xref: /linux/mm/filemap.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/capability.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/gfp.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/file.h>
24 #include <linux/uio.h>
25 #include <linux/hash.h>
26 #include <linux/writeback.h>
27 #include <linux/backing-dev.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/security.h>
31 #include <linux/cpuset.h>
32 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
33 #include <linux/hugetlb.h>
34 #include <linux/memcontrol.h>
35 #include <linux/cleancache.h>
36 #include <linux/rmap.h>
37 #include "internal.h"
38 
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/filemap.h>
41 
42 /*
43  * FIXME: remove all knowledge of the buffer layer from the core VM
44  */
45 #include <linux/buffer_head.h> /* for try_to_free_buffers */
46 
47 #include <asm/mman.h>
48 
49 /*
50  * Shared mappings implemented 30.11.1994. It's not fully working yet,
51  * though.
52  *
53  * Shared mappings now work. 15.8.1995  Bruno.
54  *
55  * finished 'unifying' the page and buffer cache and SMP-threaded the
56  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
57  *
58  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59  */
60 
61 /*
62  * Lock ordering:
63  *
64  *  ->i_mmap_rwsem		(truncate_pagecache)
65  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
66  *      ->swap_lock		(exclusive_swap_page, others)
67  *        ->mapping->tree_lock
68  *
69  *  ->i_mutex
70  *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
71  *
72  *  ->mmap_sem
73  *    ->i_mmap_rwsem
74  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
75  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
76  *
77  *  ->mmap_sem
78  *    ->lock_page		(access_process_vm)
79  *
80  *  ->i_mutex			(generic_perform_write)
81  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
82  *
83  *  bdi->wb.list_lock
84  *    sb_lock			(fs/fs-writeback.c)
85  *    ->mapping->tree_lock	(__sync_single_inode)
86  *
87  *  ->i_mmap_rwsem
88  *    ->anon_vma.lock		(vma_adjust)
89  *
90  *  ->anon_vma.lock
91  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
92  *
93  *  ->page_table_lock or pte_lock
94  *    ->swap_lock		(try_to_unmap_one)
95  *    ->private_lock		(try_to_unmap_one)
96  *    ->tree_lock		(try_to_unmap_one)
97  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
98  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
99  *    ->private_lock		(page_remove_rmap->set_page_dirty)
100  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
101  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
102  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
103  *    ->memcg->move_lock	(page_remove_rmap->mem_cgroup_begin_page_stat)
104  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
105  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
106  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
107  *
108  * ->i_mmap_rwsem
109  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
110  */
111 
112 static void page_cache_tree_delete(struct address_space *mapping,
113 				   struct page *page, void *shadow)
114 {
115 	struct radix_tree_node *node;
116 	unsigned long index;
117 	unsigned int offset;
118 	unsigned int tag;
119 	void **slot;
120 
121 	VM_BUG_ON(!PageLocked(page));
122 
123 	__radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
124 
125 	if (shadow) {
126 		mapping->nrshadows++;
127 		/*
128 		 * Make sure the nrshadows update is committed before
129 		 * the nrpages update so that final truncate racing
130 		 * with reclaim does not see both counters 0 at the
131 		 * same time and miss a shadow entry.
132 		 */
133 		smp_wmb();
134 	}
135 	mapping->nrpages--;
136 
137 	if (!node) {
138 		/* Clear direct pointer tags in root node */
139 		mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
140 		radix_tree_replace_slot(slot, shadow);
141 		return;
142 	}
143 
144 	/* Clear tree tags for the removed page */
145 	index = page->index;
146 	offset = index & RADIX_TREE_MAP_MASK;
147 	for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
148 		if (test_bit(offset, node->tags[tag]))
149 			radix_tree_tag_clear(&mapping->page_tree, index, tag);
150 	}
151 
152 	/* Delete page, swap shadow entry */
153 	radix_tree_replace_slot(slot, shadow);
154 	workingset_node_pages_dec(node);
155 	if (shadow)
156 		workingset_node_shadows_inc(node);
157 	else
158 		if (__radix_tree_delete_node(&mapping->page_tree, node))
159 			return;
160 
161 	/*
162 	 * Track node that only contains shadow entries.
163 	 *
164 	 * Avoid acquiring the list_lru lock if already tracked.  The
165 	 * list_empty() test is safe as node->private_list is
166 	 * protected by mapping->tree_lock.
167 	 */
168 	if (!workingset_node_pages(node) &&
169 	    list_empty(&node->private_list)) {
170 		node->private_data = mapping;
171 		list_lru_add(&workingset_shadow_nodes, &node->private_list);
172 	}
173 }
174 
175 /*
176  * Delete a page from the page cache and free it. Caller has to make
177  * sure the page is locked and that nobody else uses it - or that usage
178  * is safe.  The caller must hold the mapping's tree_lock and
179  * mem_cgroup_begin_page_stat().
180  */
181 void __delete_from_page_cache(struct page *page, void *shadow,
182 			      struct mem_cgroup *memcg)
183 {
184 	struct address_space *mapping = page->mapping;
185 
186 	trace_mm_filemap_delete_from_page_cache(page);
187 	/*
188 	 * if we're uptodate, flush out into the cleancache, otherwise
189 	 * invalidate any existing cleancache entries.  We can't leave
190 	 * stale data around in the cleancache once our page is gone
191 	 */
192 	if (PageUptodate(page) && PageMappedToDisk(page))
193 		cleancache_put_page(page);
194 	else
195 		cleancache_invalidate_page(mapping, page);
196 
197 	page_cache_tree_delete(mapping, page, shadow);
198 
199 	page->mapping = NULL;
200 	/* Leave page->index set: truncation lookup relies upon it */
201 
202 	/* hugetlb pages do not participate in page cache accounting. */
203 	if (!PageHuge(page))
204 		__dec_zone_page_state(page, NR_FILE_PAGES);
205 	if (PageSwapBacked(page))
206 		__dec_zone_page_state(page, NR_SHMEM);
207 	BUG_ON(page_mapped(page));
208 
209 	/*
210 	 * At this point page must be either written or cleaned by truncate.
211 	 * Dirty page here signals a bug and loss of unwritten data.
212 	 *
213 	 * This fixes dirty accounting after removing the page entirely but
214 	 * leaves PageDirty set: it has no effect for truncated page and
215 	 * anyway will be cleared before returning page into buddy allocator.
216 	 */
217 	if (WARN_ON_ONCE(PageDirty(page)))
218 		account_page_cleaned(page, mapping, memcg,
219 				     inode_to_wb(mapping->host));
220 }
221 
222 /**
223  * delete_from_page_cache - delete page from page cache
224  * @page: the page which the kernel is trying to remove from page cache
225  *
226  * This must be called only on pages that have been verified to be in the page
227  * cache and locked.  It will never put the page into the free list, the caller
228  * has a reference on the page.
