1 /* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12 #include <linux/export.h> 13 #include <linux/compiler.h> 14 #include <linux/dax.h> 15 #include <linux/fs.h> 16 #include <linux/sched/signal.h> 17 #include <linux/uaccess.h> 18 #include <linux/capability.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/gfp.h> 21 #include <linux/mm.h> 22 #include <linux/swap.h> 23 #include <linux/mman.h> 24 #include <linux/pagemap.h> 25 #include <linux/file.h> 26 #include <linux/uio.h> 27 #include <linux/hash.h> 28 #include <linux/writeback.h> 29 #include <linux/backing-dev.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/security.h> 33 #include <linux/cpuset.h> 34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */ 35 #include <linux/hugetlb.h> 36 #include <linux/memcontrol.h> 37 #include <linux/cleancache.h> 38 #include <linux/rmap.h> 39 #include "internal.h" 40 41 #define CREATE_TRACE_POINTS 42 #include <trace/events/filemap.h> 43 44 /* 45 * FIXME: remove all knowledge of the buffer layer from the core VM 46 */ 47 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 48 49 #include <asm/mman.h> 50 51 /* 52 * Shared mappings implemented 30.11.1994. It's not fully working yet, 53 * though. 54 * 55 * Shared mappings now work. 15.8.1995 Bruno. 56 * 57 * finished 'unifying' the page and buffer cache and SMP-threaded the 58 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 59 * 60 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 61 */ 62 63 /* 64 * Lock ordering: 65 * 66 * ->i_mmap_rwsem (truncate_pagecache) 67 * ->private_lock (__free_pte->__set_page_dirty_buffers) 68 * ->swap_lock (exclusive_swap_page, others) 69 * ->mapping->tree_lock 70 * 71 * ->i_mutex 72 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 73 * 74 * ->mmap_sem 75 * ->i_mmap_rwsem 76 * ->page_table_lock or pte_lock (various, mainly in memory.c) 77 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) 78 * 79 * ->mmap_sem 80 * ->lock_page (access_process_vm) 81 * 82 * ->i_mutex (generic_perform_write) 83 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 84 * 85 * bdi->wb.list_lock 86 * sb_lock (fs/fs-writeback.c) 87 * ->mapping->tree_lock (__sync_single_inode) 88 * 89 * ->i_mmap_rwsem 90 * ->anon_vma.lock (vma_adjust) 91 * 92 * ->anon_vma.lock 93 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 94 * 95 * ->page_table_lock or pte_lock 96 * ->swap_lock (try_to_unmap_one) 97 * ->private_lock (try_to_unmap_one) 98 * ->tree_lock (try_to_unmap_one) 99 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed) 100 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page) 101 * ->private_lock (page_remove_rmap->set_page_dirty) 102 * ->tree_lock (page_remove_rmap->set_page_dirty) 103 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 104 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 105 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) 106 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 107 * ->inode->i_lock (zap_pte_range->set_page_dirty) 108 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 109 * 110 * ->i_mmap_rwsem 111 * ->tasklist_lock (memory_failure, collect_procs_ao) 112 */ 113 114 static int page_cache_tree_insert(struct address_space *mapping, 115 struct page *page, void **shadowp) 116 { 117 struct radix_tree_node *node; 118 void **slot; 119 int error; 120 121 error = __radix_tree_create(&mapping->page_tree, page->index, 0, 122 &node, &slot); 123 if (error) 124 return error; 125 if (*slot) { 126 void *p; 127 128 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock); 129 if (!radix_tree_exceptional_entry(p)) 130 return -EEXIST; 131 132 mapping->nrexceptional--; 133 if (!dax_mapping(mapping)) { 134 if (shadowp) 135 *shadowp = p; 136 } else { 137 /* DAX can replace empty locked entry with a hole */ 138 WARN_ON_ONCE(p != 139 dax_radix_locked_entry(0, RADIX_DAX_EMPTY)); 140 /* Wakeup waiters for exceptional entry lock */ 141 dax_wake_mapping_entry_waiter(mapping, page->index, p, 142 true); 143 } 144 } 145 __radix_tree_replace(&mapping->page_tree, node, slot, page, 146 workingset_update_node, mapping); 147 mapping->nrpages++; 148 return 0; 149 } 150 151 static void page_cache_tree_delete(struct address_space *mapping, 152 struct page *page, void *shadow) 153 { 154 int i, nr; 155 156 /* hugetlb pages are represented by one entry in the radix tree */ 157 nr = PageHuge(page) ? 1 : hpage_nr_pages(page); 158 159 VM_BUG_ON_PAGE(!PageLocked(page), page); 160 VM_BUG_ON_PAGE(PageTail(page), page); 161 VM_BUG_ON_PAGE(nr != 1 && shadow, page); 162 163 for (i = 0; i < nr; i++) { 164 struct radix_tree_node *node; 165 void **slot; 166 167 __radix_tree_lookup(&mapping->page_tree, page->index + i, 168 &node, &slot); 169 170 VM_BUG_ON_PAGE(!node && nr != 1, page); 171 172 radix_tree_clear_tags(&mapping->page_tree, node, slot); 173 __radix_tree_replace(&mapping->page_tree, node, slot, shadow, 174 workingset_update_node, mapping); 175 } 176 177 if (shadow) { 178 mapping->nrexceptional += nr; 179 /* 180 * Make sure the nrexceptional update is committed before 181 * the nrpages update so that final truncate racing 182 * with reclaim does not see both counters 0 at the 183 * same time and miss a shadow entry. 184 */ 185 smp_wmb(); 186 } 187 mapping->nrpages -= nr; 188 } 189 190 /* 191 * Delete a page from the page cache and free it. Caller has to make 192 * sure the page is locked and that nobody else uses it - or that usage 193 * is safe. The caller must hold the mapping's tree_lock. 194 */ 195 void __delete_from_page_cache(struct page *page, void *shadow) 196 { 197 struct address_space *mapping = page->mapping; 198 int nr = hpage_nr_pages(page); 199 200 trace_mm_filemap_delete_from_page_cache(page); 201 /* 202 * if we're uptodate, flush out into the cleancache, otherwise 203 * invalidate any existing cleancache entries. We can't leave 204 * stale data around in the cleancache once our page is gone 205 */ 206 if (PageUptodate(page) && PageMappedToDisk(page)) 207 cleancache_put_page(page); 208 else 209 cleancache_invalidate_page(mapping, page); 210 211 VM_BUG_ON_PAGE(PageTail(page), page); 212 VM_BUG_ON_PAGE(page_mapped(page), page); 213 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) { 214 int mapcount; 215 216 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 217 current->comm, page_to_pfn(page)); 218 dump_page(page, "still mapped when deleted"); 219 dump_stack(); 220 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 221 222 mapcount = page_mapcount(page); 223 if (mapping_exiting(mapping) && 224 page_count(page) >= mapcount + 2) { 225 /* 226 * All vmas have already been torn down, so it's 227 * a good bet that actually the page is unmapped, 228 * and we'd prefer not to leak it: if we're wrong, 229 * some other bad page check should catch it later. 230 */ 231 page_mapcount_reset(page); 232 page_ref_sub(page, mapcount); 233 } 234 } 235 236 page_cache_tree_delete(mapping, page, shadow); 237 238 page->mapping = NULL; 239 /* Leave page->index set: truncation lookup relies upon it */ 240 241 /* hugetlb pages do not participate in page cache accounting. */ 242 if (PageHuge(page)) 243 return; 244 245 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr); 246 if (PageSwapBacked(page)) { 247 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr); 248 if (PageTransHuge(page)) 249 __dec_node_page_state(page, NR_SHMEM_THPS); 250 } else { 251 VM_BUG_ON_PAGE(PageTransHuge(page), page); 252 } 253 254 /* 255 * At this point page must be either written or cleaned by truncate. 256 * Dirty page here signals a bug and loss of unwritten data. 257 * 258 * This fixes dirty accounting after removing the page entirely but 259 * leaves PageDirty set: it has no effect for truncated page and 260 * anyway will be cleared before returning page into buddy allocator. 261 */ 262 if (WARN_ON_ONCE(PageDirty(page))) 263 account_page_cleaned(page, mapping, inode_to_wb(mapping->host)); 264 } 265 266 /** 267 * delete_from_page_cache - delete page from page cache 268 * @page: the page which the kernel is trying to remove from page cache 269 * 270 * This must be called only on pages that have been verified to be in the page 271 * cache and locked. It will never put the page into the free list, the caller 272 * has a reference on the page. 273 */ 274 void delete_from_page_cache(struct page *page) 275 { 276 struct address_space *mapping = page_mapping(page); 277 unsigned long flags; 278 void (*freepage)(struct page *); 279 280 BUG_ON(!PageLocked(page)); 281 282 freepage = mapping->a_ops->freepage; 283 284 spin_lock_irqsave(&mapping->tree_lock, flags); 285 __delete_from_page_cache(page, NULL); 286 spin_unlock_irqrestore(&mapping->tree_lock, flags); 287 288 if (freepage) 289 freepage(page); 290 291 if (PageTransHuge(page) && !PageHuge(page)) { 292 page_ref_sub(page, HPAGE_PMD_NR); 293 VM_BUG_ON_PAGE(page_count(page) <= 0, page); 294 } else { 295 put_page(page); 296 } 297 } 298 EXPORT_SYMBOL(delete_from_page_cache); 299 300 int filemap_check_errors(struct address_space *mapping) 301 { 302 int ret = 0; 303 /* Check for outstanding write errors */ 304 if (test_bit(AS_ENOSPC, &mapping->flags) && 305 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 306 ret = -ENOSPC; 307 if (test_bit(AS_EIO, &mapping->flags) && 308 test_and_clear_bit(AS_EIO, &mapping->flags)) 309 ret = -EIO; 310 return ret; 311 } 312 EXPORT_SYMBOL(filemap_check_errors); 313 314 static int filemap_check_and_keep_errors(struct address_space *mapping) 315 { 316 /* Check for outstanding write errors */ 317 if (test_bit(AS_EIO, &mapping->flags)) 318 return -EIO; 319 if (test_bit(AS_ENOSPC, &mapping->flags)) 320 return -ENOSPC; 321 return 0; 322 } 323 324 /** 325 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 326 * @mapping: address space structure to write 327 * @start: offset in bytes where the range starts 328 * @end: offset in bytes where the range ends (inclusive) 329 * @sync_mode: enable synchronous operation 330 * 331 * Start writeback against all of a mapping's dirty pages that lie 332 * within the byte offsets <start, end> inclusive. 333 * 334 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 335 * opposed to a regular memory cleansing writeback. The difference between 336 * these two operations is that if a dirty page/buffer is encountered, it must 337 * be waited upon, and not just skipped over. 338 */ 339 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 340 loff_t end, int sync_mode) 341 { 342 int ret; 343 struct writeback_control wbc = { 344 .sync_mode = sync_mode, 345 .nr_to_write = LONG_MAX, 346 .range_start = start, 347 .range_end = end, 348 }; 349 350 if (!mapping_cap_writeback_dirty(mapping)) 351 return 0; 352 353 wbc_attach_fdatawrite_inode(&wbc, mapping->host); 354 ret = do_writepages(mapping, &wbc); 355 wbc_detach_inode(&wbc); 356 return ret; 357 } 358 359 static inline int __filemap_fdatawrite(struct address_space *mapping, 360 int sync_mode) 361 { 362 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 363 } 364 365 int filemap_fdatawrite(struct address_space *mapping) 366 { 367 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 368 } 369 EXPORT_SYMBOL(filemap_fdatawrite); 370 371 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 372 loff_t end) 373 { 374 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 375 } 376 EXPORT_SYMBOL(filemap_fdatawrite_range); 377 378 /** 379 * filemap_flush - mostly a non-blocking flush 380 * @mapping: target address_space 381 * 382 * This is a mostly non-blocking flush. Not suitable for data-integrity 383 * purposes - I/O may not be started against all dirty pages. 384 */ 385 int filemap_flush(struct address_space *mapping) 386 { 387 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 388 } 389 EXPORT_SYMBOL(filemap_flush); 390 391 /** 392 * filemap_range_has_page - check if a page exists in range. 