xref: /linux/mm/filemap.c (revision a518d63777a4e94e4b2dd86501604ec49ffe86b2)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/sched/signal.h>
17 #include <linux/uaccess.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/gfp.h>
21 #include <linux/mm.h>
22 #include <linux/swap.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/file.h>
26 #include <linux/uio.h>
27 #include <linux/hash.h>
28 #include <linux/writeback.h>
29 #include <linux/backing-dev.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/security.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/hugetlb.h>
36 #include <linux/memcontrol.h>
37 #include <linux/cleancache.h>
38 #include <linux/rmap.h>
39 #include "internal.h"
40 
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/filemap.h>
43 
44 /*
45  * FIXME: remove all knowledge of the buffer layer from the core VM
46  */
47 #include <linux/buffer_head.h> /* for try_to_free_buffers */
48 
49 #include <asm/mman.h>
50 
51 /*
52  * Shared mappings implemented 30.11.1994. It's not fully working yet,
53  * though.
54  *
55  * Shared mappings now work. 15.8.1995  Bruno.
56  *
57  * finished 'unifying' the page and buffer cache and SMP-threaded the
58  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
59  *
60  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
61  */
62 
63 /*
64  * Lock ordering:
65  *
66  *  ->i_mmap_rwsem		(truncate_pagecache)
67  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
68  *      ->swap_lock		(exclusive_swap_page, others)
69  *        ->mapping->tree_lock
70  *
71  *  ->i_mutex
72  *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
73  *
74  *  ->mmap_sem
75  *    ->i_mmap_rwsem
76  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
77  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
78  *
79  *  ->mmap_sem
80  *    ->lock_page		(access_process_vm)
81  *
82  *  ->i_mutex			(generic_perform_write)
83  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
84  *
85  *  bdi->wb.list_lock
86  *    sb_lock			(fs/fs-writeback.c)
87  *    ->mapping->tree_lock	(__sync_single_inode)
88  *
89  *  ->i_mmap_rwsem
90  *    ->anon_vma.lock		(vma_adjust)
91  *
92  *  ->anon_vma.lock
93  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
94  *
95  *  ->page_table_lock or pte_lock
96  *    ->swap_lock		(try_to_unmap_one)
97  *    ->private_lock		(try_to_unmap_one)
98  *    ->tree_lock		(try_to_unmap_one)
99  *    ->zone_lru_lock(zone)	(follow_page->mark_page_accessed)
100  *    ->zone_lru_lock(zone)	(check_pte_range->isolate_lru_page)
101  *    ->private_lock		(page_remove_rmap->set_page_dirty)
102  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
103  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
104  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
105  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
106  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
107  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
108  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
109  *
110  * ->i_mmap_rwsem
111  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
112  */
113 
114 static int page_cache_tree_insert(struct address_space *mapping,
115 				  struct page *page, void **shadowp)
116 {
117 	struct radix_tree_node *node;
118 	void **slot;
119 	int error;
120 
121 	error = __radix_tree_create(&mapping->page_tree, page->index, 0,
122 				    &node, &slot);
123 	if (error)
124 		return error;
125 	if (*slot) {
126 		void *p;
127 
128 		p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
129 		if (!radix_tree_exceptional_entry(p))
130 			return -EEXIST;
131 
132 		mapping->nrexceptional--;
133 		if (!dax_mapping(mapping)) {
134 			if (shadowp)
135 				*shadowp = p;
136 		} else {
137 			/* DAX can replace empty locked entry with a hole */
138 			WARN_ON_ONCE(p !=
139 				dax_radix_locked_entry(0, RADIX_DAX_EMPTY));
140 			/* Wakeup waiters for exceptional entry lock */
141 			dax_wake_mapping_entry_waiter(mapping, page->index, p,
142 						      true);
143 		}
144 	}
145 	__radix_tree_replace(&mapping->page_tree, node, slot, page,
146 			     workingset_update_node, mapping);
147 	mapping->nrpages++;
148 	return 0;
149 }
150 
151 static void page_cache_tree_delete(struct address_space *mapping,
152 				   struct page *page, void *shadow)
153 {
154 	int i, nr;
155 
156 	/* hugetlb pages are represented by one entry in the radix tree */
157 	nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
158 
159 	VM_BUG_ON_PAGE(!PageLocked(page), page);
160 	VM_BUG_ON_PAGE(PageTail(page), page);
161 	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
162 
163 	for (i = 0; i < nr; i++) {
164 		struct radix_tree_node *node;
165 		void **slot;
166 
167 		__radix_tree_lookup(&mapping->page_tree, page->index + i,
168 				    &node, &slot);
169 
170 		VM_BUG_ON_PAGE(!node && nr != 1, page);
171 
172 		radix_tree_clear_tags(&mapping->page_tree, node, slot);
173 		__radix_tree_replace(&mapping->page_tree, node, slot, shadow,
174 				     workingset_update_node, mapping);
175 	}
176 
177 	if (shadow) {
178 		mapping->nrexceptional += nr;
179 		/*
180 		 * Make sure the nrexceptional update is committed before
181 		 * the nrpages update so that final truncate racing
182 		 * with reclaim does not see both counters 0 at the
183 		 * same time and miss a shadow entry.
184 		 */
185 		smp_wmb();
186 	}
187 	mapping->nrpages -= nr;
188 }
189 
190 /*
191  * Delete a page from the page cache and free it. Caller has to make
192  * sure the page is locked and that nobody else uses it - or that usage
193  * is safe.  The caller must hold the mapping's tree_lock.
194  */
195 void __delete_from_page_cache(struct page *page, void *shadow)
196 {
197 	struct address_space *mapping = page->mapping;
198 	int nr = hpage_nr_pages(page);
199 
200 	trace_mm_filemap_delete_from_page_cache(page);
201 	/*
202 	 * if we're uptodate, flush out into the cleancache, otherwise
203 	 * invalidate any existing cleancache entries.  We can't leave
204 	 * stale data around in the cleancache once our page is gone
205 	 */
206 	if (PageUptodate(page) && PageMappedToDisk(page))
207 		cleancache_put_page(page);
208 	else
209 		cleancache_invalidate_page(mapping, page);
210 
211 	VM_BUG_ON_PAGE(PageTail(page), page);
212 	VM_BUG_ON_PAGE(page_mapped(page), page);
213 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
214 		int mapcount;
215 
216 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
217 			 current->comm, page_to_pfn(page));
218 		dump_page(page, "still mapped when deleted");
219 		dump_stack();
220 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
221 
222 		mapcount = page_mapcount(page);
223 		if (mapping_exiting(mapping) &&
224 		    page_count(page) >= mapcount + 2) {
225 			/*
226 			 * All vmas have already been torn down, so it's
227 			 * a good bet that actually the page is unmapped,
228 			 * and we'd prefer not to leak it: if we're wrong,
229 			 * some other bad page check should catch it later.
230 			 */
231 			page_mapcount_reset(page);
232 			page_ref_sub(page, mapcount);
233 		}
234 	}
235 
236 	page_cache_tree_delete(mapping, page, shadow);
237 
238 	page->mapping = NULL;
239 	/* Leave page->index set: truncation lookup relies upon it */
240 
241 	/* hugetlb pages do not participate in page cache accounting. */
242 	if (PageHuge(page))
243 		return;
244 
245 	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
246 	if (PageSwapBacked(page)) {
247 		__mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
248 		if (PageTransHuge(page))
249 			__dec_node_page_state(page, NR_SHMEM_THPS);
250 	} else {
251 		VM_BUG_ON_PAGE(PageTransHuge(page), page);
252 	}
253 
254 	/*
255 	 * At this point page must be either written or cleaned by truncate.
256 	 * Dirty page here signals a bug and loss of unwritten data.
257 	 *
258 	 * This fixes dirty accounting after removing the page entirely but
259 	 * leaves PageDirty set: it has no effect for truncated page and
260 	 * anyway will be cleared before returning page into buddy allocator.
261 	 */
262 	if (WARN_ON_ONCE(PageDirty(page)))
263 		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
264 }
265 
266 /**
267  * delete_from_page_cache - delete page from page cache
268  * @page: the page which the kernel is trying to remove from page cache
269  *
270  * This must be called only on pages that have been verified to be in the page
271  * cache and locked.  It will never put the page into the free list, the caller
272  * has a reference on the page.
273  */
274 void delete_from_page_cache(struct page *page)
275 {
276 	struct address_space *mapping = page_mapping(page);
277 	unsigned long flags;
278 	void (*freepage)(struct page *);
279 
280 	BUG_ON(!PageLocked(page));
281 
282 	freepage = mapping->a_ops->freepage;
283 
284 	spin_lock_irqsave(&mapping->tree_lock, flags);
285 	__delete_from_page_cache(page, NULL);
286 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
287 
288 	if (freepage)
289 		freepage(page);
290 
291 	if (PageTransHuge(page) && !PageHuge(page)) {
292 		page_ref_sub(page, HPAGE_PMD_NR);
293 		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
294 	} else {
295 		put_page(page);
296 	}
297 }
298 EXPORT_SYMBOL(delete_from_page_cache);
299 
300 int filemap_check_errors(struct address_space *mapping)
301 {
302 	int ret = 0;
303 	/* Check for outstanding write errors */
304 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
305 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
306 		ret = -ENOSPC;
307 	if (test_bit(AS_EIO, &mapping->flags) &&
308 	    test_and_clear_bit(AS_EIO, &mapping->flags))
309 		ret = -EIO;
310 	return ret;
311 }
312 EXPORT_SYMBOL(filemap_check_errors);
313 
314 static int filemap_check_and_keep_errors(struct address_space *mapping)
315 {
316 	/* Check for outstanding write errors */
317 	if (test_bit(AS_EIO, &mapping->flags))
318 		return -EIO;
319 	if (test_bit(AS_ENOSPC, &mapping->flags))
320 		return -ENOSPC;
321 	return 0;
322 }
323 
324 /**
325  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
326  * @mapping:	address space structure to write
327  * @start:	offset in bytes where the range starts
328  * @end:	offset in bytes where the range ends (inclusive)
329  * @sync_mode:	enable synchronous operation
330  *
331  * Start writeback against all of a mapping's dirty pages that lie
332  * within the byte offsets <start, end> inclusive.
333  *
334  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
335  * opposed to a regular memory cleansing writeback.  The difference between
336  * these two operations is that if a dirty page/buffer is encountered, it must
337  * be waited upon, and not just skipped over.
338  */
339 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
340 				loff_t end, int sync_mode)
341 {
342 	int ret;
343 	struct writeback_control wbc = {
344 		.sync_mode = sync_mode,
345 		.nr_to_write = LONG_MAX,
346 		.range_start = start,
347 		.range_end = end,
348 	};
349 
350 	if (!mapping_cap_writeback_dirty(mapping))
351 		return 0;
352 
353 	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
354 	ret = do_writepages(mapping, &wbc);
355 	wbc_detach_inode(&wbc);
356 	return ret;
357 }
358 
359 static inline int __filemap_fdatawrite(struct address_space *mapping,
360 	int sync_mode)
361 {
362 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
363 }
364 
365 int filemap_fdatawrite(struct address_space *mapping)
366 {
367 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
368 }
369 EXPORT_SYMBOL(filemap_fdatawrite);
370 
371 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
372 				loff_t end)
373 {
374 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
375 }
376 EXPORT_SYMBOL(filemap_fdatawrite_range);
377 
378 /**
379  * filemap_flush - mostly a non-blocking flush
380  * @mapping:	target address_space
381  *
382  * This is a mostly non-blocking flush.  Not suitable for data-integrity
383  * purposes - I/O may not be started against all dirty pages.
384  */
385 int filemap_flush(struct address_space *mapping)
386 {
387 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
388 }
389 EXPORT_SYMBOL(filemap_flush);
390 
391 /**
392  * filemap_range_has_page - check if a page exists in range.
393  * @mapping:           address space within which to check
394  * @start_byte:        offset in bytes where the range starts
395  * @end_byte:          offset in bytes where the range ends (inclusive)
396  *
397  * Find at least one page in the range supplied, usually used to check if
398  * direct writing in this range will trigger a writeback.
