(&pflags); 1351 } 1352 1353 /* 1354 * NOTE! The wait->flags weren't stable until we've done the 1355 * 'finish_wait()', and we could have exited the loop above due 1356 * to a signal, and had a wakeup event happen after the signal 1357 * test but before the 'finish_wait()'. 1358 * 1359 * So only after the finish_wait() can we reliably determine 1360 * if we got woken up or not, so we can now figure out the final 1361 * return value based on that state without races. 1362 * 1363 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive 1364 * waiter, but an exclusive one requires WQ_FLAG_DONE. 1365 */ 1366 if (behavior == EXCLUSIVE) 1367 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR; 1368 1369 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR; 1370 } 1371 1372 #ifdef CONFIG_MIGRATION 1373 /** 1374 * migration_entry_wait_on_locked - Wait for a migration entry to be removed 1375 * @entry: migration swap entry. 1376 * @ptl: already locked ptl. This function will drop the lock. 1377 * 1378 * Wait for a migration entry referencing the given page to be removed. This is 1379 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except 1380 * this can be called without taking a reference on the page. Instead this 1381 * should be called while holding the ptl for the migration entry referencing 1382 * the page. 1383 * 1384 * Returns after unlocking the ptl. 1385 * 1386 * This follows the same logic as folio_wait_bit_common() so see the comments 1387 * there. 1388 */ 1389 void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl) 1390 __releases(ptl) 1391 { 1392 struct wait_page_queue wait_page; 1393 wait_queue_entry_t *wait = &wait_page.wait; 1394 bool thrashing = false; 1395 unsigned long pflags; 1396 bool in_thrashing; 1397 wait_queue_head_t *q; 1398 struct folio *folio = pfn_swap_entry_folio(entry); 1399 1400 q = folio_waitqueue(folio); 1401 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1402 delayacct_thrashing_start(&in_thrashing); 1403 psi_memstall_enter(&pflags); 1404 thrashing = true; 1405 } 1406 1407 init_wait(wait); 1408 wait->func = wake_page_function; 1409 wait_page.folio = folio; 1410 wait_page.bit_nr = PG_locked; 1411 wait->flags = 0; 1412 1413 spin_lock_irq(&q->lock); 1414 folio_set_waiters(folio); 1415 if (!folio_trylock_flag(folio, PG_locked, wait)) 1416 __add_wait_queue_entry_tail(q, wait); 1417 spin_unlock_irq(&q->lock); 1418 1419 /* 1420 * If a migration entry exists for the page the migration path must hold 1421 * a valid reference to the page, and it must take the ptl to remove the 1422 * migration entry. So the page is valid until the ptl is dropped. 1423 */ 1424 spin_unlock(ptl); 1425 1426 for (;;) { 1427 unsigned int flags; 1428 1429 set_current_state(TASK_UNINTERRUPTIBLE); 1430 1431 /* Loop until we've been woken or interrupted */ 1432 flags = smp_load_acquire(&wait->flags); 1433 if (!(flags & WQ_FLAG_WOKEN)) { 1434 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current)) 1435 break; 1436 1437 io_schedule(); 1438 continue; 1439 } 1440 break; 1441 } 1442 1443 finish_wait(q, wait); 1444 1445 if (thrashing) { 1446 delayacct_thrashing_end(&in_thrashing); 1447 psi_memstall_leave(&pflags); 1448 } 1449 } 1450 #endif 1451 1452 void folio_wait_bit(struct folio *folio, int bit_nr) 1453 { 1454 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1455 } 1456 EXPORT_SYMBOL(folio_wait_bit); 1457 1458 int folio_wait_bit_killable(struct folio *folio, int bit_nr) 1459 { 1460 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED); 1461 } 1462 EXPORT_SYMBOL(folio_wait_bit_killable); 1463 1464 /** 1465 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked 1466 * @folio: The folio to wait for. 1467 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc). 1468 * 1469 * The caller should hold a reference on @folio. They expect the page to 1470 * become unlocked relatively soon, but do not wish to hold up migration 1471 * (for example) by holding the reference while waiting for the folio to 1472 * come unlocked. After this function returns, the caller should not 1473 * dereference @folio. 1474 * 1475 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal. 1476 */ 1477 static int folio_put_wait_locked(struct folio *folio, int state) 1478 { 1479 return folio_wait_bit_common(folio, PG_locked, state, DROP); 1480 } 1481 1482 /** 1483 * folio_unlock - Unlock a locked folio. 1484 * @folio: The folio. 1485 * 1486 * Unlocks the folio and wakes up any thread sleeping on the page lock. 1487 * 1488 * Context: May be called from interrupt or process context. May not be 1489 * called from NMI context. 1490 */ 1491 void folio_unlock(struct folio *folio) 1492 { 1493 /* Bit 7 allows x86 to check the byte's sign bit */ 1494 BUILD_BUG_ON(PG_waiters != 7); 1495 BUILD_BUG_ON(PG_locked > 7); 1496 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1497 if (folio_xor_flags_has_waiters(folio, 1 << PG_locked)) 1498 folio_wake_bit(folio, PG_locked); 1499 } 1500 EXPORT_SYMBOL(folio_unlock); 1501 1502 /** 1503 * folio_end_read - End read on a folio. 1504 * @folio: The folio. 1505 * @success: True if all reads completed successfully. 1506 * 1507 * When all reads against a folio have completed, filesystems should 1508 * call this function to let the pagecache know that no more reads 1509 * are outstanding. This will unlock the folio and wake up any thread 1510 * sleeping on the lock. The folio will also be marked uptodate if all 1511 * reads succeeded. 1512 * 1513 * Context: May be called from interrupt or process context. May not be 1514 * called from NMI context. 1515 */ 1516 void folio_end_read(struct folio *folio, bool success) 1517 { 1518 unsigned long mask = 1 << PG_locked; 1519 1520 /* Must be in bottom byte for x86 to work */ 1521 BUILD_BUG_ON(PG_uptodate > 7); 1522 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1523 VM_BUG_ON_FOLIO(success && folio_test_uptodate(folio), folio); 1524 1525 if (likely(success)) 1526 mask |= 1 << PG_uptodate; 1527 if (folio_xor_flags_has_waiters(folio, mask)) 1528 folio_wake_bit(folio, PG_locked); 1529 } 1530 EXPORT_SYMBOL(folio_end_read); 1531 1532 /** 1533 * folio_end_private_2 - Clear PG_private_2 and wake any waiters. 1534 * @folio: The folio. 1535 * 1536 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for 1537 * it. The folio reference held for PG_private_2 being set is released. 1538 * 1539 * This is, for example, used when a netfs folio is being written to a local 1540 * disk cache, thereby allowing writes to the cache for the same folio to be 1541 * serialised. 1542 */ 1543 void folio_end_private_2(struct folio *folio) 1544 { 1545 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio); 1546 clear_bit_unlock(PG_private_2, folio_flags(folio, 0)); 1547 folio_wake_bit(folio, PG_private_2); 1548 folio_put(folio); 1549 } 1550 EXPORT_SYMBOL(folio_end_private_2); 1551 1552 /** 1553 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio. 1554 * @folio: The folio to wait on. 1555 * 1556 * Wait for PG_private_2 to be cleared on a folio. 1557 */ 1558 void folio_wait_private_2(struct folio *folio) 1559 { 1560 while (folio_test_private_2(folio)) 1561 folio_wait_bit(folio, PG_private_2); 1562 } 1563 EXPORT_SYMBOL(folio_wait_private_2); 1564 1565 /** 1566 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio. 1567 * @folio: The folio to wait on. 1568 * 1569 * Wait for PG_private_2 to be cleared on a folio or until a fatal signal is 1570 * received by the calling task. 1571 * 1572 * Return: 1573 * - 0 if successful. 1574 * - -EINTR if a fatal signal was encountered. 1575 */ 1576 int folio_wait_private_2_killable(struct folio *folio) 1577 { 1578 int ret = 0; 1579 1580 while (folio_test_private_2(folio)) { 1581 ret = folio_wait_bit_killable(folio, PG_private_2); 1582 if (ret < 0) 1583 break; 1584 } 1585 1586 return ret; 1587 } 1588 EXPORT_SYMBOL(folio_wait_private_2_killable); 1589 1590 /* 1591 * If folio was marked as dropbehind, then pages should be dropped when writeback 1592 * completes. Do that now. If we fail, it's likely because of a big folio - 1593 * just reset dropbehind for that case and latter completions should invalidate. 1594 */ 1595 static void folio_end_dropbehind_write(struct folio *folio) 1596 { 1597 /* 1598 * Hitting !in_task() should not happen off RWF_DONTCACHE writeback, 1599 * but can happen if normal writeback just happens to find dirty folios 1600 * that were created as part of uncached writeback, and that writeback 1601 * would otherwise not need non-IRQ handling. Just skip the 1602 * invalidation in that case. 1603 */ 1604 if (in_task() && folio_trylock(folio)) { 1605 if (folio->mapping) 1606 folio_unmap_invalidate(folio->mapping, folio, 0); 1607 folio_unlock(folio); 1608 } 1609 } 1610 1611 /** 1612 * folio_end_writeback - End writeback against a folio. 1613 * @folio: The folio. 1614 * 1615 * The folio must actually be under writeback. 1616 * 1617 * Context: May be called from process or interrupt context. 1618 */ 1619 void folio_end_writeback(struct folio *folio) 1620 { 1621 bool folio_dropbehind = false; 1622 1623 VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio); 1624 1625 /* 1626 * folio_test_clear_reclaim() could be used here but it is an 1627 * atomic operation and overkill in this particular case. Failing 1628 * to shuffle a folio marked for immediate reclaim is too mild 1629 * a gain to justify taking an atomic operation penalty at the 1630 * end of every folio writeback. 1631 */ 1632 if (folio_test_reclaim(folio)) { 1633 folio_clear_reclaim(folio); 1634 folio_rotate_reclaimable(folio); 1635 } 1636 1637 /* 1638 * Writeback does not hold a folio reference of its own, relying 1639 * on truncation to wait for the clearing of PG_writeback. 1640 * But here we must make sure that the folio is not freed and 1641 * reused before the folio_wake_bit(). 1642 */ 1643 folio_get(folio); 1644 if (!folio_test_dirty(folio)) 1645 folio_dropbehind = folio_test_clear_dropbehind(folio); 1646 if (__folio_end_writeback(folio)) 1647 folio_wake_bit(folio, PG_writeback); 1648 acct_reclaim_writeback(folio); 1649 1650 if (folio_dropbehind) 1651 folio_end_dropbehind_write(folio); 1652 folio_put(folio); 1653 } 1654 EXPORT_SYMBOL(folio_end_writeback); 1655 1656 /** 1657 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it. 1658 * @folio: The folio to lock 1659 */ 1660 void __folio_lock(struct folio *folio) 1661 { 1662 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE, 1663 EXCLUSIVE); 1664 } 1665 EXPORT_SYMBOL(__folio_lock); 1666 1667 int __folio_lock_killable(struct folio *folio) 1668 { 1669 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE, 1670 EXCLUSIVE); 1671 } 1672 EXPORT_SYMBOL_GPL(__folio_lock_killable); 1673 1674 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait) 1675 { 1676 struct wait_queue_head *q = folio_waitqueue(folio); 1677 int ret; 1678 1679 wait->folio = folio; 1680 wait->bit_nr = PG_locked; 1681 1682 spin_lock_irq(&q->lock); 1683 __add_wait_queue_entry_tail(q, &wait->wait); 1684 folio_set_waiters(folio); 1685 ret = !folio_trylock(folio); 1686 /* 1687 * If we were successful now, we know we're still on the 1688 * waitqueue as we're still under the lock. This means it's 1689 * safe to remove and return success, we know the callback 1690 * isn't going to trigger. 1691 */ 1692 if (!ret) 1693 __remove_wait_queue(q, &wait->wait); 1694 else 1695 ret = -EIOCBQUEUED; 1696 spin_unlock_irq(&q->lock); 1697 return ret; 1698 } 1699 1700 /* 1701 * Return values: 1702 * 0 - folio is locked. 1703 * non-zero - folio is not locked. 1704 * mmap_lock or per-VMA lock has been released (mmap_read_unlock() or 1705 * vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and 1706 * FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held. 1707 * 1708 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0 1709 * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed. 1710 */ 1711 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf) 1712 { 1713 unsigned int flags = vmf->flags; 1714 1715 if (fault_flag_allow_retry_first(flags)) { 1716 /* 1717 * CAUTION! In this case, mmap_lock/per-VMA lock is not 1718 * released even though returning VM_FAULT_RETRY. 1719 */ 1720 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1721 return VM_FAULT_RETRY; 1722 1723 release_fault_lock(vmf); 1724 if (flags & FAULT_FLAG_KILLABLE) 1725 folio_wait_locked_killable(folio); 1726 else 1727 folio_wait_locked(folio); 1728 return VM_FAULT_RETRY; 1729 } 1730 if (flags & FAULT_FLAG_KILLABLE) { 1731 bool ret; 1732 1733 ret = __folio_lock_killable(folio); 1734 if (ret) { 1735 release_fault_lock(vmf); 1736 return VM_FAULT_RETRY; 1737 } 1738 } else { 1739 __folio_lock(folio); 1740 } 1741 1742 return 0; 1743 } 1744 1745 /** 1746 * page_cache_next_miss() - Find the next gap in the page cache. 1747 * @mapping: Mapping. 1748 * @index: Index. 1749 * @max_scan: Maximum range to search. 1750 * 1751 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1752 * gap with the lowest index. 