393 * @mapping: address space within which to check 394 * @start_byte: offset in bytes where the range starts 395 * @end_byte: offset in bytes where the range ends (inclusive) 396 * 397 * Find at least one page in the range supplied, usually used to check if 398 * direct writing in this range will trigger a writeback. 399 */ 400 bool filemap_range_has_page(struct address_space *mapping, 401 loff_t start_byte, loff_t end_byte) 402 { 403 pgoff_t index = start_byte >> PAGE_SHIFT; 404 pgoff_t end = end_byte >> PAGE_SHIFT; 405 struct pagevec pvec; 406 bool ret; 407 408 if (end_byte < start_byte) 409 return false; 410 411 if (mapping->nrpages == 0) 412 return false; 413 414 pagevec_init(&pvec, 0); 415 if (!pagevec_lookup(&pvec, mapping, index, 1)) 416 return false; 417 ret = (pvec.pages[0]->index <= end); 418 pagevec_release(&pvec); 419 return ret; 420 } 421 EXPORT_SYMBOL(filemap_range_has_page); 422 423 static void __filemap_fdatawait_range(struct address_space *mapping, 424 loff_t start_byte, loff_t end_byte) 425 { 426 pgoff_t index = start_byte >> PAGE_SHIFT; 427 pgoff_t end = end_byte >> PAGE_SHIFT; 428 struct pagevec pvec; 429 int nr_pages; 430 431 if (end_byte < start_byte) 432 return; 433 434 pagevec_init(&pvec, 0); 435 while ((index <= end) && 436 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 437 PAGECACHE_TAG_WRITEBACK, 438 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { 439 unsigned i; 440 441 for (i = 0; i < nr_pages; i++) { 442 struct page *page = pvec.pages[i]; 443 444 /* until radix tree lookup accepts end_index */ 445 if (page->index > end) 446 continue; 447 448 wait_on_page_writeback(page); 449 ClearPageError(page); 450 } 451 pagevec_release(&pvec); 452 cond_resched(); 453 } 454 } 455 456 /** 457 * filemap_fdatawait_range - wait for writeback to complete 458 * @mapping: address space structure to wait for 459 * @start_byte: offset in bytes where the range starts 460 * @end_byte: offset in bytes where the range ends (inclusive) 461 * 462 * Walk the list of under-writeback pages of the given address space 463 * in the given range and wait for all of them. Check error status of 464 * the address space and return it. 465 * 466 * Since the error status of the address space is cleared by this function, 467 * callers are responsible for checking the return value and handling and/or 468 * reporting the error. 469 */ 470 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 471 loff_t end_byte) 472 { 473 __filemap_fdatawait_range(mapping, start_byte, end_byte); 474 return filemap_check_errors(mapping); 475 } 476 EXPORT_SYMBOL(filemap_fdatawait_range); 477 478 /** 479 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 480 * @mapping: address space structure to wait for 481 * 482 * Walk the list of under-writeback pages of the given address space 483 * and wait for all of them. Unlike filemap_fdatawait(), this function 484 * does not clear error status of the address space. 485 * 486 * Use this function if callers don't handle errors themselves. Expected 487 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 488 * fsfreeze(8) 489 */ 490 int filemap_fdatawait_keep_errors(struct address_space *mapping) 491 { 492 loff_t i_size = i_size_read(mapping->host); 493 494 if (i_size == 0) 495 return 0; 496 497 __filemap_fdatawait_range(mapping, 0, i_size - 1); 498 return filemap_check_and_keep_errors(mapping); 499 } 500 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 501 502 /** 503 * filemap_fdatawait - wait for all under-writeback pages to complete 504 * @mapping: address space structure to wait for 505 * 506 * Walk the list of under-writeback pages of the given address space 507 * and wait for all of them. Check error status of the address space 508 * and return it. 509 * 510 * Since the error status of the address space is cleared by this function, 511 * callers are responsible for checking the return value and handling and/or 512 * reporting the error. 513 */ 514 int filemap_fdatawait(struct address_space *mapping) 515 { 516 loff_t i_size = i_size_read(mapping->host); 517 518 if (i_size == 0) 519 return 0; 520 521 return filemap_fdatawait_range(mapping, 0, i_size - 1); 522 } 523 EXPORT_SYMBOL(filemap_fdatawait); 524 525 int filemap_write_and_wait(struct address_space *mapping) 526 { 527 int err = 0; 528 529 if ((!dax_mapping(mapping) && mapping->nrpages) || 530 (dax_mapping(mapping) && mapping->nrexceptional)) { 531 err = filemap_fdatawrite(mapping); 532 /* 533 * Even if the above returned error, the pages may be 534 * written partially (e.g. -ENOSPC), so we wait for it. 535 * But the -EIO is special case, it may indicate the worst 536 * thing (e.g. bug) happened, so we avoid waiting for it. 537 */ 538 if (err != -EIO) { 539 int err2 = filemap_fdatawait(mapping); 540 if (!err) 541 err = err2; 542 } else { 543 /* Clear any previously stored errors */ 544 filemap_check_errors(mapping); 545 } 546 } else { 547 err = filemap_check_errors(mapping); 548 } 549 return err; 550 } 551 EXPORT_SYMBOL(filemap_write_and_wait); 552 553 /** 554 * filemap_write_and_wait_range - write out & wait on a file range 555 * @mapping: the address_space for the pages 556 * @lstart: offset in bytes where the range starts 557 * @lend: offset in bytes where the range ends (inclusive) 558 * 559 * Write out and wait upon file offsets lstart->lend, inclusive. 560 * 561 * Note that @lend is inclusive (describes the last byte to be written) so 562 * that this function can be used to write to the very end-of-file (end = -1). 563 */ 564 int filemap_write_and_wait_range(struct address_space *mapping, 565 loff_t lstart, loff_t lend) 566 { 567 int err = 0; 568 569 if ((!dax_mapping(mapping) && mapping->nrpages) || 570 (dax_mapping(mapping) && mapping->nrexceptional)) { 571 err = __filemap_fdatawrite_range(mapping, lstart, lend, 572 WB_SYNC_ALL); 573 /* See comment of filemap_write_and_wait() */ 574 if (err != -EIO) { 575 int err2 = filemap_fdatawait_range(mapping, 576 lstart, lend); 577 if (!err) 578 err = err2; 579 } else { 580 /* Clear any previously stored errors */ 581 filemap_check_errors(mapping); 582 } 583 } else { 584 err = filemap_check_errors(mapping); 585 } 586 return err; 587 } 588 EXPORT_SYMBOL(filemap_write_and_wait_range); 589 590 void __filemap_set_wb_err(struct address_space *mapping, int err) 591 { 592 errseq_t eseq = __errseq_set(&mapping->wb_err, err); 593 594 trace_filemap_set_wb_err(mapping, eseq); 595 } 596 EXPORT_SYMBOL(__filemap_set_wb_err); 597 598 /** 599 * file_check_and_advance_wb_err - report wb error (if any) that was previously 600 * and advance wb_err to current one 601 * @file: struct file on which the error is being reported 602 * 603 * When userland calls fsync (or something like nfsd does the equivalent), we 604 * want to report any writeback errors that occurred since the last fsync (or 605 * since the file was opened if there haven't been any). 606 * 607 * Grab the wb_err from the mapping. If it matches what we have in the file, 608 * then just quickly return 0. The file is all caught up. 609 * 610 * If it doesn't match, then take the mapping value, set the "seen" flag in 611 * it and try to swap it into place. If it works, or another task beat us 612 * to it with the new value, then update the f_wb_err and return the error 613 * portion. The error at this point must be reported via proper channels 614 * (a'la fsync, or NFS COMMIT operation, etc.). 615 * 616 * While we handle mapping->wb_err with atomic operations, the f_wb_err 617 * value is protected by the f_lock since we must ensure that it reflects 618 * the latest value swapped in for this file descriptor. 619 */ 620 int file_check_and_advance_wb_err(struct file *file) 621 { 622 int err = 0; 623 errseq_t old = READ_ONCE(file->f_wb_err); 624 struct address_space *mapping = file->f_mapping; 625 626 /* Locklessly handle the common case where nothing has changed */ 627 if (errseq_check(&mapping->wb_err, old)) { 628 /* Something changed, must use slow path */ 629 spin_lock(&file->f_lock); 630 old = file->f_wb_err; 631 err = errseq_check_and_advance(&mapping->wb_err, 632 &file->f_wb_err); 633 trace_file_check_and_advance_wb_err(file, old); 634 spin_unlock(&file->f_lock); 635 } 636 return err; 637 } 638 EXPORT_SYMBOL(file_check_and_advance_wb_err); 639 640 /** 641 * file_write_and_wait_range - write out & wait on a file range 642 * @file: file pointing to address_space with pages 643 * @lstart: offset in bytes where the range starts 644 * @lend: offset in bytes where the range ends (inclusive) 645 * 646 * Write out and wait upon file offsets lstart->lend, inclusive. 647 * 648 * Note that @lend is inclusive (describes the last byte to be written) so 649 * that this function can be used to write to the very end-of-file (end = -1). 650 * 651 * After writing out and waiting on the data, we check and advance the 652 * f_wb_err cursor to the latest value, and return any errors detected there. 653 */ 654 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 655 { 656 int err = 0, err2; 657 struct address_space *mapping = file->f_mapping; 658 659 if ((!dax_mapping(mapping) && mapping->nrpages) || 660 (dax_mapping(mapping) && mapping->nrexceptional)) { 661 err = __filemap_fdatawrite_range(mapping, lstart, lend, 662 WB_SYNC_ALL); 663 /* See comment of filemap_write_and_wait() */ 664 if (err != -EIO) 665 __filemap_fdatawait_range(mapping, lstart, lend); 666 } 667 err2 = file_check_and_advance_wb_err(file); 668 if (!err) 669 err = err2; 670 return err; 671 } 672 EXPORT_SYMBOL(file_write_and_wait_range); 673 674 /** 675 * replace_page_cache_page - replace a pagecache page with a new one 676 * @old: page to be replaced 677 * @new: page to replace with 678 * @gfp_mask: allocation mode 679 * 680 * This function replaces a page in the pagecache with a new one. On 681 * success it acquires the pagecache reference for the new page and 682 * drops it for the old page. Both the old and new pages must be 683 * locked. This function does not add the new page to the LRU, the 684 * caller must do that. 685 * 686 * The remove + add is atomic. The only way this function can fail is 687 * memory allocation failure. 688 */ 689 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) 690 { 691 int error; 692 693 VM_BUG_ON_PAGE(!PageLocked(old), old); 694 VM_BUG_ON_PAGE(!PageLocked(new), new); 695 VM_BUG_ON_PAGE(new->mapping, new); 696 697 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 698 if (!error) { 699 struct address_space *mapping = old->mapping; 700 void (*freepage)(struct page *); 701 unsigned long flags; 702 703 pgoff_t offset = old->index; 704 freepage = mapping->a_ops->freepage; 705 706 get_page(new); 707 new->mapping = mapping; 708 new->index = offset; 709 710 spin_lock_irqsave(&mapping->tree_lock, flags); 711 __delete_from_page_cache(old, NULL); 712 error = page_cache_tree_insert(mapping, new, NULL); 713 BUG_ON(error); 714 715 /* 716 * hugetlb pages do not participate in page cache accounting. 