1 /* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12 #include <linux/export.h> 13 #include <linux/compiler.h> 14 #include <linux/fs.h> 15 #include <linux/uaccess.h> 16 #include <linux/aio.h> 17 #include <linux/capability.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/gfp.h> 20 #include <linux/mm.h> 21 #include <linux/swap.h> 22 #include <linux/mman.h> 23 #include <linux/pagemap.h> 24 #include <linux/file.h> 25 #include <linux/uio.h> 26 #include <linux/hash.h> 27 #include <linux/writeback.h> 28 #include <linux/backing-dev.h> 29 #include <linux/pagevec.h> 30 #include <linux/blkdev.h> 31 #include <linux/security.h> 32 #include <linux/syscalls.h> 33 #include <linux/cpuset.h> 34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */ 35 #include <linux/memcontrol.h> 36 #include <linux/cleancache.h> 37 #include "internal.h" 38 39 /* 40 * FIXME: remove all knowledge of the buffer layer from the core VM 41 */ 42 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 43 44 #include <asm/mman.h> 45 46 /* 47 * Shared mappings implemented 30.11.1994. It's not fully working yet, 48 * though. 49 * 50 * Shared mappings now work. 15.8.1995 Bruno. 51 * 52 * finished 'unifying' the page and buffer cache and SMP-threaded the 53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 54 * 55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 56 */ 57 58 /* 59 * Lock ordering: 60 * 61 * ->i_mmap_mutex (truncate_pagecache) 62 * ->private_lock (__free_pte->__set_page_dirty_buffers) 63 * ->swap_lock (exclusive_swap_page, others) 64 * ->mapping->tree_lock 65 * 66 * ->i_mutex 67 * ->i_mmap_mutex (truncate->unmap_mapping_range) 68 * 69 * ->mmap_sem 70 * ->i_mmap_mutex 71 * ->page_table_lock or pte_lock (various, mainly in memory.c) 72 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) 73 * 74 * ->mmap_sem 75 * ->lock_page (access_process_vm) 76 * 77 * ->i_mutex (generic_file_buffered_write) 78 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 79 * 80 * bdi->wb.list_lock 81 * sb_lock (fs/fs-writeback.c) 82 * ->mapping->tree_lock (__sync_single_inode) 83 * 84 * ->i_mmap_mutex 85 * ->anon_vma.lock (vma_adjust) 86 * 87 * ->anon_vma.lock 88 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 89 * 90 * ->page_table_lock or pte_lock 91 * ->swap_lock (try_to_unmap_one) 92 * ->private_lock (try_to_unmap_one) 93 * ->tree_lock (try_to_unmap_one) 94 * ->zone.lru_lock (follow_page->mark_page_accessed) 95 * ->zone.lru_lock (check_pte_range->isolate_lru_page) 96 * ->private_lock (page_remove_rmap->set_page_dirty) 97 * ->tree_lock (page_remove_rmap->set_page_dirty) 98 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 99 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 100 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 101 * ->inode->i_lock (zap_pte_range->set_page_dirty) 102 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 103 * 104 * ->i_mmap_mutex 105 * ->tasklist_lock (memory_failure, collect_procs_ao) 106 */ 107 108 /* 109 * Delete a page from the page cache and free it. Caller has to make 110 * sure the page is locked and that nobody else uses it - or that usage 111 * is safe. The caller must hold the mapping's tree_lock. 112 */ 113 void __delete_from_page_cache(struct page *page) 114 { 115 struct address_space *mapping = page->mapping; 116 117 /* 118 * if we're uptodate, flush out into the cleancache, otherwise 119 * invalidate any existing cleancache entries. We can't leave 120 * stale data around in the cleancache once our page is gone 121 */ 122 if (PageUptodate(page) && PageMappedToDisk(page)) 123 cleancache_put_page(page); 124 else 125 cleancache_invalidate_page(mapping, page); 126 127 radix_tree_delete(&mapping->page_tree, page->index); 128 page->mapping = NULL; 129 /* Leave page->index set: truncation lookup relies upon it */ 130 mapping->nrpages--; 131 __dec_zone_page_state(page, NR_FILE_PAGES); 132 if (PageSwapBacked(page)) 133 __dec_zone_page_state(page, NR_SHMEM); 134 BUG_ON(page_mapped(page)); 135 136 /* 137 * Some filesystems seem to re-dirty the page even after 138 * the VM has canceled the dirty bit (eg ext3 journaling). 139 * 140 * Fix it up by doing a final dirty accounting check after 141 * having removed the page entirely. 142 */ 143 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) { 144 dec_zone_page_state(page, NR_FILE_DIRTY); 145 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); 146 } 147 } 148 149 /** 150 * delete_from_page_cache - delete page from page cache 151 * @page: the page which the kernel is trying to remove from page cache 152 * 153 * This must be called only on pages that have been verified to be in the page 154 * cache and locked. It will never put the page into the free list, the caller 155 * has a reference on the page. 156 */ 157 void delete_from_page_cache(struct page *page) 158 { 159 struct address_space *mapping = page->mapping; 160 void (*freepage)(struct page *); 161 162 BUG_ON(!PageLocked(page)); 163 164 freepage = mapping->a_ops->freepage; 165 spin_lock_irq(&mapping->tree_lock); 166 __delete_from_page_cache(page); 167 spin_unlock_irq(&mapping->tree_lock); 168 mem_cgroup_uncharge_cache_page(page); 169 170 if (freepage) 171 freepage(page); 172 page_cache_release(page); 173 } 174 EXPORT_SYMBOL(delete_from_page_cache); 175 176 static int sleep_on_page(void *word) 177 { 178 io_schedule(); 179 return 0; 180 } 181 182 static int sleep_on_page_killable(void *word) 183 { 184 sleep_on_page(word); 185 return fatal_signal_pending(current) ? -EINTR : 0; 186 } 187 188 /** 189 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 190 * @mapping: address space structure to write 191 * @start: offset in bytes where the range starts 192 * @end: offset in bytes where the range ends (inclusive) 193 * @sync_mode: enable synchronous operation 194 * 195 * Start writeback against all of a mapping's dirty pages that lie 196 * within the byte offsets <start, end> inclusive. 197 * 198 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 199 * opposed to a regular memory cleansing writeback. The difference between 200 * these two operations is that if a dirty page/buffer is encountered, it must 201 * be waited upon, and not just skipped over. 202 */ 203 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 204 loff_t end, int sync_mode) 205 { 206 int ret; 207 struct writeback_control wbc = { 208 .sync_mode = sync_mode, 209 .nr_to_write = LONG_MAX, 210 .range_start = start, 211 .range_end = end, 212 }; 213 214 if (!mapping_cap_writeback_dirty(mapping)) 215 return 0; 216 217 ret = do_writepages(mapping, &wbc); 218 return ret; 219 } 220 221 static inline int __filemap_fdatawrite(struct address_space *mapping, 222 int sync_mode) 223 { 224 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 225 } 226 227 int filemap_fdatawrite(struct address_space *mapping) 228 { 229 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 230 } 231 EXPORT_SYMBOL(filemap_fdatawrite); 232 233 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 234 loff_t end) 235 { 236 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 237 } 238 EXPORT_SYMBOL(filemap_fdatawrite_range); 239 240 /** 241 * filemap_flush - mostly a non-blocking flush 242 * @mapping: target address_space 243 * 244 * This is a mostly non-blocking flush. Not suitable for data-integrity 245 * purposes - I/O may not be started against all dirty pages. 246 */ 247 int filemap_flush(struct address_space *mapping) 248 { 249 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 250 } 251 EXPORT_SYMBOL(filemap_flush); 252 253 /** 254 * filemap_fdatawait_range - wait for writeback to complete 255 * @mapping: address space structure to wait for 256 * @start_byte: offset in bytes where the range starts 257 * @end_byte: offset in bytes where the range ends (inclusive) 258 * 259 * Walk the list of under-writeback pages of the given address space 260 * in the given range and wait for all of them. 261 */ 262 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 263 loff_t end_byte) 264 { 265 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT; 266 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT; 267 struct pagevec pvec; 268 int nr_pages; 269 int ret = 0; 270 271 if (end_byte < start_byte) 272 return 0; 273 274 pagevec_init(&pvec, 0); 275 while ((index <= end) && 276 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 277 PAGECACHE_TAG_WRITEBACK, 278 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { 279 unsigned i; 280 281 for (i = 0; i < nr_pages; i++) { 282 struct page *page = pvec.pages[i]; 283 284 /* until radix tree lookup accepts end_index */ 285 if (page->index > end) 286 continue; 287 288 wait_on_page_writeback(page); 289 if (TestClearPageError(page)) 290 ret = -EIO; 291 } 292 pagevec_release(&pvec); 293 cond_resched(); 294 } 295 296 /* Check for outstanding write errors */ 297 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 298 ret = -ENOSPC; 299 if (test_and_clear_bit(AS_EIO, &mapping->flags)) 300 ret = -EIO; 301 302 return ret; 303 } 304 EXPORT_SYMBOL(filemap_fdatawait_range); 305 306 /** 307 * filemap_fdatawait - wait for all under-writeback pages to complete 308 * @mapping: address space structure to wait for 309 * 310 * Walk the list of under-writeback pages of the given address space 311 * and wait for all of them. 312 */ 313 int filemap_fdatawait(struct address_space *mapping) 314 { 315 loff_t i_size = i_size_read(mapping->host); 316 317 if (i_size == 0) 318 return 0; 319 320 return filemap_fdatawait_range(mapping, 0, i_size - 1); 321 } 322 EXPORT_SYMBOL(filemap_fdatawait); 323 324 int filemap_write_and_wait(struct address_space *mapping) 325 { 326 int err = 0; 327 328 if (mapping->nrpages) { 329 err = filemap_fdatawrite(mapping); 330 /* 331 * Even if the above returned error, the pages may be 332 * written partially (e.g. -ENOSPC), so we wait for it. 333 * But the -EIO is special case, it may indicate the worst 334 * thing (e.g. bug) happened, so we avoid waiting for it. 335 */ 336 if (err != -EIO) { 337 int err2 = filemap_fdatawait(mapping); 338 if (!err) 339 err = err2; 340 } 341 } 342 return err; 343 } 344 EXPORT_SYMBOL(filemap_write_and_wait); 345 346 /** 347 * filemap_write_and_wait_range - write out & wait on a file range 348 * @mapping: the address_space for the pages 349 * @lstart: offset in bytes where the range starts 350 * @lend: offset in bytes where the range ends (inclusive) 351 * 352 * Write out and wait upon file offsets lstart->lend, inclusive. 