xref: /linux/mm/filemap.c (revision 9ffc93f203c18a70623f21950f1dd473c9ec48cd)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include "internal.h"
38 
39 /*
40  * FIXME: remove all knowledge of the buffer layer from the core VM
41  */
42 #include <linux/buffer_head.h> /* for try_to_free_buffers */
43 
44 #include <asm/mman.h>
45 
46 /*
47  * Shared mappings implemented 30.11.1994. It's not fully working yet,
48  * though.
49  *
50  * Shared mappings now work. 15.8.1995  Bruno.
51  *
52  * finished 'unifying' the page and buffer cache and SMP-threaded the
53  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
54  *
55  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
56  */
57 
58 /*
59  * Lock ordering:
60  *
61  *  ->i_mmap_mutex		(truncate_pagecache)
62  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
63  *      ->swap_lock		(exclusive_swap_page, others)
64  *        ->mapping->tree_lock
65  *
66  *  ->i_mutex
67  *    ->i_mmap_mutex		(truncate->unmap_mapping_range)
68  *
69  *  ->mmap_sem
70  *    ->i_mmap_mutex
71  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
72  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
73  *
74  *  ->mmap_sem
75  *    ->lock_page		(access_process_vm)
76  *
77  *  ->i_mutex			(generic_file_buffered_write)
78  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
79  *
80  *  bdi->wb.list_lock
81  *    sb_lock			(fs/fs-writeback.c)
82  *    ->mapping->tree_lock	(__sync_single_inode)
83  *
84  *  ->i_mmap_mutex
85  *    ->anon_vma.lock		(vma_adjust)
86  *
87  *  ->anon_vma.lock
88  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
89  *
90  *  ->page_table_lock or pte_lock
91  *    ->swap_lock		(try_to_unmap_one)
92  *    ->private_lock		(try_to_unmap_one)
93  *    ->tree_lock		(try_to_unmap_one)
94  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
95  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
96  *    ->private_lock		(page_remove_rmap->set_page_dirty)
97  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
98  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
99  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
100  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
101  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
102  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
103  *
104  * ->i_mmap_mutex
105  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
106  */
107 
108 /*
109  * Delete a page from the page cache and free it. Caller has to make
110  * sure the page is locked and that nobody else uses it - or that usage
111  * is safe.  The caller must hold the mapping's tree_lock.
112  */
113 void __delete_from_page_cache(struct page *page)
114 {
115 	struct address_space *mapping = page->mapping;
116 
117 	/*
118 	 * if we're uptodate, flush out into the cleancache, otherwise
119 	 * invalidate any existing cleancache entries.  We can't leave
120 	 * stale data around in the cleancache once our page is gone
121 	 */
122 	if (PageUptodate(page) && PageMappedToDisk(page))
123 		cleancache_put_page(page);
124 	else
125 		cleancache_invalidate_page(mapping, page);
126 
127 	radix_tree_delete(&mapping->page_tree, page->index);
128 	page->mapping = NULL;
129 	/* Leave page->index set: truncation lookup relies upon it */
130 	mapping->nrpages--;
131 	__dec_zone_page_state(page, NR_FILE_PAGES);
132 	if (PageSwapBacked(page))
133 		__dec_zone_page_state(page, NR_SHMEM);
134 	BUG_ON(page_mapped(page));
135 
136 	/*
137 	 * Some filesystems seem to re-dirty the page even after
138 	 * the VM has canceled the dirty bit (eg ext3 journaling).
139 	 *
140 	 * Fix it up by doing a final dirty accounting check after
141 	 * having removed the page entirely.
142 	 */
143 	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
144 		dec_zone_page_state(page, NR_FILE_DIRTY);
145 		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
146 	}
147 }
148 
149 /**
150  * delete_from_page_cache - delete page from page cache
151  * @page: the page which the kernel is trying to remove from page cache
152  *
153  * This must be called only on pages that have been verified to be in the page
154  * cache and locked.  It will never put the page into the free list, the caller
155  * has a reference on the page.
156  */
157 void delete_from_page_cache(struct page *page)
158 {
159 	struct address_space *mapping = page->mapping;
160 	void (*freepage)(struct page *);
161 
162 	BUG_ON(!PageLocked(page));
163 
164 	freepage = mapping->a_ops->freepage;
165 	spin_lock_irq(&mapping->tree_lock);
166 	__delete_from_page_cache(page);
167 	spin_unlock_irq(&mapping->tree_lock);
168 	mem_cgroup_uncharge_cache_page(page);
169 
170 	if (freepage)
171 		freepage(page);
172 	page_cache_release(page);
173 }
174 EXPORT_SYMBOL(delete_from_page_cache);
175 
176 static int sleep_on_page(void *word)
177 {
178 	io_schedule();
179 	return 0;
180 }
181 
182 static int sleep_on_page_killable(void *word)
183 {
184 	sleep_on_page(word);
185 	return fatal_signal_pending(current) ? -EINTR : 0;
186 }
187 
188 /**
189  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
190  * @mapping:	address space structure to write
191  * @start:	offset in bytes where the range starts
192  * @end:	offset in bytes where the range ends (inclusive)
193  * @sync_mode:	enable synchronous operation
194  *
195  * Start writeback against all of a mapping's dirty pages that lie
196  * within the byte offsets <start, end> inclusive.
197  *
198  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
199  * opposed to a regular memory cleansing writeback.  The difference between
200  * these two operations is that if a dirty page/buffer is encountered, it must
201  * be waited upon, and not just skipped over.
202  */
203 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
204 				loff_t end, int sync_mode)
205 {
206 	int ret;
207 	struct writeback_control wbc = {
208 		.sync_mode = sync_mode,
209 		.nr_to_write = LONG_MAX,
210 		.range_start = start,
211 		.range_end = end,
212 	};
213 
214 	if (!mapping_cap_writeback_dirty(mapping))
215 		return 0;
216 
217 	ret = do_writepages(mapping, &wbc);
218 	return ret;
219 }
220 
221 static inline int __filemap_fdatawrite(struct address_space *mapping,
222 	int sync_mode)
223 {
224 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
225 }
226 
227 int filemap_fdatawrite(struct address_space *mapping)
228 {
229 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
230 }
231 EXPORT_SYMBOL(filemap_fdatawrite);
232 
233 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
234 				loff_t end)
235 {
236 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
237 }
238 EXPORT_SYMBOL(filemap_fdatawrite_range);
239 
240 /**
241  * filemap_flush - mostly a non-blocking flush
242  * @mapping:	target address_space
243  *
244  * This is a mostly non-blocking flush.  Not suitable for data-integrity
245  * purposes - I/O may not be started against all dirty pages.
246  */
247 int filemap_flush(struct address_space *mapping)
248 {
249 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
250 }
251 EXPORT_SYMBOL(filemap_flush);
252 
253 /**
254  * filemap_fdatawait_range - wait for writeback to complete
255  * @mapping:		address space structure to wait for
256  * @start_byte:		offset in bytes where the range starts
257  * @end_byte:		offset in bytes where the range ends (inclusive)
258  *
259  * Walk the list of under-writeback pages of the given address space
260  * in the given range and wait for all of them.
261  */
262 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
263 			    loff_t end_byte)
264 {
265 	pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
266 	pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
267 	struct pagevec pvec;
268 	int nr_pages;
269 	int ret = 0;
270 
271 	if (end_byte < start_byte)
272 		return 0;
273 
274 	pagevec_init(&pvec, 0);
275 	while ((index <= end) &&
276 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
277 			PAGECACHE_TAG_WRITEBACK,
278 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
279 		unsigned i;
280 
281 		for (i = 0; i < nr_pages; i++) {
282 			struct page *page = pvec.pages[i];
283 
284 			/* until radix tree lookup accepts end_index */
285 			if (page->index > end)
286 				continue;
287 
288 			wait_on_page_writeback(page);
289 			if (TestClearPageError(page))
290 				ret = -EIO;
291 		}
292 		pagevec_release(&pvec);
293 		cond_resched();
294 	}
295 
296 	/* Check for outstanding write errors */
297 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
298 		ret = -ENOSPC;
299 	if (test_and_clear_bit(AS_EIO, &mapping->flags))
300 		ret = -EIO;
301 
302 	return ret;
303 }
304 EXPORT_SYMBOL(filemap_fdatawait_range);
305 
306 /**
307  * filemap_fdatawait - wait for all under-writeback pages to complete
308  * @mapping: address space structure to wait for
309  *
310  * Walk the list of under-writeback pages of the given address space
311  * and wait for all of them.
312  */
313 int filemap_fdatawait(struct address_space *mapping)
314 {
315 	loff_t i_size = i_size_read(mapping->host);
316 
317 	if (i_size == 0)
318 		return 0;
319 
320 	return filemap_fdatawait_range(mapping, 0, i_size - 1);
321 }
322 EXPORT_SYMBOL(filemap_fdatawait);
323 
324 int filemap_write_and_wait(struct address_space *mapping)
325 {
326 	int err = 0;
327 
328 	if (mapping->nrpages) {
329 		err = filemap_fdatawrite(mapping);
330 		/*
331 		 * Even if the above returned error, the pages may be
332 		 * written partially (e.g. -ENOSPC), so we wait for it.
333 		 * But the -EIO is special case, it may indicate the worst
334 		 * thing (e.g. bug) happened, so we avoid waiting for it.
335 		 */
336 		if (err != -EIO) {
337 			int err2 = filemap_fdatawait(mapping);
338 			if (!err)
339 				err = err2;
340 		}
341 	}
342 	return err;
343 }
344 EXPORT_SYMBOL(filemap_write_and_wait);
345 
346 /**
347  * filemap_write_and_wait_range - write out & wait on a file range
348  * @mapping:	the address_space for the pages
349  * @lstart:	offset in bytes where the range starts
350  * @lend:	offset in bytes where the range ends (inclusive)
351  *
352  * Write out and wait upon file offsets lstart->lend, inclusive.
353  *
354  * Note that `lend' is inclusive (describes the last byte to be written) so
355  * that this function can be used to write to the very end-of-file (end = -1).
356  */
357 int filemap_write_and_wait_range(struct address_space *mapping,
358 				 loff_t lstart, loff_t lend)
359 {
360 	int err = 0;
361 
362 	if (mapping->nrpages) {
363 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
364 						 WB_SYNC_ALL);
365 		/* See comment of filemap_write_and_wait() */
366 		if (err != -EIO) {
367 			int err2 = filemap_fdatawait_range(mapping,
368 						lstart, lend);
369 			if (!err)
370 				err = err2;
371 		}
372 	}
373 	return err;
374 }
375 EXPORT_SYMBOL(filemap_write_and_wait_range);
376 
377 /**
378  * replace_page_cache_page - replace a pagecache page with a new one
379  * @old:	page to be replaced
380  * @new:	page to replace with
381  * @gfp_mask:	allocation mode
382  *
383  * This function replaces a page in the pagecache with a new one.  On
384  * success it acquires the pagecache reference for the new page and
385  * drops it for the old page.  Both the old and new pages must be
386  * locked.  This function does not add the new page to the LRU, the
387  * caller must do that.