717 */ 718 if (!PageHuge(new)) 719 __inc_node_page_state(new, NR_FILE_PAGES); 720 if (PageSwapBacked(new)) 721 __inc_node_page_state(new, NR_SHMEM); 722 spin_unlock_irqrestore(&mapping->tree_lock, flags); 723 mem_cgroup_migrate(old, new); 724 radix_tree_preload_end(); 725 if (freepage) 726 freepage(old); 727 put_page(old); 728 } 729 730 return error; 731 } 732 EXPORT_SYMBOL_GPL(replace_page_cache_page); 733 734 static int __add_to_page_cache_locked(struct page *page, 735 struct address_space *mapping, 736 pgoff_t offset, gfp_t gfp_mask, 737 void **shadowp) 738 { 739 int huge = PageHuge(page); 740 struct mem_cgroup *memcg; 741 int error; 742 743 VM_BUG_ON_PAGE(!PageLocked(page), page); 744 VM_BUG_ON_PAGE(PageSwapBacked(page), page); 745 746 if (!huge) { 747 error = mem_cgroup_try_charge(page, current->mm, 748 gfp_mask, &memcg, false); 749 if (error) 750 return error; 751 } 752 753 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM); 754 if (error) { 755 if (!huge) 756 mem_cgroup_cancel_charge(page, memcg, false); 757 return error; 758 } 759 760 get_page(page); 761 page->mapping = mapping; 762 page->index = offset; 763 764 spin_lock_irq(&mapping->tree_lock); 765 error = page_cache_tree_insert(mapping, page, shadowp); 766 radix_tree_preload_end(); 767 if (unlikely(error)) 768 goto err_insert; 769 770 /* hugetlb pages do not participate in page cache accounting. */ 771 if (!huge) 772 __inc_node_page_state(page, NR_FILE_PAGES); 773 spin_unlock_irq(&mapping->tree_lock); 774 if (!huge) 775 mem_cgroup_commit_charge(page, memcg, false, false); 776 trace_mm_filemap_add_to_page_cache(page); 777 return 0; 778 err_insert: 779 page->mapping = NULL; 780 /* Leave page->index set: truncation relies upon it */ 781 spin_unlock_irq(&mapping->tree_lock); 782 if (!huge) 783 mem_cgroup_cancel_charge(page, memcg, false); 784 put_page(page); 785 return error; 786 } 787 788 /** 789 * add_to_page_cache_locked - add a locked page to the pagecache 790 * @page: page to add 791 * @mapping: the page's address_space 792 * @offset: page index 793 * @gfp_mask: page allocation mode 794 * 795 * This function is used to add a page to the pagecache. It must be locked. 796 * This function does not add the page to the LRU. The caller must do that. 797 */ 798 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 799 pgoff_t offset, gfp_t gfp_mask) 800 { 801 return __add_to_page_cache_locked(page, mapping, offset, 802 gfp_mask, NULL); 803 } 804 EXPORT_SYMBOL(add_to_page_cache_locked); 805 806 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 807 pgoff_t offset, gfp_t gfp_mask) 808 { 809 void *shadow = NULL; 810 int ret; 811 812 __SetPageLocked(page); 813 ret = __add_to_page_cache_locked(page, mapping, offset, 814 gfp_mask, &shadow); 815 if (unlikely(ret)) 816 __ClearPageLocked(page); 817 else { 818 /* 819 * The page might have been evicted from cache only 820 * recently, in which case it should be activated like 821 * any other repeatedly accessed page. 822 * The exception is pages getting rewritten; evicting other 823 * data from the working set, only to cache data that will 824 * get overwritten with something else, is a waste of memory. 825 */ 826 if (!(gfp_mask & __GFP_WRITE) && 827 shadow && workingset_refault(shadow)) { 828 SetPageActive(page); 829 workingset_activation(page); 830 } else 831 ClearPageActive(page); 832 lru_cache_add(page); 833 } 834 return ret; 835 } 836 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 837 838 #ifdef CONFIG_NUMA 839 struct page *__page_cache_alloc(gfp_t gfp) 840 { 841 int n; 842 struct page *page; 843 844 if (cpuset_do_page_mem_spread()) { 845 unsigned int cpuset_mems_cookie; 846 do { 847 cpuset_mems_cookie = read_mems_allowed_begin(); 848 n = cpuset_mem_spread_node(); 849 page = __alloc_pages_node(n, gfp, 0); 850 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie)); 851 852 return page; 853 } 854 return alloc_pages(gfp, 0); 855 } 856 EXPORT_SYMBOL(__page_cache_alloc); 857 #endif 858 859 /* 860 * In order to wait for pages to become available there must be 861 * waitqueues associated with pages. By using a hash table of 862 * waitqueues where the bucket discipline is to maintain all 863 * waiters on the same queue and wake all when any of the pages 864 * become available, and for the woken contexts to check to be 865 * sure the appropriate page became available, this saves space 866 * at a cost of "thundering herd" phenomena during rare hash 867 * collisions. 868 */ 869 #define PAGE_WAIT_TABLE_BITS 8 870 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 871 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 872 873 static wait_queue_head_t *page_waitqueue(struct page *page) 874 { 875 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)]; 876 } 877 878 void __init pagecache_init(void) 879 { 880 int i; 881 882 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 883 init_waitqueue_head(&page_wait_table[i]); 884 885 page_writeback_init(); 886 } 887 888 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */ 889 struct wait_page_key { 890 struct page *page; 891 int bit_nr; 892 int page_match; 893 }; 894 895 struct wait_page_queue { 896 struct page *page; 897 int bit_nr; 898 wait_queue_entry_t wait; 899 }; 900 901 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 902 { 903 struct wait_page_key *key = arg; 904 struct wait_page_queue *wait_page 905 = container_of(wait, struct wait_page_queue, wait); 906 907 if (wait_page->page != key->page) 908 return 0; 909 key->page_match = 1; 910 911 if (wait_page->bit_nr != key->bit_nr) 912 return 0; 913 914 /* Stop walking if it's locked */ 915 if (test_bit(key->bit_nr, &key->page->flags)) 916 return -1; 917 918 return autoremove_wake_function(wait, mode, sync, key); 919 } 920 921 static void wake_up_page_bit(struct page *page, int bit_nr) 922 { 923 wait_queue_head_t *q = page_waitqueue(page); 924 struct wait_page_key key; 925 unsigned long flags; 926 927 key.page = page; 928 key.bit_nr = bit_nr; 929 key.page_match = 0; 930 931 spin_lock_irqsave(&q->lock, flags); 932 __wake_up_locked_key(q, TASK_NORMAL, &key); 933 /* 934 * It is possible for other pages to have collided on the waitqueue 935 * hash, so in that case check for a page match. That prevents a long- 936 * term waiter 937 * 938 * It is still possible to miss a case here, when we woke page waiters 939 * and removed them from the waitqueue, but there are still other 940 * page waiters. 941 */ 942 if (!waitqueue_active(q) || !key.page_match) { 943 ClearPageWaiters(page); 944 /* 945 * It's possible to miss clearing Waiters here, when we woke 946 * our page waiters, but the hashed waitqueue has waiters for 947 * other pages on it. 948 * 949 * That's okay, it's a rare case. The next waker will clear it. 950 */ 951 } 952 spin_unlock_irqrestore(&q->lock, flags); 953 } 954 955 static void wake_up_page(struct page *page, int bit) 956 { 957 if (!PageWaiters(page)) 958 return; 959 wake_up_page_bit(page, bit); 960 } 961 962 static inline int wait_on_page_bit_common(wait_queue_head_t *q, 963 struct page *page, int bit_nr, int state, bool lock) 964 { 965 struct wait_page_queue wait_page; 966 wait_queue_entry_t *wait = &wait_page.wait; 967 int ret = 0; 968 969 init_wait(wait); 970 wait->flags = lock ? WQ_FLAG_EXCLUSIVE : 0; 971 wait->func = wake_page_function; 972 wait_page.page = page; 973 wait_page.bit_nr = bit_nr; 974 975 for (;;) { 976 spin_lock_irq(&q->lock); 977 978 if (likely(list_empty(&wait->entry))) { 979 __add_wait_queue_entry_tail(q, wait); 980 SetPageWaiters(page); 981 } 982 983 set_current_state(state); 984 985 spin_unlock_irq(&q->lock); 986 987 if (likely(test_bit(bit_nr, &page->flags))) { 988 io_schedule(); 989 } 990 991 if (lock) { 992 if (!test_and_set_bit_lock(bit_nr, &page->flags)) 993 break; 994 } else { 995 if (!test_bit(bit_nr, &page->flags)) 996 break; 997 } 998 999 if (unlikely(signal_pending_state(state, current))) { 1000 ret = -EINTR; 1001 break; 1002 } 1003 } 1004 1005 finish_wait(q, wait); 1006 1007 /* 1008 * A signal could leave PageWaiters set. Clearing it here if 1009 * !waitqueue_active would be possible (by open-coding finish_wait), 1010 * but still fail to catch it in the case of wait hash collision. We 1011 * already can fail to clear wait hash collision cases, so don't 1012 * bother with signals either. 1013 */ 1014 1015 return ret; 1016 } 1017 1018 void wait_on_page_bit(struct page *page, int bit_nr) 1019 { 1020 wait_queue_head_t *q = page_waitqueue(page); 1021 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false); 1022 } 1023 EXPORT_SYMBOL(wait_on_page_bit); 1024 1025 int wait_on_page_bit_killable(struct page *page, int bit_nr) 1026 { 1027 wait_queue_head_t *q = page_waitqueue(page); 1028 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false); 1029 } 1030 1031 /** 1032 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 1033 * @page: Page defining the wait queue of interest 1034 * @waiter: Waiter to add to the queue 1035 * 1036 * Add an arbitrary @waiter to the wait queue for the nominated @page. 1037 */ 1038 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter) 1039 { 1040 wait_queue_head_t *q = page_waitqueue(page); 1041 unsigned long flags; 1042 1043 spin_lock_irqsave(&q->lock, flags); 1044 __add_wait_queue(q, waiter); 1045 SetPageWaiters(page); 1046 spin_unlock_irqrestore(&q->lock, flags); 1047 } 1048 EXPORT_SYMBOL_GPL(add_page_wait_queue); 1049 1050 #ifndef clear_bit_unlock_is_negative_byte 1051 1052 /* 1053 * PG_waiters is the high bit in the same byte as PG_lock. 1054 * 1055 * On x86 (and on many other architectures), we can clear PG_lock and 1056 * test the sign bit at the same time. But if the architecture does 1057 * not support that special operation, we just do this all by hand 1058 * instead. 1059 * 1060 * The read of PG_waiters has to be after (or concurrently with) PG_locked 1061 * being cleared, but a memory barrier should be unneccssary since it is 1062 * in the same byte as PG_locked. 1063 */ 1064 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) 1065 { 1066 clear_bit_unlock(nr, mem); 1067 /* smp_mb__after_atomic(); */ 1068 return test_bit(PG_waiters, mem); 1069 } 1070 1071 #endif 1072 1073 /** 1074 * unlock_page - unlock a locked page 1075 * @page: the page 1076 * 1077 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 1078 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 1079 * mechanism between PageLocked pages and PageWriteback pages is shared. 1080 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 1081 * 1082 * Note that this depends on PG_waiters being the sign bit in the byte 1083 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to 1084 * clear the PG_locked bit and test PG_waiters at the same time fairly 1085 * portably (architectures that do LL/SC can test any bit, while x86 can 1086 * test the sign bit). 1087 */ 1088 void unlock_page(struct page *page) 1089 { 1090 BUILD_BUG_ON(PG_waiters != 7); 1091 page = compound_head(page); 1092 VM_BUG_ON_PAGE(!PageLocked(page), page); 1093 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags)) 1094 wake_up_page_bit(page, PG_locked); 1095 } 1096 EXPORT_SYMBOL(unlock_page); 1097 1098 /** 1099 * end_page_writeback - end writeback against a page 1100 * @page: the page 1101 */ 1102 void end_page_writeback(struct page *page) 1103 { 1104 /* 1105 * TestClearPageReclaim could be used here but it is an atomic 1106 * operation and overkill in this particular case. Failing to 1107 * shuffle a page marked for immediate reclaim is too mild to 1108 * justify taking an atomic operation penalty at the end of 1109 * ever page writeback. 1110 */ 1111 if (PageReclaim(page)) { 1112 ClearPageReclaim(page); 1113 rotate_reclaimable_page(page); 1114 } 1115 1116 if (!test_clear_page_writeback(page)) 1117 BUG(); 1118 1119 smp_mb__after_atomic(); 1120 wake_up_page(page, PG_writeback); 1121 } 1122 EXPORT_SYMBOL(end_page_writeback); 1123 1124 /* 1125 * After completing I/O on a page, call this routine to update the page 1126 * flags appropriately 1127 */ 1128 void page_endio(struct page *page, bool is_write, int err) 1129 { 1130 if (!is_write) { 1131 if (!err) { 1132 SetPageUptodate(page); 1133 } else { 1134 ClearPageUptodate(page); 1135 SetPageError(page); 1136 } 1137 unlock_page(page); 1138 } else { 1139 if (err) { 1140 struct address_space *mapping; 1141 1142 SetPageError(page); 1143 mapping = page_mapping(page); 1144 if (mapping) 1145 mapping_set_error(mapping, err); 1146 } 1147 end_page_writeback(page); 1148 } 1149 } 1150 EXPORT_SYMBOL_GPL(page_endio); 1151 1152 /** 1153 * __lock_page - get a lock on the page, assuming we need to sleep to get it 1154 * @__page: the page to lock 1155 */ 1156 void __lock_page(struct page *__page) 1157 { 1158 struct page *page = compound_head(__page); 1159 wait_queue_head_t *q = page_waitqueue(page); 1160 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true); 1161 } 1162 EXPORT_SYMBOL(__lock_page); 1163 1164 int __lock_page_killable(struct page *__page) 1165 { 1166 struct page *page = compound_head(__page); 1167 wait_queue_head_t *q = page_waitqueue(page); 1168 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true); 1169 } 1170 EXPORT_SYMBOL_GPL(__lock_page_killable); 1171 1172 /* 1173 * Return values: 1174 * 1 - page is locked; mmap_sem is still held. 1175 * 0 - page is not locked. 