1753 * 1754 * This function may be called under the rcu_read_lock. However, this will 1755 * not atomically search a snapshot of the cache at a single point in time. 1756 * For example, if a gap is created at index 5, then subsequently a gap is 1757 * created at index 10, page_cache_next_miss covering both indices may 1758 * return 10 if called under the rcu_read_lock. 1759 * 1760 * Return: The index of the gap if found, otherwise an index outside the 1761 * range specified (in which case 'return - index >= max_scan' will be true). 1762 * In the rare case of index wrap-around, 0 will be returned. 1763 */ 1764 pgoff_t page_cache_next_miss(struct address_space *mapping, 1765 pgoff_t index, unsigned long max_scan) 1766 { 1767 XA_STATE(xas, &mapping->i_pages, index); 1768 1769 while (max_scan--) { 1770 void *entry = xas_next(&xas); 1771 if (!entry || xa_is_value(entry)) 1772 return xas.xa_index; 1773 if (xas.xa_index == 0) 1774 return 0; 1775 } 1776 1777 return index + max_scan; 1778 } 1779 EXPORT_SYMBOL(page_cache_next_miss); 1780 1781 /** 1782 * page_cache_prev_miss() - Find the previous gap in the page cache. 1783 * @mapping: Mapping. 1784 * @index: Index. 1785 * @max_scan: Maximum range to search. 1786 * 1787 * Search the range [max(index - max_scan + 1, 0), index] for the 1788 * gap with the highest index. 1789 * 1790 * This function may be called under the rcu_read_lock. However, this will 1791 * not atomically search a snapshot of the cache at a single point in time. 1792 * For example, if a gap is created at index 10, then subsequently a gap is 1793 * created at index 5, page_cache_prev_miss() covering both indices may 1794 * return 5 if called under the rcu_read_lock. 1795 * 1796 * Return: The index of the gap if found, otherwise an index outside the 1797 * range specified (in which case 'index - return >= max_scan' will be true). 1798 * In the rare case of wrap-around, ULONG_MAX will be returned. 1799 */ 1800 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1801 pgoff_t index, unsigned long max_scan) 1802 { 1803 XA_STATE(xas, &mapping->i_pages, index); 1804 1805 while (max_scan--) { 1806 void *entry = xas_prev(&xas); 1807 if (!entry || xa_is_value(entry)) 1808 break; 1809 if (xas.xa_index == ULONG_MAX) 1810 break; 1811 } 1812 1813 return xas.xa_index; 1814 } 1815 EXPORT_SYMBOL(page_cache_prev_miss); 1816 1817 /* 1818 * Lockless page cache protocol: 1819 * On the lookup side: 1820 * 1. Load the folio from i_pages 1821 * 2. Increment the refcount if it's not zero 1822 * 3. If the folio is not found by xas_reload(), put the refcount and retry 1823 * 1824 * On the removal side: 1825 * A. Freeze the page (by zeroing the refcount if nobody else has a reference) 1826 * B. Remove the page from i_pages 1827 * C. Return the page to the page allocator 1828 * 1829 * This means that any page may have its reference count temporarily 1830 * increased by a speculative page cache (or GUP-fast) lookup as it can 1831 * be allocated by another user before the RCU grace period expires. 1832 * Because the refcount temporarily acquired here may end up being the 1833 * last refcount on the page, any page allocation must be freeable by 1834 * folio_put(). 1835 */ 1836 1837 /* 1838 * filemap_get_entry - Get a page cache entry. 1839 * @mapping: the address_space to search 1840 * @index: The page cache index. 1841 * 1842 * Looks up the page cache entry at @mapping & @index. If it is a folio, 1843 * it is returned with an increased refcount. If it is a shadow entry 1844 * of a previously evicted folio, or a swap entry from shmem/tmpfs, 1845 * it is returned without further action. 1846 * 1847 * Return: The folio, swap or shadow entry, %NULL if nothing is found. 1848 */ 1849 void *filemap_get_entry(struct address_space *mapping, pgoff_t index) 1850 { 1851 XA_STATE(xas, &mapping->i_pages, index); 1852 struct folio *folio; 1853 1854 rcu_read_lock(); 1855 repeat: 1856 xas_reset(&xas); 1857 folio = xas_load(&xas); 1858 if (xas_retry(&xas, folio)) 1859 goto repeat; 1860 /* 1861 * A shadow entry of a recently evicted page, or a swap entry from 1862 * shmem/tmpfs. Return it without attempting to raise page count. 1863 */ 1864 if (!folio || xa_is_value(folio)) 1865 goto out; 1866 1867 if (!folio_try_get(folio)) 1868 goto repeat; 1869 1870 if (unlikely(folio != xas_reload(&xas))) { 1871 folio_put(folio); 1872 goto repeat; 1873 } 1874 out: 1875 rcu_read_unlock(); 1876 1877 return folio; 1878 } 1879 1880 /** 1881 * __filemap_get_folio - Find and get a reference to a folio. 1882 * @mapping: The address_space to search. 1883 * @index: The page index. 1884 * @fgp_flags: %FGP flags modify how the folio is returned. 1885 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified. 1886 * 1887 * Looks up the page cache entry at @mapping & @index. 1888 * 1889 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even 1890 * if the %GFP flags specified for %FGP_CREAT are atomic. 1891 * 1892 * If this function returns a folio, it is returned with an increased refcount. 1893 * 1894 * Return: The found folio or an ERR_PTR() otherwise. 1895 */ 1896 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index, 1897 fgf_t fgp_flags, gfp_t gfp) 1898 { 1899 struct folio *folio; 1900 1901 repeat: 1902 folio = filemap_get_entry(mapping, index); 1903 if (xa_is_value(folio)) 1904 folio = NULL; 1905 if (!folio) 1906 goto no_page; 1907 1908 if (fgp_flags & FGP_LOCK) { 1909 if (fgp_flags & FGP_NOWAIT) { 1910 if (!folio_trylock(folio)) { 1911 folio_put(folio); 1912 return ERR_PTR(-EAGAIN); 1913 } 1914 } else { 1915 folio_lock(folio); 1916 } 1917 1918 /* Has the page been truncated? */ 1919 if (unlikely(folio->mapping != mapping)) { 1920 folio_unlock(folio); 1921 folio_put(folio); 1922 goto repeat; 1923 } 1924 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 1925 } 1926 1927 if (fgp_flags & FGP_ACCESSED) 1928 folio_mark_accessed(folio); 1929 else if (fgp_flags & FGP_WRITE) { 1930 /* Clear idle flag for buffer write */ 1931 if (folio_test_idle(folio)) 1932 folio_clear_idle(folio); 1933 } 1934 1935 if (fgp_flags & FGP_STABLE) 1936 folio_wait_stable(folio); 1937 no_page: 1938 if (!folio && (fgp_flags & FGP_CREAT)) { 1939 unsigned int min_order = mapping_min_folio_order(mapping); 1940 unsigned int order = max(min_order, FGF_GET_ORDER(fgp_flags)); 1941 int err; 1942 index = mapping_align_index(mapping, index); 1943 1944 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping)) 1945 gfp |= __GFP_WRITE; 1946 if (fgp_flags & FGP_NOFS) 1947 gfp &= ~__GFP_FS; 1948 if (fgp_flags & FGP_NOWAIT) { 1949 gfp &= ~GFP_KERNEL; 1950 gfp |= GFP_NOWAIT | __GFP_NOWARN; 1951 } 1952 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 1953 fgp_flags |= FGP_LOCK; 1954 1955 if (order > mapping_max_folio_order(mapping)) 1956 order = mapping_max_folio_order(mapping); 1957 /* If we're not aligned, allocate a smaller folio */ 1958 if (index & ((1UL << order) - 1)) 1959 order = __ffs(index); 1960 1961 do { 1962 gfp_t alloc_gfp = gfp; 1963 1964 err = -ENOMEM; 1965 if (order > min_order) 1966 alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN; 1967 folio = filemap_alloc_folio(alloc_gfp, order); 1968 if (!folio) 1969 continue; 1970 1971 /* Init accessed so avoid atomic mark_page_accessed later */ 1972 if (fgp_flags & FGP_ACCESSED) 1973 __folio_set_referenced(folio); 1974 if (fgp_flags & FGP_DONTCACHE) 1975 __folio_set_dropbehind(folio); 1976 1977 err = filemap_add_folio(mapping, folio, index, gfp); 1978 if (!err) 1979 break; 1980 folio_put(folio); 1981 folio = NULL; 1982 } while (order-- > min_order); 1983 1984 if (err == -EEXIST) 1985 goto repeat; 1986 if (err) { 1987 /* 1988 * When NOWAIT I/O fails to allocate folios this could 1989 * be due to a nonblocking memory allocation and not 1990 * because the system actually is out of memory. 1991 * Return -EAGAIN so that there caller retries in a 1992 * blocking fashion instead of propagating -ENOMEM 1993 * to the application. 1994 */ 1995 if ((fgp_flags & FGP_NOWAIT) && err == -ENOMEM) 1996 err = -EAGAIN; 1997 return ERR_PTR(err); 1998 } 1999 /* 2000 * filemap_add_folio locks the page, and for mmap 2001 * we expect an unlocked page. 2002 */ 2003 if (folio && (fgp_flags & FGP_FOR_MMAP)) 2004 folio_unlock(folio); 2005 } 2006 2007 if (!folio) 2008 return ERR_PTR(-ENOENT); 2009 /* not an uncached lookup, clear uncached if set */ 2010 if (folio_test_dropbehind(folio) && !(fgp_flags & FGP_DONTCACHE)) 2011 folio_clear_dropbehind(folio); 2012 return folio; 2013 } 2014 EXPORT_SYMBOL(__filemap_get_folio); 2015 2016 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max, 2017 xa_mark_t mark) 2018 { 2019 struct folio *folio; 2020 2021 retry: 2022 if (mark == XA_PRESENT) 2023 folio = xas_find(xas, max); 2024 else 2025 folio = xas_find_marked(xas, max, mark); 2026 2027 if (xas_retry(xas, folio)) 2028 goto retry; 2029 /* 2030 * A shadow entry of a recently evicted page, a swap 2031 * entry from shmem/tmpfs or a DAX entry. Return it 2032 * without attempting to raise page count. 2033 */ 2034 if (!folio || xa_is_value(folio)) 2035 return folio; 2036 2037 if (!folio_try_get(folio)) 2038 goto reset; 2039 2040 if (unlikely(folio != xas_reload(xas))) { 2041 folio_put(folio); 2042 goto reset; 2043 } 2044 2045 return folio; 2046 reset: 2047 xas_reset(xas); 2048 goto retry; 2049 } 2050 2051 /** 2052 * find_get_entries - gang pagecache lookup 2053 * @mapping: The address_space to search 2054 * @start: The starting page cache index 2055 * @end: The final page index (inclusive). 2056 * @fbatch: Where the resulting entries are placed. 2057 * @indices: The cache indices corresponding to the entries in @entries 2058 * 2059 * find_get_entries() will search for and return a batch of entries in 2060 * the mapping. The entries are placed in @fbatch. find_get_entries() 2061 * takes a reference on any actual folios it returns. 2062 * 2063 * The entries have ascending indexes. The indices may not be consecutive 2064 * due to not-present entries or large folios. 2065 * 2066 * Any shadow entries of evicted folios, or swap entries from 2067 * shmem/tmpfs, are included in the returned array. 2068 * 2069 * Return: The number of entries which were found. 2070 */ 2071 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start, 2072 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2073 { 2074 XA_STATE(xas, &mapping->i_pages, *start); 2075 struct folio *folio; 2076 2077 rcu_read_lock(); 2078 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) { 2079 indices[fbatch->nr] = xas.xa_index; 2080 if (!folio_batch_add(fbatch, folio)) 2081 break; 2082 } 2083 2084 if (folio_batch_count(fbatch)) { 2085 unsigned long nr; 2086 int idx = folio_batch_count(fbatch) - 1; 2087 2088 folio = fbatch->folios[idx]; 2089 if (!xa_is_value(folio)) 2090 nr = folio_nr_pages(folio); 2091 else 2092 nr = 1 << xa_get_order(&mapping->i_pages, indices[idx]); 2093 *start = round_down(indices[idx] + nr, nr); 2094 } 2095 rcu_read_unlock(); 2096 2097 return folio_batch_count(fbatch); 2098 } 2099 2100 /** 2101 * find_lock_entries - Find a batch of pagecache entries. 2102 * @mapping: The address_space to search. 2103 * @start: The starting page cache index. 2104 * @end: The final page index (inclusive). 2105 * @fbatch: Where the resulting entries are placed. 2106 * @indices: The cache indices of the entries in @fbatch. 2107 * 2108 * find_lock_entries() will return a batch of entries from @mapping. 2109 * Swap, shadow and DAX entries are included. Folios are returned 2110 * locked and with an incremented refcount. Folios which are locked 2111 * by somebody else or under writeback are skipped. Folios which are 2112 * partially outside the range are not returned. 2113 * 2114 * The entries have ascending indexes. The indices may not be consecutive 2115 * due to not-present entries, large folios, folios which could not be 2116 * locked or folios under writeback. 2117 * 2118 * Return: The number of entries which were found. 2119 */ 2120 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start, 2121 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2122 { 2123 XA_STATE(xas, &mapping->i_pages, *start); 2124 struct folio *folio; 2125 2126 rcu_read_lock(); 2127 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) { 2128 unsigned long base; 2129 unsigned long nr; 2130 2131 if (!xa_is_value(folio)) { 2132 nr = folio_nr_pages(folio); 2133 base = folio->index; 2134 /* Omit large folio which begins before the start */ 2135 if (base < *start) 2136 goto put; 2137 /* Omit large folio which extends beyond the end */ 2138 if (base + nr - 1 > end) 2139 goto put; 2140 if (!folio_trylock(folio)) 2141 goto put; 2142 if (folio->mapping != mapping || 2143 folio_test_writeback(folio)) 2144 goto unlock; 2145 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index), 2146 folio); 2147 } else { 2148 nr = 1 << xas_get_order(&xas); 2149 base = xas.xa_index & ~(nr - 1); 2150 /* Omit order>0 value which begins before the start */ 2151 if (base < *start) 2152 continue; 2153 /* Omit order>0 value which extends beyond the end */ 2154 if (base + nr - 1 > end) 2155 break; 2156 } 2157 2158 /* Update start now so that last update is correct on return */ 2159 *start = base + nr; 2160 indices[fbatch->nr] = xas.xa_index; 2161 if (!folio_batch_add(fbatch, folio)) 2162 break; 2163 continue; 2164 unlock: 2165 folio_unlock(folio); 2166 put: 2167 folio_put(folio); 2168 } 2169 rcu_read_unlock(); 2170 2171 return folio_batch_count(fbatch); 2172 } 2173 2174 /** 2175 * filemap_get_folios - Get a batch of folios 2176 * @mapping: The address_space to search 2177 * @start: The starting page index 2178 * @end: The final page index (inclusive) 2179 * @fbatch: The batch to fill. 2180 * 2181 * Search for and return a batch of folios in the mapping starting at 2182 * index @start and up to index @end (inclusive). The folios are returned 2183 * in @fbatch with an elevated reference count. 