388  *
389  * The remove + add is atomic.  The only way this function can fail is
390  * memory allocation failure.
391  */
392 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
393 {
394 	int error;
395 
396 	VM_BUG_ON(!PageLocked(old));
397 	VM_BUG_ON(!PageLocked(new));
398 	VM_BUG_ON(new->mapping);
399 
400 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
401 	if (!error) {
402 		struct address_space *mapping = old->mapping;
403 		void (*freepage)(struct page *);
404 
405 		pgoff_t offset = old->index;
406 		freepage = mapping->a_ops->freepage;
407 
408 		page_cache_get(new);
409 		new->mapping = mapping;
410 		new->index = offset;
411 
412 		spin_lock_irq(&mapping->tree_lock);
413 		__delete_from_page_cache(old);
414 		error = radix_tree_insert(&mapping->page_tree, offset, new);
415 		BUG_ON(error);
416 		mapping->nrpages++;
417 		__inc_zone_page_state(new, NR_FILE_PAGES);
418 		if (PageSwapBacked(new))
419 			__inc_zone_page_state(new, NR_SHMEM);
420 		spin_unlock_irq(&mapping->tree_lock);
421 		/* mem_cgroup codes must not be called under tree_lock */
422 		mem_cgroup_replace_page_cache(old, new);
423 		radix_tree_preload_end();
424 		if (freepage)
425 			freepage(old);
426 		page_cache_release(old);
427 	}
428 
429 	return error;
430 }
431 EXPORT_SYMBOL_GPL(replace_page_cache_page);
432 
433 /**
434  * add_to_page_cache_locked - add a locked page to the pagecache
435  * @page:	page to add
436  * @mapping:	the page's address_space
437  * @offset:	page index
438  * @gfp_mask:	page allocation mode
439  *
440  * This function is used to add a page to the pagecache. It must be locked.
441  * This function does not add the page to the LRU.  The caller must do that.
442  */
443 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
444 		pgoff_t offset, gfp_t gfp_mask)
445 {
446 	int error;
447 
448 	VM_BUG_ON(!PageLocked(page));
449 	VM_BUG_ON(PageSwapBacked(page));
450 
451 	error = mem_cgroup_cache_charge(page, current->mm,
452 					gfp_mask & GFP_RECLAIM_MASK);
453 	if (error)
454 		goto out;
455 
456 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
457 	if (error == 0) {
458 		page_cache_get(page);
459 		page->mapping = mapping;
460 		page->index = offset;
461 
462 		spin_lock_irq(&mapping->tree_lock);
463 		error = radix_tree_insert(&mapping->page_tree, offset, page);
464 		if (likely(!error)) {
465 			mapping->nrpages++;
466 			__inc_zone_page_state(page, NR_FILE_PAGES);
467 			spin_unlock_irq(&mapping->tree_lock);
468 		} else {
469 			page->mapping = NULL;
470 			/* Leave page->index set: truncation relies upon it */
471 			spin_unlock_irq(&mapping->tree_lock);
472 			mem_cgroup_uncharge_cache_page(page);
473 			page_cache_release(page);
474 		}
475 		radix_tree_preload_end();
476 	} else
477 		mem_cgroup_uncharge_cache_page(page);
478 out:
479 	return error;
480 }
481 EXPORT_SYMBOL(add_to_page_cache_locked);
482 
483 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
484 				pgoff_t offset, gfp_t gfp_mask)
485 {
486 	int ret;
487 
488 	ret = add_to_page_cache(page, mapping, offset, gfp_mask);
489 	if (ret == 0)
490 		lru_cache_add_file(page);
491 	return ret;
492 }
493 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
494 
495 #ifdef CONFIG_NUMA
496 struct page *__page_cache_alloc(gfp_t gfp)
497 {
498 	int n;
499 	struct page *page;
500 
501 	if (cpuset_do_page_mem_spread()) {
502 		unsigned int cpuset_mems_cookie;
503 		do {
504 			cpuset_mems_cookie = get_mems_allowed();
505 			n = cpuset_mem_spread_node();
506 			page = alloc_pages_exact_node(n, gfp, 0);
507 		} while (!put_mems_allowed(cpuset_mems_cookie) && !page);
508 
509 		return page;
510 	}
511 	return alloc_pages(gfp, 0);
512 }
513 EXPORT_SYMBOL(__page_cache_alloc);
514 #endif
515 
516 /*
517  * In order to wait for pages to become available there must be
518  * waitqueues associated with pages. By using a hash table of
519  * waitqueues where the bucket discipline is to maintain all
520  * waiters on the same queue and wake all when any of the pages
521  * become available, and for the woken contexts to check to be
522  * sure the appropriate page became available, this saves space
523  * at a cost of "thundering herd" phenomena during rare hash
524  * collisions.
525  */
526 static wait_queue_head_t *page_waitqueue(struct page *page)
527 {
528 	const struct zone *zone = page_zone(page);
529 
530 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
531 }
532 
533 static inline void wake_up_page(struct page *page, int bit)
534 {
535 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
536 }
537 
538 void wait_on_page_bit(struct page *page, int bit_nr)
539 {
540 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
541 
542 	if (test_bit(bit_nr, &page->flags))
543 		__wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
544 							TASK_UNINTERRUPTIBLE);
545 }
546 EXPORT_SYMBOL(wait_on_page_bit);
547 
548 int wait_on_page_bit_killable(struct page *page, int bit_nr)
549 {
550 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
551 
552 	if (!test_bit(bit_nr, &page->flags))
553 		return 0;
554 
555 	return __wait_on_bit(page_waitqueue(page), &wait,
556 			     sleep_on_page_killable, TASK_KILLABLE);
557 }
558 
559 /**
560  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
561  * @page: Page defining the wait queue of interest
562  * @waiter: Waiter to add to the queue
563  *
564  * Add an arbitrary @waiter to the wait queue for the nominated @page.
565  */
566 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
567 {
568 	wait_queue_head_t *q = page_waitqueue(page);
569 	unsigned long flags;
570 
571 	spin_lock_irqsave(&q->lock, flags);
572 	__add_wait_queue(q, waiter);
573 	spin_unlock_irqrestore(&q->lock, flags);
574 }
575 EXPORT_SYMBOL_GPL(add_page_wait_queue);
576 
577 /**
578  * unlock_page - unlock a locked page
579  * @page: the page
580  *
581  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
582  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
583  * mechananism between PageLocked pages and PageWriteback pages is shared.
584  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
585  *
586  * The mb is necessary to enforce ordering between the clear_bit and the read
587  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
588  */
589 void unlock_page(struct page *page)
590 {
591 	VM_BUG_ON(!PageLocked(page));
592 	clear_bit_unlock(PG_locked, &page->flags);
593 	smp_mb__after_clear_bit();
594 	wake_up_page(page, PG_locked);
595 }
596 EXPORT_SYMBOL(unlock_page);
597 
598 /**
599  * end_page_writeback - end writeback against a page
600  * @page: the page
601  */
602 void end_page_writeback(struct page *page)
603 {
604 	if (TestClearPageReclaim(page))
605 		rotate_reclaimable_page(page);
606 
607 	if (!test_clear_page_writeback(page))
608 		BUG();
609 
610 	smp_mb__after_clear_bit();
611 	wake_up_page(page, PG_writeback);
612 }
613 EXPORT_SYMBOL(end_page_writeback);
614 
615 /**
616  * __lock_page - get a lock on the page, assuming we need to sleep to get it
617  * @page: the page to lock
618  */
619 void __lock_page(struct page *page)
620 {
621 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
622 
623 	__wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
624 							TASK_UNINTERRUPTIBLE);
625 }
626 EXPORT_SYMBOL(__lock_page);
627 
628 int __lock_page_killable(struct page *page)
629 {
630 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
631 
632 	return __wait_on_bit_lock(page_waitqueue(page), &wait,
633 					sleep_on_page_killable, TASK_KILLABLE);
634 }
635 EXPORT_SYMBOL_GPL(__lock_page_killable);
636 
637 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
638 			 unsigned int flags)
639 {
640 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
641 		/*
642 		 * CAUTION! In this case, mmap_sem is not released
643 		 * even though return 0.
644 		 */
645 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
646 			return 0;
647 
648 		up_read(&mm->mmap_sem);
649 		if (flags & FAULT_FLAG_KILLABLE)
650 			wait_on_page_locked_killable(page);
651 		else
652 			wait_on_page_locked(page);
653 		return 0;
654 	} else {
655 		if (flags & FAULT_FLAG_KILLABLE) {
656 			int ret;
657 
658 			ret = __lock_page_killable(page);
659 			if (ret) {
660 				up_read(&mm->mmap_sem);
661 				return 0;
662 			}
663 		} else
664 			__lock_page(page);
665 		return 1;
666 	}
667 }
668 
669 /**
670  * find_get_page - find and get a page reference
671  * @mapping: the address_space to search
672  * @offset: the page index
673  *
674  * Is there a pagecache struct page at the given (mapping, offset) tuple?
675  * If yes, increment its refcount and return it; if no, return NULL.
676  */
677 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
678 {
679 	void **pagep;
680 	struct page *page;
681 
682 	rcu_read_lock();
683 repeat:
684 	page = NULL;
685 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
686 	if (pagep) {
687 		page = radix_tree_deref_slot(pagep);
688 		if (unlikely(!page))
689 			goto out;
690 		if (radix_tree_exception(page)) {
691 			if (radix_tree_deref_retry(page))
692 				goto repeat;
693 			/*
694 			 * Otherwise, shmem/tmpfs must be storing a swap entry
695 			 * here as an exceptional entry: so return it without
696 			 * attempting to raise page count.
697 			 */
698 			goto out;
699 		}
700 		if (!page_cache_get_speculative(page))
701 			goto repeat;
702 
703 		/*
704 		 * Has the page moved?
705 		 * This is part of the lockless pagecache protocol. See
706 		 * include/linux/pagemap.h for details.
