xref: /linux/mm/filemap.c (revision 9f843706bb87837b823228467f4f83973fd110e9)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/module.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include "internal.h"
38 
39 /*
40  * FIXME: remove all knowledge of the buffer layer from the core VM
41  */
42 #include <linux/buffer_head.h> /* for try_to_free_buffers */
43 
44 #include <asm/mman.h>
45 
46 /*
47  * Shared mappings implemented 30.11.1994. It's not fully working yet,
48  * though.
49  *
50  * Shared mappings now work. 15.8.1995  Bruno.
51  *
52  * finished 'unifying' the page and buffer cache and SMP-threaded the
53  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
54  *
55  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
56  */
57 
58 /*
59  * Lock ordering:
60  *
61  *  ->i_mmap_lock		(truncate_pagecache)
62  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
63  *      ->swap_lock		(exclusive_swap_page, others)
64  *        ->mapping->tree_lock
65  *
66  *  ->i_mutex
67  *    ->i_mmap_lock		(truncate->unmap_mapping_range)
68  *
69  *  ->mmap_sem
70  *    ->i_mmap_lock
71  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
72  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
73  *
74  *  ->mmap_sem
75  *    ->lock_page		(access_process_vm)
76  *
77  *  ->i_mutex			(generic_file_buffered_write)
78  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
79  *
80  *  ->i_mutex
81  *    ->i_alloc_sem             (various)
82  *
83  *  ->inode_lock
84  *    ->sb_lock			(fs/fs-writeback.c)
85  *    ->mapping->tree_lock	(__sync_single_inode)
86  *
87  *  ->i_mmap_lock
88  *    ->anon_vma.lock		(vma_adjust)
89  *
90  *  ->anon_vma.lock
91  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
92  *
93  *  ->page_table_lock or pte_lock
94  *    ->swap_lock		(try_to_unmap_one)
95  *    ->private_lock		(try_to_unmap_one)
96  *    ->tree_lock		(try_to_unmap_one)
97  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
98  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
99  *    ->private_lock		(page_remove_rmap->set_page_dirty)
100  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
101  *    ->inode_lock		(page_remove_rmap->set_page_dirty)
102  *    ->inode_lock		(zap_pte_range->set_page_dirty)
103  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
104  *
105  *  ->task->proc_lock
106  *    ->dcache_lock		(proc_pid_lookup)
107  *
108  *  (code doesn't rely on that order, so you could switch it around)
109  *  ->tasklist_lock             (memory_failure, collect_procs_ao)
110  *    ->i_mmap_lock
111  */
112 
113 /*
114  * Remove a page from the page cache and free it. Caller has to make
115  * sure the page is locked and that nobody else uses it - or that usage
116  * is safe.  The caller must hold the mapping's tree_lock.
117  */
118 void __remove_from_page_cache(struct page *page)
119 {
120 	struct address_space *mapping = page->mapping;
121 
122 	radix_tree_delete(&mapping->page_tree, page->index);
123 	page->mapping = NULL;
124 	mapping->nrpages--;
125 	__dec_zone_page_state(page, NR_FILE_PAGES);
126 	if (PageSwapBacked(page))
127 		__dec_zone_page_state(page, NR_SHMEM);
128 	BUG_ON(page_mapped(page));
129 
130 	/*
131 	 * Some filesystems seem to re-dirty the page even after
132 	 * the VM has canceled the dirty bit (eg ext3 journaling).
133 	 *
134 	 * Fix it up by doing a final dirty accounting check after
135 	 * having removed the page entirely.
136 	 */
137 	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
138 		dec_zone_page_state(page, NR_FILE_DIRTY);
139 		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
140 	}
141 }
142 
143 void remove_from_page_cache(struct page *page)
144 {
145 	struct address_space *mapping = page->mapping;
146 
147 	BUG_ON(!PageLocked(page));
148 
149 	spin_lock_irq(&mapping->tree_lock);
150 	__remove_from_page_cache(page);
151 	spin_unlock_irq(&mapping->tree_lock);
152 	mem_cgroup_uncharge_cache_page(page);
153 }
154 EXPORT_SYMBOL(remove_from_page_cache);
155 
156 static int sync_page(void *word)
157 {
158 	struct address_space *mapping;
159 	struct page *page;
160 
161 	page = container_of((unsigned long *)word, struct page, flags);
162 
163 	/*
164 	 * page_mapping() is being called without PG_locked held.
165 	 * Some knowledge of the state and use of the page is used to
166 	 * reduce the requirements down to a memory barrier.
167 	 * The danger here is of a stale page_mapping() return value
168 	 * indicating a struct address_space different from the one it's
169 	 * associated with when it is associated with one.
170 	 * After smp_mb(), it's either the correct page_mapping() for
171 	 * the page, or an old page_mapping() and the page's own
172 	 * page_mapping() has gone NULL.
173 	 * The ->sync_page() address_space operation must tolerate
174 	 * page_mapping() going NULL. By an amazing coincidence,
175 	 * this comes about because none of the users of the page
176 	 * in the ->sync_page() methods make essential use of the
177 	 * page_mapping(), merely passing the page down to the backing
178 	 * device's unplug functions when it's non-NULL, which in turn
179 	 * ignore it for all cases but swap, where only page_private(page) is
180 	 * of interest. When page_mapping() does go NULL, the entire
181 	 * call stack gracefully ignores the page and returns.
182 	 * -- wli
183 	 */
184 	smp_mb();
185 	mapping = page_mapping(page);
186 	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
187 		mapping->a_ops->sync_page(page);
188 	io_schedule();
189 	return 0;
190 }
191 
192 static int sync_page_killable(void *word)
193 {
194 	sync_page(word);
195 	return fatal_signal_pending(current) ? -EINTR : 0;
196 }
197 
198 /**
199  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
200  * @mapping:	address space structure to write
201  * @start:	offset in bytes where the range starts
202  * @end:	offset in bytes where the range ends (inclusive)
203  * @sync_mode:	enable synchronous operation
204  *
205  * Start writeback against all of a mapping's dirty pages that lie
206  * within the byte offsets <start, end> inclusive.
207  *
208  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
209  * opposed to a regular memory cleansing writeback.  The difference between
210  * these two operations is that if a dirty page/buffer is encountered, it must
211  * be waited upon, and not just skipped over.
212  */
213 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
214 				loff_t end, int sync_mode)
215 {
216 	int ret;
217 	struct writeback_control wbc = {
218 		.sync_mode = sync_mode,
219 		.nr_to_write = LONG_MAX,
220 		.range_start = start,
221 		.range_end = end,
222 	};
223 
224 	if (!mapping_cap_writeback_dirty(mapping))
225 		return 0;
226 
227 	ret = do_writepages(mapping, &wbc);
228 	return ret;
229 }
230 
231 static inline int __filemap_fdatawrite(struct address_space *mapping,
232 	int sync_mode)
233 {
234 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
235 }
236 
237 int filemap_fdatawrite(struct address_space *mapping)
238 {
239 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
240 }
241 EXPORT_SYMBOL(filemap_fdatawrite);
242 
243 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
244 				loff_t end)
245 {
246 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
247 }
248 EXPORT_SYMBOL(filemap_fdatawrite_range);
249 
250 /**
251  * filemap_flush - mostly a non-blocking flush
252  * @mapping:	target address_space
253  *
254  * This is a mostly non-blocking flush.  Not suitable for data-integrity
255  * purposes - I/O may not be started against all dirty pages.
256  */
257 int filemap_flush(struct address_space *mapping)
258 {
259 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
260 }
261 EXPORT_SYMBOL(filemap_flush);
262 
263 /**
264  * filemap_fdatawait_range - wait for writeback to complete
265  * @mapping:		address space structure to wait for
266  * @start_byte:		offset in bytes where the range starts
267  * @end_byte:		offset in bytes where the range ends (inclusive)
268  *
269  * Walk the list of under-writeback pages of the given address space
270  * in the given range and wait for all of them.
271  */
272 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
273 			    loff_t end_byte)
274 {
275 	pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
276 	pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
277 	struct pagevec pvec;
278 	int nr_pages;
279 	int ret = 0;
280 
281 	if (end_byte < start_byte)
282 		return 0;
283 
284 	pagevec_init(&pvec, 0);
285 	while ((index <= end) &&
286 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
287 			PAGECACHE_TAG_WRITEBACK,
288 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
289 		unsigned i;
290 
291 		for (i = 0; i < nr_pages; i++) {
292 			struct page *page = pvec.pages[i];
293 
294 			/* until radix tree lookup accepts end_index */
295 			if (page->index > end)
296 				continue;
297 
298 			wait_on_page_writeback(page);
299 			if (PageError(page))
300 				ret = -EIO;
301 		}
302 		pagevec_release(&pvec);
303 		cond_resched();
304 	}
305 
306 	/* Check for outstanding write errors */
307 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
308 		ret = -ENOSPC;
309 	if (test_and_clear_bit(AS_EIO, &mapping->flags))
310 		ret = -EIO;
311 
312 	return ret;
313 }
314 EXPORT_SYMBOL(filemap_fdatawait_range);
315 
316 /**
317  * filemap_fdatawait - wait for all under-writeback pages to complete
318  * @mapping: address space structure to wait for
319  *
320  * Walk the list of under-writeback pages of the given address space
321  * and wait for all of them.
322  */
323 int filemap_fdatawait(struct address_space *mapping)
324 {
325 	loff_t i_size = i_size_read(mapping->host);
326 
327 	if (i_size == 0)
328 		return 0;
329 
330 	return filemap_fdatawait_range(mapping, 0, i_size - 1);
331 }
332 EXPORT_SYMBOL(filemap_fdatawait);
333 
334 int filemap_write_and_wait(struct address_space *mapping)
335 {
336 	int err = 0;
337 
338 	if (mapping->nrpages) {
339 		err = filemap_fdatawrite(mapping);
340 		/*
341 		 * Even if the above returned error, the pages may be
342 		 * written partially (e.g. -ENOSPC), so we wait for it.
343 		 * But the -EIO is special case, it may indicate the worst
344 		 * thing (e.g. bug) happened, so we avoid waiting for it.