229  */
230 void delete_from_page_cache(struct page *page)
231 {
232 	struct address_space *mapping = page->mapping;
233 	struct mem_cgroup *memcg;
234 	unsigned long flags;
235 
236 	void (*freepage)(struct page *);
237 
238 	BUG_ON(!PageLocked(page));
239 
240 	freepage = mapping->a_ops->freepage;
241 
242 	memcg = mem_cgroup_begin_page_stat(page);
243 	spin_lock_irqsave(&mapping->tree_lock, flags);
244 	__delete_from_page_cache(page, NULL, memcg);
245 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
246 	mem_cgroup_end_page_stat(memcg);
247 
248 	if (freepage)
249 		freepage(page);
250 	page_cache_release(page);
251 }
252 EXPORT_SYMBOL(delete_from_page_cache);
253 
254 static int filemap_check_errors(struct address_space *mapping)
255 {
256 	int ret = 0;
257 	/* Check for outstanding write errors */
258 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
259 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
260 		ret = -ENOSPC;
261 	if (test_bit(AS_EIO, &mapping->flags) &&
262 	    test_and_clear_bit(AS_EIO, &mapping->flags))
263 		ret = -EIO;
264 	return ret;
265 }
266 
267 /**
268  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
269  * @mapping:	address space structure to write
270  * @start:	offset in bytes where the range starts
271  * @end:	offset in bytes where the range ends (inclusive)
272  * @sync_mode:	enable synchronous operation
273  *
274  * Start writeback against all of a mapping's dirty pages that lie
275  * within the byte offsets <start, end> inclusive.
276  *
277  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
278  * opposed to a regular memory cleansing writeback.  The difference between
279  * these two operations is that if a dirty page/buffer is encountered, it must
280  * be waited upon, and not just skipped over.
281  */
282 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
283 				loff_t end, int sync_mode)
284 {
285 	int ret;
286 	struct writeback_control wbc = {
287 		.sync_mode = sync_mode,
288 		.nr_to_write = LONG_MAX,
289 		.range_start = start,
290 		.range_end = end,
291 	};
292 
293 	if (!mapping_cap_writeback_dirty(mapping))
294 		return 0;
295 
296 	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
297 	ret = do_writepages(mapping, &wbc);
298 	wbc_detach_inode(&wbc);
299 	return ret;
300 }
301 
302 static inline int __filemap_fdatawrite(struct address_space *mapping,
303 	int sync_mode)
304 {
305 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
306 }
307 
308 int filemap_fdatawrite(struct address_space *mapping)
309 {
310 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
311 }
312 EXPORT_SYMBOL(filemap_fdatawrite);
313 
314 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
315 				loff_t end)
316 {
317 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
318 }
319 EXPORT_SYMBOL(filemap_fdatawrite_range);
320 
321 /**
322  * filemap_flush - mostly a non-blocking flush
323  * @mapping:	target address_space
324  *
325  * This is a mostly non-blocking flush.  Not suitable for data-integrity
326  * purposes - I/O may not be started against all dirty pages.
327  */
328 int filemap_flush(struct address_space *mapping)
329 {
330 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
331 }
332 EXPORT_SYMBOL(filemap_flush);
333 
334 static int __filemap_fdatawait_range(struct address_space *mapping,
335 				     loff_t start_byte, loff_t end_byte)
336 {
337 	pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
338 	pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
339 	struct pagevec pvec;
340 	int nr_pages;
341 	int ret = 0;
342 
343 	if (end_byte < start_byte)
344 		goto out;
345 
346 	pagevec_init(&pvec, 0);
347 	while ((index <= end) &&
348 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
349 			PAGECACHE_TAG_WRITEBACK,
350 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
351 		unsigned i;
352 
353 		for (i = 0; i < nr_pages; i++) {
354 			struct page *page = pvec.pages[i];
355 
356 			/* until radix tree lookup accepts end_index */
357 			if (page->index > end)
358 				continue;
359 
360 			wait_on_page_writeback(page);
361 			if (TestClearPageError(page))
362 				ret = -EIO;
363 		}
364 		pagevec_release(&pvec);
365 		cond_resched();
366 	}
367 out:
368 	return ret;
369 }
370 
371 /**
372  * filemap_fdatawait_range - wait for writeback to complete
373  * @mapping:		address space structure to wait for
374  * @start_byte:		offset in bytes where the range starts
375  * @end_byte:		offset in bytes where the range ends (inclusive)
376  *
377  * Walk the list of under-writeback pages of the given address space
378  * in the given range and wait for all of them.  Check error status of
379  * the address space and return it.
380  *
381  * Since the error status of the address space is cleared by this function,
382  * callers are responsible for checking the return value and handling and/or
383  * reporting the error.
384  */
385 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
386 			    loff_t end_byte)
387 {
388 	int ret, ret2;
389 
390 	ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
391 	ret2 = filemap_check_errors(mapping);
392 	if (!ret)
393 		ret = ret2;
394 
395 	return ret;
396 }
397 EXPORT_SYMBOL(filemap_fdatawait_range);
398 
399 /**
400  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
401  * @mapping: address space structure to wait for
402  *
403  * Walk the list of under-writeback pages of the given address space
404  * and wait for all of them.  Unlike filemap_fdatawait(), this function
405  * does not clear error status of the address space.
406  *
407  * Use this function if callers don't handle errors themselves.  Expected
408  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
409  * fsfreeze(8)
410  */
411 void filemap_fdatawait_keep_errors(struct address_space *mapping)
412 {
413 	loff_t i_size = i_size_read(mapping->host);
414 
415 	if (i_size == 0)
416 		return;
417 
418 	__filemap_fdatawait_range(mapping, 0, i_size - 1);
419 }
420 
421 /**
422  * filemap_fdatawait - wait for all under-writeback pages to complete
423  * @mapping: address space structure to wait for
424  *
425  * Walk the list of under-writeback pages of the given address space
426  * and wait for all of them.  Check error status of the address space
427  * and return it.
428  *
429  * Since the error status of the address space is cleared by this function,
430  * callers are responsible for checking the return value and handling and/or
431  * reporting the error.
432  */
433 int filemap_fdatawait(struct address_space *mapping)
434 {
435 	loff_t i_size = i_size_read(mapping->host);
436 
437 	if (i_size == 0)
438 		return 0;
439 
440 	return filemap_fdatawait_range(mapping, 0, i_size - 1);
441 }
442 EXPORT_SYMBOL(filemap_fdatawait);
443 
444 int filemap_write_and_wait(struct address_space *mapping)
445 {
446 	int err = 0;
447 
448 	if (mapping->nrpages) {
449 		err = filemap_fdatawrite(mapping);
450 		/*
451 		 * Even if the above returned error, the pages may be
452 		 * written partially (e.g. -ENOSPC), so we wait for it.
453 		 * But the -EIO is special case, it may indicate the worst
454 		 * thing (e.g. bug) happened, so we avoid waiting for it.
455 		 */
456 		if (err != -EIO) {
457 			int err2 = filemap_fdatawait(mapping);
458 			if (!err)
459 				err = err2;
460 		}
461 	} else {
462 		err = filemap_check_errors(mapping);
463 	}
464 	return err;
465 }
466 EXPORT_SYMBOL(filemap_write_and_wait);
467 
468 /**
469  * filemap_write_and_wait_range - write out & wait on a file range
470  * @mapping:	the address_space for the pages
471  * @lstart:	offset in bytes where the range starts
472  * @lend:	offset in bytes where the range ends (inclusive)
473  *
474  * Write out and wait upon file offsets lstart->lend, inclusive.