399  */
400 bool filemap_range_has_page(struct address_space *mapping,
401 			   loff_t start_byte, loff_t end_byte)
402 {
403 	pgoff_t index = start_byte >> PAGE_SHIFT;
404 	pgoff_t end = end_byte >> PAGE_SHIFT;
405 	struct pagevec pvec;
406 	bool ret;
407 
408 	if (end_byte < start_byte)
409 		return false;
410 
411 	if (mapping->nrpages == 0)
412 		return false;
413 
414 	pagevec_init(&pvec, 0);
415 	if (!pagevec_lookup(&pvec, mapping, index, 1))
416 		return false;
417 	ret = (pvec.pages[0]->index <= end);
418 	pagevec_release(&pvec);
419 	return ret;
420 }
421 EXPORT_SYMBOL(filemap_range_has_page);
422 
423 static void __filemap_fdatawait_range(struct address_space *mapping,
424 				     loff_t start_byte, loff_t end_byte)
425 {
426 	pgoff_t index = start_byte >> PAGE_SHIFT;
427 	pgoff_t end = end_byte >> PAGE_SHIFT;
428 	struct pagevec pvec;
429 	int nr_pages;
430 
431 	if (end_byte < start_byte)
432 		return;
433 
434 	pagevec_init(&pvec, 0);
435 	while ((index <= end) &&
436 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
437 			PAGECACHE_TAG_WRITEBACK,
438 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
439 		unsigned i;
440 
441 		for (i = 0; i < nr_pages; i++) {
442 			struct page *page = pvec.pages[i];
443 
444 			/* until radix tree lookup accepts end_index */
445 			if (page->index > end)
446 				continue;
447 
448 			wait_on_page_writeback(page);
449 			ClearPageError(page);
450 		}
451 		pagevec_release(&pvec);
452 		cond_resched();
453 	}
454 }
455 
456 /**
457  * filemap_fdatawait_range - wait for writeback to complete
458  * @mapping:		address space structure to wait for
459  * @start_byte:		offset in bytes where the range starts
460  * @end_byte:		offset in bytes where the range ends (inclusive)
461  *
462  * Walk the list of under-writeback pages of the given address space
463  * in the given range and wait for all of them.  Check error status of
464  * the address space and return it.
465  *
466  * Since the error status of the address space is cleared by this function,
467  * callers are responsible for checking the return value and handling and/or
468  * reporting the error.
469  */
470 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
471 			    loff_t end_byte)
472 {
473 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
474 	return filemap_check_errors(mapping);
475 }
476 EXPORT_SYMBOL(filemap_fdatawait_range);
477 
478 /**
479  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
480  * @mapping: address space structure to wait for
481  *
482  * Walk the list of under-writeback pages of the given address space
483  * and wait for all of them.  Unlike filemap_fdatawait(), this function
484  * does not clear error status of the address space.
485  *
486  * Use this function if callers don't handle errors themselves.  Expected
487  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
488  * fsfreeze(8)
489  */
490 int filemap_fdatawait_keep_errors(struct address_space *mapping)
491 {
492 	loff_t i_size = i_size_read(mapping->host);
493 
494 	if (i_size == 0)
495 		return 0;
496 
497 	__filemap_fdatawait_range(mapping, 0, i_size - 1);
498 	return filemap_check_and_keep_errors(mapping);
499 }
500 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
501 
502 /**
503  * filemap_fdatawait - wait for all under-writeback pages to complete
504  * @mapping: address space structure to wait for
505  *
506  * Walk the list of under-writeback pages of the given address space
507  * and wait for all of them.  Check error status of the address space
508  * and return it.
509  *
510  * Since the error status of the address space is cleared by this function,
511  * callers are responsible for checking the return value and handling and/or
512  * reporting the error.
513  */
514 int filemap_fdatawait(struct address_space *mapping)
515 {
516 	loff_t i_size = i_size_read(mapping->host);
517 
518 	if (i_size == 0)
519 		return 0;
520 
521 	return filemap_fdatawait_range(mapping, 0, i_size - 1);
522 }
523 EXPORT_SYMBOL(filemap_fdatawait);
524 
525 int filemap_write_and_wait(struct address_space *mapping)
526 {
527 	int err = 0;
528 
529 	if ((!dax_mapping(mapping) && mapping->nrpages) ||
530 	    (dax_mapping(mapping) && mapping->nrexceptional)) {
531 		err = filemap_fdatawrite(mapping);
532 		/*
533 		 * Even if the above returned error, the pages may be
534 		 * written partially (e.g. -ENOSPC), so we wait for it.
535 		 * But the -EIO is special case, it may indicate the worst
536 		 * thing (e.g. bug) happened, so we avoid waiting for it.
537 		 */
538 		if (err != -EIO) {
539 			int err2 = filemap_fdatawait(mapping);
540 			if (!err)
541 				err = err2;
542 		} else {
543 			/* Clear any previously stored errors */
544 			filemap_check_errors(mapping);
545 		}
546 	} else {
547 		err = filemap_check_errors(mapping);
548 	}
549 	return err;
550 }
551 EXPORT_SYMBOL(filemap_write_and_wait);
552 
553 /**
554  * filemap_write_and_wait_range - write out & wait on a file range
555  * @mapping:	the address_space for the pages
556  * @lstart:	offset in bytes where the range starts
557  * @lend:	offset in bytes where the range ends (inclusive)
558  *
559  * Write out and wait upon file offsets lstart->lend, inclusive.
560  *
561  * Note that @lend is inclusive (describes the last byte to be written) so
562  * that this function can be used to write to the very end-of-file (end = -1).
563  */
564 int filemap_write_and_wait_range(struct address_space *mapping,
565 				 loff_t lstart, loff_t lend)
566 {
567 	int err = 0;
568 
569 	if ((!dax_mapping(mapping) && mapping->nrpages) ||
570 	    (dax_mapping(mapping) && mapping->nrexceptional)) {
571 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
572 						 WB_SYNC_ALL);
573 		/* See comment of filemap_write_and_wait() */
574 		if (err != -EIO) {
575 			int err2 = filemap_fdatawait_range(mapping,
576 						lstart, lend);
577 			if (!err)
578 				err = err2;
579 		} else {
580 			/* Clear any previously stored errors */
581 			filemap_check_errors(mapping);
582 		}
583 	} else {
584 		err = filemap_check_errors(mapping);
585 	}
586 	return err;
587 }
588 EXPORT_SYMBOL(filemap_write_and_wait_range);
589 
590 void __filemap_set_wb_err(struct address_space *mapping, int err)
591 {
592 	errseq_t eseq = __errseq_set(&mapping->wb_err, err);
593 
594 	trace_filemap_set_wb_err(mapping, eseq);
595 }
596 EXPORT_SYMBOL(__filemap_set_wb_err);
597 
598 /**
599  * file_check_and_advance_wb_err - report wb error (if any) that was previously
600  * 				   and advance wb_err to current one
601  * @file: struct file on which the error is being reported
602  *
603  * When userland calls fsync (or something like nfsd does the equivalent), we
604  * want to report any writeback errors that occurred since the last fsync (or
605  * since the file was opened if there haven't been any).
606  *
607  * Grab the wb_err from the mapping. If it matches what we have in the file,
608  * then just quickly return 0. The file is all caught up.
609  *
610  * If it doesn't match, then take the mapping value, set the "seen" flag in
611  * it and try to swap it into place. If it works, or another task beat us
612  * to it with the new value, then update the f_wb_err and return the error
613  * portion. The error at this point must be reported via proper channels
614  * (a'la fsync, or NFS COMMIT operation, etc.).
615  *
616  * While we handle mapping->wb_err with atomic operations, the f_wb_err
617  * value is protected by the f_lock since we must ensure that it reflects
618  * the latest value swapped in for this file descriptor.
619  */
620 int file_check_and_advance_wb_err(struct file *file)
621 {
622 	int err = 0;
623 	errseq_t old = READ_ONCE(file->f_wb_err);
624 	struct address_space *mapping = file->f_mapping;
625 
626 	/* Locklessly handle the common case where nothing has changed */
627 	if (errseq_check(&mapping->wb_err, old)) {
628 		/* Something changed, must use slow path */
629 		spin_lock(&file->f_lock);
630 		old = file->f_wb_err;
631 		err = errseq_check_and_advance(&mapping->wb_err,
632 						&file->f_wb_err);
633 		trace_file_check_and_advance_wb_err(file, old);
634 		spin_unlock(&file->f_lock);
635 	}
636 	return err;
637 }
638 EXPORT_SYMBOL(file_check_and_advance_wb_err);
639 
640 /**
641  * file_write_and_wait_range - write out & wait on a file range
642  * @file:	file pointing to address_space with pages
643  * @lstart:	offset in bytes where the range starts
644  * @lend:	offset in bytes where the range ends (inclusive)
645  *
646  * Write out and wait upon file offsets lstart->lend, inclusive.
647  *
648  * Note that @lend is inclusive (describes the last byte to be written) so
649  * that this function can be used to write to the very end-of-file (end = -1).
650  *
651  * After writing out and waiting on the data, we check and advance the
652  * f_wb_err cursor to the latest value, and return any errors detected there.
653  */
654 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
655 {
656 	int err = 0, err2;
657 	struct address_space *mapping = file->f_mapping;
658 
659 	if ((!dax_mapping(mapping) && mapping->nrpages) ||
660 	    (dax_mapping(mapping) && mapping->nrexceptional)) {
661 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
662 						 WB_SYNC_ALL);
663 		/* See comment of filemap_write_and_wait() */
664 		if (err != -EIO)
665 			__filemap_fdatawait_range(mapping, lstart, lend);
666 	}
667 	err2 = file_check_and_advance_wb_err(file);
668 	if (!err)
669 		err = err2;
670 	return err;
671 }
672 EXPORT_SYMBOL(file_write_and_wait_range);
673 
674 /**
675  * replace_page_cache_page - replace a pagecache page with a new one
676  * @old:	page to be replaced
677  * @new:	page to replace with
678  * @gfp_mask:	allocation mode
679  *
680  * This function replaces a page in the pagecache with a new one.  On
681  * success it acquires the pagecache reference for the new page and
682  * drops it for the old page.  Both the old and new pages must be
683  * locked.  This function does not add the new page to the LRU, the
684  * caller must do that.
685  *
686  * The remove + add is atomic.  The only way this function can fail is
687  * memory allocation failure.
688  */
689 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
690 {
691 	int error;
692 
693 	VM_BUG_ON_PAGE(!PageLocked(old), old);
694 	VM_BUG_ON_PAGE(!PageLocked(new), new);
695 	VM_BUG_ON_PAGE(new->mapping, new);
696 
697 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
698 	if (!error) {
699 		struct address_space *mapping = old->mapping;
700 		void (*freepage)(struct page *);
701 		unsigned long flags;
702 
703 		pgoff_t offset = old->index;
704 		freepage = mapping->a_ops->freepage;
705 
706 		get_page(new);
707 		new->mapping = mapping;
708 		new->index = offset;
709 
710 		spin_lock_irqsave(&mapping->tree_lock, flags);
711 		__delete_from_page_cache(old, NULL);
712 		error = page_cache_tree_insert(mapping, new, NULL);
713 		BUG_ON(error);
714 
715 		/*
716 		 * hugetlb pages do not participate in page cache accounting.
717 		 */
718 		if (!PageHuge(new))
719 			__inc_node_page_state(new, NR_FILE_PAGES);
720 		if (PageSwapBacked(new))
721 			__inc_node_page_state(new, NR_SHMEM);
722 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
723 		mem_cgroup_migrate(old, new);
724 		radix_tree_preload_end();
725 		if (freepage)
726 			freepage(old);
727 		put_page(old);
728 	}
729 
730 	return error;
731 }
732 EXPORT_SYMBOL_GPL(replace_page_cache_page);
733 
734 static int __add_to_page_cache_locked(struct page *page,
735 				      struct address_space *mapping,
736 				      pgoff_t offset, gfp_t gfp_mask,
737 				      void **shadowp)
738 {
739 	int huge = PageHuge(page);
740 	struct mem_cgroup *memcg;
741 	int error;
742 
743 	VM_BUG_ON_PAGE(!PageLocked(page), page);
744 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
745 
746 	if (!huge) {
747 		error = mem_cgroup_try_charge(page, current->mm,
748 					      gfp_mask, &memcg, false);
749 		if (error)
750 			return error;
751 	}
752 
753 	error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
754 	if (error) {
755 		if (!huge)
756 			mem_cgroup_cancel_charge(page, memcg, false);
757 		return error;
758 	}
759 
760 	get_page(page);
761 	page->mapping = mapping;
762 	page->index = offset;
763 
764 	spin_lock_irq(&mapping->tree_lock);
765 	error = page_cache_tree_insert(mapping, page, shadowp);
766 	radix_tree_preload_end();
767 	if (unlikely(error))
768 		goto err_insert;
769 
770 	/* hugetlb pages do not participate in page cache accounting. */
771 	if (!huge)
772 		__inc_node_page_state(page, NR_FILE_PAGES);
773 	spin_unlock_irq(&mapping->tree_lock);
774 	if (!huge)
775 		mem_cgroup_commit_charge(page, memcg, false, false);
776 	trace_mm_filemap_add_to_page_cache(page);
777 	return 0;
778 err_insert:
779 	page->mapping = NULL;
780 	/* Leave page->index set: truncation relies upon it */
781 	spin_unlock_irq(&mapping->tree_lock);
782 	if (!huge)
783 		mem_cgroup_cancel_charge(page, memcg, false);
784 	put_page(page);
785 	return error;
786 }
787 
788 /**
789  * add_to_page_cache_locked - add a locked page to the pagecache
790  * @page:	page to add
791  * @mapping:	the page's address_space
792  * @offset:	page index
793  * @gfp_mask:	page allocation mode
794  *
795  * This function is used to add a page to the pagecache. It must be locked.
796  * This function does not add the page to the LRU.  The caller must do that.