353 * 354 * Note that `lend' is inclusive (describes the last byte to be written) so 355 * that this function can be used to write to the very end-of-file (end = -1). 356 */ 357 int filemap_write_and_wait_range(struct address_space *mapping, 358 loff_t lstart, loff_t lend) 359 { 360 int err = 0; 361 362 if (mapping->nrpages) { 363 err = __filemap_fdatawrite_range(mapping, lstart, lend, 364 WB_SYNC_ALL); 365 /* See comment of filemap_write_and_wait() */ 366 if (err != -EIO) { 367 int err2 = filemap_fdatawait_range(mapping, 368 lstart, lend); 369 if (!err) 370 err = err2; 371 } 372 } 373 return err; 374 } 375 EXPORT_SYMBOL(filemap_write_and_wait_range); 376 377 /** 378 * replace_page_cache_page - replace a pagecache page with a new one 379 * @old: page to be replaced 380 * @new: page to replace with 381 * @gfp_mask: allocation mode 382 * 383 * This function replaces a page in the pagecache with a new one. On 384 * success it acquires the pagecache reference for the new page and 385 * drops it for the old page. Both the old and new pages must be 386 * locked. This function does not add the new page to the LRU, the 387 * caller must do that. 388 * 389 * The remove + add is atomic. The only way this function can fail is 390 * memory allocation failure. 391 */ 392 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) 393 { 394 int error; 395 396 VM_BUG_ON(!PageLocked(old)); 397 VM_BUG_ON(!PageLocked(new)); 398 VM_BUG_ON(new->mapping); 399 400 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 401 if (!error) { 402 struct address_space *mapping = old->mapping; 403 void (*freepage)(struct page *); 404 405 pgoff_t offset = old->index; 406 freepage = mapping->a_ops->freepage; 407 408 page_cache_get(new); 409 new->mapping = mapping; 410 new->index = offset; 411 412 spin_lock_irq(&mapping->tree_lock); 413 __delete_from_page_cache(old); 414 error = radix_tree_insert(&mapping->page_tree, offset, new); 415 BUG_ON(error); 416 mapping->nrpages++; 417 __inc_zone_page_state(new, NR_FILE_PAGES); 418 if (PageSwapBacked(new)) 419 __inc_zone_page_state(new, NR_SHMEM); 420 spin_unlock_irq(&mapping->tree_lock); 421 /* mem_cgroup codes must not be called under tree_lock */ 422 mem_cgroup_replace_page_cache(old, new); 423 radix_tree_preload_end(); 424 if (freepage) 425 freepage(old); 426 page_cache_release(old); 427 } 428 429 return error; 430 } 431 EXPORT_SYMBOL_GPL(replace_page_cache_page); 432 433 /** 434 * add_to_page_cache_locked - add a locked page to the pagecache 435 * @page: page to add 436 * @mapping: the page's address_space 437 * @offset: page index 438 * @gfp_mask: page allocation mode 439 * 440 * This function is used to add a page to the pagecache. It must be locked. 441 * This function does not add the page to the LRU. The caller must do that. 442 */ 443 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 444 pgoff_t offset, gfp_t gfp_mask) 445 { 446 int error; 447 448 VM_BUG_ON(!PageLocked(page)); 449 VM_BUG_ON(PageSwapBacked(page)); 450 451 error = mem_cgroup_cache_charge(page, current->mm, 452 gfp_mask & GFP_RECLAIM_MASK); 453 if (error) 454 goto out; 455 456 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 457 if (error == 0) { 458 page_cache_get(page); 459 page->mapping = mapping; 460 page->index = offset; 461 462 spin_lock_irq(&mapping->tree_lock); 463 error = radix_tree_insert(&mapping->page_tree, offset, page); 464 if (likely(!error)) { 465 mapping->nrpages++; 466 __inc_zone_page_state(page, NR_FILE_PAGES); 467 spin_unlock_irq(&mapping->tree_lock); 468 } else { 469 page->mapping = NULL; 470 /* Leave page->index set: truncation relies upon it */ 471 spin_unlock_irq(&mapping->tree_lock); 472 mem_cgroup_uncharge_cache_page(page); 473 page_cache_release(page); 474 } 475 radix_tree_preload_end(); 476 } else 477 mem_cgroup_uncharge_cache_page(page); 478 out: 479 return error; 480 } 481 EXPORT_SYMBOL(add_to_page_cache_locked); 482 483 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 484 pgoff_t offset, gfp_t gfp_mask) 485 { 486 int ret; 487 488 ret = add_to_page_cache(page, mapping, offset, gfp_mask); 489 if (ret == 0) 490 lru_cache_add_file(page); 491 return ret; 492 } 493 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 494 495 #ifdef CONFIG_NUMA 496 struct page *__page_cache_alloc(gfp_t gfp) 497 { 498 int n; 499 struct page *page; 500 501 if (cpuset_do_page_mem_spread()) { 502 unsigned int cpuset_mems_cookie; 503 do { 504 cpuset_mems_cookie = get_mems_allowed(); 505 n = cpuset_mem_spread_node(); 506 page = alloc_pages_exact_node(n, gfp, 0); 507 } while (!put_mems_allowed(cpuset_mems_cookie) && !page); 508 509 return page; 510 } 511 return alloc_pages(gfp, 0); 512 } 513 EXPORT_SYMBOL(__page_cache_alloc); 514 #endif 515 516 /* 517 * In order to wait for pages to become available there must be 518 * waitqueues associated with pages. By using a hash table of 519 * waitqueues where the bucket discipline is to maintain all 520 * waiters on the same queue and wake all when any of the pages 521 * become available, and for the woken contexts to check to be 522 * sure the appropriate page became available, this saves space 523 * at a cost of "thundering herd" phenomena during rare hash 524 * collisions. 525 */ 526 static wait_queue_head_t *page_waitqueue(struct page *page) 527 { 528 const struct zone *zone = page_zone(page); 529 530 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)]; 531 } 532 533 static inline void wake_up_page(struct page *page, int bit) 534 { 535 __wake_up_bit(page_waitqueue(page), &page->flags, bit); 536 } 537 538 void wait_on_page_bit(struct page *page, int bit_nr) 539 { 540 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 541 542 if (test_bit(bit_nr, &page->flags)) 543 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page, 544 TASK_UNINTERRUPTIBLE); 545 } 546 EXPORT_SYMBOL(wait_on_page_bit); 547 548 int wait_on_page_bit_killable(struct page *page, int bit_nr) 549 { 550 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 551 552 if (!test_bit(bit_nr, &page->flags)) 553 return 0; 554 555 return __wait_on_bit(page_waitqueue(page), &wait, 556 sleep_on_page_killable, TASK_KILLABLE); 557 } 558 559 /** 560 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 561 * @page: Page defining the wait queue of interest 562 * @waiter: Waiter to add to the queue 563 * 564 * Add an arbitrary @waiter to the wait queue for the nominated @page. 565 */ 566 void add_page_wait_queue(struct page *page, wait_queue_t *waiter) 567 { 568 wait_queue_head_t *q = page_waitqueue(page); 569 unsigned long flags; 570 571 spin_lock_irqsave(&q->lock, flags); 572 __add_wait_queue(q, waiter); 573 spin_unlock_irqrestore(&q->lock, flags); 574 } 575 EXPORT_SYMBOL_GPL(add_page_wait_queue); 576 577 /** 578 * unlock_page - unlock a locked page 579 * @page: the page 580 * 581 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 582 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 583 * mechananism between PageLocked pages and PageWriteback pages is shared. 584 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 585 * 586 * The mb is necessary to enforce ordering between the clear_bit and the read 587 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()). 588 */ 589 void unlock_page(struct page *page) 590 { 591 VM_BUG_ON(!PageLocked(page)); 592 clear_bit_unlock(PG_locked, &page->flags); 593 smp_mb__after_clear_bit(); 594 wake_up_page(page, PG_locked); 595 } 596 EXPORT_SYMBOL(unlock_page); 597 598 /** 599 * end_page_writeback - end writeback against a page 600 * @page: the page 601 */ 602 void end_page_writeback(struct page *page) 603 { 604 if (TestClearPageReclaim(page)) 605 rotate_reclaimable_page(page); 606 607 if (!test_clear_page_writeback(page)) 608 BUG(); 609 610 smp_mb__after_clear_bit(); 611 wake_up_page(page, PG_writeback); 612 } 613 EXPORT_SYMBOL(end_page_writeback); 614 615 /** 616 * __lock_page - get a lock on the page, assuming we need to sleep to get it 617 * @page: the page to lock 618 */ 619 void __lock_page(struct page *page) 620 { 621 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 622 623 __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page, 624 TASK_UNINTERRUPTIBLE); 625 } 626 EXPORT_SYMBOL(__lock_page); 627 628 int __lock_page_killable(struct page *page) 629 { 630 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 631 632 return __wait_on_bit_lock(page_waitqueue(page), &wait, 633 sleep_on_page_killable, TASK_KILLABLE); 634 } 635 EXPORT_SYMBOL_GPL(__lock_page_killable); 636 637 int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 638 unsigned int flags) 639 { 640 if (flags & FAULT_FLAG_ALLOW_RETRY) { 641 /* 642 * CAUTION! In this case, mmap_sem is not released 643 * even though return 0. 