475  *
476  * Note that `lend' is inclusive (describes the last byte to be written) so
477  * that this function can be used to write to the very end-of-file (end = -1).
478  */
479 int filemap_write_and_wait_range(struct address_space *mapping,
480 				 loff_t lstart, loff_t lend)
481 {
482 	int err = 0;
483 
484 	if (mapping->nrpages) {
485 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
486 						 WB_SYNC_ALL);
487 		/* See comment of filemap_write_and_wait() */
488 		if (err != -EIO) {
489 			int err2 = filemap_fdatawait_range(mapping,
490 						lstart, lend);
491 			if (!err)
492 				err = err2;
493 		}
494 	} else {
495 		err = filemap_check_errors(mapping);
496 	}
497 	return err;
498 }
499 EXPORT_SYMBOL(filemap_write_and_wait_range);
500 
501 /**
502  * replace_page_cache_page - replace a pagecache page with a new one
503  * @old:	page to be replaced
504  * @new:	page to replace with
505  * @gfp_mask:	allocation mode
506  *
507  * This function replaces a page in the pagecache with a new one.  On
508  * success it acquires the pagecache reference for the new page and
509  * drops it for the old page.  Both the old and new pages must be
510  * locked.  This function does not add the new page to the LRU, the
511  * caller must do that.
512  *
513  * The remove + add is atomic.  The only way this function can fail is
514  * memory allocation failure.
515  */
516 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
517 {
518 	int error;
519 
520 	VM_BUG_ON_PAGE(!PageLocked(old), old);
521 	VM_BUG_ON_PAGE(!PageLocked(new), new);
522 	VM_BUG_ON_PAGE(new->mapping, new);
523 
524 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
525 	if (!error) {
526 		struct address_space *mapping = old->mapping;
527 		void (*freepage)(struct page *);
528 		struct mem_cgroup *memcg;
529 		unsigned long flags;
530 
531 		pgoff_t offset = old->index;
532 		freepage = mapping->a_ops->freepage;
533 
534 		page_cache_get(new);
535 		new->mapping = mapping;
536 		new->index = offset;
537 
538 		memcg = mem_cgroup_begin_page_stat(old);
539 		spin_lock_irqsave(&mapping->tree_lock, flags);
540 		__delete_from_page_cache(old, NULL, memcg);
541 		error = radix_tree_insert(&mapping->page_tree, offset, new);
542 		BUG_ON(error);
543 		mapping->nrpages++;
544 
545 		/*
546 		 * hugetlb pages do not participate in page cache accounting.
547 		 */
548 		if (!PageHuge(new))
549 			__inc_zone_page_state(new, NR_FILE_PAGES);
550 		if (PageSwapBacked(new))
551 			__inc_zone_page_state(new, NR_SHMEM);
552 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
553 		mem_cgroup_end_page_stat(memcg);
554 		mem_cgroup_replace_page(old, new);
555 		radix_tree_preload_end();
556 		if (freepage)
557 			freepage(old);
558 		page_cache_release(old);
559 	}
560 
561 	return error;
562 }
563 EXPORT_SYMBOL_GPL(replace_page_cache_page);
564 
565 static int page_cache_tree_insert(struct address_space *mapping,
566 				  struct page *page, void **shadowp)
567 {
568 	struct radix_tree_node *node;
569 	void **slot;
570 	int error;
571 
572 	error = __radix_tree_create(&mapping->page_tree, page->index,
573 				    &node, &slot);
574 	if (error)
575 		return error;
576 	if (*slot) {
577 		void *p;
578 
579 		p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
580 		if (!radix_tree_exceptional_entry(p))
581 			return -EEXIST;
582 		if (shadowp)
583 			*shadowp = p;
584 		mapping->nrshadows--;
585 		if (node)
586 			workingset_node_shadows_dec(node);
587 	}
588 	radix_tree_replace_slot(slot, page);
589 	mapping->nrpages++;
590 	if (node) {
591 		workingset_node_pages_inc(node);
592 		/*
593 		 * Don't track node that contains actual pages.
594 		 *
595 		 * Avoid acquiring the list_lru lock if already
596 		 * untracked.  The list_empty() test is safe as
597 		 * node->private_list is protected by
598 		 * mapping->tree_lock.
599 		 */
600 		if (!list_empty(&node->private_list))
601 			list_lru_del(&workingset_shadow_nodes,
602 				     &node->private_list);
603 	}
604 	return 0;
605 }
606 
607 static int __add_to_page_cache_locked(struct page *page,
608 				      struct address_space *mapping,
609 				      pgoff_t offset, gfp_t gfp_mask,
610 				      void **shadowp)
611 {
612 	int huge = PageHuge(page);
613 	struct mem_cgroup *memcg;
614 	int error;
615 
616 	VM_BUG_ON_PAGE(!PageLocked(page), page);
617 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
618 
619 	if (!huge) {
620 		error = mem_cgroup_try_charge(page, current->mm,
621 					      gfp_mask, &memcg);
622 		if (error)
623 			return error;
624 	}
625 
626 	error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
627 	if (error) {
628 		if (!huge)
629 			mem_cgroup_cancel_charge(page, memcg);
630 		return error;
631 	}
632 
633 	page_cache_get(page);
634 	page->mapping = mapping;
635 	page->index = offset;
636 
637 	spin_lock_irq(&mapping->tree_lock);
638 	error = page_cache_tree_insert(mapping, page, shadowp);
639 	radix_tree_preload_end();
640 	if (unlikely(error))
641 		goto err_insert;
642 
643 	/* hugetlb pages do not participate in page cache accounting. */
644 	if (!huge)
645 		__inc_zone_page_state(page, NR_FILE_PAGES);
646 	spin_unlock_irq(&mapping->tree_lock);
647 	if (!huge)
648 		mem_cgroup_commit_charge(page, memcg, false);
649 	trace_mm_filemap_add_to_page_cache(page);
650 	return 0;
651 err_insert:
652 	page->mapping = NULL;
653 	/* Leave page->index set: truncation relies upon it */
654 	spin_unlock_irq(&mapping->tree_lock);
655 	if (!huge)
656 		mem_cgroup_cancel_charge(page, memcg);
657 	page_cache_release(page);
658 	return error;
659 }
660 
661 /**
662  * add_to_page_cache_locked - add a locked page to the pagecache
663  * @page:	page to add
664  * @mapping:	the page's address_space
665  * @offset:	page index
666  * @gfp_mask:	page allocation mode
667  *
668  * This function is used to add a page to the pagecache. It must be locked.
669  * This function does not add the page to the LRU.  The caller must do that.
670  */
671 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
672 		pgoff_t offset, gfp_t gfp_mask)
673 {
674 	return __add_to_page_cache_locked(page, mapping, offset,
675 					  gfp_mask, NULL);
676 }
677 EXPORT_SYMBOL(add_to_page_cache_locked);
678 
679 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
680 				pgoff_t offset, gfp_t gfp_mask)
681 {
682 	void *shadow = NULL;
683 	int ret;
684 
685 	__set_page_locked(page);
686 	ret = __add_to_page_cache_locked(page, mapping, offset,
687 					 gfp_mask, &shadow);
688 	if (unlikely(ret))
689 		__clear_page_locked(page);
690 	else {
691 		/*
692 		 * The page might have been evicted from cache only
693 		 * recently, in which case it should be activated like
694 		 * any other repeatedly accessed page.