797  */
798 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
799 		pgoff_t offset, gfp_t gfp_mask)
800 {
801 	return __add_to_page_cache_locked(page, mapping, offset,
802 					  gfp_mask, NULL);
803 }
804 EXPORT_SYMBOL(add_to_page_cache_locked);
805 
806 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
807 				pgoff_t offset, gfp_t gfp_mask)
808 {
809 	void *shadow = NULL;
810 	int ret;
811 
812 	__SetPageLocked(page);
813 	ret = __add_to_page_cache_locked(page, mapping, offset,
814 					 gfp_mask, &shadow);
815 	if (unlikely(ret))
816 		__ClearPageLocked(page);
817 	else {
818 		/*
819 		 * The page might have been evicted from cache only
820 		 * recently, in which case it should be activated like
821 		 * any other repeatedly accessed page.
822 		 * The exception is pages getting rewritten; evicting other
823 		 * data from the working set, only to cache data that will
824 		 * get overwritten with something else, is a waste of memory.
825 		 */
826 		if (!(gfp_mask & __GFP_WRITE) &&
827 		    shadow && workingset_refault(shadow)) {
828 			SetPageActive(page);
829 			workingset_activation(page);
830 		} else
831 			ClearPageActive(page);
832 		lru_cache_add(page);
833 	}
834 	return ret;
835 }
836 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
837 
838 #ifdef CONFIG_NUMA
839 struct page *__page_cache_alloc(gfp_t gfp)
840 {
841 	int n;
842 	struct page *page;
843 
844 	if (cpuset_do_page_mem_spread()) {
845 		unsigned int cpuset_mems_cookie;
846 		do {
847 			cpuset_mems_cookie = read_mems_allowed_begin();
848 			n = cpuset_mem_spread_node();
849 			page = __alloc_pages_node(n, gfp, 0);
850 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
851 
852 		return page;
853 	}
854 	return alloc_pages(gfp, 0);
855 }
856 EXPORT_SYMBOL(__page_cache_alloc);
857 #endif
858 
859 /*
860  * In order to wait for pages to become available there must be
861  * waitqueues associated with pages. By using a hash table of
862  * waitqueues where the bucket discipline is to maintain all
863  * waiters on the same queue and wake all when any of the pages
864  * become available, and for the woken contexts to check to be
865  * sure the appropriate page became available, this saves space
866  * at a cost of "thundering herd" phenomena during rare hash
867  * collisions.
868  */
869 #define PAGE_WAIT_TABLE_BITS 8
870 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
871 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
872 
873 static wait_queue_head_t *page_waitqueue(struct page *page)
874 {
875 	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
876 }
877 
878 void __init pagecache_init(void)
879 {
880 	int i;
881 
882 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
883 		init_waitqueue_head(&page_wait_table[i]);
884 
885 	page_writeback_init();
886 }
887 
888 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
889 struct wait_page_key {
890 	struct page *page;
891 	int bit_nr;
892 	int page_match;
893 };
894 
895 struct wait_page_queue {
896 	struct page *page;
897 	int bit_nr;
898 	wait_queue_entry_t wait;
899 };
900 
901 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
902 {
903 	struct wait_page_key *key = arg;
904 	struct wait_page_queue *wait_page
905 		= container_of(wait, struct wait_page_queue, wait);
906 
907 	if (wait_page->page != key->page)
908 	       return 0;
909 	key->page_match = 1;
910 
911 	if (wait_page->bit_nr != key->bit_nr)
912 		return 0;
913 
914 	/* Stop walking if it's locked */
915 	if (test_bit(key->bit_nr, &key->page->flags))
916 		return -1;
917 
918 	return autoremove_wake_function(wait, mode, sync, key);
919 }
920 
921 static void wake_up_page_bit(struct page *page, int bit_nr)
922 {
923 	wait_queue_head_t *q = page_waitqueue(page);
924 	struct wait_page_key key;
925 	unsigned long flags;
926 
927 	key.page = page;
928 	key.bit_nr = bit_nr;
929 	key.page_match = 0;
930 
931 	spin_lock_irqsave(&q->lock, flags);
932 	__wake_up_locked_key(q, TASK_NORMAL, &key);
933 	/*
934 	 * It is possible for other pages to have collided on the waitqueue
935 	 * hash, so in that case check for a page match. That prevents a long-
936 	 * term waiter
937 	 *
938 	 * It is still possible to miss a case here, when we woke page waiters
939 	 * and removed them from the waitqueue, but there are still other
940 	 * page waiters.
941 	 */
942 	if (!waitqueue_active(q) || !key.page_match) {
943 		ClearPageWaiters(page);
944 		/*
945 		 * It's possible to miss clearing Waiters here, when we woke
946 		 * our page waiters, but the hashed waitqueue has waiters for
947 		 * other pages on it.
948 		 *
949 		 * That's okay, it's a rare case. The next waker will clear it.
950 		 */
951 	}
952 	spin_unlock_irqrestore(&q->lock, flags);
953 }
954 
955 static void wake_up_page(struct page *page, int bit)
956 {
957 	if (!PageWaiters(page))
958 		return;
959 	wake_up_page_bit(page, bit);
960 }
961 
962 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
963 		struct page *page, int bit_nr, int state, bool lock)
964 {
965 	struct wait_page_queue wait_page;
966 	wait_queue_entry_t *wait = &wait_page.wait;
967 	int ret = 0;
968 
969 	init_wait(wait);
970 	wait->flags = lock ? WQ_FLAG_EXCLUSIVE : 0;
971 	wait->func = wake_page_function;
972 	wait_page.page = page;
973 	wait_page.bit_nr = bit_nr;
974 
975 	for (;;) {
976 		spin_lock_irq(&q->lock);
977 
978 		if (likely(list_empty(&wait->entry))) {
979 			__add_wait_queue_entry_tail(q, wait);
980 			SetPageWaiters(page);
981 		}
982 
983 		set_current_state(state);
984 
985 		spin_unlock_irq(&q->lock);
986 
987 		if (likely(test_bit(bit_nr, &page->flags))) {
988 			io_schedule();
989 		}
990 
991 		if (lock) {
992 			if (!test_and_set_bit_lock(bit_nr, &page->flags))
993 				break;
994 		} else {
995 			if (!test_bit(bit_nr, &page->flags))
996 				break;
997 		}
998 
999 		if (unlikely(signal_pending_state(state, current))) {
1000 			ret = -EINTR;
1001 			break;
1002 		}
1003 	}
1004 
1005 	finish_wait(q, wait);
1006 
1007 	/*
1008 	 * A signal could leave PageWaiters set. Clearing it here if
1009 	 * !waitqueue_active would be possible (by open-coding finish_wait),
1010 	 * but still fail to catch it in the case of wait hash collision. We
1011 	 * already can fail to clear wait hash collision cases, so don't
1012 	 * bother with signals either.
1013 	 */
1014 
1015 	return ret;
1016 }
1017 
1018 void wait_on_page_bit(struct page *page, int bit_nr)
1019 {
1020 	wait_queue_head_t *q = page_waitqueue(page);
1021 	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
1022 }
1023 EXPORT_SYMBOL(wait_on_page_bit);
1024 
1025 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1026 {
1027 	wait_queue_head_t *q = page_waitqueue(page);
1028 	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
1029 }
1030 
1031 /**
1032  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1033  * @page: Page defining the wait queue of interest
1034  * @waiter: Waiter to add to the queue
1035  *
1036  * Add an arbitrary @waiter to the wait queue for the nominated @page.
1037  */
1038 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1039 {
1040 	wait_queue_head_t *q = page_waitqueue(page);
1041 	unsigned long flags;
1042 
1043 	spin_lock_irqsave(&q->lock, flags);
1044 	__add_wait_queue(q, waiter);
1045 	SetPageWaiters(page);
1046 	spin_unlock_irqrestore(&q->lock, flags);
1047 }
1048 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1049 
1050 #ifndef clear_bit_unlock_is_negative_byte
1051 
1052 /*
1053  * PG_waiters is the high bit in the same byte as PG_lock.
1054  *
1055  * On x86 (and on many other architectures), we can clear PG_lock and
1056  * test the sign bit at the same time. But if the architecture does
1057  * not support that special operation, we just do this all by hand
1058  * instead.
1059  *
1060  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1061  * being cleared, but a memory barrier should be unneccssary since it is
1062  * in the same byte as PG_locked.
1063  */
1064 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1065 {
1066 	clear_bit_unlock(nr, mem);
1067 	/* smp_mb__after_atomic(); */
1068 	return test_bit(PG_waiters, mem);
1069 }
1070 
1071 #endif
1072 
1073 /**
1074  * unlock_page - unlock a locked page
1075  * @page: the page
1076  *
1077  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1078  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1079  * mechanism between PageLocked pages and PageWriteback pages is shared.
1080  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1081  *
1082  * Note that this depends on PG_waiters being the sign bit in the byte
1083  * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1084  * clear the PG_locked bit and test PG_waiters at the same time fairly
1085  * portably (architectures that do LL/SC can test any bit, while x86 can
1086  * test the sign bit).
1087  */
1088 void unlock_page(struct page *page)
1089 {
1090 	BUILD_BUG_ON(PG_waiters != 7);
1091 	page = compound_head(page);
1092 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1093 	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1094 		wake_up_page_bit(page, PG_locked);
1095 }
1096 EXPORT_SYMBOL(unlock_page);
1097 
1098 /**
1099  * end_page_writeback - end writeback against a page
1100  * @page: the page
1101  */
1102 void end_page_writeback(struct page *page)
1103 {
1104 	/*
1105 	 * TestClearPageReclaim could be used here but it is an atomic
1106 	 * operation and overkill in this particular case. Failing to
1107 	 * shuffle a page marked for immediate reclaim is too mild to
1108 	 * justify taking an atomic operation penalty at the end of
1109 	 * ever page writeback.
1110 	 */
1111 	if (PageReclaim(page)) {
1112 		ClearPageReclaim(page);
1113 		rotate_reclaimable_page(page);
1114 	}
1115 
1116 	if (!test_clear_page_writeback(page))
1117 		BUG();
1118 
1119 	smp_mb__after_atomic();
1120 	wake_up_page(page, PG_writeback);
1121 }
1122 EXPORT_SYMBOL(end_page_writeback);
1123 
1124 /*
1125  * After completing I/O on a page, call this routine to update the page
1126  * flags appropriately
1127  */
1128 void page_endio(struct page *page, bool is_write, int err)
1129 {
1130 	if (!is_write) {
1131 		if (!err) {
1132 			SetPageUptodate(page);
1133 		} else {
1134 			ClearPageUptodate(page);
1135 			SetPageError(page);
1136 		}
1137 		unlock_page(page);
1138 	} else {
1139 		if (err) {
1140 			struct address_space *mapping;
1141 
1142 			SetPageError(page);
1143 			mapping = page_mapping(page);
1144 			if (mapping)
1145 				mapping_set_error(mapping, err);
1146 		}
1147 		end_page_writeback(page);
1148 	}
1149 }
1150 EXPORT_SYMBOL_GPL(page_endio);
1151 
1152 /**
1153  * __lock_page - get a lock on the page, assuming we need to sleep to get it
1154  * @__page: the page to lock
1155  */
1156 void __lock_page(struct page *__page)
1157 {
1158 	struct page *page = compound_head(__page);
1159 	wait_queue_head_t *q = page_waitqueue(page);
1160 	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1161 }
1162 EXPORT_SYMBOL(__lock_page);
1163 
1164 int __lock_page_killable(struct page *__page)
1165 {
1166 	struct page *page = compound_head(__page);
1167 	wait_queue_head_t *q = page_waitqueue(page);
1168 	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
1169 }
1170 EXPORT_SYMBOL_GPL(__lock_page_killable);
1171 
1172 /*
1173  * Return values:
1174  * 1 - page is locked; mmap_sem is still held.
1175  * 0 - page is not locked.
1176  *     mmap_sem has been released (up_read()), unless flags had both
1177  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1178  *     which case mmap_sem is still held.
1179  *
1180  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1181  * with the page locked and the mmap_sem unperturbed.
1182  */
1183 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1184 			 unsigned int flags)
1185 {
1186 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
1187 		/*
1188 		 * CAUTION! In this case, mmap_sem is not released
1189 		 * even though return 0.
1190 		 */
1191 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1192 			return 0;
1193 
1194 		up_read(&mm->mmap_sem);
1195 		if (flags & FAULT_FLAG_KILLABLE)
1196 			wait_on_page_locked_killable(page);
1197 		else
1198 			wait_on_page_locked(page);
1199 		return 0;
1200 	} else {
1201 		if (flags & FAULT_FLAG_KILLABLE) {
1202 			int ret;
1203 
1204 			ret = __lock_page_killable(page);
1205 			if (ret) {
1206 				up_read(&mm->mmap_sem);
1207 				return 0;
1208 			}
1209 		} else
1210 			__lock_page(page);
1211 		return 1;
1212 	}
1213 }
1214 
1215 /**
1216  * page_cache_next_hole - find the next hole (not-present entry)
1217  * @mapping: mapping
1218  * @index: index
1219  * @max_scan: maximum range to search
1220  *
1221  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1222  * lowest indexed hole.