644 */ 645 if (flags & FAULT_FLAG_RETRY_NOWAIT) 646 return 0; 647 648 up_read(&mm->mmap_sem); 649 if (flags & FAULT_FLAG_KILLABLE) 650 wait_on_page_locked_killable(page); 651 else 652 wait_on_page_locked(page); 653 return 0; 654 } else { 655 if (flags & FAULT_FLAG_KILLABLE) { 656 int ret; 657 658 ret = __lock_page_killable(page); 659 if (ret) { 660 up_read(&mm->mmap_sem); 661 return 0; 662 } 663 } else 664 __lock_page(page); 665 return 1; 666 } 667 } 668 669 /** 670 * find_get_page - find and get a page reference 671 * @mapping: the address_space to search 672 * @offset: the page index 673 * 674 * Is there a pagecache struct page at the given (mapping, offset) tuple? 675 * If yes, increment its refcount and return it; if no, return NULL. 676 */ 677 struct page *find_get_page(struct address_space *mapping, pgoff_t offset) 678 { 679 void **pagep; 680 struct page *page; 681 682 rcu_read_lock(); 683 repeat: 684 page = NULL; 685 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset); 686 if (pagep) { 687 page = radix_tree_deref_slot(pagep); 688 if (unlikely(!page)) 689 goto out; 690 if (radix_tree_exception(page)) { 691 if (radix_tree_deref_retry(page)) 692 goto repeat; 693 /* 694 * Otherwise, shmem/tmpfs must be storing a swap entry 695 * here as an exceptional entry: so return it without 696 * attempting to raise page count. 697 */ 698 goto out; 699 } 700 if (!page_cache_get_speculative(page)) 701 goto repeat; 702 703 /* 704 * Has the page moved? 705 * This is part of the lockless pagecache protocol. See 706 * include/linux/pagemap.h for details. 707 */ 708 if (unlikely(page != *pagep)) { 709 page_cache_release(page); 710 goto repeat; 711 } 712 } 713 out: 714 rcu_read_unlock(); 715 716 return page; 717 } 718 EXPORT_SYMBOL(find_get_page); 719 720 /** 721 * find_lock_page - locate, pin and lock a pagecache page 722 * @mapping: the address_space to search 723 * @offset: the page index 724 * 725 * Locates the desired pagecache page, locks it, increments its reference 726 * count and returns its address. 727 * 728 * Returns zero if the page was not present. find_lock_page() may sleep. 729 */ 730 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset) 731 { 732 struct page *page; 733 734 repeat: 735 page = find_get_page(mapping, offset); 736 if (page && !radix_tree_exception(page)) { 737 lock_page(page); 738 /* Has the page been truncated? */ 739 if (unlikely(page->mapping != mapping)) { 740 unlock_page(page); 741 page_cache_release(page); 742 goto repeat; 743 } 744 VM_BUG_ON(page->index != offset); 745 } 746 return page; 747 } 748 EXPORT_SYMBOL(find_lock_page); 749 750 /** 751 * find_or_create_page - locate or add a pagecache page 752 * @mapping: the page's address_space 753 * @index: the page's index into the mapping 754 * @gfp_mask: page allocation mode 755 * 756 * Locates a page in the pagecache. If the page is not present, a new page 757 * is allocated using @gfp_mask and is added to the pagecache and to the VM's 758 * LRU list. The returned page is locked and has its reference count 759 * incremented. 760 * 761 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic 762 * allocation! 763 * 764 * find_or_create_page() returns the desired page's address, or zero on 765 * memory exhaustion. 766 */ 767 struct page *find_or_create_page(struct address_space *mapping, 768 pgoff_t index, gfp_t gfp_mask) 769 { 770 struct page *page; 771 int err; 772 repeat: 773 page = find_lock_page(mapping, index); 774 if (!page) { 775 page = __page_cache_alloc(gfp_mask); 776 if (!page) 777 return NULL; 778 /* 779 * We want a regular kernel memory (not highmem or DMA etc) 780 * allocation for the radix tree nodes, but we need to honour 781 * the context-specific requirements the caller has asked for. 782 * GFP_RECLAIM_MASK collects those requirements. 783 */ 784 err = add_to_page_cache_lru(page, mapping, index, 785 (gfp_mask & GFP_RECLAIM_MASK)); 786 if (unlikely(err)) { 787 page_cache_release(page); 788 page = NULL; 789 if (err == -EEXIST) 790 goto repeat; 791 } 792 } 793 return page; 794 } 795 EXPORT_SYMBOL(find_or_create_page); 796 797 /** 798 * find_get_pages - gang pagecache lookup 799 * @mapping: The address_space to search 800 * @start: The starting page index 801 * @nr_pages: The maximum number of pages 802 * @pages: Where the resulting pages are placed 803 * 804 * find_get_pages() will search for and return a group of up to 805 * @nr_pages pages in the mapping. The pages are placed at @pages. 806 * find_get_pages() takes a reference against the returned pages. 807 * 808 * The search returns a group of mapping-contiguous pages with ascending 809 * indexes. There may be holes in the indices due to not-present pages. 810 * 811 * find_get_pages() returns the number of pages which were found. 812 */ 813 unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 814 unsigned int nr_pages, struct page **pages) 815 { 816 unsigned int i; 817 unsigned int ret; 818 unsigned int nr_found, nr_skip; 819 820 rcu_read_lock(); 821 restart: 822 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree, 823 (void ***)pages, NULL, start, nr_pages); 824 ret = 0; 825 nr_skip = 0; 826 for (i = 0; i < nr_found; i++) { 827 struct page *page; 828 repeat: 829 page = radix_tree_deref_slot((void **)pages[i]); 830 if (unlikely(!page)) 831 continue; 832 833 if (radix_tree_exception(page)) { 834 if (radix_tree_deref_retry(page)) { 835 /* 836 * Transient condition which can only trigger 837 * when entry at index 0 moves out of or back 838 * to root: none yet gotten, safe to restart. 839 */ 840 WARN_ON(start | i); 841 goto restart; 842 } 843 /* 844 * Otherwise, shmem/tmpfs must be storing a swap entry 845 * here as an exceptional entry: so skip over it - 846 * we only reach this from invalidate_mapping_pages(). 847 */ 848 nr_skip++; 849 continue; 850 } 851 852 if (!page_cache_get_speculative(page)) 853 goto repeat; 854 855 /* Has the page moved? */ 856 if (unlikely(page != *((void **)pages[i]))) { 857 page_cache_release(page); 858 goto repeat; 859 } 860 861 pages[ret] = page; 862 ret++; 863 } 864 865 /* 866 * If all entries were removed before we could secure them, 867 * try again, because callers stop trying once 0 is returned. 868 */ 869 if (unlikely(!ret && nr_found > nr_skip)) 870 goto restart; 871 rcu_read_unlock(); 872 return ret; 873 } 874 875 /** 876 * find_get_pages_contig - gang contiguous pagecache lookup 877 * @mapping: The address_space to search 878 * @index: The starting page index 879 * @nr_pages: The maximum number of pages 880 * @pages: Where the resulting pages are placed 881 * 882 * find_get_pages_contig() works exactly like find_get_pages(), except 883 * that the returned number of pages are guaranteed to be contiguous. 884 * 885 * find_get_pages_contig() returns the number of pages which were found. 886 */ 887 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 888 unsigned int nr_pages, struct page **pages) 889 { 890 unsigned int i; 891 unsigned int ret; 892 unsigned int nr_found; 893 894 rcu_read_lock(); 895 restart: 896 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree, 897 (void ***)pages, NULL, index, nr_pages); 898 ret = 0; 899 for (i = 0; i < nr_found; i++) { 900 struct page *page; 901 repeat: 902 page = radix_tree_deref_slot((void **)pages[i]); 903 if (unlikely(!page)) 904 continue; 905 906 if (radix_tree_exception(page)) { 907 if (radix_tree_deref_retry(page)) { 908 /* 909 * Transient condition which can only trigger 910 * when entry at index 0 moves out of or back 911 * to root: none yet gotten, safe to restart. 912 */ 913 goto restart; 914 } 915 /* 916 * Otherwise, shmem/tmpfs must be storing a swap entry 917 * here as an exceptional entry: so stop looking for 918 * contiguous pages. 919 */ 920 break; 921 } 922 923 if (!page_cache_get_speculative(page)) 924 goto repeat; 925 926 /* Has the page moved? */ 927 if (unlikely(page != *((void **)pages[i]))) { 928 page_cache_release(page); 929 goto repeat; 930 } 931 932 /* 933 * must check mapping and index after taking the ref. 934 * otherwise we can get both false positives and false 935 * negatives, which is just confusing to the caller. 936 */ 937 if (page->mapping == NULL || page->index != index) { 938 page_cache_release(page); 939 break; 940 } 941 942 pages[ret] = page; 943 ret++; 944 index++; 945 } 946 rcu_read_unlock(); 947 return ret; 948 } 949 EXPORT_SYMBOL(find_get_pages_contig); 950 951 /** 952 * find_get_pages_tag - find and return pages that match @tag 953 * @mapping: the address_space to search 954 * @index: the starting page index 955 * @tag: the tag index 956 * @nr_pages: the maximum number of pages 957 * @pages: where the resulting pages are placed 958 * 959 * Like find_get_pages, except we only return pages which are tagged with 960 * @tag. We update @index to index the next page for the traversal. 961 */ 962 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 963 int tag, unsigned int nr_pages, struct page **pages) 964 { 965 unsigned int i; 966 unsigned int ret; 967 unsigned int nr_found; 968 969 rcu_read_lock(); 970 restart: 971 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree, 972 (void ***)pages, *index, nr_pages, tag); 973 ret = 0; 974 for (i = 0; i < nr_found; i++) { 975 struct page *page; 976 repeat: 977 page = radix_tree_deref_slot((void **)pages[i]); 978 if (unlikely(!page)) 979 continue; 980 981 if (radix_tree_exception(page)) { 982 if (radix_tree_deref_retry(page)) { 983 /* 984 * Transient condition which can only trigger 985 * when entry at index 0 moves out of or back 986 * to root: none yet gotten, safe to restart. 987 */ 988 goto restart; 989 } 990 /* 991 * This function is never used on a shmem/tmpfs 992 * mapping, so a swap entry won't be found here. 993 */ 994 BUG(); 995 } 996 997 if (!page_cache_get_speculative(page)) 998 goto repeat; 999 1000 /* Has the page moved? */ 1001 if (unlikely(page != *((void **)pages[i]))) { 1002 page_cache_release(page); 1003 goto repeat; 1004 } 1005 1006 pages[ret] = page; 1007 ret++; 1008 } 1009 1010 /* 1011 * If all entries were removed before we could secure them, 1012 * try again, because callers stop trying once 0 is returned. 