1176 * mmap_sem has been released (up_read()), unless flags had both 1177 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 1178 * which case mmap_sem is still held. 1179 * 1180 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1 1181 * with the page locked and the mmap_sem unperturbed. 1182 */ 1183 int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 1184 unsigned int flags) 1185 { 1186 if (flags & FAULT_FLAG_ALLOW_RETRY) { 1187 /* 1188 * CAUTION! In this case, mmap_sem is not released 1189 * even though return 0. 1190 */ 1191 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1192 return 0; 1193 1194 up_read(&mm->mmap_sem); 1195 if (flags & FAULT_FLAG_KILLABLE) 1196 wait_on_page_locked_killable(page); 1197 else 1198 wait_on_page_locked(page); 1199 return 0; 1200 } else { 1201 if (flags & FAULT_FLAG_KILLABLE) { 1202 int ret; 1203 1204 ret = __lock_page_killable(page); 1205 if (ret) { 1206 up_read(&mm->mmap_sem); 1207 return 0; 1208 } 1209 } else 1210 __lock_page(page); 1211 return 1; 1212 } 1213 } 1214 1215 /** 1216 * page_cache_next_hole - find the next hole (not-present entry) 1217 * @mapping: mapping 1218 * @index: index 1219 * @max_scan: maximum range to search 1220 * 1221 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the 1222 * lowest indexed hole. 1223 * 1224 * Returns: the index of the hole if found, otherwise returns an index 1225 * outside of the set specified (in which case 'return - index >= 1226 * max_scan' will be true). In rare cases of index wrap-around, 0 will 1227 * be returned. 1228 * 1229 * page_cache_next_hole may be called under rcu_read_lock. However, 1230 * like radix_tree_gang_lookup, this will not atomically search a 1231 * snapshot of the tree at a single point in time. For example, if a 1232 * hole is created at index 5, then subsequently a hole is created at 1233 * index 10, page_cache_next_hole covering both indexes may return 10 1234 * if called under rcu_read_lock. 1235 */ 1236 pgoff_t page_cache_next_hole(struct address_space *mapping, 1237 pgoff_t index, unsigned long max_scan) 1238 { 1239 unsigned long i; 1240 1241 for (i = 0; i < max_scan; i++) { 1242 struct page *page; 1243 1244 page = radix_tree_lookup(&mapping->page_tree, index); 1245 if (!page || radix_tree_exceptional_entry(page)) 1246 break; 1247 index++; 1248 if (index == 0) 1249 break; 1250 } 1251 1252 return index; 1253 } 1254 EXPORT_SYMBOL(page_cache_next_hole); 1255 1256 /** 1257 * page_cache_prev_hole - find the prev hole (not-present entry) 1258 * @mapping: mapping 1259 * @index: index 1260 * @max_scan: maximum range to search 1261 * 1262 * Search backwards in the range [max(index-max_scan+1, 0), index] for 1263 * the first hole. 1264 * 1265 * Returns: the index of the hole if found, otherwise returns an index 1266 * outside of the set specified (in which case 'index - return >= 1267 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX 1268 * will be returned. 1269 * 1270 * page_cache_prev_hole may be called under rcu_read_lock. However, 1271 * like radix_tree_gang_lookup, this will not atomically search a 1272 * snapshot of the tree at a single point in time. For example, if a 1273 * hole is created at index 10, then subsequently a hole is created at 1274 * index 5, page_cache_prev_hole covering both indexes may return 5 if 1275 * called under rcu_read_lock. 1276 */ 1277 pgoff_t page_cache_prev_hole(struct address_space *mapping, 1278 pgoff_t index, unsigned long max_scan) 1279 { 1280 unsigned long i; 1281 1282 for (i = 0; i < max_scan; i++) { 1283 struct page *page; 1284 1285 page = radix_tree_lookup(&mapping->page_tree, index); 1286 if (!page || radix_tree_exceptional_entry(page)) 1287 break; 1288 index--; 1289 if (index == ULONG_MAX) 1290 break; 1291 } 1292 1293 return index; 1294 } 1295 EXPORT_SYMBOL(page_cache_prev_hole); 1296 1297 /** 1298 * find_get_entry - find and get a page cache entry 1299 * @mapping: the address_space to search 1300 * @offset: the page cache index 1301 * 1302 * Looks up the page cache slot at @mapping & @offset. If there is a 1303 * page cache page, it is returned with an increased refcount. 1304 * 1305 * If the slot holds a shadow entry of a previously evicted page, or a 1306 * swap entry from shmem/tmpfs, it is returned. 1307 * 1308 * Otherwise, %NULL is returned. 1309 */ 1310 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset) 1311 { 1312 void **pagep; 1313 struct page *head, *page; 1314 1315 rcu_read_lock(); 1316 repeat: 1317 page = NULL; 1318 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset); 1319 if (pagep) { 1320 page = radix_tree_deref_slot(pagep); 1321 if (unlikely(!page)) 1322 goto out; 1323 if (radix_tree_exception(page)) { 1324 if (radix_tree_deref_retry(page)) 1325 goto repeat; 1326 /* 1327 * A shadow entry of a recently evicted page, 1328 * or a swap entry from shmem/tmpfs. Return 1329 * it without attempting to raise page count. 1330 */ 1331 goto out; 1332 } 1333 1334 head = compound_head(page); 1335 if (!page_cache_get_speculative(head)) 1336 goto repeat; 1337 1338 /* The page was split under us? */ 1339 if (compound_head(page) != head) { 1340 put_page(head); 1341 goto repeat; 1342 } 1343 1344 /* 1345 * Has the page moved? 1346 * This is part of the lockless pagecache protocol. See 1347 * include/linux/pagemap.h for details. 1348 */ 1349 if (unlikely(page != *pagep)) { 1350 put_page(head); 1351 goto repeat; 1352 } 1353 } 1354 out: 1355 rcu_read_unlock(); 1356 1357 return page; 1358 } 1359 EXPORT_SYMBOL(find_get_entry); 1360 1361 /** 1362 * find_lock_entry - locate, pin and lock a page cache entry 1363 * @mapping: the address_space to search 1364 * @offset: the page cache index 1365 * 1366 * Looks up the page cache slot at @mapping & @offset. If there is a 1367 * page cache page, it is returned locked and with an increased 1368 * refcount. 1369 * 1370 * If the slot holds a shadow entry of a previously evicted page, or a 1371 * swap entry from shmem/tmpfs, it is returned. 1372 * 1373 * Otherwise, %NULL is returned. 1374 * 1375 * find_lock_entry() may sleep. 1376 */ 1377 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset) 1378 { 1379 struct page *page; 1380 1381 repeat: 1382 page = find_get_entry(mapping, offset); 1383 if (page && !radix_tree_exception(page)) { 1384 lock_page(page); 1385 /* Has the page been truncated? */ 1386 if (unlikely(page_mapping(page) != mapping)) { 1387 unlock_page(page); 1388 put_page(page); 1389 goto repeat; 1390 } 1391 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page); 1392 } 1393 return page; 1394 } 1395 EXPORT_SYMBOL(find_lock_entry); 1396 1397 /** 1398 * pagecache_get_page - find and get a page reference 1399 * @mapping: the address_space to search 1400 * @offset: the page index 1401 * @fgp_flags: PCG flags 1402 * @gfp_mask: gfp mask to use for the page cache data page allocation 1403 * 1404 * Looks up the page cache slot at @mapping & @offset. 1405 * 1406 * PCG flags modify how the page is returned. 1407 * 1408 * @fgp_flags can be: 1409 * 1410 * - FGP_ACCESSED: the page will be marked accessed 1411 * - FGP_LOCK: Page is return locked 1412 * - FGP_CREAT: If page is not present then a new page is allocated using 1413 * @gfp_mask and added to the page cache and the VM's LRU 1414 * list. The page is returned locked and with an increased 1415 * refcount. Otherwise, NULL is returned. 1416 * 1417 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even 1418 * if the GFP flags specified for FGP_CREAT are atomic. 1419 * 1420 * If there is a page cache page, it is returned with an increased refcount. 1421 */ 1422 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, 1423 int fgp_flags, gfp_t gfp_mask) 1424 { 1425 struct page *page; 1426 1427 repeat: 1428 page = find_get_entry(mapping, offset); 1429 if (radix_tree_exceptional_entry(page)) 1430 page = NULL; 1431 if (!page) 1432 goto no_page; 1433 1434 if (fgp_flags & FGP_LOCK) { 1435 if (fgp_flags & FGP_NOWAIT) { 1436 if (!trylock_page(page)) { 1437 put_page(page); 1438 return NULL; 1439 } 1440 } else { 1441 lock_page(page); 1442 } 1443 1444 /* Has the page been truncated? */ 1445 if (unlikely(page->mapping != mapping)) { 1446 unlock_page(page); 1447 put_page(page); 1448 goto repeat; 1449 } 1450 VM_BUG_ON_PAGE(page->index != offset, page); 1451 } 1452 1453 if (page && (fgp_flags & FGP_ACCESSED)) 1454 mark_page_accessed(page); 1455 1456 no_page: 1457 if (!page && (fgp_flags & FGP_CREAT)) { 1458 int err; 1459 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping)) 1460 gfp_mask |= __GFP_WRITE; 1461 if (fgp_flags & FGP_NOFS) 1462 gfp_mask &= ~__GFP_FS; 1463 1464 page = __page_cache_alloc(gfp_mask); 1465 if (!page) 1466 return NULL; 1467 1468 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK))) 1469 fgp_flags |= FGP_LOCK; 1470 1471 /* Init accessed so avoid atomic mark_page_accessed later */ 1472 if (fgp_flags & FGP_ACCESSED) 1473 __SetPageReferenced(page); 1474 1475 err = add_to_page_cache_lru(page, mapping, offset, 1476 gfp_mask & GFP_RECLAIM_MASK); 1477 if (unlikely(err)) { 1478 put_page(page); 1479 page = NULL; 1480 if (err == -EEXIST) 1481 goto repeat; 1482 } 1483 } 1484 1485 return page; 1486 } 1487 EXPORT_SYMBOL(pagecache_get_page); 1488 1489 /** 1490 * find_get_entries - gang pagecache lookup 1491 * @mapping: The address_space to search 1492 * @start: The starting page cache index 1493 * @nr_entries: The maximum number of entries 1494 * @entries: Where the resulting entries are placed 1495 * @indices: The cache indices corresponding to the entries in @entries 1496 * 1497 * find_get_entries() will search for and return a group of up to 1498 * @nr_entries entries in the mapping. The entries are placed at 1499 * @entries. find_get_entries() takes a reference against any actual 1500 * pages it returns. 1501 * 1502 * The search returns a group of mapping-contiguous page cache entries 1503 * with ascending indexes. There may be holes in the indices due to 1504 * not-present pages. 1505 * 1506 * Any shadow entries of evicted pages, or swap entries from 1507 * shmem/tmpfs, are included in the returned array. 1508 * 1509 * find_get_entries() returns the number of pages and shadow entries 1510 * which were found. 1511 */ 1512 unsigned find_get_entries(struct address_space *mapping, 1513 pgoff_t start, unsigned int nr_entries, 1514 struct page **entries, pgoff_t *indices) 1515 { 1516 void **slot; 1517 unsigned int ret = 0; 1518 struct radix_tree_iter iter; 1519 1520 if (!nr_entries) 1521 return 0; 1522 1523 rcu_read_lock(); 1524 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 1525 struct page *head, *page; 1526 repeat: 1527 page = radix_tree_deref_slot(slot); 1528 if (unlikely(!page)) 1529 continue; 1530 if (radix_tree_exception(page)) { 1531 if (radix_tree_deref_retry(page)) { 1532 slot = radix_tree_iter_retry(&iter); 1533 continue; 1534 } 1535 /* 1536 * A shadow entry of a recently evicted page, a swap 1537 * entry from shmem/tmpfs or a DAX entry. Return it 1538 * without attempting to raise page count. 