xref: /linux/mm/filemap.c (revision 9d9659b6c0ebf7dde65ebada4c67980818245913)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/module.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include "internal.h"
38 
39 /*
40  * FIXME: remove all knowledge of the buffer layer from the core VM
41  */
42 #include <linux/buffer_head.h> /* for try_to_free_buffers */
43 
44 #include <asm/mman.h>
45 
46 /*
47  * Shared mappings implemented 30.11.1994. It's not fully working yet,
48  * though.
49  *
50  * Shared mappings now work. 15.8.1995  Bruno.
51  *
52  * finished 'unifying' the page and buffer cache and SMP-threaded the
53  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
54  *
55  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
56  */
57 
58 /*
59  * Lock ordering:
60  *
61  *  ->i_mmap_lock		(truncate_pagecache)
62  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
63  *      ->swap_lock		(exclusive_swap_page, others)
64  *        ->mapping->tree_lock
65  *
66  *  ->i_mutex
67  *    ->i_mmap_lock		(truncate->unmap_mapping_range)
68  *
69  *  ->mmap_sem
70  *    ->i_mmap_lock
71  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
72  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
73  *
74  *  ->mmap_sem
75  *    ->lock_page		(access_process_vm)
76  *
77  *  ->i_mutex			(generic_file_buffered_write)
78  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
79  *
80  *  ->i_mutex
81  *    ->i_alloc_sem             (various)
82  *
83  *  ->inode_lock
84  *    ->sb_lock			(fs/fs-writeback.c)
85  *    ->mapping->tree_lock	(__sync_single_inode)
86  *
87  *  ->i_mmap_lock
88  *    ->anon_vma.lock		(vma_adjust)
89  *
90  *  ->anon_vma.lock
91  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
92  *
93  *  ->page_table_lock or pte_lock
94  *    ->swap_lock		(try_to_unmap_one)
95  *    ->private_lock		(try_to_unmap_one)
96  *    ->tree_lock		(try_to_unmap_one)
97  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
98  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
99  *    ->private_lock		(page_remove_rmap->set_page_dirty)
100  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
101  *    ->inode_lock		(page_remove_rmap->set_page_dirty)
102  *    ->inode_lock		(zap_pte_range->set_page_dirty)
103  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
104  *
105  *  (code doesn't rely on that order, so you could switch it around)
106  *  ->tasklist_lock             (memory_failure, collect_procs_ao)
107  *    ->i_mmap_lock
108  */
109 
110 /*
111  * Delete a page from the page cache and free it. Caller has to make
112  * sure the page is locked and that nobody else uses it - or that usage
113  * is safe.  The caller must hold the mapping's tree_lock.
114  */
115 void __delete_from_page_cache(struct page *page)
116 {
117 	struct address_space *mapping = page->mapping;
118 
119 	radix_tree_delete(&mapping->page_tree, page->index);
120 	page->mapping = NULL;
121 	mapping->nrpages--;
122 	__dec_zone_page_state(page, NR_FILE_PAGES);
123 	if (PageSwapBacked(page))
124 		__dec_zone_page_state(page, NR_SHMEM);
125 	BUG_ON(page_mapped(page));
126 
127 	/*
128 	 * Some filesystems seem to re-dirty the page even after
129 	 * the VM has canceled the dirty bit (eg ext3 journaling).
130 	 *
131 	 * Fix it up by doing a final dirty accounting check after
132 	 * having removed the page entirely.
133 	 */
134 	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
135 		dec_zone_page_state(page, NR_FILE_DIRTY);
136 		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
137 	}
138 }
139 
140 /**
141  * delete_from_page_cache - delete page from page cache
142  * @page: the page which the kernel is trying to remove from page cache
143  *
144  * This must be called only on pages that have been verified to be in the page
145  * cache and locked.  It will never put the page into the free list, the caller
146  * has a reference on the page.
147  */
148 void delete_from_page_cache(struct page *page)
149 {
150 	struct address_space *mapping = page->mapping;
151 	void (*freepage)(struct page *);
152 
153 	BUG_ON(!PageLocked(page));
154 
155 	freepage = mapping->a_ops->freepage;
156 	spin_lock_irq(&mapping->tree_lock);
157 	__delete_from_page_cache(page);
158 	spin_unlock_irq(&mapping->tree_lock);
159 	mem_cgroup_uncharge_cache_page(page);
160 
161 	if (freepage)
162 		freepage(page);
163 	page_cache_release(page);
164 }
165 EXPORT_SYMBOL(delete_from_page_cache);
166 
167 static int sync_page(void *word)
168 {
169 	struct address_space *mapping;
170 	struct page *page;
171 
172 	page = container_of((unsigned long *)word, struct page, flags);
173 
174 	/*
175 	 * page_mapping() is being called without PG_locked held.
176 	 * Some knowledge of the state and use of the page is used to
177 	 * reduce the requirements down to a memory barrier.
178 	 * The danger here is of a stale page_mapping() return value
179 	 * indicating a struct address_space different from the one it's
180 	 * associated with when it is associated with one.
181 	 * After smp_mb(), it's either the correct page_mapping() for
182 	 * the page, or an old page_mapping() and the page's own
183 	 * page_mapping() has gone NULL.
184 	 * The ->sync_page() address_space operation must tolerate
185 	 * page_mapping() going NULL. By an amazing coincidence,
186 	 * this comes about because none of the users of the page
187 	 * in the ->sync_page() methods make essential use of the
188 	 * page_mapping(), merely passing the page down to the backing
189 	 * device's unplug functions when it's non-NULL, which in turn
190 	 * ignore it for all cases but swap, where only page_private(page) is
191 	 * of interest. When page_mapping() does go NULL, the entire
192 	 * call stack gracefully ignores the page and returns.
193 	 * -- wli
194 	 */
195 	smp_mb();
196 	mapping = page_mapping(page);
197 	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
198 		mapping->a_ops->sync_page(page);
199 	io_schedule();
200 	return 0;
201 }
202 
203 static int sync_page_killable(void *word)
204 {
205 	sync_page(word);
206 	return fatal_signal_pending(current) ? -EINTR : 0;
207 }
208 
209 /**
210  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
211  * @mapping:	address space structure to write
212  * @start:	offset in bytes where the range starts
213  * @end:	offset in bytes where the range ends (inclusive)
214  * @sync_mode:	enable synchronous operation
215  *
216  * Start writeback against all of a mapping's dirty pages that lie
217  * within the byte offsets <start, end> inclusive.
218  *
219  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
220  * opposed to a regular memory cleansing writeback.  The difference between
221  * these two operations is that if a dirty page/buffer is encountered, it must
222  * be waited upon, and not just skipped over.
223  */
224 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
225 				loff_t end, int sync_mode)
226 {
227 	int ret;
228 	struct writeback_control wbc = {
229 		.sync_mode = sync_mode,
230 		.nr_to_write = LONG_MAX,
231 		.range_start = start,
232 		.range_end = end,
233 	};
234 
235 	if (!mapping_cap_writeback_dirty(mapping))
236 		return 0;
237 
238 	ret = do_writepages(mapping, &wbc);
239 	return ret;
240 }
241 
242 static inline int __filemap_fdatawrite(struct address_space *mapping,
243 	int sync_mode)
244 {
245 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
246 }
247 
248 int filemap_fdatawrite(struct address_space *mapping)
249 {
250 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
251 }
252 EXPORT_SYMBOL(filemap_fdatawrite);
253 
254 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
255 				loff_t end)
256 {
257 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
258 }
259 EXPORT_SYMBOL(filemap_fdatawrite_range);
260 
261 /**
262  * filemap_flush - mostly a non-blocking flush
263  * @mapping:	target address_space
264  *
265  * This is a mostly non-blocking flush.  Not suitable for data-integrity
266  * purposes - I/O may not be started against all dirty pages.
267  */
268 int filemap_flush(struct address_space *mapping)
269 {
270 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
271 }
272 EXPORT_SYMBOL(filemap_flush);
273 
274 /**
275  * filemap_fdatawait_range - wait for writeback to complete
276  * @mapping:		address space structure to wait for
277  * @start_byte:		offset in bytes where the range starts
278  * @end_byte:		offset in bytes where the range ends (inclusive)
279  *
280  * Walk the list of under-writeback pages of the given address space
281  * in the given range and wait for all of them.
282  */
283 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
284 			    loff_t end_byte)
285 {
286 	pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
287 	pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
288 	struct pagevec pvec;
289 	int nr_pages;
290 	int ret = 0;
291 
292 	if (end_byte < start_byte)
293 		return 0;
294 
295 	pagevec_init(&pvec, 0);
296 	while ((index <= end) &&
297 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
298 			PAGECACHE_TAG_WRITEBACK,
299 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
300 		unsigned i;
301 
302 		for (i = 0; i < nr_pages; i++) {
303 			struct page *page = pvec.pages[i];
304 
305 			/* until radix tree lookup accepts end_index */
306 			if (page->index > end)
307 				continue;
308 
309 			wait_on_page_writeback(page);
310 			if (TestClearPageError(page))
311 				ret = -EIO;
312 		}
313 		pagevec_release(&pvec);
314 		cond_resched();
315 	}
316 
317 	/* Check for outstanding write errors */
318 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
319 		ret = -ENOSPC;
320 	if (test_and_clear_bit(AS_EIO, &mapping->flags))
321 		ret = -EIO;
322 
323 	return ret;
324 }
325 EXPORT_SYMBOL(filemap_fdatawait_range);
326 
327 /**
328  * filemap_fdatawait - wait for all under-writeback pages to complete
329  * @mapping: address space structure to wait for
330  *
331  * Walk the list of under-writeback pages of the given address space
332  * and wait for all of them.
333  */
334 int filemap_fdatawait(struct address_space *mapping)
335 {
336 	loff_t i_size = i_size_read(mapping->host);
337 
338 	if (i_size == 0)
339 		return 0;
340 
341 	return filemap_fdatawait_range(mapping, 0, i_size - 1);
342 }
343 EXPORT_SYMBOL(filemap_fdatawait);
344 
345 int filemap_write_and_wait(struct address_space *mapping)
346 {
347 	int err = 0;
348 
349 	if (mapping->nrpages) {
350 		err = filemap_fdatawrite(mapping);
351 		/*
352 		 * Even if the above returned error, the pages may be
353 		 * written partially (e.g. -ENOSPC), so we wait for it.
354 		 * But the -EIO is special case, it may indicate the worst
355 		 * thing (e.g. bug) happened, so we avoid waiting for it.