345 		 */
346 		if (err != -EIO) {
347 			int err2 = filemap_fdatawait(mapping);
348 			if (!err)
349 				err = err2;
350 		}
351 	}
352 	return err;
353 }
354 EXPORT_SYMBOL(filemap_write_and_wait);
355 
356 /**
357  * filemap_write_and_wait_range - write out & wait on a file range
358  * @mapping:	the address_space for the pages
359  * @lstart:	offset in bytes where the range starts
360  * @lend:	offset in bytes where the range ends (inclusive)
361  *
362  * Write out and wait upon file offsets lstart->lend, inclusive.
363  *
364  * Note that `lend' is inclusive (describes the last byte to be written) so
365  * that this function can be used to write to the very end-of-file (end = -1).
366  */
367 int filemap_write_and_wait_range(struct address_space *mapping,
368 				 loff_t lstart, loff_t lend)
369 {
370 	int err = 0;
371 
372 	if (mapping->nrpages) {
373 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
374 						 WB_SYNC_ALL);
375 		/* See comment of filemap_write_and_wait() */
376 		if (err != -EIO) {
377 			int err2 = filemap_fdatawait_range(mapping,
378 						lstart, lend);
379 			if (!err)
380 				err = err2;
381 		}
382 	}
383 	return err;
384 }
385 EXPORT_SYMBOL(filemap_write_and_wait_range);
386 
387 /**
388  * add_to_page_cache_locked - add a locked page to the pagecache
389  * @page:	page to add
390  * @mapping:	the page's address_space
391  * @offset:	page index
392  * @gfp_mask:	page allocation mode
393  *
394  * This function is used to add a page to the pagecache. It must be locked.
395  * This function does not add the page to the LRU.  The caller must do that.
396  */
397 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
398 		pgoff_t offset, gfp_t gfp_mask)
399 {
400 	int error;
401 
402 	VM_BUG_ON(!PageLocked(page));
403 
404 	error = mem_cgroup_cache_charge(page, current->mm,
405 					gfp_mask & GFP_RECLAIM_MASK);
406 	if (error)
407 		goto out;
408 
409 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
410 	if (error == 0) {
411 		page_cache_get(page);
412 		page->mapping = mapping;
413 		page->index = offset;
414 
415 		spin_lock_irq(&mapping->tree_lock);
416 		error = radix_tree_insert(&mapping->page_tree, offset, page);
417 		if (likely(!error)) {
418 			mapping->nrpages++;
419 			__inc_zone_page_state(page, NR_FILE_PAGES);
420 			if (PageSwapBacked(page))
421 				__inc_zone_page_state(page, NR_SHMEM);
422 			spin_unlock_irq(&mapping->tree_lock);
423 		} else {
424 			page->mapping = NULL;
425 			spin_unlock_irq(&mapping->tree_lock);
426 			mem_cgroup_uncharge_cache_page(page);
427 			page_cache_release(page);
428 		}
429 		radix_tree_preload_end();
430 	} else
431 		mem_cgroup_uncharge_cache_page(page);
432 out:
433 	return error;
434 }
435 EXPORT_SYMBOL(add_to_page_cache_locked);
436 
437 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
438 				pgoff_t offset, gfp_t gfp_mask)
439 {
440 	int ret;
441 
442 	/*
443 	 * Splice_read and readahead add shmem/tmpfs pages into the page cache
444 	 * before shmem_readpage has a chance to mark them as SwapBacked: they
445 	 * need to go on the anon lru below, and mem_cgroup_cache_charge
446 	 * (called in add_to_page_cache) needs to know where they're going too.
447 	 */
448 	if (mapping_cap_swap_backed(mapping))
449 		SetPageSwapBacked(page);
450 
451 	ret = add_to_page_cache(page, mapping, offset, gfp_mask);
452 	if (ret == 0) {
453 		if (page_is_file_cache(page))
454 			lru_cache_add_file(page);
455 		else
456 			lru_cache_add_anon(page);
457 	}
458 	return ret;
459 }
460 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
461 
462 #ifdef CONFIG_NUMA
463 struct page *__page_cache_alloc(gfp_t gfp)
464 {
465 	int n;
466 	struct page *page;
467 
468 	if (cpuset_do_page_mem_spread()) {
469 		get_mems_allowed();
470 		n = cpuset_mem_spread_node();
471 		page = alloc_pages_exact_node(n, gfp, 0);
472 		put_mems_allowed();
473 		return page;
474 	}
475 	return alloc_pages(gfp, 0);
476 }
477 EXPORT_SYMBOL(__page_cache_alloc);
478 #endif
479 
480 static int __sleep_on_page_lock(void *word)
481 {
482 	io_schedule();
483 	return 0;
484 }
485 
486 /*
487  * In order to wait for pages to become available there must be
488  * waitqueues associated with pages. By using a hash table of
489  * waitqueues where the bucket discipline is to maintain all
490  * waiters on the same queue and wake all when any of the pages
491  * become available, and for the woken contexts to check to be
492  * sure the appropriate page became available, this saves space
493  * at a cost of "thundering herd" phenomena during rare hash
494  * collisions.
495  */
496 static wait_queue_head_t *page_waitqueue(struct page *page)
497 {
498 	const struct zone *zone = page_zone(page);
499 
500 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
501 }
502 
503 static inline void wake_up_page(struct page *page, int bit)
504 {
505 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
506 }
507 
508 void wait_on_page_bit(struct page *page, int bit_nr)
509 {
510 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
511 
512 	if (test_bit(bit_nr, &page->flags))
513 		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
514 							TASK_UNINTERRUPTIBLE);
515 }
516 EXPORT_SYMBOL(wait_on_page_bit);
517 
518 /**
519  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
520  * @page: Page defining the wait queue of interest
521  * @waiter: Waiter to add to the queue
522  *
523  * Add an arbitrary @waiter to the wait queue for the nominated @page.
524  */
525 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
526 {
527 	wait_queue_head_t *q = page_waitqueue(page);
528 	unsigned long flags;
529 
530 	spin_lock_irqsave(&q->lock, flags);
531 	__add_wait_queue(q, waiter);
532 	spin_unlock_irqrestore(&q->lock, flags);
533 }
534 EXPORT_SYMBOL_GPL(add_page_wait_queue);
535 
536 /**
537  * unlock_page - unlock a locked page
538  * @page: the page
539  *
540  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
541  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
542  * mechananism between PageLocked pages and PageWriteback pages is shared.
543  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
544  *
545  * The mb is necessary to enforce ordering between the clear_bit and the read
546  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
547  */
548 void unlock_page(struct page *page)
549 {
550 	VM_BUG_ON(!PageLocked(page));
551 	clear_bit_unlock(PG_locked, &page->flags);
552 	smp_mb__after_clear_bit();
553 	wake_up_page(page, PG_locked);
554 }
555 EXPORT_SYMBOL(unlock_page);
556 
557 /**
558  * end_page_writeback - end writeback against a page
559  * @page: the page
560  */
561 void end_page_writeback(struct page *page)
562 {
563 	if (TestClearPageReclaim(page))
564 		rotate_reclaimable_page(page);
565 
566 	if (!test_clear_page_writeback(page))
567 		BUG();
568 
569 	smp_mb__after_clear_bit();
570 	wake_up_page(page, PG_writeback);
571 }
572 EXPORT_SYMBOL(end_page_writeback);
573 
574 /**
575  * __lock_page - get a lock on the page, assuming we need to sleep to get it
576  * @page: the page to lock
577  *
578  * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
579  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
580  * chances are that on the second loop, the block layer's plug list is empty,
581  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
582  */
583 void __lock_page(struct page *page)
584 {
585 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
586 
587 	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
588 							TASK_UNINTERRUPTIBLE);
589 }
590 EXPORT_SYMBOL(__lock_page);
591 
592 int __lock_page_killable(struct page *page)
593 {
594 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
595 
596 	return __wait_on_bit_lock(page_waitqueue(page), &wait,
597 					sync_page_killable, TASK_KILLABLE);
598 }
599 EXPORT_SYMBOL_GPL(__lock_page_killable);
600 
601 /**
602  * __lock_page_nosync - get a lock on the page, without calling sync_page()
603  * @page: the page to lock
604  *
605  * Variant of lock_page that does not require the caller to hold a reference
606  * on the page's mapping.
607  */
608 void __lock_page_nosync(struct page *page)
609 {
610 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
611 	__wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
612 							TASK_UNINTERRUPTIBLE);
613 }
614 
615 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
616 			 unsigned int flags)
617 {
618 	if (!(flags & FAULT_FLAG_ALLOW_RETRY)) {
619 		__lock_page(page);
620 		return 1;
621 	} else {
622 		up_read(&mm->mmap_sem);
623 		wait_on_page_locked(page);
624 		return 0;
625 	}
626 }
627 
628 /**
629  * find_get_page - find and get a page reference
630  * @mapping: the address_space to search
631  * @offset: the page index
632  *
633  * Is there a pagecache struct page at the given (mapping, offset) tuple?
634  * If yes, increment its refcount and return it; if no, return NULL.
635  */
636 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
637 {
638 	void **pagep;
639 	struct page *page;
640 
641 	rcu_read_lock();
642 repeat:
643 	page = NULL;
644 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
645 	if (pagep) {
646 		page = radix_tree_deref_slot(pagep);
647 		if (unlikely(!page || page == RADIX_TREE_RETRY))
648 			goto repeat;
649 
650 		if (!page_cache_get_speculative(page))
651 			goto repeat;
652 
653 		/*
654 		 * Has the page moved?
655 		 * This is part of the lockless pagecache protocol. See
656 		 * include/linux/pagemap.h for details.
657 		 */
658 		if (unlikely(page != *pagep)) {
659 			page_cache_release(page);
660 			goto repeat;
661 		}
662 	}
663 	rcu_read_unlock();
664 
665 	return page;
666 }
667 EXPORT_SYMBOL(find_get_page);
668 
669 /**
670  * find_lock_page - locate, pin and lock a pagecache page
671  * @mapping: the address_space to search
672  * @offset: the page index
673  *
674  * Locates the desired pagecache page, locks it, increments its reference
675  * count and returns its address.