707 		 */
708 		if (unlikely(page != *pagep)) {
709 			page_cache_release(page);
710 			goto repeat;
711 		}
712 	}
713 out:
714 	rcu_read_unlock();
715 
716 	return page;
717 }
718 EXPORT_SYMBOL(find_get_page);
719 
720 /**
721  * find_lock_page - locate, pin and lock a pagecache page
722  * @mapping: the address_space to search
723  * @offset: the page index
724  *
725  * Locates the desired pagecache page, locks it, increments its reference
726  * count and returns its address.
727  *
728  * Returns zero if the page was not present. find_lock_page() may sleep.
729  */
730 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
731 {
732 	struct page *page;
733 
734 repeat:
735 	page = find_get_page(mapping, offset);
736 	if (page && !radix_tree_exception(page)) {
737 		lock_page(page);
738 		/* Has the page been truncated? */
739 		if (unlikely(page->mapping != mapping)) {
740 			unlock_page(page);
741 			page_cache_release(page);
742 			goto repeat;
743 		}
744 		VM_BUG_ON(page->index != offset);
745 	}
746 	return page;
747 }
748 EXPORT_SYMBOL(find_lock_page);
749 
750 /**
751  * find_or_create_page - locate or add a pagecache page
752  * @mapping: the page's address_space
753  * @index: the page's index into the mapping
754  * @gfp_mask: page allocation mode
755  *
756  * Locates a page in the pagecache.  If the page is not present, a new page
757  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
758  * LRU list.  The returned page is locked and has its reference count
759  * incremented.
760  *
761  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
762  * allocation!
763  *
764  * find_or_create_page() returns the desired page's address, or zero on
765  * memory exhaustion.
766  */
767 struct page *find_or_create_page(struct address_space *mapping,
768 		pgoff_t index, gfp_t gfp_mask)
769 {
770 	struct page *page;
771 	int err;
772 repeat:
773 	page = find_lock_page(mapping, index);
774 	if (!page) {
775 		page = __page_cache_alloc(gfp_mask);
776 		if (!page)
777 			return NULL;
778 		/*
779 		 * We want a regular kernel memory (not highmem or DMA etc)
780 		 * allocation for the radix tree nodes, but we need to honour
781 		 * the context-specific requirements the caller has asked for.
782 		 * GFP_RECLAIM_MASK collects those requirements.
783 		 */
784 		err = add_to_page_cache_lru(page, mapping, index,
785 			(gfp_mask & GFP_RECLAIM_MASK));
786 		if (unlikely(err)) {
787 			page_cache_release(page);
788 			page = NULL;
789 			if (err == -EEXIST)
790 				goto repeat;
791 		}
792 	}
793 	return page;
794 }
795 EXPORT_SYMBOL(find_or_create_page);
796 
797 /**
798  * find_get_pages - gang pagecache lookup
799  * @mapping:	The address_space to search
800  * @start:	The starting page index
801  * @nr_pages:	The maximum number of pages
802  * @pages:	Where the resulting pages are placed
803  *
804  * find_get_pages() will search for and return a group of up to
805  * @nr_pages pages in the mapping.  The pages are placed at @pages.
806  * find_get_pages() takes a reference against the returned pages.
807  *
808  * The search returns a group of mapping-contiguous pages with ascending
809  * indexes.  There may be holes in the indices due to not-present pages.
810  *
811  * find_get_pages() returns the number of pages which were found.
812  */
813 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
814 			    unsigned int nr_pages, struct page **pages)
815 {
816 	unsigned int i;
817 	unsigned int ret;
818 	unsigned int nr_found, nr_skip;
819 
820 	rcu_read_lock();
821 restart:
822 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
823 				(void ***)pages, NULL, start, nr_pages);
824 	ret = 0;
825 	nr_skip = 0;
826 	for (i = 0; i < nr_found; i++) {
827 		struct page *page;
828 repeat:
829 		page = radix_tree_deref_slot((void **)pages[i]);
830 		if (unlikely(!page))
831 			continue;
832 
833 		if (radix_tree_exception(page)) {
834 			if (radix_tree_deref_retry(page)) {
835 				/*
836 				 * Transient condition which can only trigger
837 				 * when entry at index 0 moves out of or back
838 				 * to root: none yet gotten, safe to restart.
839 				 */
840 				WARN_ON(start | i);
841 				goto restart;
842 			}
843 			/*
844 			 * Otherwise, shmem/tmpfs must be storing a swap entry
845 			 * here as an exceptional entry: so skip over it -
846 			 * we only reach this from invalidate_mapping_pages().
847 			 */
848 			nr_skip++;
849 			continue;
850 		}
851 
852 		if (!page_cache_get_speculative(page))
853 			goto repeat;
854 
855 		/* Has the page moved? */
856 		if (unlikely(page != *((void **)pages[i]))) {
857 			page_cache_release(page);
858 			goto repeat;
859 		}
860 
861 		pages[ret] = page;
862 		ret++;
863 	}
864 
865 	/*
866 	 * If all entries were removed before we could secure them,
867 	 * try again, because callers stop trying once 0 is returned.
868 	 */
869 	if (unlikely(!ret && nr_found > nr_skip))
870 		goto restart;
871 	rcu_read_unlock();
872 	return ret;
873 }
874 
875 /**
876  * find_get_pages_contig - gang contiguous pagecache lookup
877  * @mapping:	The address_space to search
878  * @index:	The starting page index
879  * @nr_pages:	The maximum number of pages
880  * @pages:	Where the resulting pages are placed
881  *
882  * find_get_pages_contig() works exactly like find_get_pages(), except
883  * that the returned number of pages are guaranteed to be contiguous.
884  *
885  * find_get_pages_contig() returns the number of pages which were found.
886  */
887 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
888 			       unsigned int nr_pages, struct page **pages)
889 {
890 	unsigned int i;
891 	unsigned int ret;
892 	unsigned int nr_found;
893 
894 	rcu_read_lock();
895 restart:
896 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
897 				(void ***)pages, NULL, index, nr_pages);
898 	ret = 0;
899 	for (i = 0; i < nr_found; i++) {
900 		struct page *page;
901 repeat:
902 		page = radix_tree_deref_slot((void **)pages[i]);
903 		if (unlikely(!page))
904 			continue;
905 
906 		if (radix_tree_exception(page)) {
907 			if (radix_tree_deref_retry(page)) {
908 				/*
909 				 * Transient condition which can only trigger
910 				 * when entry at index 0 moves out of or back
911 				 * to root: none yet gotten, safe to restart.
912 				 */
913 				goto restart;
914 			}
915 			/*
916 			 * Otherwise, shmem/tmpfs must be storing a swap entry
917 			 * here as an exceptional entry: so stop looking for
918 			 * contiguous pages.
919 			 */
920 			break;
921 		}
922 
923 		if (!page_cache_get_speculative(page))
924 			goto repeat;
925 
926 		/* Has the page moved? */
927 		if (unlikely(page != *((void **)pages[i]))) {
928 			page_cache_release(page);
929 			goto repeat;
930 		}
931 
932 		/*
933 		 * must check mapping and index after taking the ref.
934 		 * otherwise we can get both false positives and false
935 		 * negatives, which is just confusing to the caller.
936 		 */
937 		if (page->mapping == NULL || page->index != index) {
938 			page_cache_release(page);
939 			break;
940 		}
941 
942 		pages[ret] = page;
943 		ret++;
944 		index++;
945 	}
946 	rcu_read_unlock();
947 	return ret;
948 }
949 EXPORT_SYMBOL(find_get_pages_contig);
950 
951 /**
952  * find_get_pages_tag - find and return pages that match @tag
953  * @mapping:	the address_space to search
954  * @index:	the starting page index
955  * @tag:	the tag index
956  * @nr_pages:	the maximum number of pages
957  * @pages:	where the resulting pages are placed
958  *
959  * Like find_get_pages, except we only return pages which are tagged with
960  * @tag.   We update @index to index the next page for the traversal.
961  */
962 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
963 			int tag, unsigned int nr_pages, struct page **pages)
964 {
965 	unsigned int i;
966 	unsigned int ret;
967 	unsigned int nr_found;
968 
969 	rcu_read_lock();
970 restart:
971 	nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
972 				(void ***)pages, *index, nr_pages, tag);
973 	ret = 0;
974 	for (i = 0; i < nr_found; i++) {
975 		struct page *page;
976 repeat:
977 		page = radix_tree_deref_slot((void **)pages[i]);
978 		if (unlikely(!page))
979 			continue;
980 
981 		if (radix_tree_exception(page)) {
982 			if (radix_tree_deref_retry(page)) {
983 				/*
984 				 * Transient condition which can only trigger
985 				 * when entry at index 0 moves out of or back
986 				 * to root: none yet gotten, safe to restart.
987 				 */
988 				goto restart;
989 			}
990 			/*
991 			 * This function is never used on a shmem/tmpfs
992 			 * mapping, so a swap entry won't be found here.
993 			 */
994 			BUG();
995 		}
996 
997 		if (!page_cache_get_speculative(page))
998 			goto repeat;
999 
1000 		/* Has the page moved? */
1001 		if (unlikely(page != *((void **)pages[i]))) {
1002 			page_cache_release(page);
1003 			goto repeat;
1004 		}
1005 
1006 		pages[ret] = page;
1007 		ret++;
1008 	}
1009 
1010 	/*
1011 	 * If all entries were removed before we could secure them,
1012 	 * try again, because callers stop trying once 0 is returned.
1013 	 */
1014 	if (unlikely(!ret && nr_found))
1015 		goto restart;
1016 	rcu_read_unlock();
1017 
1018 	if (ret)
1019 		*index = pages[ret - 1]->index + 1;
1020 
1021 	return ret;
1022 }
1023 EXPORT_SYMBOL(find_get_pages_tag);
1024 
1025 /**
1026  * grab_cache_page_nowait - returns locked page at given index in given cache
1027  * @mapping: target address_space
1028  * @index: the page index
1029  *
1030  * Same as grab_cache_page(), but do not wait if the page is unavailable.
1031  * This is intended for speculative data generators, where the data can
1032  * be regenerated if the page couldn't be grabbed.  This routine should
1033  * be safe to call while holding the lock for another page.
1034  *
1035  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1036  * and deadlock against the caller's locked page.
1037  */
1038 struct page *
1039 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1040 {
1041 	struct page *page = find_get_page(mapping, index);
1042 
1043 	if (page) {
1044 		if (trylock_page(page))
1045 			return page;
1046 		page_cache_release(page);
1047 		return NULL;
1048 	}
1049 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1050 	if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1051 		page_cache_release(page);
1052 		page = NULL;
1053 	}
1054 	return page;
1055 }
1056 EXPORT_SYMBOL(grab_cache_page_nowait);
1057 
1058 /*
1059  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1060  * a _large_ part of the i/o request. Imagine the worst scenario:
1061  *
1062  *      ---R__________________________________________B__________
1063  *         ^ reading here                             ^ bad block(assume 4k)
1064  *
1065  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1066  * => failing the whole request => read(R) => read(R+1) =>
1067  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1068  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1069  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1070  *
1071  * It is going insane. Fix it by quickly scaling down the readahead size.