2184 * 2185 * Return: The number of folios which were found. 2186 * We also update @start to index the next folio for the traversal. 2187 */ 2188 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start, 2189 pgoff_t end, struct folio_batch *fbatch) 2190 { 2191 return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch); 2192 } 2193 EXPORT_SYMBOL(filemap_get_folios); 2194 2195 /** 2196 * filemap_get_folios_contig - Get a batch of contiguous folios 2197 * @mapping: The address_space to search 2198 * @start: The starting page index 2199 * @end: The final page index (inclusive) 2200 * @fbatch: The batch to fill 2201 * 2202 * filemap_get_folios_contig() works exactly like filemap_get_folios(), 2203 * except the returned folios are guaranteed to be contiguous. This may 2204 * not return all contiguous folios if the batch gets filled up. 2205 * 2206 * Return: The number of folios found. 2207 * Also update @start to be positioned for traversal of the next folio. 2208 */ 2209 2210 unsigned filemap_get_folios_contig(struct address_space *mapping, 2211 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch) 2212 { 2213 XA_STATE(xas, &mapping->i_pages, *start); 2214 unsigned long nr; 2215 struct folio *folio; 2216 2217 rcu_read_lock(); 2218 2219 for (folio = xas_load(&xas); folio && xas.xa_index <= end; 2220 folio = xas_next(&xas)) { 2221 if (xas_retry(&xas, folio)) 2222 continue; 2223 /* 2224 * If the entry has been swapped out, we can stop looking. 2225 * No current caller is looking for DAX entries. 2226 */ 2227 if (xa_is_value(folio)) 2228 goto update_start; 2229 2230 /* If we landed in the middle of a THP, continue at its end. */ 2231 if (xa_is_sibling(folio)) 2232 goto update_start; 2233 2234 if (!folio_try_get(folio)) 2235 goto retry; 2236 2237 if (unlikely(folio != xas_reload(&xas))) 2238 goto put_folio; 2239 2240 if (!folio_batch_add(fbatch, folio)) { 2241 nr = folio_nr_pages(folio); 2242 *start = folio->index + nr; 2243 goto out; 2244 } 2245 continue; 2246 put_folio: 2247 folio_put(folio); 2248 2249 retry: 2250 xas_reset(&xas); 2251 } 2252 2253 update_start: 2254 nr = folio_batch_count(fbatch); 2255 2256 if (nr) { 2257 folio = fbatch->folios[nr - 1]; 2258 *start = folio_next_index(folio); 2259 } 2260 out: 2261 rcu_read_unlock(); 2262 return folio_batch_count(fbatch); 2263 } 2264 EXPORT_SYMBOL(filemap_get_folios_contig); 2265 2266 /** 2267 * filemap_get_folios_tag - Get a batch of folios matching @tag 2268 * @mapping: The address_space to search 2269 * @start: The starting page index 2270 * @end: The final page index (inclusive) 2271 * @tag: The tag index 2272 * @fbatch: The batch to fill 2273 * 2274 * The first folio may start before @start; if it does, it will contain 2275 * @start. The final folio may extend beyond @end; if it does, it will 2276 * contain @end. The folios have ascending indices. There may be gaps 2277 * between the folios if there are indices which have no folio in the 2278 * page cache. If folios are added to or removed from the page cache 2279 * while this is running, they may or may not be found by this call. 2280 * Only returns folios that are tagged with @tag. 2281 * 2282 * Return: The number of folios found. 2283 * Also update @start to index the next folio for traversal. 2284 */ 2285 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start, 2286 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch) 2287 { 2288 XA_STATE(xas, &mapping->i_pages, *start); 2289 struct folio *folio; 2290 2291 rcu_read_lock(); 2292 while ((folio = find_get_entry(&xas, end, tag)) != NULL) { 2293 /* 2294 * Shadow entries should never be tagged, but this iteration 2295 * is lockless so there is a window for page reclaim to evict 2296 * a page we saw tagged. Skip over it. 2297 */ 2298 if (xa_is_value(folio)) 2299 continue; 2300 if (!folio_batch_add(fbatch, folio)) { 2301 unsigned long nr = folio_nr_pages(folio); 2302 *start = folio->index + nr; 2303 goto out; 2304 } 2305 } 2306 /* 2307 * We come here when there is no page beyond @end. We take care to not 2308 * overflow the index @start as it confuses some of the callers. This 2309 * breaks the iteration when there is a page at index -1 but that is 2310 * already broke anyway. 2311 */ 2312 if (end == (pgoff_t)-1) 2313 *start = (pgoff_t)-1; 2314 else 2315 *start = end + 1; 2316 out: 2317 rcu_read_unlock(); 2318 2319 return folio_batch_count(fbatch); 2320 } 2321 EXPORT_SYMBOL(filemap_get_folios_tag); 2322 2323 /* 2324 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 2325 * a _large_ part of the i/o request. Imagine the worst scenario: 2326 * 2327 * ---R__________________________________________B__________ 2328 * ^ reading here ^ bad block(assume 4k) 2329 * 2330 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2331 * => failing the whole request => read(R) => read(R+1) => 2332 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2333 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2334 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2335 * 2336 * It is going insane. Fix it by quickly scaling down the readahead size. 2337 */ 2338 static void shrink_readahead_size_eio(struct file_ra_state *ra) 2339 { 2340 ra->ra_pages /= 4; 2341 } 2342 2343 /* 2344 * filemap_get_read_batch - Get a batch of folios for read 2345 * 2346 * Get a batch of folios which represent a contiguous range of bytes in 2347 * the file. No exceptional entries will be returned. If @index is in 2348 * the middle of a folio, the entire folio will be returned. The last 2349 * folio in the batch may have the readahead flag set or the uptodate flag 2350 * clear so that the caller can take the appropriate action. 2351 */ 2352 static void filemap_get_read_batch(struct address_space *mapping, 2353 pgoff_t index, pgoff_t max, struct folio_batch *fbatch) 2354 { 2355 XA_STATE(xas, &mapping->i_pages, index); 2356 struct folio *folio; 2357 2358 rcu_read_lock(); 2359 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) { 2360 if (xas_retry(&xas, folio)) 2361 continue; 2362 if (xas.xa_index > max || xa_is_value(folio)) 2363 break; 2364 if (xa_is_sibling(folio)) 2365 break; 2366 if (!folio_try_get(folio)) 2367 goto retry; 2368 2369 if (unlikely(folio != xas_reload(&xas))) 2370 goto put_folio; 2371 2372 if (!folio_batch_add(fbatch, folio)) 2373 break; 2374 if (!folio_test_uptodate(folio)) 2375 break; 2376 if (folio_test_readahead(folio)) 2377 break; 2378 xas_advance(&xas, folio_next_index(folio) - 1); 2379 continue; 2380 put_folio: 2381 folio_put(folio); 2382 retry: 2383 xas_reset(&xas); 2384 } 2385 rcu_read_unlock(); 2386 } 2387 2388 static int filemap_read_folio(struct file *file, filler_t filler, 2389 struct folio *folio) 2390 { 2391 bool workingset = folio_test_workingset(folio); 2392 unsigned long pflags; 2393 int error; 2394 2395 /* Start the actual read. The read will unlock the page. */ 2396 if (unlikely(workingset)) 2397 psi_memstall_enter(&pflags); 2398 error = filler(file, folio); 2399 if (unlikely(workingset)) 2400 psi_memstall_leave(&pflags); 2401 if (error) 2402 return error; 2403 2404 error = folio_wait_locked_killable(folio); 2405 if (error) 2406 return error; 2407 if (folio_test_uptodate(folio)) 2408 return 0; 2409 if (file) 2410 shrink_readahead_size_eio(&file->f_ra); 2411 return -EIO; 2412 } 2413 2414 static bool filemap_range_uptodate(struct address_space *mapping, 2415 loff_t pos, size_t count, struct folio *folio, 2416 bool need_uptodate) 2417 { 2418 if (folio_test_uptodate(folio)) 2419 return true; 2420 /* pipes can't handle partially uptodate pages */ 2421 if (need_uptodate) 2422 return false; 2423 if (!mapping->a_ops->is_partially_uptodate) 2424 return false; 2425 if (mapping->host->i_blkbits >= folio_shift(folio)) 2426 return false; 2427 2428 if (folio_pos(folio) > pos) { 2429 count -= folio_pos(folio) - pos; 2430 pos = 0; 2431 } else { 2432 pos -= folio_pos(folio); 2433 } 2434 2435 return mapping->a_ops->is_partially_uptodate(folio, pos, count); 2436 } 2437 2438 static int filemap_update_page(struct kiocb *iocb, 2439 struct address_space *mapping, size_t count, 2440 struct folio *folio, bool need_uptodate) 2441 { 2442 int error; 2443 2444 if (iocb->ki_flags & IOCB_NOWAIT) { 2445 if (!filemap_invalidate_trylock_shared(mapping)) 2446 return -EAGAIN; 2447 } else { 2448 filemap_invalidate_lock_shared(mapping); 2449 } 2450 2451 if (!folio_trylock(folio)) { 2452 error = -EAGAIN; 2453 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) 2454 goto unlock_mapping; 2455 if (!(iocb->ki_flags & IOCB_WAITQ)) { 2456 filemap_invalidate_unlock_shared(mapping); 2457 /* 2458 * This is where we usually end up waiting for a 2459 * previously submitted readahead to finish. 2460 */ 2461 folio_put_wait_locked(folio, TASK_KILLABLE); 2462 return AOP_TRUNCATED_PAGE; 2463 } 2464 error = __folio_lock_async(folio, iocb->ki_waitq); 2465 if (error) 2466 goto unlock_mapping; 2467 } 2468 2469 error = AOP_TRUNCATED_PAGE; 2470 if (!folio->mapping) 2471 goto unlock; 2472 2473 error = 0; 2474 if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio, 2475 need_uptodate)) 2476 goto unlock; 2477 2478 error = -EAGAIN; 2479 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ)) 2480 goto unlock; 2481 2482 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio, 2483 folio); 2484 goto unlock_mapping; 2485 unlock: 2486 folio_unlock(folio); 2487 unlock_mapping: 2488 filemap_invalidate_unlock_shared(mapping); 2489 if (error == AOP_TRUNCATED_PAGE) 2490 folio_put(folio); 2491 return error; 2492 } 2493 2494 static int filemap_create_folio(struct kiocb *iocb, struct folio_batch *fbatch) 2495 { 2496 struct address_space *mapping = iocb->ki_filp->f_mapping; 2497 struct folio *folio; 2498 int error; 2499 unsigned int min_order = mapping_min_folio_order(mapping); 2500 pgoff_t index; 2501 2502 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ)) 2503 return -EAGAIN; 2504 2505 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), min_order); 2506 if (!folio) 2507 return -ENOMEM; 2508 if (iocb->ki_flags & IOCB_DONTCACHE) 2509 __folio_set_dropbehind(folio); 2510 2511 /* 2512 * Protect against truncate / hole punch. Grabbing invalidate_lock 2513 * here assures we cannot instantiate and bring uptodate new 2514 * pagecache folios after evicting page cache during truncate 2515 * and before actually freeing blocks. Note that we could 2516 * release invalidate_lock after inserting the folio into 2517 * the page cache as the locked folio would then be enough to 2518 * synchronize with hole punching. But there are code paths 2519 * such as filemap_update_page() filling in partially uptodate 2520 * pages or ->readahead() that need to hold invalidate_lock 2521 * while mapping blocks for IO so let's hold the lock here as 2522 * well to keep locking rules simple. 