695 		 */
696 		if (shadow && workingset_refault(shadow)) {
697 			SetPageActive(page);
698 			workingset_activation(page);
699 		} else
700 			ClearPageActive(page);
701 		lru_cache_add(page);
702 	}
703 	return ret;
704 }
705 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
706 
707 #ifdef CONFIG_NUMA
708 struct page *__page_cache_alloc(gfp_t gfp)
709 {
710 	int n;
711 	struct page *page;
712 
713 	if (cpuset_do_page_mem_spread()) {
714 		unsigned int cpuset_mems_cookie;
715 		do {
716 			cpuset_mems_cookie = read_mems_allowed_begin();
717 			n = cpuset_mem_spread_node();
718 			page = __alloc_pages_node(n, gfp, 0);
719 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
720 
721 		return page;
722 	}
723 	return alloc_pages(gfp, 0);
724 }
725 EXPORT_SYMBOL(__page_cache_alloc);
726 #endif
727 
728 /*
729  * In order to wait for pages to become available there must be
730  * waitqueues associated with pages. By using a hash table of
731  * waitqueues where the bucket discipline is to maintain all
732  * waiters on the same queue and wake all when any of the pages
733  * become available, and for the woken contexts to check to be
734  * sure the appropriate page became available, this saves space
735  * at a cost of "thundering herd" phenomena during rare hash
736  * collisions.
737  */
738 wait_queue_head_t *page_waitqueue(struct page *page)
739 {
740 	const struct zone *zone = page_zone(page);
741 
742 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
743 }
744 EXPORT_SYMBOL(page_waitqueue);
745 
746 void wait_on_page_bit(struct page *page, int bit_nr)
747 {
748 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
749 
750 	if (test_bit(bit_nr, &page->flags))
751 		__wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
752 							TASK_UNINTERRUPTIBLE);
753 }
754 EXPORT_SYMBOL(wait_on_page_bit);
755 
756 int wait_on_page_bit_killable(struct page *page, int bit_nr)
757 {
758 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
759 
760 	if (!test_bit(bit_nr, &page->flags))
761 		return 0;
762 
763 	return __wait_on_bit(page_waitqueue(page), &wait,
764 			     bit_wait_io, TASK_KILLABLE);
765 }
766 
767 int wait_on_page_bit_killable_timeout(struct page *page,
768 				       int bit_nr, unsigned long timeout)
769 {
770 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
771 
772 	wait.key.timeout = jiffies + timeout;
773 	if (!test_bit(bit_nr, &page->flags))
774 		return 0;
775 	return __wait_on_bit(page_waitqueue(page), &wait,
776 			     bit_wait_io_timeout, TASK_KILLABLE);
777 }
778 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
779 
780 /**
781  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
782  * @page: Page defining the wait queue of interest
783  * @waiter: Waiter to add to the queue
784  *
785  * Add an arbitrary @waiter to the wait queue for the nominated @page.
786  */
787 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
788 {
789 	wait_queue_head_t *q = page_waitqueue(page);
790 	unsigned long flags;
791 
792 	spin_lock_irqsave(&q->lock, flags);
793 	__add_wait_queue(q, waiter);
794 	spin_unlock_irqrestore(&q->lock, flags);
795 }
796 EXPORT_SYMBOL_GPL(add_page_wait_queue);
797 
798 /**
799  * unlock_page - unlock a locked page
800  * @page: the page
801  *
802  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
803  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
804  * mechanism between PageLocked pages and PageWriteback pages is shared.
805  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
806  *
807  * The mb is necessary to enforce ordering between the clear_bit and the read
808  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
809  */
810 void unlock_page(struct page *page)
811 {
812 	VM_BUG_ON_PAGE(!PageLocked(page), page);
813 	clear_bit_unlock(PG_locked, &page->flags);
814 	smp_mb__after_atomic();
815 	wake_up_page(page, PG_locked);
816 }
817 EXPORT_SYMBOL(unlock_page);
818 
819 /**
820  * end_page_writeback - end writeback against a page
821  * @page: the page
822  */
823 void end_page_writeback(struct page *page)
824 {
825 	/*
826 	 * TestClearPageReclaim could be used here but it is an atomic
827 	 * operation and overkill in this particular case. Failing to
828 	 * shuffle a page marked for immediate reclaim is too mild to
829 	 * justify taking an atomic operation penalty at the end of
830 	 * ever page writeback.
831 	 */
832 	if (PageReclaim(page)) {
833 		ClearPageReclaim(page);
834 		rotate_reclaimable_page(page);
835 	}
836 
837 	if (!test_clear_page_writeback(page))
838 		BUG();
839 
840 	smp_mb__after_atomic();
841 	wake_up_page(page, PG_writeback);
842 }
843 EXPORT_SYMBOL(end_page_writeback);
844 
845 /*
846  * After completing I/O on a page, call this routine to update the page
847  * flags appropriately
848  */
849 void page_endio(struct page *page, int rw, int err)
850 {
851 	if (rw == READ) {
852 		if (!err) {
853 			SetPageUptodate(page);
854 		} else {
855 			ClearPageUptodate(page);
856 			SetPageError(page);
857 		}
858 		unlock_page(page);
859 	} else { /* rw == WRITE */
860 		if (err) {
861 			SetPageError(page);
862 			if (page->mapping)
863 				mapping_set_error(page->mapping, err);
864 		}
865 		end_page_writeback(page);
866 	}
867 }
868 EXPORT_SYMBOL_GPL(page_endio);
869 
870 /**
871  * __lock_page - get a lock on the page, assuming we need to sleep to get it
872  * @page: the page to lock
873  */
874 void __lock_page(struct page *page)
875 {
876 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
877 
878 	__wait_on_bit_lock(page_waitqueue(page), &wait, bit_wait_io,
879 							TASK_UNINTERRUPTIBLE);
880 }
881 EXPORT_SYMBOL(__lock_page);
882 
883 int __lock_page_killable(struct page *page)
884 {
885 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
886 
887 	return __wait_on_bit_lock(page_waitqueue(page), &wait,
888 					bit_wait_io, TASK_KILLABLE);
889 }
890 EXPORT_SYMBOL_GPL(__lock_page_killable);
891 
892 /*
893  * Return values:
894  * 1 - page is locked; mmap_sem is still held.
895  * 0 - page is not locked.
896  *     mmap_sem has been released (up_read()), unless flags had both
897  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
898  *     which case mmap_sem is still held.
899  *
900  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
901  * with the page locked and the mmap_sem unperturbed.
902  */
903 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
904 			 unsigned int flags)
905 {
906 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
907 		/*
908 		 * CAUTION! In this case, mmap_sem is not released
909 		 * even though return 0.