1072  */
1073 static void shrink_readahead_size_eio(struct file *filp,
1074 					struct file_ra_state *ra)
1075 {
1076 	ra->ra_pages /= 4;
1077 }
1078 
1079 /**
1080  * do_generic_file_read - generic file read routine
1081  * @filp:	the file to read
1082  * @ppos:	current file position
1083  * @desc:	read_descriptor
1084  * @actor:	read method
1085  *
1086  * This is a generic file read routine, and uses the
1087  * mapping->a_ops->readpage() function for the actual low-level stuff.
1088  *
1089  * This is really ugly. But the goto's actually try to clarify some
1090  * of the logic when it comes to error handling etc.
1091  */
1092 static void do_generic_file_read(struct file *filp, loff_t *ppos,
1093 		read_descriptor_t *desc, read_actor_t actor)
1094 {
1095 	struct address_space *mapping = filp->f_mapping;
1096 	struct inode *inode = mapping->host;
1097 	struct file_ra_state *ra = &filp->f_ra;
1098 	pgoff_t index;
1099 	pgoff_t last_index;
1100 	pgoff_t prev_index;
1101 	unsigned long offset;      /* offset into pagecache page */
1102 	unsigned int prev_offset;
1103 	int error;
1104 
1105 	index = *ppos >> PAGE_CACHE_SHIFT;
1106 	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1107 	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1108 	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1109 	offset = *ppos & ~PAGE_CACHE_MASK;
1110 
1111 	for (;;) {
1112 		struct page *page;
1113 		pgoff_t end_index;
1114 		loff_t isize;
1115 		unsigned long nr, ret;
1116 
1117 		cond_resched();
1118 find_page:
1119 		page = find_get_page(mapping, index);
1120 		if (!page) {
1121 			page_cache_sync_readahead(mapping,
1122 					ra, filp,
1123 					index, last_index - index);
1124 			page = find_get_page(mapping, index);
1125 			if (unlikely(page == NULL))
1126 				goto no_cached_page;
1127 		}
1128 		if (PageReadahead(page)) {
1129 			page_cache_async_readahead(mapping,
1130 					ra, filp, page,
1131 					index, last_index - index);
1132 		}
1133 		if (!PageUptodate(page)) {
1134 			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1135 					!mapping->a_ops->is_partially_uptodate)
1136 				goto page_not_up_to_date;
1137 			if (!trylock_page(page))
1138 				goto page_not_up_to_date;
1139 			/* Did it get truncated before we got the lock? */
1140 			if (!page->mapping)
1141 				goto page_not_up_to_date_locked;
1142 			if (!mapping->a_ops->is_partially_uptodate(page,
1143 								desc, offset))
1144 				goto page_not_up_to_date_locked;
1145 			unlock_page(page);
1146 		}
1147 page_ok:
1148 		/*
1149 		 * i_size must be checked after we know the page is Uptodate.
1150 		 *
1151 		 * Checking i_size after the check allows us to calculate
1152 		 * the correct value for "nr", which means the zero-filled
1153 		 * part of the page is not copied back to userspace (unless
1154 		 * another truncate extends the file - this is desired though).
1155 		 */
1156 
1157 		isize = i_size_read(inode);
1158 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1159 		if (unlikely(!isize || index > end_index)) {
1160 			page_cache_release(page);
1161 			goto out;
1162 		}
1163 
1164 		/* nr is the maximum number of bytes to copy from this page */
1165 		nr = PAGE_CACHE_SIZE;
1166 		if (index == end_index) {
1167 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1168 			if (nr <= offset) {
1169 				page_cache_release(page);
1170 				goto out;
1171 			}
1172 		}
1173 		nr = nr - offset;
1174 
1175 		/* If users can be writing to this page using arbitrary
1176 		 * virtual addresses, take care about potential aliasing
1177 		 * before reading the page on the kernel side.
1178 		 */
1179 		if (mapping_writably_mapped(mapping))
1180 			flush_dcache_page(page);
1181 
1182 		/*
1183 		 * When a sequential read accesses a page several times,
1184 		 * only mark it as accessed the first time.
1185 		 */
1186 		if (prev_index != index || offset != prev_offset)
1187 			mark_page_accessed(page);
1188 		prev_index = index;
1189 
1190 		/*
1191 		 * Ok, we have the page, and it's up-to-date, so
1192 		 * now we can copy it to user space...
1193 		 *
1194 		 * The actor routine returns how many bytes were actually used..
1195 		 * NOTE! This may not be the same as how much of a user buffer
1196 		 * we filled up (we may be padding etc), so we can only update
1197 		 * "pos" here (the actor routine has to update the user buffer
1198 		 * pointers and the remaining count).
1199 		 */
1200 		ret = actor(desc, page, offset, nr);
1201 		offset += ret;
1202 		index += offset >> PAGE_CACHE_SHIFT;
1203 		offset &= ~PAGE_CACHE_MASK;
1204 		prev_offset = offset;
1205 
1206 		page_cache_release(page);
1207 		if (ret == nr && desc->count)
1208 			continue;
1209 		goto out;
1210 
1211 page_not_up_to_date:
1212 		/* Get exclusive access to the page ... */
1213 		error = lock_page_killable(page);
1214 		if (unlikely(error))
1215 			goto readpage_error;
1216 
1217 page_not_up_to_date_locked:
1218 		/* Did it get truncated before we got the lock? */
1219 		if (!page->mapping) {
1220 			unlock_page(page);
1221 			page_cache_release(page);
1222 			continue;
1223 		}
1224 
1225 		/* Did somebody else fill it already? */
1226 		if (PageUptodate(page)) {
1227 			unlock_page(page);
1228 			goto page_ok;
1229 		}
1230 
1231 readpage:
1232 		/*
1233 		 * A previous I/O error may have been due to temporary
1234 		 * failures, eg. multipath errors.
1235 		 * PG_error will be set again if readpage fails.
1236 		 */
1237 		ClearPageError(page);
1238 		/* Start the actual read. The read will unlock the page. */
1239 		error = mapping->a_ops->readpage(filp, page);
1240 
1241 		if (unlikely(error)) {
1242 			if (error == AOP_TRUNCATED_PAGE) {
1243 				page_cache_release(page);
1244 				goto find_page;
1245 			}
1246 			goto readpage_error;
1247 		}
1248 
1249 		if (!PageUptodate(page)) {
1250 			error = lock_page_killable(page);
1251 			if (unlikely(error))
1252 				goto readpage_error;
1253 			if (!PageUptodate(page)) {
1254 				if (page->mapping == NULL) {
1255 					/*
1256 					 * invalidate_mapping_pages got it
1257 					 */
1258 					unlock_page(page);
1259 					page_cache_release(page);
1260 					goto find_page;
1261 				}
1262 				unlock_page(page);
1263 				shrink_readahead_size_eio(filp, ra);
1264 				error = -EIO;
1265 				goto readpage_error;
1266 			}
1267 			unlock_page(page);
1268 		}
1269 
1270 		goto page_ok;
1271 
1272 readpage_error:
1273 		/* UHHUH! A synchronous read error occurred. Report it */
1274 		desc->error = error;
1275 		page_cache_release(page);
1276 		goto out;
1277 
1278 no_cached_page:
1279 		/*
1280 		 * Ok, it wasn't cached, so we need to create a new
1281 		 * page..
1282 		 */
1283 		page = page_cache_alloc_cold(mapping);
1284 		if (!page) {
1285 			desc->error = -ENOMEM;
1286 			goto out;
1287 		}
1288 		error = add_to_page_cache_lru(page, mapping,
1289 						index, GFP_KERNEL);
1290 		if (error) {
1291 			page_cache_release(page);
1292 			if (error == -EEXIST)
1293 				goto find_page;
1294 			desc->error = error;
1295 			goto out;
1296 		}
1297 		goto readpage;
1298 	}
1299 
1300 out:
1301 	ra->prev_pos = prev_index;
1302 	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1303 	ra->prev_pos |= prev_offset;
1304 
1305 	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1306 	file_accessed(filp);
1307 }
1308 
1309 int file_read_actor(read_descriptor_t *desc, struct page *page,
1310 			unsigned long offset, unsigned long size)
1311 {
1312 	char *kaddr;
1313 	unsigned long left, count = desc->count;
1314 
1315 	if (size > count)
1316 		size = count;
1317 
1318 	/*
1319 	 * Faults on the destination of a read are common, so do it before
1320 	 * taking the kmap.
1321 	 */
1322 	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1323 		kaddr = kmap_atomic(page);
1324 		left = __copy_to_user_inatomic(desc->arg.buf,
1325 						kaddr + offset, size);
1326 		kunmap_atomic(kaddr);
1327 		if (left == 0)
1328 			goto success;
1329 	}
1330 
1331 	/* Do it the slow way */
1332 	kaddr = kmap(page);
1333 	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1334 	kunmap(page);
1335 
1336 	if (left) {
1337 		size -= left;
1338 		desc->error = -EFAULT;
1339 	}
1340 success:
1341 	desc->count = count - size;
1342 	desc->written += size;
1343 	desc->arg.buf += size;
1344 	return size;
1345 }
1346 
1347 /*
1348  * Performs necessary checks before doing a write
1349  * @iov:	io vector request
1350  * @nr_segs:	number of segments in the iovec
1351  * @count:	number of bytes to write
1352  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1353  *
1354  * Adjust number of segments and amount of bytes to write (nr_segs should be
1355  * properly initialized first). Returns appropriate error code that caller
1356  * should return or zero in case that write should be allowed.
1357  */
1358 int generic_segment_checks(const struct iovec *iov,
1359 			unsigned long *nr_segs, size_t *count, int access_flags)
1360 {
1361 	unsigned long   seg;
1362 	size_t cnt = 0;
1363 	for (seg = 0; seg < *nr_segs; seg++) {
1364 		const struct iovec *iv = &iov[seg];
1365 
1366 		/*
1367 		 * If any segment has a negative length, or the cumulative
1368 		 * length ever wraps negative then return -EINVAL.