356 		 */
357 		if (err != -EIO) {
358 			int err2 = filemap_fdatawait(mapping);
359 			if (!err)
360 				err = err2;
361 		}
362 	}
363 	return err;
364 }
365 EXPORT_SYMBOL(filemap_write_and_wait);
366 
367 /**
368  * filemap_write_and_wait_range - write out & wait on a file range
369  * @mapping:	the address_space for the pages
370  * @lstart:	offset in bytes where the range starts
371  * @lend:	offset in bytes where the range ends (inclusive)
372  *
373  * Write out and wait upon file offsets lstart->lend, inclusive.
374  *
375  * Note that `lend' is inclusive (describes the last byte to be written) so
376  * that this function can be used to write to the very end-of-file (end = -1).
377  */
378 int filemap_write_and_wait_range(struct address_space *mapping,
379 				 loff_t lstart, loff_t lend)
380 {
381 	int err = 0;
382 
383 	if (mapping->nrpages) {
384 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
385 						 WB_SYNC_ALL);
386 		/* See comment of filemap_write_and_wait() */
387 		if (err != -EIO) {
388 			int err2 = filemap_fdatawait_range(mapping,
389 						lstart, lend);
390 			if (!err)
391 				err = err2;
392 		}
393 	}
394 	return err;
395 }
396 EXPORT_SYMBOL(filemap_write_and_wait_range);
397 
398 /**
399  * replace_page_cache_page - replace a pagecache page with a new one
400  * @old:	page to be replaced
401  * @new:	page to replace with
402  * @gfp_mask:	allocation mode
403  *
404  * This function replaces a page in the pagecache with a new one.  On
405  * success it acquires the pagecache reference for the new page and
406  * drops it for the old page.  Both the old and new pages must be
407  * locked.  This function does not add the new page to the LRU, the
408  * caller must do that.
409  *
410  * The remove + add is atomic.  The only way this function can fail is
411  * memory allocation failure.
412  */
413 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
414 {
415 	int error;
416 	struct mem_cgroup *memcg = NULL;
417 
418 	VM_BUG_ON(!PageLocked(old));
419 	VM_BUG_ON(!PageLocked(new));
420 	VM_BUG_ON(new->mapping);
421 
422 	/*
423 	 * This is not page migration, but prepare_migration and
424 	 * end_migration does enough work for charge replacement.
425 	 *
426 	 * In the longer term we probably want a specialized function
427 	 * for moving the charge from old to new in a more efficient
428 	 * manner.
429 	 */
430 	error = mem_cgroup_prepare_migration(old, new, &memcg, gfp_mask);
431 	if (error)
432 		return error;
433 
434 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
435 	if (!error) {
436 		struct address_space *mapping = old->mapping;
437 		void (*freepage)(struct page *);
438 
439 		pgoff_t offset = old->index;
440 		freepage = mapping->a_ops->freepage;
441 
442 		page_cache_get(new);
443 		new->mapping = mapping;
444 		new->index = offset;
445 
446 		spin_lock_irq(&mapping->tree_lock);
447 		__delete_from_page_cache(old);
448 		error = radix_tree_insert(&mapping->page_tree, offset, new);
449 		BUG_ON(error);
450 		mapping->nrpages++;
451 		__inc_zone_page_state(new, NR_FILE_PAGES);
452 		if (PageSwapBacked(new))
453 			__inc_zone_page_state(new, NR_SHMEM);
454 		spin_unlock_irq(&mapping->tree_lock);
455 		radix_tree_preload_end();
456 		if (freepage)
457 			freepage(old);
458 		page_cache_release(old);
459 		mem_cgroup_end_migration(memcg, old, new, true);
460 	} else {
461 		mem_cgroup_end_migration(memcg, old, new, false);
462 	}
463 
464 	return error;
465 }
466 EXPORT_SYMBOL_GPL(replace_page_cache_page);
467 
468 /**
469  * add_to_page_cache_locked - add a locked page to the pagecache
470  * @page:	page to add
471  * @mapping:	the page's address_space
472  * @offset:	page index
473  * @gfp_mask:	page allocation mode
474  *
475  * This function is used to add a page to the pagecache. It must be locked.
476  * This function does not add the page to the LRU.  The caller must do that.
477  */
478 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
479 		pgoff_t offset, gfp_t gfp_mask)
480 {
481 	int error;
482 
483 	VM_BUG_ON(!PageLocked(page));
484 
485 	error = mem_cgroup_cache_charge(page, current->mm,
486 					gfp_mask & GFP_RECLAIM_MASK);
487 	if (error)
488 		goto out;
489 
490 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
491 	if (error == 0) {
492 		page_cache_get(page);
493 		page->mapping = mapping;
494 		page->index = offset;
495 
496 		spin_lock_irq(&mapping->tree_lock);
497 		error = radix_tree_insert(&mapping->page_tree, offset, page);
498 		if (likely(!error)) {
499 			mapping->nrpages++;
500 			__inc_zone_page_state(page, NR_FILE_PAGES);
501 			if (PageSwapBacked(page))
502 				__inc_zone_page_state(page, NR_SHMEM);
503 			spin_unlock_irq(&mapping->tree_lock);
504 		} else {
505 			page->mapping = NULL;
506 			spin_unlock_irq(&mapping->tree_lock);
507 			mem_cgroup_uncharge_cache_page(page);
508 			page_cache_release(page);
509 		}
510 		radix_tree_preload_end();
511 	} else
512 		mem_cgroup_uncharge_cache_page(page);
513 out:
514 	return error;
515 }
516 EXPORT_SYMBOL(add_to_page_cache_locked);
517 
518 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
519 				pgoff_t offset, gfp_t gfp_mask)
520 {
521 	int ret;
522 
523 	/*
524 	 * Splice_read and readahead add shmem/tmpfs pages into the page cache
525 	 * before shmem_readpage has a chance to mark them as SwapBacked: they
526 	 * need to go on the anon lru below, and mem_cgroup_cache_charge
527 	 * (called in add_to_page_cache) needs to know where they're going too.
528 	 */
529 	if (mapping_cap_swap_backed(mapping))
530 		SetPageSwapBacked(page);
531 
532 	ret = add_to_page_cache(page, mapping, offset, gfp_mask);
533 	if (ret == 0) {
534 		if (page_is_file_cache(page))
535 			lru_cache_add_file(page);
536 		else
537 			lru_cache_add_anon(page);
538 	}
539 	return ret;
540 }
541 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
542 
543 #ifdef CONFIG_NUMA
544 struct page *__page_cache_alloc(gfp_t gfp)
545 {
546 	int n;
547 	struct page *page;
548 
549 	if (cpuset_do_page_mem_spread()) {
550 		get_mems_allowed();
551 		n = cpuset_mem_spread_node();
552 		page = alloc_pages_exact_node(n, gfp, 0);
553 		put_mems_allowed();
554 		return page;
555 	}
556 	return alloc_pages(gfp, 0);
557 }
558 EXPORT_SYMBOL(__page_cache_alloc);
559 #endif
560 
561 static int __sleep_on_page_lock(void *word)
562 {
563 	io_schedule();
564 	return 0;
565 }
566 
567 /*
568  * In order to wait for pages to become available there must be
569  * waitqueues associated with pages. By using a hash table of
570  * waitqueues where the bucket discipline is to maintain all
571  * waiters on the same queue and wake all when any of the pages
572  * become available, and for the woken contexts to check to be
573  * sure the appropriate page became available, this saves space
574  * at a cost of "thundering herd" phenomena during rare hash
575  * collisions.
576  */
577 static wait_queue_head_t *page_waitqueue(struct page *page)
578 {
579 	const struct zone *zone = page_zone(page);
580 
581 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
582 }
583 
584 static inline void wake_up_page(struct page *page, int bit)
585 {
586 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
587 }
588 
589 void wait_on_page_bit(struct page *page, int bit_nr)
590 {
591 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
592 
593 	if (test_bit(bit_nr, &page->flags))
594 		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
595 							TASK_UNINTERRUPTIBLE);
596 }
597 EXPORT_SYMBOL(wait_on_page_bit);
598 
599 /**
600  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
601  * @page: Page defining the wait queue of interest
602  * @waiter: Waiter to add to the queue
603  *
604  * Add an arbitrary @waiter to the wait queue for the nominated @page.
605  */
606 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
607 {
608 	wait_queue_head_t *q = page_waitqueue(page);
609 	unsigned long flags;
610 
611 	spin_lock_irqsave(&q->lock, flags);
612 	__add_wait_queue(q, waiter);
613 	spin_unlock_irqrestore(&q->lock, flags);
614 }
615 EXPORT_SYMBOL_GPL(add_page_wait_queue);
616 
617 /**
618  * unlock_page - unlock a locked page
619  * @page: the page
620  *
621  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
622  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
623  * mechananism between PageLocked pages and PageWriteback pages is shared.
624  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
625  *
626  * The mb is necessary to enforce ordering between the clear_bit and the read
627  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
628  */
629 void unlock_page(struct page *page)
630 {
631 	VM_BUG_ON(!PageLocked(page));
632 	clear_bit_unlock(PG_locked, &page->flags);
633 	smp_mb__after_clear_bit();
634 	wake_up_page(page, PG_locked);
635 }
636 EXPORT_SYMBOL(unlock_page);
637 
638 /**
639  * end_page_writeback - end writeback against a page
640  * @page: the page
641  */
642 void end_page_writeback(struct page *page)
643 {
644 	if (TestClearPageReclaim(page))
645 		rotate_reclaimable_page(page);
646 
647 	if (!test_clear_page_writeback(page))
648 		BUG();
649 
650 	smp_mb__after_clear_bit();
651 	wake_up_page(page, PG_writeback);
652 }
653 EXPORT_SYMBOL(end_page_writeback);
654 
655 /**
656  * __lock_page - get a lock on the page, assuming we need to sleep to get it
657  * @page: the page to lock
658  *
659  * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
660  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
661  * chances are that on the second loop, the block layer's plug list is empty,
662  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
663  */
664 void __lock_page(struct page *page)
665 {
666 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
667 
668 	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
669 							TASK_UNINTERRUPTIBLE);
670 }
671 EXPORT_SYMBOL(__lock_page);
672 
673 int __lock_page_killable(struct page *page)
674 {
675 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
676 
677 	return __wait_on_bit_lock(page_waitqueue(page), &wait,
678 					sync_page_killable, TASK_KILLABLE);
679 }
680 EXPORT_SYMBOL_GPL(__lock_page_killable);
681 
682 /**
683  * __lock_page_nosync - get a lock on the page, without calling sync_page()
684  * @page: the page to lock
685  *
686  * Variant of lock_page that does not require the caller to hold a reference
687  * on the page's mapping.