2523 */ 2524 filemap_invalidate_lock_shared(mapping); 2525 index = (iocb->ki_pos >> (PAGE_SHIFT + min_order)) << min_order; 2526 error = filemap_add_folio(mapping, folio, index, 2527 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2528 if (error == -EEXIST) 2529 error = AOP_TRUNCATED_PAGE; 2530 if (error) 2531 goto error; 2532 2533 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio, 2534 folio); 2535 if (error) 2536 goto error; 2537 2538 filemap_invalidate_unlock_shared(mapping); 2539 folio_batch_add(fbatch, folio); 2540 return 0; 2541 error: 2542 filemap_invalidate_unlock_shared(mapping); 2543 folio_put(folio); 2544 return error; 2545 } 2546 2547 static int filemap_readahead(struct kiocb *iocb, struct file *file, 2548 struct address_space *mapping, struct folio *folio, 2549 pgoff_t last_index) 2550 { 2551 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index); 2552 2553 if (iocb->ki_flags & IOCB_NOIO) 2554 return -EAGAIN; 2555 if (iocb->ki_flags & IOCB_DONTCACHE) 2556 ractl.dropbehind = 1; 2557 page_cache_async_ra(&ractl, folio, last_index - folio->index); 2558 return 0; 2559 } 2560 2561 static int filemap_get_pages(struct kiocb *iocb, size_t count, 2562 struct folio_batch *fbatch, bool need_uptodate) 2563 { 2564 struct file *filp = iocb->ki_filp; 2565 struct address_space *mapping = filp->f_mapping; 2566 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT; 2567 pgoff_t last_index; 2568 struct folio *folio; 2569 unsigned int flags; 2570 int err = 0; 2571 2572 /* "last_index" is the index of the page beyond the end of the read */ 2573 last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE); 2574 retry: 2575 if (fatal_signal_pending(current)) 2576 return -EINTR; 2577 2578 filemap_get_read_batch(mapping, index, last_index - 1, fbatch); 2579 if (!folio_batch_count(fbatch)) { 2580 DEFINE_READAHEAD(ractl, filp, &filp->f_ra, mapping, index); 2581 2582 if (iocb->ki_flags & IOCB_NOIO) 2583 return -EAGAIN; 2584 if (iocb->ki_flags & IOCB_NOWAIT) 2585 flags = memalloc_noio_save(); 2586 if (iocb->ki_flags & IOCB_DONTCACHE) 2587 ractl.dropbehind = 1; 2588 page_cache_sync_ra(&ractl, last_index - index); 2589 if (iocb->ki_flags & IOCB_NOWAIT) 2590 memalloc_noio_restore(flags); 2591 filemap_get_read_batch(mapping, index, last_index - 1, fbatch); 2592 } 2593 if (!folio_batch_count(fbatch)) { 2594 err = filemap_create_folio(iocb, fbatch); 2595 if (err == AOP_TRUNCATED_PAGE) 2596 goto retry; 2597 return err; 2598 } 2599 2600 folio = fbatch->folios[folio_batch_count(fbatch) - 1]; 2601 if (folio_test_readahead(folio)) { 2602 err = filemap_readahead(iocb, filp, mapping, folio, last_index); 2603 if (err) 2604 goto err; 2605 } 2606 if (!folio_test_uptodate(folio)) { 2607 if ((iocb->ki_flags & IOCB_WAITQ) && 2608 folio_batch_count(fbatch) > 1) 2609 iocb->ki_flags |= IOCB_NOWAIT; 2610 err = filemap_update_page(iocb, mapping, count, folio, 2611 need_uptodate); 2612 if (err) 2613 goto err; 2614 } 2615 2616 trace_mm_filemap_get_pages(mapping, index, last_index - 1); 2617 return 0; 2618 err: 2619 if (err < 0) 2620 folio_put(folio); 2621 if (likely(--fbatch->nr)) 2622 return 0; 2623 if (err == AOP_TRUNCATED_PAGE) 2624 goto retry; 2625 return err; 2626 } 2627 2628 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio) 2629 { 2630 unsigned int shift = folio_shift(folio); 2631 2632 return (pos1 >> shift == pos2 >> shift); 2633 } 2634 2635 static void filemap_end_dropbehind_read(struct address_space *mapping, 2636 struct folio *folio) 2637 { 2638 if (!folio_test_dropbehind(folio)) 2639 return; 2640 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 2641 return; 2642 if (folio_trylock(folio)) { 2643 if (folio_test_clear_dropbehind(folio)) 2644 folio_unmap_invalidate(mapping, folio, 0); 2645 folio_unlock(folio); 2646 } 2647 } 2648 2649 /** 2650 * filemap_read - Read data from the page cache. 2651 * @iocb: The iocb to read. 2652 * @iter: Destination for the data. 2653 * @already_read: Number of bytes already read by the caller. 2654 * 2655 * Copies data from the page cache. If the data is not currently present, 2656 * uses the readahead and read_folio address_space operations to fetch it. 2657 * 2658 * Return: Total number of bytes copied, including those already read by 2659 * the caller. If an error happens before any bytes are copied, returns 2660 * a negative error number. 2661 */ 2662 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter, 2663 ssize_t already_read) 2664 { 2665 struct file *filp = iocb->ki_filp; 2666 struct file_ra_state *ra = &filp->f_ra; 2667 struct address_space *mapping = filp->f_mapping; 2668 struct inode *inode = mapping->host; 2669 struct folio_batch fbatch; 2670 int i, error = 0; 2671 bool writably_mapped; 2672 loff_t isize, end_offset; 2673 loff_t last_pos = ra->prev_pos; 2674 2675 if (unlikely(iocb->ki_pos < 0)) 2676 return -EINVAL; 2677 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes)) 2678 return 0; 2679 if (unlikely(!iov_iter_count(iter))) 2680 return 0; 2681 2682 iov_iter_truncate(iter, inode->i_sb->s_maxbytes - iocb->ki_pos); 2683 folio_batch_init(&fbatch); 2684 2685 do { 2686 cond_resched(); 2687 2688 /* 2689 * If we've already successfully copied some data, then we 2690 * can no longer safely return -EIOCBQUEUED. Hence mark 2691 * an async read NOWAIT at that point. 2692 */ 2693 if ((iocb->ki_flags & IOCB_WAITQ) && already_read) 2694 iocb->ki_flags |= IOCB_NOWAIT; 2695 2696 if (unlikely(iocb->ki_pos >= i_size_read(inode))) 2697 break; 2698 2699 error = filemap_get_pages(iocb, iter->count, &fbatch, false); 2700 if (error < 0) 2701 break; 2702 2703 /* 2704 * i_size must be checked after we know the pages are Uptodate. 2705 * 2706 * Checking i_size after the check allows us to calculate 2707 * the correct value for "nr", which means the zero-filled 2708 * part of the page is not copied back to userspace (unless 2709 * another truncate extends the file - this is desired though). 2710 */ 2711 isize = i_size_read(inode); 2712 if (unlikely(iocb->ki_pos >= isize)) 2713 goto put_folios; 2714 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count); 2715 2716 /* 2717 * Once we start copying data, we don't want to be touching any 2718 * cachelines that might be contended: 2719 */ 2720 writably_mapped = mapping_writably_mapped(mapping); 2721 2722 /* 2723 * When a read accesses the same folio several times, only 2724 * mark it as accessed the first time. 2725 */ 2726 if (!pos_same_folio(iocb->ki_pos, last_pos - 1, 2727 fbatch.folios[0])) 2728 folio_mark_accessed(fbatch.folios[0]); 2729 2730 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2731 struct folio *folio = fbatch.folios[i]; 2732 size_t fsize = folio_size(folio); 2733 size_t offset = iocb->ki_pos & (fsize - 1); 2734 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos, 2735 fsize - offset); 2736 size_t copied; 2737 2738 if (end_offset < folio_pos(folio)) 2739 break; 2740 if (i > 0) 2741 folio_mark_accessed(folio); 2742 /* 2743 * If users can be writing to this folio using arbitrary 2744 * virtual addresses, take care of potential aliasing 2745 * before reading the folio on the kernel side. 2746 */ 2747 if (writably_mapped) 2748 flush_dcache_folio(folio); 2749 2750 copied = copy_folio_to_iter(folio, offset, bytes, iter); 2751 2752 already_read += copied; 2753 iocb->ki_pos += copied; 2754 last_pos = iocb->ki_pos; 2755 2756 if (copied < bytes) { 2757 error = -EFAULT; 2758 break; 2759 } 2760 } 2761 put_folios: 2762 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2763 struct folio *folio = fbatch.folios[i]; 2764 2765 filemap_end_dropbehind_read(mapping, folio); 2766 folio_put(folio); 2767 } 2768 folio_batch_init(&fbatch); 2769 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error); 2770 2771 file_accessed(filp); 2772 ra->prev_pos = last_pos; 2773 return already_read ? already_read : error; 2774 } 2775 EXPORT_SYMBOL_GPL(filemap_read); 2776 2777 int kiocb_write_and_wait(struct kiocb *iocb, size_t count) 2778 { 2779 struct address_space *mapping = iocb->ki_filp->f_mapping; 2780 loff_t pos = iocb->ki_pos; 2781 loff_t end = pos + count - 1; 2782 2783 if (iocb->ki_flags & IOCB_NOWAIT) { 2784 if (filemap_range_needs_writeback(mapping, pos, end)) 2785 return -EAGAIN; 2786 return 0; 2787 } 2788 2789 return filemap_write_and_wait_range(mapping, pos, end); 2790 } 2791 EXPORT_SYMBOL_GPL(kiocb_write_and_wait); 2792 2793 int filemap_invalidate_pages(struct address_space *mapping, 2794 loff_t pos, loff_t end, bool nowait) 2795 { 2796 int ret; 2797 2798 if (nowait) { 2799 /* we could block if there are any pages in the range */ 2800 if (filemap_range_has_page(mapping, pos, end)) 2801 return -EAGAIN; 2802 } else { 2803 ret = filemap_write_and_wait_range(mapping, pos, end); 2804 if (ret) 2805 return ret; 2806 } 2807 2808 /* 2809 * After a write we want buffered reads to be sure to go to disk to get 2810 * the new data. We invalidate clean cached page from the region we're 2811 * about to write. We do this *before* the write so that we can return 2812 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2813 */ 2814 return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, 2815 end >> PAGE_SHIFT); 2816 } 2817 2818 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count) 2819 { 2820 struct address_space *mapping = iocb->ki_filp->f_mapping; 2821 2822 return filemap_invalidate_pages(mapping, iocb->ki_pos, 2823 iocb->ki_pos + count - 1, 2824 iocb->ki_flags & IOCB_NOWAIT); 2825 } 2826 EXPORT_SYMBOL_GPL(kiocb_invalidate_pages); 2827 2828 /** 2829 * generic_file_read_iter - generic filesystem read routine 2830 * @iocb: kernel I/O control block 2831 * @iter: destination for the data read 2832 * 2833 * This is the "read_iter()" routine for all filesystems 2834 * that can use the page cache directly. 2835 * 2836 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall 2837 * be returned when no data can be read without waiting for I/O requests 2838 * to complete; it doesn't prevent readahead. 2839 * 2840 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O 2841 * requests shall be made for the read or for readahead. When no data 2842 * can be read, -EAGAIN shall be returned. When readahead would be 2843 * triggered, a partial, possibly empty read shall be returned. 2844 * 2845 * Return: 2846 * * number of bytes copied, even for partial reads 2847 * * negative error code (or 0 if IOCB_NOIO) if nothing was read 2848 */ 2849 ssize_t 2850 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2851 { 2852 size_t count = iov_iter_count(iter); 2853 ssize_t retval = 0; 2854 2855 if (!count) 2856 return 0; /* skip atime */ 2857 2858 if (iocb->ki_flags & IOCB_DIRECT) { 2859 struct file *file = iocb->ki_filp; 2860 struct address_space *mapping = file->f_mapping; 2861 struct inode *inode = mapping->host; 2862 2863 retval = kiocb_write_and_wait(iocb, count); 2864 if (retval < 0) 2865 return retval; 2866 file_accessed(file); 2867 2868 retval = mapping->a_ops->direct_IO(iocb, iter); 2869 if (retval >= 0) { 2870 iocb->ki_pos += retval; 2871 count -= retval; 2872 } 2873 if (retval != -EIOCBQUEUED) 2874 iov_iter_revert(iter, count - iov_iter_count(iter)); 2875 2876 /* 2877 * Btrfs can have a short DIO read if we encounter 2878 * compressed extents, so if there was an error, or if 2879 * we've already read everything we wanted to, or if 2880 * there was a short read because we hit EOF, go ahead 2881 * and return. Otherwise fallthrough to buffered io for 2882 * the rest of the read. Buffered reads will not work for 2883 * DAX files, so don't bother trying. 2884 */ 2885 if (retval < 0 || !count || IS_DAX(inode)) 2886 return retval; 2887 if (iocb->ki_pos >= i_size_read(inode)) 2888 return retval; 2889 } 2890 2891 return filemap_read(iocb, iter, retval); 2892 } 2893 EXPORT_SYMBOL(generic_file_read_iter); 2894 2895 /* 2896 * Splice subpages from a folio into a pipe. 2897 */ 2898 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe, 2899 struct folio *folio, loff_t fpos, size_t size) 2900 { 2901 struct page *page; 2902 size_t spliced = 0, offset = offset_in_folio(folio, fpos); 2903 2904 page = folio_page(folio, offset / PAGE_SIZE); 2905 size = min(size, folio_size(folio) - offset); 2906 offset %= PAGE_SIZE; 2907 2908 while (spliced < size && !pipe_is_full(pipe)) { 2909 struct pipe_buffer *buf = pipe_head_buf(pipe); 2910 size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced); 2911 2912 *buf = (struct pipe_buffer) { 2913 .ops = &page_cache_pipe_buf_ops, 2914 .page = page, 2915 .offset = offset, 2916 .len = part, 2917 }; 2918 folio_get(folio); 2919 pipe->head++; 2920 page++; 2921 spliced += part; 2922 offset = 0; 2923 } 2924 2925 return spliced; 2926 } 2927 2928 /** 2929 * filemap_splice_read - Splice data from a file's pagecache into a pipe 2930 * @in: The file to read from 2931 * @ppos: Pointer to the file position to read from 2932 * @pipe: The pipe to splice into 2933 * @len: The amount to splice 2934 * @flags: The SPLICE_F_* flags 2935 * 2936 * This function gets folios from a file's pagecache and splices them into the 2937 * pipe. Readahead will be called as necessary to fill more folios. This may 2938 * be used for blockdevs also. 2939 * 2940 * Return: On success, the number of bytes read will be returned and *@ppos 2941 * will be updated if appropriate; 0 will be returned if there is no more data 2942 * to be read; -EAGAIN will be returned if the pipe had no space, and some 2943 * other negative error code will be returned on error. A short read may occur 2944 * if the pipe has insufficient space, we reach the end of the data or we hit a 2945 * hole. 2946 */ 2947 ssize_t filemap_splice_read(struct file *in, loff_t *ppos, 2948 struct pipe_inode_info *pipe, 2949 size_t len, unsigned int flags) 2950 { 2951 struct folio_batch fbatch; 2952 struct kiocb iocb; 2953 size_t total_spliced = 0, used, npages; 2954 loff_t isize, end_offset; 2955 bool writably_mapped; 2956 int i, error = 0; 2957 2958 if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes)) 2959 return 0; 2960 2961 init_sync_kiocb(&iocb, in); 2962 iocb.ki_pos = *ppos; 2963 2964 /* Work out how much data we can actually add into the pipe */ 2965 used = pipe_buf_usage(pipe); 2966 npages = max_t(ssize_t, pipe->max_usage - used, 0); 2967 len = min_t(size_t, len, npages * PAGE_SIZE); 2968 2969 folio_batch_init(&fbatch); 2970 2971 do { 2972 cond_resched(); 2973 2974 if (*ppos >= i_size_read(in->f_mapping->host)) 2975 break; 2976 2977 iocb.ki_pos = *ppos; 2978 error = filemap_get_pages(&iocb, len, &fbatch, true); 2979 if (error < 0) 2980 break; 2981 2982 /* 2983 * i_size must be checked after we know the pages are Uptodate. 