1223  *
1224  * Returns: the index of the hole if found, otherwise returns an index
1225  * outside of the set specified (in which case 'return - index >=
1226  * max_scan' will be true). In rare cases of index wrap-around, 0 will
1227  * be returned.
1228  *
1229  * page_cache_next_hole may be called under rcu_read_lock. However,
1230  * like radix_tree_gang_lookup, this will not atomically search a
1231  * snapshot of the tree at a single point in time. For example, if a
1232  * hole is created at index 5, then subsequently a hole is created at
1233  * index 10, page_cache_next_hole covering both indexes may return 10
1234  * if called under rcu_read_lock.
1235  */
1236 pgoff_t page_cache_next_hole(struct address_space *mapping,
1237 			     pgoff_t index, unsigned long max_scan)
1238 {
1239 	unsigned long i;
1240 
1241 	for (i = 0; i < max_scan; i++) {
1242 		struct page *page;
1243 
1244 		page = radix_tree_lookup(&mapping->page_tree, index);
1245 		if (!page || radix_tree_exceptional_entry(page))
1246 			break;
1247 		index++;
1248 		if (index == 0)
1249 			break;
1250 	}
1251 
1252 	return index;
1253 }
1254 EXPORT_SYMBOL(page_cache_next_hole);
1255 
1256 /**
1257  * page_cache_prev_hole - find the prev hole (not-present entry)
1258  * @mapping: mapping
1259  * @index: index
1260  * @max_scan: maximum range to search
1261  *
1262  * Search backwards in the range [max(index-max_scan+1, 0), index] for
1263  * the first hole.
1264  *
1265  * Returns: the index of the hole if found, otherwise returns an index
1266  * outside of the set specified (in which case 'index - return >=
1267  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1268  * will be returned.
1269  *
1270  * page_cache_prev_hole may be called under rcu_read_lock. However,
1271  * like radix_tree_gang_lookup, this will not atomically search a
1272  * snapshot of the tree at a single point in time. For example, if a
1273  * hole is created at index 10, then subsequently a hole is created at
1274  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1275  * called under rcu_read_lock.
1276  */
1277 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1278 			     pgoff_t index, unsigned long max_scan)
1279 {
1280 	unsigned long i;
1281 
1282 	for (i = 0; i < max_scan; i++) {
1283 		struct page *page;
1284 
1285 		page = radix_tree_lookup(&mapping->page_tree, index);
1286 		if (!page || radix_tree_exceptional_entry(page))
1287 			break;
1288 		index--;
1289 		if (index == ULONG_MAX)
1290 			break;
1291 	}
1292 
1293 	return index;
1294 }
1295 EXPORT_SYMBOL(page_cache_prev_hole);
1296 
1297 /**
1298  * find_get_entry - find and get a page cache entry
1299  * @mapping: the address_space to search
1300  * @offset: the page cache index
1301  *
1302  * Looks up the page cache slot at @mapping & @offset.  If there is a
1303  * page cache page, it is returned with an increased refcount.
1304  *
1305  * If the slot holds a shadow entry of a previously evicted page, or a
1306  * swap entry from shmem/tmpfs, it is returned.
1307  *
1308  * Otherwise, %NULL is returned.
1309  */
1310 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1311 {
1312 	void **pagep;
1313 	struct page *head, *page;
1314 
1315 	rcu_read_lock();
1316 repeat:
1317 	page = NULL;
1318 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1319 	if (pagep) {
1320 		page = radix_tree_deref_slot(pagep);
1321 		if (unlikely(!page))
1322 			goto out;
1323 		if (radix_tree_exception(page)) {
1324 			if (radix_tree_deref_retry(page))
1325 				goto repeat;
1326 			/*
1327 			 * A shadow entry of a recently evicted page,
1328 			 * or a swap entry from shmem/tmpfs.  Return
1329 			 * it without attempting to raise page count.
1330 			 */
1331 			goto out;
1332 		}
1333 
1334 		head = compound_head(page);
1335 		if (!page_cache_get_speculative(head))
1336 			goto repeat;
1337 
1338 		/* The page was split under us? */
1339 		if (compound_head(page) != head) {
1340 			put_page(head);
1341 			goto repeat;
1342 		}
1343 
1344 		/*
1345 		 * Has the page moved?
1346 		 * This is part of the lockless pagecache protocol. See
1347 		 * include/linux/pagemap.h for details.
1348 		 */
1349 		if (unlikely(page != *pagep)) {
1350 			put_page(head);
1351 			goto repeat;
1352 		}
1353 	}
1354 out:
1355 	rcu_read_unlock();
1356 
1357 	return page;
1358 }
1359 EXPORT_SYMBOL(find_get_entry);
1360 
1361 /**
1362  * find_lock_entry - locate, pin and lock a page cache entry
1363  * @mapping: the address_space to search
1364  * @offset: the page cache index
1365  *
1366  * Looks up the page cache slot at @mapping & @offset.  If there is a
1367  * page cache page, it is returned locked and with an increased
1368  * refcount.
1369  *
1370  * If the slot holds a shadow entry of a previously evicted page, or a
1371  * swap entry from shmem/tmpfs, it is returned.
1372  *
1373  * Otherwise, %NULL is returned.
1374  *
1375  * find_lock_entry() may sleep.
1376  */
1377 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1378 {
1379 	struct page *page;
1380 
1381 repeat:
1382 	page = find_get_entry(mapping, offset);
1383 	if (page && !radix_tree_exception(page)) {
1384 		lock_page(page);
1385 		/* Has the page been truncated? */
1386 		if (unlikely(page_mapping(page) != mapping)) {
1387 			unlock_page(page);
1388 			put_page(page);
1389 			goto repeat;
1390 		}
1391 		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1392 	}
1393 	return page;
1394 }
1395 EXPORT_SYMBOL(find_lock_entry);
1396 
1397 /**
1398  * pagecache_get_page - find and get a page reference
1399  * @mapping: the address_space to search
1400  * @offset: the page index
1401  * @fgp_flags: PCG flags
1402  * @gfp_mask: gfp mask to use for the page cache data page allocation
1403  *
1404  * Looks up the page cache slot at @mapping & @offset.
1405  *
1406  * PCG flags modify how the page is returned.
1407  *
1408  * @fgp_flags can be:
1409  *
1410  * - FGP_ACCESSED: the page will be marked accessed
1411  * - FGP_LOCK: Page is return locked
1412  * - FGP_CREAT: If page is not present then a new page is allocated using
1413  *   @gfp_mask and added to the page cache and the VM's LRU
1414  *   list. The page is returned locked and with an increased
1415  *   refcount. Otherwise, NULL is returned.
1416  *
1417  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1418  * if the GFP flags specified for FGP_CREAT are atomic.
1419  *
1420  * If there is a page cache page, it is returned with an increased refcount.
1421  */
1422 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1423 	int fgp_flags, gfp_t gfp_mask)
1424 {
1425 	struct page *page;
1426 
1427 repeat:
1428 	page = find_get_entry(mapping, offset);
1429 	if (radix_tree_exceptional_entry(page))
1430 		page = NULL;
1431 	if (!page)
1432 		goto no_page;
1433 
1434 	if (fgp_flags & FGP_LOCK) {
1435 		if (fgp_flags & FGP_NOWAIT) {
1436 			if (!trylock_page(page)) {
1437 				put_page(page);
1438 				return NULL;
1439 			}
1440 		} else {
1441 			lock_page(page);
1442 		}
1443 
1444 		/* Has the page been truncated? */
1445 		if (unlikely(page->mapping != mapping)) {
1446 			unlock_page(page);
1447 			put_page(page);
1448 			goto repeat;
1449 		}
1450 		VM_BUG_ON_PAGE(page->index != offset, page);
1451 	}
1452 
1453 	if (page && (fgp_flags & FGP_ACCESSED))
1454 		mark_page_accessed(page);
1455 
1456 no_page:
1457 	if (!page && (fgp_flags & FGP_CREAT)) {
1458 		int err;
1459 		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1460 			gfp_mask |= __GFP_WRITE;
1461 		if (fgp_flags & FGP_NOFS)
1462 			gfp_mask &= ~__GFP_FS;
1463 
1464 		page = __page_cache_alloc(gfp_mask);
1465 		if (!page)
1466 			return NULL;
1467 
1468 		if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1469 			fgp_flags |= FGP_LOCK;
1470 
1471 		/* Init accessed so avoid atomic mark_page_accessed later */
1472 		if (fgp_flags & FGP_ACCESSED)
1473 			__SetPageReferenced(page);
1474 
1475 		err = add_to_page_cache_lru(page, mapping, offset,
1476 				gfp_mask & GFP_RECLAIM_MASK);
1477 		if (unlikely(err)) {
1478 			put_page(page);
1479 			page = NULL;
1480 			if (err == -EEXIST)
1481 				goto repeat;
1482 		}
1483 	}
1484 
1485 	return page;
1486 }
1487 EXPORT_SYMBOL(pagecache_get_page);
1488 
1489 /**
1490  * find_get_entries - gang pagecache lookup
1491  * @mapping:	The address_space to search
1492  * @start:	The starting page cache index
1493  * @nr_entries:	The maximum number of entries
1494  * @entries:	Where the resulting entries are placed
1495  * @indices:	The cache indices corresponding to the entries in @entries
1496  *
1497  * find_get_entries() will search for and return a group of up to
1498  * @nr_entries entries in the mapping.  The entries are placed at
1499  * @entries.  find_get_entries() takes a reference against any actual
1500  * pages it returns.
1501  *
1502  * The search returns a group of mapping-contiguous page cache entries
1503  * with ascending indexes.  There may be holes in the indices due to
1504  * not-present pages.
1505  *
1506  * Any shadow entries of evicted pages, or swap entries from
1507  * shmem/tmpfs, are included in the returned array.
1508  *
1509  * find_get_entries() returns the number of pages and shadow entries
1510  * which were found.
1511  */
1512 unsigned find_get_entries(struct address_space *mapping,
1513 			  pgoff_t start, unsigned int nr_entries,
1514 			  struct page **entries, pgoff_t *indices)
1515 {
1516 	void **slot;
1517 	unsigned int ret = 0;
1518 	struct radix_tree_iter iter;
1519 
1520 	if (!nr_entries)
1521 		return 0;
1522 
1523 	rcu_read_lock();
1524 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1525 		struct page *head, *page;
1526 repeat:
1527 		page = radix_tree_deref_slot(slot);
1528 		if (unlikely(!page))
1529 			continue;
1530 		if (radix_tree_exception(page)) {
1531 			if (radix_tree_deref_retry(page)) {
1532 				slot = radix_tree_iter_retry(&iter);
1533 				continue;
1534 			}
1535 			/*
1536 			 * A shadow entry of a recently evicted page, a swap
1537 			 * entry from shmem/tmpfs or a DAX entry.  Return it
1538 			 * without attempting to raise page count.
1539 			 */
1540 			goto export;
1541 		}
1542 
1543 		head = compound_head(page);
1544 		if (!page_cache_get_speculative(head))
1545 			goto repeat;
1546 
1547 		/* The page was split under us? */
1548 		if (compound_head(page) != head) {
1549 			put_page(head);
1550 			goto repeat;
1551 		}
1552 
1553 		/* Has the page moved? */
1554 		if (unlikely(page != *slot)) {
1555 			put_page(head);
1556 			goto repeat;
1557 		}
1558 export:
1559 		indices[ret] = iter.index;
1560 		entries[ret] = page;
1561 		if (++ret == nr_entries)
1562 			break;
1563 	}
1564 	rcu_read_unlock();
1565 	return ret;
1566 }
1567 
1568 /**
1569  * find_get_pages - gang pagecache lookup
1570  * @mapping:	The address_space to search
1571  * @start:	The starting page index
1572  * @nr_pages:	The maximum number of pages
1573  * @pages:	Where the resulting pages are placed
1574  *
1575  * find_get_pages() will search for and return a group of up to
1576  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1577  * find_get_pages() takes a reference against the returned pages.
1578  *
1579  * The search returns a group of mapping-contiguous pages with ascending
1580  * indexes.  There may be holes in the indices due to not-present pages.
1581  *
1582  * find_get_pages() returns the number of pages which were found.
1583  */
1584 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1585 			    unsigned int nr_pages, struct page **pages)
1586 {
1587 	struct radix_tree_iter iter;
1588 	void **slot;
1589 	unsigned ret = 0;
1590 
1591 	if (unlikely(!nr_pages))
1592 		return 0;
1593 
1594 	rcu_read_lock();
1595 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1596 		struct page *head, *page;
1597 repeat:
1598 		page = radix_tree_deref_slot(slot);
1599 		if (unlikely(!page))
1600 			continue;
1601 
1602 		if (radix_tree_exception(page)) {
1603 			if (radix_tree_deref_retry(page)) {
1604 				slot = radix_tree_iter_retry(&iter);
1605 				continue;
1606 			}
1607 			/*
1608 			 * A shadow entry of a recently evicted page,
1609 			 * or a swap entry from shmem/tmpfs.  Skip
1610 			 * over it.