676  *
677  * Returns zero if the page was not present. find_lock_page() may sleep.
678  */
679 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
680 {
681 	struct page *page;
682 
683 repeat:
684 	page = find_get_page(mapping, offset);
685 	if (page) {
686 		lock_page(page);
687 		/* Has the page been truncated? */
688 		if (unlikely(page->mapping != mapping)) {
689 			unlock_page(page);
690 			page_cache_release(page);
691 			goto repeat;
692 		}
693 		VM_BUG_ON(page->index != offset);
694 	}
695 	return page;
696 }
697 EXPORT_SYMBOL(find_lock_page);
698 
699 /**
700  * find_or_create_page - locate or add a pagecache page
701  * @mapping: the page's address_space
702  * @index: the page's index into the mapping
703  * @gfp_mask: page allocation mode
704  *
705  * Locates a page in the pagecache.  If the page is not present, a new page
706  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
707  * LRU list.  The returned page is locked and has its reference count
708  * incremented.
709  *
710  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
711  * allocation!
712  *
713  * find_or_create_page() returns the desired page's address, or zero on
714  * memory exhaustion.
715  */
716 struct page *find_or_create_page(struct address_space *mapping,
717 		pgoff_t index, gfp_t gfp_mask)
718 {
719 	struct page *page;
720 	int err;
721 repeat:
722 	page = find_lock_page(mapping, index);
723 	if (!page) {
724 		page = __page_cache_alloc(gfp_mask);
725 		if (!page)
726 			return NULL;
727 		/*
728 		 * We want a regular kernel memory (not highmem or DMA etc)
729 		 * allocation for the radix tree nodes, but we need to honour
730 		 * the context-specific requirements the caller has asked for.
731 		 * GFP_RECLAIM_MASK collects those requirements.
732 		 */
733 		err = add_to_page_cache_lru(page, mapping, index,
734 			(gfp_mask & GFP_RECLAIM_MASK));
735 		if (unlikely(err)) {
736 			page_cache_release(page);
737 			page = NULL;
738 			if (err == -EEXIST)
739 				goto repeat;
740 		}
741 	}
742 	return page;
743 }
744 EXPORT_SYMBOL(find_or_create_page);
745 
746 /**
747  * find_get_pages - gang pagecache lookup
748  * @mapping:	The address_space to search
749  * @start:	The starting page index
750  * @nr_pages:	The maximum number of pages
751  * @pages:	Where the resulting pages are placed
752  *
753  * find_get_pages() will search for and return a group of up to
754  * @nr_pages pages in the mapping.  The pages are placed at @pages.
755  * find_get_pages() takes a reference against the returned pages.
756  *
757  * The search returns a group of mapping-contiguous pages with ascending
758  * indexes.  There may be holes in the indices due to not-present pages.
759  *
760  * find_get_pages() returns the number of pages which were found.
761  */
762 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
763 			    unsigned int nr_pages, struct page **pages)
764 {
765 	unsigned int i;
766 	unsigned int ret;
767 	unsigned int nr_found;
768 
769 	rcu_read_lock();
770 restart:
771 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
772 				(void ***)pages, start, nr_pages);
773 	ret = 0;
774 	for (i = 0; i < nr_found; i++) {
775 		struct page *page;
776 repeat:
777 		page = radix_tree_deref_slot((void **)pages[i]);
778 		if (unlikely(!page))
779 			continue;
780 		/*
781 		 * this can only trigger if nr_found == 1, making livelock
782 		 * a non issue.
783 		 */
784 		if (unlikely(page == RADIX_TREE_RETRY))
785 			goto restart;
786 
787 		if (!page_cache_get_speculative(page))
788 			goto repeat;
789 
790 		/* Has the page moved? */
791 		if (unlikely(page != *((void **)pages[i]))) {
792 			page_cache_release(page);
793 			goto repeat;
794 		}
795 
796 		pages[ret] = page;
797 		ret++;
798 	}
799 	rcu_read_unlock();
800 	return ret;
801 }
802 
803 /**
804  * find_get_pages_contig - gang contiguous pagecache lookup
805  * @mapping:	The address_space to search
806  * @index:	The starting page index
807  * @nr_pages:	The maximum number of pages
808  * @pages:	Where the resulting pages are placed
809  *
810  * find_get_pages_contig() works exactly like find_get_pages(), except
811  * that the returned number of pages are guaranteed to be contiguous.
812  *
813  * find_get_pages_contig() returns the number of pages which were found.
814  */
815 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
816 			       unsigned int nr_pages, struct page **pages)
817 {
818 	unsigned int i;
819 	unsigned int ret;
820 	unsigned int nr_found;
821 
822 	rcu_read_lock();
823 restart:
824 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
825 				(void ***)pages, index, nr_pages);
826 	ret = 0;
827 	for (i = 0; i < nr_found; i++) {
828 		struct page *page;
829 repeat:
830 		page = radix_tree_deref_slot((void **)pages[i]);
831 		if (unlikely(!page))
832 			continue;
833 		/*
834 		 * this can only trigger if nr_found == 1, making livelock
835 		 * a non issue.
836 		 */
837 		if (unlikely(page == RADIX_TREE_RETRY))
838 			goto restart;
839 
840 		if (page->mapping == NULL || page->index != index)
841 			break;
842 
843 		if (!page_cache_get_speculative(page))
844 			goto repeat;
845 
846 		/* Has the page moved? */
847 		if (unlikely(page != *((void **)pages[i]))) {
848 			page_cache_release(page);
849 			goto repeat;
850 		}
851 
852 		pages[ret] = page;
853 		ret++;
854 		index++;
855 	}
856 	rcu_read_unlock();
857 	return ret;
858 }
859 EXPORT_SYMBOL(find_get_pages_contig);
860 
861 /**
862  * find_get_pages_tag - find and return pages that match @tag
863  * @mapping:	the address_space to search
864  * @index:	the starting page index
865  * @tag:	the tag index
866  * @nr_pages:	the maximum number of pages
867  * @pages:	where the resulting pages are placed
868  *
869  * Like find_get_pages, except we only return pages which are tagged with
870  * @tag.   We update @index to index the next page for the traversal.
871  */
872 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
873 			int tag, unsigned int nr_pages, struct page **pages)
874 {
875 	unsigned int i;
876 	unsigned int ret;
877 	unsigned int nr_found;
878 
879 	rcu_read_lock();
880 restart:
881 	nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
882 				(void ***)pages, *index, nr_pages, tag);
883 	ret = 0;
884 	for (i = 0; i < nr_found; i++) {
885 		struct page *page;
886 repeat:
887 		page = radix_tree_deref_slot((void **)pages[i]);
888 		if (unlikely(!page))
889 			continue;
890 		/*
891 		 * this can only trigger if nr_found == 1, making livelock
892 		 * a non issue.
893 		 */
894 		if (unlikely(page == RADIX_TREE_RETRY))
895 			goto restart;
896 
897 		if (!page_cache_get_speculative(page))
898 			goto repeat;
899 
900 		/* Has the page moved? */
901 		if (unlikely(page != *((void **)pages[i]))) {
902 			page_cache_release(page);
903 			goto repeat;
904 		}
905 
906 		pages[ret] = page;
907 		ret++;
908 	}
909 	rcu_read_unlock();
910 
911 	if (ret)
912 		*index = pages[ret - 1]->index + 1;
913 
914 	return ret;
915 }
916 EXPORT_SYMBOL(find_get_pages_tag);
917 
918 /**
919  * grab_cache_page_nowait - returns locked page at given index in given cache
920  * @mapping: target address_space
921  * @index: the page index
922  *
923  * Same as grab_cache_page(), but do not wait if the page is unavailable.
924  * This is intended for speculative data generators, where the data can
925  * be regenerated if the page couldn't be grabbed.  This routine should
926  * be safe to call while holding the lock for another page.
927  *
928  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
929  * and deadlock against the caller's locked page.
930  */
931 struct page *
932 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
933 {
934 	struct page *page = find_get_page(mapping, index);
935 
936 	if (page) {
937 		if (trylock_page(page))
938 			return page;
939 		page_cache_release(page);
940 		return NULL;
941 	}
942 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
943 	if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
944 		page_cache_release(page);
945 		page = NULL;
946 	}
947 	return page;
948 }
949 EXPORT_SYMBOL(grab_cache_page_nowait);
950 
951 /*
952  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
953  * a _large_ part of the i/o request. Imagine the worst scenario:
954  *
955  *      ---R__________________________________________B__________
956  *         ^ reading here                             ^ bad block(assume 4k)
957  *
958  * read(R) => miss => readahead(R...B) => media error => frustrating retries
959  * => failing the whole request => read(R) => read(R+1) =>
960  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
961  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
962  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
963  *
964  * It is going insane. Fix it by quickly scaling down the readahead size.
965  */
966 static void shrink_readahead_size_eio(struct file *filp,
967 					struct file_ra_state *ra)
968 {
969 	ra->ra_pages /= 4;
970 }
971 
972 /**
973  * do_generic_file_read - generic file read routine
974  * @filp:	the file to read
975  * @ppos:	current file position
976  * @desc:	read_descriptor
977  * @actor:	read method
978  *
979  * This is a generic file read routine, and uses the
980  * mapping->a_ops->readpage() function for the actual low-level stuff.
981  *
982  * This is really ugly. But the goto's actually try to clarify some
983  * of the logic when it comes to error handling etc.