1539 */ 1540 goto export; 1541 } 1542 1543 head = compound_head(page); 1544 if (!page_cache_get_speculative(head)) 1545 goto repeat; 1546 1547 /* The page was split under us? */ 1548 if (compound_head(page) != head) { 1549 put_page(head); 1550 goto repeat; 1551 } 1552 1553 /* Has the page moved? */ 1554 if (unlikely(page != *slot)) { 1555 put_page(head); 1556 goto repeat; 1557 } 1558 export: 1559 indices[ret] = iter.index; 1560 entries[ret] = page; 1561 if (++ret == nr_entries) 1562 break; 1563 } 1564 rcu_read_unlock(); 1565 return ret; 1566 } 1567 1568 /** 1569 * find_get_pages - gang pagecache lookup 1570 * @mapping: The address_space to search 1571 * @start: The starting page index 1572 * @nr_pages: The maximum number of pages 1573 * @pages: Where the resulting pages are placed 1574 * 1575 * find_get_pages() will search for and return a group of up to 1576 * @nr_pages pages in the mapping. The pages are placed at @pages. 1577 * find_get_pages() takes a reference against the returned pages. 1578 * 1579 * The search returns a group of mapping-contiguous pages with ascending 1580 * indexes. There may be holes in the indices due to not-present pages. 1581 * 1582 * find_get_pages() returns the number of pages which were found. 1583 */ 1584 unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 1585 unsigned int nr_pages, struct page **pages) 1586 { 1587 struct radix_tree_iter iter; 1588 void **slot; 1589 unsigned ret = 0; 1590 1591 if (unlikely(!nr_pages)) 1592 return 0; 1593 1594 rcu_read_lock(); 1595 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 1596 struct page *head, *page; 1597 repeat: 1598 page = radix_tree_deref_slot(slot); 1599 if (unlikely(!page)) 1600 continue; 1601 1602 if (radix_tree_exception(page)) { 1603 if (radix_tree_deref_retry(page)) { 1604 slot = radix_tree_iter_retry(&iter); 1605 continue; 1606 } 1607 /* 1608 * A shadow entry of a recently evicted page, 1609 * or a swap entry from shmem/tmpfs. Skip 1610 * over it. 1611 */ 1612 continue; 1613 } 1614 1615 head = compound_head(page); 1616 if (!page_cache_get_speculative(head)) 1617 goto repeat; 1618 1619 /* The page was split under us? */ 1620 if (compound_head(page) != head) { 1621 put_page(head); 1622 goto repeat; 1623 } 1624 1625 /* Has the page moved? */ 1626 if (unlikely(page != *slot)) { 1627 put_page(head); 1628 goto repeat; 1629 } 1630 1631 pages[ret] = page; 1632 if (++ret == nr_pages) 1633 break; 1634 } 1635 1636 rcu_read_unlock(); 1637 return ret; 1638 } 1639 1640 /** 1641 * find_get_pages_contig - gang contiguous pagecache lookup 1642 * @mapping: The address_space to search 1643 * @index: The starting page index 1644 * @nr_pages: The maximum number of pages 1645 * @pages: Where the resulting pages are placed 1646 * 1647 * find_get_pages_contig() works exactly like find_get_pages(), except 1648 * that the returned number of pages are guaranteed to be contiguous. 1649 * 1650 * find_get_pages_contig() returns the number of pages which were found. 1651 */ 1652 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 1653 unsigned int nr_pages, struct page **pages) 1654 { 1655 struct radix_tree_iter iter; 1656 void **slot; 1657 unsigned int ret = 0; 1658 1659 if (unlikely(!nr_pages)) 1660 return 0; 1661 1662 rcu_read_lock(); 1663 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) { 1664 struct page *head, *page; 1665 repeat: 1666 page = radix_tree_deref_slot(slot); 1667 /* The hole, there no reason to continue */ 1668 if (unlikely(!page)) 1669 break; 1670 1671 if (radix_tree_exception(page)) { 1672 if (radix_tree_deref_retry(page)) { 1673 slot = radix_tree_iter_retry(&iter); 1674 continue; 1675 } 1676 /* 1677 * A shadow entry of a recently evicted page, 1678 * or a swap entry from shmem/tmpfs. Stop 1679 * looking for contiguous pages. 1680 */ 1681 break; 1682 } 1683 1684 head = compound_head(page); 1685 if (!page_cache_get_speculative(head)) 1686 goto repeat; 1687 1688 /* The page was split under us? */ 1689 if (compound_head(page) != head) { 1690 put_page(head); 1691 goto repeat; 1692 } 1693 1694 /* Has the page moved? */ 1695 if (unlikely(page != *slot)) { 1696 put_page(head); 1697 goto repeat; 1698 } 1699 1700 /* 1701 * must check mapping and index after taking the ref. 1702 * otherwise we can get both false positives and false 1703 * negatives, which is just confusing to the caller. 1704 */ 1705 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) { 1706 put_page(page); 1707 break; 1708 } 1709 1710 pages[ret] = page; 1711 if (++ret == nr_pages) 1712 break; 1713 } 1714 rcu_read_unlock(); 1715 return ret; 1716 } 1717 EXPORT_SYMBOL(find_get_pages_contig); 1718 1719 /** 1720 * find_get_pages_tag - find and return pages that match @tag 1721 * @mapping: the address_space to search 1722 * @index: the starting page index 1723 * @tag: the tag index 1724 * @nr_pages: the maximum number of pages 1725 * @pages: where the resulting pages are placed 1726 * 1727 * Like find_get_pages, except we only return pages which are tagged with 1728 * @tag. We update @index to index the next page for the traversal. 1729 */ 1730 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 1731 int tag, unsigned int nr_pages, struct page **pages) 1732 { 1733 struct radix_tree_iter iter; 1734 void **slot; 1735 unsigned ret = 0; 1736 1737 if (unlikely(!nr_pages)) 1738 return 0; 1739 1740 rcu_read_lock(); 1741 radix_tree_for_each_tagged(slot, &mapping->page_tree, 1742 &iter, *index, tag) { 1743 struct page *head, *page; 1744 repeat: 1745 page = radix_tree_deref_slot(slot); 1746 if (unlikely(!page)) 1747 continue; 1748 1749 if (radix_tree_exception(page)) { 1750 if (radix_tree_deref_retry(page)) { 1751 slot = radix_tree_iter_retry(&iter); 1752 continue; 1753 } 1754 /* 1755 * A shadow entry of a recently evicted page. 1756 * 1757 * Those entries should never be tagged, but 1758 * this tree walk is lockless and the tags are 1759 * looked up in bulk, one radix tree node at a 1760 * time, so there is a sizable window for page 1761 * reclaim to evict a page we saw tagged. 1762 * 1763 * Skip over it. 1764 */ 1765 continue; 1766 } 1767 1768 head = compound_head(page); 1769 if (!page_cache_get_speculative(head)) 1770 goto repeat; 1771 1772 /* The page was split under us? */ 1773 if (compound_head(page) != head) { 1774 put_page(head); 1775 goto repeat; 1776 } 1777 1778 /* Has the page moved? */ 1779 if (unlikely(page != *slot)) { 1780 put_page(head); 1781 goto repeat; 1782 } 1783 1784 pages[ret] = page; 1785 if (++ret == nr_pages) 1786 break; 1787 } 1788 1789 rcu_read_unlock(); 1790 1791 if (ret) 1792 *index = pages[ret - 1]->index + 1; 1793 1794 return ret; 1795 } 1796 EXPORT_SYMBOL(find_get_pages_tag); 1797 1798 /** 1799 * find_get_entries_tag - find and return entries that match @tag 1800 * @mapping: the address_space to search 1801 * @start: the starting page cache index 1802 * @tag: the tag index 1803 * @nr_entries: the maximum number of entries 1804 * @entries: where the resulting entries are placed 1805 * @indices: the cache indices corresponding to the entries in @entries 1806 * 1807 * Like find_get_entries, except we only return entries which are tagged with 1808 * @tag. 1809 */ 1810 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start, 1811 int tag, unsigned int nr_entries, 1812 struct page **entries, pgoff_t *indices) 1813 { 1814 void **slot; 1815 unsigned int ret = 0; 1816 struct radix_tree_iter iter; 1817 1818 if (!nr_entries) 1819 return 0; 1820 1821 rcu_read_lock(); 1822 radix_tree_for_each_tagged(slot, &mapping->page_tree, 1823 &iter, start, tag) { 1824 struct page *head, *page; 1825 repeat: 1826 page = radix_tree_deref_slot(slot); 1827 if (unlikely(!page)) 1828 continue; 1829 if (radix_tree_exception(page)) { 1830 if (radix_tree_deref_retry(page)) { 1831 slot = radix_tree_iter_retry(&iter); 1832 continue; 1833 } 1834 1835 /* 1836 * A shadow entry of a recently evicted page, a swap 1837 * entry from shmem/tmpfs or a DAX entry. Return it 1838 * without attempting to raise page count. 1839 */ 1840 goto export; 1841 } 1842 1843 head = compound_head(page); 1844 if (!page_cache_get_speculative(head)) 1845 goto repeat; 1846 1847 /* The page was split under us? */ 1848 if (compound_head(page) != head) { 1849 put_page(head); 1850 goto repeat; 1851 } 1852 1853 /* Has the page moved? */ 1854 if (unlikely(page != *slot)) { 1855 put_page(head); 1856 goto repeat; 1857 } 1858 export: 1859 indices[ret] = iter.index; 1860 entries[ret] = page; 1861 if (++ret == nr_entries) 1862 break; 1863 } 1864 rcu_read_unlock(); 1865 return ret; 1866 } 1867 EXPORT_SYMBOL(find_get_entries_tag); 1868 1869 /* 1870 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 1871 * a _large_ part of the i/o request. Imagine the worst scenario: 1872 * 1873 * ---R__________________________________________B__________ 1874 * ^ reading here ^ bad block(assume 4k) 1875 * 1876 * read(R) => miss => readahead(R...B) => media error => frustrating retries 1877 * => failing the whole request => read(R) => read(R+1) => 1878 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 1879 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 1880 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 1881 * 1882 * It is going insane. Fix it by quickly scaling down the readahead size. 1883 */ 1884 static void shrink_readahead_size_eio(struct file *filp, 1885 struct file_ra_state *ra) 1886 { 1887 ra->ra_pages /= 4; 1888 } 1889 1890 /** 1891 * do_generic_file_read - generic file read routine 1892 * @filp: the file to read 1893 * @ppos: current file position 1894 * @iter: data destination 1895 * @written: already copied 1896 * 1897 * This is a generic file read routine, and uses the 1898 * mapping->a_ops->readpage() function for the actual low-level stuff. 1899 * 1900 * This is really ugly. But the goto's actually try to clarify some 1901 * of the logic when it comes to error handling etc. 1902 */ 1903 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos, 1904 struct iov_iter *iter, ssize_t written) 1905 { 1906 struct address_space *mapping = filp->f_mapping; 1907 struct inode *inode = mapping->host; 1908 struct file_ra_state *ra = &filp->f_ra; 1909 pgoff_t index; 1910 pgoff_t last_index; 1911 pgoff_t prev_index; 1912 unsigned long offset; /* offset into pagecache page */ 1913 unsigned int prev_offset; 1914 int error = 0; 1915 1916 if (unlikely(*ppos >= inode->i_sb->s_maxbytes)) 1917 return 0; 1918 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 1919 1920 index = *ppos >> PAGE_SHIFT; 1921 prev_index = ra->prev_pos >> PAGE_SHIFT; 1922 prev_offset = ra->prev_pos & (PAGE_SIZE-1); 1923 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT; 1924 offset = *ppos & ~PAGE_MASK; 1925 1926 for (;;) { 1927 struct page *page; 1928 pgoff_t end_index; 1929 loff_t isize; 1930 unsigned long nr, ret; 1931 1932 cond_resched(); 1933 find_page: 1934 if (fatal_signal_pending(current)) { 1935 error = -EINTR; 1936 goto out; 1937 } 1938 1939 page = find_get_page(mapping, index); 1940 if (!page) { 1941 page_cache_sync_readahead(mapping, 1942 ra, filp, 1943 index, last_index - index); 1944 page = find_get_page(mapping, index); 1945 if (unlikely(page == NULL)) 1946 goto no_cached_page; 1947 } 1948 if (PageReadahead(page)) { 1949 page_cache_async_readahead(mapping, 1950 ra, filp, page, 1951 index, last_index - index); 1952 } 1953 if (!PageUptodate(page)) { 1954 /* 1955 * See comment in do_read_cache_page on why 1956 * wait_on_page_locked is used to avoid unnecessarily 1957 * serialisations and why it's safe. 1958 */ 1959 error = wait_on_page_locked_killable(page); 1960 if (unlikely(error)) 1961 goto readpage_error; 1962 if (PageUptodate(page)) 1963 goto page_ok; 1964 1965 if (inode->i_blkbits == PAGE_SHIFT || 1966 !mapping->a_ops->is_partially_uptodate) 1967 goto page_not_up_to_date; 1968 /* pipes can't handle partially uptodate pages */ 1969 if (unlikely(iter->type & ITER_PIPE)) 1970 goto page_not_up_to_date; 1971 if (!trylock_page(page)) 1972 goto page_not_up_to_date; 1973 /* Did it get truncated before we got the lock? */ 1974 if (!page->mapping) 1975 goto page_not_up_to_date_locked; 1976 if (!mapping->a_ops->is_partially_uptodate(page, 1977 offset, iter->count)) 1978 goto page_not_up_to_date_locked; 1979 unlock_page(page); 1980 } 1981 page_ok: 1982 /* 1983 * i_size must be checked after we know the page is Uptodate. 