1611 			 */
1612 			continue;
1613 		}
1614 
1615 		head = compound_head(page);
1616 		if (!page_cache_get_speculative(head))
1617 			goto repeat;
1618 
1619 		/* The page was split under us? */
1620 		if (compound_head(page) != head) {
1621 			put_page(head);
1622 			goto repeat;
1623 		}
1624 
1625 		/* Has the page moved? */
1626 		if (unlikely(page != *slot)) {
1627 			put_page(head);
1628 			goto repeat;
1629 		}
1630 
1631 		pages[ret] = page;
1632 		if (++ret == nr_pages)
1633 			break;
1634 	}
1635 
1636 	rcu_read_unlock();
1637 	return ret;
1638 }
1639 
1640 /**
1641  * find_get_pages_contig - gang contiguous pagecache lookup
1642  * @mapping:	The address_space to search
1643  * @index:	The starting page index
1644  * @nr_pages:	The maximum number of pages
1645  * @pages:	Where the resulting pages are placed
1646  *
1647  * find_get_pages_contig() works exactly like find_get_pages(), except
1648  * that the returned number of pages are guaranteed to be contiguous.
1649  *
1650  * find_get_pages_contig() returns the number of pages which were found.
1651  */
1652 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1653 			       unsigned int nr_pages, struct page **pages)
1654 {
1655 	struct radix_tree_iter iter;
1656 	void **slot;
1657 	unsigned int ret = 0;
1658 
1659 	if (unlikely(!nr_pages))
1660 		return 0;
1661 
1662 	rcu_read_lock();
1663 	radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1664 		struct page *head, *page;
1665 repeat:
1666 		page = radix_tree_deref_slot(slot);
1667 		/* The hole, there no reason to continue */
1668 		if (unlikely(!page))
1669 			break;
1670 
1671 		if (radix_tree_exception(page)) {
1672 			if (radix_tree_deref_retry(page)) {
1673 				slot = radix_tree_iter_retry(&iter);
1674 				continue;
1675 			}
1676 			/*
1677 			 * A shadow entry of a recently evicted page,
1678 			 * or a swap entry from shmem/tmpfs.  Stop
1679 			 * looking for contiguous pages.
1680 			 */
1681 			break;
1682 		}
1683 
1684 		head = compound_head(page);
1685 		if (!page_cache_get_speculative(head))
1686 			goto repeat;
1687 
1688 		/* The page was split under us? */
1689 		if (compound_head(page) != head) {
1690 			put_page(head);
1691 			goto repeat;
1692 		}
1693 
1694 		/* Has the page moved? */
1695 		if (unlikely(page != *slot)) {
1696 			put_page(head);
1697 			goto repeat;
1698 		}
1699 
1700 		/*
1701 		 * must check mapping and index after taking the ref.
1702 		 * otherwise we can get both false positives and false
1703 		 * negatives, which is just confusing to the caller.
1704 		 */
1705 		if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1706 			put_page(page);
1707 			break;
1708 		}
1709 
1710 		pages[ret] = page;
1711 		if (++ret == nr_pages)
1712 			break;
1713 	}
1714 	rcu_read_unlock();
1715 	return ret;
1716 }
1717 EXPORT_SYMBOL(find_get_pages_contig);
1718 
1719 /**
1720  * find_get_pages_tag - find and return pages that match @tag
1721  * @mapping:	the address_space to search
1722  * @index:	the starting page index
1723  * @tag:	the tag index
1724  * @nr_pages:	the maximum number of pages
1725  * @pages:	where the resulting pages are placed
1726  *
1727  * Like find_get_pages, except we only return pages which are tagged with
1728  * @tag.   We update @index to index the next page for the traversal.
1729  */
1730 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1731 			int tag, unsigned int nr_pages, struct page **pages)
1732 {
1733 	struct radix_tree_iter iter;
1734 	void **slot;
1735 	unsigned ret = 0;
1736 
1737 	if (unlikely(!nr_pages))
1738 		return 0;
1739 
1740 	rcu_read_lock();
1741 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1742 				   &iter, *index, tag) {
1743 		struct page *head, *page;
1744 repeat:
1745 		page = radix_tree_deref_slot(slot);
1746 		if (unlikely(!page))
1747 			continue;
1748 
1749 		if (radix_tree_exception(page)) {
1750 			if (radix_tree_deref_retry(page)) {
1751 				slot = radix_tree_iter_retry(&iter);
1752 				continue;
1753 			}
1754 			/*
1755 			 * A shadow entry of a recently evicted page.
1756 			 *
1757 			 * Those entries should never be tagged, but
1758 			 * this tree walk is lockless and the tags are
1759 			 * looked up in bulk, one radix tree node at a
1760 			 * time, so there is a sizable window for page
1761 			 * reclaim to evict a page we saw tagged.
1762 			 *
1763 			 * Skip over it.
1764 			 */
1765 			continue;
1766 		}
1767 
1768 		head = compound_head(page);
1769 		if (!page_cache_get_speculative(head))
1770 			goto repeat;
1771 
1772 		/* The page was split under us? */
1773 		if (compound_head(page) != head) {
1774 			put_page(head);
1775 			goto repeat;
1776 		}
1777 
1778 		/* Has the page moved? */
1779 		if (unlikely(page != *slot)) {
1780 			put_page(head);
1781 			goto repeat;
1782 		}
1783 
1784 		pages[ret] = page;
1785 		if (++ret == nr_pages)
1786 			break;
1787 	}
1788 
1789 	rcu_read_unlock();
1790 
1791 	if (ret)
1792 		*index = pages[ret - 1]->index + 1;
1793 
1794 	return ret;
1795 }
1796 EXPORT_SYMBOL(find_get_pages_tag);
1797 
1798 /**
1799  * find_get_entries_tag - find and return entries that match @tag
1800  * @mapping:	the address_space to search
1801  * @start:	the starting page cache index
1802  * @tag:	the tag index
1803  * @nr_entries:	the maximum number of entries
1804  * @entries:	where the resulting entries are placed
1805  * @indices:	the cache indices corresponding to the entries in @entries
1806  *
1807  * Like find_get_entries, except we only return entries which are tagged with
1808  * @tag.
1809  */
1810 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1811 			int tag, unsigned int nr_entries,
1812 			struct page **entries, pgoff_t *indices)
1813 {
1814 	void **slot;
1815 	unsigned int ret = 0;
1816 	struct radix_tree_iter iter;
1817 
1818 	if (!nr_entries)
1819 		return 0;
1820 
1821 	rcu_read_lock();
1822 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1823 				   &iter, start, tag) {
1824 		struct page *head, *page;
1825 repeat:
1826 		page = radix_tree_deref_slot(slot);
1827 		if (unlikely(!page))
1828 			continue;
1829 		if (radix_tree_exception(page)) {
1830 			if (radix_tree_deref_retry(page)) {
1831 				slot = radix_tree_iter_retry(&iter);
1832 				continue;
1833 			}
1834 
1835 			/*
1836 			 * A shadow entry of a recently evicted page, a swap
1837 			 * entry from shmem/tmpfs or a DAX entry.  Return it
1838 			 * without attempting to raise page count.
1839 			 */
1840 			goto export;
1841 		}
1842 
1843 		head = compound_head(page);
1844 		if (!page_cache_get_speculative(head))
1845 			goto repeat;
1846 
1847 		/* The page was split under us? */
1848 		if (compound_head(page) != head) {
1849 			put_page(head);
1850 			goto repeat;
1851 		}
1852 
1853 		/* Has the page moved? */
1854 		if (unlikely(page != *slot)) {
1855 			put_page(head);
1856 			goto repeat;
1857 		}
1858 export:
1859 		indices[ret] = iter.index;
1860 		entries[ret] = page;
1861 		if (++ret == nr_entries)
1862 			break;
1863 	}
1864 	rcu_read_unlock();
1865 	return ret;
1866 }
1867 EXPORT_SYMBOL(find_get_entries_tag);
1868 
1869 /*
1870  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1871  * a _large_ part of the i/o request. Imagine the worst scenario:
1872  *
1873  *      ---R__________________________________________B__________
1874  *         ^ reading here                             ^ bad block(assume 4k)
1875  *
1876  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1877  * => failing the whole request => read(R) => read(R+1) =>
1878  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1879  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1880  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1881  *
1882  * It is going insane. Fix it by quickly scaling down the readahead size.
1883  */
1884 static void shrink_readahead_size_eio(struct file *filp,
1885 					struct file_ra_state *ra)
1886 {
1887 	ra->ra_pages /= 4;
1888 }
1889 
1890 /**
1891  * do_generic_file_read - generic file read routine
1892  * @filp:	the file to read
1893  * @ppos:	current file position
1894  * @iter:	data destination
1895  * @written:	already copied
1896  *
1897  * This is a generic file read routine, and uses the
1898  * mapping->a_ops->readpage() function for the actual low-level stuff.
1899  *
1900  * This is really ugly. But the goto's actually try to clarify some
1901  * of the logic when it comes to error handling etc.
1902  */
1903 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1904 		struct iov_iter *iter, ssize_t written)
1905 {
1906 	struct address_space *mapping = filp->f_mapping;
1907 	struct inode *inode = mapping->host;
1908 	struct file_ra_state *ra = &filp->f_ra;
1909 	pgoff_t index;
1910 	pgoff_t last_index;
1911 	pgoff_t prev_index;
1912 	unsigned long offset;      /* offset into pagecache page */
1913 	unsigned int prev_offset;
1914 	int error = 0;
1915 
1916 	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1917 		return 0;
1918 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1919 
1920 	index = *ppos >> PAGE_SHIFT;
1921 	prev_index = ra->prev_pos >> PAGE_SHIFT;
1922 	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1923 	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1924 	offset = *ppos & ~PAGE_MASK;
1925 
1926 	for (;;) {
1927 		struct page *page;
1928 		pgoff_t end_index;
1929 		loff_t isize;
1930 		unsigned long nr, ret;
1931 
1932 		cond_resched();
1933 find_page:
1934 		if (fatal_signal_pending(current)) {
1935 			error = -EINTR;
1936 			goto out;
1937 		}
1938 
1939 		page = find_get_page(mapping, index);
1940 		if (!page) {
1941 			page_cache_sync_readahead(mapping,
1942 					ra, filp,
1943 					index, last_index - index);
1944 			page = find_get_page(mapping, index);
1945 			if (unlikely(page == NULL))
1946 				goto no_cached_page;
1947 		}
1948 		if (PageReadahead(page)) {
1949 			page_cache_async_readahead(mapping,
1950 					ra, filp, page,
1951 					index, last_index - index);
1952 		}
1953 		if (!PageUptodate(page)) {
1954 			/*
1955 			 * See comment in do_read_cache_page on why
1956 			 * wait_on_page_locked is used to avoid unnecessarily
1957 			 * serialisations and why it's safe.
1958 			 */
1959 			error = wait_on_page_locked_killable(page);
1960 			if (unlikely(error))
1961 				goto readpage_error;
1962 			if (PageUptodate(page))
1963 				goto page_ok;
1964 
1965 			if (inode->i_blkbits == PAGE_SHIFT ||
1966 					!mapping->a_ops->is_partially_uptodate)
1967 				goto page_not_up_to_date;
1968 			/* pipes can't handle partially uptodate pages */
1969 			if (unlikely(iter->type & ITER_PIPE))
1970 				goto page_not_up_to_date;
1971 			if (!trylock_page(page))
1972 				goto page_not_up_to_date;
1973 			/* Did it get truncated before we got the lock? */
1974 			if (!page->mapping)
1975 				goto page_not_up_to_date_locked;
1976 			if (!mapping->a_ops->is_partially_uptodate(page,
1977 							offset, iter->count))
1978 				goto page_not_up_to_date_locked;
1979 			unlock_page(page);
1980 		}
1981 page_ok:
1982 		/*
1983 		 * i_size must be checked after we know the page is Uptodate.
1984 		 *
1985 		 * Checking i_size after the check allows us to calculate
1986 		 * the correct value for "nr", which means the zero-filled
1987 		 * part of the page is not copied back to userspace (unless
1988 		 * another truncate extends the file - this is desired though).
1989 		 */
1990 
1991 		isize = i_size_read(inode);
1992 		end_index = (isize - 1) >> PAGE_SHIFT;
1993 		if (unlikely(!isize || index > end_index)) {
1994 			put_page(page);
1995 			goto out;
1996 		}
1997 
1998 		/* nr is the maximum number of bytes to copy from this page */
1999 		nr = PAGE_SIZE;
2000 		if (index == end_index) {
2001 			nr = ((isize - 1) & ~PAGE_MASK) + 1;
2002 			if (nr <= offset) {
2003 				put_page(page);
2004 				goto out;
2005 			}
2006 		}
2007 		nr = nr - offset;
2008 
2009 		/* If users can be writing to this page using arbitrary
2010 		 * virtual addresses, take care about potential aliasing
2011 		 * before reading the page on the kernel side.