910 		 */
911 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
912 			return 0;
913 
914 		up_read(&mm->mmap_sem);
915 		if (flags & FAULT_FLAG_KILLABLE)
916 			wait_on_page_locked_killable(page);
917 		else
918 			wait_on_page_locked(page);
919 		return 0;
920 	} else {
921 		if (flags & FAULT_FLAG_KILLABLE) {
922 			int ret;
923 
924 			ret = __lock_page_killable(page);
925 			if (ret) {
926 				up_read(&mm->mmap_sem);
927 				return 0;
928 			}
929 		} else
930 			__lock_page(page);
931 		return 1;
932 	}
933 }
934 
935 /**
936  * page_cache_next_hole - find the next hole (not-present entry)
937  * @mapping: mapping
938  * @index: index
939  * @max_scan: maximum range to search
940  *
941  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
942  * lowest indexed hole.
943  *
944  * Returns: the index of the hole if found, otherwise returns an index
945  * outside of the set specified (in which case 'return - index >=
946  * max_scan' will be true). In rare cases of index wrap-around, 0 will
947  * be returned.
948  *
949  * page_cache_next_hole may be called under rcu_read_lock. However,
950  * like radix_tree_gang_lookup, this will not atomically search a
951  * snapshot of the tree at a single point in time. For example, if a
952  * hole is created at index 5, then subsequently a hole is created at
953  * index 10, page_cache_next_hole covering both indexes may return 10
954  * if called under rcu_read_lock.
955  */
956 pgoff_t page_cache_next_hole(struct address_space *mapping,
957 			     pgoff_t index, unsigned long max_scan)
958 {
959 	unsigned long i;
960 
961 	for (i = 0; i < max_scan; i++) {
962 		struct page *page;
963 
964 		page = radix_tree_lookup(&mapping->page_tree, index);
965 		if (!page || radix_tree_exceptional_entry(page))
966 			break;
967 		index++;
968 		if (index == 0)
969 			break;
970 	}
971 
972 	return index;
973 }
974 EXPORT_SYMBOL(page_cache_next_hole);
975 
976 /**
977  * page_cache_prev_hole - find the prev hole (not-present entry)
978  * @mapping: mapping
979  * @index: index
980  * @max_scan: maximum range to search
981  *
982  * Search backwards in the range [max(index-max_scan+1, 0), index] for
983  * the first hole.
984  *
985  * Returns: the index of the hole if found, otherwise returns an index
986  * outside of the set specified (in which case 'index - return >=
987  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
988  * will be returned.
989  *
990  * page_cache_prev_hole may be called under rcu_read_lock. However,
991  * like radix_tree_gang_lookup, this will not atomically search a
992  * snapshot of the tree at a single point in time. For example, if a
993  * hole is created at index 10, then subsequently a hole is created at
994  * index 5, page_cache_prev_hole covering both indexes may return 5 if
995  * called under rcu_read_lock.
996  */
997 pgoff_t page_cache_prev_hole(struct address_space *mapping,
998 			     pgoff_t index, unsigned long max_scan)
999 {
1000 	unsigned long i;
1001 
1002 	for (i = 0; i < max_scan; i++) {
1003 		struct page *page;
1004 
1005 		page = radix_tree_lookup(&mapping->page_tree, index);
1006 		if (!page || radix_tree_exceptional_entry(page))
1007 			break;
1008 		index--;
1009 		if (index == ULONG_MAX)
1010 			break;
1011 	}
1012 
1013 	return index;
1014 }
1015 EXPORT_SYMBOL(page_cache_prev_hole);
1016 
1017 /**
1018  * find_get_entry - find and get a page cache entry
1019  * @mapping: the address_space to search
1020  * @offset: the page cache index
1021  *
1022  * Looks up the page cache slot at @mapping & @offset.  If there is a
1023  * page cache page, it is returned with an increased refcount.
1024  *
1025  * If the slot holds a shadow entry of a previously evicted page, or a
1026  * swap entry from shmem/tmpfs, it is returned.
1027  *
1028  * Otherwise, %NULL is returned.
1029  */
1030 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1031 {
1032 	void **pagep;
1033 	struct page *page;
1034 
1035 	rcu_read_lock();
1036 repeat:
1037 	page = NULL;
1038 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1039 	if (pagep) {
1040 		page = radix_tree_deref_slot(pagep);
1041 		if (unlikely(!page))
1042 			goto out;
1043 		if (radix_tree_exception(page)) {
1044 			if (radix_tree_deref_retry(page))
1045 				goto repeat;
1046 			/*
1047 			 * A shadow entry of a recently evicted page,
1048 			 * or a swap entry from shmem/tmpfs.  Return
1049 			 * it without attempting to raise page count.
1050 			 */
1051 			goto out;
1052 		}
1053 		if (!page_cache_get_speculative(page))
1054 			goto repeat;
1055 
1056 		/*
1057 		 * Has the page moved?
1058 		 * This is part of the lockless pagecache protocol. See
1059 		 * include/linux/pagemap.h for details.
1060 		 */
1061 		if (unlikely(page != *pagep)) {
1062 			page_cache_release(page);
1063 			goto repeat;
1064 		}
1065 	}
1066 out:
1067 	rcu_read_unlock();
1068 
1069 	return page;
1070 }
1071 EXPORT_SYMBOL(find_get_entry);
1072 
1073 /**
1074  * find_lock_entry - locate, pin and lock a page cache entry
1075  * @mapping: the address_space to search
1076  * @offset: the page cache index
1077  *
1078  * Looks up the page cache slot at @mapping & @offset.  If there is a
1079  * page cache page, it is returned locked and with an increased
1080  * refcount.
1081  *
1082  * If the slot holds a shadow entry of a previously evicted page, or a
1083  * swap entry from shmem/tmpfs, it is returned.
1084  *
1085  * Otherwise, %NULL is returned.
1086  *
1087  * find_lock_entry() may sleep.
1088  */
1089 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1090 {
1091 	struct page *page;
1092 
1093 repeat:
1094 	page = find_get_entry(mapping, offset);
1095 	if (page && !radix_tree_exception(page)) {
1096 		lock_page(page);
1097 		/* Has the page been truncated? */
1098 		if (unlikely(page->mapping != mapping)) {
1099 			unlock_page(page);
1100 			page_cache_release(page);
1101 			goto repeat;
1102 		}
1103 		VM_BUG_ON_PAGE(page->index != offset, page);
1104 	}
1105 	return page;
1106 }
1107 EXPORT_SYMBOL(find_lock_entry);
1108 
1109 /**
1110  * pagecache_get_page - find and get a page reference
1111  * @mapping: the address_space to search
1112  * @offset: the page index
1113  * @fgp_flags: PCG flags
1114  * @gfp_mask: gfp mask to use for the page cache data page allocation
1115  *
1116  * Looks up the page cache slot at @mapping & @offset.
1117  *
1118  * PCG flags modify how the page is returned.
1119  *
1120  * FGP_ACCESSED: the page will be marked accessed
1121  * FGP_LOCK: Page is return locked
1122  * FGP_CREAT: If page is not present then a new page is allocated using
1123  *		@gfp_mask and added to the page cache and the VM's LRU
1124  *		list. The page is returned locked and with an increased
1125  *		refcount. Otherwise, %NULL is returned.
1126  *
1127  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1128  * if the GFP flags specified for FGP_CREAT are atomic.
1129  *
1130  * If there is a page cache page, it is returned with an increased refcount.