1013 */ 1014 if (unlikely(!ret && nr_found)) 1015 goto restart; 1016 rcu_read_unlock(); 1017 1018 if (ret) 1019 *index = pages[ret - 1]->index + 1; 1020 1021 return ret; 1022 } 1023 EXPORT_SYMBOL(find_get_pages_tag); 1024 1025 /** 1026 * grab_cache_page_nowait - returns locked page at given index in given cache 1027 * @mapping: target address_space 1028 * @index: the page index 1029 * 1030 * Same as grab_cache_page(), but do not wait if the page is unavailable. 1031 * This is intended for speculative data generators, where the data can 1032 * be regenerated if the page couldn't be grabbed. This routine should 1033 * be safe to call while holding the lock for another page. 1034 * 1035 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 1036 * and deadlock against the caller's locked page. 1037 */ 1038 struct page * 1039 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index) 1040 { 1041 struct page *page = find_get_page(mapping, index); 1042 1043 if (page) { 1044 if (trylock_page(page)) 1045 return page; 1046 page_cache_release(page); 1047 return NULL; 1048 } 1049 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS); 1050 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) { 1051 page_cache_release(page); 1052 page = NULL; 1053 } 1054 return page; 1055 } 1056 EXPORT_SYMBOL(grab_cache_page_nowait); 1057 1058 /* 1059 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 1060 * a _large_ part of the i/o request. Imagine the worst scenario: 1061 * 1062 * ---R__________________________________________B__________ 1063 * ^ reading here ^ bad block(assume 4k) 1064 * 1065 * read(R) => miss => readahead(R...B) => media error => frustrating retries 1066 * => failing the whole request => read(R) => read(R+1) => 1067 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 1068 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 1069 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 1070 * 1071 * It is going insane. Fix it by quickly scaling down the readahead size. 1072 */ 1073 static void shrink_readahead_size_eio(struct file *filp, 1074 struct file_ra_state *ra) 1075 { 1076 ra->ra_pages /= 4; 1077 } 1078 1079 /** 1080 * do_generic_file_read - generic file read routine 1081 * @filp: the file to read 1082 * @ppos: current file position 1083 * @desc: read_descriptor 1084 * @actor: read method 1085 * 1086 * This is a generic file read routine, and uses the 1087 * mapping->a_ops->readpage() function for the actual low-level stuff. 1088 * 1089 * This is really ugly. But the goto's actually try to clarify some 1090 * of the logic when it comes to error handling etc. 1091 */ 1092 static void do_generic_file_read(struct file *filp, loff_t *ppos, 1093 read_descriptor_t *desc, read_actor_t actor) 1094 { 1095 struct address_space *mapping = filp->f_mapping; 1096 struct inode *inode = mapping->host; 1097 struct file_ra_state *ra = &filp->f_ra; 1098 pgoff_t index; 1099 pgoff_t last_index; 1100 pgoff_t prev_index; 1101 unsigned long offset; /* offset into pagecache page */ 1102 unsigned int prev_offset; 1103 int error; 1104 1105 index = *ppos >> PAGE_CACHE_SHIFT; 1106 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT; 1107 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1); 1108 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; 1109 offset = *ppos & ~PAGE_CACHE_MASK; 1110 1111 for (;;) { 1112 struct page *page; 1113 pgoff_t end_index; 1114 loff_t isize; 1115 unsigned long nr, ret; 1116 1117 cond_resched(); 1118 find_page: 1119 page = find_get_page(mapping, index); 1120 if (!page) { 1121 page_cache_sync_readahead(mapping, 1122 ra, filp, 1123 index, last_index - index); 1124 page = find_get_page(mapping, index); 1125 if (unlikely(page == NULL)) 1126 goto no_cached_page; 1127 } 1128 if (PageReadahead(page)) { 1129 page_cache_async_readahead(mapping, 1130 ra, filp, page, 1131 index, last_index - index); 1132 } 1133 if (!PageUptodate(page)) { 1134 if (inode->i_blkbits == PAGE_CACHE_SHIFT || 1135 !mapping->a_ops->is_partially_uptodate) 1136 goto page_not_up_to_date; 1137 if (!trylock_page(page)) 1138 goto page_not_up_to_date; 1139 /* Did it get truncated before we got the lock? */ 1140 if (!page->mapping) 1141 goto page_not_up_to_date_locked; 1142 if (!mapping->a_ops->is_partially_uptodate(page, 1143 desc, offset)) 1144 goto page_not_up_to_date_locked; 1145 unlock_page(page); 1146 } 1147 page_ok: 1148 /* 1149 * i_size must be checked after we know the page is Uptodate. 1150 * 1151 * Checking i_size after the check allows us to calculate 1152 * the correct value for "nr", which means the zero-filled 1153 * part of the page is not copied back to userspace (unless 1154 * another truncate extends the file - this is desired though). 1155 */ 1156 1157 isize = i_size_read(inode); 1158 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1159 if (unlikely(!isize || index > end_index)) { 1160 page_cache_release(page); 1161 goto out; 1162 } 1163 1164 /* nr is the maximum number of bytes to copy from this page */ 1165 nr = PAGE_CACHE_SIZE; 1166 if (index == end_index) { 1167 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 1168 if (nr <= offset) { 1169 page_cache_release(page); 1170 goto out; 1171 } 1172 } 1173 nr = nr - offset; 1174 1175 /* If users can be writing to this page using arbitrary 1176 * virtual addresses, take care about potential aliasing 1177 * before reading the page on the kernel side. 1178 */ 1179 if (mapping_writably_mapped(mapping)) 1180 flush_dcache_page(page); 1181 1182 /* 1183 * When a sequential read accesses a page several times, 1184 * only mark it as accessed the first time. 1185 */ 1186 if (prev_index != index || offset != prev_offset) 1187 mark_page_accessed(page); 1188 prev_index = index; 1189 1190 /* 1191 * Ok, we have the page, and it's up-to-date, so 1192 * now we can copy it to user space... 1193 * 1194 * The actor routine returns how many bytes were actually used.. 1195 * NOTE! This may not be the same as how much of a user buffer 1196 * we filled up (we may be padding etc), so we can only update 1197 * "pos" here (the actor routine has to update the user buffer 1198 * pointers and the remaining count). 1199 */ 1200 ret = actor(desc, page, offset, nr); 1201 offset += ret; 1202 index += offset >> PAGE_CACHE_SHIFT; 1203 offset &= ~PAGE_CACHE_MASK; 1204 prev_offset = offset; 1205 1206 page_cache_release(page); 1207 if (ret == nr && desc->count) 1208 continue; 1209 goto out; 1210 1211 page_not_up_to_date: 1212 /* Get exclusive access to the page ... */ 1213 error = lock_page_killable(page); 1214 if (unlikely(error)) 1215 goto readpage_error; 1216 1217 page_not_up_to_date_locked: 1218 /* Did it get truncated before we got the lock? */ 1219 if (!page->mapping) { 1220 unlock_page(page); 1221 page_cache_release(page); 1222 continue; 1223 } 1224 1225 /* Did somebody else fill it already? */ 1226 if (PageUptodate(page)) { 1227 unlock_page(page); 1228 goto page_ok; 1229 } 1230 1231 readpage: 1232 /* 1233 * A previous I/O error may have been due to temporary 1234 * failures, eg. multipath errors. 1235 * PG_error will be set again if readpage fails. 1236 */ 1237 ClearPageError(page); 1238 /* Start the actual read. The read will unlock the page. */ 1239 error = mapping->a_ops->readpage(filp, page); 1240 1241 if (unlikely(error)) { 1242 if (error == AOP_TRUNCATED_PAGE) { 1243 page_cache_release(page); 1244 goto find_page; 1245 } 1246 goto readpage_error; 1247 } 1248 1249 if (!PageUptodate(page)) { 1250 error = lock_page_killable(page); 1251 if (unlikely(error)) 1252 goto readpage_error; 1253 if (!PageUptodate(page)) { 1254 if (page->mapping == NULL) { 1255 /* 1256 * invalidate_mapping_pages got it 1257 */ 1258 unlock_page(page); 1259 page_cache_release(page); 1260 goto find_page; 1261 } 1262 unlock_page(page); 1263 shrink_readahead_size_eio(filp, ra); 1264 error = -EIO; 1265 goto readpage_error; 1266 } 1267 unlock_page(page); 1268 } 1269 1270 goto page_ok; 1271 1272 readpage_error: 1273 /* UHHUH! A synchronous read error occurred. Report it */ 1274 desc->error = error; 1275 page_cache_release(page); 1276 goto out; 1277 1278 no_cached_page: 1279 /* 1280 * Ok, it wasn't cached, so we need to create a new 1281 * page.. 1282 */ 1283 page = page_cache_alloc_cold(mapping); 1284 if (!page) { 1285 desc->error = -ENOMEM; 1286 goto out; 1287 } 1288 error = add_to_page_cache_lru(page, mapping, 1289 index, GFP_KERNEL); 1290 if (error) { 1291 page_cache_release(page); 1292 if (error == -EEXIST) 1293 goto find_page; 1294 desc->error = error; 1295 goto out; 1296 } 1297 goto readpage; 1298 } 1299 1300 out: 1301 ra->prev_pos = prev_index; 1302 ra->prev_pos <<= PAGE_CACHE_SHIFT; 1303 ra->prev_pos |= prev_offset; 1304 1305 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset; 1306 file_accessed(filp); 1307 } 1308 1309 int file_read_actor(read_descriptor_t *desc, struct page *page, 1310 unsigned long offset, unsigned long size) 1311 { 1312 char *kaddr; 1313 unsigned long left, count = desc->count; 1314 1315 if (size > count) 1316 size = count; 1317 1318 /* 1319 * Faults on the destination of a read are common, so do it before 1320 * taking the kmap. 1321 */ 1322 if (!fault_in_pages_writeable(desc->arg.buf, size)) { 1323 kaddr = kmap_atomic(page); 1324 left = __copy_to_user_inatomic(desc->arg.buf, 1325 kaddr + offset, size); 1326 kunmap_atomic(kaddr); 1327 if (left == 0) 1328 goto success; 1329 } 1330 1331 /* Do it the slow way */ 1332 kaddr = kmap(page); 1333 left = __copy_to_user(desc->arg.buf, kaddr + offset, size); 1334 kunmap(page); 1335 1336 if (left) { 1337 size -= left; 1338 desc->error = -EFAULT; 1339 } 1340 success: 1341 desc->count = count - size; 1342 desc->written += size; 1343 desc->arg.buf += size; 1344 return size; 1345 } 1346 1347 /* 1348 * Performs necessary checks before doing a write 1349 * @iov: io vector request 1350 * @nr_segs: number of segments in the iovec 1351 * @count: number of bytes to write 1352 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE 1353 * 1354 * Adjust number of segments and amount of bytes to write (nr_segs should be 1355 * properly initialized first). Returns appropriate error code that caller 1356 * should return or zero in case that write should be allowed. 