688  */
689 void __lock_page_nosync(struct page *page)
690 {
691 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
692 	__wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
693 							TASK_UNINTERRUPTIBLE);
694 }
695 
696 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
697 			 unsigned int flags)
698 {
699 	if (!(flags & FAULT_FLAG_ALLOW_RETRY)) {
700 		__lock_page(page);
701 		return 1;
702 	} else {
703 		if (!(flags & FAULT_FLAG_RETRY_NOWAIT)) {
704 			up_read(&mm->mmap_sem);
705 			wait_on_page_locked(page);
706 		}
707 		return 0;
708 	}
709 }
710 
711 /**
712  * find_get_page - find and get a page reference
713  * @mapping: the address_space to search
714  * @offset: the page index
715  *
716  * Is there a pagecache struct page at the given (mapping, offset) tuple?
717  * If yes, increment its refcount and return it; if no, return NULL.
718  */
719 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
720 {
721 	void **pagep;
722 	struct page *page;
723 
724 	rcu_read_lock();
725 repeat:
726 	page = NULL;
727 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
728 	if (pagep) {
729 		page = radix_tree_deref_slot(pagep);
730 		if (unlikely(!page))
731 			goto out;
732 		if (radix_tree_deref_retry(page))
733 			goto repeat;
734 
735 		if (!page_cache_get_speculative(page))
736 			goto repeat;
737 
738 		/*
739 		 * Has the page moved?
740 		 * This is part of the lockless pagecache protocol. See
741 		 * include/linux/pagemap.h for details.
742 		 */
743 		if (unlikely(page != *pagep)) {
744 			page_cache_release(page);
745 			goto repeat;
746 		}
747 	}
748 out:
749 	rcu_read_unlock();
750 
751 	return page;
752 }
753 EXPORT_SYMBOL(find_get_page);
754 
755 /**
756  * find_lock_page - locate, pin and lock a pagecache page
757  * @mapping: the address_space to search
758  * @offset: the page index
759  *
760  * Locates the desired pagecache page, locks it, increments its reference
761  * count and returns its address.
762  *
763  * Returns zero if the page was not present. find_lock_page() may sleep.
764  */
765 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
766 {
767 	struct page *page;
768 
769 repeat:
770 	page = find_get_page(mapping, offset);
771 	if (page) {
772 		lock_page(page);
773 		/* Has the page been truncated? */
774 		if (unlikely(page->mapping != mapping)) {
775 			unlock_page(page);
776 			page_cache_release(page);
777 			goto repeat;
778 		}
779 		VM_BUG_ON(page->index != offset);
780 	}
781 	return page;
782 }
783 EXPORT_SYMBOL(find_lock_page);
784 
785 /**
786  * find_or_create_page - locate or add a pagecache page
787  * @mapping: the page's address_space
788  * @index: the page's index into the mapping
789  * @gfp_mask: page allocation mode
790  *
791  * Locates a page in the pagecache.  If the page is not present, a new page
792  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
793  * LRU list.  The returned page is locked and has its reference count
794  * incremented.
795  *
796  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
797  * allocation!
798  *
799  * find_or_create_page() returns the desired page's address, or zero on
800  * memory exhaustion.
801  */
802 struct page *find_or_create_page(struct address_space *mapping,
803 		pgoff_t index, gfp_t gfp_mask)
804 {
805 	struct page *page;
806 	int err;
807 repeat:
808 	page = find_lock_page(mapping, index);
809 	if (!page) {
810 		page = __page_cache_alloc(gfp_mask);
811 		if (!page)
812 			return NULL;
813 		/*
814 		 * We want a regular kernel memory (not highmem or DMA etc)
815 		 * allocation for the radix tree nodes, but we need to honour
816 		 * the context-specific requirements the caller has asked for.
817 		 * GFP_RECLAIM_MASK collects those requirements.
818 		 */
819 		err = add_to_page_cache_lru(page, mapping, index,
820 			(gfp_mask & GFP_RECLAIM_MASK));
821 		if (unlikely(err)) {
822 			page_cache_release(page);
823 			page = NULL;
824 			if (err == -EEXIST)
825 				goto repeat;
826 		}
827 	}
828 	return page;
829 }
830 EXPORT_SYMBOL(find_or_create_page);
831 
832 /**
833  * find_get_pages - gang pagecache lookup
834  * @mapping:	The address_space to search
835  * @start:	The starting page index
836  * @nr_pages:	The maximum number of pages
837  * @pages:	Where the resulting pages are placed
838  *
839  * find_get_pages() will search for and return a group of up to
840  * @nr_pages pages in the mapping.  The pages are placed at @pages.
841  * find_get_pages() takes a reference against the returned pages.
842  *
843  * The search returns a group of mapping-contiguous pages with ascending
844  * indexes.  There may be holes in the indices due to not-present pages.
845  *
846  * find_get_pages() returns the number of pages which were found.
847  */
848 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
849 			    unsigned int nr_pages, struct page **pages)
850 {
851 	unsigned int i;
852 	unsigned int ret;
853 	unsigned int nr_found;
854 
855 	rcu_read_lock();
856 restart:
857 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
858 				(void ***)pages, start, nr_pages);
859 	ret = 0;
860 	for (i = 0; i < nr_found; i++) {
861 		struct page *page;
862 repeat:
863 		page = radix_tree_deref_slot((void **)pages[i]);
864 		if (unlikely(!page))
865 			continue;
866 
867 		/*
868 		 * This can only trigger when the entry at index 0 moves out
869 		 * of or back to the root: none yet gotten, safe to restart.
870 		 */
871 		if (radix_tree_deref_retry(page)) {
872 			WARN_ON(start | i);
873 			goto restart;
874 		}
875 
876 		if (!page_cache_get_speculative(page))
877 			goto repeat;
878 
879 		/* Has the page moved? */
880 		if (unlikely(page != *((void **)pages[i]))) {
881 			page_cache_release(page);
882 			goto repeat;
883 		}
884 
885 		pages[ret] = page;
886 		ret++;
887 	}
888 
889 	/*
890 	 * If all entries were removed before we could secure them,
891 	 * try again, because callers stop trying once 0 is returned.
892 	 */
893 	if (unlikely(!ret && nr_found))
894 		goto restart;
895 	rcu_read_unlock();
896 	return ret;
897 }
898 
899 /**
900  * find_get_pages_contig - gang contiguous pagecache lookup
901  * @mapping:	The address_space to search
902  * @index:	The starting page index
903  * @nr_pages:	The maximum number of pages
904  * @pages:	Where the resulting pages are placed
905  *
906  * find_get_pages_contig() works exactly like find_get_pages(), except
907  * that the returned number of pages are guaranteed to be contiguous.
908  *
909  * find_get_pages_contig() returns the number of pages which were found.
910  */
911 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
912 			       unsigned int nr_pages, struct page **pages)
913 {
914 	unsigned int i;
915 	unsigned int ret;
916 	unsigned int nr_found;
917 
918 	rcu_read_lock();
919 restart:
920 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
921 				(void ***)pages, index, nr_pages);
922 	ret = 0;
923 	for (i = 0; i < nr_found; i++) {
924 		struct page *page;
925 repeat:
926 		page = radix_tree_deref_slot((void **)pages[i]);
927 		if (unlikely(!page))
928 			continue;
929 
930 		/*
931 		 * This can only trigger when the entry at index 0 moves out
932 		 * of or back to the root: none yet gotten, safe to restart.
933 		 */
934 		if (radix_tree_deref_retry(page))
935 			goto restart;
936 
937 		if (!page_cache_get_speculative(page))
938 			goto repeat;
939 
940 		/* Has the page moved? */
941 		if (unlikely(page != *((void **)pages[i]))) {
942 			page_cache_release(page);
943 			goto repeat;
944 		}
945 
946 		/*
947 		 * must check mapping and index after taking the ref.
948 		 * otherwise we can get both false positives and false
949 		 * negatives, which is just confusing to the caller.
950 		 */
951 		if (page->mapping == NULL || page->index != index) {
952 			page_cache_release(page);
953 			break;
954 		}
955 
956 		pages[ret] = page;
957 		ret++;
958 		index++;
959 	}
960 	rcu_read_unlock();
961 	return ret;
962 }
963 EXPORT_SYMBOL(find_get_pages_contig);
964 
965 /**
966  * find_get_pages_tag - find and return pages that match @tag
967  * @mapping:	the address_space to search
968  * @index:	the starting page index
969  * @tag:	the tag index
970  * @nr_pages:	the maximum number of pages
971  * @pages:	where the resulting pages are placed
972  *
973  * Like find_get_pages, except we only return pages which are tagged with
974  * @tag.   We update @index to index the next page for the traversal.
975  */
976 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
977 			int tag, unsigned int nr_pages, struct page **pages)
978 {
979 	unsigned int i;
980 	unsigned int ret;
981 	unsigned int nr_found;
982 
983 	rcu_read_lock();
984 restart:
985 	nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
986 				(void ***)pages, *index, nr_pages, tag);
987 	ret = 0;
988 	for (i = 0; i < nr_found; i++) {
989 		struct page *page;
990 repeat:
991 		page = radix_tree_deref_slot((void **)pages[i]);
992 		if (unlikely(!page))
993 			continue;
994 
995 		/*
996 		 * This can only trigger when the entry at index 0 moves out
997 		 * of or back to the root: none yet gotten, safe to restart.
998 		 */
999 		if (radix_tree_deref_retry(page))
1000 			goto restart;
1001 
1002 		if (!page_cache_get_speculative(page))
1003 			goto repeat;
1004 
1005 		/* Has the page moved? */
1006 		if (unlikely(page != *((void **)pages[i]))) {
1007 			page_cache_release(page);
1008 			goto repeat;
1009 		}
1010 
1011 		pages[ret] = page;
1012 		ret++;
1013 	}
1014 
1015 	/*
1016 	 * If all entries were removed before we could secure them,
1017 	 * try again, because callers stop trying once 0 is returned.
1018 	 */
1019 	if (unlikely(!ret && nr_found))
1020 		goto restart;
1021 	rcu_read_unlock();
1022 
1023 	if (ret)
1024 		*index = pages[ret - 1]->index + 1;
1025 
1026 	return ret;
1027 }
1028 EXPORT_SYMBOL(find_get_pages_tag);
1029 
1030 /**
1031  * grab_cache_page_nowait - returns locked page at given index in given cache
1032  * @mapping: target address_space
1033  * @index: the page index
1034  *
1035  * Same as grab_cache_page(), but do not wait if the page is unavailable.