1131  */
1132 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1133 	int fgp_flags, gfp_t gfp_mask)
1134 {
1135 	struct page *page;
1136 
1137 repeat:
1138 	page = find_get_entry(mapping, offset);
1139 	if (radix_tree_exceptional_entry(page))
1140 		page = NULL;
1141 	if (!page)
1142 		goto no_page;
1143 
1144 	if (fgp_flags & FGP_LOCK) {
1145 		if (fgp_flags & FGP_NOWAIT) {
1146 			if (!trylock_page(page)) {
1147 				page_cache_release(page);
1148 				return NULL;
1149 			}
1150 		} else {
1151 			lock_page(page);
1152 		}
1153 
1154 		/* Has the page been truncated? */
1155 		if (unlikely(page->mapping != mapping)) {
1156 			unlock_page(page);
1157 			page_cache_release(page);
1158 			goto repeat;
1159 		}
1160 		VM_BUG_ON_PAGE(page->index != offset, page);
1161 	}
1162 
1163 	if (page && (fgp_flags & FGP_ACCESSED))
1164 		mark_page_accessed(page);
1165 
1166 no_page:
1167 	if (!page && (fgp_flags & FGP_CREAT)) {
1168 		int err;
1169 		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1170 			gfp_mask |= __GFP_WRITE;
1171 		if (fgp_flags & FGP_NOFS)
1172 			gfp_mask &= ~__GFP_FS;
1173 
1174 		page = __page_cache_alloc(gfp_mask);
1175 		if (!page)
1176 			return NULL;
1177 
1178 		if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1179 			fgp_flags |= FGP_LOCK;
1180 
1181 		/* Init accessed so avoid atomic mark_page_accessed later */
1182 		if (fgp_flags & FGP_ACCESSED)
1183 			__SetPageReferenced(page);
1184 
1185 		err = add_to_page_cache_lru(page, mapping, offset,
1186 				gfp_mask & GFP_RECLAIM_MASK);
1187 		if (unlikely(err)) {
1188 			page_cache_release(page);
1189 			page = NULL;
1190 			if (err == -EEXIST)
1191 				goto repeat;
1192 		}
1193 	}
1194 
1195 	return page;
1196 }
1197 EXPORT_SYMBOL(pagecache_get_page);
1198 
1199 /**
1200  * find_get_entries - gang pagecache lookup
1201  * @mapping:	The address_space to search
1202  * @start:	The starting page cache index
1203  * @nr_entries:	The maximum number of entries
1204  * @entries:	Where the resulting entries are placed
1205  * @indices:	The cache indices corresponding to the entries in @entries
1206  *
1207  * find_get_entries() will search for and return a group of up to
1208  * @nr_entries entries in the mapping.  The entries are placed at
1209  * @entries.  find_get_entries() takes a reference against any actual
1210  * pages it returns.
1211  *
1212  * The search returns a group of mapping-contiguous page cache entries
1213  * with ascending indexes.  There may be holes in the indices due to
1214  * not-present pages.
1215  *
1216  * Any shadow entries of evicted pages, or swap entries from
1217  * shmem/tmpfs, are included in the returned array.
1218  *
1219  * find_get_entries() returns the number of pages and shadow entries
1220  * which were found.
1221  */
1222 unsigned find_get_entries(struct address_space *mapping,
1223 			  pgoff_t start, unsigned int nr_entries,
1224 			  struct page **entries, pgoff_t *indices)
1225 {
1226 	void **slot;
1227 	unsigned int ret = 0;
1228 	struct radix_tree_iter iter;
1229 
1230 	if (!nr_entries)
1231 		return 0;
1232 
1233 	rcu_read_lock();
1234 restart:
1235 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1236 		struct page *page;
1237 repeat:
1238 		page = radix_tree_deref_slot(slot);
1239 		if (unlikely(!page))
1240 			continue;
1241 		if (radix_tree_exception(page)) {
1242 			if (radix_tree_deref_retry(page))
1243 				goto restart;
1244 			/*
1245 			 * A shadow entry of a recently evicted page,
1246 			 * or a swap entry from shmem/tmpfs.  Return
1247 			 * it without attempting to raise page count.
1248 			 */
1249 			goto export;
1250 		}
1251 		if (!page_cache_get_speculative(page))
1252 			goto repeat;
1253 
1254 		/* Has the page moved? */
1255 		if (unlikely(page != *slot)) {
1256 			page_cache_release(page);
1257 			goto repeat;
1258 		}
1259 export:
1260 		indices[ret] = iter.index;
1261 		entries[ret] = page;
1262 		if (++ret == nr_entries)
1263 			break;
1264 	}
1265 	rcu_read_unlock();
1266 	return ret;
1267 }
1268 
1269 /**
1270  * find_get_pages - gang pagecache lookup
1271  * @mapping:	The address_space to search
1272  * @start:	The starting page index
1273  * @nr_pages:	The maximum number of pages
1274  * @pages:	Where the resulting pages are placed
1275  *
1276  * find_get_pages() will search for and return a group of up to
1277  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1278  * find_get_pages() takes a reference against the returned pages.
1279  *
1280  * The search returns a group of mapping-contiguous pages with ascending
1281  * indexes.  There may be holes in the indices due to not-present pages.
1282  *
1283  * find_get_pages() returns the number of pages which were found.
1284  */
1285 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1286 			    unsigned int nr_pages, struct page **pages)
1287 {
1288 	struct radix_tree_iter iter;
1289 	void **slot;
1290 	unsigned ret = 0;
1291 
1292 	if (unlikely(!nr_pages))
1293 		return 0;
1294 
1295 	rcu_read_lock();
1296 restart:
1297 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1298 		struct page *page;
1299 repeat:
1300 		page = radix_tree_deref_slot(slot);
1301 		if (unlikely(!page))
1302 			continue;
1303 
1304 		if (radix_tree_exception(page)) {
1305 			if (radix_tree_deref_retry(page)) {
1306 				/*
1307 				 * Transient condition which can only trigger
1308 				 * when entry at index 0 moves out of or back
1309 				 * to root: none yet gotten, safe to restart.
1310 				 */
1311 				WARN_ON(iter.index);
1312 				goto restart;
1313 			}
1314 			/*
1315 			 * A shadow entry of a recently evicted page,
1316 			 * or a swap entry from shmem/tmpfs.  Skip
1317 			 * over it.
1318 			 */
1319 			continue;
1320 		}
1321 
1322 		if (!page_cache_get_speculative(page))
1323 			goto repeat;
1324 
1325 		/* Has the page moved? */
1326 		if (unlikely(page != *slot)) {
1327 			page_cache_release(page);
1328 			goto repeat;
1329 		}
1330 
1331 		pages[ret] = page;
1332 		if (++ret == nr_pages)
1333 			break;
1334 	}
1335 
1336 	rcu_read_unlock();
1337 	return ret;
1338 }
1339 
1340 /**
1341  * find_get_pages_contig - gang contiguous pagecache lookup
1342  * @mapping:	The address_space to search
1343  * @index:	The starting page index
1344  * @nr_pages:	The maximum number of pages
1345  * @pages:	Where the resulting pages are placed
1346  *
1347  * find_get_pages_contig() works exactly like find_get_pages(), except
1348  * that the returned number of pages are guaranteed to be contiguous.
1349  *
1350  * find_get_pages_contig() returns the number of pages which were found.