2012 		 */
2013 		if (mapping_writably_mapped(mapping))
2014 			flush_dcache_page(page);
2015 
2016 		/*
2017 		 * When a sequential read accesses a page several times,
2018 		 * only mark it as accessed the first time.
2019 		 */
2020 		if (prev_index != index || offset != prev_offset)
2021 			mark_page_accessed(page);
2022 		prev_index = index;
2023 
2024 		/*
2025 		 * Ok, we have the page, and it's up-to-date, so
2026 		 * now we can copy it to user space...
2027 		 */
2028 
2029 		ret = copy_page_to_iter(page, offset, nr, iter);
2030 		offset += ret;
2031 		index += offset >> PAGE_SHIFT;
2032 		offset &= ~PAGE_MASK;
2033 		prev_offset = offset;
2034 
2035 		put_page(page);
2036 		written += ret;
2037 		if (!iov_iter_count(iter))
2038 			goto out;
2039 		if (ret < nr) {
2040 			error = -EFAULT;
2041 			goto out;
2042 		}
2043 		continue;
2044 
2045 page_not_up_to_date:
2046 		/* Get exclusive access to the page ... */
2047 		error = lock_page_killable(page);
2048 		if (unlikely(error))
2049 			goto readpage_error;
2050 
2051 page_not_up_to_date_locked:
2052 		/* Did it get truncated before we got the lock? */
2053 		if (!page->mapping) {
2054 			unlock_page(page);
2055 			put_page(page);
2056 			continue;
2057 		}
2058 
2059 		/* Did somebody else fill it already? */
2060 		if (PageUptodate(page)) {
2061 			unlock_page(page);
2062 			goto page_ok;
2063 		}
2064 
2065 readpage:
2066 		/*
2067 		 * A previous I/O error may have been due to temporary
2068 		 * failures, eg. multipath errors.
2069 		 * PG_error will be set again if readpage fails.
2070 		 */
2071 		ClearPageError(page);
2072 		/* Start the actual read. The read will unlock the page. */
2073 		error = mapping->a_ops->readpage(filp, page);
2074 
2075 		if (unlikely(error)) {
2076 			if (error == AOP_TRUNCATED_PAGE) {
2077 				put_page(page);
2078 				error = 0;
2079 				goto find_page;
2080 			}
2081 			goto readpage_error;
2082 		}
2083 
2084 		if (!PageUptodate(page)) {
2085 			error = lock_page_killable(page);
2086 			if (unlikely(error))
2087 				goto readpage_error;
2088 			if (!PageUptodate(page)) {
2089 				if (page->mapping == NULL) {
2090 					/*
2091 					 * invalidate_mapping_pages got it
2092 					 */
2093 					unlock_page(page);
2094 					put_page(page);
2095 					goto find_page;
2096 				}
2097 				unlock_page(page);
2098 				shrink_readahead_size_eio(filp, ra);
2099 				error = -EIO;
2100 				goto readpage_error;
2101 			}
2102 			unlock_page(page);
2103 		}
2104 
2105 		goto page_ok;
2106 
2107 readpage_error:
2108 		/* UHHUH! A synchronous read error occurred. Report it */
2109 		put_page(page);
2110 		goto out;
2111 
2112 no_cached_page:
2113 		/*
2114 		 * Ok, it wasn't cached, so we need to create a new
2115 		 * page..
2116 		 */
2117 		page = page_cache_alloc_cold(mapping);
2118 		if (!page) {
2119 			error = -ENOMEM;
2120 			goto out;
2121 		}
2122 		error = add_to_page_cache_lru(page, mapping, index,
2123 				mapping_gfp_constraint(mapping, GFP_KERNEL));
2124 		if (error) {
2125 			put_page(page);
2126 			if (error == -EEXIST) {
2127 				error = 0;
2128 				goto find_page;
2129 			}
2130 			goto out;
2131 		}
2132 		goto readpage;
2133 	}
2134 
2135 out:
2136 	ra->prev_pos = prev_index;
2137 	ra->prev_pos <<= PAGE_SHIFT;
2138 	ra->prev_pos |= prev_offset;
2139 
2140 	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2141 	file_accessed(filp);
2142 	return written ? written : error;
2143 }
2144 
2145 /**
2146  * generic_file_read_iter - generic filesystem read routine
2147  * @iocb:	kernel I/O control block
2148  * @iter:	destination for the data read
2149  *
2150  * This is the "read_iter()" routine for all filesystems
2151  * that can use the page cache directly.
2152  */
2153 ssize_t
2154 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2155 {
2156 	struct file *file = iocb->ki_filp;
2157 	ssize_t retval = 0;
2158 	size_t count = iov_iter_count(iter);
2159 
2160 	if (!count)
2161 		goto out; /* skip atime */
2162 
2163 	if (iocb->ki_flags & IOCB_DIRECT) {
2164 		struct address_space *mapping = file->f_mapping;
2165 		struct inode *inode = mapping->host;
2166 		loff_t size;
2167 
2168 		size = i_size_read(inode);
2169 		if (iocb->ki_flags & IOCB_NOWAIT) {
2170 			if (filemap_range_has_page(mapping, iocb->ki_pos,
2171 						   iocb->ki_pos + count - 1))
2172 				return -EAGAIN;
2173 		} else {
2174 			retval = filemap_write_and_wait_range(mapping,
2175 						iocb->ki_pos,
2176 					        iocb->ki_pos + count - 1);
2177 			if (retval < 0)
2178 				goto out;
2179 		}
2180 
2181 		file_accessed(file);
2182 
2183 		retval = mapping->a_ops->direct_IO(iocb, iter);
2184 		if (retval >= 0) {
2185 			iocb->ki_pos += retval;
2186 			count -= retval;
2187 		}
2188 		iov_iter_revert(iter, count - iov_iter_count(iter));
2189 
2190 		/*
2191 		 * Btrfs can have a short DIO read if we encounter
2192 		 * compressed extents, so if there was an error, or if
2193 		 * we've already read everything we wanted to, or if
2194 		 * there was a short read because we hit EOF, go ahead
2195 		 * and return.  Otherwise fallthrough to buffered io for
2196 		 * the rest of the read.  Buffered reads will not work for
2197 		 * DAX files, so don't bother trying.
2198 		 */
2199 		if (retval < 0 || !count || iocb->ki_pos >= size ||
2200 		    IS_DAX(inode))
2201 			goto out;
2202 	}
2203 
2204 	retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
2205 out:
2206 	return retval;
2207 }
2208 EXPORT_SYMBOL(generic_file_read_iter);
2209 
2210 #ifdef CONFIG_MMU
2211 /**
2212  * page_cache_read - adds requested page to the page cache if not already there
2213  * @file:	file to read
2214  * @offset:	page index
2215  * @gfp_mask:	memory allocation flags
2216  *
2217  * This adds the requested page to the page cache if it isn't already there,
2218  * and schedules an I/O to read in its contents from disk.
2219  */
2220 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2221 {
2222 	struct address_space *mapping = file->f_mapping;
2223 	struct page *page;
2224 	int ret;
2225 
2226 	do {
2227 		page = __page_cache_alloc(gfp_mask|__GFP_COLD);
2228 		if (!page)
2229 			return -ENOMEM;
2230 
2231 		ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
2232 		if (ret == 0)
2233 			ret = mapping->a_ops->readpage(file, page);
2234 		else if (ret == -EEXIST)
2235 			ret = 0; /* losing race to add is OK */
2236 
2237 		put_page(page);
2238 
2239 	} while (ret == AOP_TRUNCATED_PAGE);
2240 
2241 	return ret;
2242 }
2243 
2244 #define MMAP_LOTSAMISS  (100)
2245 
2246 /*
2247  * Synchronous readahead happens when we don't even find
2248  * a page in the page cache at all.
2249  */
2250 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2251 				   struct file_ra_state *ra,
2252 				   struct file *file,
2253 				   pgoff_t offset)
2254 {
2255 	struct address_space *mapping = file->f_mapping;
2256 
2257 	/* If we don't want any read-ahead, don't bother */
2258 	if (vma->vm_flags & VM_RAND_READ)
2259 		return;
2260 	if (!ra->ra_pages)
2261 		return;
2262 
2263 	if (vma->vm_flags & VM_SEQ_READ) {
2264 		page_cache_sync_readahead(mapping, ra, file, offset,
2265 					  ra->ra_pages);
2266 		return;
2267 	}
2268 
2269 	/* Avoid banging the cache line if not needed */
2270 	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2271 		ra->mmap_miss++;
2272 
2273 	/*
2274 	 * Do we miss much more than hit in this file? If so,
2275 	 * stop bothering with read-ahead. It will only hurt.
2276 	 */
2277 	if (ra->mmap_miss > MMAP_LOTSAMISS)
2278 		return;
2279 
2280 	/*
2281 	 * mmap read-around
2282 	 */
2283 	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2284 	ra->size = ra->ra_pages;
2285 	ra->async_size = ra->ra_pages / 4;
2286 	ra_submit(ra, mapping, file);
2287 }
2288 
2289 /*
2290  * Asynchronous readahead happens when we find the page and PG_readahead,
2291  * so we want to possibly extend the readahead further..
2292  */
2293 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2294 				    struct file_ra_state *ra,
2295 				    struct file *file,
2296 				    struct page *page,
2297 				    pgoff_t offset)
2298 {
2299 	struct address_space *mapping = file->f_mapping;
2300 
2301 	/* If we don't want any read-ahead, don't bother */
2302 	if (vma->vm_flags & VM_RAND_READ)
2303 		return;
2304 	if (ra->mmap_miss > 0)
2305 		ra->mmap_miss--;
2306 	if (PageReadahead(page))
2307 		page_cache_async_readahead(mapping, ra, file,
2308 					   page, offset, ra->ra_pages);
2309 }
2310 
2311 /**
2312  * filemap_fault - read in file data for page fault handling
2313  * @vmf:	struct vm_fault containing details of the fault
2314  *
2315  * filemap_fault() is invoked via the vma operations vector for a
2316  * mapped memory region to read in file data during a page fault.
2317  *
2318  * The goto's are kind of ugly, but this streamlines the normal case of having
2319  * it in the page cache, and handles the special cases reasonably without
2320  * having a lot of duplicated code.
2321  *
2322  * vma->vm_mm->mmap_sem must be held on entry.
2323  *
2324  * If our return value has VM_FAULT_RETRY set, it's because
2325  * lock_page_or_retry() returned 0.
2326  * The mmap_sem has usually been released in this case.
2327  * See __lock_page_or_retry() for the exception.
2328  *
2329  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2330  * has not been released.
2331  *
2332  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2333  */
2334 int filemap_fault(struct vm_fault *vmf)
2335 {
2336 	int error;
2337 	struct file *file = vmf->vma->vm_file;
2338 	struct address_space *mapping = file->f_mapping;
2339 	struct file_ra_state *ra = &file->f_ra;
2340 	struct inode *inode = mapping->host;
2341 	pgoff_t offset = vmf->pgoff;
2342 	pgoff_t max_off;
2343 	struct page *page;
2344 	int ret = 0;
2345 
2346 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2347 	if (unlikely(offset >= max_off))
2348 		return VM_FAULT_SIGBUS;
2349 
2350 	/*
2351 	 * Do we have something in the page cache already?
2352 	 */
2353 	page = find_get_page(mapping, offset);
2354 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2355 		/*
2356 		 * We found the page, so try async readahead before
2357 		 * waiting for the lock.
2358 		 */
2359 		do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2360 	} else if (!page) {
2361 		/* No page in the page cache at all */
2362 		do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2363 		count_vm_event(PGMAJFAULT);
2364 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2365 		ret = VM_FAULT_MAJOR;
2366 retry_find:
2367 		page = find_get_page(mapping, offset);
2368 		if (!page)
2369 			goto no_cached_page;
2370 	}
2371 
2372 	if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2373 		put_page(page);
2374 		return ret | VM_FAULT_RETRY;
2375 	}
2376 
2377 	/* Did it get truncated? */
2378 	if (unlikely(page->mapping != mapping)) {
2379 		unlock_page(page);
2380 		put_page(page);
2381 		goto retry_find;
2382 	}
2383 	VM_BUG_ON_PAGE(page->index != offset, page);
2384 
2385 	/*
2386 	 * We have a locked page in the page cache, now we need to check
2387 	 * that it's up-to-date. If not, it is going to be due to an error.
2388 	 */
2389 	if (unlikely(!PageUptodate(page)))
2390 		goto page_not_uptodate;
2391 
2392 	/*
2393 	 * Found the page and have a reference on it.
2394 	 * We must recheck i_size under page lock.
2395 	 */
2396 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2397 	if (unlikely(offset >= max_off)) {
2398 		unlock_page(page);
2399 		put_page(page);
2400 		return VM_FAULT_SIGBUS;
2401 	}
2402 
2403 	vmf->page = page;
2404 	return ret | VM_FAULT_LOCKED;
2405 
2406 no_cached_page:
2407 	/*
2408 	 * We're only likely to ever get here if MADV_RANDOM is in
2409 	 * effect.