1369 		 */
1370 		cnt += iv->iov_len;
1371 		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1372 			return -EINVAL;
1373 		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1374 			continue;
1375 		if (seg == 0)
1376 			return -EFAULT;
1377 		*nr_segs = seg;
1378 		cnt -= iv->iov_len;	/* This segment is no good */
1379 		break;
1380 	}
1381 	*count = cnt;
1382 	return 0;
1383 }
1384 EXPORT_SYMBOL(generic_segment_checks);
1385 
1386 /**
1387  * generic_file_aio_read - generic filesystem read routine
1388  * @iocb:	kernel I/O control block
1389  * @iov:	io vector request
1390  * @nr_segs:	number of segments in the iovec
1391  * @pos:	current file position
1392  *
1393  * This is the "read()" routine for all filesystems
1394  * that can use the page cache directly.
1395  */
1396 ssize_t
1397 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1398 		unsigned long nr_segs, loff_t pos)
1399 {
1400 	struct file *filp = iocb->ki_filp;
1401 	ssize_t retval;
1402 	unsigned long seg = 0;
1403 	size_t count;
1404 	loff_t *ppos = &iocb->ki_pos;
1405 
1406 	count = 0;
1407 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1408 	if (retval)
1409 		return retval;
1410 
1411 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1412 	if (filp->f_flags & O_DIRECT) {
1413 		loff_t size;
1414 		struct address_space *mapping;
1415 		struct inode *inode;
1416 
1417 		mapping = filp->f_mapping;
1418 		inode = mapping->host;
1419 		if (!count)
1420 			goto out; /* skip atime */
1421 		size = i_size_read(inode);
1422 		if (pos < size) {
1423 			retval = filemap_write_and_wait_range(mapping, pos,
1424 					pos + iov_length(iov, nr_segs) - 1);
1425 			if (!retval) {
1426 				struct blk_plug plug;
1427 
1428 				blk_start_plug(&plug);
1429 				retval = mapping->a_ops->direct_IO(READ, iocb,
1430 							iov, pos, nr_segs);
1431 				blk_finish_plug(&plug);
1432 			}
1433 			if (retval > 0) {
1434 				*ppos = pos + retval;
1435 				count -= retval;
1436 			}
1437 
1438 			/*
1439 			 * Btrfs can have a short DIO read if we encounter
1440 			 * compressed extents, so if there was an error, or if
1441 			 * we've already read everything we wanted to, or if
1442 			 * there was a short read because we hit EOF, go ahead
1443 			 * and return.  Otherwise fallthrough to buffered io for
1444 			 * the rest of the read.
1445 			 */
1446 			if (retval < 0 || !count || *ppos >= size) {
1447 				file_accessed(filp);
1448 				goto out;
1449 			}
1450 		}
1451 	}
1452 
1453 	count = retval;
1454 	for (seg = 0; seg < nr_segs; seg++) {
1455 		read_descriptor_t desc;
1456 		loff_t offset = 0;
1457 
1458 		/*
1459 		 * If we did a short DIO read we need to skip the section of the
1460 		 * iov that we've already read data into.
1461 		 */
1462 		if (count) {
1463 			if (count > iov[seg].iov_len) {
1464 				count -= iov[seg].iov_len;
1465 				continue;
1466 			}
1467 			offset = count;
1468 			count = 0;
1469 		}
1470 
1471 		desc.written = 0;
1472 		desc.arg.buf = iov[seg].iov_base + offset;
1473 		desc.count = iov[seg].iov_len - offset;
1474 		if (desc.count == 0)
1475 			continue;
1476 		desc.error = 0;
1477 		do_generic_file_read(filp, ppos, &desc, file_read_actor);
1478 		retval += desc.written;
1479 		if (desc.error) {
1480 			retval = retval ?: desc.error;
1481 			break;
1482 		}
1483 		if (desc.count > 0)
1484 			break;
1485 	}
1486 out:
1487 	return retval;
1488 }
1489 EXPORT_SYMBOL(generic_file_aio_read);
1490 
1491 static ssize_t
1492 do_readahead(struct address_space *mapping, struct file *filp,
1493 	     pgoff_t index, unsigned long nr)
1494 {
1495 	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1496 		return -EINVAL;
1497 
1498 	force_page_cache_readahead(mapping, filp, index, nr);
1499 	return 0;
1500 }
1501 
1502 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1503 {
1504 	ssize_t ret;
1505 	struct file *file;
1506 
1507 	ret = -EBADF;
1508 	file = fget(fd);
1509 	if (file) {
1510 		if (file->f_mode & FMODE_READ) {
1511 			struct address_space *mapping = file->f_mapping;
1512 			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1513 			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1514 			unsigned long len = end - start + 1;
1515 			ret = do_readahead(mapping, file, start, len);
1516 		}
1517 		fput(file);
1518 	}
1519 	return ret;
1520 }
1521 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1522 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1523 {
1524 	return SYSC_readahead((int) fd, offset, (size_t) count);
1525 }
1526 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1527 #endif
1528 
1529 #ifdef CONFIG_MMU
1530 /**
1531  * page_cache_read - adds requested page to the page cache if not already there
1532  * @file:	file to read
1533  * @offset:	page index
1534  *
1535  * This adds the requested page to the page cache if it isn't already there,
1536  * and schedules an I/O to read in its contents from disk.
1537  */
1538 static int page_cache_read(struct file *file, pgoff_t offset)
1539 {
1540 	struct address_space *mapping = file->f_mapping;
1541 	struct page *page;
1542 	int ret;
1543 
1544 	do {
1545 		page = page_cache_alloc_cold(mapping);
1546 		if (!page)
1547 			return -ENOMEM;
1548 
1549 		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1550 		if (ret == 0)
1551 			ret = mapping->a_ops->readpage(file, page);
1552 		else if (ret == -EEXIST)
1553 			ret = 0; /* losing race to add is OK */
1554 
1555 		page_cache_release(page);
1556 
1557 	} while (ret == AOP_TRUNCATED_PAGE);
1558 
1559 	return ret;
1560 }
1561 
1562 #define MMAP_LOTSAMISS  (100)
1563 
1564 /*
1565  * Synchronous readahead happens when we don't even find
1566  * a page in the page cache at all.
1567  */
1568 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1569 				   struct file_ra_state *ra,
1570 				   struct file *file,
1571 				   pgoff_t offset)
1572 {
1573 	unsigned long ra_pages;
1574 	struct address_space *mapping = file->f_mapping;
1575 
1576 	/* If we don't want any read-ahead, don't bother */
1577 	if (VM_RandomReadHint(vma))
1578 		return;
1579 	if (!ra->ra_pages)
1580 		return;
1581 
1582 	if (VM_SequentialReadHint(vma)) {
1583 		page_cache_sync_readahead(mapping, ra, file, offset,
1584 					  ra->ra_pages);
1585 		return;
1586 	}
1587 
1588 	/* Avoid banging the cache line if not needed */
1589 	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1590 		ra->mmap_miss++;
1591 
1592 	/*
1593 	 * Do we miss much more than hit in this file? If so,
1594 	 * stop bothering with read-ahead. It will only hurt.
1595 	 */
1596 	if (ra->mmap_miss > MMAP_LOTSAMISS)
1597 		return;
1598 
1599 	/*
1600 	 * mmap read-around
1601 	 */
1602 	ra_pages = max_sane_readahead(ra->ra_pages);
1603 	ra->start = max_t(long, 0, offset - ra_pages / 2);
1604 	ra->size = ra_pages;
1605 	ra->async_size = ra_pages / 4;
1606 	ra_submit(ra, mapping, file);
1607 }
1608 
1609 /*
1610  * Asynchronous readahead happens when we find the page and PG_readahead,
1611  * so we want to possibly extend the readahead further..
1612  */
1613 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1614 				    struct file_ra_state *ra,
1615 				    struct file *file,
1616 				    struct page *page,
1617 				    pgoff_t offset)
1618 {
1619 	struct address_space *mapping = file->f_mapping;
1620 
1621 	/* If we don't want any read-ahead, don't bother */
1622 	if (VM_RandomReadHint(vma))
1623 		return;
1624 	if (ra->mmap_miss > 0)
1625 		ra->mmap_miss--;
1626 	if (PageReadahead(page))
1627 		page_cache_async_readahead(mapping, ra, file,
1628 					   page, offset, ra->ra_pages);
1629 }
1630 
1631 /**
1632  * filemap_fault - read in file data for page fault handling
1633  * @vma:	vma in which the fault was taken
1634  * @vmf:	struct vm_fault containing details of the fault
1635  *
1636  * filemap_fault() is invoked via the vma operations vector for a
1637  * mapped memory region to read in file data during a page fault.
1638  *
1639  * The goto's are kind of ugly, but this streamlines the normal case of having
1640  * it in the page cache, and handles the special cases reasonably without
1641  * having a lot of duplicated code.
1642  */
1643 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1644 {
1645 	int error;
1646 	struct file *file = vma->vm_file;
1647 	struct address_space *mapping = file->f_mapping;
1648 	struct file_ra_state *ra = &file->f_ra;
1649 	struct inode *inode = mapping->host;
1650 	pgoff_t offset = vmf->pgoff;
1651 	struct page *page;
1652 	pgoff_t size;
1653 	int ret = 0;
1654 
1655 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1656 	if (offset >= size)
1657 		return VM_FAULT_SIGBUS;
1658 
1659 	/*
1660 	 * Do we have something in the page cache already?
1661 	 */
1662 	page = find_get_page(mapping, offset);
1663 	if (likely(page)) {
1664 		/*
1665 		 * We found the page, so try async readahead before
1666 		 * waiting for the lock.
1667 		 */
1668 		do_async_mmap_readahead(vma, ra, file, page, offset);
1669 	} else {
1670 		/* No page in the page cache at all */
1671 		do_sync_mmap_readahead(vma, ra, file, offset);
1672 		count_vm_event(PGMAJFAULT);
1673 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1674 		ret = VM_FAULT_MAJOR;
1675 retry_find:
1676 		page = find_get_page(mapping, offset);
1677 		if (!page)
1678 			goto no_cached_page;
1679 	}
1680 
1681 	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1682 		page_cache_release(page);
1683 		return ret | VM_FAULT_RETRY;
1684 	}
1685 
1686 	/* Did it get truncated? */
1687 	if (unlikely(page->mapping != mapping)) {
1688 		unlock_page(page);
1689 		put_page(page);
1690 		goto retry_find;
1691 	}
1692 	VM_BUG_ON(page->index != offset);
1693 
1694 	/*
1695 	 * We have a locked page in the page cache, now we need to check
1696 	 * that it's up-to-date. If not, it is going to be due to an error.
1697 	 */
1698 	if (unlikely(!PageUptodate(page)))
1699 		goto page_not_uptodate;
1700 
1701 	/*
1702 	 * Found the page and have a reference on it.
1703 	 * We must recheck i_size under page lock.