2984 * 2985 * Checking i_size after the check allows us to calculate 2986 * the correct value for "nr", which means the zero-filled 2987 * part of the page is not copied back to userspace (unless 2988 * another truncate extends the file - this is desired though). 2989 */ 2990 isize = i_size_read(in->f_mapping->host); 2991 if (unlikely(*ppos >= isize)) 2992 break; 2993 end_offset = min_t(loff_t, isize, *ppos + len); 2994 2995 /* 2996 * Once we start copying data, we don't want to be touching any 2997 * cachelines that might be contended: 2998 */ 2999 writably_mapped = mapping_writably_mapped(in->f_mapping); 3000 3001 for (i = 0; i < folio_batch_count(&fbatch); i++) { 3002 struct folio *folio = fbatch.folios[i]; 3003 size_t n; 3004 3005 if (folio_pos(folio) >= end_offset) 3006 goto out; 3007 folio_mark_accessed(folio); 3008 3009 /* 3010 * If users can be writing to this folio using arbitrary 3011 * virtual addresses, take care of potential aliasing 3012 * before reading the folio on the kernel side. 3013 */ 3014 if (writably_mapped) 3015 flush_dcache_folio(folio); 3016 3017 n = min_t(loff_t, len, isize - *ppos); 3018 n = splice_folio_into_pipe(pipe, folio, *ppos, n); 3019 if (!n) 3020 goto out; 3021 len -= n; 3022 total_spliced += n; 3023 *ppos += n; 3024 in->f_ra.prev_pos = *ppos; 3025 if (pipe_is_full(pipe)) 3026 goto out; 3027 } 3028 3029 folio_batch_release(&fbatch); 3030 } while (len); 3031 3032 out: 3033 folio_batch_release(&fbatch); 3034 file_accessed(in); 3035 3036 return total_spliced ? total_spliced : error; 3037 } 3038 EXPORT_SYMBOL(filemap_splice_read); 3039 3040 static inline loff_t folio_seek_hole_data(struct xa_state *xas, 3041 struct address_space *mapping, struct folio *folio, 3042 loff_t start, loff_t end, bool seek_data) 3043 { 3044 const struct address_space_operations *ops = mapping->a_ops; 3045 size_t offset, bsz = i_blocksize(mapping->host); 3046 3047 if (xa_is_value(folio) || folio_test_uptodate(folio)) 3048 return seek_data ? start : end; 3049 if (!ops->is_partially_uptodate) 3050 return seek_data ? end : start; 3051 3052 xas_pause(xas); 3053 rcu_read_unlock(); 3054 folio_lock(folio); 3055 if (unlikely(folio->mapping != mapping)) 3056 goto unlock; 3057 3058 offset = offset_in_folio(folio, start) & ~(bsz - 1); 3059 3060 do { 3061 if (ops->is_partially_uptodate(folio, offset, bsz) == 3062 seek_data) 3063 break; 3064 start = (start + bsz) & ~((u64)bsz - 1); 3065 offset += bsz; 3066 } while (offset < folio_size(folio)); 3067 unlock: 3068 folio_unlock(folio); 3069 rcu_read_lock(); 3070 return start; 3071 } 3072 3073 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio) 3074 { 3075 if (xa_is_value(folio)) 3076 return PAGE_SIZE << xas_get_order(xas); 3077 return folio_size(folio); 3078 } 3079 3080 /** 3081 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache. 3082 * @mapping: Address space to search. 3083 * @start: First byte to consider. 3084 * @end: Limit of search (exclusive). 3085 * @whence: Either SEEK_HOLE or SEEK_DATA. 3086 * 3087 * If the page cache knows which blocks contain holes and which blocks 3088 * contain data, your filesystem can use this function to implement 3089 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are 3090 * entirely memory-based such as tmpfs, and filesystems which support 3091 * unwritten extents. 3092 * 3093 * Return: The requested offset on success, or -ENXIO if @whence specifies 3094 * SEEK_DATA and there is no data after @start. There is an implicit hole 3095 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start 3096 * and @end contain data. 3097 */ 3098 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start, 3099 loff_t end, int whence) 3100 { 3101 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT); 3102 pgoff_t max = (end - 1) >> PAGE_SHIFT; 3103 bool seek_data = (whence == SEEK_DATA); 3104 struct folio *folio; 3105 3106 if (end <= start) 3107 return -ENXIO; 3108 3109 rcu_read_lock(); 3110 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) { 3111 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT; 3112 size_t seek_size; 3113 3114 if (start < pos) { 3115 if (!seek_data) 3116 goto unlock; 3117 start = pos; 3118 } 3119 3120 seek_size = seek_folio_size(&xas, folio); 3121 pos = round_up((u64)pos + 1, seek_size); 3122 start = folio_seek_hole_data(&xas, mapping, folio, start, pos, 3123 seek_data); 3124 if (start < pos) 3125 goto unlock; 3126 if (start >= end) 3127 break; 3128 if (seek_size > PAGE_SIZE) 3129 xas_set(&xas, pos >> PAGE_SHIFT); 3130 if (!xa_is_value(folio)) 3131 folio_put(folio); 3132 } 3133 if (seek_data) 3134 start = -ENXIO; 3135 unlock: 3136 rcu_read_unlock(); 3137 if (folio && !xa_is_value(folio)) 3138 folio_put(folio); 3139 if (start > end) 3140 return end; 3141 return start; 3142 } 3143 3144 #ifdef CONFIG_MMU 3145 #define MMAP_LOTSAMISS (100) 3146 /* 3147 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock 3148 * @vmf - the vm_fault for this fault. 3149 * @folio - the folio to lock. 3150 * @fpin - the pointer to the file we may pin (or is already pinned). 3151 * 3152 * This works similar to lock_folio_or_retry in that it can drop the 3153 * mmap_lock. It differs in that it actually returns the folio locked 3154 * if it returns 1 and 0 if it couldn't lock the folio. If we did have 3155 * to drop the mmap_lock then fpin will point to the pinned file and 3156 * needs to be fput()'ed at a later point. 3157 */ 3158 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio, 3159 struct file **fpin) 3160 { 3161 if (folio_trylock(folio)) 3162 return 1; 3163 3164 /* 3165 * NOTE! This will make us return with VM_FAULT_RETRY, but with 3166 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT 3167 * is supposed to work. We have way too many special cases.. 3168 */ 3169 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 3170 return 0; 3171 3172 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 3173 if (vmf->flags & FAULT_FLAG_KILLABLE) { 3174 if (__folio_lock_killable(folio)) { 3175 /* 3176 * We didn't have the right flags to drop the 3177 * fault lock, but all fault_handlers only check 3178 * for fatal signals if we return VM_FAULT_RETRY, 3179 * so we need to drop the fault lock here and 3180 * return 0 if we don't have a fpin. 3181 */ 3182 if (*fpin == NULL) 3183 release_fault_lock(vmf); 3184 return 0; 3185 } 3186 } else 3187 __folio_lock(folio); 3188 3189 return 1; 3190 } 3191 3192 /* 3193 * Synchronous readahead happens when we don't even find a page in the page 3194 * cache at all. We don't want to perform IO under the mmap sem, so if we have 3195 * to drop the mmap sem we return the file that was pinned in order for us to do 3196 * that. If we didn't pin a file then we return NULL. The file that is 3197 * returned needs to be fput()'ed when we're done with it. 3198 */ 3199 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 3200 { 3201 struct file *file = vmf->vma->vm_file; 3202 struct file_ra_state *ra = &file->f_ra; 3203 struct address_space *mapping = file->f_mapping; 3204 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff); 3205 struct file *fpin = NULL; 3206 unsigned long vm_flags = vmf->vma->vm_flags; 3207 unsigned int mmap_miss; 3208 3209 /* 3210 * If we have pre-content watches we need to disable readahead to make 3211 * sure that we don't populate our mapping with 0 filled pages that we 3212 * never emitted an event for. 3213 */ 3214 if (unlikely(FMODE_FSNOTIFY_HSM(file->f_mode))) 3215 return fpin; 3216 3217 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3218 /* Use the readahead code, even if readahead is disabled */ 3219 if ((vm_flags & VM_HUGEPAGE) && HPAGE_PMD_ORDER <= MAX_PAGECACHE_ORDER) { 3220 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3221 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1); 3222 ra->size = HPAGE_PMD_NR; 3223 /* 3224 * Fetch two PMD folios, so we get the chance to actually 3225 * readahead, unless we've been told not to. 3226 */ 3227 if (!(vm_flags & VM_RAND_READ)) 3228 ra->size *= 2; 3229 ra->async_size = HPAGE_PMD_NR; 3230 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER); 3231 return fpin; 3232 } 3233 #endif 3234 3235 /* If we don't want any read-ahead, don't bother */ 3236 if (vm_flags & VM_RAND_READ) 3237 return fpin; 3238 if (!ra->ra_pages) 3239 return fpin; 3240 3241 if (vm_flags & VM_SEQ_READ) { 3242 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3243 page_cache_sync_ra(&ractl, ra->ra_pages); 3244 return fpin; 3245 } 3246 3247 /* Avoid banging the cache line if not needed */ 3248 mmap_miss = READ_ONCE(ra->mmap_miss); 3249 if (mmap_miss < MMAP_LOTSAMISS * 10) 3250 WRITE_ONCE(ra->mmap_miss, ++mmap_miss); 3251 3252 /* 3253 * Do we miss much more than hit in this file? If so, 3254 * stop bothering with read-ahead. It will only hurt. 3255 */ 3256 if (mmap_miss > MMAP_LOTSAMISS) 3257 return fpin; 3258 3259 /* 3260 * mmap read-around 3261 */ 3262 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3263 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2); 3264 ra->size = ra->ra_pages; 3265 ra->async_size = ra->ra_pages / 4; 3266 ractl._index = ra->start; 3267 page_cache_ra_order(&ractl, ra, 0); 3268 return fpin; 3269 } 3270 3271 /* 3272 * Asynchronous readahead happens when we find the page and PG_readahead, 3273 * so we want to possibly extend the readahead further. We return the file that 3274 * was pinned if we have to drop the mmap_lock in order to do IO. 3275 */ 3276 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 3277 struct folio *folio) 3278 { 3279 struct file *file = vmf->vma->vm_file; 3280 struct file_ra_state *ra = &file->f_ra; 3281 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff); 3282 struct file *fpin = NULL; 3283 unsigned int mmap_miss; 3284 3285 /* See comment in do_sync_mmap_readahead. */ 3286 if (unlikely(FMODE_FSNOTIFY_HSM(file->f_mode))) 3287 return fpin; 3288 3289 /* If we don't want any read-ahead, don't bother */ 3290 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages) 3291 return fpin; 3292 3293 mmap_miss = READ_ONCE(ra->mmap_miss); 3294 if (mmap_miss) 3295 WRITE_ONCE(ra->mmap_miss, --mmap_miss); 3296 3297 if (folio_test_readahead(folio)) { 3298 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3299 page_cache_async_ra(&ractl, folio, ra->ra_pages); 3300 } 3301 return fpin; 3302 } 3303 3304 static vm_fault_t filemap_fault_recheck_pte_none(struct vm_fault *vmf) 3305 { 3306 struct vm_area_struct *vma = vmf->vma; 3307 vm_fault_t ret = 0; 3308 pte_t *ptep; 3309 3310 /* 3311 * We might have COW'ed a pagecache folio and might now have an mlocked 3312 * anon folio mapped. The original pagecache folio is not mlocked and 3313 * might have been evicted. During a read+clear/modify/write update of 3314 * the PTE, such as done in do_numa_page()/change_pte_range(), we 3315 * temporarily clear the PTE under PT lock and might detect it here as 3316 * "none" when not holding the PT lock. 3317 * 3318 * Not rechecking the PTE under PT lock could result in an unexpected 3319 * major fault in an mlock'ed region. Recheck only for this special 3320 * scenario while holding the PT lock, to not degrade non-mlocked 3321 * scenarios. Recheck the PTE without PT lock firstly, thereby reducing 3322 * the number of times we hold PT lock. 3323 */ 3324 if (!(vma->vm_flags & VM_LOCKED)) 3325 return 0; 3326 3327 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 3328 return 0; 3329 3330 ptep = pte_offset_map_ro_nolock(vma->vm_mm, vmf->pmd, vmf->address, 3331 &vmf->ptl); 3332 if (unlikely(!ptep)) 3333 return VM_FAULT_NOPAGE; 3334 3335 if (unlikely(!pte_none(ptep_get_lockless(ptep)))) { 3336 ret = VM_FAULT_NOPAGE; 3337 } else { 3338 spin_lock(vmf->ptl); 3339 if (unlikely(!pte_none(ptep_get(ptep)))) 3340 ret = VM_FAULT_NOPAGE; 3341 spin_unlock(vmf->ptl); 3342 } 3343 pte_unmap(ptep); 3344 return ret; 3345 } 3346 3347 /** 3348 * filemap_fsnotify_fault - maybe emit a pre-content event. 3349 * @vmf: struct vm_fault containing details of the fault. 3350 * 3351 * If we have a pre-content watch on this file we will emit an event for this 3352 * range. If we return anything the fault caller should return immediately, we 3353 * will return VM_FAULT_RETRY if we had to emit an event, which will trigger the 3354 * fault again and then the fault handler will run the second time through. 3355 * 3356 * Return: a bitwise-OR of %VM_FAULT_ codes, 0 if nothing happened. 3357 */ 3358 vm_fault_t filemap_fsnotify_fault(struct vm_fault *vmf) 3359 { 3360 struct file *fpin = NULL; 3361 int mask = (vmf->flags & FAULT_FLAG_WRITE) ? MAY_WRITE : MAY_ACCESS; 3362 loff_t pos = vmf->pgoff >> PAGE_SHIFT; 3363 size_t count = PAGE_SIZE; 3364 int err; 3365 3366 /* 3367 * We already did this and now we're retrying with everything locked, 3368 * don't emit the event and continue. 