1351  */
1352 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1353 			       unsigned int nr_pages, struct page **pages)
1354 {
1355 	struct radix_tree_iter iter;
1356 	void **slot;
1357 	unsigned int ret = 0;
1358 
1359 	if (unlikely(!nr_pages))
1360 		return 0;
1361 
1362 	rcu_read_lock();
1363 restart:
1364 	radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1365 		struct page *page;
1366 repeat:
1367 		page = radix_tree_deref_slot(slot);
1368 		/* The hole, there no reason to continue */
1369 		if (unlikely(!page))
1370 			break;
1371 
1372 		if (radix_tree_exception(page)) {
1373 			if (radix_tree_deref_retry(page)) {
1374 				/*
1375 				 * Transient condition which can only trigger
1376 				 * when entry at index 0 moves out of or back
1377 				 * to root: none yet gotten, safe to restart.
1378 				 */
1379 				goto restart;
1380 			}
1381 			/*
1382 			 * A shadow entry of a recently evicted page,
1383 			 * or a swap entry from shmem/tmpfs.  Stop
1384 			 * looking for contiguous pages.
1385 			 */
1386 			break;
1387 		}
1388 
1389 		if (!page_cache_get_speculative(page))
1390 			goto repeat;
1391 
1392 		/* Has the page moved? */
1393 		if (unlikely(page != *slot)) {
1394 			page_cache_release(page);
1395 			goto repeat;
1396 		}
1397 
1398 		/*
1399 		 * must check mapping and index after taking the ref.
1400 		 * otherwise we can get both false positives and false
1401 		 * negatives, which is just confusing to the caller.
1402 		 */
1403 		if (page->mapping == NULL || page->index != iter.index) {
1404 			page_cache_release(page);
1405 			break;
1406 		}
1407 
1408 		pages[ret] = page;
1409 		if (++ret == nr_pages)
1410 			break;
1411 	}
1412 	rcu_read_unlock();
1413 	return ret;
1414 }
1415 EXPORT_SYMBOL(find_get_pages_contig);
1416 
1417 /**
1418  * find_get_pages_tag - find and return pages that match @tag
1419  * @mapping:	the address_space to search
1420  * @index:	the starting page index
1421  * @tag:	the tag index
1422  * @nr_pages:	the maximum number of pages
1423  * @pages:	where the resulting pages are placed
1424  *
1425  * Like find_get_pages, except we only return pages which are tagged with
1426  * @tag.   We update @index to index the next page for the traversal.
1427  */
1428 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1429 			int tag, unsigned int nr_pages, struct page **pages)
1430 {
1431 	struct radix_tree_iter iter;
1432 	void **slot;
1433 	unsigned ret = 0;
1434 
1435 	if (unlikely(!nr_pages))
1436 		return 0;
1437 
1438 	rcu_read_lock();
1439 restart:
1440 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1441 				   &iter, *index, tag) {
1442 		struct page *page;
1443 repeat:
1444 		page = radix_tree_deref_slot(slot);
1445 		if (unlikely(!page))
1446 			continue;
1447 
1448 		if (radix_tree_exception(page)) {
1449 			if (radix_tree_deref_retry(page)) {
1450 				/*
1451 				 * Transient condition which can only trigger
1452 				 * when entry at index 0 moves out of or back
1453 				 * to root: none yet gotten, safe to restart.
1454 				 */
1455 				goto restart;
1456 			}
1457 			/*
1458 			 * A shadow entry of a recently evicted page.
1459 			 *
1460 			 * Those entries should never be tagged, but
1461 			 * this tree walk is lockless and the tags are
1462 			 * looked up in bulk, one radix tree node at a
1463 			 * time, so there is a sizable window for page
1464 			 * reclaim to evict a page we saw tagged.
1465 			 *
1466 			 * Skip over it.
1467 			 */
1468 			continue;
1469 		}
1470 
1471 		if (!page_cache_get_speculative(page))
1472 			goto repeat;
1473 
1474 		/* Has the page moved? */
1475 		if (unlikely(page != *slot)) {
1476 			page_cache_release(page);
1477 			goto repeat;
1478 		}
1479 
1480 		pages[ret] = page;
1481 		if (++ret == nr_pages)
1482 			break;
1483 	}
1484 
1485 	rcu_read_unlock();
1486 
1487 	if (ret)
1488 		*index = pages[ret - 1]->index + 1;
1489 
1490 	return ret;
1491 }
1492 EXPORT_SYMBOL(find_get_pages_tag);
1493 
1494 /*
1495  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1496  * a _large_ part of the i/o request. Imagine the worst scenario:
1497  *
1498  *      ---R__________________________________________B__________
1499  *         ^ reading here                             ^ bad block(assume 4k)
1500  *
1501  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1502  * => failing the whole request => read(R) => read(R+1) =>
1503  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1504  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1505  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1506  *
1507  * It is going insane. Fix it by quickly scaling down the readahead size.
1508  */
1509 static void shrink_readahead_size_eio(struct file *filp,
1510 					struct file_ra_state *ra)
1511 {
1512 	ra->ra_pages /= 4;
1513 }
1514 
1515 /**
1516  * do_generic_file_read - generic file read routine
1517  * @filp:	the file to read
1518  * @ppos:	current file position
1519  * @iter:	data destination
1520  * @written:	already copied
1521  *
1522  * This is a generic file read routine, and uses the
1523  * mapping->a_ops->readpage() function for the actual low-level stuff.
1524  *
1525  * This is really ugly. But the goto's actually try to clarify some
1526  * of the logic when it comes to error handling etc.
1527  */
1528 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1529 		struct iov_iter *iter, ssize_t written)
1530 {
1531 	struct address_space *mapping = filp->f_mapping;
1532 	struct inode *inode = mapping->host;
1533 	struct file_ra_state *ra = &filp->f_ra;
1534 	pgoff_t index;
1535 	pgoff_t last_index;
1536 	pgoff_t prev_index;
1537 	unsigned long offset;      /* offset into pagecache page */
1538 	unsigned int prev_offset;
1539 	int error = 0;
1540 
1541 	index = *ppos >> PAGE_CACHE_SHIFT;
1542 	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1543 	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1544 	last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1545 	offset = *ppos & ~PAGE_CACHE_MASK;
1546 
1547 	for (;;) {
1548 		struct page *page;
1549 		pgoff_t end_index;
1550 		loff_t isize;
1551 		unsigned long nr, ret;
1552 
1553 		cond_resched();
1554 find_page:
1555 		page = find_get_page(mapping, index);
1556 		if (!page) {
1557 			page_cache_sync_readahead(mapping,
1558 					ra, filp,
1559 					index, last_index - index);
1560 			page = find_get_page(mapping, index);
1561 			if (unlikely(page == NULL))
1562 				goto no_cached_page;
1563 		}
1564 		if (PageReadahead(page)) {
1565 			page_cache_async_readahead(mapping,
1566 					ra, filp, page,
1567 					index, last_index - index);
1568 		}
1569 		if (!PageUptodate(page)) {
1570 			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1571 					!mapping->a_ops->is_partially_uptodate)
1572 				goto page_not_up_to_date;
1573 			if (!trylock_page(page))
1574 				goto page_not_up_to_date;
1575 			/* Did it get truncated before we got the lock? */
1576 			if (!page->mapping)
1577 				goto page_not_up_to_date_locked;
1578 			if (!mapping->a_ops->is_partially_uptodate(page,
1579 							offset, iter->count))
1580 				goto page_not_up_to_date_locked;
1581 			unlock_page(page);
1582 		}
1583 page_ok:
1584 		/*
1585 		 * i_size must be checked after we know the page is Uptodate.