1984 * 1985 * Checking i_size after the check allows us to calculate 1986 * the correct value for "nr", which means the zero-filled 1987 * part of the page is not copied back to userspace (unless 1988 * another truncate extends the file - this is desired though). 1989 */ 1990 1991 isize = i_size_read(inode); 1992 end_index = (isize - 1) >> PAGE_SHIFT; 1993 if (unlikely(!isize || index > end_index)) { 1994 put_page(page); 1995 goto out; 1996 } 1997 1998 /* nr is the maximum number of bytes to copy from this page */ 1999 nr = PAGE_SIZE; 2000 if (index == end_index) { 2001 nr = ((isize - 1) & ~PAGE_MASK) + 1; 2002 if (nr <= offset) { 2003 put_page(page); 2004 goto out; 2005 } 2006 } 2007 nr = nr - offset; 2008 2009 /* If users can be writing to this page using arbitrary 2010 * virtual addresses, take care about potential aliasing 2011 * before reading the page on the kernel side. 2012 */ 2013 if (mapping_writably_mapped(mapping)) 2014 flush_dcache_page(page); 2015 2016 /* 2017 * When a sequential read accesses a page several times, 2018 * only mark it as accessed the first time. 2019 */ 2020 if (prev_index != index || offset != prev_offset) 2021 mark_page_accessed(page); 2022 prev_index = index; 2023 2024 /* 2025 * Ok, we have the page, and it's up-to-date, so 2026 * now we can copy it to user space... 2027 */ 2028 2029 ret = copy_page_to_iter(page, offset, nr, iter); 2030 offset += ret; 2031 index += offset >> PAGE_SHIFT; 2032 offset &= ~PAGE_MASK; 2033 prev_offset = offset; 2034 2035 put_page(page); 2036 written += ret; 2037 if (!iov_iter_count(iter)) 2038 goto out; 2039 if (ret < nr) { 2040 error = -EFAULT; 2041 goto out; 2042 } 2043 continue; 2044 2045 page_not_up_to_date: 2046 /* Get exclusive access to the page ... */ 2047 error = lock_page_killable(page); 2048 if (unlikely(error)) 2049 goto readpage_error; 2050 2051 page_not_up_to_date_locked: 2052 /* Did it get truncated before we got the lock? */ 2053 if (!page->mapping) { 2054 unlock_page(page); 2055 put_page(page); 2056 continue; 2057 } 2058 2059 /* Did somebody else fill it already? */ 2060 if (PageUptodate(page)) { 2061 unlock_page(page); 2062 goto page_ok; 2063 } 2064 2065 readpage: 2066 /* 2067 * A previous I/O error may have been due to temporary 2068 * failures, eg. multipath errors. 2069 * PG_error will be set again if readpage fails. 2070 */ 2071 ClearPageError(page); 2072 /* Start the actual read. The read will unlock the page. */ 2073 error = mapping->a_ops->readpage(filp, page); 2074 2075 if (unlikely(error)) { 2076 if (error == AOP_TRUNCATED_PAGE) { 2077 put_page(page); 2078 error = 0; 2079 goto find_page; 2080 } 2081 goto readpage_error; 2082 } 2083 2084 if (!PageUptodate(page)) { 2085 error = lock_page_killable(page); 2086 if (unlikely(error)) 2087 goto readpage_error; 2088 if (!PageUptodate(page)) { 2089 if (page->mapping == NULL) { 2090 /* 2091 * invalidate_mapping_pages got it 2092 */ 2093 unlock_page(page); 2094 put_page(page); 2095 goto find_page; 2096 } 2097 unlock_page(page); 2098 shrink_readahead_size_eio(filp, ra); 2099 error = -EIO; 2100 goto readpage_error; 2101 } 2102 unlock_page(page); 2103 } 2104 2105 goto page_ok; 2106 2107 readpage_error: 2108 /* UHHUH! A synchronous read error occurred. Report it */ 2109 put_page(page); 2110 goto out; 2111 2112 no_cached_page: 2113 /* 2114 * Ok, it wasn't cached, so we need to create a new 2115 * page.. 2116 */ 2117 page = page_cache_alloc_cold(mapping); 2118 if (!page) { 2119 error = -ENOMEM; 2120 goto out; 2121 } 2122 error = add_to_page_cache_lru(page, mapping, index, 2123 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2124 if (error) { 2125 put_page(page); 2126 if (error == -EEXIST) { 2127 error = 0; 2128 goto find_page; 2129 } 2130 goto out; 2131 } 2132 goto readpage; 2133 } 2134 2135 out: 2136 ra->prev_pos = prev_index; 2137 ra->prev_pos <<= PAGE_SHIFT; 2138 ra->prev_pos |= prev_offset; 2139 2140 *ppos = ((loff_t)index << PAGE_SHIFT) + offset; 2141 file_accessed(filp); 2142 return written ? written : error; 2143 } 2144 2145 /** 2146 * generic_file_read_iter - generic filesystem read routine 2147 * @iocb: kernel I/O control block 2148 * @iter: destination for the data read 2149 * 2150 * This is the "read_iter()" routine for all filesystems 2151 * that can use the page cache directly. 2152 */ 2153 ssize_t 2154 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2155 { 2156 struct file *file = iocb->ki_filp; 2157 ssize_t retval = 0; 2158 size_t count = iov_iter_count(iter); 2159 2160 if (!count) 2161 goto out; /* skip atime */ 2162 2163 if (iocb->ki_flags & IOCB_DIRECT) { 2164 struct address_space *mapping = file->f_mapping; 2165 struct inode *inode = mapping->host; 2166 loff_t size; 2167 2168 size = i_size_read(inode); 2169 if (iocb->ki_flags & IOCB_NOWAIT) { 2170 if (filemap_range_has_page(mapping, iocb->ki_pos, 2171 iocb->ki_pos + count - 1)) 2172 return -EAGAIN; 2173 } else { 2174 retval = filemap_write_and_wait_range(mapping, 2175 iocb->ki_pos, 2176 iocb->ki_pos + count - 1); 2177 if (retval < 0) 2178 goto out; 2179 } 2180 2181 file_accessed(file); 2182 2183 retval = mapping->a_ops->direct_IO(iocb, iter); 2184 if (retval >= 0) { 2185 iocb->ki_pos += retval; 2186 count -= retval; 2187 } 2188 iov_iter_revert(iter, count - iov_iter_count(iter)); 2189 2190 /* 2191 * Btrfs can have a short DIO read if we encounter 2192 * compressed extents, so if there was an error, or if 2193 * we've already read everything we wanted to, or if 2194 * there was a short read because we hit EOF, go ahead 2195 * and return. Otherwise fallthrough to buffered io for 2196 * the rest of the read. Buffered reads will not work for 2197 * DAX files, so don't bother trying. 2198 */ 2199 if (retval < 0 || !count || iocb->ki_pos >= size || 2200 IS_DAX(inode)) 2201 goto out; 2202 } 2203 2204 retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval); 2205 out: 2206 return retval; 2207 } 2208 EXPORT_SYMBOL(generic_file_read_iter); 2209 2210 #ifdef CONFIG_MMU 2211 /** 2212 * page_cache_read - adds requested page to the page cache if not already there 2213 * @file: file to read 2214 * @offset: page index 2215 * @gfp_mask: memory allocation flags 2216 * 2217 * This adds the requested page to the page cache if it isn't already there, 2218 * and schedules an I/O to read in its contents from disk. 2219 */ 2220 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask) 2221 { 2222 struct address_space *mapping = file->f_mapping; 2223 struct page *page; 2224 int ret; 2225 2226 do { 2227 page = __page_cache_alloc(gfp_mask|__GFP_COLD); 2228 if (!page) 2229 return -ENOMEM; 2230 2231 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL); 2232 if (ret == 0) 2233 ret = mapping->a_ops->readpage(file, page); 2234 else if (ret == -EEXIST) 2235 ret = 0; /* losing race to add is OK */ 2236 2237 put_page(page); 2238 2239 } while (ret == AOP_TRUNCATED_PAGE); 2240 2241 return ret; 2242 } 2243 2244 #define MMAP_LOTSAMISS (100) 2245 2246 /* 2247 * Synchronous readahead happens when we don't even find 2248 * a page in the page cache at all. 2249 */ 2250 static void do_sync_mmap_readahead(struct vm_area_struct *vma, 2251 struct file_ra_state *ra, 2252 struct file *file, 2253 pgoff_t offset) 2254 { 2255 struct address_space *mapping = file->f_mapping; 2256 2257 /* If we don't want any read-ahead, don't bother */ 2258 if (vma->vm_flags & VM_RAND_READ) 2259 return; 2260 if (!ra->ra_pages) 2261 return; 2262 2263 if (vma->vm_flags & VM_SEQ_READ) { 2264 page_cache_sync_readahead(mapping, ra, file, offset, 2265 ra->ra_pages); 2266 return; 2267 } 2268 2269 /* Avoid banging the cache line if not needed */ 2270 if (ra->mmap_miss < MMAP_LOTSAMISS * 10) 2271 ra->mmap_miss++; 2272 2273 /* 2274 * Do we miss much more than hit in this file? If so, 2275 * stop bothering with read-ahead. It will only hurt. 2276 */ 2277 if (ra->mmap_miss > MMAP_LOTSAMISS) 2278 return; 2279 2280 /* 2281 * mmap read-around 2282 */ 2283 ra->start = max_t(long, 0, offset - ra->ra_pages / 2); 2284 ra->size = ra->ra_pages; 2285 ra->async_size = ra->ra_pages / 4; 2286 ra_submit(ra, mapping, file); 2287 } 2288 2289 /* 2290 * Asynchronous readahead happens when we find the page and PG_readahead, 2291 * so we want to possibly extend the readahead further.. 2292 */ 2293 static void do_async_mmap_readahead(struct vm_area_struct *vma, 2294 struct file_ra_state *ra, 2295 struct file *file, 2296 struct page *page, 2297 pgoff_t offset) 2298 { 2299 struct address_space *mapping = file->f_mapping; 2300 2301 /* If we don't want any read-ahead, don't bother */ 2302 if (vma->vm_flags & VM_RAND_READ) 2303 return; 2304 if (ra->mmap_miss > 0) 2305 ra->mmap_miss--; 2306 if (PageReadahead(page)) 2307 page_cache_async_readahead(mapping, ra, file, 2308 page, offset, ra->ra_pages); 2309 } 2310 2311 /** 2312 * filemap_fault - read in file data for page fault handling 2313 * @vmf: struct vm_fault containing details of the fault 2314 * 2315 * filemap_fault() is invoked via the vma operations vector for a 2316 * mapped memory region to read in file data during a page fault. 2317 * 2318 * The goto's are kind of ugly, but this streamlines the normal case of having 2319 * it in the page cache, and handles the special cases reasonably without 2320 * having a lot of duplicated code. 2321 * 2322 * vma->vm_mm->mmap_sem must be held on entry. 2323 * 2324 * If our return value has VM_FAULT_RETRY set, it's because 2325 * lock_page_or_retry() returned 0. 2326 * The mmap_sem has usually been released in this case. 2327 * See __lock_page_or_retry() for the exception. 2328 * 2329 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem 2330 * has not been released. 2331 * 2332 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 2333 */ 2334 int filemap_fault(struct vm_fault *vmf) 2335 { 2336 int error; 2337 struct file *file = vmf->vma->vm_file; 2338 struct address_space *mapping = file->f_mapping; 2339 struct file_ra_state *ra = &file->f_ra; 2340 struct inode *inode = mapping->host; 2341 pgoff_t offset = vmf->pgoff; 2342 pgoff_t max_off; 2343 struct page *page; 2344 int ret = 0; 2345 2346 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2347 if (unlikely(offset >= max_off)) 2348 return VM_FAULT_SIGBUS; 2349 2350 /* 2351 * Do we have something in the page cache already? 2352 */ 2353 page = find_get_page(mapping, offset); 2354 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { 2355 /* 2356 * We found the page, so try async readahead before 2357 * waiting for the lock. 2358 */ 2359 do_async_mmap_readahead(vmf->vma, ra, file, page, offset); 2360 } else if (!page) { 2361 /* No page in the page cache at all */ 2362 do_sync_mmap_readahead(vmf->vma, ra, file, offset); 2363 count_vm_event(PGMAJFAULT); 2364 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 2365 ret = VM_FAULT_MAJOR; 2366 retry_find: 2367 page = find_get_page(mapping, offset); 2368 if (!page) 2369 goto no_cached_page; 2370 } 2371 2372 if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) { 2373 put_page(page); 2374 return ret | VM_FAULT_RETRY; 2375 } 2376 2377 /* Did it get truncated? */ 2378 if (unlikely(page->mapping != mapping)) { 2379 unlock_page(page); 2380 put_page(page); 2381 goto retry_find; 2382 } 2383 VM_BUG_ON_PAGE(page->index != offset, page); 2384 2385 /* 2386 * We have a locked page in the page cache, now we need to check 2387 * that it's up-to-date. If not, it is going to be due to an error. 