1036  * This is intended for speculative data generators, where the data can
1037  * be regenerated if the page couldn't be grabbed.  This routine should
1038  * be safe to call while holding the lock for another page.
1039  *
1040  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1041  * and deadlock against the caller's locked page.
1042  */
1043 struct page *
1044 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1045 {
1046 	struct page *page = find_get_page(mapping, index);
1047 
1048 	if (page) {
1049 		if (trylock_page(page))
1050 			return page;
1051 		page_cache_release(page);
1052 		return NULL;
1053 	}
1054 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1055 	if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1056 		page_cache_release(page);
1057 		page = NULL;
1058 	}
1059 	return page;
1060 }
1061 EXPORT_SYMBOL(grab_cache_page_nowait);
1062 
1063 /*
1064  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1065  * a _large_ part of the i/o request. Imagine the worst scenario:
1066  *
1067  *      ---R__________________________________________B__________
1068  *         ^ reading here                             ^ bad block(assume 4k)
1069  *
1070  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1071  * => failing the whole request => read(R) => read(R+1) =>
1072  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1073  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1074  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1075  *
1076  * It is going insane. Fix it by quickly scaling down the readahead size.
1077  */
1078 static void shrink_readahead_size_eio(struct file *filp,
1079 					struct file_ra_state *ra)
1080 {
1081 	ra->ra_pages /= 4;
1082 }
1083 
1084 /**
1085  * do_generic_file_read - generic file read routine
1086  * @filp:	the file to read
1087  * @ppos:	current file position
1088  * @desc:	read_descriptor
1089  * @actor:	read method
1090  *
1091  * This is a generic file read routine, and uses the
1092  * mapping->a_ops->readpage() function for the actual low-level stuff.
1093  *
1094  * This is really ugly. But the goto's actually try to clarify some
1095  * of the logic when it comes to error handling etc.
1096  */
1097 static void do_generic_file_read(struct file *filp, loff_t *ppos,
1098 		read_descriptor_t *desc, read_actor_t actor)
1099 {
1100 	struct address_space *mapping = filp->f_mapping;
1101 	struct inode *inode = mapping->host;
1102 	struct file_ra_state *ra = &filp->f_ra;
1103 	pgoff_t index;
1104 	pgoff_t last_index;
1105 	pgoff_t prev_index;
1106 	unsigned long offset;      /* offset into pagecache page */
1107 	unsigned int prev_offset;
1108 	int error;
1109 
1110 	index = *ppos >> PAGE_CACHE_SHIFT;
1111 	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1112 	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1113 	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1114 	offset = *ppos & ~PAGE_CACHE_MASK;
1115 
1116 	for (;;) {
1117 		struct page *page;
1118 		pgoff_t end_index;
1119 		loff_t isize;
1120 		unsigned long nr, ret;
1121 
1122 		cond_resched();
1123 find_page:
1124 		page = find_get_page(mapping, index);
1125 		if (!page) {
1126 			page_cache_sync_readahead(mapping,
1127 					ra, filp,
1128 					index, last_index - index);
1129 			page = find_get_page(mapping, index);
1130 			if (unlikely(page == NULL))
1131 				goto no_cached_page;
1132 		}
1133 		if (PageReadahead(page)) {
1134 			page_cache_async_readahead(mapping,
1135 					ra, filp, page,
1136 					index, last_index - index);
1137 		}
1138 		if (!PageUptodate(page)) {
1139 			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1140 					!mapping->a_ops->is_partially_uptodate)
1141 				goto page_not_up_to_date;
1142 			if (!trylock_page(page))
1143 				goto page_not_up_to_date;
1144 			/* Did it get truncated before we got the lock? */
1145 			if (!page->mapping)
1146 				goto page_not_up_to_date_locked;
1147 			if (!mapping->a_ops->is_partially_uptodate(page,
1148 								desc, offset))
1149 				goto page_not_up_to_date_locked;
1150 			unlock_page(page);
1151 		}
1152 page_ok:
1153 		/*
1154 		 * i_size must be checked after we know the page is Uptodate.
1155 		 *
1156 		 * Checking i_size after the check allows us to calculate
1157 		 * the correct value for "nr", which means the zero-filled
1158 		 * part of the page is not copied back to userspace (unless
1159 		 * another truncate extends the file - this is desired though).
1160 		 */
1161 
1162 		isize = i_size_read(inode);
1163 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1164 		if (unlikely(!isize || index > end_index)) {
1165 			page_cache_release(page);
1166 			goto out;
1167 		}
1168 
1169 		/* nr is the maximum number of bytes to copy from this page */
1170 		nr = PAGE_CACHE_SIZE;
1171 		if (index == end_index) {
1172 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1173 			if (nr <= offset) {
1174 				page_cache_release(page);
1175 				goto out;
1176 			}
1177 		}
1178 		nr = nr - offset;
1179 
1180 		/* If users can be writing to this page using arbitrary
1181 		 * virtual addresses, take care about potential aliasing
1182 		 * before reading the page on the kernel side.
1183 		 */
1184 		if (mapping_writably_mapped(mapping))
1185 			flush_dcache_page(page);
1186 
1187 		/*
1188 		 * When a sequential read accesses a page several times,
1189 		 * only mark it as accessed the first time.
1190 		 */
1191 		if (prev_index != index || offset != prev_offset)
1192 			mark_page_accessed(page);
1193 		prev_index = index;
1194 
1195 		/*
1196 		 * Ok, we have the page, and it's up-to-date, so
1197 		 * now we can copy it to user space...
1198 		 *
1199 		 * The actor routine returns how many bytes were actually used..
1200 		 * NOTE! This may not be the same as how much of a user buffer
1201 		 * we filled up (we may be padding etc), so we can only update
1202 		 * "pos" here (the actor routine has to update the user buffer
1203 		 * pointers and the remaining count).
1204 		 */
1205 		ret = actor(desc, page, offset, nr);
1206 		offset += ret;
1207 		index += offset >> PAGE_CACHE_SHIFT;
1208 		offset &= ~PAGE_CACHE_MASK;
1209 		prev_offset = offset;
1210 
1211 		page_cache_release(page);
1212 		if (ret == nr && desc->count)
1213 			continue;
1214 		goto out;
1215 
1216 page_not_up_to_date:
1217 		/* Get exclusive access to the page ... */
1218 		error = lock_page_killable(page);
1219 		if (unlikely(error))
1220 			goto readpage_error;
1221 
1222 page_not_up_to_date_locked:
1223 		/* Did it get truncated before we got the lock? */
1224 		if (!page->mapping) {
1225 			unlock_page(page);
1226 			page_cache_release(page);
1227 			continue;
1228 		}
1229 
1230 		/* Did somebody else fill it already? */
1231 		if (PageUptodate(page)) {
1232 			unlock_page(page);
1233 			goto page_ok;
1234 		}
1235 
1236 readpage:
1237 		/*
1238 		 * A previous I/O error may have been due to temporary
1239 		 * failures, eg. multipath errors.
1240 		 * PG_error will be set again if readpage fails.
1241 		 */
1242 		ClearPageError(page);
1243 		/* Start the actual read. The read will unlock the page. */
1244 		error = mapping->a_ops->readpage(filp, page);
1245 
1246 		if (unlikely(error)) {
1247 			if (error == AOP_TRUNCATED_PAGE) {
1248 				page_cache_release(page);
1249 				goto find_page;
1250 			}
1251 			goto readpage_error;
1252 		}
1253 
1254 		if (!PageUptodate(page)) {
1255 			error = lock_page_killable(page);
1256 			if (unlikely(error))
1257 				goto readpage_error;
1258 			if (!PageUptodate(page)) {
1259 				if (page->mapping == NULL) {
1260 					/*
1261 					 * invalidate_mapping_pages got it
1262 					 */
1263 					unlock_page(page);
1264 					page_cache_release(page);
1265 					goto find_page;
1266 				}
1267 				unlock_page(page);
1268 				shrink_readahead_size_eio(filp, ra);
1269 				error = -EIO;
1270 				goto readpage_error;
1271 			}
1272 			unlock_page(page);
1273 		}
1274 
1275 		goto page_ok;
1276 
1277 readpage_error:
1278 		/* UHHUH! A synchronous read error occurred. Report it */
1279 		desc->error = error;
1280 		page_cache_release(page);
1281 		goto out;
1282 
1283 no_cached_page:
1284 		/*
1285 		 * Ok, it wasn't cached, so we need to create a new
1286 		 * page..
1287 		 */
1288 		page = page_cache_alloc_cold(mapping);
1289 		if (!page) {
1290 			desc->error = -ENOMEM;
1291 			goto out;
1292 		}
1293 		error = add_to_page_cache_lru(page, mapping,
1294 						index, GFP_KERNEL);
1295 		if (error) {
1296 			page_cache_release(page);
1297 			if (error == -EEXIST)
1298 				goto find_page;
1299 			desc->error = error;
1300 			goto out;
1301 		}
1302 		goto readpage;
1303 	}
1304 
1305 out:
1306 	ra->prev_pos = prev_index;
1307 	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1308 	ra->prev_pos |= prev_offset;
1309 
1310 	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1311 	file_accessed(filp);
1312 }
1313 
1314 int file_read_actor(read_descriptor_t *desc, struct page *page,
1315 			unsigned long offset, unsigned long size)
1316 {
1317 	char *kaddr;
1318 	unsigned long left, count = desc->count;
1319 
1320 	if (size > count)
1321 		size = count;
1322 
1323 	/*
1324 	 * Faults on the destination of a read are common, so do it before
1325 	 * taking the kmap.
1326 	 */
1327 	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1328 		kaddr = kmap_atomic(page, KM_USER0);
1329 		left = __copy_to_user_inatomic(desc->arg.buf,
1330 						kaddr + offset, size);
1331 		kunmap_atomic(kaddr, KM_USER0);
1332 		if (left == 0)
1333 			goto success;
1334 	}
1335 
1336 	/* Do it the slow way */
1337 	kaddr = kmap(page);
1338 	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1339 	kunmap(page);
1340 
1341 	if (left) {
1342 		size -= left;
1343 		desc->error = -EFAULT;
1344 	}
1345 success:
1346 	desc->count = count - size;
1347 	desc->written += size;
1348 	desc->arg.buf += size;
1349 	return size;
1350 }
1351 
1352 /*
1353  * Performs necessary checks before doing a write
1354  * @iov:	io vector request
1355  * @nr_segs:	number of segments in the iovec
1356  * @count:	number of bytes to write
1357  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1358  *
1359  * Adjust number of segments and amount of bytes to write (nr_segs should be
1360  * properly initialized first). Returns appropriate error code that caller
1361  * should return or zero in case that write should be allowed.