984  */
985 static void do_generic_file_read(struct file *filp, loff_t *ppos,
986 		read_descriptor_t *desc, read_actor_t actor)
987 {
988 	struct address_space *mapping = filp->f_mapping;
989 	struct inode *inode = mapping->host;
990 	struct file_ra_state *ra = &filp->f_ra;
991 	pgoff_t index;
992 	pgoff_t last_index;
993 	pgoff_t prev_index;
994 	unsigned long offset;      /* offset into pagecache page */
995 	unsigned int prev_offset;
996 	int error;
997 
998 	index = *ppos >> PAGE_CACHE_SHIFT;
999 	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1000 	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1001 	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1002 	offset = *ppos & ~PAGE_CACHE_MASK;
1003 
1004 	for (;;) {
1005 		struct page *page;
1006 		pgoff_t end_index;
1007 		loff_t isize;
1008 		unsigned long nr, ret;
1009 
1010 		cond_resched();
1011 find_page:
1012 		page = find_get_page(mapping, index);
1013 		if (!page) {
1014 			page_cache_sync_readahead(mapping,
1015 					ra, filp,
1016 					index, last_index - index);
1017 			page = find_get_page(mapping, index);
1018 			if (unlikely(page == NULL))
1019 				goto no_cached_page;
1020 		}
1021 		if (PageReadahead(page)) {
1022 			page_cache_async_readahead(mapping,
1023 					ra, filp, page,
1024 					index, last_index - index);
1025 		}
1026 		if (!PageUptodate(page)) {
1027 			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1028 					!mapping->a_ops->is_partially_uptodate)
1029 				goto page_not_up_to_date;
1030 			if (!trylock_page(page))
1031 				goto page_not_up_to_date;
1032 			if (!mapping->a_ops->is_partially_uptodate(page,
1033 								desc, offset))
1034 				goto page_not_up_to_date_locked;
1035 			unlock_page(page);
1036 		}
1037 page_ok:
1038 		/*
1039 		 * i_size must be checked after we know the page is Uptodate.
1040 		 *
1041 		 * Checking i_size after the check allows us to calculate
1042 		 * the correct value for "nr", which means the zero-filled
1043 		 * part of the page is not copied back to userspace (unless
1044 		 * another truncate extends the file - this is desired though).
1045 		 */
1046 
1047 		isize = i_size_read(inode);
1048 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1049 		if (unlikely(!isize || index > end_index)) {
1050 			page_cache_release(page);
1051 			goto out;
1052 		}
1053 
1054 		/* nr is the maximum number of bytes to copy from this page */
1055 		nr = PAGE_CACHE_SIZE;
1056 		if (index == end_index) {
1057 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1058 			if (nr <= offset) {
1059 				page_cache_release(page);
1060 				goto out;
1061 			}
1062 		}
1063 		nr = nr - offset;
1064 
1065 		/* If users can be writing to this page using arbitrary
1066 		 * virtual addresses, take care about potential aliasing
1067 		 * before reading the page on the kernel side.
1068 		 */
1069 		if (mapping_writably_mapped(mapping))
1070 			flush_dcache_page(page);
1071 
1072 		/*
1073 		 * When a sequential read accesses a page several times,
1074 		 * only mark it as accessed the first time.
1075 		 */
1076 		if (prev_index != index || offset != prev_offset)
1077 			mark_page_accessed(page);
1078 		prev_index = index;
1079 
1080 		/*
1081 		 * Ok, we have the page, and it's up-to-date, so
1082 		 * now we can copy it to user space...
1083 		 *
1084 		 * The actor routine returns how many bytes were actually used..
1085 		 * NOTE! This may not be the same as how much of a user buffer
1086 		 * we filled up (we may be padding etc), so we can only update
1087 		 * "pos" here (the actor routine has to update the user buffer
1088 		 * pointers and the remaining count).
1089 		 */
1090 		ret = actor(desc, page, offset, nr);
1091 		offset += ret;
1092 		index += offset >> PAGE_CACHE_SHIFT;
1093 		offset &= ~PAGE_CACHE_MASK;
1094 		prev_offset = offset;
1095 
1096 		page_cache_release(page);
1097 		if (ret == nr && desc->count)
1098 			continue;
1099 		goto out;
1100 
1101 page_not_up_to_date:
1102 		/* Get exclusive access to the page ... */
1103 		error = lock_page_killable(page);
1104 		if (unlikely(error))
1105 			goto readpage_error;
1106 
1107 page_not_up_to_date_locked:
1108 		/* Did it get truncated before we got the lock? */
1109 		if (!page->mapping) {
1110 			unlock_page(page);
1111 			page_cache_release(page);
1112 			continue;
1113 		}
1114 
1115 		/* Did somebody else fill it already? */
1116 		if (PageUptodate(page)) {
1117 			unlock_page(page);
1118 			goto page_ok;
1119 		}
1120 
1121 readpage:
1122 		/*
1123 		 * A previous I/O error may have been due to temporary
1124 		 * failures, eg. multipath errors.
1125 		 * PG_error will be set again if readpage fails.
1126 		 */
1127 		ClearPageError(page);
1128 		/* Start the actual read. The read will unlock the page. */
1129 		error = mapping->a_ops->readpage(filp, page);
1130 
1131 		if (unlikely(error)) {
1132 			if (error == AOP_TRUNCATED_PAGE) {
1133 				page_cache_release(page);
1134 				goto find_page;
1135 			}
1136 			goto readpage_error;
1137 		}
1138 
1139 		if (!PageUptodate(page)) {
1140 			error = lock_page_killable(page);
1141 			if (unlikely(error))
1142 				goto readpage_error;
1143 			if (!PageUptodate(page)) {
1144 				if (page->mapping == NULL) {
1145 					/*
1146 					 * invalidate_mapping_pages got it
1147 					 */
1148 					unlock_page(page);
1149 					page_cache_release(page);
1150 					goto find_page;
1151 				}
1152 				unlock_page(page);
1153 				shrink_readahead_size_eio(filp, ra);
1154 				error = -EIO;
1155 				goto readpage_error;
1156 			}
1157 			unlock_page(page);
1158 		}
1159 
1160 		goto page_ok;
1161 
1162 readpage_error:
1163 		/* UHHUH! A synchronous read error occurred. Report it */
1164 		desc->error = error;
1165 		page_cache_release(page);
1166 		goto out;
1167 
1168 no_cached_page:
1169 		/*
1170 		 * Ok, it wasn't cached, so we need to create a new
1171 		 * page..
1172 		 */
1173 		page = page_cache_alloc_cold(mapping);
1174 		if (!page) {
1175 			desc->error = -ENOMEM;
1176 			goto out;
1177 		}
1178 		error = add_to_page_cache_lru(page, mapping,
1179 						index, GFP_KERNEL);
1180 		if (error) {
1181 			page_cache_release(page);
1182 			if (error == -EEXIST)
1183 				goto find_page;
1184 			desc->error = error;
1185 			goto out;
1186 		}
1187 		goto readpage;
1188 	}
1189 
1190 out:
1191 	ra->prev_pos = prev_index;
1192 	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1193 	ra->prev_pos |= prev_offset;
1194 
1195 	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1196 	file_accessed(filp);
1197 }
1198 
1199 int file_read_actor(read_descriptor_t *desc, struct page *page,
1200 			unsigned long offset, unsigned long size)
1201 {
1202 	char *kaddr;
1203 	unsigned long left, count = desc->count;
1204 
1205 	if (size > count)
1206 		size = count;
1207 
1208 	/*
1209 	 * Faults on the destination of a read are common, so do it before
1210 	 * taking the kmap.
1211 	 */
1212 	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1213 		kaddr = kmap_atomic(page, KM_USER0);
1214 		left = __copy_to_user_inatomic(desc->arg.buf,
1215 						kaddr + offset, size);
1216 		kunmap_atomic(kaddr, KM_USER0);
1217 		if (left == 0)
1218 			goto success;
1219 	}
1220 
1221 	/* Do it the slow way */
1222 	kaddr = kmap(page);
1223 	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1224 	kunmap(page);
1225 
1226 	if (left) {
1227 		size -= left;
1228 		desc->error = -EFAULT;
1229 	}
1230 success:
1231 	desc->count = count - size;
1232 	desc->written += size;
1233 	desc->arg.buf += size;
1234 	return size;
1235 }
1236 
1237 /*
1238  * Performs necessary checks before doing a write
1239  * @iov:	io vector request
1240  * @nr_segs:	number of segments in the iovec
1241  * @count:	number of bytes to write
1242  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1243  *
1244  * Adjust number of segments and amount of bytes to write (nr_segs should be
1245  * properly initialized first). Returns appropriate error code that caller
1246  * should return or zero in case that write should be allowed.
1247  */
1248 int generic_segment_checks(const struct iovec *iov,
1249 			unsigned long *nr_segs, size_t *count, int access_flags)
1250 {
1251 	unsigned long   seg;
1252 	size_t cnt = 0;
1253 	for (seg = 0; seg < *nr_segs; seg++) {
1254 		const struct iovec *iv = &iov[seg];
1255 
1256 		/*
1257 		 * If any segment has a negative length, or the cumulative
1258 		 * length ever wraps negative then return -EINVAL.
1259 		 */
1260 		cnt += iv->iov_len;
1261 		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1262 			return -EINVAL;
1263 		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1264 			continue;
1265 		if (seg == 0)
1266 			return -EFAULT;
1267 		*nr_segs = seg;
1268 		cnt -= iv->iov_len;	/* This segment is no good */
1269 		break;
1270 	}
1271 	*count = cnt;
1272 	return 0;
1273 }
1274 EXPORT_SYMBOL(generic_segment_checks);
1275 
1276 /**
1277  * generic_file_aio_read - generic filesystem read routine
1278  * @iocb:	kernel I/O control block
1279  * @iov:	io vector request
1280  * @nr_segs:	number of segments in the iovec
1281  * @pos:	current file position
1282  *
1283  * This is the "read()" routine for all filesystems
1284  * that can use the page cache directly.