3369 */ 3370 if (vmf->flags & FAULT_FLAG_TRIED) 3371 return 0; 3372 3373 /* No watches, we're done. */ 3374 if (likely(!FMODE_FSNOTIFY_HSM(vmf->vma->vm_file->f_mode))) 3375 return 0; 3376 3377 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3378 if (!fpin) 3379 return VM_FAULT_SIGBUS; 3380 3381 err = fsnotify_file_area_perm(fpin, mask, &pos, count); 3382 fput(fpin); 3383 if (err) 3384 return VM_FAULT_SIGBUS; 3385 return VM_FAULT_RETRY; 3386 } 3387 EXPORT_SYMBOL_GPL(filemap_fsnotify_fault); 3388 3389 /** 3390 * filemap_fault - read in file data for page fault handling 3391 * @vmf: struct vm_fault containing details of the fault 3392 * 3393 * filemap_fault() is invoked via the vma operations vector for a 3394 * mapped memory region to read in file data during a page fault. 3395 * 3396 * The goto's are kind of ugly, but this streamlines the normal case of having 3397 * it in the page cache, and handles the special cases reasonably without 3398 * having a lot of duplicated code. 3399 * 3400 * vma->vm_mm->mmap_lock must be held on entry. 3401 * 3402 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock 3403 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap(). 3404 * 3405 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock 3406 * has not been released. 3407 * 3408 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 3409 * 3410 * Return: bitwise-OR of %VM_FAULT_ codes. 3411 */ 3412 vm_fault_t filemap_fault(struct vm_fault *vmf) 3413 { 3414 int error; 3415 struct file *file = vmf->vma->vm_file; 3416 struct file *fpin = NULL; 3417 struct address_space *mapping = file->f_mapping; 3418 struct inode *inode = mapping->host; 3419 pgoff_t max_idx, index = vmf->pgoff; 3420 struct folio *folio; 3421 vm_fault_t ret = 0; 3422 bool mapping_locked = false; 3423 3424 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3425 if (unlikely(index >= max_idx)) 3426 return VM_FAULT_SIGBUS; 3427 3428 trace_mm_filemap_fault(mapping, index); 3429 3430 /* 3431 * Do we have something in the page cache already? 3432 */ 3433 folio = filemap_get_folio(mapping, index); 3434 if (likely(!IS_ERR(folio))) { 3435 /* 3436 * We found the page, so try async readahead before waiting for 3437 * the lock. 3438 */ 3439 if (!(vmf->flags & FAULT_FLAG_TRIED)) 3440 fpin = do_async_mmap_readahead(vmf, folio); 3441 if (unlikely(!folio_test_uptodate(folio))) { 3442 filemap_invalidate_lock_shared(mapping); 3443 mapping_locked = true; 3444 } 3445 } else { 3446 ret = filemap_fault_recheck_pte_none(vmf); 3447 if (unlikely(ret)) 3448 return ret; 3449 3450 /* No page in the page cache at all */ 3451 count_vm_event(PGMAJFAULT); 3452 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 3453 ret = VM_FAULT_MAJOR; 3454 fpin = do_sync_mmap_readahead(vmf); 3455 retry_find: 3456 /* 3457 * See comment in filemap_create_folio() why we need 3458 * invalidate_lock 3459 */ 3460 if (!mapping_locked) { 3461 filemap_invalidate_lock_shared(mapping); 3462 mapping_locked = true; 3463 } 3464 folio = __filemap_get_folio(mapping, index, 3465 FGP_CREAT|FGP_FOR_MMAP, 3466 vmf->gfp_mask); 3467 if (IS_ERR(folio)) { 3468 if (fpin) 3469 goto out_retry; 3470 filemap_invalidate_unlock_shared(mapping); 3471 return VM_FAULT_OOM; 3472 } 3473 } 3474 3475 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin)) 3476 goto out_retry; 3477 3478 /* Did it get truncated? */ 3479 if (unlikely(folio->mapping != mapping)) { 3480 folio_unlock(folio); 3481 folio_put(folio); 3482 goto retry_find; 3483 } 3484 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 3485 3486 /* 3487 * We have a locked folio in the page cache, now we need to check 3488 * that it's up-to-date. If not, it is going to be due to an error, 3489 * or because readahead was otherwise unable to retrieve it. 3490 */ 3491 if (unlikely(!folio_test_uptodate(folio))) { 3492 /* 3493 * If this is a precontent file we have can now emit an event to 3494 * try and populate the folio. 3495 */ 3496 if (!(vmf->flags & FAULT_FLAG_TRIED) && 3497 unlikely(FMODE_FSNOTIFY_HSM(file->f_mode))) { 3498 loff_t pos = folio_pos(folio); 3499 size_t count = folio_size(folio); 3500 3501 /* We're NOWAIT, we have to retry. */ 3502 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) { 3503 folio_unlock(folio); 3504 goto out_retry; 3505 } 3506 3507 if (mapping_locked) 3508 filemap_invalidate_unlock_shared(mapping); 3509 mapping_locked = false; 3510 3511 folio_unlock(folio); 3512 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3513 if (!fpin) 3514 goto out_retry; 3515 3516 error = fsnotify_file_area_perm(fpin, MAY_ACCESS, &pos, 3517 count); 3518 if (error) 3519 ret = VM_FAULT_SIGBUS; 3520 goto out_retry; 3521 } 3522 3523 /* 3524 * If the invalidate lock is not held, the folio was in cache 3525 * and uptodate and now it is not. Strange but possible since we 3526 * didn't hold the page lock all the time. Let's drop 3527 * everything, get the invalidate lock and try again. 3528 */ 3529 if (!mapping_locked) { 3530 folio_unlock(folio); 3531 folio_put(folio); 3532 goto retry_find; 3533 } 3534 3535 /* 3536 * OK, the folio is really not uptodate. This can be because the 3537 * VMA has the VM_RAND_READ flag set, or because an error 3538 * arose. Let's read it in directly. 3539 */ 3540 goto page_not_uptodate; 3541 } 3542 3543 /* 3544 * We've made it this far and we had to drop our mmap_lock, now is the 3545 * time to return to the upper layer and have it re-find the vma and 3546 * redo the fault. 3547 */ 3548 if (fpin) { 3549 folio_unlock(folio); 3550 goto out_retry; 3551 } 3552 if (mapping_locked) 3553 filemap_invalidate_unlock_shared(mapping); 3554 3555 /* 3556 * Found the page and have a reference on it. 3557 * We must recheck i_size under page lock. 3558 */ 3559 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3560 if (unlikely(index >= max_idx)) { 3561 folio_unlock(folio); 3562 folio_put(folio); 3563 return VM_FAULT_SIGBUS; 3564 } 3565 3566 vmf->page = folio_file_page(folio, index); 3567 return ret | VM_FAULT_LOCKED; 3568 3569 page_not_uptodate: 3570 /* 3571 * Umm, take care of errors if the page isn't up-to-date. 3572 * Try to re-read it _once_. We do this synchronously, 3573 * because there really aren't any performance issues here 3574 * and we need to check for errors. 3575 */ 3576 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3577 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio); 3578 if (fpin) 3579 goto out_retry; 3580 folio_put(folio); 3581 3582 if (!error || error == AOP_TRUNCATED_PAGE) 3583 goto retry_find; 3584 filemap_invalidate_unlock_shared(mapping); 3585 3586 return VM_FAULT_SIGBUS; 3587 3588 out_retry: 3589 /* 3590 * We dropped the mmap_lock, we need to return to the fault handler to 3591 * re-find the vma and come back and find our hopefully still populated 3592 * page. 3593 */ 3594 if (!IS_ERR(folio)) 3595 folio_put(folio); 3596 if (mapping_locked) 3597 filemap_invalidate_unlock_shared(mapping); 3598 if (fpin) 3599 fput(fpin); 3600 return ret | VM_FAULT_RETRY; 3601 } 3602 EXPORT_SYMBOL(filemap_fault); 3603 3604 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio, 3605 pgoff_t start) 3606 { 3607 struct mm_struct *mm = vmf->vma->vm_mm; 3608 3609 /* Huge page is mapped? No need to proceed. */ 3610 if (pmd_trans_huge(*vmf->pmd)) { 3611 folio_unlock(folio); 3612 folio_put(folio); 3613 return true; 3614 } 3615 3616 if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) { 3617 struct page *page = folio_file_page(folio, start); 3618 vm_fault_t ret = do_set_pmd(vmf, page); 3619 if (!ret) { 3620 /* The page is mapped successfully, reference consumed. */ 3621 folio_unlock(folio); 3622 return true; 3623 } 3624 } 3625 3626 if (pmd_none(*vmf->pmd) && vmf->prealloc_pte) 3627 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte); 3628 3629 return false; 3630 } 3631 3632 static struct folio *next_uptodate_folio(struct xa_state *xas, 3633 struct address_space *mapping, pgoff_t end_pgoff) 3634 { 3635 struct folio *folio = xas_next_entry(xas, end_pgoff); 3636 unsigned long max_idx; 3637 3638 do { 3639 if (!folio) 3640 return NULL; 3641 if (xas_retry(xas, folio)) 3642 continue; 3643 if (xa_is_value(folio)) 3644 continue; 3645 if (!folio_try_get(folio)) 3646 continue; 3647 if (folio_test_locked(folio)) 3648 goto skip; 3649 /* Has the page moved or been split? */ 3650 if (unlikely(folio != xas_reload(xas))) 3651 goto skip; 3652 if (!folio_test_uptodate(folio) || folio_test_readahead(folio)) 3653 goto skip; 3654 if (!folio_trylock(folio)) 3655 goto skip; 3656 if (folio->mapping != mapping) 3657 goto unlock; 3658 if (!folio_test_uptodate(folio)) 3659 goto unlock; 3660 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3661 if (xas->xa_index >= max_idx) 3662 goto unlock; 3663 return folio; 3664 unlock: 3665 folio_unlock(folio); 3666 skip: 3667 folio_put(folio); 3668 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL); 3669 3670 return NULL; 3671 } 3672 3673 /* 3674 * Map page range [start_page, start_page + nr_pages) of folio. 3675 * start_page is gotten from start by folio_page(folio, start) 3676 */ 3677 static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf, 3678 struct folio *folio, unsigned long start, 3679 unsigned long addr, unsigned int nr_pages, 3680 unsigned long *rss, unsigned int *mmap_miss) 3681 { 3682 vm_fault_t ret = 0; 3683 struct page *page = folio_page(folio, start); 3684 unsigned int count = 0; 3685 pte_t *old_ptep = vmf->pte; 3686 3687 do { 3688 if (PageHWPoison(page + count)) 3689 goto skip; 3690 3691 /* 3692 * If there are too many folios that are recently evicted 3693 * in a file, they will probably continue to be evicted. 3694 * In such situation, read-ahead is only a waste of IO. 3695 * Don't decrease mmap_miss in this scenario to make sure 3696 * we can stop read-ahead. 3697 */ 3698 if (!folio_test_workingset(folio)) 3699 (*mmap_miss)++; 3700 3701 /* 3702 * NOTE: If there're PTE markers, we'll leave them to be 3703 * handled in the specific fault path, and it'll prohibit the 3704 * fault-around logic. 3705 */ 3706 if (!pte_none(ptep_get(&vmf->pte[count]))) 3707 goto skip; 3708 3709 count++; 3710 continue; 3711 skip: 3712 if (count) { 3713 set_pte_range(vmf, folio, page, count, addr); 3714 *rss += count; 3715 folio_ref_add(folio, count); 3716 if (in_range(vmf->address, addr, count * PAGE_SIZE)) 3717 ret = VM_FAULT_NOPAGE; 3718 } 3719 3720 count++; 3721 page += count; 3722 vmf->pte += count; 3723 addr += count * PAGE_SIZE; 3724 count = 0; 3725 } while (--nr_pages > 0); 3726 3727 if (count) { 3728 set_pte_range(vmf, folio, page, count, addr); 3729 *rss += count; 3730 folio_ref_add(folio, count); 3731 if (in_range(vmf->address, addr, count * PAGE_SIZE)) 3732 ret = VM_FAULT_NOPAGE; 3733 } 3734 3735 vmf->pte = old_ptep; 3736 3737 return ret; 3738 } 3739 3740 static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf, 3741 struct folio *folio, unsigned long addr, 3742 unsigned long *rss, unsigned int *mmap_miss) 3743 { 3744 vm_fault_t ret = 0; 3745 struct page *page = &folio->page; 3746 3747 if (PageHWPoison(page)) 3748 return ret; 3749 3750 /* See comment of filemap_map_folio_range() */ 3751 if (!folio_test_workingset(folio)) 3752 (*mmap_miss)++; 3753 3754 /* 3755 * NOTE: If there're PTE markers, we'll leave them to be 3756 * handled in the specific fault path, and it'll prohibit 3757 * the fault-around logic. 3758 */ 3759 if (!pte_none(ptep_get(vmf->pte))) 3760 return ret; 3761 3762 if (vmf->address == addr) 3763 ret = VM_FAULT_NOPAGE; 3764 3765 set_pte_range(vmf, folio, page, 1, addr); 3766 (*rss)++; 3767 folio_ref_inc(folio); 3768 3769 return ret; 3770 } 3771 3772 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3773 pgoff_t start_pgoff, pgoff_t end_pgoff) 3774 { 3775 struct vm_area_struct *vma = vmf->vma; 3776 struct file *file = vma->vm_file; 3777 struct address_space *mapping = file->f_mapping; 3778 pgoff_t file_end, last_pgoff = start_pgoff; 3779 unsigned long addr; 3780 XA_STATE(xas, &mapping->i_pages, start_pgoff); 3781 struct folio *folio; 3782 vm_fault_t ret = 0; 3783 unsigned long rss = 0; 3784 unsigned int nr_pages = 0, mmap_miss = 0, mmap_miss_saved, folio_type; 3785 3786 rcu_read_lock(); 3787 folio = next_uptodate_folio(&xas, mapping, end_pgoff); 3788 if (!folio) 3789 goto out; 3790 3791 if (filemap_map_pmd(vmf, folio, start_pgoff)) { 3792 ret = VM_FAULT_NOPAGE; 3793 goto out; 3794 } 3795 3796 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT); 3797 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 3798 if (!vmf->pte) { 3799 folio_unlock(folio); 3800 folio_put(folio); 3801 goto out; 3802 } 3803 3804 file_end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE) - 1; 3805 if (end_pgoff > file_end) 3806 end_pgoff = file_end; 3807 3808 folio_type = mm_counter_file(folio); 3809 do { 3810 unsigned long end; 3811 3812 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 3813 vmf->pte += xas.xa_index - last_pgoff; 3814 last_pgoff = xas.xa_index; 3815 end = folio_next_index(folio) - 1; 3816 nr_pages = min(end, end_pgoff) - xas.xa_index + 1; 3817 3818 if (!folio_test_large(folio)) 3819 ret |= filemap_map_order0_folio(vmf, 3820 folio, addr, &rss, &mmap_miss); 3821 else 3822 ret |= filemap_map_folio_range(vmf, folio, 3823 xas.xa_index - folio->index, addr, 3824 nr_pages, &rss, &mmap_miss); 3825 3826 folio_unlock(folio); 3827 folio_put(folio); 3828 } while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL); 3829 add_mm_counter(vma->vm_mm, folio_type, rss); 3830 pte_unmap_unlock(vmf->pte, vmf->ptl); 3831 trace_mm_filemap_map_pages(mapping, start_pgoff, end_pgoff); 3832 out: 3833 rcu_read_unlock(); 3834 3835 mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss); 3836 if (mmap_miss >= mmap_miss_saved) 3837 WRITE_ONCE(file->f_ra.mmap_miss, 0); 3838 else 3839 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss); 3840 3841 return ret; 3842 } 3843 EXPORT_SYMBOL(filemap_map_pages); 3844 3845 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3846 { 3847 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 3848 struct folio *folio = page_folio(vmf->page); 3849 vm_fault_t ret = VM_FAULT_LOCKED; 3850 3851 sb_start_pagefault(mapping->host->i_sb); 3852 file_update_time(vmf->vma->vm_file); 3853 folio_lock(folio); 3854 if (folio->mapping != mapping) { 3855 folio_unlock(folio); 3856 ret = VM_FAULT_NOPAGE; 3857 goto out; 3858 } 3859 /* 3860 * We mark the folio dirty already here so that when freeze is in 3861 * progress, we are guaranteed that writeback during freezing will 3862 * see the dirty folio and writeprotect it again. 