1362  */
1363 int generic_segment_checks(const struct iovec *iov,
1364 			unsigned long *nr_segs, size_t *count, int access_flags)
1365 {
1366 	unsigned long   seg;
1367 	size_t cnt = 0;
1368 	for (seg = 0; seg < *nr_segs; seg++) {
1369 		const struct iovec *iv = &iov[seg];
1370 
1371 		/*
1372 		 * If any segment has a negative length, or the cumulative
1373 		 * length ever wraps negative then return -EINVAL.
1374 		 */
1375 		cnt += iv->iov_len;
1376 		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1377 			return -EINVAL;
1378 		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1379 			continue;
1380 		if (seg == 0)
1381 			return -EFAULT;
1382 		*nr_segs = seg;
1383 		cnt -= iv->iov_len;	/* This segment is no good */
1384 		break;
1385 	}
1386 	*count = cnt;
1387 	return 0;
1388 }
1389 EXPORT_SYMBOL(generic_segment_checks);
1390 
1391 /**
1392  * generic_file_aio_read - generic filesystem read routine
1393  * @iocb:	kernel I/O control block
1394  * @iov:	io vector request
1395  * @nr_segs:	number of segments in the iovec
1396  * @pos:	current file position
1397  *
1398  * This is the "read()" routine for all filesystems
1399  * that can use the page cache directly.
1400  */
1401 ssize_t
1402 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1403 		unsigned long nr_segs, loff_t pos)
1404 {
1405 	struct file *filp = iocb->ki_filp;
1406 	ssize_t retval;
1407 	unsigned long seg = 0;
1408 	size_t count;
1409 	loff_t *ppos = &iocb->ki_pos;
1410 
1411 	count = 0;
1412 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1413 	if (retval)
1414 		return retval;
1415 
1416 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1417 	if (filp->f_flags & O_DIRECT) {
1418 		loff_t size;
1419 		struct address_space *mapping;
1420 		struct inode *inode;
1421 
1422 		mapping = filp->f_mapping;
1423 		inode = mapping->host;
1424 		if (!count)
1425 			goto out; /* skip atime */
1426 		size = i_size_read(inode);
1427 		if (pos < size) {
1428 			retval = filemap_write_and_wait_range(mapping, pos,
1429 					pos + iov_length(iov, nr_segs) - 1);
1430 			if (!retval) {
1431 				retval = mapping->a_ops->direct_IO(READ, iocb,
1432 							iov, pos, nr_segs);
1433 			}
1434 			if (retval > 0) {
1435 				*ppos = pos + retval;
1436 				count -= retval;
1437 			}
1438 
1439 			/*
1440 			 * Btrfs can have a short DIO read if we encounter
1441 			 * compressed extents, so if there was an error, or if
1442 			 * we've already read everything we wanted to, or if
1443 			 * there was a short read because we hit EOF, go ahead
1444 			 * and return.  Otherwise fallthrough to buffered io for
1445 			 * the rest of the read.
1446 			 */
1447 			if (retval < 0 || !count || *ppos >= size) {
1448 				file_accessed(filp);
1449 				goto out;
1450 			}
1451 		}
1452 	}
1453 
1454 	count = retval;
1455 	for (seg = 0; seg < nr_segs; seg++) {
1456 		read_descriptor_t desc;
1457 		loff_t offset = 0;
1458 
1459 		/*
1460 		 * If we did a short DIO read we need to skip the section of the
1461 		 * iov that we've already read data into.
1462 		 */
1463 		if (count) {
1464 			if (count > iov[seg].iov_len) {
1465 				count -= iov[seg].iov_len;
1466 				continue;
1467 			}
1468 			offset = count;
1469 			count = 0;
1470 		}
1471 
1472 		desc.written = 0;
1473 		desc.arg.buf = iov[seg].iov_base + offset;
1474 		desc.count = iov[seg].iov_len - offset;
1475 		if (desc.count == 0)
1476 			continue;
1477 		desc.error = 0;
1478 		do_generic_file_read(filp, ppos, &desc, file_read_actor);
1479 		retval += desc.written;
1480 		if (desc.error) {
1481 			retval = retval ?: desc.error;
1482 			break;
1483 		}
1484 		if (desc.count > 0)
1485 			break;
1486 	}
1487 out:
1488 	return retval;
1489 }
1490 EXPORT_SYMBOL(generic_file_aio_read);
1491 
1492 static ssize_t
1493 do_readahead(struct address_space *mapping, struct file *filp,
1494 	     pgoff_t index, unsigned long nr)
1495 {
1496 	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1497 		return -EINVAL;
1498 
1499 	force_page_cache_readahead(mapping, filp, index, nr);
1500 	return 0;
1501 }
1502 
1503 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1504 {
1505 	ssize_t ret;
1506 	struct file *file;
1507 
1508 	ret = -EBADF;
1509 	file = fget(fd);
1510 	if (file) {
1511 		if (file->f_mode & FMODE_READ) {
1512 			struct address_space *mapping = file->f_mapping;
1513 			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1514 			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1515 			unsigned long len = end - start + 1;
1516 			ret = do_readahead(mapping, file, start, len);
1517 		}
1518 		fput(file);
1519 	}
1520 	return ret;
1521 }
1522 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1523 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1524 {
1525 	return SYSC_readahead((int) fd, offset, (size_t) count);
1526 }
1527 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1528 #endif
1529 
1530 #ifdef CONFIG_MMU
1531 /**
1532  * page_cache_read - adds requested page to the page cache if not already there
1533  * @file:	file to read
1534  * @offset:	page index
1535  *
1536  * This adds the requested page to the page cache if it isn't already there,
1537  * and schedules an I/O to read in its contents from disk.
1538  */
1539 static int page_cache_read(struct file *file, pgoff_t offset)
1540 {
1541 	struct address_space *mapping = file->f_mapping;
1542 	struct page *page;
1543 	int ret;
1544 
1545 	do {
1546 		page = page_cache_alloc_cold(mapping);
1547 		if (!page)
1548 			return -ENOMEM;
1549 
1550 		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1551 		if (ret == 0)
1552 			ret = mapping->a_ops->readpage(file, page);
1553 		else if (ret == -EEXIST)
1554 			ret = 0; /* losing race to add is OK */
1555 
1556 		page_cache_release(page);
1557 
1558 	} while (ret == AOP_TRUNCATED_PAGE);
1559 
1560 	return ret;
1561 }
1562 
1563 #define MMAP_LOTSAMISS  (100)
1564 
1565 /*
1566  * Synchronous readahead happens when we don't even find
1567  * a page in the page cache at all.
1568  */
1569 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1570 				   struct file_ra_state *ra,
1571 				   struct file *file,
1572 				   pgoff_t offset)
1573 {
1574 	unsigned long ra_pages;
1575 	struct address_space *mapping = file->f_mapping;
1576 
1577 	/* If we don't want any read-ahead, don't bother */
1578 	if (VM_RandomReadHint(vma))
1579 		return;
1580 
1581 	if (VM_SequentialReadHint(vma) ||
1582 			offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) {
1583 		page_cache_sync_readahead(mapping, ra, file, offset,
1584 					  ra->ra_pages);
1585 		return;
1586 	}
1587 
1588 	if (ra->mmap_miss < INT_MAX)
1589 		ra->mmap_miss++;
1590 
1591 	/*
1592 	 * Do we miss much more than hit in this file? If so,
1593 	 * stop bothering with read-ahead. It will only hurt.
1594 	 */
1595 	if (ra->mmap_miss > MMAP_LOTSAMISS)
1596 		return;
1597 
1598 	/*
1599 	 * mmap read-around
1600 	 */
1601 	ra_pages = max_sane_readahead(ra->ra_pages);
1602 	if (ra_pages) {
1603 		ra->start = max_t(long, 0, offset - ra_pages/2);
1604 		ra->size = ra_pages;
1605 		ra->async_size = 0;
1606 		ra_submit(ra, mapping, file);
1607 	}
1608 }
1609 
1610 /*
1611  * Asynchronous readahead happens when we find the page and PG_readahead,
1612  * so we want to possibly extend the readahead further..
1613  */
1614 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1615 				    struct file_ra_state *ra,
1616 				    struct file *file,
1617 				    struct page *page,
1618 				    pgoff_t offset)
1619 {
1620 	struct address_space *mapping = file->f_mapping;
1621 
1622 	/* If we don't want any read-ahead, don't bother */
1623 	if (VM_RandomReadHint(vma))
1624 		return;
1625 	if (ra->mmap_miss > 0)
1626 		ra->mmap_miss--;
1627 	if (PageReadahead(page))
1628 		page_cache_async_readahead(mapping, ra, file,
1629 					   page, offset, ra->ra_pages);
1630 }
1631 
1632 /**
1633  * filemap_fault - read in file data for page fault handling
1634  * @vma:	vma in which the fault was taken
1635  * @vmf:	struct vm_fault containing details of the fault
1636  *
1637  * filemap_fault() is invoked via the vma operations vector for a
1638  * mapped memory region to read in file data during a page fault.
1639  *
1640  * The goto's are kind of ugly, but this streamlines the normal case of having
1641  * it in the page cache, and handles the special cases reasonably without
1642  * having a lot of duplicated code.
1643  */
1644 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1645 {
1646 	int error;
1647 	struct file *file = vma->vm_file;
1648 	struct address_space *mapping = file->f_mapping;
1649 	struct file_ra_state *ra = &file->f_ra;
1650 	struct inode *inode = mapping->host;
1651 	pgoff_t offset = vmf->pgoff;
1652 	struct page *page;
1653 	pgoff_t size;
1654 	int ret = 0;
1655 
1656 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1657 	if (offset >= size)
1658 		return VM_FAULT_SIGBUS;
1659 
1660 	/*
1661 	 * Do we have something in the page cache already?
1662 	 */
1663 	page = find_get_page(mapping, offset);
1664 	if (likely(page)) {
1665 		/*
1666 		 * We found the page, so try async readahead before
1667 		 * waiting for the lock.