1357 */ 1358 int generic_segment_checks(const struct iovec *iov, 1359 unsigned long *nr_segs, size_t *count, int access_flags) 1360 { 1361 unsigned long seg; 1362 size_t cnt = 0; 1363 for (seg = 0; seg < *nr_segs; seg++) { 1364 const struct iovec *iv = &iov[seg]; 1365 1366 /* 1367 * If any segment has a negative length, or the cumulative 1368 * length ever wraps negative then return -EINVAL. 1369 */ 1370 cnt += iv->iov_len; 1371 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0)) 1372 return -EINVAL; 1373 if (access_ok(access_flags, iv->iov_base, iv->iov_len)) 1374 continue; 1375 if (seg == 0) 1376 return -EFAULT; 1377 *nr_segs = seg; 1378 cnt -= iv->iov_len; /* This segment is no good */ 1379 break; 1380 } 1381 *count = cnt; 1382 return 0; 1383 } 1384 EXPORT_SYMBOL(generic_segment_checks); 1385 1386 /** 1387 * generic_file_aio_read - generic filesystem read routine 1388 * @iocb: kernel I/O control block 1389 * @iov: io vector request 1390 * @nr_segs: number of segments in the iovec 1391 * @pos: current file position 1392 * 1393 * This is the "read()" routine for all filesystems 1394 * that can use the page cache directly. 1395 */ 1396 ssize_t 1397 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov, 1398 unsigned long nr_segs, loff_t pos) 1399 { 1400 struct file *filp = iocb->ki_filp; 1401 ssize_t retval; 1402 unsigned long seg = 0; 1403 size_t count; 1404 loff_t *ppos = &iocb->ki_pos; 1405 1406 count = 0; 1407 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE); 1408 if (retval) 1409 return retval; 1410 1411 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 1412 if (filp->f_flags & O_DIRECT) { 1413 loff_t size; 1414 struct address_space *mapping; 1415 struct inode *inode; 1416 1417 mapping = filp->f_mapping; 1418 inode = mapping->host; 1419 if (!count) 1420 goto out; /* skip atime */ 1421 size = i_size_read(inode); 1422 if (pos < size) { 1423 retval = filemap_write_and_wait_range(mapping, pos, 1424 pos + iov_length(iov, nr_segs) - 1); 1425 if (!retval) { 1426 struct blk_plug plug; 1427 1428 blk_start_plug(&plug); 1429 retval = mapping->a_ops->direct_IO(READ, iocb, 1430 iov, pos, nr_segs); 1431 blk_finish_plug(&plug); 1432 } 1433 if (retval > 0) { 1434 *ppos = pos + retval; 1435 count -= retval; 1436 } 1437 1438 /* 1439 * Btrfs can have a short DIO read if we encounter 1440 * compressed extents, so if there was an error, or if 1441 * we've already read everything we wanted to, or if 1442 * there was a short read because we hit EOF, go ahead 1443 * and return. Otherwise fallthrough to buffered io for 1444 * the rest of the read. 1445 */ 1446 if (retval < 0 || !count || *ppos >= size) { 1447 file_accessed(filp); 1448 goto out; 1449 } 1450 } 1451 } 1452 1453 count = retval; 1454 for (seg = 0; seg < nr_segs; seg++) { 1455 read_descriptor_t desc; 1456 loff_t offset = 0; 1457 1458 /* 1459 * If we did a short DIO read we need to skip the section of the 1460 * iov that we've already read data into. 1461 */ 1462 if (count) { 1463 if (count > iov[seg].iov_len) { 1464 count -= iov[seg].iov_len; 1465 continue; 1466 } 1467 offset = count; 1468 count = 0; 1469 } 1470 1471 desc.written = 0; 1472 desc.arg.buf = iov[seg].iov_base + offset; 1473 desc.count = iov[seg].iov_len - offset; 1474 if (desc.count == 0) 1475 continue; 1476 desc.error = 0; 1477 do_generic_file_read(filp, ppos, &desc, file_read_actor); 1478 retval += desc.written; 1479 if (desc.error) { 1480 retval = retval ?: desc.error; 1481 break; 1482 } 1483 if (desc.count > 0) 1484 break; 1485 } 1486 out: 1487 return retval; 1488 } 1489 EXPORT_SYMBOL(generic_file_aio_read); 1490 1491 static ssize_t 1492 do_readahead(struct address_space *mapping, struct file *filp, 1493 pgoff_t index, unsigned long nr) 1494 { 1495 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage) 1496 return -EINVAL; 1497 1498 force_page_cache_readahead(mapping, filp, index, nr); 1499 return 0; 1500 } 1501 1502 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count) 1503 { 1504 ssize_t ret; 1505 struct file *file; 1506 1507 ret = -EBADF; 1508 file = fget(fd); 1509 if (file) { 1510 if (file->f_mode & FMODE_READ) { 1511 struct address_space *mapping = file->f_mapping; 1512 pgoff_t start = offset >> PAGE_CACHE_SHIFT; 1513 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT; 1514 unsigned long len = end - start + 1; 1515 ret = do_readahead(mapping, file, start, len); 1516 } 1517 fput(file); 1518 } 1519 return ret; 1520 } 1521 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS 1522 asmlinkage long SyS_readahead(long fd, loff_t offset, long count) 1523 { 1524 return SYSC_readahead((int) fd, offset, (size_t) count); 1525 } 1526 SYSCALL_ALIAS(sys_readahead, SyS_readahead); 1527 #endif 1528 1529 #ifdef CONFIG_MMU 1530 /** 1531 * page_cache_read - adds requested page to the page cache if not already there 1532 * @file: file to read 1533 * @offset: page index 1534 * 1535 * This adds the requested page to the page cache if it isn't already there, 1536 * and schedules an I/O to read in its contents from disk. 1537 */ 1538 static int page_cache_read(struct file *file, pgoff_t offset) 1539 { 1540 struct address_space *mapping = file->f_mapping; 1541 struct page *page; 1542 int ret; 1543 1544 do { 1545 page = page_cache_alloc_cold(mapping); 1546 if (!page) 1547 return -ENOMEM; 1548 1549 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL); 1550 if (ret == 0) 1551 ret = mapping->a_ops->readpage(file, page); 1552 else if (ret == -EEXIST) 1553 ret = 0; /* losing race to add is OK */ 1554 1555 page_cache_release(page); 1556 1557 } while (ret == AOP_TRUNCATED_PAGE); 1558 1559 return ret; 1560 } 1561 1562 #define MMAP_LOTSAMISS (100) 1563 1564 /* 1565 * Synchronous readahead happens when we don't even find 1566 * a page in the page cache at all. 1567 */ 1568 static void do_sync_mmap_readahead(struct vm_area_struct *vma, 1569 struct file_ra_state *ra, 1570 struct file *file, 1571 pgoff_t offset) 1572 { 1573 unsigned long ra_pages; 1574 struct address_space *mapping = file->f_mapping; 1575 1576 /* If we don't want any read-ahead, don't bother */ 1577 if (VM_RandomReadHint(vma)) 1578 return; 1579 if (!ra->ra_pages) 1580 return; 1581 1582 if (VM_SequentialReadHint(vma)) { 1583 page_cache_sync_readahead(mapping, ra, file, offset, 1584 ra->ra_pages); 1585 return; 1586 } 1587 1588 /* Avoid banging the cache line if not needed */ 1589 if (ra->mmap_miss < MMAP_LOTSAMISS * 10) 1590 ra->mmap_miss++; 1591 1592 /* 1593 * Do we miss much more than hit in this file? If so, 1594 * stop bothering with read-ahead. It will only hurt. 1595 */ 1596 if (ra->mmap_miss > MMAP_LOTSAMISS) 1597 return; 1598 1599 /* 1600 * mmap read-around 1601 */ 1602 ra_pages = max_sane_readahead(ra->ra_pages); 1603 ra->start = max_t(long, 0, offset - ra_pages / 2); 1604 ra->size = ra_pages; 1605 ra->async_size = ra_pages / 4; 1606 ra_submit(ra, mapping, file); 1607 } 1608 1609 /* 1610 * Asynchronous readahead happens when we find the page and PG_readahead, 1611 * so we want to possibly extend the readahead further.. 1612 */ 1613 static void do_async_mmap_readahead(struct vm_area_struct *vma, 1614 struct file_ra_state *ra, 1615 struct file *file, 1616 struct page *page, 1617 pgoff_t offset) 1618 { 1619 struct address_space *mapping = file->f_mapping; 1620 1621 /* If we don't want any read-ahead, don't bother */ 1622 if (VM_RandomReadHint(vma)) 1623 return; 1624 if (ra->mmap_miss > 0) 1625 ra->mmap_miss--; 1626 if (PageReadahead(page)) 1627 page_cache_async_readahead(mapping, ra, file, 1628 page, offset, ra->ra_pages); 1629 } 1630 1631 /** 1632 * filemap_fault - read in file data for page fault handling 1633 * @vma: vma in which the fault was taken 1634 * @vmf: struct vm_fault containing details of the fault 1635 * 1636 * filemap_fault() is invoked via the vma operations vector for a 1637 * mapped memory region to read in file data during a page fault. 1638 * 1639 * The goto's are kind of ugly, but this streamlines the normal case of having 1640 * it in the page cache, and handles the special cases reasonably without 1641 * having a lot of duplicated code. 1642 */ 1643 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1644 { 1645 int error; 1646 struct file *file = vma->vm_file; 1647 struct address_space *mapping = file->f_mapping; 1648 struct file_ra_state *ra = &file->f_ra; 1649 struct inode *inode = mapping->host; 1650 pgoff_t offset = vmf->pgoff; 1651 struct page *page; 1652 pgoff_t size; 1653 int ret = 0; 1654 1655 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1656 if (offset >= size) 1657 return VM_FAULT_SIGBUS; 1658 1659 /* 1660 * Do we have something in the page cache already? 