3863 */ 3864 folio_mark_dirty(folio); 3865 folio_wait_stable(folio); 3866 out: 3867 sb_end_pagefault(mapping->host->i_sb); 3868 return ret; 3869 } 3870 3871 const struct vm_operations_struct generic_file_vm_ops = { 3872 .fault = filemap_fault, 3873 .map_pages = filemap_map_pages, 3874 .page_mkwrite = filemap_page_mkwrite, 3875 }; 3876 3877 /* This is used for a general mmap of a disk file */ 3878 3879 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3880 { 3881 struct address_space *mapping = file->f_mapping; 3882 3883 if (!mapping->a_ops->read_folio) 3884 return -ENOEXEC; 3885 file_accessed(file); 3886 vma->vm_ops = &generic_file_vm_ops; 3887 return 0; 3888 } 3889 3890 /* 3891 * This is for filesystems which do not implement ->writepage. 3892 */ 3893 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3894 { 3895 if (vma_is_shared_maywrite(vma)) 3896 return -EINVAL; 3897 return generic_file_mmap(file, vma); 3898 } 3899 #else 3900 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3901 { 3902 return VM_FAULT_SIGBUS; 3903 } 3904 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3905 { 3906 return -ENOSYS; 3907 } 3908 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3909 { 3910 return -ENOSYS; 3911 } 3912 #endif /* CONFIG_MMU */ 3913 3914 EXPORT_SYMBOL(filemap_page_mkwrite); 3915 EXPORT_SYMBOL(generic_file_mmap); 3916 EXPORT_SYMBOL(generic_file_readonly_mmap); 3917 3918 static struct folio *do_read_cache_folio(struct address_space *mapping, 3919 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp) 3920 { 3921 struct folio *folio; 3922 int err; 3923 3924 if (!filler) 3925 filler = mapping->a_ops->read_folio; 3926 repeat: 3927 folio = filemap_get_folio(mapping, index); 3928 if (IS_ERR(folio)) { 3929 folio = filemap_alloc_folio(gfp, 3930 mapping_min_folio_order(mapping)); 3931 if (!folio) 3932 return ERR_PTR(-ENOMEM); 3933 index = mapping_align_index(mapping, index); 3934 err = filemap_add_folio(mapping, folio, index, gfp); 3935 if (unlikely(err)) { 3936 folio_put(folio); 3937 if (err == -EEXIST) 3938 goto repeat; 3939 /* Presumably ENOMEM for xarray node */ 3940 return ERR_PTR(err); 3941 } 3942 3943 goto filler; 3944 } 3945 if (folio_test_uptodate(folio)) 3946 goto out; 3947 3948 if (!folio_trylock(folio)) { 3949 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE); 3950 goto repeat; 3951 } 3952 3953 /* Folio was truncated from mapping */ 3954 if (!folio->mapping) { 3955 folio_unlock(folio); 3956 folio_put(folio); 3957 goto repeat; 3958 } 3959 3960 /* Someone else locked and filled the page in a very small window */ 3961 if (folio_test_uptodate(folio)) { 3962 folio_unlock(folio); 3963 goto out; 3964 } 3965 3966 filler: 3967 err = filemap_read_folio(file, filler, folio); 3968 if (err) { 3969 folio_put(folio); 3970 if (err == AOP_TRUNCATED_PAGE) 3971 goto repeat; 3972 return ERR_PTR(err); 3973 } 3974 3975 out: 3976 folio_mark_accessed(folio); 3977 return folio; 3978 } 3979 3980 /** 3981 * read_cache_folio - Read into page cache, fill it if needed. 3982 * @mapping: The address_space to read from. 3983 * @index: The index to read. 3984 * @filler: Function to perform the read, or NULL to use aops->read_folio(). 3985 * @file: Passed to filler function, may be NULL if not required. 3986 * 3987 * Read one page into the page cache. If it succeeds, the folio returned 3988 * will contain @index, but it may not be the first page of the folio. 3989 * 3990 * If the filler function returns an error, it will be returned to the 3991 * caller. 3992 * 3993 * Context: May sleep. Expects mapping->invalidate_lock to be held. 3994 * Return: An uptodate folio on success, ERR_PTR() on failure. 3995 */ 3996 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index, 3997 filler_t filler, struct file *file) 3998 { 3999 return do_read_cache_folio(mapping, index, filler, file, 4000 mapping_gfp_mask(mapping)); 4001 } 4002 EXPORT_SYMBOL(read_cache_folio); 4003 4004 /** 4005 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags. 4006 * @mapping: The address_space for the folio. 4007 * @index: The index that the allocated folio will contain. 4008 * @gfp: The page allocator flags to use if allocating. 4009 * 4010 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with 4011 * any new memory allocations done using the specified allocation flags. 4012 * 4013 * The most likely error from this function is EIO, but ENOMEM is 4014 * possible and so is EINTR. If ->read_folio returns another error, 4015 * that will be returned to the caller. 4016 * 4017 * The function expects mapping->invalidate_lock to be already held. 4018 * 4019 * Return: Uptodate folio on success, ERR_PTR() on failure. 4020 */ 4021 struct folio *mapping_read_folio_gfp(struct address_space *mapping, 4022 pgoff_t index, gfp_t gfp) 4023 { 4024 return do_read_cache_folio(mapping, index, NULL, NULL, gfp); 4025 } 4026 EXPORT_SYMBOL(mapping_read_folio_gfp); 4027 4028 static struct page *do_read_cache_page(struct address_space *mapping, 4029 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp) 4030 { 4031 struct folio *folio; 4032 4033 folio = do_read_cache_folio(mapping, index, filler, file, gfp); 4034 if (IS_ERR(folio)) 4035 return &folio->page; 4036 return folio_file_page(folio, index); 4037 } 4038 4039 struct page *read_cache_page(struct address_space *mapping, 4040 pgoff_t index, filler_t *filler, struct file *file) 4041 { 4042 return do_read_cache_page(mapping, index, filler, file, 4043 mapping_gfp_mask(mapping)); 4044 } 4045 EXPORT_SYMBOL(read_cache_page); 4046 4047 /** 4048 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 4049 * @mapping: the page's address_space 4050 * @index: the page index 4051 * @gfp: the page allocator flags to use if allocating 4052 * 4053 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 4054 * any new page allocations done using the specified allocation flags. 4055 * 4056 * If the page does not get brought uptodate, return -EIO. 4057 * 4058 * The function expects mapping->invalidate_lock to be already held. 4059 * 4060 * Return: up to date page on success, ERR_PTR() on failure. 4061 */ 4062 struct page *read_cache_page_gfp(struct address_space *mapping, 4063 pgoff_t index, 4064 gfp_t gfp) 4065 { 4066 return do_read_cache_page(mapping, index, NULL, NULL, gfp); 4067 } 4068 EXPORT_SYMBOL(read_cache_page_gfp); 4069 4070 /* 4071 * Warn about a page cache invalidation failure during a direct I/O write. 4072 */ 4073 static void dio_warn_stale_pagecache(struct file *filp) 4074 { 4075 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 4076 char pathname[128]; 4077 char *path; 4078 4079 errseq_set(&filp->f_mapping->wb_err, -EIO); 4080 if (__ratelimit(&_rs)) { 4081 path = file_path(filp, pathname, sizeof(pathname)); 4082 if (IS_ERR(path)) 4083 path = "(unknown)"; 4084 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); 4085 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, 4086 current->comm); 4087 } 4088 } 4089 4090 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count) 4091 { 4092 struct address_space *mapping = iocb->ki_filp->f_mapping; 4093 4094 if (mapping->nrpages && 4095 invalidate_inode_pages2_range(mapping, 4096 iocb->ki_pos >> PAGE_SHIFT, 4097 (iocb->ki_pos + count - 1) >> PAGE_SHIFT)) 4098 dio_warn_stale_pagecache(iocb->ki_filp); 4099 } 4100 4101 ssize_t 4102 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 4103 { 4104 struct address_space *mapping = iocb->ki_filp->f_mapping; 4105 size_t write_len = iov_iter_count(from); 4106 ssize_t written; 4107 4108 /* 4109 * If a page can not be invalidated, return 0 to fall back 4110 * to buffered write. 4111 */ 4112 written = kiocb_invalidate_pages(iocb, write_len); 4113 if (written) { 4114 if (written == -EBUSY) 4115 return 0; 4116 return written; 4117 } 4118 4119 written = mapping->a_ops->direct_IO(iocb, from); 4120 4121 /* 4122 * Finally, try again to invalidate clean pages which might have been 4123 * cached by non-direct readahead, or faulted in by get_user_pages() 4124 * if the source of the write was an mmap'ed region of the file 4125 * we're writing. Either one is a pretty crazy thing to do, 4126 * so we don't support it 100%. If this invalidation 4127 * fails, tough, the write still worked... 4128 * 4129 * Most of the time we do not need this since dio_complete() will do 4130 * the invalidation for us. However there are some file systems that 4131 * do not end up with dio_complete() being called, so let's not break 4132 * them by removing it completely. 4133 * 4134 * Noticeable example is a blkdev_direct_IO(). 4135 * 4136 * Skip invalidation for async writes or if mapping has no pages. 4137 */ 4138 if (written > 0) { 4139 struct inode *inode = mapping->host; 4140 loff_t pos = iocb->ki_pos; 4141 4142 kiocb_invalidate_post_direct_write(iocb, written); 4143 pos += written; 4144 write_len -= written; 4145 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 4146 i_size_write(inode, pos); 4147 mark_inode_dirty(inode); 4148 } 4149 iocb->ki_pos = pos; 4150 } 4151 if (written != -EIOCBQUEUED) 4152 iov_iter_revert(from, write_len - iov_iter_count(from)); 4153 return written; 4154 } 4155 EXPORT_SYMBOL(generic_file_direct_write); 4156 4157 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i) 4158 { 4159 struct file *file = iocb->ki_filp; 4160 loff_t pos = iocb->ki_pos; 4161 struct address_space *mapping = file->f_mapping; 4162 const struct address_space_operations *a_ops = mapping->a_ops; 4163 size_t chunk = mapping_max_folio_size(mapping); 4164 long status = 0; 4165 ssize_t written = 0; 4166 4167 do { 4168 struct folio *folio; 4169 size_t offset; /* Offset into folio */ 4170 size_t bytes; /* Bytes to write to folio */ 4171 size_t copied; /* Bytes copied from user */ 4172 void *fsdata = NULL; 4173 4174 bytes = iov_iter_count(i); 4175 retry: 4176 offset = pos & (chunk - 1); 4177 bytes = min(chunk - offset, bytes); 4178 balance_dirty_pages_ratelimited(mapping); 4179 4180 if (fatal_signal_pending(current)) { 4181 status = -EINTR; 4182 break; 4183 } 4184 4185 status = a_ops->write_begin(file, mapping, pos, bytes, 4186 &folio, &fsdata); 4187 if (unlikely(status < 0)) 4188 break; 4189 4190 offset = offset_in_folio(folio, pos); 4191 if (bytes > folio_size(folio) - offset) 4192 bytes = folio_size(folio) - offset; 4193 4194 if (mapping_writably_mapped(mapping)) 4195 flush_dcache_folio(folio); 4196 4197 /* 4198 * Faults here on mmap()s can recurse into arbitrary 4199 * filesystem code. Lots of locks are held that can 4200 * deadlock. Use an atomic copy to avoid deadlocking 4201 * in page fault handling. 4202 */ 4203 copied = copy_folio_from_iter_atomic(folio, offset, bytes, i); 4204 flush_dcache_folio(folio); 4205 4206 status = a_ops->write_end(file, mapping, pos, bytes, copied, 4207 folio, fsdata); 4208 if (unlikely(status != copied)) { 4209 iov_iter_revert(i, copied - max(status, 0L)); 4210 if (unlikely(status < 0)) 4211 break; 4212 } 4213 cond_resched(); 4214 4215 if (unlikely(status == 0)) { 4216 /* 4217 * A short copy made ->write_end() reject the 4218 * thing entirely. Might be memory poisoning 4219 * halfway through, might be a race with munmap, 4220 * might be severe memory pressure. 