1668 		 */
1669 		do_async_mmap_readahead(vma, ra, file, page, offset);
1670 	} else {
1671 		/* No page in the page cache at all */
1672 		do_sync_mmap_readahead(vma, ra, file, offset);
1673 		count_vm_event(PGMAJFAULT);
1674 		ret = VM_FAULT_MAJOR;
1675 retry_find:
1676 		page = find_get_page(mapping, offset);
1677 		if (!page)
1678 			goto no_cached_page;
1679 	}
1680 
1681 	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1682 		page_cache_release(page);
1683 		return ret | VM_FAULT_RETRY;
1684 	}
1685 
1686 	/* Did it get truncated? */
1687 	if (unlikely(page->mapping != mapping)) {
1688 		unlock_page(page);
1689 		put_page(page);
1690 		goto retry_find;
1691 	}
1692 	VM_BUG_ON(page->index != offset);
1693 
1694 	/*
1695 	 * We have a locked page in the page cache, now we need to check
1696 	 * that it's up-to-date. If not, it is going to be due to an error.
1697 	 */
1698 	if (unlikely(!PageUptodate(page)))
1699 		goto page_not_uptodate;
1700 
1701 	/*
1702 	 * Found the page and have a reference on it.
1703 	 * We must recheck i_size under page lock.
1704 	 */
1705 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1706 	if (unlikely(offset >= size)) {
1707 		unlock_page(page);
1708 		page_cache_release(page);
1709 		return VM_FAULT_SIGBUS;
1710 	}
1711 
1712 	ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT;
1713 	vmf->page = page;
1714 	return ret | VM_FAULT_LOCKED;
1715 
1716 no_cached_page:
1717 	/*
1718 	 * We're only likely to ever get here if MADV_RANDOM is in
1719 	 * effect.
1720 	 */
1721 	error = page_cache_read(file, offset);
1722 
1723 	/*
1724 	 * The page we want has now been added to the page cache.
1725 	 * In the unlikely event that someone removed it in the
1726 	 * meantime, we'll just come back here and read it again.
1727 	 */
1728 	if (error >= 0)
1729 		goto retry_find;
1730 
1731 	/*
1732 	 * An error return from page_cache_read can result if the
1733 	 * system is low on memory, or a problem occurs while trying
1734 	 * to schedule I/O.
1735 	 */
1736 	if (error == -ENOMEM)
1737 		return VM_FAULT_OOM;
1738 	return VM_FAULT_SIGBUS;
1739 
1740 page_not_uptodate:
1741 	/*
1742 	 * Umm, take care of errors if the page isn't up-to-date.
1743 	 * Try to re-read it _once_. We do this synchronously,
1744 	 * because there really aren't any performance issues here
1745 	 * and we need to check for errors.
1746 	 */
1747 	ClearPageError(page);
1748 	error = mapping->a_ops->readpage(file, page);
1749 	if (!error) {
1750 		wait_on_page_locked(page);
1751 		if (!PageUptodate(page))
1752 			error = -EIO;
1753 	}
1754 	page_cache_release(page);
1755 
1756 	if (!error || error == AOP_TRUNCATED_PAGE)
1757 		goto retry_find;
1758 
1759 	/* Things didn't work out. Return zero to tell the mm layer so. */
1760 	shrink_readahead_size_eio(file, ra);
1761 	return VM_FAULT_SIGBUS;
1762 }
1763 EXPORT_SYMBOL(filemap_fault);
1764 
1765 const struct vm_operations_struct generic_file_vm_ops = {
1766 	.fault		= filemap_fault,
1767 };
1768 
1769 /* This is used for a general mmap of a disk file */
1770 
1771 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1772 {
1773 	struct address_space *mapping = file->f_mapping;
1774 
1775 	if (!mapping->a_ops->readpage)
1776 		return -ENOEXEC;
1777 	file_accessed(file);
1778 	vma->vm_ops = &generic_file_vm_ops;
1779 	vma->vm_flags |= VM_CAN_NONLINEAR;
1780 	return 0;
1781 }
1782 
1783 /*
1784  * This is for filesystems which do not implement ->writepage.
1785  */
1786 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1787 {
1788 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1789 		return -EINVAL;
1790 	return generic_file_mmap(file, vma);
1791 }
1792 #else
1793 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1794 {
1795 	return -ENOSYS;
1796 }
1797 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1798 {
1799 	return -ENOSYS;
1800 }
1801 #endif /* CONFIG_MMU */
1802 
1803 EXPORT_SYMBOL(generic_file_mmap);
1804 EXPORT_SYMBOL(generic_file_readonly_mmap);
1805 
1806 static struct page *__read_cache_page(struct address_space *mapping,
1807 				pgoff_t index,
1808 				int (*filler)(void *,struct page*),
1809 				void *data,
1810 				gfp_t gfp)
1811 {
1812 	struct page *page;
1813 	int err;
1814 repeat:
1815 	page = find_get_page(mapping, index);
1816 	if (!page) {
1817 		page = __page_cache_alloc(gfp | __GFP_COLD);
1818 		if (!page)
1819 			return ERR_PTR(-ENOMEM);
1820 		err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1821 		if (unlikely(err)) {
1822 			page_cache_release(page);
1823 			if (err == -EEXIST)
1824 				goto repeat;
1825 			/* Presumably ENOMEM for radix tree node */
1826 			return ERR_PTR(err);
1827 		}
1828 		err = filler(data, page);
1829 		if (err < 0) {
1830 			page_cache_release(page);
1831 			page = ERR_PTR(err);
1832 		}
1833 	}
1834 	return page;
1835 }
1836 
1837 static struct page *do_read_cache_page(struct address_space *mapping,
1838 				pgoff_t index,
1839 				int (*filler)(void *,struct page*),
1840 				void *data,
1841 				gfp_t gfp)
1842 
1843 {
1844 	struct page *page;
1845 	int err;
1846 
1847 retry:
1848 	page = __read_cache_page(mapping, index, filler, data, gfp);
1849 	if (IS_ERR(page))
1850 		return page;
1851 	if (PageUptodate(page))
1852 		goto out;
1853 
1854 	lock_page(page);
1855 	if (!page->mapping) {
1856 		unlock_page(page);
1857 		page_cache_release(page);
1858 		goto retry;
1859 	}
1860 	if (PageUptodate(page)) {
1861 		unlock_page(page);
1862 		goto out;
1863 	}
1864 	err = filler(data, page);
1865 	if (err < 0) {
1866 		page_cache_release(page);
1867 		return ERR_PTR(err);
1868 	}
1869 out:
1870 	mark_page_accessed(page);
1871 	return page;
1872 }
1873 
1874 /**
1875  * read_cache_page_async - read into page cache, fill it if needed
1876  * @mapping:	the page's address_space
1877  * @index:	the page index
1878  * @filler:	function to perform the read
1879  * @data:	destination for read data
1880  *
1881  * Same as read_cache_page, but don't wait for page to become unlocked
1882  * after submitting it to the filler.
1883  *
1884  * Read into the page cache. If a page already exists, and PageUptodate() is
1885  * not set, try to fill the page but don't wait for it to become unlocked.
1886  *
1887  * If the page does not get brought uptodate, return -EIO.
1888  */
1889 struct page *read_cache_page_async(struct address_space *mapping,
1890 				pgoff_t index,
1891 				int (*filler)(void *,struct page*),
1892 				void *data)
1893 {
1894 	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1895 }
1896 EXPORT_SYMBOL(read_cache_page_async);
1897 
1898 static struct page *wait_on_page_read(struct page *page)
1899 {
1900 	if (!IS_ERR(page)) {
1901 		wait_on_page_locked(page);
1902 		if (!PageUptodate(page)) {
1903 			page_cache_release(page);
1904 			page = ERR_PTR(-EIO);
1905 		}
1906 	}
1907 	return page;
1908 }
1909 
1910 /**
1911  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1912  * @mapping:	the page's address_space
1913  * @index:	the page index
1914  * @gfp:	the page allocator flags to use if allocating
1915  *
1916  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1917  * any new page allocations done using the specified allocation flags. Note
1918  * that the Radix tree operations will still use GFP_KERNEL, so you can't
1919  * expect to do this atomically or anything like that - but you can pass in
1920  * other page requirements.
1921  *
1922  * If the page does not get brought uptodate, return -EIO.
1923  */
1924 struct page *read_cache_page_gfp(struct address_space *mapping,
1925 				pgoff_t index,
1926 				gfp_t gfp)
1927 {
1928 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1929 
1930 	return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1931 }
1932 EXPORT_SYMBOL(read_cache_page_gfp);
1933 
1934 /**
1935  * read_cache_page - read into page cache, fill it if needed
1936  * @mapping:	the page's address_space
1937  * @index:	the page index
1938  * @filler:	function to perform the read
1939  * @data:	destination for read data
1940  *
1941  * Read into the page cache. If a page already exists, and PageUptodate() is
1942  * not set, try to fill the page then wait for it to become unlocked.
1943  *
1944  * If the page does not get brought uptodate, return -EIO.
1945  */
1946 struct page *read_cache_page(struct address_space *mapping,
1947 				pgoff_t index,
1948 				int (*filler)(void *,struct page*),
1949 				void *data)
1950 {
1951 	return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1952 }
1953 EXPORT_SYMBOL(read_cache_page);
1954 
1955 /*
1956  * The logic we want is
1957  *
1958  *	if suid or (sgid and xgrp)
1959  *		remove privs
1960  */
1961 int should_remove_suid(struct dentry *dentry)
1962 {
1963 	mode_t mode = dentry->d_inode->i_mode;
1964 	int kill = 0;
1965 
1966 	/* suid always must be killed */
1967 	if (unlikely(mode & S_ISUID))
1968 		kill = ATTR_KILL_SUID;
1969 
1970 	/*
1971 	 * sgid without any exec bits is just a mandatory locking mark; leave
1972 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1973 	 */
1974 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1975 		kill |= ATTR_KILL_SGID;
1976 
1977 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1978 		return kill;
1979 
1980 	return 0;
1981 }
1982 EXPORT_SYMBOL(should_remove_suid);
1983 
1984 static int __remove_suid(struct dentry *dentry, int kill)
1985 {
1986 	struct iattr newattrs;
1987 
1988 	newattrs.ia_valid = ATTR_FORCE | kill;
1989 	return notify_change(dentry, &newattrs);
1990 }
1991 
1992 int file_remove_suid(struct file *file)
1993 {
1994 	struct dentry *dentry = file->f_path.dentry;
1995 	int killsuid = should_remove_suid(dentry);
1996 	int killpriv = security_inode_need_killpriv(dentry);
1997 	int error = 0;
1998 
1999 	if (killpriv < 0)
2000 		return killpriv;
2001 	if (killpriv)
2002 		error = security_inode_killpriv(dentry);
2003 	if (!error && killsuid)
2004 		error = __remove_suid(dentry, killsuid);
2005 
2006 	return error;
2007 }
2008 EXPORT_SYMBOL(file_remove_suid);
2009 
2010 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
2011 			const struct iovec *iov, size_t base, size_t bytes)
2012 {
2013 	size_t copied = 0, left = 0;
2014 
2015 	while (bytes) {
2016 		char __user *buf = iov->iov_base + base;
2017 		int copy = min(bytes, iov->iov_len - base);
2018 
2019 		base = 0;
2020 		left = __copy_from_user_inatomic(vaddr, buf, copy);
2021 		copied += copy;
2022 		bytes -= copy;
2023 		vaddr += copy;
2024 		iov++;
2025 
2026 		if (unlikely(left))
2027 			break;
2028 	}
2029 	return copied - left;
2030 }
2031 
2032 /*
2033  * Copy as much as we can into the page and return the number of bytes which
2034  * were successfully copied.  If a fault is encountered then return the number of
2035  * bytes which were copied.