2410 	 */
2411 	error = page_cache_read(file, offset, vmf->gfp_mask);
2412 
2413 	/*
2414 	 * The page we want has now been added to the page cache.
2415 	 * In the unlikely event that someone removed it in the
2416 	 * meantime, we'll just come back here and read it again.
2417 	 */
2418 	if (error >= 0)
2419 		goto retry_find;
2420 
2421 	/*
2422 	 * An error return from page_cache_read can result if the
2423 	 * system is low on memory, or a problem occurs while trying
2424 	 * to schedule I/O.
2425 	 */
2426 	if (error == -ENOMEM)
2427 		return VM_FAULT_OOM;
2428 	return VM_FAULT_SIGBUS;
2429 
2430 page_not_uptodate:
2431 	/*
2432 	 * Umm, take care of errors if the page isn't up-to-date.
2433 	 * Try to re-read it _once_. We do this synchronously,
2434 	 * because there really aren't any performance issues here
2435 	 * and we need to check for errors.
2436 	 */
2437 	ClearPageError(page);
2438 	error = mapping->a_ops->readpage(file, page);
2439 	if (!error) {
2440 		wait_on_page_locked(page);
2441 		if (!PageUptodate(page))
2442 			error = -EIO;
2443 	}
2444 	put_page(page);
2445 
2446 	if (!error || error == AOP_TRUNCATED_PAGE)
2447 		goto retry_find;
2448 
2449 	/* Things didn't work out. Return zero to tell the mm layer so. */
2450 	shrink_readahead_size_eio(file, ra);
2451 	return VM_FAULT_SIGBUS;
2452 }
2453 EXPORT_SYMBOL(filemap_fault);
2454 
2455 void filemap_map_pages(struct vm_fault *vmf,
2456 		pgoff_t start_pgoff, pgoff_t end_pgoff)
2457 {
2458 	struct radix_tree_iter iter;
2459 	void **slot;
2460 	struct file *file = vmf->vma->vm_file;
2461 	struct address_space *mapping = file->f_mapping;
2462 	pgoff_t last_pgoff = start_pgoff;
2463 	unsigned long max_idx;
2464 	struct page *head, *page;
2465 
2466 	rcu_read_lock();
2467 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2468 			start_pgoff) {
2469 		if (iter.index > end_pgoff)
2470 			break;
2471 repeat:
2472 		page = radix_tree_deref_slot(slot);
2473 		if (unlikely(!page))
2474 			goto next;
2475 		if (radix_tree_exception(page)) {
2476 			if (radix_tree_deref_retry(page)) {
2477 				slot = radix_tree_iter_retry(&iter);
2478 				continue;
2479 			}
2480 			goto next;
2481 		}
2482 
2483 		head = compound_head(page);
2484 		if (!page_cache_get_speculative(head))
2485 			goto repeat;
2486 
2487 		/* The page was split under us? */
2488 		if (compound_head(page) != head) {
2489 			put_page(head);
2490 			goto repeat;
2491 		}
2492 
2493 		/* Has the page moved? */
2494 		if (unlikely(page != *slot)) {
2495 			put_page(head);
2496 			goto repeat;
2497 		}
2498 
2499 		if (!PageUptodate(page) ||
2500 				PageReadahead(page) ||
2501 				PageHWPoison(page))
2502 			goto skip;
2503 		if (!trylock_page(page))
2504 			goto skip;
2505 
2506 		if (page->mapping != mapping || !PageUptodate(page))
2507 			goto unlock;
2508 
2509 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2510 		if (page->index >= max_idx)
2511 			goto unlock;
2512 
2513 		if (file->f_ra.mmap_miss > 0)
2514 			file->f_ra.mmap_miss--;
2515 
2516 		vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2517 		if (vmf->pte)
2518 			vmf->pte += iter.index - last_pgoff;
2519 		last_pgoff = iter.index;
2520 		if (alloc_set_pte(vmf, NULL, page))
2521 			goto unlock;
2522 		unlock_page(page);
2523 		goto next;
2524 unlock:
2525 		unlock_page(page);
2526 skip:
2527 		put_page(page);
2528 next:
2529 		/* Huge page is mapped? No need to proceed. */
2530 		if (pmd_trans_huge(*vmf->pmd))
2531 			break;
2532 		if (iter.index == end_pgoff)
2533 			break;
2534 	}
2535 	rcu_read_unlock();
2536 }
2537 EXPORT_SYMBOL(filemap_map_pages);
2538 
2539 int filemap_page_mkwrite(struct vm_fault *vmf)
2540 {
2541 	struct page *page = vmf->page;
2542 	struct inode *inode = file_inode(vmf->vma->vm_file);
2543 	int ret = VM_FAULT_LOCKED;
2544 
2545 	sb_start_pagefault(inode->i_sb);
2546 	file_update_time(vmf->vma->vm_file);
2547 	lock_page(page);
2548 	if (page->mapping != inode->i_mapping) {
2549 		unlock_page(page);
2550 		ret = VM_FAULT_NOPAGE;
2551 		goto out;
2552 	}
2553 	/*
2554 	 * We mark the page dirty already here so that when freeze is in
2555 	 * progress, we are guaranteed that writeback during freezing will
2556 	 * see the dirty page and writeprotect it again.
2557 	 */
2558 	set_page_dirty(page);
2559 	wait_for_stable_page(page);
2560 out:
2561 	sb_end_pagefault(inode->i_sb);
2562 	return ret;
2563 }
2564 EXPORT_SYMBOL(filemap_page_mkwrite);
2565 
2566 const struct vm_operations_struct generic_file_vm_ops = {
2567 	.fault		= filemap_fault,
2568 	.map_pages	= filemap_map_pages,
2569 	.page_mkwrite	= filemap_page_mkwrite,
2570 };
2571 
2572 /* This is used for a general mmap of a disk file */
2573 
2574 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2575 {
2576 	struct address_space *mapping = file->f_mapping;
2577 
2578 	if (!mapping->a_ops->readpage)
2579 		return -ENOEXEC;
2580 	file_accessed(file);
2581 	vma->vm_ops = &generic_file_vm_ops;
2582 	return 0;
2583 }
2584 
2585 /*
2586  * This is for filesystems which do not implement ->writepage.
2587  */
2588 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2589 {
2590 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2591 		return -EINVAL;
2592 	return generic_file_mmap(file, vma);
2593 }
2594 #else
2595 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2596 {
2597 	return -ENOSYS;
2598 }
2599 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2600 {
2601 	return -ENOSYS;
2602 }
2603 #endif /* CONFIG_MMU */
2604 
2605 EXPORT_SYMBOL(generic_file_mmap);
2606 EXPORT_SYMBOL(generic_file_readonly_mmap);
2607 
2608 static struct page *wait_on_page_read(struct page *page)
2609 {
2610 	if (!IS_ERR(page)) {
2611 		wait_on_page_locked(page);
2612 		if (!PageUptodate(page)) {
2613 			put_page(page);
2614 			page = ERR_PTR(-EIO);
2615 		}
2616 	}
2617 	return page;
2618 }
2619 
2620 static struct page *do_read_cache_page(struct address_space *mapping,
2621 				pgoff_t index,
2622 				int (*filler)(void *, struct page *),
2623 				void *data,
2624 				gfp_t gfp)
2625 {
2626 	struct page *page;
2627 	int err;
2628 repeat:
2629 	page = find_get_page(mapping, index);
2630 	if (!page) {
2631 		page = __page_cache_alloc(gfp | __GFP_COLD);
2632 		if (!page)
2633 			return ERR_PTR(-ENOMEM);
2634 		err = add_to_page_cache_lru(page, mapping, index, gfp);
2635 		if (unlikely(err)) {
2636 			put_page(page);
2637 			if (err == -EEXIST)
2638 				goto repeat;
2639 			/* Presumably ENOMEM for radix tree node */
2640 			return ERR_PTR(err);
2641 		}
2642 
2643 filler:
2644 		err = filler(data, page);
2645 		if (err < 0) {
2646 			put_page(page);
2647 			return ERR_PTR(err);
2648 		}
2649 
2650 		page = wait_on_page_read(page);
2651 		if (IS_ERR(page))
2652 			return page;
2653 		goto out;
2654 	}
2655 	if (PageUptodate(page))
2656 		goto out;
2657 
2658 	/*
2659 	 * Page is not up to date and may be locked due one of the following
2660 	 * case a: Page is being filled and the page lock is held
2661 	 * case b: Read/write error clearing the page uptodate status
2662 	 * case c: Truncation in progress (page locked)
2663 	 * case d: Reclaim in progress
2664 	 *
2665 	 * Case a, the page will be up to date when the page is unlocked.
2666 	 *    There is no need to serialise on the page lock here as the page
2667 	 *    is pinned so the lock gives no additional protection. Even if the
2668 	 *    the page is truncated, the data is still valid if PageUptodate as
2669 	 *    it's a race vs truncate race.
2670 	 * Case b, the page will not be up to date
2671 	 * Case c, the page may be truncated but in itself, the data may still
2672 	 *    be valid after IO completes as it's a read vs truncate race. The
2673 	 *    operation must restart if the page is not uptodate on unlock but
2674 	 *    otherwise serialising on page lock to stabilise the mapping gives
2675 	 *    no additional guarantees to the caller as the page lock is
2676 	 *    released before return.
2677 	 * Case d, similar to truncation. If reclaim holds the page lock, it
2678 	 *    will be a race with remove_mapping that determines if the mapping
2679 	 *    is valid on unlock but otherwise the data is valid and there is
2680 	 *    no need to serialise with page lock.
2681 	 *
2682 	 * As the page lock gives no additional guarantee, we optimistically
2683 	 * wait on the page to be unlocked and check if it's up to date and
2684 	 * use the page if it is. Otherwise, the page lock is required to
2685 	 * distinguish between the different cases. The motivation is that we
2686 	 * avoid spurious serialisations and wakeups when multiple processes
2687 	 * wait on the same page for IO to complete.
2688 	 */
2689 	wait_on_page_locked(page);
2690 	if (PageUptodate(page))
2691 		goto out;
2692 
2693 	/* Distinguish between all the cases under the safety of the lock */
2694 	lock_page(page);
2695 
2696 	/* Case c or d, restart the operation */
2697 	if (!page->mapping) {
2698 		unlock_page(page);
2699 		put_page(page);
2700 		goto repeat;
2701 	}
2702 
2703 	/* Someone else locked and filled the page in a very small window */
2704 	if (PageUptodate(page)) {
2705 		unlock_page(page);
2706 		goto out;
2707 	}
2708 	goto filler;
2709 
2710 out:
2711 	mark_page_accessed(page);
2712 	return page;
2713 }
2714 
2715 /**
2716  * read_cache_page - read into page cache, fill it if needed
2717  * @mapping:	the page's address_space
2718  * @index:	the page index
2719  * @filler:	function to perform the read
2720  * @data:	first arg to filler(data, page) function, often left as NULL
2721  *
2722  * Read into the page cache. If a page already exists, and PageUptodate() is
2723  * not set, try to fill the page and wait for it to become unlocked.
2724  *
2725  * If the page does not get brought uptodate, return -EIO.
2726  */
2727 struct page *read_cache_page(struct address_space *mapping,
2728 				pgoff_t index,
2729 				int (*filler)(void *, struct page *),
2730 				void *data)
2731 {
2732 	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2733 }
2734 EXPORT_SYMBOL(read_cache_page);
2735 
2736 /**
2737  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2738  * @mapping:	the page's address_space
2739  * @index:	the page index
2740  * @gfp:	the page allocator flags to use if allocating
2741  *
2742  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2743  * any new page allocations done using the specified allocation flags.
2744  *
2745  * If the page does not get brought uptodate, return -EIO.
2746  */
2747 struct page *read_cache_page_gfp(struct address_space *mapping,
2748 				pgoff_t index,
2749 				gfp_t gfp)
2750 {
2751 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2752 
2753 	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2754 }
2755 EXPORT_SYMBOL(read_cache_page_gfp);
2756 
2757 /*
2758  * Performs necessary checks before doing a write
2759  *
2760  * Can adjust writing position or amount of bytes to write.
2761  * Returns appropriate error code that caller should return or
2762  * zero in case that write should be allowed.
2763  */
2764 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2765 {
2766 	struct file *file = iocb->ki_filp;
2767 	struct inode *inode = file->f_mapping->host;
2768 	unsigned long limit = rlimit(RLIMIT_FSIZE);
2769 	loff_t pos;
2770 
2771 	if (!iov_iter_count(from))
2772 		return 0;
2773 
2774 	/* FIXME: this is for backwards compatibility with 2.4 */
2775 	if (iocb->ki_flags & IOCB_APPEND)
2776 		iocb->ki_pos = i_size_read(inode);
2777 
2778 	pos = iocb->ki_pos;
2779 
2780 	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2781 		return -EINVAL;
2782 
2783 	if (limit != RLIM_INFINITY) {
2784 		if (iocb->ki_pos >= limit) {
2785 			send_sig(SIGXFSZ, current, 0);
2786 			return -EFBIG;
2787 		}
2788 		iov_iter_truncate(from, limit - (unsigned long)pos);
2789 	}
2790 
2791 	/*
2792 	 * LFS rule
2793 	 */
2794 	if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2795 				!(file->f_flags & O_LARGEFILE))) {
2796 		if (pos >= MAX_NON_LFS)
2797 			return -EFBIG;
2798 		iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2799 	}
2800 
2801 	/*
2802 	 * Are we about to exceed the fs block limit ?