1704 	 */
1705 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1706 	if (unlikely(offset >= size)) {
1707 		unlock_page(page);
1708 		page_cache_release(page);
1709 		return VM_FAULT_SIGBUS;
1710 	}
1711 
1712 	vmf->page = page;
1713 	return ret | VM_FAULT_LOCKED;
1714 
1715 no_cached_page:
1716 	/*
1717 	 * We're only likely to ever get here if MADV_RANDOM is in
1718 	 * effect.
1719 	 */
1720 	error = page_cache_read(file, offset);
1721 
1722 	/*
1723 	 * The page we want has now been added to the page cache.
1724 	 * In the unlikely event that someone removed it in the
1725 	 * meantime, we'll just come back here and read it again.
1726 	 */
1727 	if (error >= 0)
1728 		goto retry_find;
1729 
1730 	/*
1731 	 * An error return from page_cache_read can result if the
1732 	 * system is low on memory, or a problem occurs while trying
1733 	 * to schedule I/O.
1734 	 */
1735 	if (error == -ENOMEM)
1736 		return VM_FAULT_OOM;
1737 	return VM_FAULT_SIGBUS;
1738 
1739 page_not_uptodate:
1740 	/*
1741 	 * Umm, take care of errors if the page isn't up-to-date.
1742 	 * Try to re-read it _once_. We do this synchronously,
1743 	 * because there really aren't any performance issues here
1744 	 * and we need to check for errors.
1745 	 */
1746 	ClearPageError(page);
1747 	error = mapping->a_ops->readpage(file, page);
1748 	if (!error) {
1749 		wait_on_page_locked(page);
1750 		if (!PageUptodate(page))
1751 			error = -EIO;
1752 	}
1753 	page_cache_release(page);
1754 
1755 	if (!error || error == AOP_TRUNCATED_PAGE)
1756 		goto retry_find;
1757 
1758 	/* Things didn't work out. Return zero to tell the mm layer so. */
1759 	shrink_readahead_size_eio(file, ra);
1760 	return VM_FAULT_SIGBUS;
1761 }
1762 EXPORT_SYMBOL(filemap_fault);
1763 
1764 const struct vm_operations_struct generic_file_vm_ops = {
1765 	.fault		= filemap_fault,
1766 };
1767 
1768 /* This is used for a general mmap of a disk file */
1769 
1770 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1771 {
1772 	struct address_space *mapping = file->f_mapping;
1773 
1774 	if (!mapping->a_ops->readpage)
1775 		return -ENOEXEC;
1776 	file_accessed(file);
1777 	vma->vm_ops = &generic_file_vm_ops;
1778 	vma->vm_flags |= VM_CAN_NONLINEAR;
1779 	return 0;
1780 }
1781 
1782 /*
1783  * This is for filesystems which do not implement ->writepage.
1784  */
1785 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1786 {
1787 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1788 		return -EINVAL;
1789 	return generic_file_mmap(file, vma);
1790 }
1791 #else
1792 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1793 {
1794 	return -ENOSYS;
1795 }
1796 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1797 {
1798 	return -ENOSYS;
1799 }
1800 #endif /* CONFIG_MMU */
1801 
1802 EXPORT_SYMBOL(generic_file_mmap);
1803 EXPORT_SYMBOL(generic_file_readonly_mmap);
1804 
1805 static struct page *__read_cache_page(struct address_space *mapping,
1806 				pgoff_t index,
1807 				int (*filler)(void *, struct page *),
1808 				void *data,
1809 				gfp_t gfp)
1810 {
1811 	struct page *page;
1812 	int err;
1813 repeat:
1814 	page = find_get_page(mapping, index);
1815 	if (!page) {
1816 		page = __page_cache_alloc(gfp | __GFP_COLD);
1817 		if (!page)
1818 			return ERR_PTR(-ENOMEM);
1819 		err = add_to_page_cache_lru(page, mapping, index, gfp);
1820 		if (unlikely(err)) {
1821 			page_cache_release(page);
1822 			if (err == -EEXIST)
1823 				goto repeat;
1824 			/* Presumably ENOMEM for radix tree node */
1825 			return ERR_PTR(err);
1826 		}
1827 		err = filler(data, page);
1828 		if (err < 0) {
1829 			page_cache_release(page);
1830 			page = ERR_PTR(err);
1831 		}
1832 	}
1833 	return page;
1834 }
1835 
1836 static struct page *do_read_cache_page(struct address_space *mapping,
1837 				pgoff_t index,
1838 				int (*filler)(void *, struct page *),
1839 				void *data,
1840 				gfp_t gfp)
1841 
1842 {
1843 	struct page *page;
1844 	int err;
1845 
1846 retry:
1847 	page = __read_cache_page(mapping, index, filler, data, gfp);
1848 	if (IS_ERR(page))
1849 		return page;
1850 	if (PageUptodate(page))
1851 		goto out;
1852 
1853 	lock_page(page);
1854 	if (!page->mapping) {
1855 		unlock_page(page);
1856 		page_cache_release(page);
1857 		goto retry;
1858 	}
1859 	if (PageUptodate(page)) {
1860 		unlock_page(page);
1861 		goto out;
1862 	}
1863 	err = filler(data, page);
1864 	if (err < 0) {
1865 		page_cache_release(page);
1866 		return ERR_PTR(err);
1867 	}
1868 out:
1869 	mark_page_accessed(page);
1870 	return page;
1871 }
1872 
1873 /**
1874  * read_cache_page_async - read into page cache, fill it if needed
1875  * @mapping:	the page's address_space
1876  * @index:	the page index
1877  * @filler:	function to perform the read
1878  * @data:	first arg to filler(data, page) function, often left as NULL
1879  *
1880  * Same as read_cache_page, but don't wait for page to become unlocked
1881  * after submitting it to the filler.
1882  *
1883  * Read into the page cache. If a page already exists, and PageUptodate() is
1884  * not set, try to fill the page but don't wait for it to become unlocked.
1885  *
1886  * If the page does not get brought uptodate, return -EIO.
1887  */
1888 struct page *read_cache_page_async(struct address_space *mapping,
1889 				pgoff_t index,
1890 				int (*filler)(void *, struct page *),
1891 				void *data)
1892 {
1893 	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1894 }
1895 EXPORT_SYMBOL(read_cache_page_async);
1896 
1897 static struct page *wait_on_page_read(struct page *page)
1898 {
1899 	if (!IS_ERR(page)) {
1900 		wait_on_page_locked(page);
1901 		if (!PageUptodate(page)) {
1902 			page_cache_release(page);
1903 			page = ERR_PTR(-EIO);
1904 		}
1905 	}
1906 	return page;
1907 }
1908 
1909 /**
1910  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1911  * @mapping:	the page's address_space
1912  * @index:	the page index
1913  * @gfp:	the page allocator flags to use if allocating
1914  *
1915  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1916  * any new page allocations done using the specified allocation flags.
1917  *
1918  * If the page does not get brought uptodate, return -EIO.
1919  */
1920 struct page *read_cache_page_gfp(struct address_space *mapping,
1921 				pgoff_t index,
1922 				gfp_t gfp)
1923 {
1924 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1925 
1926 	return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1927 }
1928 EXPORT_SYMBOL(read_cache_page_gfp);
1929 
1930 /**
1931  * read_cache_page - read into page cache, fill it if needed
1932  * @mapping:	the page's address_space
1933  * @index:	the page index
1934  * @filler:	function to perform the read
1935  * @data:	first arg to filler(data, page) function, often left as NULL
1936  *
1937  * Read into the page cache. If a page already exists, and PageUptodate() is
1938  * not set, try to fill the page then wait for it to become unlocked.
1939  *
1940  * If the page does not get brought uptodate, return -EIO.
1941  */
1942 struct page *read_cache_page(struct address_space *mapping,
1943 				pgoff_t index,
1944 				int (*filler)(void *, struct page *),
1945 				void *data)
1946 {
1947 	return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1948 }
1949 EXPORT_SYMBOL(read_cache_page);
1950 
1951 /*
1952  * The logic we want is
1953  *
1954  *	if suid or (sgid and xgrp)
1955  *		remove privs
1956  */
1957 int should_remove_suid(struct dentry *dentry)
1958 {
1959 	umode_t mode = dentry->d_inode->i_mode;
1960 	int kill = 0;
1961 
1962 	/* suid always must be killed */
1963 	if (unlikely(mode & S_ISUID))
1964 		kill = ATTR_KILL_SUID;
1965 
1966 	/*
1967 	 * sgid without any exec bits is just a mandatory locking mark; leave
1968 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1969 	 */
1970 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1971 		kill |= ATTR_KILL_SGID;
1972 
1973 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1974 		return kill;
1975 
1976 	return 0;
1977 }
1978 EXPORT_SYMBOL(should_remove_suid);
1979 
1980 static int __remove_suid(struct dentry *dentry, int kill)
1981 {
1982 	struct iattr newattrs;
1983 
1984 	newattrs.ia_valid = ATTR_FORCE | kill;
1985 	return notify_change(dentry, &newattrs);
1986 }
1987 
1988 int file_remove_suid(struct file *file)
1989 {
1990 	struct dentry *dentry = file->f_path.dentry;
1991 	struct inode *inode = dentry->d_inode;
1992 	int killsuid;
1993 	int killpriv;
1994 	int error = 0;
1995 
1996 	/* Fast path for nothing security related */
1997 	if (IS_NOSEC(inode))
1998 		return 0;
1999 
2000 	killsuid = should_remove_suid(dentry);
2001 	killpriv = security_inode_need_killpriv(dentry);
2002 
2003 	if (killpriv < 0)
2004 		return killpriv;
2005 	if (killpriv)
2006 		error = security_inode_killpriv(dentry);
2007 	if (!error && killsuid)
2008 		error = __remove_suid(dentry, killsuid);
2009 	if (!error && (inode->i_sb->s_flags & MS_NOSEC))
2010 		inode->i_flags |= S_NOSEC;
2011 
2012 	return error;
2013 }
2014 EXPORT_SYMBOL(file_remove_suid);
2015 
2016 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
2017 			const struct iovec *iov, size_t base, size_t bytes)
2018 {
2019 	size_t copied = 0, left = 0;
2020 
2021 	while (bytes) {
2022 		char __user *buf = iov->iov_base + base;
2023 		int copy = min(bytes, iov->iov_len - base);
2024 
2025 		base = 0;
2026 		left = __copy_from_user_inatomic(vaddr, buf, copy);
2027 		copied += copy;
2028 		bytes -= copy;
2029 		vaddr += copy;
2030 		iov++;
2031 
2032 		if (unlikely(left))
2033 			break;
2034 	}
2035 	return copied - left;
2036 }
2037 
2038 /*
2039  * Copy as much as we can into the page and return the number of bytes which
2040  * were successfully copied.  If a fault is encountered then return the number of
2041  * bytes which were copied.