2036  */
2037 size_t iov_iter_copy_from_user_atomic(struct page *page,
2038 		struct iov_iter *i, unsigned long offset, size_t bytes)
2039 {
2040 	char *kaddr;
2041 	size_t copied;
2042 
2043 	BUG_ON(!in_atomic());
2044 	kaddr = kmap_atomic(page, KM_USER0);
2045 	if (likely(i->nr_segs == 1)) {
2046 		int left;
2047 		char __user *buf = i->iov->iov_base + i->iov_offset;
2048 		left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2049 		copied = bytes - left;
2050 	} else {
2051 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2052 						i->iov, i->iov_offset, bytes);
2053 	}
2054 	kunmap_atomic(kaddr, KM_USER0);
2055 
2056 	return copied;
2057 }
2058 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2059 
2060 /*
2061  * This has the same sideeffects and return value as
2062  * iov_iter_copy_from_user_atomic().
2063  * The difference is that it attempts to resolve faults.
2064  * Page must not be locked.
2065  */
2066 size_t iov_iter_copy_from_user(struct page *page,
2067 		struct iov_iter *i, unsigned long offset, size_t bytes)
2068 {
2069 	char *kaddr;
2070 	size_t copied;
2071 
2072 	kaddr = kmap(page);
2073 	if (likely(i->nr_segs == 1)) {
2074 		int left;
2075 		char __user *buf = i->iov->iov_base + i->iov_offset;
2076 		left = __copy_from_user(kaddr + offset, buf, bytes);
2077 		copied = bytes - left;
2078 	} else {
2079 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2080 						i->iov, i->iov_offset, bytes);
2081 	}
2082 	kunmap(page);
2083 	return copied;
2084 }
2085 EXPORT_SYMBOL(iov_iter_copy_from_user);
2086 
2087 void iov_iter_advance(struct iov_iter *i, size_t bytes)
2088 {
2089 	BUG_ON(i->count < bytes);
2090 
2091 	if (likely(i->nr_segs == 1)) {
2092 		i->iov_offset += bytes;
2093 		i->count -= bytes;
2094 	} else {
2095 		const struct iovec *iov = i->iov;
2096 		size_t base = i->iov_offset;
2097 
2098 		/*
2099 		 * The !iov->iov_len check ensures we skip over unlikely
2100 		 * zero-length segments (without overruning the iovec).
2101 		 */
2102 		while (bytes || unlikely(i->count && !iov->iov_len)) {
2103 			int copy;
2104 
2105 			copy = min(bytes, iov->iov_len - base);
2106 			BUG_ON(!i->count || i->count < copy);
2107 			i->count -= copy;
2108 			bytes -= copy;
2109 			base += copy;
2110 			if (iov->iov_len == base) {
2111 				iov++;
2112 				base = 0;
2113 			}
2114 		}
2115 		i->iov = iov;
2116 		i->iov_offset = base;
2117 	}
2118 }
2119 EXPORT_SYMBOL(iov_iter_advance);
2120 
2121 /*
2122  * Fault in the first iovec of the given iov_iter, to a maximum length
2123  * of bytes. Returns 0 on success, or non-zero if the memory could not be
2124  * accessed (ie. because it is an invalid address).
2125  *
2126  * writev-intensive code may want this to prefault several iovecs -- that
2127  * would be possible (callers must not rely on the fact that _only_ the
2128  * first iovec will be faulted with the current implementation).
2129  */
2130 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2131 {
2132 	char __user *buf = i->iov->iov_base + i->iov_offset;
2133 	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2134 	return fault_in_pages_readable(buf, bytes);
2135 }
2136 EXPORT_SYMBOL(iov_iter_fault_in_readable);
2137 
2138 /*
2139  * Return the count of just the current iov_iter segment.
2140  */
2141 size_t iov_iter_single_seg_count(struct iov_iter *i)
2142 {
2143 	const struct iovec *iov = i->iov;
2144 	if (i->nr_segs == 1)
2145 		return i->count;
2146 	else
2147 		return min(i->count, iov->iov_len - i->iov_offset);
2148 }
2149 EXPORT_SYMBOL(iov_iter_single_seg_count);
2150 
2151 /*
2152  * Performs necessary checks before doing a write
2153  *
2154  * Can adjust writing position or amount of bytes to write.
2155  * Returns appropriate error code that caller should return or
2156  * zero in case that write should be allowed.
2157  */
2158 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2159 {
2160 	struct inode *inode = file->f_mapping->host;
2161 	unsigned long limit = rlimit(RLIMIT_FSIZE);
2162 
2163         if (unlikely(*pos < 0))
2164                 return -EINVAL;
2165 
2166 	if (!isblk) {
2167 		/* FIXME: this is for backwards compatibility with 2.4 */
2168 		if (file->f_flags & O_APPEND)
2169                         *pos = i_size_read(inode);
2170 
2171 		if (limit != RLIM_INFINITY) {
2172 			if (*pos >= limit) {
2173 				send_sig(SIGXFSZ, current, 0);
2174 				return -EFBIG;
2175 			}
2176 			if (*count > limit - (typeof(limit))*pos) {
2177 				*count = limit - (typeof(limit))*pos;
2178 			}
2179 		}
2180 	}
2181 
2182 	/*
2183 	 * LFS rule
2184 	 */
2185 	if (unlikely(*pos + *count > MAX_NON_LFS &&
2186 				!(file->f_flags & O_LARGEFILE))) {
2187 		if (*pos >= MAX_NON_LFS) {
2188 			return -EFBIG;
2189 		}
2190 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2191 			*count = MAX_NON_LFS - (unsigned long)*pos;
2192 		}
2193 	}
2194 
2195 	/*
2196 	 * Are we about to exceed the fs block limit ?
2197 	 *
2198 	 * If we have written data it becomes a short write.  If we have
2199 	 * exceeded without writing data we send a signal and return EFBIG.
2200 	 * Linus frestrict idea will clean these up nicely..
2201 	 */
2202 	if (likely(!isblk)) {
2203 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2204 			if (*count || *pos > inode->i_sb->s_maxbytes) {
2205 				return -EFBIG;
2206 			}
2207 			/* zero-length writes at ->s_maxbytes are OK */
2208 		}
2209 
2210 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2211 			*count = inode->i_sb->s_maxbytes - *pos;
2212 	} else {
2213 #ifdef CONFIG_BLOCK
2214 		loff_t isize;
2215 		if (bdev_read_only(I_BDEV(inode)))
2216 			return -EPERM;
2217 		isize = i_size_read(inode);
2218 		if (*pos >= isize) {
2219 			if (*count || *pos > isize)
2220 				return -ENOSPC;
2221 		}
2222 
2223 		if (*pos + *count > isize)
2224 			*count = isize - *pos;
2225 #else
2226 		return -EPERM;
2227 #endif
2228 	}
2229 	return 0;
2230 }
2231 EXPORT_SYMBOL(generic_write_checks);
2232 
2233 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2234 				loff_t pos, unsigned len, unsigned flags,
2235 				struct page **pagep, void **fsdata)
2236 {
2237 	const struct address_space_operations *aops = mapping->a_ops;
2238 
2239 	return aops->write_begin(file, mapping, pos, len, flags,
2240 							pagep, fsdata);
2241 }
2242 EXPORT_SYMBOL(pagecache_write_begin);
2243 
2244 int pagecache_write_end(struct file *file, struct address_space *mapping,
2245 				loff_t pos, unsigned len, unsigned copied,
2246 				struct page *page, void *fsdata)
2247 {
2248 	const struct address_space_operations *aops = mapping->a_ops;
2249 
2250 	mark_page_accessed(page);
2251 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2252 }
2253 EXPORT_SYMBOL(pagecache_write_end);
2254 
2255 ssize_t
2256 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2257 		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2258 		size_t count, size_t ocount)
2259 {
2260 	struct file	*file = iocb->ki_filp;
2261 	struct address_space *mapping = file->f_mapping;
2262 	struct inode	*inode = mapping->host;
2263 	ssize_t		written;
2264 	size_t		write_len;
2265 	pgoff_t		end;
2266 
2267 	if (count != ocount)
2268 		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2269 
2270 	write_len = iov_length(iov, *nr_segs);
2271 	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2272 
2273 	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2274 	if (written)
2275 		goto out;
2276 
2277 	/*
2278 	 * After a write we want buffered reads to be sure to go to disk to get
2279 	 * the new data.  We invalidate clean cached page from the region we're
2280 	 * about to write.  We do this *before* the write so that we can return
2281 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2282 	 */
2283 	if (mapping->nrpages) {
2284 		written = invalidate_inode_pages2_range(mapping,
2285 					pos >> PAGE_CACHE_SHIFT, end);
2286 		/*
2287 		 * If a page can not be invalidated, return 0 to fall back
2288 		 * to buffered write.
2289 		 */
2290 		if (written) {
2291 			if (written == -EBUSY)
2292 				return 0;
2293 			goto out;
2294 		}
2295 	}
2296 
2297 	written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2298 
2299 	/*
2300 	 * Finally, try again to invalidate clean pages which might have been
2301 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2302 	 * if the source of the write was an mmap'ed region of the file
2303 	 * we're writing.  Either one is a pretty crazy thing to do,
2304 	 * so we don't support it 100%.  If this invalidation
2305 	 * fails, tough, the write still worked...
2306 	 */
2307 	if (mapping->nrpages) {
2308 		invalidate_inode_pages2_range(mapping,
2309 					      pos >> PAGE_CACHE_SHIFT, end);
2310 	}
2311 
2312 	if (written > 0) {
2313 		pos += written;
2314 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2315 			i_size_write(inode, pos);
2316 			mark_inode_dirty(inode);
2317 		}
2318 		*ppos = pos;
2319 	}
2320 out:
2321 	return written;
2322 }
2323 EXPORT_SYMBOL(generic_file_direct_write);
2324 
2325 /*
2326  * Find or create a page at the given pagecache position. Return the locked
2327  * page. This function is specifically for buffered writes.