2803 	 *
2804 	 * If we have written data it becomes a short write.  If we have
2805 	 * exceeded without writing data we send a signal and return EFBIG.
2806 	 * Linus frestrict idea will clean these up nicely..
2807 	 */
2808 	if (unlikely(pos >= inode->i_sb->s_maxbytes))
2809 		return -EFBIG;
2810 
2811 	iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2812 	return iov_iter_count(from);
2813 }
2814 EXPORT_SYMBOL(generic_write_checks);
2815 
2816 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2817 				loff_t pos, unsigned len, unsigned flags,
2818 				struct page **pagep, void **fsdata)
2819 {
2820 	const struct address_space_operations *aops = mapping->a_ops;
2821 
2822 	return aops->write_begin(file, mapping, pos, len, flags,
2823 							pagep, fsdata);
2824 }
2825 EXPORT_SYMBOL(pagecache_write_begin);
2826 
2827 int pagecache_write_end(struct file *file, struct address_space *mapping,
2828 				loff_t pos, unsigned len, unsigned copied,
2829 				struct page *page, void *fsdata)
2830 {
2831 	const struct address_space_operations *aops = mapping->a_ops;
2832 
2833 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2834 }
2835 EXPORT_SYMBOL(pagecache_write_end);
2836 
2837 ssize_t
2838 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2839 {
2840 	struct file	*file = iocb->ki_filp;
2841 	struct address_space *mapping = file->f_mapping;
2842 	struct inode	*inode = mapping->host;
2843 	loff_t		pos = iocb->ki_pos;
2844 	ssize_t		written;
2845 	size_t		write_len;
2846 	pgoff_t		end;
2847 
2848 	write_len = iov_iter_count(from);
2849 	end = (pos + write_len - 1) >> PAGE_SHIFT;
2850 
2851 	if (iocb->ki_flags & IOCB_NOWAIT) {
2852 		/* If there are pages to writeback, return */
2853 		if (filemap_range_has_page(inode->i_mapping, pos,
2854 					   pos + iov_iter_count(from)))
2855 			return -EAGAIN;
2856 	} else {
2857 		written = filemap_write_and_wait_range(mapping, pos,
2858 							pos + write_len - 1);
2859 		if (written)
2860 			goto out;
2861 	}
2862 
2863 	/*
2864 	 * After a write we want buffered reads to be sure to go to disk to get
2865 	 * the new data.  We invalidate clean cached page from the region we're
2866 	 * about to write.  We do this *before* the write so that we can return
2867 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2868 	 */
2869 	written = invalidate_inode_pages2_range(mapping,
2870 					pos >> PAGE_SHIFT, end);
2871 	/*
2872 	 * If a page can not be invalidated, return 0 to fall back
2873 	 * to buffered write.
2874 	 */
2875 	if (written) {
2876 		if (written == -EBUSY)
2877 			return 0;
2878 		goto out;
2879 	}
2880 
2881 	written = mapping->a_ops->direct_IO(iocb, from);
2882 
2883 	/*
2884 	 * Finally, try again to invalidate clean pages which might have been
2885 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2886 	 * if the source of the write was an mmap'ed region of the file
2887 	 * we're writing.  Either one is a pretty crazy thing to do,
2888 	 * so we don't support it 100%.  If this invalidation
2889 	 * fails, tough, the write still worked...
2890 	 */
2891 	invalidate_inode_pages2_range(mapping,
2892 				pos >> PAGE_SHIFT, end);
2893 
2894 	if (written > 0) {
2895 		pos += written;
2896 		write_len -= written;
2897 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2898 			i_size_write(inode, pos);
2899 			mark_inode_dirty(inode);
2900 		}
2901 		iocb->ki_pos = pos;
2902 	}
2903 	iov_iter_revert(from, write_len - iov_iter_count(from));
2904 out:
2905 	return written;
2906 }
2907 EXPORT_SYMBOL(generic_file_direct_write);
2908 
2909 /*
2910  * Find or create a page at the given pagecache position. Return the locked
2911  * page. This function is specifically for buffered writes.
2912  */
2913 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2914 					pgoff_t index, unsigned flags)
2915 {
2916 	struct page *page;
2917 	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2918 
2919 	if (flags & AOP_FLAG_NOFS)
2920 		fgp_flags |= FGP_NOFS;
2921 
2922 	page = pagecache_get_page(mapping, index, fgp_flags,
2923 			mapping_gfp_mask(mapping));
2924 	if (page)
2925 		wait_for_stable_page(page);
2926 
2927 	return page;
2928 }
2929 EXPORT_SYMBOL(grab_cache_page_write_begin);
2930 
2931 ssize_t generic_perform_write(struct file *file,
2932 				struct iov_iter *i, loff_t pos)
2933 {
2934 	struct address_space *mapping = file->f_mapping;
2935 	const struct address_space_operations *a_ops = mapping->a_ops;
2936 	long status = 0;
2937 	ssize_t written = 0;
2938 	unsigned int flags = 0;
2939 
2940 	do {
2941 		struct page *page;
2942 		unsigned long offset;	/* Offset into pagecache page */
2943 		unsigned long bytes;	/* Bytes to write to page */
2944 		size_t copied;		/* Bytes copied from user */
2945 		void *fsdata;
2946 
2947 		offset = (pos & (PAGE_SIZE - 1));
2948 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
2949 						iov_iter_count(i));
2950 
2951 again:
2952 		/*
2953 		 * Bring in the user page that we will copy from _first_.
2954 		 * Otherwise there's a nasty deadlock on copying from the
2955 		 * same page as we're writing to, without it being marked
2956 		 * up-to-date.
2957 		 *
2958 		 * Not only is this an optimisation, but it is also required
2959 		 * to check that the address is actually valid, when atomic
2960 		 * usercopies are used, below.
2961 		 */
2962 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2963 			status = -EFAULT;
2964 			break;
2965 		}
2966 
2967 		if (fatal_signal_pending(current)) {
2968 			status = -EINTR;
2969 			break;
2970 		}
2971 
2972 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2973 						&page, &fsdata);
2974 		if (unlikely(status < 0))
2975 			break;
2976 
2977 		if (mapping_writably_mapped(mapping))
2978 			flush_dcache_page(page);
2979 
2980 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2981 		flush_dcache_page(page);
2982 
2983 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2984 						page, fsdata);
2985 		if (unlikely(status < 0))
2986 			break;
2987 		copied = status;
2988 
2989 		cond_resched();
2990 
2991 		iov_iter_advance(i, copied);
2992 		if (unlikely(copied == 0)) {
2993 			/*
2994 			 * If we were unable to copy any data at all, we must
2995 			 * fall back to a single segment length write.
2996 			 *
2997 			 * If we didn't fallback here, we could livelock
2998 			 * because not all segments in the iov can be copied at
2999 			 * once without a pagefault.
3000 			 */
3001 			bytes = min_t(unsigned long, PAGE_SIZE - offset,
3002 						iov_iter_single_seg_count(i));
3003 			goto again;
3004 		}
3005 		pos += copied;
3006 		written += copied;
3007 
3008 		balance_dirty_pages_ratelimited(mapping);
3009 	} while (iov_iter_count(i));
3010 
3011 	return written ? written : status;
3012 }
3013 EXPORT_SYMBOL(generic_perform_write);
3014 
3015 /**
3016  * __generic_file_write_iter - write data to a file
3017  * @iocb:	IO state structure (file, offset, etc.)
3018  * @from:	iov_iter with data to write
3019  *
3020  * This function does all the work needed for actually writing data to a
3021  * file. It does all basic checks, removes SUID from the file, updates
3022  * modification times and calls proper subroutines depending on whether we
3023  * do direct IO or a standard buffered write.
3024  *
3025  * It expects i_mutex to be grabbed unless we work on a block device or similar
3026  * object which does not need locking at all.
3027  *
3028  * This function does *not* take care of syncing data in case of O_SYNC write.
3029  * A caller has to handle it. This is mainly due to the fact that we want to
3030  * avoid syncing under i_mutex.
3031  */
3032 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3033 {
3034 	struct file *file = iocb->ki_filp;
3035 	struct address_space * mapping = file->f_mapping;
3036 	struct inode 	*inode = mapping->host;
3037 	ssize_t		written = 0;
3038 	ssize_t		err;
3039 	ssize_t		status;
3040 
3041 	/* We can write back this queue in page reclaim */
3042 	current->backing_dev_info = inode_to_bdi(inode);
3043 	err = file_remove_privs(file);
3044 	if (err)
3045 		goto out;
3046 
3047 	err = file_update_time(file);
3048 	if (err)
3049 		goto out;
3050 
3051 	if (iocb->ki_flags & IOCB_DIRECT) {
3052 		loff_t pos, endbyte;
3053 
3054 		written = generic_file_direct_write(iocb, from);
3055 		/*
3056 		 * If the write stopped short of completing, fall back to
3057 		 * buffered writes.  Some filesystems do this for writes to
3058 		 * holes, for example.  For DAX files, a buffered write will
3059 		 * not succeed (even if it did, DAX does not handle dirty
3060 		 * page-cache pages correctly).
3061 		 */
3062 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3063 			goto out;
3064 
3065 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3066 		/*
3067 		 * If generic_perform_write() returned a synchronous error
3068 		 * then we want to return the number of bytes which were
3069 		 * direct-written, or the error code if that was zero.  Note
3070 		 * that this differs from normal direct-io semantics, which
3071 		 * will return -EFOO even if some bytes were written.
3072 		 */
3073 		if (unlikely(status < 0)) {
3074 			err = status;
3075 			goto out;
3076 		}
3077 		/*
3078 		 * We need to ensure that the page cache pages are written to
3079 		 * disk and invalidated to preserve the expected O_DIRECT
3080 		 * semantics.
3081 		 */
3082 		endbyte = pos + status - 1;
3083 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3084 		if (err == 0) {
3085 			iocb->ki_pos = endbyte + 1;
3086 			written += status;
3087 			invalidate_mapping_pages(mapping,
3088 						 pos >> PAGE_SHIFT,
3089 						 endbyte >> PAGE_SHIFT);
3090 		} else {
3091 			/*
3092 			 * We don't know how much we wrote, so just return
3093 			 * the number of bytes which were direct-written
3094 			 */
3095 		}
3096 	} else {
3097 		written = generic_perform_write(file, from, iocb->ki_pos);
3098 		if (likely(written > 0))
3099 			iocb->ki_pos += written;
3100 	}
3101 out:
3102 	current->backing_dev_info = NULL;
3103 	return written ? written : err;
3104 }
3105 EXPORT_SYMBOL(__generic_file_write_iter);
3106 
3107 /**
3108  * generic_file_write_iter - write data to a file
3109  * @iocb:	IO state structure
3110  * @from:	iov_iter with data to write
3111  *
3112  * This is a wrapper around __generic_file_write_iter() to be used by most
3113  * filesystems. It takes care of syncing the file in case of O_SYNC file
3114  * and acquires i_mutex as needed.
3115  */
3116 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3117 {
3118 	struct file *file = iocb->ki_filp;
3119 	struct inode *inode = file->f_mapping->host;
3120 	ssize_t ret;
3121 
3122 	inode_lock(inode);
3123 	ret = generic_write_checks(iocb, from);
3124 	if (ret > 0)
3125 		ret = __generic_file_write_iter(iocb, from);
3126 	inode_unlock(inode);
3127 
3128 	if (ret > 0)
3129 		ret = generic_write_sync(iocb, ret);
3130 	return ret;
3131 }
3132 EXPORT_SYMBOL(generic_file_write_iter);
3133 
3134 /**
3135  * try_to_release_page() - release old fs-specific metadata on a page
3136  *
3137  * @page: the page which the kernel is trying to free
3138  * @gfp_mask: memory allocation flags (and I/O mode)
3139  *
3140  * The address_space is to try to release any data against the page
3141  * (presumably at page->private).  If the release was successful, return '1'.
3142  * Otherwise return zero.
3143  *
3144  * This may also be called if PG_fscache is set on a page, indicating that the
3145  * page is known to the local caching routines.
3146  *
3147  * The @gfp_mask argument specifies whether I/O may be performed to release
3148  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3149  *
3150  */
3151 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3152 {
3153 	struct address_space * const mapping = page->mapping;
3154 
3155 	BUG_ON(!PageLocked(page));
3156 	if (PageWriteback(page))
3157 		return 0;
3158 
3159 	if (mapping && mapping->a_ops->releasepage)
3160 		return mapping->a_ops->releasepage(page, gfp_mask);
3161 	return try_to_free_buffers(page);
3162 }
3163 
3164 EXPORT_SYMBOL(try_to_release_page);
3165