1661 */ 1662 page = find_get_page(mapping, offset); 1663 if (likely(page)) { 1664 /* 1665 * We found the page, so try async readahead before 1666 * waiting for the lock. 1667 */ 1668 do_async_mmap_readahead(vma, ra, file, page, offset); 1669 } else { 1670 /* No page in the page cache at all */ 1671 do_sync_mmap_readahead(vma, ra, file, offset); 1672 count_vm_event(PGMAJFAULT); 1673 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); 1674 ret = VM_FAULT_MAJOR; 1675 retry_find: 1676 page = find_get_page(mapping, offset); 1677 if (!page) 1678 goto no_cached_page; 1679 } 1680 1681 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) { 1682 page_cache_release(page); 1683 return ret | VM_FAULT_RETRY; 1684 } 1685 1686 /* Did it get truncated? */ 1687 if (unlikely(page->mapping != mapping)) { 1688 unlock_page(page); 1689 put_page(page); 1690 goto retry_find; 1691 } 1692 VM_BUG_ON(page->index != offset); 1693 1694 /* 1695 * We have a locked page in the page cache, now we need to check 1696 * that it's up-to-date. If not, it is going to be due to an error. 1697 */ 1698 if (unlikely(!PageUptodate(page))) 1699 goto page_not_uptodate; 1700 1701 /* 1702 * Found the page and have a reference on it. 1703 * We must recheck i_size under page lock. 1704 */ 1705 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1706 if (unlikely(offset >= size)) { 1707 unlock_page(page); 1708 page_cache_release(page); 1709 return VM_FAULT_SIGBUS; 1710 } 1711 1712 vmf->page = page; 1713 return ret | VM_FAULT_LOCKED; 1714 1715 no_cached_page: 1716 /* 1717 * We're only likely to ever get here if MADV_RANDOM is in 1718 * effect. 1719 */ 1720 error = page_cache_read(file, offset); 1721 1722 /* 1723 * The page we want has now been added to the page cache. 1724 * In the unlikely event that someone removed it in the 1725 * meantime, we'll just come back here and read it again. 1726 */ 1727 if (error >= 0) 1728 goto retry_find; 1729 1730 /* 1731 * An error return from page_cache_read can result if the 1732 * system is low on memory, or a problem occurs while trying 1733 * to schedule I/O. 1734 */ 1735 if (error == -ENOMEM) 1736 return VM_FAULT_OOM; 1737 return VM_FAULT_SIGBUS; 1738 1739 page_not_uptodate: 1740 /* 1741 * Umm, take care of errors if the page isn't up-to-date. 1742 * Try to re-read it _once_. We do this synchronously, 1743 * because there really aren't any performance issues here 1744 * and we need to check for errors. 1745 */ 1746 ClearPageError(page); 1747 error = mapping->a_ops->readpage(file, page); 1748 if (!error) { 1749 wait_on_page_locked(page); 1750 if (!PageUptodate(page)) 1751 error = -EIO; 1752 } 1753 page_cache_release(page); 1754 1755 if (!error || error == AOP_TRUNCATED_PAGE) 1756 goto retry_find; 1757 1758 /* Things didn't work out. Return zero to tell the mm layer so. */ 1759 shrink_readahead_size_eio(file, ra); 1760 return VM_FAULT_SIGBUS; 1761 } 1762 EXPORT_SYMBOL(filemap_fault); 1763 1764 const struct vm_operations_struct generic_file_vm_ops = { 1765 .fault = filemap_fault, 1766 }; 1767 1768 /* This is used for a general mmap of a disk file */ 1769 1770 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1771 { 1772 struct address_space *mapping = file->f_mapping; 1773 1774 if (!mapping->a_ops->readpage) 1775 return -ENOEXEC; 1776 file_accessed(file); 1777 vma->vm_ops = &generic_file_vm_ops; 1778 vma->vm_flags |= VM_CAN_NONLINEAR; 1779 return 0; 1780 } 1781 1782 /* 1783 * This is for filesystems which do not implement ->writepage. 1784 */ 1785 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 1786 { 1787 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 1788 return -EINVAL; 1789 return generic_file_mmap(file, vma); 1790 } 1791 #else 1792 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1793 { 1794 return -ENOSYS; 1795 } 1796 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 1797 { 1798 return -ENOSYS; 1799 } 1800 #endif /* CONFIG_MMU */ 1801 1802 EXPORT_SYMBOL(generic_file_mmap); 1803 EXPORT_SYMBOL(generic_file_readonly_mmap); 1804 1805 static struct page *__read_cache_page(struct address_space *mapping, 1806 pgoff_t index, 1807 int (*filler)(void *, struct page *), 1808 void *data, 1809 gfp_t gfp) 1810 { 1811 struct page *page; 1812 int err; 1813 repeat: 1814 page = find_get_page(mapping, index); 1815 if (!page) { 1816 page = __page_cache_alloc(gfp | __GFP_COLD); 1817 if (!page) 1818 return ERR_PTR(-ENOMEM); 1819 err = add_to_page_cache_lru(page, mapping, index, gfp); 1820 if (unlikely(err)) { 1821 page_cache_release(page); 1822 if (err == -EEXIST) 1823 goto repeat; 1824 /* Presumably ENOMEM for radix tree node */ 1825 return ERR_PTR(err); 1826 } 1827 err = filler(data, page); 1828 if (err < 0) { 1829 page_cache_release(page); 1830 page = ERR_PTR(err); 1831 } 1832 } 1833 return page; 1834 } 1835 1836 static struct page *do_read_cache_page(struct address_space *mapping, 1837 pgoff_t index, 1838 int (*filler)(void *, struct page *), 1839 void *data, 1840 gfp_t gfp) 1841 1842 { 1843 struct page *page; 1844 int err; 1845 1846 retry: 1847 page = __read_cache_page(mapping, index, filler, data, gfp); 1848 if (IS_ERR(page)) 1849 return page; 1850 if (PageUptodate(page)) 1851 goto out; 1852 1853 lock_page(page); 1854 if (!page->mapping) { 1855 unlock_page(page); 1856 page_cache_release(page); 1857 goto retry; 1858 } 1859 if (PageUptodate(page)) { 1860 unlock_page(page); 1861 goto out; 1862 } 1863 err = filler(data, page); 1864 if (err < 0) { 1865 page_cache_release(page); 1866 return ERR_PTR(err); 1867 } 1868 out: 1869 mark_page_accessed(page); 1870 return page; 1871 } 1872 1873 /** 1874 * read_cache_page_async - read into page cache, fill it if needed 1875 * @mapping: the page's address_space 1876 * @index: the page index 1877 * @filler: function to perform the read 1878 * @data: first arg to filler(data, page) function, often left as NULL 1879 * 1880 * Same as read_cache_page, but don't wait for page to become unlocked 1881 * after submitting it to the filler. 1882 * 1883 * Read into the page cache. If a page already exists, and PageUptodate() is 1884 * not set, try to fill the page but don't wait for it to become unlocked. 1885 * 1886 * If the page does not get brought uptodate, return -EIO. 1887 */ 1888 struct page *read_cache_page_async(struct address_space *mapping, 1889 pgoff_t index, 1890 int (*filler)(void *, struct page *), 1891 void *data) 1892 { 1893 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping)); 1894 } 1895 EXPORT_SYMBOL(read_cache_page_async); 1896 1897 static struct page *wait_on_page_read(struct page *page) 1898 { 1899 if (!IS_ERR(page)) { 1900 wait_on_page_locked(page); 1901 if (!PageUptodate(page)) { 1902 page_cache_release(page); 1903 page = ERR_PTR(-EIO); 1904 } 1905 } 1906 return page; 1907 } 1908 1909 /** 1910 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 1911 * @mapping: the page's address_space 1912 * @index: the page index 1913 * @gfp: the page allocator flags to use if allocating 1914 * 1915 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 1916 * any new page allocations done using the specified allocation flags. 1917 * 1918 * If the page does not get brought uptodate, return -EIO. 1919 */ 1920 struct page *read_cache_page_gfp(struct address_space *mapping, 1921 pgoff_t index, 1922 gfp_t gfp) 1923 { 1924 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 1925 1926 return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp)); 1927 } 1928 EXPORT_SYMBOL(read_cache_page_gfp); 1929 1930 /** 1931 * read_cache_page - read into page cache, fill it if needed 1932 * @mapping: the page's address_space 1933 * @index: the page index 1934 * @filler: function to perform the read 1935 * @data: first arg to filler(data, page) function, often left as NULL 1936 * 1937 * Read into the page cache. If a page already exists, and PageUptodate() is 1938 * not set, try to fill the page then wait for it to become unlocked. 1939 * 1940 * If the page does not get brought uptodate, return -EIO. 1941 */ 1942 struct page *read_cache_page(struct address_space *mapping, 1943 pgoff_t index, 1944 int (*filler)(void *, struct page *), 1945 void *data) 1946 { 1947 return wait_on_page_read(read_cache_page_async(mapping, index, filler, data)); 1948 } 1949 EXPORT_SYMBOL(read_cache_page); 1950 1951 /* 1952 * The logic we want is 1953 * 1954 * if suid or (sgid and xgrp) 1955 * remove privs 1956 */ 1957 int should_remove_suid(struct dentry *dentry) 1958 { 1959 umode_t mode = dentry->d_inode->i_mode; 1960 int kill = 0; 1961 1962 /* suid always must be killed */ 1963 if (unlikely(mode & S_ISUID)) 1964 kill = ATTR_KILL_SUID; 1965 1966 /* 1967 * sgid without any exec bits is just a mandatory locking mark; leave 1968 * it alone. If some exec bits are set, it's a real sgid; kill it. 1969 */ 1970 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1971 kill |= ATTR_KILL_SGID; 1972 1973 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode))) 1974 return kill; 1975 1976 return 0; 1977 } 1978 EXPORT_SYMBOL(should_remove_suid); 1979 1980 static int __remove_suid(struct dentry *dentry, int kill) 1981 { 1982 struct iattr newattrs; 1983 1984 newattrs.ia_valid = ATTR_FORCE | kill; 1985 return notify_change(dentry, &newattrs); 1986 } 1987 1988 int file_remove_suid(struct file *file) 1989 { 1990 struct dentry *dentry = file->f_path.dentry; 1991 struct inode *inode = dentry->d_inode; 1992 int killsuid; 1993 int killpriv; 1994 int error = 0; 1995 1996 /* Fast path for nothing security related */ 1997 if (IS_NOSEC(inode)) 1998 return 0; 1999 2000 killsuid = should_remove_suid(dentry); 2001 killpriv = security_inode_need_killpriv(dentry); 2002 2003 if (killpriv < 0) 2004 return killpriv; 2005 if (killpriv) 2006 error = security_inode_killpriv(dentry); 2007 if (!error && killsuid) 2008 error = __remove_suid(dentry, killsuid); 2009 if (!error && (inode->i_sb->s_flags & MS_NOSEC)) 2010 inode->i_flags |= S_NOSEC; 2011 2012 return error; 2013 } 2014 EXPORT_SYMBOL(file_remove_suid); 2015 2016 static size_t __iovec_copy_from_user_inatomic(char *vaddr, 2017 const struct iovec *iov, size_t base, size_t bytes) 2018 { 2019 size_t copied = 0, left = 0; 2020 2021 while (bytes) { 2022 char __user *buf = iov->iov_base + base; 2023 int copy = min(bytes, iov->iov_len - base); 2024 2025 base = 0; 2026 left = __copy_from_user_inatomic(vaddr, buf, copy); 2027 copied += copy; 2028 bytes -= copy; 2029 vaddr += copy; 2030 iov++; 2031 2032 if (unlikely(left)) 2033 break; 2034 } 2035 return copied - left; 2036 } 2037 2038 /* 2039 * Copy as much as we can into the page and return the number of bytes which 2040 * were successfully copied. If a fault is encountered then return the number of 2041 * bytes which were copied. 