2328  */
2329 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2330 					pgoff_t index, unsigned flags)
2331 {
2332 	int status;
2333 	struct page *page;
2334 	gfp_t gfp_notmask = 0;
2335 	if (flags & AOP_FLAG_NOFS)
2336 		gfp_notmask = __GFP_FS;
2337 repeat:
2338 	page = find_lock_page(mapping, index);
2339 	if (page)
2340 		return page;
2341 
2342 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2343 	if (!page)
2344 		return NULL;
2345 	status = add_to_page_cache_lru(page, mapping, index,
2346 						GFP_KERNEL & ~gfp_notmask);
2347 	if (unlikely(status)) {
2348 		page_cache_release(page);
2349 		if (status == -EEXIST)
2350 			goto repeat;
2351 		return NULL;
2352 	}
2353 	return page;
2354 }
2355 EXPORT_SYMBOL(grab_cache_page_write_begin);
2356 
2357 static ssize_t generic_perform_write(struct file *file,
2358 				struct iov_iter *i, loff_t pos)
2359 {
2360 	struct address_space *mapping = file->f_mapping;
2361 	const struct address_space_operations *a_ops = mapping->a_ops;
2362 	long status = 0;
2363 	ssize_t written = 0;
2364 	unsigned int flags = 0;
2365 
2366 	/*
2367 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2368 	 */
2369 	if (segment_eq(get_fs(), KERNEL_DS))
2370 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2371 
2372 	do {
2373 		struct page *page;
2374 		unsigned long offset;	/* Offset into pagecache page */
2375 		unsigned long bytes;	/* Bytes to write to page */
2376 		size_t copied;		/* Bytes copied from user */
2377 		void *fsdata;
2378 
2379 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2380 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2381 						iov_iter_count(i));
2382 
2383 again:
2384 
2385 		/*
2386 		 * Bring in the user page that we will copy from _first_.
2387 		 * Otherwise there's a nasty deadlock on copying from the
2388 		 * same page as we're writing to, without it being marked
2389 		 * up-to-date.
2390 		 *
2391 		 * Not only is this an optimisation, but it is also required
2392 		 * to check that the address is actually valid, when atomic
2393 		 * usercopies are used, below.
2394 		 */
2395 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2396 			status = -EFAULT;
2397 			break;
2398 		}
2399 
2400 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2401 						&page, &fsdata);
2402 		if (unlikely(status))
2403 			break;
2404 
2405 		if (mapping_writably_mapped(mapping))
2406 			flush_dcache_page(page);
2407 
2408 		pagefault_disable();
2409 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2410 		pagefault_enable();
2411 		flush_dcache_page(page);
2412 
2413 		mark_page_accessed(page);
2414 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2415 						page, fsdata);
2416 		if (unlikely(status < 0))
2417 			break;
2418 		copied = status;
2419 
2420 		cond_resched();
2421 
2422 		iov_iter_advance(i, copied);
2423 		if (unlikely(copied == 0)) {
2424 			/*
2425 			 * If we were unable to copy any data at all, we must
2426 			 * fall back to a single segment length write.
2427 			 *
2428 			 * If we didn't fallback here, we could livelock
2429 			 * because not all segments in the iov can be copied at
2430 			 * once without a pagefault.
2431 			 */
2432 			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2433 						iov_iter_single_seg_count(i));
2434 			goto again;
2435 		}
2436 		pos += copied;
2437 		written += copied;
2438 
2439 		balance_dirty_pages_ratelimited(mapping);
2440 
2441 	} while (iov_iter_count(i));
2442 
2443 	return written ? written : status;
2444 }
2445 
2446 ssize_t
2447 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2448 		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2449 		size_t count, ssize_t written)
2450 {
2451 	struct file *file = iocb->ki_filp;
2452 	ssize_t status;
2453 	struct iov_iter i;
2454 
2455 	iov_iter_init(&i, iov, nr_segs, count, written);
2456 	status = generic_perform_write(file, &i, pos);
2457 
2458 	if (likely(status >= 0)) {
2459 		written += status;
2460 		*ppos = pos + status;
2461   	}
2462 
2463 	return written ? written : status;
2464 }
2465 EXPORT_SYMBOL(generic_file_buffered_write);
2466 
2467 /**
2468  * __generic_file_aio_write - write data to a file
2469  * @iocb:	IO state structure (file, offset, etc.)
2470  * @iov:	vector with data to write
2471  * @nr_segs:	number of segments in the vector
2472  * @ppos:	position where to write
2473  *
2474  * This function does all the work needed for actually writing data to a
2475  * file. It does all basic checks, removes SUID from the file, updates
2476  * modification times and calls proper subroutines depending on whether we
2477  * do direct IO or a standard buffered write.
2478  *
2479  * It expects i_mutex to be grabbed unless we work on a block device or similar
2480  * object which does not need locking at all.
2481  *
2482  * This function does *not* take care of syncing data in case of O_SYNC write.
2483  * A caller has to handle it. This is mainly due to the fact that we want to
2484  * avoid syncing under i_mutex.
2485  */
2486 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2487 				 unsigned long nr_segs, loff_t *ppos)
2488 {
2489 	struct file *file = iocb->ki_filp;
2490 	struct address_space * mapping = file->f_mapping;
2491 	size_t ocount;		/* original count */
2492 	size_t count;		/* after file limit checks */
2493 	struct inode 	*inode = mapping->host;
2494 	loff_t		pos;
2495 	ssize_t		written;
2496 	ssize_t		err;
2497 
2498 	ocount = 0;
2499 	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2500 	if (err)
2501 		return err;
2502 
2503 	count = ocount;
2504 	pos = *ppos;
2505 
2506 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2507 
2508 	/* We can write back this queue in page reclaim */
2509 	current->backing_dev_info = mapping->backing_dev_info;
2510 	written = 0;
2511 
2512 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2513 	if (err)
2514 		goto out;
2515 
2516 	if (count == 0)
2517 		goto out;
2518 
2519 	err = file_remove_suid(file);
2520 	if (err)
2521 		goto out;
2522 
2523 	file_update_time(file);
2524 
2525 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2526 	if (unlikely(file->f_flags & O_DIRECT)) {
2527 		loff_t endbyte;
2528 		ssize_t written_buffered;
2529 
2530 		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2531 							ppos, count, ocount);
2532 		if (written < 0 || written == count)
2533 			goto out;
2534 		/*
2535 		 * direct-io write to a hole: fall through to buffered I/O
2536 		 * for completing the rest of the request.
2537 		 */
2538 		pos += written;
2539 		count -= written;
2540 		written_buffered = generic_file_buffered_write(iocb, iov,
2541 						nr_segs, pos, ppos, count,
2542 						written);
2543 		/*
2544 		 * If generic_file_buffered_write() retuned a synchronous error
2545 		 * then we want to return the number of bytes which were
2546 		 * direct-written, or the error code if that was zero.  Note
2547 		 * that this differs from normal direct-io semantics, which
2548 		 * will return -EFOO even if some bytes were written.
2549 		 */
2550 		if (written_buffered < 0) {
2551 			err = written_buffered;
2552 			goto out;
2553 		}
2554 
2555 		/*
2556 		 * We need to ensure that the page cache pages are written to
2557 		 * disk and invalidated to preserve the expected O_DIRECT
2558 		 * semantics.
2559 		 */
2560 		endbyte = pos + written_buffered - written - 1;
2561 		err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2562 		if (err == 0) {
2563 			written = written_buffered;
2564 			invalidate_mapping_pages(mapping,
2565 						 pos >> PAGE_CACHE_SHIFT,
2566 						 endbyte >> PAGE_CACHE_SHIFT);
2567 		} else {
2568 			/*
2569 			 * We don't know how much we wrote, so just return
2570 			 * the number of bytes which were direct-written
2571 			 */
2572 		}
2573 	} else {
2574 		written = generic_file_buffered_write(iocb, iov, nr_segs,
2575 				pos, ppos, count, written);
2576 	}
2577 out:
2578 	current->backing_dev_info = NULL;
2579 	return written ? written : err;
2580 }
2581 EXPORT_SYMBOL(__generic_file_aio_write);
2582 
2583 /**
2584  * generic_file_aio_write - write data to a file
2585  * @iocb:	IO state structure
2586  * @iov:	vector with data to write
2587  * @nr_segs:	number of segments in the vector
2588  * @pos:	position in file where to write
2589  *
2590  * This is a wrapper around __generic_file_aio_write() to be used by most
2591  * filesystems. It takes care of syncing the file in case of O_SYNC file
2592  * and acquires i_mutex as needed.
2593  */
2594 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2595 		unsigned long nr_segs, loff_t pos)
2596 {
2597 	struct file *file = iocb->ki_filp;
2598 	struct inode *inode = file->f_mapping->host;
2599 	ssize_t ret;
2600 
2601 	BUG_ON(iocb->ki_pos != pos);
2602 
2603 	mutex_lock(&inode->i_mutex);
2604 	ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2605 	mutex_unlock(&inode->i_mutex);
2606 
2607 	if (ret > 0 || ret == -EIOCBQUEUED) {
2608 		ssize_t err;
2609 
2610 		err = generic_write_sync(file, pos, ret);
2611 		if (err < 0 && ret > 0)
2612 			ret = err;
2613 	}
2614 	return ret;
2615 }
2616 EXPORT_SYMBOL(generic_file_aio_write);
2617 
2618 /**
2619  * try_to_release_page() - release old fs-specific metadata on a page
2620  *
2621  * @page: the page which the kernel is trying to free
2622  * @gfp_mask: memory allocation flags (and I/O mode)
2623  *
2624  * The address_space is to try to release any data against the page
2625  * (presumably at page->private).  If the release was successful, return `1'.
2626  * Otherwise return zero.
2627  *
2628  * This may also be called if PG_fscache is set on a page, indicating that the
2629  * page is known to the local caching routines.
2630  *
2631  * The @gfp_mask argument specifies whether I/O may be performed to release
2632  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2633  *
2634  */
2635 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2636 {
2637 	struct address_space * const mapping = page->mapping;
2638 
2639 	BUG_ON(!PageLocked(page));
2640 	if (PageWriteback(page))
2641 		return 0;
2642 
2643 	if (mapping && mapping->a_ops->releasepage)
2644 		return mapping->a_ops->releasepage(page, gfp_mask);
2645 	return try_to_free_buffers(page);
2646 }
2647 
2648 EXPORT_SYMBOL(try_to_release_page);
2649