1285  */
1286 ssize_t
1287 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1288 		unsigned long nr_segs, loff_t pos)
1289 {
1290 	struct file *filp = iocb->ki_filp;
1291 	ssize_t retval;
1292 	unsigned long seg = 0;
1293 	size_t count;
1294 	loff_t *ppos = &iocb->ki_pos;
1295 
1296 	count = 0;
1297 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1298 	if (retval)
1299 		return retval;
1300 
1301 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1302 	if (filp->f_flags & O_DIRECT) {
1303 		loff_t size;
1304 		struct address_space *mapping;
1305 		struct inode *inode;
1306 
1307 		mapping = filp->f_mapping;
1308 		inode = mapping->host;
1309 		if (!count)
1310 			goto out; /* skip atime */
1311 		size = i_size_read(inode);
1312 		if (pos < size) {
1313 			retval = filemap_write_and_wait_range(mapping, pos,
1314 					pos + iov_length(iov, nr_segs) - 1);
1315 			if (!retval) {
1316 				retval = mapping->a_ops->direct_IO(READ, iocb,
1317 							iov, pos, nr_segs);
1318 			}
1319 			if (retval > 0) {
1320 				*ppos = pos + retval;
1321 				count -= retval;
1322 			}
1323 
1324 			/*
1325 			 * Btrfs can have a short DIO read if we encounter
1326 			 * compressed extents, so if there was an error, or if
1327 			 * we've already read everything we wanted to, or if
1328 			 * there was a short read because we hit EOF, go ahead
1329 			 * and return.  Otherwise fallthrough to buffered io for
1330 			 * the rest of the read.
1331 			 */
1332 			if (retval < 0 || !count || *ppos >= size) {
1333 				file_accessed(filp);
1334 				goto out;
1335 			}
1336 		}
1337 	}
1338 
1339 	count = retval;
1340 	for (seg = 0; seg < nr_segs; seg++) {
1341 		read_descriptor_t desc;
1342 		loff_t offset = 0;
1343 
1344 		/*
1345 		 * If we did a short DIO read we need to skip the section of the
1346 		 * iov that we've already read data into.
1347 		 */
1348 		if (count) {
1349 			if (count > iov[seg].iov_len) {
1350 				count -= iov[seg].iov_len;
1351 				continue;
1352 			}
1353 			offset = count;
1354 			count = 0;
1355 		}
1356 
1357 		desc.written = 0;
1358 		desc.arg.buf = iov[seg].iov_base + offset;
1359 		desc.count = iov[seg].iov_len - offset;
1360 		if (desc.count == 0)
1361 			continue;
1362 		desc.error = 0;
1363 		do_generic_file_read(filp, ppos, &desc, file_read_actor);
1364 		retval += desc.written;
1365 		if (desc.error) {
1366 			retval = retval ?: desc.error;
1367 			break;
1368 		}
1369 		if (desc.count > 0)
1370 			break;
1371 	}
1372 out:
1373 	return retval;
1374 }
1375 EXPORT_SYMBOL(generic_file_aio_read);
1376 
1377 static ssize_t
1378 do_readahead(struct address_space *mapping, struct file *filp,
1379 	     pgoff_t index, unsigned long nr)
1380 {
1381 	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1382 		return -EINVAL;
1383 
1384 	force_page_cache_readahead(mapping, filp, index, nr);
1385 	return 0;
1386 }
1387 
1388 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1389 {
1390 	ssize_t ret;
1391 	struct file *file;
1392 
1393 	ret = -EBADF;
1394 	file = fget(fd);
1395 	if (file) {
1396 		if (file->f_mode & FMODE_READ) {
1397 			struct address_space *mapping = file->f_mapping;
1398 			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1399 			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1400 			unsigned long len = end - start + 1;
1401 			ret = do_readahead(mapping, file, start, len);
1402 		}
1403 		fput(file);
1404 	}
1405 	return ret;
1406 }
1407 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1408 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1409 {
1410 	return SYSC_readahead((int) fd, offset, (size_t) count);
1411 }
1412 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1413 #endif
1414 
1415 #ifdef CONFIG_MMU
1416 /**
1417  * page_cache_read - adds requested page to the page cache if not already there
1418  * @file:	file to read
1419  * @offset:	page index
1420  *
1421  * This adds the requested page to the page cache if it isn't already there,
1422  * and schedules an I/O to read in its contents from disk.
1423  */
1424 static int page_cache_read(struct file *file, pgoff_t offset)
1425 {
1426 	struct address_space *mapping = file->f_mapping;
1427 	struct page *page;
1428 	int ret;
1429 
1430 	do {
1431 		page = page_cache_alloc_cold(mapping);
1432 		if (!page)
1433 			return -ENOMEM;
1434 
1435 		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1436 		if (ret == 0)
1437 			ret = mapping->a_ops->readpage(file, page);
1438 		else if (ret == -EEXIST)
1439 			ret = 0; /* losing race to add is OK */
1440 
1441 		page_cache_release(page);
1442 
1443 	} while (ret == AOP_TRUNCATED_PAGE);
1444 
1445 	return ret;
1446 }
1447 
1448 #define MMAP_LOTSAMISS  (100)
1449 
1450 /*
1451  * Synchronous readahead happens when we don't even find
1452  * a page in the page cache at all.
1453  */
1454 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1455 				   struct file_ra_state *ra,
1456 				   struct file *file,
1457 				   pgoff_t offset)
1458 {
1459 	unsigned long ra_pages;
1460 	struct address_space *mapping = file->f_mapping;
1461 
1462 	/* If we don't want any read-ahead, don't bother */
1463 	if (VM_RandomReadHint(vma))
1464 		return;
1465 
1466 	if (VM_SequentialReadHint(vma) ||
1467 			offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) {
1468 		page_cache_sync_readahead(mapping, ra, file, offset,
1469 					  ra->ra_pages);
1470 		return;
1471 	}
1472 
1473 	if (ra->mmap_miss < INT_MAX)
1474 		ra->mmap_miss++;
1475 
1476 	/*
1477 	 * Do we miss much more than hit in this file? If so,
1478 	 * stop bothering with read-ahead. It will only hurt.
1479 	 */
1480 	if (ra->mmap_miss > MMAP_LOTSAMISS)
1481 		return;
1482 
1483 	/*
1484 	 * mmap read-around
1485 	 */
1486 	ra_pages = max_sane_readahead(ra->ra_pages);
1487 	if (ra_pages) {
1488 		ra->start = max_t(long, 0, offset - ra_pages/2);
1489 		ra->size = ra_pages;
1490 		ra->async_size = 0;
1491 		ra_submit(ra, mapping, file);
1492 	}
1493 }
1494 
1495 /*
1496  * Asynchronous readahead happens when we find the page and PG_readahead,
1497  * so we want to possibly extend the readahead further..
1498  */
1499 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1500 				    struct file_ra_state *ra,
1501 				    struct file *file,
1502 				    struct page *page,
1503 				    pgoff_t offset)
1504 {
1505 	struct address_space *mapping = file->f_mapping;
1506 
1507 	/* If we don't want any read-ahead, don't bother */
1508 	if (VM_RandomReadHint(vma))
1509 		return;
1510 	if (ra->mmap_miss > 0)
1511 		ra->mmap_miss--;
1512 	if (PageReadahead(page))
1513 		page_cache_async_readahead(mapping, ra, file,
1514 					   page, offset, ra->ra_pages);
1515 }
1516 
1517 /**
1518  * filemap_fault - read in file data for page fault handling
1519  * @vma:	vma in which the fault was taken
1520  * @vmf:	struct vm_fault containing details of the fault
1521  *
1522  * filemap_fault() is invoked via the vma operations vector for a
1523  * mapped memory region to read in file data during a page fault.
1524  *
1525  * The goto's are kind of ugly, but this streamlines the normal case of having
1526  * it in the page cache, and handles the special cases reasonably without
1527  * having a lot of duplicated code.
1528  */
1529 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1530 {
1531 	int error;
1532 	struct file *file = vma->vm_file;
1533 	struct address_space *mapping = file->f_mapping;
1534 	struct file_ra_state *ra = &file->f_ra;
1535 	struct inode *inode = mapping->host;
1536 	pgoff_t offset = vmf->pgoff;
1537 	struct page *page;
1538 	pgoff_t size;
1539 	int ret = 0;
1540 
1541 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1542 	if (offset >= size)
1543 		return VM_FAULT_SIGBUS;
1544 
1545 	/*
1546 	 * Do we have something in the page cache already?
1547 	 */
1548 	page = find_get_page(mapping, offset);
1549 	if (likely(page)) {
1550 		/*
1551 		 * We found the page, so try async readahead before
1552 		 * waiting for the lock.
1553 		 */
1554 		do_async_mmap_readahead(vma, ra, file, page, offset);
1555 	} else {
1556 		/* No page in the page cache at all */
1557 		do_sync_mmap_readahead(vma, ra, file, offset);
1558 		count_vm_event(PGMAJFAULT);
1559 		ret = VM_FAULT_MAJOR;
1560 retry_find:
1561 		page = find_get_page(mapping, offset);
1562 		if (!page)
1563 			goto no_cached_page;
1564 	}
1565 
1566 	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1567 		page_cache_release(page);
1568 		return ret | VM_FAULT_RETRY;
1569 	}
1570 
1571 	/* Did it get truncated? */
1572 	if (unlikely(page->mapping != mapping)) {
1573 		unlock_page(page);
1574 		put_page(page);
1575 		goto retry_find;
1576 	}
1577 	VM_BUG_ON(page->index != offset);
1578 
1579 	/*
1580 	 * We have a locked page in the page cache, now we need to check
1581 	 * that it's up-to-date. If not, it is going to be due to an error.
1582 	 */
1583 	if (unlikely(!PageUptodate(page)))
1584 		goto page_not_uptodate;
1585 
1586 	/*
1587 	 * Found the page and have a reference on it.
1588 	 * We must recheck i_size under page lock.
1589 	 */
1590 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1591 	if (unlikely(offset >= size)) {
1592 		unlock_page(page);
1593 		page_cache_release(page);
1594 		return VM_FAULT_SIGBUS;
1595 	}
1596 
1597 	ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT;
1598 	vmf->page = page;
1599 	return ret | VM_FAULT_LOCKED;
1600 
1601 no_cached_page:
1602 	/*
1603 	 * We're only likely to ever get here if MADV_RANDOM is in
1604 	 * effect.
1605 	 */
1606 	error = page_cache_read(file, offset);
1607 
1608 	/*
1609 	 * The page we want has now been added to the page cache.
1610 	 * In the unlikely event that someone removed it in the
1611 	 * meantime, we'll just come back here and read it again.