2388 */ 2389 if (unlikely(!PageUptodate(page))) 2390 goto page_not_uptodate; 2391 2392 /* 2393 * Found the page and have a reference on it. 2394 * We must recheck i_size under page lock. 2395 */ 2396 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2397 if (unlikely(offset >= max_off)) { 2398 unlock_page(page); 2399 put_page(page); 2400 return VM_FAULT_SIGBUS; 2401 } 2402 2403 vmf->page = page; 2404 return ret | VM_FAULT_LOCKED; 2405 2406 no_cached_page: 2407 /* 2408 * We're only likely to ever get here if MADV_RANDOM is in 2409 * effect. 2410 */ 2411 error = page_cache_read(file, offset, vmf->gfp_mask); 2412 2413 /* 2414 * The page we want has now been added to the page cache. 2415 * In the unlikely event that someone removed it in the 2416 * meantime, we'll just come back here and read it again. 2417 */ 2418 if (error >= 0) 2419 goto retry_find; 2420 2421 /* 2422 * An error return from page_cache_read can result if the 2423 * system is low on memory, or a problem occurs while trying 2424 * to schedule I/O. 2425 */ 2426 if (error == -ENOMEM) 2427 return VM_FAULT_OOM; 2428 return VM_FAULT_SIGBUS; 2429 2430 page_not_uptodate: 2431 /* 2432 * Umm, take care of errors if the page isn't up-to-date. 2433 * Try to re-read it _once_. We do this synchronously, 2434 * because there really aren't any performance issues here 2435 * and we need to check for errors. 2436 */ 2437 ClearPageError(page); 2438 error = mapping->a_ops->readpage(file, page); 2439 if (!error) { 2440 wait_on_page_locked(page); 2441 if (!PageUptodate(page)) 2442 error = -EIO; 2443 } 2444 put_page(page); 2445 2446 if (!error || error == AOP_TRUNCATED_PAGE) 2447 goto retry_find; 2448 2449 /* Things didn't work out. Return zero to tell the mm layer so. */ 2450 shrink_readahead_size_eio(file, ra); 2451 return VM_FAULT_SIGBUS; 2452 } 2453 EXPORT_SYMBOL(filemap_fault); 2454 2455 void filemap_map_pages(struct vm_fault *vmf, 2456 pgoff_t start_pgoff, pgoff_t end_pgoff) 2457 { 2458 struct radix_tree_iter iter; 2459 void **slot; 2460 struct file *file = vmf->vma->vm_file; 2461 struct address_space *mapping = file->f_mapping; 2462 pgoff_t last_pgoff = start_pgoff; 2463 unsigned long max_idx; 2464 struct page *head, *page; 2465 2466 rcu_read_lock(); 2467 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, 2468 start_pgoff) { 2469 if (iter.index > end_pgoff) 2470 break; 2471 repeat: 2472 page = radix_tree_deref_slot(slot); 2473 if (unlikely(!page)) 2474 goto next; 2475 if (radix_tree_exception(page)) { 2476 if (radix_tree_deref_retry(page)) { 2477 slot = radix_tree_iter_retry(&iter); 2478 continue; 2479 } 2480 goto next; 2481 } 2482 2483 head = compound_head(page); 2484 if (!page_cache_get_speculative(head)) 2485 goto repeat; 2486 2487 /* The page was split under us? */ 2488 if (compound_head(page) != head) { 2489 put_page(head); 2490 goto repeat; 2491 } 2492 2493 /* Has the page moved? */ 2494 if (unlikely(page != *slot)) { 2495 put_page(head); 2496 goto repeat; 2497 } 2498 2499 if (!PageUptodate(page) || 2500 PageReadahead(page) || 2501 PageHWPoison(page)) 2502 goto skip; 2503 if (!trylock_page(page)) 2504 goto skip; 2505 2506 if (page->mapping != mapping || !PageUptodate(page)) 2507 goto unlock; 2508 2509 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 2510 if (page->index >= max_idx) 2511 goto unlock; 2512 2513 if (file->f_ra.mmap_miss > 0) 2514 file->f_ra.mmap_miss--; 2515 2516 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT; 2517 if (vmf->pte) 2518 vmf->pte += iter.index - last_pgoff; 2519 last_pgoff = iter.index; 2520 if (alloc_set_pte(vmf, NULL, page)) 2521 goto unlock; 2522 unlock_page(page); 2523 goto next; 2524 unlock: 2525 unlock_page(page); 2526 skip: 2527 put_page(page); 2528 next: 2529 /* Huge page is mapped? No need to proceed. */ 2530 if (pmd_trans_huge(*vmf->pmd)) 2531 break; 2532 if (iter.index == end_pgoff) 2533 break; 2534 } 2535 rcu_read_unlock(); 2536 } 2537 EXPORT_SYMBOL(filemap_map_pages); 2538 2539 int filemap_page_mkwrite(struct vm_fault *vmf) 2540 { 2541 struct page *page = vmf->page; 2542 struct inode *inode = file_inode(vmf->vma->vm_file); 2543 int ret = VM_FAULT_LOCKED; 2544 2545 sb_start_pagefault(inode->i_sb); 2546 file_update_time(vmf->vma->vm_file); 2547 lock_page(page); 2548 if (page->mapping != inode->i_mapping) { 2549 unlock_page(page); 2550 ret = VM_FAULT_NOPAGE; 2551 goto out; 2552 } 2553 /* 2554 * We mark the page dirty already here so that when freeze is in 2555 * progress, we are guaranteed that writeback during freezing will 2556 * see the dirty page and writeprotect it again. 2557 */ 2558 set_page_dirty(page); 2559 wait_for_stable_page(page); 2560 out: 2561 sb_end_pagefault(inode->i_sb); 2562 return ret; 2563 } 2564 EXPORT_SYMBOL(filemap_page_mkwrite); 2565 2566 const struct vm_operations_struct generic_file_vm_ops = { 2567 .fault = filemap_fault, 2568 .map_pages = filemap_map_pages, 2569 .page_mkwrite = filemap_page_mkwrite, 2570 }; 2571 2572 /* This is used for a general mmap of a disk file */ 2573 2574 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2575 { 2576 struct address_space *mapping = file->f_mapping; 2577 2578 if (!mapping->a_ops->readpage) 2579 return -ENOEXEC; 2580 file_accessed(file); 2581 vma->vm_ops = &generic_file_vm_ops; 2582 return 0; 2583 } 2584 2585 /* 2586 * This is for filesystems which do not implement ->writepage. 2587 */ 2588 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 2589 { 2590 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 2591 return -EINVAL; 2592 return generic_file_mmap(file, vma); 2593 } 2594 #else 2595 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2596 { 2597 return -ENOSYS; 2598 } 2599 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 2600 { 2601 return -ENOSYS; 2602 } 2603 #endif /* CONFIG_MMU */ 2604 2605 EXPORT_SYMBOL(generic_file_mmap); 2606 EXPORT_SYMBOL(generic_file_readonly_mmap); 2607 2608 static struct page *wait_on_page_read(struct page *page) 2609 { 2610 if (!IS_ERR(page)) { 2611 wait_on_page_locked(page); 2612 if (!PageUptodate(page)) { 2613 put_page(page); 2614 page = ERR_PTR(-EIO); 2615 } 2616 } 2617 return page; 2618 } 2619 2620 static struct page *do_read_cache_page(struct address_space *mapping, 2621 pgoff_t index, 2622 int (*filler)(void *, struct page *), 2623 void *data, 2624 gfp_t gfp) 2625 { 2626 struct page *page; 2627 int err; 2628 repeat: 2629 page = find_get_page(mapping, index); 2630 if (!page) { 2631 page = __page_cache_alloc(gfp | __GFP_COLD); 2632 if (!page) 2633 return ERR_PTR(-ENOMEM); 2634 err = add_to_page_cache_lru(page, mapping, index, gfp); 2635 if (unlikely(err)) { 2636 put_page(page); 2637 if (err == -EEXIST) 2638 goto repeat; 2639 /* Presumably ENOMEM for radix tree node */ 2640 return ERR_PTR(err); 2641 } 2642 2643 filler: 2644 err = filler(data, page); 2645 if (err < 0) { 2646 put_page(page); 2647 return ERR_PTR(err); 2648 } 2649 2650 page = wait_on_page_read(page); 2651 if (IS_ERR(page)) 2652 return page; 2653 goto out; 2654 } 2655 if (PageUptodate(page)) 2656 goto out; 2657 2658 /* 2659 * Page is not up to date and may be locked due one of the following 2660 * case a: Page is being filled and the page lock is held 2661 * case b: Read/write error clearing the page uptodate status 2662 * case c: Truncation in progress (page locked) 2663 * case d: Reclaim in progress 2664 * 2665 * Case a, the page will be up to date when the page is unlocked. 2666 * There is no need to serialise on the page lock here as the page 2667 * is pinned so the lock gives no additional protection. Even if the 2668 * the page is truncated, the data is still valid if PageUptodate as 2669 * it's a race vs truncate race. 2670 * Case b, the page will not be up to date 2671 * Case c, the page may be truncated but in itself, the data may still 2672 * be valid after IO completes as it's a read vs truncate race. The 2673 * operation must restart if the page is not uptodate on unlock but 2674 * otherwise serialising on page lock to stabilise the mapping gives 2675 * no additional guarantees to the caller as the page lock is 2676 * released before return. 2677 * Case d, similar to truncation. If reclaim holds the page lock, it 2678 * will be a race with remove_mapping that determines if the mapping 2679 * is valid on unlock but otherwise the data is valid and there is 2680 * no need to serialise with page lock. 2681 * 2682 * As the page lock gives no additional guarantee, we optimistically 2683 * wait on the page to be unlocked and check if it's up to date and 2684 * use the page if it is. Otherwise, the page lock is required to 2685 * distinguish between the different cases. The motivation is that we 2686 * avoid spurious serialisations and wakeups when multiple processes 2687 * wait on the same page for IO to complete. 2688 */ 2689 wait_on_page_locked(page); 2690 if (PageUptodate(page)) 2691 goto out; 2692 2693 /* Distinguish between all the cases under the safety of the lock */ 2694 lock_page(page); 2695 2696 /* Case c or d, restart the operation */ 2697 if (!page->mapping) { 2698 unlock_page(page); 2699 put_page(page); 2700 goto repeat; 2701 } 2702 2703 /* Someone else locked and filled the page in a very small window */ 2704 if (PageUptodate(page)) { 2705 unlock_page(page); 2706 goto out; 2707 } 2708 goto filler; 2709 2710 out: 2711 mark_page_accessed(page); 2712 return page; 2713 } 2714 2715 /** 2716 * read_cache_page - read into page cache, fill it if needed 2717 * @mapping: the page's address_space 2718 * @index: the page index 2719 * @filler: function to perform the read 2720 * @data: first arg to filler(data, page) function, often left as NULL 2721 * 2722 * Read into the page cache. If a page already exists, and PageUptodate() is 2723 * not set, try to fill the page and wait for it to become unlocked. 2724 * 2725 * If the page does not get brought uptodate, return -EIO. 2726 */ 2727 struct page *read_cache_page(struct address_space *mapping, 2728 pgoff_t index, 2729 int (*filler)(void *, struct page *), 2730 void *data) 2731 { 2732 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping)); 2733 } 2734 EXPORT_SYMBOL(read_cache_page); 2735 2736 /** 2737 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 2738 * @mapping: the page's address_space 2739 * @index: the page index 2740 * @gfp: the page allocator flags to use if allocating 2741 * 2742 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 2743 * any new page allocations done using the specified allocation flags. 2744 * 2745 * If the page does not get brought uptodate, return -EIO. 2746 */ 2747 struct page *read_cache_page_gfp(struct address_space *mapping, 2748 pgoff_t index, 2749 gfp_t gfp) 2750 { 2751 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 2752 2753 return do_read_cache_page(mapping, index, filler, NULL, gfp); 2754 } 2755 EXPORT_SYMBOL(read_cache_page_gfp); 2756 2757 /* 2758 * Performs necessary checks before doing a write 2759 * 2760 * Can adjust writing position or amount of bytes to write. 2761 * Returns appropriate error code that caller should return or 2762 * zero in case that write should be allowed. 2763 */ 2764 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from) 2765 { 2766 struct file *file = iocb->ki_filp; 2767 struct inode *inode = file->f_mapping->host; 2768 unsigned long limit = rlimit(RLIMIT_FSIZE); 2769 loff_t pos; 2770 2771 if (!iov_iter_count(from)) 2772 return 0; 2773 2774 /* FIXME: this is for backwards compatibility with 2.4 */ 2775 if (iocb->ki_flags & IOCB_APPEND) 2776 iocb->ki_pos = i_size_read(inode); 2777 2778 pos = iocb->ki_pos; 2779 2780 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT)) 2781 return -EINVAL; 2782 2783 if (limit != RLIM_INFINITY) { 2784 if (iocb->ki_pos >= limit) { 2785 send_sig(SIGXFSZ, current, 0); 2786 return -EFBIG; 2787 } 2788 iov_iter_truncate(from, limit - (unsigned long)pos); 2789 } 2790 2791 /* 2792 * LFS rule 2793 */ 2794 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS && 2795 !