2042 */ 2043 size_t iov_iter_copy_from_user_atomic(struct page *page, 2044 struct iov_iter *i, unsigned long offset, size_t bytes) 2045 { 2046 char *kaddr; 2047 size_t copied; 2048 2049 BUG_ON(!in_atomic()); 2050 kaddr = kmap_atomic(page); 2051 if (likely(i->nr_segs == 1)) { 2052 int left; 2053 char __user *buf = i->iov->iov_base + i->iov_offset; 2054 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes); 2055 copied = bytes - left; 2056 } else { 2057 copied = __iovec_copy_from_user_inatomic(kaddr + offset, 2058 i->iov, i->iov_offset, bytes); 2059 } 2060 kunmap_atomic(kaddr); 2061 2062 return copied; 2063 } 2064 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic); 2065 2066 /* 2067 * This has the same sideeffects and return value as 2068 * iov_iter_copy_from_user_atomic(). 2069 * The difference is that it attempts to resolve faults. 2070 * Page must not be locked. 2071 */ 2072 size_t iov_iter_copy_from_user(struct page *page, 2073 struct iov_iter *i, unsigned long offset, size_t bytes) 2074 { 2075 char *kaddr; 2076 size_t copied; 2077 2078 kaddr = kmap(page); 2079 if (likely(i->nr_segs == 1)) { 2080 int left; 2081 char __user *buf = i->iov->iov_base + i->iov_offset; 2082 left = __copy_from_user(kaddr + offset, buf, bytes); 2083 copied = bytes - left; 2084 } else { 2085 copied = __iovec_copy_from_user_inatomic(kaddr + offset, 2086 i->iov, i->iov_offset, bytes); 2087 } 2088 kunmap(page); 2089 return copied; 2090 } 2091 EXPORT_SYMBOL(iov_iter_copy_from_user); 2092 2093 void iov_iter_advance(struct iov_iter *i, size_t bytes) 2094 { 2095 BUG_ON(i->count < bytes); 2096 2097 if (likely(i->nr_segs == 1)) { 2098 i->iov_offset += bytes; 2099 i->count -= bytes; 2100 } else { 2101 const struct iovec *iov = i->iov; 2102 size_t base = i->iov_offset; 2103 unsigned long nr_segs = i->nr_segs; 2104 2105 /* 2106 * The !iov->iov_len check ensures we skip over unlikely 2107 * zero-length segments (without overruning the iovec). 2108 */ 2109 while (bytes || unlikely(i->count && !iov->iov_len)) { 2110 int copy; 2111 2112 copy = min(bytes, iov->iov_len - base); 2113 BUG_ON(!i->count || i->count < copy); 2114 i->count -= copy; 2115 bytes -= copy; 2116 base += copy; 2117 if (iov->iov_len == base) { 2118 iov++; 2119 nr_segs--; 2120 base = 0; 2121 } 2122 } 2123 i->iov = iov; 2124 i->iov_offset = base; 2125 i->nr_segs = nr_segs; 2126 } 2127 } 2128 EXPORT_SYMBOL(iov_iter_advance); 2129 2130 /* 2131 * Fault in the first iovec of the given iov_iter, to a maximum length 2132 * of bytes. Returns 0 on success, or non-zero if the memory could not be 2133 * accessed (ie. because it is an invalid address). 2134 * 2135 * writev-intensive code may want this to prefault several iovecs -- that 2136 * would be possible (callers must not rely on the fact that _only_ the 2137 * first iovec will be faulted with the current implementation). 2138 */ 2139 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes) 2140 { 2141 char __user *buf = i->iov->iov_base + i->iov_offset; 2142 bytes = min(bytes, i->iov->iov_len - i->iov_offset); 2143 return fault_in_pages_readable(buf, bytes); 2144 } 2145 EXPORT_SYMBOL(iov_iter_fault_in_readable); 2146 2147 /* 2148 * Return the count of just the current iov_iter segment. 2149 */ 2150 size_t iov_iter_single_seg_count(struct iov_iter *i) 2151 { 2152 const struct iovec *iov = i->iov; 2153 if (i->nr_segs == 1) 2154 return i->count; 2155 else 2156 return min(i->count, iov->iov_len - i->iov_offset); 2157 } 2158 EXPORT_SYMBOL(iov_iter_single_seg_count); 2159 2160 /* 2161 * Performs necessary checks before doing a write 2162 * 2163 * Can adjust writing position or amount of bytes to write. 2164 * Returns appropriate error code that caller should return or 2165 * zero in case that write should be allowed. 2166 */ 2167 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk) 2168 { 2169 struct inode *inode = file->f_mapping->host; 2170 unsigned long limit = rlimit(RLIMIT_FSIZE); 2171 2172 if (unlikely(*pos < 0)) 2173 return -EINVAL; 2174 2175 if (!isblk) { 2176 /* FIXME: this is for backwards compatibility with 2.4 */ 2177 if (file->f_flags & O_APPEND) 2178 *pos = i_size_read(inode); 2179 2180 if (limit != RLIM_INFINITY) { 2181 if (*pos >= limit) { 2182 send_sig(SIGXFSZ, current, 0); 2183 return -EFBIG; 2184 } 2185 if (*count > limit - (typeof(limit))*pos) { 2186 *count = limit - (typeof(limit))*pos; 2187 } 2188 } 2189 } 2190 2191 /* 2192 * LFS rule 2193 */ 2194 if (unlikely(*pos + *count > MAX_NON_LFS && 2195 !(file->f_flags & O_LARGEFILE))) { 2196 if (*pos >= MAX_NON_LFS) { 2197 return -EFBIG; 2198 } 2199 if (*count > MAX_NON_LFS - (unsigned long)*pos) { 2200 *count = MAX_NON_LFS - (unsigned long)*pos; 2201 } 2202 } 2203 2204 /* 2205 * Are we about to exceed the fs block limit ? 2206 * 2207 * If we have written data it becomes a short write. If we have 2208 * exceeded without writing data we send a signal and return EFBIG. 2209 * Linus frestrict idea will clean these up nicely.. 2210 */ 2211 if (likely(!isblk)) { 2212 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) { 2213 if (*count || *pos > inode->i_sb->s_maxbytes) { 2214 return -EFBIG; 2215 } 2216 /* zero-length writes at ->s_maxbytes are OK */ 2217 } 2218 2219 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes)) 2220 *count = inode->i_sb->s_maxbytes - *pos; 2221 } else { 2222 #ifdef CONFIG_BLOCK 2223 loff_t isize; 2224 if (bdev_read_only(I_BDEV(inode))) 2225 return -EPERM; 2226 isize = i_size_read(inode); 2227 if (*pos >= isize) { 2228 if (*count || *pos > isize) 2229 return -ENOSPC; 2230 } 2231 2232 if (*pos + *count > isize) 2233 *count = isize - *pos; 2234 #else 2235 return -EPERM; 2236 #endif 2237 } 2238 return 0; 2239 } 2240 EXPORT_SYMBOL(generic_write_checks); 2241 2242 int pagecache_write_begin(struct file *file, struct address_space *mapping, 2243 loff_t pos, unsigned len, unsigned flags, 2244 struct page **pagep, void **fsdata) 2245 { 2246 const struct address_space_operations *aops = mapping->a_ops; 2247 2248 return aops->write_begin(file, mapping, pos, len, flags, 2249 pagep, fsdata); 2250 } 2251 EXPORT_SYMBOL(pagecache_write_begin); 2252 2253 int pagecache_write_end(struct file *file, struct address_space *mapping, 2254 loff_t pos, unsigned len, unsigned copied, 2255 struct page *page, void *fsdata) 2256 { 2257 const struct address_space_operations *aops = mapping->a_ops; 2258 2259 mark_page_accessed(page); 2260 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 2261 } 2262 EXPORT_SYMBOL(pagecache_write_end); 2263 2264 ssize_t 2265 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov, 2266 unsigned long *nr_segs, loff_t pos, loff_t *ppos, 2267 size_t count, size_t ocount) 2268 { 2269 struct file *file = iocb->ki_filp; 2270 struct address_space *mapping = file->f_mapping; 2271 struct inode *inode = mapping->host; 2272 ssize_t written; 2273 size_t write_len; 2274 pgoff_t end; 2275 2276 if (count != ocount) 2277 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count); 2278 2279 write_len = iov_length(iov, *nr_segs); 2280 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT; 2281 2282 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1); 2283 if (written) 2284 goto out; 2285 2286 /* 2287 * After a write we want buffered reads to be sure to go to disk to get 2288 * the new data. We invalidate clean cached page from the region we're 2289 * about to write. We do this *before* the write so that we can return 2290 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2291 */ 2292 if (mapping->nrpages) { 2293 written = invalidate_inode_pages2_range(mapping, 2294 pos >> PAGE_CACHE_SHIFT, end); 2295 /* 2296 * If a page can not be invalidated, return 0 to fall back 2297 * to buffered write. 2298 */ 2299 if (written) { 2300 if (written == -EBUSY) 2301 return 0; 2302 goto out; 2303 } 2304 } 2305 2306 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs); 2307 2308 /* 2309 * Finally, try again to invalidate clean pages which might have been 2310 * cached by non-direct readahead, or faulted in by get_user_pages() 2311 * if the source of the write was an mmap'ed region of the file 2312 * we're writing. Either one is a pretty crazy thing to do, 2313 * so we don't support it 100%. If this invalidation 2314 * fails, tough, the write still worked... 2315 */ 2316 if (mapping->nrpages) { 2317 invalidate_inode_pages2_range(mapping, 2318 pos >> PAGE_CACHE_SHIFT, end); 2319 } 2320 2321 if (written > 0) { 2322 pos += written; 2323 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 2324 i_size_write(inode, pos); 2325 mark_inode_dirty(inode); 2326 } 2327 *ppos = pos; 2328 } 2329 out: 2330 return written; 2331 } 2332 EXPORT_SYMBOL(generic_file_direct_write); 2333 2334 /* 2335 * Find or create a page at the given pagecache position. Return the locked 2336 * page. This function is specifically for buffered writes. 