2042  */
2043 size_t iov_iter_copy_from_user_atomic(struct page *page,
2044 		struct iov_iter *i, unsigned long offset, size_t bytes)
2045 {
2046 	char *kaddr;
2047 	size_t copied;
2048 
2049 	BUG_ON(!in_atomic());
2050 	kaddr = kmap_atomic(page);
2051 	if (likely(i->nr_segs == 1)) {
2052 		int left;
2053 		char __user *buf = i->iov->iov_base + i->iov_offset;
2054 		left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2055 		copied = bytes - left;
2056 	} else {
2057 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2058 						i->iov, i->iov_offset, bytes);
2059 	}
2060 	kunmap_atomic(kaddr);
2061 
2062 	return copied;
2063 }
2064 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2065 
2066 /*
2067  * This has the same sideeffects and return value as
2068  * iov_iter_copy_from_user_atomic().
2069  * The difference is that it attempts to resolve faults.
2070  * Page must not be locked.
2071  */
2072 size_t iov_iter_copy_from_user(struct page *page,
2073 		struct iov_iter *i, unsigned long offset, size_t bytes)
2074 {
2075 	char *kaddr;
2076 	size_t copied;
2077 
2078 	kaddr = kmap(page);
2079 	if (likely(i->nr_segs == 1)) {
2080 		int left;
2081 		char __user *buf = i->iov->iov_base + i->iov_offset;
2082 		left = __copy_from_user(kaddr + offset, buf, bytes);
2083 		copied = bytes - left;
2084 	} else {
2085 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2086 						i->iov, i->iov_offset, bytes);
2087 	}
2088 	kunmap(page);
2089 	return copied;
2090 }
2091 EXPORT_SYMBOL(iov_iter_copy_from_user);
2092 
2093 void iov_iter_advance(struct iov_iter *i, size_t bytes)
2094 {
2095 	BUG_ON(i->count < bytes);
2096 
2097 	if (likely(i->nr_segs == 1)) {
2098 		i->iov_offset += bytes;
2099 		i->count -= bytes;
2100 	} else {
2101 		const struct iovec *iov = i->iov;
2102 		size_t base = i->iov_offset;
2103 		unsigned long nr_segs = i->nr_segs;
2104 
2105 		/*
2106 		 * The !iov->iov_len check ensures we skip over unlikely
2107 		 * zero-length segments (without overruning the iovec).
2108 		 */
2109 		while (bytes || unlikely(i->count && !iov->iov_len)) {
2110 			int copy;
2111 
2112 			copy = min(bytes, iov->iov_len - base);
2113 			BUG_ON(!i->count || i->count < copy);
2114 			i->count -= copy;
2115 			bytes -= copy;
2116 			base += copy;
2117 			if (iov->iov_len == base) {
2118 				iov++;
2119 				nr_segs--;
2120 				base = 0;
2121 			}
2122 		}
2123 		i->iov = iov;
2124 		i->iov_offset = base;
2125 		i->nr_segs = nr_segs;
2126 	}
2127 }
2128 EXPORT_SYMBOL(iov_iter_advance);
2129 
2130 /*
2131  * Fault in the first iovec of the given iov_iter, to a maximum length
2132  * of bytes. Returns 0 on success, or non-zero if the memory could not be
2133  * accessed (ie. because it is an invalid address).
2134  *
2135  * writev-intensive code may want this to prefault several iovecs -- that
2136  * would be possible (callers must not rely on the fact that _only_ the
2137  * first iovec will be faulted with the current implementation).
2138  */
2139 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2140 {
2141 	char __user *buf = i->iov->iov_base + i->iov_offset;
2142 	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2143 	return fault_in_pages_readable(buf, bytes);
2144 }
2145 EXPORT_SYMBOL(iov_iter_fault_in_readable);
2146 
2147 /*
2148  * Return the count of just the current iov_iter segment.
2149  */
2150 size_t iov_iter_single_seg_count(struct iov_iter *i)
2151 {
2152 	const struct iovec *iov = i->iov;
2153 	if (i->nr_segs == 1)
2154 		return i->count;
2155 	else
2156 		return min(i->count, iov->iov_len - i->iov_offset);
2157 }
2158 EXPORT_SYMBOL(iov_iter_single_seg_count);
2159 
2160 /*
2161  * Performs necessary checks before doing a write
2162  *
2163  * Can adjust writing position or amount of bytes to write.
2164  * Returns appropriate error code that caller should return or
2165  * zero in case that write should be allowed.
2166  */
2167 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2168 {
2169 	struct inode *inode = file->f_mapping->host;
2170 	unsigned long limit = rlimit(RLIMIT_FSIZE);
2171 
2172         if (unlikely(*pos < 0))
2173                 return -EINVAL;
2174 
2175 	if (!isblk) {
2176 		/* FIXME: this is for backwards compatibility with 2.4 */
2177 		if (file->f_flags & O_APPEND)
2178                         *pos = i_size_read(inode);
2179 
2180 		if (limit != RLIM_INFINITY) {
2181 			if (*pos >= limit) {
2182 				send_sig(SIGXFSZ, current, 0);
2183 				return -EFBIG;
2184 			}
2185 			if (*count > limit - (typeof(limit))*pos) {
2186 				*count = limit - (typeof(limit))*pos;
2187 			}
2188 		}
2189 	}
2190 
2191 	/*
2192 	 * LFS rule
2193 	 */
2194 	if (unlikely(*pos + *count > MAX_NON_LFS &&
2195 				!(file->f_flags & O_LARGEFILE))) {
2196 		if (*pos >= MAX_NON_LFS) {
2197 			return -EFBIG;
2198 		}
2199 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2200 			*count = MAX_NON_LFS - (unsigned long)*pos;
2201 		}
2202 	}
2203 
2204 	/*
2205 	 * Are we about to exceed the fs block limit ?
2206 	 *
2207 	 * If we have written data it becomes a short write.  If we have
2208 	 * exceeded without writing data we send a signal and return EFBIG.
2209 	 * Linus frestrict idea will clean these up nicely..
2210 	 */
2211 	if (likely(!isblk)) {
2212 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2213 			if (*count || *pos > inode->i_sb->s_maxbytes) {
2214 				return -EFBIG;
2215 			}
2216 			/* zero-length writes at ->s_maxbytes are OK */
2217 		}
2218 
2219 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2220 			*count = inode->i_sb->s_maxbytes - *pos;
2221 	} else {
2222 #ifdef CONFIG_BLOCK
2223 		loff_t isize;
2224 		if (bdev_read_only(I_BDEV(inode)))
2225 			return -EPERM;
2226 		isize = i_size_read(inode);
2227 		if (*pos >= isize) {
2228 			if (*count || *pos > isize)
2229 				return -ENOSPC;
2230 		}
2231 
2232 		if (*pos + *count > isize)
2233 			*count = isize - *pos;
2234 #else
2235 		return -EPERM;
2236 #endif
2237 	}
2238 	return 0;
2239 }
2240 EXPORT_SYMBOL(generic_write_checks);
2241 
2242 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2243 				loff_t pos, unsigned len, unsigned flags,
2244 				struct page **pagep, void **fsdata)
2245 {
2246 	const struct address_space_operations *aops = mapping->a_ops;
2247 
2248 	return aops->write_begin(file, mapping, pos, len, flags,
2249 							pagep, fsdata);
2250 }
2251 EXPORT_SYMBOL(pagecache_write_begin);
2252 
2253 int pagecache_write_end(struct file *file, struct address_space *mapping,
2254 				loff_t pos, unsigned len, unsigned copied,
2255 				struct page *page, void *fsdata)
2256 {
2257 	const struct address_space_operations *aops = mapping->a_ops;
2258 
2259 	mark_page_accessed(page);
2260 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2261 }
2262 EXPORT_SYMBOL(pagecache_write_end);
2263 
2264 ssize_t
2265 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2266 		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2267 		size_t count, size_t ocount)
2268 {
2269 	struct file	*file = iocb->ki_filp;
2270 	struct address_space *mapping = file->f_mapping;
2271 	struct inode	*inode = mapping->host;
2272 	ssize_t		written;
2273 	size_t		write_len;
2274 	pgoff_t		end;
2275 
2276 	if (count != ocount)
2277 		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2278 
2279 	write_len = iov_length(iov, *nr_segs);
2280 	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2281 
2282 	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2283 	if (written)
2284 		goto out;
2285 
2286 	/*
2287 	 * After a write we want buffered reads to be sure to go to disk to get
2288 	 * the new data.  We invalidate clean cached page from the region we're
2289 	 * about to write.  We do this *before* the write so that we can return
2290 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2291 	 */
2292 	if (mapping->nrpages) {
2293 		written = invalidate_inode_pages2_range(mapping,
2294 					pos >> PAGE_CACHE_SHIFT, end);
2295 		/*
2296 		 * If a page can not be invalidated, return 0 to fall back
2297 		 * to buffered write.
2298 		 */
2299 		if (written) {
2300 			if (written == -EBUSY)
2301 				return 0;
2302 			goto out;
2303 		}
2304 	}
2305 
2306 	written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2307 
2308 	/*
2309 	 * Finally, try again to invalidate clean pages which might have been
2310 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2311 	 * if the source of the write was an mmap'ed region of the file
2312 	 * we're writing.  Either one is a pretty crazy thing to do,
2313 	 * so we don't support it 100%.  If this invalidation
2314 	 * fails, tough, the write still worked...
2315 	 */
2316 	if (mapping->nrpages) {
2317 		invalidate_inode_pages2_range(mapping,
2318 					      pos >> PAGE_CACHE_SHIFT, end);
2319 	}
2320 
2321 	if (written > 0) {
2322 		pos += written;
2323 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2324 			i_size_write(inode, pos);
2325 			mark_inode_dirty(inode);
2326 		}
2327 		*ppos = pos;
2328 	}
2329 out:
2330 	return written;
2331 }
2332 EXPORT_SYMBOL(generic_file_direct_write);
2333 
2334 /*
2335  * Find or create a page at the given pagecache position. Return the locked
2336  * page. This function is specifically for buffered writes.