1612 	 */
1613 	if (error >= 0)
1614 		goto retry_find;
1615 
1616 	/*
1617 	 * An error return from page_cache_read can result if the
1618 	 * system is low on memory, or a problem occurs while trying
1619 	 * to schedule I/O.
1620 	 */
1621 	if (error == -ENOMEM)
1622 		return VM_FAULT_OOM;
1623 	return VM_FAULT_SIGBUS;
1624 
1625 page_not_uptodate:
1626 	/*
1627 	 * Umm, take care of errors if the page isn't up-to-date.
1628 	 * Try to re-read it _once_. We do this synchronously,
1629 	 * because there really aren't any performance issues here
1630 	 * and we need to check for errors.
1631 	 */
1632 	ClearPageError(page);
1633 	error = mapping->a_ops->readpage(file, page);
1634 	if (!error) {
1635 		wait_on_page_locked(page);
1636 		if (!PageUptodate(page))
1637 			error = -EIO;
1638 	}
1639 	page_cache_release(page);
1640 
1641 	if (!error || error == AOP_TRUNCATED_PAGE)
1642 		goto retry_find;
1643 
1644 	/* Things didn't work out. Return zero to tell the mm layer so. */
1645 	shrink_readahead_size_eio(file, ra);
1646 	return VM_FAULT_SIGBUS;
1647 }
1648 EXPORT_SYMBOL(filemap_fault);
1649 
1650 const struct vm_operations_struct generic_file_vm_ops = {
1651 	.fault		= filemap_fault,
1652 };
1653 
1654 /* This is used for a general mmap of a disk file */
1655 
1656 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1657 {
1658 	struct address_space *mapping = file->f_mapping;
1659 
1660 	if (!mapping->a_ops->readpage)
1661 		return -ENOEXEC;
1662 	file_accessed(file);
1663 	vma->vm_ops = &generic_file_vm_ops;
1664 	vma->vm_flags |= VM_CAN_NONLINEAR;
1665 	return 0;
1666 }
1667 
1668 /*
1669  * This is for filesystems which do not implement ->writepage.
1670  */
1671 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1672 {
1673 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1674 		return -EINVAL;
1675 	return generic_file_mmap(file, vma);
1676 }
1677 #else
1678 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1679 {
1680 	return -ENOSYS;
1681 }
1682 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1683 {
1684 	return -ENOSYS;
1685 }
1686 #endif /* CONFIG_MMU */
1687 
1688 EXPORT_SYMBOL(generic_file_mmap);
1689 EXPORT_SYMBOL(generic_file_readonly_mmap);
1690 
1691 static struct page *__read_cache_page(struct address_space *mapping,
1692 				pgoff_t index,
1693 				int (*filler)(void *,struct page*),
1694 				void *data,
1695 				gfp_t gfp)
1696 {
1697 	struct page *page;
1698 	int err;
1699 repeat:
1700 	page = find_get_page(mapping, index);
1701 	if (!page) {
1702 		page = __page_cache_alloc(gfp | __GFP_COLD);
1703 		if (!page)
1704 			return ERR_PTR(-ENOMEM);
1705 		err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1706 		if (unlikely(err)) {
1707 			page_cache_release(page);
1708 			if (err == -EEXIST)
1709 				goto repeat;
1710 			/* Presumably ENOMEM for radix tree node */
1711 			return ERR_PTR(err);
1712 		}
1713 		err = filler(data, page);
1714 		if (err < 0) {
1715 			page_cache_release(page);
1716 			page = ERR_PTR(err);
1717 		}
1718 	}
1719 	return page;
1720 }
1721 
1722 static struct page *do_read_cache_page(struct address_space *mapping,
1723 				pgoff_t index,
1724 				int (*filler)(void *,struct page*),
1725 				void *data,
1726 				gfp_t gfp)
1727 
1728 {
1729 	struct page *page;
1730 	int err;
1731 
1732 retry:
1733 	page = __read_cache_page(mapping, index, filler, data, gfp);
1734 	if (IS_ERR(page))
1735 		return page;
1736 	if (PageUptodate(page))
1737 		goto out;
1738 
1739 	lock_page(page);
1740 	if (!page->mapping) {
1741 		unlock_page(page);
1742 		page_cache_release(page);
1743 		goto retry;
1744 	}
1745 	if (PageUptodate(page)) {
1746 		unlock_page(page);
1747 		goto out;
1748 	}
1749 	err = filler(data, page);
1750 	if (err < 0) {
1751 		page_cache_release(page);
1752 		return ERR_PTR(err);
1753 	}
1754 out:
1755 	mark_page_accessed(page);
1756 	return page;
1757 }
1758 
1759 /**
1760  * read_cache_page_async - read into page cache, fill it if needed
1761  * @mapping:	the page's address_space
1762  * @index:	the page index
1763  * @filler:	function to perform the read
1764  * @data:	destination for read data
1765  *
1766  * Same as read_cache_page, but don't wait for page to become unlocked
1767  * after submitting it to the filler.
1768  *
1769  * Read into the page cache. If a page already exists, and PageUptodate() is
1770  * not set, try to fill the page but don't wait for it to become unlocked.
1771  *
1772  * If the page does not get brought uptodate, return -EIO.
1773  */
1774 struct page *read_cache_page_async(struct address_space *mapping,
1775 				pgoff_t index,
1776 				int (*filler)(void *,struct page*),
1777 				void *data)
1778 {
1779 	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1780 }
1781 EXPORT_SYMBOL(read_cache_page_async);
1782 
1783 static struct page *wait_on_page_read(struct page *page)
1784 {
1785 	if (!IS_ERR(page)) {
1786 		wait_on_page_locked(page);
1787 		if (!PageUptodate(page)) {
1788 			page_cache_release(page);
1789 			page = ERR_PTR(-EIO);
1790 		}
1791 	}
1792 	return page;
1793 }
1794 
1795 /**
1796  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1797  * @mapping:	the page's address_space
1798  * @index:	the page index
1799  * @gfp:	the page allocator flags to use if allocating
1800  *
1801  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1802  * any new page allocations done using the specified allocation flags. Note
1803  * that the Radix tree operations will still use GFP_KERNEL, so you can't
1804  * expect to do this atomically or anything like that - but you can pass in
1805  * other page requirements.
1806  *
1807  * If the page does not get brought uptodate, return -EIO.
1808  */
1809 struct page *read_cache_page_gfp(struct address_space *mapping,
1810 				pgoff_t index,
1811 				gfp_t gfp)
1812 {
1813 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1814 
1815 	return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1816 }
1817 EXPORT_SYMBOL(read_cache_page_gfp);
1818 
1819 /**
1820  * read_cache_page - read into page cache, fill it if needed
1821  * @mapping:	the page's address_space
1822  * @index:	the page index
1823  * @filler:	function to perform the read
1824  * @data:	destination for read data
1825  *
1826  * Read into the page cache. If a page already exists, and PageUptodate() is
1827  * not set, try to fill the page then wait for it to become unlocked.
1828  *
1829  * If the page does not get brought uptodate, return -EIO.
1830  */
1831 struct page *read_cache_page(struct address_space *mapping,
1832 				pgoff_t index,
1833 				int (*filler)(void *,struct page*),
1834 				void *data)
1835 {
1836 	return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1837 }
1838 EXPORT_SYMBOL(read_cache_page);
1839 
1840 /*
1841  * The logic we want is
1842  *
1843  *	if suid or (sgid and xgrp)
1844  *		remove privs
1845  */
1846 int should_remove_suid(struct dentry *dentry)
1847 {
1848 	mode_t mode = dentry->d_inode->i_mode;
1849 	int kill = 0;
1850 
1851 	/* suid always must be killed */
1852 	if (unlikely(mode & S_ISUID))
1853 		kill = ATTR_KILL_SUID;
1854 
1855 	/*
1856 	 * sgid without any exec bits is just a mandatory locking mark; leave
1857 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1858 	 */
1859 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1860 		kill |= ATTR_KILL_SGID;
1861 
1862 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1863 		return kill;
1864 
1865 	return 0;
1866 }
1867 EXPORT_SYMBOL(should_remove_suid);
1868 
1869 static int __remove_suid(struct dentry *dentry, int kill)
1870 {
1871 	struct iattr newattrs;
1872 
1873 	newattrs.ia_valid = ATTR_FORCE | kill;
1874 	return notify_change(dentry, &newattrs);
1875 }
1876 
1877 int file_remove_suid(struct file *file)
1878 {
1879 	struct dentry *dentry = file->f_path.dentry;
1880 	int killsuid = should_remove_suid(dentry);
1881 	int killpriv = security_inode_need_killpriv(dentry);
1882 	int error = 0;
1883 
1884 	if (killpriv < 0)
1885 		return killpriv;
1886 	if (killpriv)
1887 		error = security_inode_killpriv(dentry);
1888 	if (!error && killsuid)
1889 		error = __remove_suid(dentry, killsuid);
1890 
1891 	return error;
1892 }
1893 EXPORT_SYMBOL(file_remove_suid);
1894 
1895 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1896 			const struct iovec *iov, size_t base, size_t bytes)
1897 {
1898 	size_t copied = 0, left = 0;
1899 
1900 	while (bytes) {
1901 		char __user *buf = iov->iov_base + base;
1902 		int copy = min(bytes, iov->iov_len - base);
1903 
1904 		base = 0;
1905 		left = __copy_from_user_inatomic(vaddr, buf, copy);
1906 		copied += copy;
1907 		bytes -= copy;
1908 		vaddr += copy;
1909 		iov++;
1910 
1911 		if (unlikely(left))
1912 			break;
1913 	}
1914 	return copied - left;
1915 }
1916 
1917 /*
1918  * Copy as much as we can into the page and return the number of bytes which
1919  * were successfully copied.  If a fault is encountered then return the number of
1920  * bytes which were copied.