4221 */ 4222 if (chunk > PAGE_SIZE) 4223 chunk /= 2; 4224 if (copied) { 4225 bytes = copied; 4226 goto retry; 4227 } 4228 4229 /* 4230 * 'folio' is now unlocked and faults on it can be 4231 * handled. Ensure forward progress by trying to 4232 * fault it in now. 4233 */ 4234 if (fault_in_iov_iter_readable(i, bytes) == bytes) { 4235 status = -EFAULT; 4236 break; 4237 } 4238 } else { 4239 pos += status; 4240 written += status; 4241 } 4242 } while (iov_iter_count(i)); 4243 4244 if (!written) 4245 return status; 4246 iocb->ki_pos += written; 4247 return written; 4248 } 4249 EXPORT_SYMBOL(generic_perform_write); 4250 4251 /** 4252 * __generic_file_write_iter - write data to a file 4253 * @iocb: IO state structure (file, offset, etc.) 4254 * @from: iov_iter with data to write 4255 * 4256 * This function does all the work needed for actually writing data to a 4257 * file. It does all basic checks, removes SUID from the file, updates 4258 * modification times and calls proper subroutines depending on whether we 4259 * do direct IO or a standard buffered write. 4260 * 4261 * It expects i_rwsem to be grabbed unless we work on a block device or similar 4262 * object which does not need locking at all. 4263 * 4264 * This function does *not* take care of syncing data in case of O_SYNC write. 4265 * A caller has to handle it. This is mainly due to the fact that we want to 4266 * avoid syncing under i_rwsem. 4267 * 4268 * Return: 4269 * * number of bytes written, even for truncated writes 4270 * * negative error code if no data has been written at all 4271 */ 4272 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4273 { 4274 struct file *file = iocb->ki_filp; 4275 struct address_space *mapping = file->f_mapping; 4276 struct inode *inode = mapping->host; 4277 ssize_t ret; 4278 4279 ret = file_remove_privs(file); 4280 if (ret) 4281 return ret; 4282 4283 ret = file_update_time(file); 4284 if (ret) 4285 return ret; 4286 4287 if (iocb->ki_flags & IOCB_DIRECT) { 4288 ret = generic_file_direct_write(iocb, from); 4289 /* 4290 * If the write stopped short of completing, fall back to 4291 * buffered writes. Some filesystems do this for writes to 4292 * holes, for example. For DAX files, a buffered write will 4293 * not succeed (even if it did, DAX does not handle dirty 4294 * page-cache pages correctly). 4295 */ 4296 if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode)) 4297 return ret; 4298 return direct_write_fallback(iocb, from, ret, 4299 generic_perform_write(iocb, from)); 4300 } 4301 4302 return generic_perform_write(iocb, from); 4303 } 4304 EXPORT_SYMBOL(__generic_file_write_iter); 4305 4306 /** 4307 * generic_file_write_iter - write data to a file 4308 * @iocb: IO state structure 4309 * @from: iov_iter with data to write 4310 * 4311 * This is a wrapper around __generic_file_write_iter() to be used by most 4312 * filesystems. It takes care of syncing the file in case of O_SYNC file 4313 * and acquires i_rwsem as needed. 4314 * Return: 4315 * * negative error code if no data has been written at all of 4316 * vfs_fsync_range() failed for a synchronous write 4317 * * number of bytes written, even for truncated writes 4318 */ 4319 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4320 { 4321 struct file *file = iocb->ki_filp; 4322 struct inode *inode = file->f_mapping->host; 4323 ssize_t ret; 4324 4325 inode_lock(inode); 4326 ret = generic_write_checks(iocb, from); 4327 if (ret > 0) 4328 ret = __generic_file_write_iter(iocb, from); 4329 inode_unlock(inode); 4330 4331 if (ret > 0) 4332 ret = generic_write_sync(iocb, ret); 4333 return ret; 4334 } 4335 EXPORT_SYMBOL(generic_file_write_iter); 4336 4337 /** 4338 * filemap_release_folio() - Release fs-specific metadata on a folio. 4339 * @folio: The folio which the kernel is trying to free. 4340 * @gfp: Memory allocation flags (and I/O mode). 4341 * 4342 * The address_space is trying to release any data attached to a folio 4343 * (presumably at folio->private). 4344 * 4345 * This will also be called if the private_2 flag is set on a page, 4346 * indicating that the folio has other metadata associated with it. 4347 * 4348 * The @gfp argument specifies whether I/O may be performed to release 4349 * this page (__GFP_IO), and whether the call may block 4350 * (__GFP_RECLAIM & __GFP_FS). 4351 * 4352 * Return: %true if the release was successful, otherwise %false. 4353 */ 4354 bool filemap_release_folio(struct folio *folio, gfp_t gfp) 4355 { 4356 struct address_space * const mapping = folio->mapping; 4357 4358 BUG_ON(!folio_test_locked(folio)); 4359 if (!folio_needs_release(folio)) 4360 return true; 4361 if (folio_test_writeback(folio)) 4362 return false; 4363 4364 if (mapping && mapping->a_ops->release_folio) 4365 return mapping->a_ops->release_folio(folio, gfp); 4366 return try_to_free_buffers(folio); 4367 } 4368 EXPORT_SYMBOL(filemap_release_folio); 4369 4370 /** 4371 * filemap_invalidate_inode - Invalidate/forcibly write back a range of an inode's pagecache 4372 * @inode: The inode to flush 4373 * @flush: Set to write back rather than simply invalidate. 4374 * @start: First byte to in range. 4375 * @end: Last byte in range (inclusive), or LLONG_MAX for everything from start 4376 * onwards. 4377 * 4378 * Invalidate all the folios on an inode that contribute to the specified 4379 * range, possibly writing them back first. Whilst the operation is 4380 * undertaken, the invalidate lock is held to prevent new folios from being 4381 * installed. 4382 */ 4383 int filemap_invalidate_inode(struct inode *inode, bool flush, 4384 loff_t start, loff_t end) 4385 { 4386 struct address_space *mapping = inode->i_mapping; 4387 pgoff_t first = start >> PAGE_SHIFT; 4388 pgoff_t last = end >> PAGE_SHIFT; 4389 pgoff_t nr = end == LLONG_MAX ? ULONG_MAX : last - first + 1; 4390 4391 if (!mapping || !mapping->nrpages || end < start) 4392 goto out; 4393 4394 /* Prevent new folios from being added to the inode. */ 4395 filemap_invalidate_lock(mapping); 4396 4397 if (!mapping->nrpages) 4398 goto unlock; 4399 4400 unmap_mapping_pages(mapping, first, nr, false); 4401 4402 /* Write back the data if we're asked to. */ 4403 if (flush) { 4404 struct writeback_control wbc = { 4405 .sync_mode = WB_SYNC_ALL, 4406 .nr_to_write = LONG_MAX, 4407 .range_start = start, 4408 .range_end = end, 4409 }; 4410 4411 filemap_fdatawrite_wbc(mapping, &wbc); 4412 } 4413 4414 /* Wait for writeback to complete on all folios and discard. */ 4415 invalidate_inode_pages2_range(mapping, start / PAGE_SIZE, end / PAGE_SIZE); 4416 4417 unlock: 4418 filemap_invalidate_unlock(mapping); 4419 out: 4420 return filemap_check_errors(mapping); 4421 } 4422 EXPORT_SYMBOL_GPL(filemap_invalidate_inode); 4423 4424 #ifdef CONFIG_CACHESTAT_SYSCALL 4425 /** 4426 * filemap_cachestat() - compute the page cache statistics of a mapping 4427 * @mapping: The mapping to compute the statistics for. 4428 * @first_index: The starting page cache index. 4429 * @last_index: The final page index (inclusive). 4430 * @cs: the cachestat struct to write the result to. 4431 * 4432 * This will query the page cache statistics of a mapping in the 4433 * page range of [first_index, last_index] (inclusive). The statistics 4434 * queried include: number of dirty pages, number of pages marked for 4435 * writeback, and the number of (recently) evicted pages. 4436 */ 4437 static void filemap_cachestat(struct address_space *mapping, 4438 pgoff_t first_index, pgoff_t last_index, struct cachestat *cs) 4439 { 4440 XA_STATE(xas, &mapping->i_pages, first_index); 4441 struct folio *folio; 4442 4443 /* Flush stats (and potentially sleep) outside the RCU read section. */ 4444 mem_cgroup_flush_stats_ratelimited(NULL); 4445 4446 rcu_read_lock(); 4447 xas_for_each(&xas, folio, last_index) { 4448 int order; 4449 unsigned long nr_pages; 4450 pgoff_t folio_first_index, folio_last_index; 4451 4452 /* 4453 * Don't deref the folio. It is not pinned, and might 4454 * get freed (and reused) underneath us. 4455 * 4456 * We *could* pin it, but that would be expensive for 4457 * what should be a fast and lightweight syscall. 4458 * 4459 * Instead, derive all information of interest from 4460 * the rcu-protected xarray. 4461 */ 4462 4463 if (xas_retry(&xas, folio)) 4464 continue; 4465 4466 order = xas_get_order(&xas); 4467 nr_pages = 1 << order; 4468 folio_first_index = round_down(xas.xa_index, 1 << order); 4469 folio_last_index = folio_first_index + nr_pages - 1; 4470 4471 /* Folios might straddle the range boundaries, only count covered pages */ 4472 if (folio_first_index < first_index) 4473 nr_pages -= first_index - folio_first_index; 4474 4475 if (folio_last_index > last_index) 4476 nr_pages -= folio_last_index - last_index; 4477 4478 if (xa_is_value(folio)) { 4479 /* page is evicted */ 4480 void *shadow = (void *)folio; 4481 bool workingset; /* not used */ 4482 4483 cs->nr_evicted += nr_pages; 4484 4485 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */ 4486 if (shmem_mapping(mapping)) { 4487 /* shmem file - in swap cache */ 4488 swp_entry_t swp = radix_to_swp_entry(folio); 4489 4490 /* swapin error results in poisoned entry */ 4491 if (non_swap_entry(swp)) 4492 goto resched; 4493 4494 /* 4495 * Getting a swap entry from the shmem 4496 * inode means we beat 4497 * shmem_unuse(). rcu_read_lock() 4498 * ensures swapoff waits for us before 4499 * freeing the swapper space. However, 4500 * we can race with swapping and 4501 * invalidation, so there might not be 4502 * a shadow in the swapcache (yet). 4503 */ 4504 shadow = get_shadow_from_swap_cache(swp); 4505 if (!shadow) 4506 goto resched; 4507 } 4508 #endif 4509 if (workingset_test_recent(shadow, true, &workingset, false)) 4510 cs->nr_recently_evicted += nr_pages; 4511 4512 goto resched; 4513 } 4514 4515 /* page is in cache */ 4516 cs->nr_cache += nr_pages; 4517 4518 if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY)) 4519 cs->nr_dirty += nr_pages; 4520 4521 if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK)) 4522 cs->nr_writeback += nr_pages; 4523 4524 resched: 4525 if (need_resched()) { 4526 xas_pause(&xas); 4527 cond_resched_rcu(); 4528 } 4529 } 4530 rcu_read_unlock(); 4531 } 4532 4533 /* 4534 * See mincore: reveal pagecache information only for files 4535 * that the calling process has write access to, or could (if 4536 * tried) open for writing. 4537 */ 4538 static inline bool can_do_cachestat(struct file *f) 4539 { 4540 if (f->f_mode & FMODE_WRITE) 4541 return true; 4542 if (inode_owner_or_capable(file_mnt_idmap(f), file_inode(f))) 4543 return true; 4544 return file_permission(f, MAY_WRITE) == 0; 4545 } 4546 4547 /* 4548 * The cachestat(2) system call. 4549 * 4550 * cachestat() returns the page cache statistics of a file in the 4551 * bytes range specified by `off` and `len`: number of cached pages, 4552 * number of dirty pages, number of pages marked for writeback, 4553 * number of evicted pages, and number of recently evicted pages. 4554 * 4555 * An evicted page is a page that is previously in the page cache 4556 * but has been evicted since. A page is recently evicted if its last 4557 * eviction was recent enough that its reentry to the cache would 4558 * indicate that it is actively being used by the system, and that 4559 * there is memory pressure on the system. 4560 * 4561 * `off` and `len` must be non-negative integers. If `len` > 0, 4562 * the queried range is [`off`, `off` + `len`]. If `len` == 0, 4563 * we will query in the range from `off` to the end of the file. 4564 * 4565 * The `flags` argument is unused for now, but is included for future 4566 * extensibility. User should pass 0 (i.e no flag specified). 4567 * 4568 * Currently, hugetlbfs is not supported. 4569 * 4570 * Because the status of a page can change after cachestat() checks it 4571 * but before it returns to the application, the returned values may 4572 * contain stale information. 4573 * 4574 * return values: 4575 * zero - success 4576 * -EFAULT - cstat or cstat_range points to an illegal address 4577 * -EINVAL - invalid flags 4578 * -EBADF - invalid file descriptor 4579 * -EOPNOTSUPP - file descriptor is of a hugetlbfs file 4580 */ 4581 SYSCALL_DEFINE4(cachestat, unsigned int, fd, 4582 struct cachestat_range __user *, cstat_range, 4583 struct cachestat __user *, cstat, unsigned int, flags) 4584 { 4585 CLASS(fd, f)(fd); 4586 struct address_space *mapping; 4587 struct cachestat_range csr; 4588 struct cachestat cs; 4589 pgoff_t first_index, last_index; 4590 4591 if (fd_empty(f)) 4592 return -EBADF; 4593 4594 if (copy_from_user(&csr, cstat_range, 4595 sizeof(struct cachestat_range))) 4596 return -EFAULT; 4597 4598 /* hugetlbfs is not supported */ 4599 if (is_file_hugepages(fd_file(f))) 4600 return -EOPNOTSUPP; 4601 4602 if (!can_do_cachestat(fd_file(f))) 4603 return -EPERM; 4604 4605 if (flags != 0) 4606 return -EINVAL; 4607 4608 first_index = csr.off >> PAGE_SHIFT; 4609 last_index = 4610 csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT; 4611 memset(&cs, 0, sizeof(struct cachestat)); 4612 mapping = fd_file(f)->f_mapping; 4613 filemap_cachestat(mapping, first_index, last_index, &cs); 4614 4615 if (copy_to_user(cstat, &cs, sizeof(struct cachestat))) 4616 return -EFAULT; 4617 4618 return 0; 4619 } 4620 #endif /* CONFIG_CACHESTAT_SYSCALL */ 4621