2337  */
2338 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2339 					pgoff_t index, unsigned flags)
2340 {
2341 	int status;
2342 	gfp_t gfp_mask;
2343 	struct page *page;
2344 	gfp_t gfp_notmask = 0;
2345 
2346 	gfp_mask = mapping_gfp_mask(mapping);
2347 	if (mapping_cap_account_dirty(mapping))
2348 		gfp_mask |= __GFP_WRITE;
2349 	if (flags & AOP_FLAG_NOFS)
2350 		gfp_notmask = __GFP_FS;
2351 repeat:
2352 	page = find_lock_page(mapping, index);
2353 	if (page)
2354 		goto found;
2355 
2356 	page = __page_cache_alloc(gfp_mask & ~gfp_notmask);
2357 	if (!page)
2358 		return NULL;
2359 	status = add_to_page_cache_lru(page, mapping, index,
2360 						GFP_KERNEL & ~gfp_notmask);
2361 	if (unlikely(status)) {
2362 		page_cache_release(page);
2363 		if (status == -EEXIST)
2364 			goto repeat;
2365 		return NULL;
2366 	}
2367 found:
2368 	wait_on_page_writeback(page);
2369 	return page;
2370 }
2371 EXPORT_SYMBOL(grab_cache_page_write_begin);
2372 
2373 static ssize_t generic_perform_write(struct file *file,
2374 				struct iov_iter *i, loff_t pos)
2375 {
2376 	struct address_space *mapping = file->f_mapping;
2377 	const struct address_space_operations *a_ops = mapping->a_ops;
2378 	long status = 0;
2379 	ssize_t written = 0;
2380 	unsigned int flags = 0;
2381 
2382 	/*
2383 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2384 	 */
2385 	if (segment_eq(get_fs(), KERNEL_DS))
2386 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2387 
2388 	do {
2389 		struct page *page;
2390 		unsigned long offset;	/* Offset into pagecache page */
2391 		unsigned long bytes;	/* Bytes to write to page */
2392 		size_t copied;		/* Bytes copied from user */
2393 		void *fsdata;
2394 
2395 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2396 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2397 						iov_iter_count(i));
2398 
2399 again:
2400 		/*
2401 		 * Bring in the user page that we will copy from _first_.
2402 		 * Otherwise there's a nasty deadlock on copying from the
2403 		 * same page as we're writing to, without it being marked
2404 		 * up-to-date.
2405 		 *
2406 		 * Not only is this an optimisation, but it is also required
2407 		 * to check that the address is actually valid, when atomic
2408 		 * usercopies are used, below.
2409 		 */
2410 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2411 			status = -EFAULT;
2412 			break;
2413 		}
2414 
2415 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2416 						&page, &fsdata);
2417 		if (unlikely(status))
2418 			break;
2419 
2420 		if (mapping_writably_mapped(mapping))
2421 			flush_dcache_page(page);
2422 
2423 		pagefault_disable();
2424 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2425 		pagefault_enable();
2426 		flush_dcache_page(page);
2427 
2428 		mark_page_accessed(page);
2429 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2430 						page, fsdata);
2431 		if (unlikely(status < 0))
2432 			break;
2433 		copied = status;
2434 
2435 		cond_resched();
2436 
2437 		iov_iter_advance(i, copied);
2438 		if (unlikely(copied == 0)) {
2439 			/*
2440 			 * If we were unable to copy any data at all, we must
2441 			 * fall back to a single segment length write.
2442 			 *
2443 			 * If we didn't fallback here, we could livelock
2444 			 * because not all segments in the iov can be copied at
2445 			 * once without a pagefault.
2446 			 */
2447 			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2448 						iov_iter_single_seg_count(i));
2449 			goto again;
2450 		}
2451 		pos += copied;
2452 		written += copied;
2453 
2454 		balance_dirty_pages_ratelimited(mapping);
2455 		if (fatal_signal_pending(current)) {
2456 			status = -EINTR;
2457 			break;
2458 		}
2459 	} while (iov_iter_count(i));
2460 
2461 	return written ? written : status;
2462 }
2463 
2464 ssize_t
2465 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2466 		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2467 		size_t count, ssize_t written)
2468 {
2469 	struct file *file = iocb->ki_filp;
2470 	ssize_t status;
2471 	struct iov_iter i;
2472 
2473 	iov_iter_init(&i, iov, nr_segs, count, written);
2474 	status = generic_perform_write(file, &i, pos);
2475 
2476 	if (likely(status >= 0)) {
2477 		written += status;
2478 		*ppos = pos + status;
2479   	}
2480 
2481 	return written ? written : status;
2482 }
2483 EXPORT_SYMBOL(generic_file_buffered_write);
2484 
2485 /**
2486  * __generic_file_aio_write - write data to a file
2487  * @iocb:	IO state structure (file, offset, etc.)
2488  * @iov:	vector with data to write
2489  * @nr_segs:	number of segments in the vector
2490  * @ppos:	position where to write
2491  *
2492  * This function does all the work needed for actually writing data to a
2493  * file. It does all basic checks, removes SUID from the file, updates
2494  * modification times and calls proper subroutines depending on whether we
2495  * do direct IO or a standard buffered write.
2496  *
2497  * It expects i_mutex to be grabbed unless we work on a block device or similar
2498  * object which does not need locking at all.
2499  *
2500  * This function does *not* take care of syncing data in case of O_SYNC write.
2501  * A caller has to handle it. This is mainly due to the fact that we want to
2502  * avoid syncing under i_mutex.
2503  */
2504 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2505 				 unsigned long nr_segs, loff_t *ppos)
2506 {
2507 	struct file *file = iocb->ki_filp;
2508 	struct address_space * mapping = file->f_mapping;
2509 	size_t ocount;		/* original count */
2510 	size_t count;		/* after file limit checks */
2511 	struct inode 	*inode = mapping->host;
2512 	loff_t		pos;
2513 	ssize_t		written;
2514 	ssize_t		err;
2515 
2516 	ocount = 0;
2517 	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2518 	if (err)
2519 		return err;
2520 
2521 	count = ocount;
2522 	pos = *ppos;
2523 
2524 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2525 
2526 	/* We can write back this queue in page reclaim */
2527 	current->backing_dev_info = mapping->backing_dev_info;
2528 	written = 0;
2529 
2530 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2531 	if (err)
2532 		goto out;
2533 
2534 	if (count == 0)
2535 		goto out;
2536 
2537 	err = file_remove_suid(file);
2538 	if (err)
2539 		goto out;
2540 
2541 	file_update_time(file);
2542 
2543 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2544 	if (unlikely(file->f_flags & O_DIRECT)) {
2545 		loff_t endbyte;
2546 		ssize_t written_buffered;
2547 
2548 		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2549 							ppos, count, ocount);
2550 		if (written < 0 || written == count)
2551 			goto out;
2552 		/*
2553 		 * direct-io write to a hole: fall through to buffered I/O
2554 		 * for completing the rest of the request.
2555 		 */
2556 		pos += written;
2557 		count -= written;
2558 		written_buffered = generic_file_buffered_write(iocb, iov,
2559 						nr_segs, pos, ppos, count,
2560 						written);
2561 		/*
2562 		 * If generic_file_buffered_write() retuned a synchronous error
2563 		 * then we want to return the number of bytes which were
2564 		 * direct-written, or the error code if that was zero.  Note
2565 		 * that this differs from normal direct-io semantics, which
2566 		 * will return -EFOO even if some bytes were written.
2567 		 */
2568 		if (written_buffered < 0) {
2569 			err = written_buffered;
2570 			goto out;
2571 		}
2572 
2573 		/*
2574 		 * We need to ensure that the page cache pages are written to
2575 		 * disk and invalidated to preserve the expected O_DIRECT
2576 		 * semantics.
2577 		 */
2578 		endbyte = pos + written_buffered - written - 1;
2579 		err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2580 		if (err == 0) {
2581 			written = written_buffered;
2582 			invalidate_mapping_pages(mapping,
2583 						 pos >> PAGE_CACHE_SHIFT,
2584 						 endbyte >> PAGE_CACHE_SHIFT);
2585 		} else {
2586 			/*
2587 			 * We don't know how much we wrote, so just return
2588 			 * the number of bytes which were direct-written
2589 			 */
2590 		}
2591 	} else {
2592 		written = generic_file_buffered_write(iocb, iov, nr_segs,
2593 				pos, ppos, count, written);
2594 	}
2595 out:
2596 	current->backing_dev_info = NULL;
2597 	return written ? written : err;
2598 }
2599 EXPORT_SYMBOL(__generic_file_aio_write);
2600 
2601 /**
2602  * generic_file_aio_write - write data to a file
2603  * @iocb:	IO state structure
2604  * @iov:	vector with data to write
2605  * @nr_segs:	number of segments in the vector
2606  * @pos:	position in file where to write
2607  *
2608  * This is a wrapper around __generic_file_aio_write() to be used by most
2609  * filesystems. It takes care of syncing the file in case of O_SYNC file
2610  * and acquires i_mutex as needed.
2611  */
2612 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2613 		unsigned long nr_segs, loff_t pos)
2614 {
2615 	struct file *file = iocb->ki_filp;
2616 	struct inode *inode = file->f_mapping->host;
2617 	struct blk_plug plug;
2618 	ssize_t ret;
2619 
2620 	BUG_ON(iocb->ki_pos != pos);
2621 
2622 	mutex_lock(&inode->i_mutex);
2623 	blk_start_plug(&plug);
2624 	ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2625 	mutex_unlock(&inode->i_mutex);
2626 
2627 	if (ret > 0 || ret == -EIOCBQUEUED) {
2628 		ssize_t err;
2629 
2630 		err = generic_write_sync(file, pos, ret);
2631 		if (err < 0 && ret > 0)
2632 			ret = err;
2633 	}
2634 	blk_finish_plug(&plug);
2635 	return ret;
2636 }
2637 EXPORT_SYMBOL(generic_file_aio_write);
2638 
2639 /**
2640  * try_to_release_page() - release old fs-specific metadata on a page
2641  *
2642  * @page: the page which the kernel is trying to free
2643  * @gfp_mask: memory allocation flags (and I/O mode)
2644  *
2645  * The address_space is to try to release any data against the page
2646  * (presumably at page->private).  If the release was successful, return `1'.
2647  * Otherwise return zero.
2648  *
2649  * This may also be called if PG_fscache is set on a page, indicating that the
2650  * page is known to the local caching routines.
2651  *
2652  * The @gfp_mask argument specifies whether I/O may be performed to release
2653  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2654  *
2655  */
2656 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2657 {
2658 	struct address_space * const mapping = page->mapping;
2659 
2660 	BUG_ON(!PageLocked(page));
2661 	if (PageWriteback(page))
2662 		return 0;
2663 
2664 	if (mapping && mapping->a_ops->releasepage)
2665 		return mapping->a_ops->releasepage(page, gfp_mask);
2666 	return try_to_free_buffers(page);
2667 }
2668 
2669 EXPORT_SYMBOL(try_to_release_page);
2670