1921  */
1922 size_t iov_iter_copy_from_user_atomic(struct page *page,
1923 		struct iov_iter *i, unsigned long offset, size_t bytes)
1924 {
1925 	char *kaddr;
1926 	size_t copied;
1927 
1928 	BUG_ON(!in_atomic());
1929 	kaddr = kmap_atomic(page, KM_USER0);
1930 	if (likely(i->nr_segs == 1)) {
1931 		int left;
1932 		char __user *buf = i->iov->iov_base + i->iov_offset;
1933 		left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
1934 		copied = bytes - left;
1935 	} else {
1936 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1937 						i->iov, i->iov_offset, bytes);
1938 	}
1939 	kunmap_atomic(kaddr, KM_USER0);
1940 
1941 	return copied;
1942 }
1943 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1944 
1945 /*
1946  * This has the same sideeffects and return value as
1947  * iov_iter_copy_from_user_atomic().
1948  * The difference is that it attempts to resolve faults.
1949  * Page must not be locked.
1950  */
1951 size_t iov_iter_copy_from_user(struct page *page,
1952 		struct iov_iter *i, unsigned long offset, size_t bytes)
1953 {
1954 	char *kaddr;
1955 	size_t copied;
1956 
1957 	kaddr = kmap(page);
1958 	if (likely(i->nr_segs == 1)) {
1959 		int left;
1960 		char __user *buf = i->iov->iov_base + i->iov_offset;
1961 		left = __copy_from_user(kaddr + offset, buf, bytes);
1962 		copied = bytes - left;
1963 	} else {
1964 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1965 						i->iov, i->iov_offset, bytes);
1966 	}
1967 	kunmap(page);
1968 	return copied;
1969 }
1970 EXPORT_SYMBOL(iov_iter_copy_from_user);
1971 
1972 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1973 {
1974 	BUG_ON(i->count < bytes);
1975 
1976 	if (likely(i->nr_segs == 1)) {
1977 		i->iov_offset += bytes;
1978 		i->count -= bytes;
1979 	} else {
1980 		const struct iovec *iov = i->iov;
1981 		size_t base = i->iov_offset;
1982 
1983 		/*
1984 		 * The !iov->iov_len check ensures we skip over unlikely
1985 		 * zero-length segments (without overruning the iovec).
1986 		 */
1987 		while (bytes || unlikely(i->count && !iov->iov_len)) {
1988 			int copy;
1989 
1990 			copy = min(bytes, iov->iov_len - base);
1991 			BUG_ON(!i->count || i->count < copy);
1992 			i->count -= copy;
1993 			bytes -= copy;
1994 			base += copy;
1995 			if (iov->iov_len == base) {
1996 				iov++;
1997 				base = 0;
1998 			}
1999 		}
2000 		i->iov = iov;
2001 		i->iov_offset = base;
2002 	}
2003 }
2004 EXPORT_SYMBOL(iov_iter_advance);
2005 
2006 /*
2007  * Fault in the first iovec of the given iov_iter, to a maximum length
2008  * of bytes. Returns 0 on success, or non-zero if the memory could not be
2009  * accessed (ie. because it is an invalid address).
2010  *
2011  * writev-intensive code may want this to prefault several iovecs -- that
2012  * would be possible (callers must not rely on the fact that _only_ the
2013  * first iovec will be faulted with the current implementation).
2014  */
2015 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2016 {
2017 	char __user *buf = i->iov->iov_base + i->iov_offset;
2018 	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2019 	return fault_in_pages_readable(buf, bytes);
2020 }
2021 EXPORT_SYMBOL(iov_iter_fault_in_readable);
2022 
2023 /*
2024  * Return the count of just the current iov_iter segment.
2025  */
2026 size_t iov_iter_single_seg_count(struct iov_iter *i)
2027 {
2028 	const struct iovec *iov = i->iov;
2029 	if (i->nr_segs == 1)
2030 		return i->count;
2031 	else
2032 		return min(i->count, iov->iov_len - i->iov_offset);
2033 }
2034 EXPORT_SYMBOL(iov_iter_single_seg_count);
2035 
2036 /*
2037  * Performs necessary checks before doing a write
2038  *
2039  * Can adjust writing position or amount of bytes to write.
2040  * Returns appropriate error code that caller should return or
2041  * zero in case that write should be allowed.
2042  */
2043 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2044 {
2045 	struct inode *inode = file->f_mapping->host;
2046 	unsigned long limit = rlimit(RLIMIT_FSIZE);
2047 
2048         if (unlikely(*pos < 0))
2049                 return -EINVAL;
2050 
2051 	if (!isblk) {
2052 		/* FIXME: this is for backwards compatibility with 2.4 */
2053 		if (file->f_flags & O_APPEND)
2054                         *pos = i_size_read(inode);
2055 
2056 		if (limit != RLIM_INFINITY) {
2057 			if (*pos >= limit) {
2058 				send_sig(SIGXFSZ, current, 0);
2059 				return -EFBIG;
2060 			}
2061 			if (*count > limit - (typeof(limit))*pos) {
2062 				*count = limit - (typeof(limit))*pos;
2063 			}
2064 		}
2065 	}
2066 
2067 	/*
2068 	 * LFS rule
2069 	 */
2070 	if (unlikely(*pos + *count > MAX_NON_LFS &&
2071 				!(file->f_flags & O_LARGEFILE))) {
2072 		if (*pos >= MAX_NON_LFS) {
2073 			return -EFBIG;
2074 		}
2075 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2076 			*count = MAX_NON_LFS - (unsigned long)*pos;
2077 		}
2078 	}
2079 
2080 	/*
2081 	 * Are we about to exceed the fs block limit ?
2082 	 *
2083 	 * If we have written data it becomes a short write.  If we have
2084 	 * exceeded without writing data we send a signal and return EFBIG.
2085 	 * Linus frestrict idea will clean these up nicely..
2086 	 */
2087 	if (likely(!isblk)) {
2088 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2089 			if (*count || *pos > inode->i_sb->s_maxbytes) {
2090 				return -EFBIG;
2091 			}
2092 			/* zero-length writes at ->s_maxbytes are OK */
2093 		}
2094 
2095 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2096 			*count = inode->i_sb->s_maxbytes - *pos;
2097 	} else {
2098 #ifdef CONFIG_BLOCK
2099 		loff_t isize;
2100 		if (bdev_read_only(I_BDEV(inode)))
2101 			return -EPERM;
2102 		isize = i_size_read(inode);
2103 		if (*pos >= isize) {
2104 			if (*count || *pos > isize)
2105 				return -ENOSPC;
2106 		}
2107 
2108 		if (*pos + *count > isize)
2109 			*count = isize - *pos;
2110 #else
2111 		return -EPERM;
2112 #endif
2113 	}
2114 	return 0;
2115 }
2116 EXPORT_SYMBOL(generic_write_checks);
2117 
2118 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2119 				loff_t pos, unsigned len, unsigned flags,
2120 				struct page **pagep, void **fsdata)
2121 {
2122 	const struct address_space_operations *aops = mapping->a_ops;
2123 
2124 	return aops->write_begin(file, mapping, pos, len, flags,
2125 							pagep, fsdata);
2126 }
2127 EXPORT_SYMBOL(pagecache_write_begin);
2128 
2129 int pagecache_write_end(struct file *file, struct address_space *mapping,
2130 				loff_t pos, unsigned len, unsigned copied,
2131 				struct page *page, void *fsdata)
2132 {
2133 	const struct address_space_operations *aops = mapping->a_ops;
2134 
2135 	mark_page_accessed(page);
2136 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2137 }
2138 EXPORT_SYMBOL(pagecache_write_end);
2139 
2140 ssize_t
2141 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2142 		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2143 		size_t count, size_t ocount)
2144 {
2145 	struct file	*file = iocb->ki_filp;
2146 	struct address_space *mapping = file->f_mapping;
2147 	struct inode	*inode = mapping->host;
2148 	ssize_t		written;
2149 	size_t		write_len;
2150 	pgoff_t		end;
2151 
2152 	if (count != ocount)
2153 		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2154 
2155 	write_len = iov_length(iov, *nr_segs);
2156 	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2157 
2158 	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2159 	if (written)
2160 		goto out;
2161 
2162 	/*
2163 	 * After a write we want buffered reads to be sure to go to disk to get
2164 	 * the new data.  We invalidate clean cached page from the region we're
2165 	 * about to write.  We do this *before* the write so that we can return
2166 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2167 	 */
2168 	if (mapping->nrpages) {
2169 		written = invalidate_inode_pages2_range(mapping,
2170 					pos >> PAGE_CACHE_SHIFT, end);
2171 		/*
2172 		 * If a page can not be invalidated, return 0 to fall back
2173 		 * to buffered write.
2174 		 */
2175 		if (written) {
2176 			if (written == -EBUSY)
2177 				return 0;
2178 			goto out;
2179 		}
2180 	}
2181 
2182 	written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2183 
2184 	/*
2185 	 * Finally, try again to invalidate clean pages which might have been
2186 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2187 	 * if the source of the write was an mmap'ed region of the file
2188 	 * we're writing.  Either one is a pretty crazy thing to do,
2189 	 * so we don't support it 100%.  If this invalidation
2190 	 * fails, tough, the write still worked...
2191 	 */
2192 	if (mapping->nrpages) {
2193 		invalidate_inode_pages2_range(mapping,
2194 					      pos >> PAGE_CACHE_SHIFT, end);
2195 	}
2196 
2197 	if (written > 0) {
2198 		pos += written;
2199 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2200 			i_size_write(inode, pos);
2201 			mark_inode_dirty(inode);
2202 		}
2203 		*ppos = pos;
2204 	}
2205 out:
2206 	return written;
2207 }
2208 EXPORT_SYMBOL(generic_file_direct_write);
2209 
2210 /*
2211  * Find or create a page at the given pagecache position. Return the locked
2212  * page. This function is specifically for buffered writes.