2337 */ 2338 struct page *grab_cache_page_write_begin(struct address_space *mapping, 2339 pgoff_t index, unsigned flags) 2340 { 2341 int status; 2342 gfp_t gfp_mask; 2343 struct page *page; 2344 gfp_t gfp_notmask = 0; 2345 2346 gfp_mask = mapping_gfp_mask(mapping); 2347 if (mapping_cap_account_dirty(mapping)) 2348 gfp_mask |= __GFP_WRITE; 2349 if (flags & AOP_FLAG_NOFS) 2350 gfp_notmask = __GFP_FS; 2351 repeat: 2352 page = find_lock_page(mapping, index); 2353 if (page) 2354 goto found; 2355 2356 page = __page_cache_alloc(gfp_mask & ~gfp_notmask); 2357 if (!page) 2358 return NULL; 2359 status = add_to_page_cache_lru(page, mapping, index, 2360 GFP_KERNEL & ~gfp_notmask); 2361 if (unlikely(status)) { 2362 page_cache_release(page); 2363 if (status == -EEXIST) 2364 goto repeat; 2365 return NULL; 2366 } 2367 found: 2368 wait_on_page_writeback(page); 2369 return page; 2370 } 2371 EXPORT_SYMBOL(grab_cache_page_write_begin); 2372 2373 static ssize_t generic_perform_write(struct file *file, 2374 struct iov_iter *i, loff_t pos) 2375 { 2376 struct address_space *mapping = file->f_mapping; 2377 const struct address_space_operations *a_ops = mapping->a_ops; 2378 long status = 0; 2379 ssize_t written = 0; 2380 unsigned int flags = 0; 2381 2382 /* 2383 * Copies from kernel address space cannot fail (NFSD is a big user). 2384 */ 2385 if (segment_eq(get_fs(), KERNEL_DS)) 2386 flags |= AOP_FLAG_UNINTERRUPTIBLE; 2387 2388 do { 2389 struct page *page; 2390 unsigned long offset; /* Offset into pagecache page */ 2391 unsigned long bytes; /* Bytes to write to page */ 2392 size_t copied; /* Bytes copied from user */ 2393 void *fsdata; 2394 2395 offset = (pos & (PAGE_CACHE_SIZE - 1)); 2396 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2397 iov_iter_count(i)); 2398 2399 again: 2400 /* 2401 * Bring in the user page that we will copy from _first_. 2402 * Otherwise there's a nasty deadlock on copying from the 2403 * same page as we're writing to, without it being marked 2404 * up-to-date. 2405 * 2406 * Not only is this an optimisation, but it is also required 2407 * to check that the address is actually valid, when atomic 2408 * usercopies are used, below. 2409 */ 2410 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 2411 status = -EFAULT; 2412 break; 2413 } 2414 2415 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 2416 &page, &fsdata); 2417 if (unlikely(status)) 2418 break; 2419 2420 if (mapping_writably_mapped(mapping)) 2421 flush_dcache_page(page); 2422 2423 pagefault_disable(); 2424 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 2425 pagefault_enable(); 2426 flush_dcache_page(page); 2427 2428 mark_page_accessed(page); 2429 status = a_ops->write_end(file, mapping, pos, bytes, copied, 2430 page, fsdata); 2431 if (unlikely(status < 0)) 2432 break; 2433 copied = status; 2434 2435 cond_resched(); 2436 2437 iov_iter_advance(i, copied); 2438 if (unlikely(copied == 0)) { 2439 /* 2440 * If we were unable to copy any data at all, we must 2441 * fall back to a single segment length write. 2442 * 2443 * If we didn't fallback here, we could livelock 2444 * because not all segments in the iov can be copied at 2445 * once without a pagefault. 2446 */ 2447 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2448 iov_iter_single_seg_count(i)); 2449 goto again; 2450 } 2451 pos += copied; 2452 written += copied; 2453 2454 balance_dirty_pages_ratelimited(mapping); 2455 if (fatal_signal_pending(current)) { 2456 status = -EINTR; 2457 break; 2458 } 2459 } while (iov_iter_count(i)); 2460 2461 return written ? written : status; 2462 } 2463 2464 ssize_t 2465 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov, 2466 unsigned long nr_segs, loff_t pos, loff_t *ppos, 2467 size_t count, ssize_t written) 2468 { 2469 struct file *file = iocb->ki_filp; 2470 ssize_t status; 2471 struct iov_iter i; 2472 2473 iov_iter_init(&i, iov, nr_segs, count, written); 2474 status = generic_perform_write(file, &i, pos); 2475 2476 if (likely(status >= 0)) { 2477 written += status; 2478 *ppos = pos + status; 2479 } 2480 2481 return written ? written : status; 2482 } 2483 EXPORT_SYMBOL(generic_file_buffered_write); 2484 2485 /** 2486 * __generic_file_aio_write - write data to a file 2487 * @iocb: IO state structure (file, offset, etc.) 2488 * @iov: vector with data to write 2489 * @nr_segs: number of segments in the vector 2490 * @ppos: position where to write 2491 * 2492 * This function does all the work needed for actually writing data to a 2493 * file. It does all basic checks, removes SUID from the file, updates 2494 * modification times and calls proper subroutines depending on whether we 2495 * do direct IO or a standard buffered write. 2496 * 2497 * It expects i_mutex to be grabbed unless we work on a block device or similar 2498 * object which does not need locking at all. 2499 * 2500 * This function does *not* take care of syncing data in case of O_SYNC write. 2501 * A caller has to handle it. This is mainly due to the fact that we want to 2502 * avoid syncing under i_mutex. 2503 */ 2504 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, 2505 unsigned long nr_segs, loff_t *ppos) 2506 { 2507 struct file *file = iocb->ki_filp; 2508 struct address_space * mapping = file->f_mapping; 2509 size_t ocount; /* original count */ 2510 size_t count; /* after file limit checks */ 2511 struct inode *inode = mapping->host; 2512 loff_t pos; 2513 ssize_t written; 2514 ssize_t err; 2515 2516 ocount = 0; 2517 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ); 2518 if (err) 2519 return err; 2520 2521 count = ocount; 2522 pos = *ppos; 2523 2524 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); 2525 2526 /* We can write back this queue in page reclaim */ 2527 current->backing_dev_info = mapping->backing_dev_info; 2528 written = 0; 2529 2530 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 2531 if (err) 2532 goto out; 2533 2534 if (count == 0) 2535 goto out; 2536 2537 err = file_remove_suid(file); 2538 if (err) 2539 goto out; 2540 2541 file_update_time(file); 2542 2543 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 2544 if (unlikely(file->f_flags & O_DIRECT)) { 2545 loff_t endbyte; 2546 ssize_t written_buffered; 2547 2548 written = generic_file_direct_write(iocb, iov, &nr_segs, pos, 2549 ppos, count, ocount); 2550 if (written < 0 || written == count) 2551 goto out; 2552 /* 2553 * direct-io write to a hole: fall through to buffered I/O 2554 * for completing the rest of the request. 2555 */ 2556 pos += written; 2557 count -= written; 2558 written_buffered = generic_file_buffered_write(iocb, iov, 2559 nr_segs, pos, ppos, count, 2560 written); 2561 /* 2562 * If generic_file_buffered_write() retuned a synchronous error 2563 * then we want to return the number of bytes which were 2564 * direct-written, or the error code if that was zero. Note 2565 * that this differs from normal direct-io semantics, which 2566 * will return -EFOO even if some bytes were written. 2567 */ 2568 if (written_buffered < 0) { 2569 err = written_buffered; 2570 goto out; 2571 } 2572 2573 /* 2574 * We need to ensure that the page cache pages are written to 2575 * disk and invalidated to preserve the expected O_DIRECT 2576 * semantics. 2577 */ 2578 endbyte = pos + written_buffered - written - 1; 2579 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte); 2580 if (err == 0) { 2581 written = written_buffered; 2582 invalidate_mapping_pages(mapping, 2583 pos >> PAGE_CACHE_SHIFT, 2584 endbyte >> PAGE_CACHE_SHIFT); 2585 } else { 2586 /* 2587 * We don't know how much we wrote, so just return 2588 * the number of bytes which were direct-written 2589 */ 2590 } 2591 } else { 2592 written = generic_file_buffered_write(iocb, iov, nr_segs, 2593 pos, ppos, count, written); 2594 } 2595 out: 2596 current->backing_dev_info = NULL; 2597 return written ? written : err; 2598 } 2599 EXPORT_SYMBOL(__generic_file_aio_write); 2600 2601 /** 2602 * generic_file_aio_write - write data to a file 2603 * @iocb: IO state structure 2604 * @iov: vector with data to write 2605 * @nr_segs: number of segments in the vector 2606 * @pos: position in file where to write 2607 * 2608 * This is a wrapper around __generic_file_aio_write() to be used by most 2609 * filesystems. It takes care of syncing the file in case of O_SYNC file 2610 * and acquires i_mutex as needed. 2611 */ 2612 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, 2613 unsigned long nr_segs, loff_t pos) 2614 { 2615 struct file *file = iocb->ki_filp; 2616 struct inode *inode = file->f_mapping->host; 2617 struct blk_plug plug; 2618 ssize_t ret; 2619 2620 BUG_ON(iocb->ki_pos != pos); 2621 2622 mutex_lock(&inode->i_mutex); 2623 blk_start_plug(&plug); 2624 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos); 2625 mutex_unlock(&inode->i_mutex); 2626 2627 if (ret > 0 || ret == -EIOCBQUEUED) { 2628 ssize_t err; 2629 2630 err = generic_write_sync(file, pos, ret); 2631 if (err < 0 && ret > 0) 2632 ret = err; 2633 } 2634 blk_finish_plug(&plug); 2635 return ret; 2636 } 2637 EXPORT_SYMBOL(generic_file_aio_write); 2638 2639 /** 2640 * try_to_release_page() - release old fs-specific metadata on a page 2641 * 2642 * @page: the page which the kernel is trying to free 2643 * @gfp_mask: memory allocation flags (and I/O mode) 2644 * 2645 * The address_space is to try to release any data against the page 2646 * (presumably at page->private). If the release was successful, return `1'. 2647 * Otherwise return zero. 2648 * 2649 * This may also be called if PG_fscache is set on a page, indicating that the 2650 * page is known to the local caching routines. 2651 * 2652 * The @gfp_mask argument specifies whether I/O may be performed to release 2653 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS). 2654 * 2655 */ 2656 int try_to_release_page(struct page *page, gfp_t gfp_mask) 2657 { 2658 struct address_space * const mapping = page->mapping; 2659 2660 BUG_ON(!PageLocked(page)); 2661 if (PageWriteback(page)) 2662 return 0; 2663 2664 if (mapping && mapping->a_ops->releasepage) 2665 return mapping->a_ops->releasepage(page, gfp_mask); 2666 return try_to_free_buffers(page); 2667 } 2668 2669 EXPORT_SYMBOL(try_to_release_page); 2670