(file->f_flags & O_LARGEFILE))) { 2796 if (pos >= MAX_NON_LFS) 2797 return -EFBIG; 2798 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos); 2799 } 2800 2801 /* 2802 * Are we about to exceed the fs block limit ? 2803 * 2804 * If we have written data it becomes a short write. If we have 2805 * exceeded without writing data we send a signal and return EFBIG. 2806 * Linus frestrict idea will clean these up nicely.. 2807 */ 2808 if (unlikely(pos >= inode->i_sb->s_maxbytes)) 2809 return -EFBIG; 2810 2811 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos); 2812 return iov_iter_count(from); 2813 } 2814 EXPORT_SYMBOL(generic_write_checks); 2815 2816 int pagecache_write_begin(struct file *file, struct address_space *mapping, 2817 loff_t pos, unsigned len, unsigned flags, 2818 struct page **pagep, void **fsdata) 2819 { 2820 const struct address_space_operations *aops = mapping->a_ops; 2821 2822 return aops->write_begin(file, mapping, pos, len, flags, 2823 pagep, fsdata); 2824 } 2825 EXPORT_SYMBOL(pagecache_write_begin); 2826 2827 int pagecache_write_end(struct file *file, struct address_space *mapping, 2828 loff_t pos, unsigned len, unsigned copied, 2829 struct page *page, void *fsdata) 2830 { 2831 const struct address_space_operations *aops = mapping->a_ops; 2832 2833 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 2834 } 2835 EXPORT_SYMBOL(pagecache_write_end); 2836 2837 ssize_t 2838 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 2839 { 2840 struct file *file = iocb->ki_filp; 2841 struct address_space *mapping = file->f_mapping; 2842 struct inode *inode = mapping->host; 2843 loff_t pos = iocb->ki_pos; 2844 ssize_t written; 2845 size_t write_len; 2846 pgoff_t end; 2847 2848 write_len = iov_iter_count(from); 2849 end = (pos + write_len - 1) >> PAGE_SHIFT; 2850 2851 if (iocb->ki_flags & IOCB_NOWAIT) { 2852 /* If there are pages to writeback, return */ 2853 if (filemap_range_has_page(inode->i_mapping, pos, 2854 pos + iov_iter_count(from))) 2855 return -EAGAIN; 2856 } else { 2857 written = filemap_write_and_wait_range(mapping, pos, 2858 pos + write_len - 1); 2859 if (written) 2860 goto out; 2861 } 2862 2863 /* 2864 * After a write we want buffered reads to be sure to go to disk to get 2865 * the new data. We invalidate clean cached page from the region we're 2866 * about to write. We do this *before* the write so that we can return 2867 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2868 */ 2869 written = invalidate_inode_pages2_range(mapping, 2870 pos >> PAGE_SHIFT, end); 2871 /* 2872 * If a page can not be invalidated, return 0 to fall back 2873 * to buffered write. 2874 */ 2875 if (written) { 2876 if (written == -EBUSY) 2877 return 0; 2878 goto out; 2879 } 2880 2881 written = mapping->a_ops->direct_IO(iocb, from); 2882 2883 /* 2884 * Finally, try again to invalidate clean pages which might have been 2885 * cached by non-direct readahead, or faulted in by get_user_pages() 2886 * if the source of the write was an mmap'ed region of the file 2887 * we're writing. Either one is a pretty crazy thing to do, 2888 * so we don't support it 100%. If this invalidation 2889 * fails, tough, the write still worked... 2890 */ 2891 invalidate_inode_pages2_range(mapping, 2892 pos >> PAGE_SHIFT, end); 2893 2894 if (written > 0) { 2895 pos += written; 2896 write_len -= written; 2897 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 2898 i_size_write(inode, pos); 2899 mark_inode_dirty(inode); 2900 } 2901 iocb->ki_pos = pos; 2902 } 2903 iov_iter_revert(from, write_len - iov_iter_count(from)); 2904 out: 2905 return written; 2906 } 2907 EXPORT_SYMBOL(generic_file_direct_write); 2908 2909 /* 2910 * Find or create a page at the given pagecache position. Return the locked 2911 * page. This function is specifically for buffered writes. 2912 */ 2913 struct page *grab_cache_page_write_begin(struct address_space *mapping, 2914 pgoff_t index, unsigned flags) 2915 { 2916 struct page *page; 2917 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT; 2918 2919 if (flags & AOP_FLAG_NOFS) 2920 fgp_flags |= FGP_NOFS; 2921 2922 page = pagecache_get_page(mapping, index, fgp_flags, 2923 mapping_gfp_mask(mapping)); 2924 if (page) 2925 wait_for_stable_page(page); 2926 2927 return page; 2928 } 2929 EXPORT_SYMBOL(grab_cache_page_write_begin); 2930 2931 ssize_t generic_perform_write(struct file *file, 2932 struct iov_iter *i, loff_t pos) 2933 { 2934 struct address_space *mapping = file->f_mapping; 2935 const struct address_space_operations *a_ops = mapping->a_ops; 2936 long status = 0; 2937 ssize_t written = 0; 2938 unsigned int flags = 0; 2939 2940 do { 2941 struct page *page; 2942 unsigned long offset; /* Offset into pagecache page */ 2943 unsigned long bytes; /* Bytes to write to page */ 2944 size_t copied; /* Bytes copied from user */ 2945 void *fsdata; 2946 2947 offset = (pos & (PAGE_SIZE - 1)); 2948 bytes = min_t(unsigned long, PAGE_SIZE - offset, 2949 iov_iter_count(i)); 2950 2951 again: 2952 /* 2953 * Bring in the user page that we will copy from _first_. 2954 * Otherwise there's a nasty deadlock on copying from the 2955 * same page as we're writing to, without it being marked 2956 * up-to-date. 2957 * 2958 * Not only is this an optimisation, but it is also required 2959 * to check that the address is actually valid, when atomic 2960 * usercopies are used, below. 2961 */ 2962 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 2963 status = -EFAULT; 2964 break; 2965 } 2966 2967 if (fatal_signal_pending(current)) { 2968 status = -EINTR; 2969 break; 2970 } 2971 2972 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 2973 &page, &fsdata); 2974 if (unlikely(status < 0)) 2975 break; 2976 2977 if (mapping_writably_mapped(mapping)) 2978 flush_dcache_page(page); 2979 2980 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 2981 flush_dcache_page(page); 2982 2983 status = a_ops->write_end(file, mapping, pos, bytes, copied, 2984 page, fsdata); 2985 if (unlikely(status < 0)) 2986 break; 2987 copied = status; 2988 2989 cond_resched(); 2990 2991 iov_iter_advance(i, copied); 2992 if (unlikely(copied == 0)) { 2993 /* 2994 * If we were unable to copy any data at all, we must 2995 * fall back to a single segment length write. 2996 * 2997 * If we didn't fallback here, we could livelock 2998 * because not all segments in the iov can be copied at 2999 * once without a pagefault. 3000 */ 3001 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3002 iov_iter_single_seg_count(i)); 3003 goto again; 3004 } 3005 pos += copied; 3006 written += copied; 3007 3008 balance_dirty_pages_ratelimited(mapping); 3009 } while (iov_iter_count(i)); 3010 3011 return written ? written : status; 3012 } 3013 EXPORT_SYMBOL(generic_perform_write); 3014 3015 /** 3016 * __generic_file_write_iter - write data to a file 3017 * @iocb: IO state structure (file, offset, etc.) 3018 * @from: iov_iter with data to write 3019 * 3020 * This function does all the work needed for actually writing data to a 3021 * file. It does all basic checks, removes SUID from the file, updates 3022 * modification times and calls proper subroutines depending on whether we 3023 * do direct IO or a standard buffered write. 3024 * 3025 * It expects i_mutex to be grabbed unless we work on a block device or similar 3026 * object which does not need locking at all. 3027 * 3028 * This function does *not* take care of syncing data in case of O_SYNC write. 3029 * A caller has to handle it. This is mainly due to the fact that we want to 3030 * avoid syncing under i_mutex. 3031 */ 3032 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3033 { 3034 struct file *file = iocb->ki_filp; 3035 struct address_space * mapping = file->f_mapping; 3036 struct inode *inode = mapping->host; 3037 ssize_t written = 0; 3038 ssize_t err; 3039 ssize_t status; 3040 3041 /* We can write back this queue in page reclaim */ 3042 current->backing_dev_info = inode_to_bdi(inode); 3043 err = file_remove_privs(file); 3044 if (err) 3045 goto out; 3046 3047 err = file_update_time(file); 3048 if (err) 3049 goto out; 3050 3051 if (iocb->ki_flags & IOCB_DIRECT) { 3052 loff_t pos, endbyte; 3053 3054 written = generic_file_direct_write(iocb, from); 3055 /* 3056 * If the write stopped short of completing, fall back to 3057 * buffered writes. Some filesystems do this for writes to 3058 * holes, for example. For DAX files, a buffered write will 3059 * not succeed (even if it did, DAX does not handle dirty 3060 * page-cache pages correctly). 3061 */ 3062 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) 3063 goto out; 3064 3065 status = generic_perform_write(file, from, pos = iocb->ki_pos); 3066 /* 3067 * If generic_perform_write() returned a synchronous error 3068 * then we want to return the number of bytes which were 3069 * direct-written, or the error code if that was zero. Note 3070 * that this differs from normal direct-io semantics, which 3071 * will return -EFOO even if some bytes were written. 3072 */ 3073 if (unlikely(status < 0)) { 3074 err = status; 3075 goto out; 3076 } 3077 /* 3078 * We need to ensure that the page cache pages are written to 3079 * disk and invalidated to preserve the expected O_DIRECT 3080 * semantics. 3081 */ 3082 endbyte = pos + status - 1; 3083 err = filemap_write_and_wait_range(mapping, pos, endbyte); 3084 if (err == 0) { 3085 iocb->ki_pos = endbyte + 1; 3086 written += status; 3087 invalidate_mapping_pages(mapping, 3088 pos >> PAGE_SHIFT, 3089 endbyte >> PAGE_SHIFT); 3090 } else { 3091 /* 3092 * We don't know how much we wrote, so just return 3093 * the number of bytes which were direct-written 3094 */ 3095 } 3096 } else { 3097 written = generic_perform_write(file, from, iocb->ki_pos); 3098 if (likely(written > 0)) 3099 iocb->ki_pos += written; 3100 } 3101 out: 3102 current->backing_dev_info = NULL; 3103 return written ? written : err; 3104 } 3105 EXPORT_SYMBOL(__generic_file_write_iter); 3106 3107 /** 3108 * generic_file_write_iter - write data to a file 3109 * @iocb: IO state structure 3110 * @from: iov_iter with data to write 3111 * 3112 * This is a wrapper around __generic_file_write_iter() to be used by most 3113 * filesystems. It takes care of syncing the file in case of O_SYNC file 3114 * and acquires i_mutex as needed. 3115 */ 3116 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3117 { 3118 struct file *file = iocb->ki_filp; 3119 struct inode *inode = file->f_mapping->host; 3120 ssize_t ret; 3121 3122 inode_lock(inode); 3123 ret = generic_write_checks(iocb, from); 3124 if (ret > 0) 3125 ret = __generic_file_write_iter(iocb, from); 3126 inode_unlock(inode); 3127 3128 if (ret > 0) 3129 ret = generic_write_sync(iocb, ret); 3130 return ret; 3131 } 3132 EXPORT_SYMBOL(generic_file_write_iter); 3133 3134 /** 3135 * try_to_release_page() - release old fs-specific metadata on a page 3136 * 3137 * @page: the page which the kernel is trying to free 3138 * @gfp_mask: memory allocation flags (and I/O mode) 3139 * 3140 * The address_space is to try to release any data against the page 3141 * (presumably at page->private). If the release was successful, return '1'. 3142 * Otherwise return zero. 3143 * 3144 * This may also be called if PG_fscache is set on a page, indicating that the 3145 * page is known to the local caching routines. 3146 * 3147 * The @gfp_mask argument specifies whether I/O may be performed to release 3148 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS). 3149 * 3150 */ 3151 int try_to_release_page(struct page *page, gfp_t gfp_mask) 3152 { 3153 struct address_space * const mapping = page->mapping; 3154 3155 BUG_ON(!PageLocked(page)); 3156 if (PageWriteback(page)) 3157 return 0; 3158 3159 if (mapping && mapping->a_ops->releasepage) 3160 return mapping->a_ops->releasepage(page, gfp_mask); 3161 return try_to_free_buffers(page); 3162 } 3163 3164 EXPORT_SYMBOL(try_to_release_page); 3165