2213  */
2214 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2215 					pgoff_t index, unsigned flags)
2216 {
2217 	int status;
2218 	struct page *page;
2219 	gfp_t gfp_notmask = 0;
2220 	if (flags & AOP_FLAG_NOFS)
2221 		gfp_notmask = __GFP_FS;
2222 repeat:
2223 	page = find_lock_page(mapping, index);
2224 	if (likely(page))
2225 		return page;
2226 
2227 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2228 	if (!page)
2229 		return NULL;
2230 	status = add_to_page_cache_lru(page, mapping, index,
2231 						GFP_KERNEL & ~gfp_notmask);
2232 	if (unlikely(status)) {
2233 		page_cache_release(page);
2234 		if (status == -EEXIST)
2235 			goto repeat;
2236 		return NULL;
2237 	}
2238 	return page;
2239 }
2240 EXPORT_SYMBOL(grab_cache_page_write_begin);
2241 
2242 static ssize_t generic_perform_write(struct file *file,
2243 				struct iov_iter *i, loff_t pos)
2244 {
2245 	struct address_space *mapping = file->f_mapping;
2246 	const struct address_space_operations *a_ops = mapping->a_ops;
2247 	long status = 0;
2248 	ssize_t written = 0;
2249 	unsigned int flags = 0;
2250 
2251 	/*
2252 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2253 	 */
2254 	if (segment_eq(get_fs(), KERNEL_DS))
2255 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2256 
2257 	do {
2258 		struct page *page;
2259 		unsigned long offset;	/* Offset into pagecache page */
2260 		unsigned long bytes;	/* Bytes to write to page */
2261 		size_t copied;		/* Bytes copied from user */
2262 		void *fsdata;
2263 
2264 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2265 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2266 						iov_iter_count(i));
2267 
2268 again:
2269 
2270 		/*
2271 		 * Bring in the user page that we will copy from _first_.
2272 		 * Otherwise there's a nasty deadlock on copying from the
2273 		 * same page as we're writing to, without it being marked
2274 		 * up-to-date.
2275 		 *
2276 		 * Not only is this an optimisation, but it is also required
2277 		 * to check that the address is actually valid, when atomic
2278 		 * usercopies are used, below.
2279 		 */
2280 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2281 			status = -EFAULT;
2282 			break;
2283 		}
2284 
2285 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2286 						&page, &fsdata);
2287 		if (unlikely(status))
2288 			break;
2289 
2290 		if (mapping_writably_mapped(mapping))
2291 			flush_dcache_page(page);
2292 
2293 		pagefault_disable();
2294 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2295 		pagefault_enable();
2296 		flush_dcache_page(page);
2297 
2298 		mark_page_accessed(page);
2299 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2300 						page, fsdata);
2301 		if (unlikely(status < 0))
2302 			break;
2303 		copied = status;
2304 
2305 		cond_resched();
2306 
2307 		iov_iter_advance(i, copied);
2308 		if (unlikely(copied == 0)) {
2309 			/*
2310 			 * If we were unable to copy any data at all, we must
2311 			 * fall back to a single segment length write.
2312 			 *
2313 			 * If we didn't fallback here, we could livelock
2314 			 * because not all segments in the iov can be copied at
2315 			 * once without a pagefault.
2316 			 */
2317 			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2318 						iov_iter_single_seg_count(i));
2319 			goto again;
2320 		}
2321 		pos += copied;
2322 		written += copied;
2323 
2324 		balance_dirty_pages_ratelimited(mapping);
2325 
2326 	} while (iov_iter_count(i));
2327 
2328 	return written ? written : status;
2329 }
2330 
2331 ssize_t
2332 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2333 		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2334 		size_t count, ssize_t written)
2335 {
2336 	struct file *file = iocb->ki_filp;
2337 	ssize_t status;
2338 	struct iov_iter i;
2339 
2340 	iov_iter_init(&i, iov, nr_segs, count, written);
2341 	status = generic_perform_write(file, &i, pos);
2342 
2343 	if (likely(status >= 0)) {
2344 		written += status;
2345 		*ppos = pos + status;
2346   	}
2347 
2348 	return written ? written : status;
2349 }
2350 EXPORT_SYMBOL(generic_file_buffered_write);
2351 
2352 /**
2353  * __generic_file_aio_write - write data to a file
2354  * @iocb:	IO state structure (file, offset, etc.)
2355  * @iov:	vector with data to write
2356  * @nr_segs:	number of segments in the vector
2357  * @ppos:	position where to write
2358  *
2359  * This function does all the work needed for actually writing data to a
2360  * file. It does all basic checks, removes SUID from the file, updates
2361  * modification times and calls proper subroutines depending on whether we
2362  * do direct IO or a standard buffered write.
2363  *
2364  * It expects i_mutex to be grabbed unless we work on a block device or similar
2365  * object which does not need locking at all.
2366  *
2367  * This function does *not* take care of syncing data in case of O_SYNC write.
2368  * A caller has to handle it. This is mainly due to the fact that we want to
2369  * avoid syncing under i_mutex.
2370  */
2371 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2372 				 unsigned long nr_segs, loff_t *ppos)
2373 {
2374 	struct file *file = iocb->ki_filp;
2375 	struct address_space * mapping = file->f_mapping;
2376 	size_t ocount;		/* original count */
2377 	size_t count;		/* after file limit checks */
2378 	struct inode 	*inode = mapping->host;
2379 	loff_t		pos;
2380 	ssize_t		written;
2381 	ssize_t		err;
2382 
2383 	ocount = 0;
2384 	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2385 	if (err)
2386 		return err;
2387 
2388 	count = ocount;
2389 	pos = *ppos;
2390 
2391 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2392 
2393 	/* We can write back this queue in page reclaim */
2394 	current->backing_dev_info = mapping->backing_dev_info;
2395 	written = 0;
2396 
2397 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2398 	if (err)
2399 		goto out;
2400 
2401 	if (count == 0)
2402 		goto out;
2403 
2404 	err = file_remove_suid(file);
2405 	if (err)
2406 		goto out;
2407 
2408 	file_update_time(file);
2409 
2410 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2411 	if (unlikely(file->f_flags & O_DIRECT)) {
2412 		loff_t endbyte;
2413 		ssize_t written_buffered;
2414 
2415 		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2416 							ppos, count, ocount);
2417 		if (written < 0 || written == count)
2418 			goto out;
2419 		/*
2420 		 * direct-io write to a hole: fall through to buffered I/O
2421 		 * for completing the rest of the request.
2422 		 */
2423 		pos += written;
2424 		count -= written;
2425 		written_buffered = generic_file_buffered_write(iocb, iov,
2426 						nr_segs, pos, ppos, count,
2427 						written);
2428 		/*
2429 		 * If generic_file_buffered_write() retuned a synchronous error
2430 		 * then we want to return the number of bytes which were
2431 		 * direct-written, or the error code if that was zero.  Note
2432 		 * that this differs from normal direct-io semantics, which
2433 		 * will return -EFOO even if some bytes were written.
2434 		 */
2435 		if (written_buffered < 0) {
2436 			err = written_buffered;
2437 			goto out;
2438 		}
2439 
2440 		/*
2441 		 * We need to ensure that the page cache pages are written to
2442 		 * disk and invalidated to preserve the expected O_DIRECT
2443 		 * semantics.
2444 		 */
2445 		endbyte = pos + written_buffered - written - 1;
2446 		err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2447 		if (err == 0) {
2448 			written = written_buffered;
2449 			invalidate_mapping_pages(mapping,
2450 						 pos >> PAGE_CACHE_SHIFT,
2451 						 endbyte >> PAGE_CACHE_SHIFT);
2452 		} else {
2453 			/*
2454 			 * We don't know how much we wrote, so just return
2455 			 * the number of bytes which were direct-written
2456 			 */
2457 		}
2458 	} else {
2459 		written = generic_file_buffered_write(iocb, iov, nr_segs,
2460 				pos, ppos, count, written);
2461 	}
2462 out:
2463 	current->backing_dev_info = NULL;
2464 	return written ? written : err;
2465 }
2466 EXPORT_SYMBOL(__generic_file_aio_write);
2467 
2468 /**
2469  * generic_file_aio_write - write data to a file
2470  * @iocb:	IO state structure
2471  * @iov:	vector with data to write
2472  * @nr_segs:	number of segments in the vector
2473  * @pos:	position in file where to write
2474  *
2475  * This is a wrapper around __generic_file_aio_write() to be used by most
2476  * filesystems. It takes care of syncing the file in case of O_SYNC file
2477  * and acquires i_mutex as needed.
2478  */
2479 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2480 		unsigned long nr_segs, loff_t pos)
2481 {
2482 	struct file *file = iocb->ki_filp;
2483 	struct inode *inode = file->f_mapping->host;
2484 	ssize_t ret;
2485 
2486 	BUG_ON(iocb->ki_pos != pos);
2487 
2488 	mutex_lock(&inode->i_mutex);
2489 	ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2490 	mutex_unlock(&inode->i_mutex);
2491 
2492 	if (ret > 0 || ret == -EIOCBQUEUED) {
2493 		ssize_t err;
2494 
2495 		err = generic_write_sync(file, pos, ret);
2496 		if (err < 0 && ret > 0)
2497 			ret = err;
2498 	}
2499 	return ret;
2500 }
2501 EXPORT_SYMBOL(generic_file_aio_write);
2502 
2503 /**
2504  * try_to_release_page() - release old fs-specific metadata on a page
2505  *
2506  * @page: the page which the kernel is trying to free
2507  * @gfp_mask: memory allocation flags (and I/O mode)
2508  *
2509  * The address_space is to try to release any data against the page
2510  * (presumably at page->private).  If the release was successful, return `1'.
2511  * Otherwise return zero.
2512  *
2513  * This may also be called if PG_fscache is set on a page, indicating that the
2514  * page is known to the local caching routines.
2515  *
2516  * The @gfp_mask argument specifies whether I/O may be performed to release
2517  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2518  *
2519  */
2520 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2521 {
2522 	struct address_space * const mapping = page->mapping;
2523 
2524 	BUG_ON(!PageLocked(page));
2525 	if (PageWriteback(page))
2526 		return 0;
2527 
2528 	if (mapping && mapping->a_ops->releasepage)
2529 		return mapping->a_ops->releasepage(page, gfp_mask);
2530 	return try_to_free_buffers(page);
2531 }
2532 
2533 EXPORT_SYMBOL(try_to_release_page);
2534