1586 		 *
1587 		 * Checking i_size after the check allows us to calculate
1588 		 * the correct value for "nr", which means the zero-filled
1589 		 * part of the page is not copied back to userspace (unless
1590 		 * another truncate extends the file - this is desired though).
1591 		 */
1592 
1593 		isize = i_size_read(inode);
1594 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1595 		if (unlikely(!isize || index > end_index)) {
1596 			page_cache_release(page);
1597 			goto out;
1598 		}
1599 
1600 		/* nr is the maximum number of bytes to copy from this page */
1601 		nr = PAGE_CACHE_SIZE;
1602 		if (index == end_index) {
1603 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1604 			if (nr <= offset) {
1605 				page_cache_release(page);
1606 				goto out;
1607 			}
1608 		}
1609 		nr = nr - offset;
1610 
1611 		/* If users can be writing to this page using arbitrary
1612 		 * virtual addresses, take care about potential aliasing
1613 		 * before reading the page on the kernel side.
1614 		 */
1615 		if (mapping_writably_mapped(mapping))
1616 			flush_dcache_page(page);
1617 
1618 		/*
1619 		 * When a sequential read accesses a page several times,
1620 		 * only mark it as accessed the first time.
1621 		 */
1622 		if (prev_index != index || offset != prev_offset)
1623 			mark_page_accessed(page);
1624 		prev_index = index;
1625 
1626 		/*
1627 		 * Ok, we have the page, and it's up-to-date, so
1628 		 * now we can copy it to user space...
1629 		 */
1630 
1631 		ret = copy_page_to_iter(page, offset, nr, iter);
1632 		offset += ret;
1633 		index += offset >> PAGE_CACHE_SHIFT;
1634 		offset &= ~PAGE_CACHE_MASK;
1635 		prev_offset = offset;
1636 
1637 		page_cache_release(page);
1638 		written += ret;
1639 		if (!iov_iter_count(iter))
1640 			goto out;
1641 		if (ret < nr) {
1642 			error = -EFAULT;
1643 			goto out;
1644 		}
1645 		continue;
1646 
1647 page_not_up_to_date:
1648 		/* Get exclusive access to the page ... */
1649 		error = lock_page_killable(page);
1650 		if (unlikely(error))
1651 			goto readpage_error;
1652 
1653 page_not_up_to_date_locked:
1654 		/* Did it get truncated before we got the lock? */
1655 		if (!page->mapping) {
1656 			unlock_page(page);
1657 			page_cache_release(page);
1658 			continue;
1659 		}
1660 
1661 		/* Did somebody else fill it already? */
1662 		if (PageUptodate(page)) {
1663 			unlock_page(page);
1664 			goto page_ok;
1665 		}
1666 
1667 readpage:
1668 		/*
1669 		 * A previous I/O error may have been due to temporary
1670 		 * failures, eg. multipath errors.
1671 		 * PG_error will be set again if readpage fails.
1672 		 */
1673 		ClearPageError(page);
1674 		/* Start the actual read. The read will unlock the page. */
1675 		error = mapping->a_ops->readpage(filp, page);
1676 
1677 		if (unlikely(error)) {
1678 			if (error == AOP_TRUNCATED_PAGE) {
1679 				page_cache_release(page);
1680 				error = 0;
1681 				goto find_page;
1682 			}
1683 			goto readpage_error;
1684 		}
1685 
1686 		if (!PageUptodate(page)) {
1687 			error = lock_page_killable(page);
1688 			if (unlikely(error))
1689 				goto readpage_error;
1690 			if (!PageUptodate(page)) {
1691 				if (page->mapping == NULL) {
1692 					/*
1693 					 * invalidate_mapping_pages got it
1694 					 */
1695 					unlock_page(page);
1696 					page_cache_release(page);
1697 					goto find_page;
1698 				}
1699 				unlock_page(page);
1700 				shrink_readahead_size_eio(filp, ra);
1701 				error = -EIO;
1702 				goto readpage_error;
1703 			}
1704 			unlock_page(page);
1705 		}
1706 
1707 		goto page_ok;
1708 
1709 readpage_error:
1710 		/* UHHUH! A synchronous read error occurred. Report it */
1711 		page_cache_release(page);
1712 		goto out;
1713 
1714 no_cached_page:
1715 		/*
1716 		 * Ok, it wasn't cached, so we need to create a new
1717 		 * page..
1718 		 */
1719 		page = page_cache_alloc_cold(mapping);
1720 		if (!page) {
1721 			error = -ENOMEM;
1722 			goto out;
1723 		}
1724 		error = add_to_page_cache_lru(page, mapping, index,
1725 				mapping_gfp_constraint(mapping, GFP_KERNEL));
1726 		if (error) {
1727 			page_cache_release(page);
1728 			if (error == -EEXIST) {
1729 				error = 0;
1730 				goto find_page;
1731 			}
1732 			goto out;
1733 		}
1734 		goto readpage;
1735 	}
1736 
1737 out:
1738 	ra->prev_pos = prev_index;
1739 	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1740 	ra->prev_pos |= prev_offset;
1741 
1742 	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1743 	file_accessed(filp);
1744 	return written ? written : error;
1745 }
1746 
1747 /**
1748  * generic_file_read_iter - generic filesystem read routine
1749  * @iocb:	kernel I/O control block
1750  * @iter:	destination for the data read
1751  *
1752  * This is the "read_iter()" routine for all filesystems
1753  * that can use the page cache directly.
1754  */
1755 ssize_t
1756 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1757 {
1758 	struct file *file = iocb->ki_filp;
1759 	ssize_t retval = 0;
1760 	loff_t *ppos = &iocb->ki_pos;
1761 	loff_t pos = *ppos;
1762 
1763 	if (iocb->ki_flags & IOCB_DIRECT) {
1764 		struct address_space *mapping = file->f_mapping;
1765 		struct inode *inode = mapping->host;
1766 		size_t count = iov_iter_count(iter);
1767 		loff_t size;
1768 
1769 		if (!count)
1770 			goto out; /* skip atime */
1771 		size = i_size_read(inode);
1772 		retval = filemap_write_and_wait_range(mapping, pos,
1773 					pos + count - 1);
1774 		if (!retval) {
1775 			struct iov_iter data = *iter;
1776 			retval = mapping->a_ops->direct_IO(iocb, &data, pos);
1777 		}
1778 
1779 		if (retval > 0) {
1780 			*ppos = pos + retval;
1781 			iov_iter_advance(iter, retval);
1782 		}
1783 
1784 		/*
1785 		 * Btrfs can have a short DIO read if we encounter
1786 		 * compressed extents, so if there was an error, or if
1787 		 * we've already read everything we wanted to, or if
1788 		 * there was a short read because we hit EOF, go ahead
1789 		 * and return.  Otherwise fallthrough to buffered io for
1790 		 * the rest of the read.  Buffered reads will not work for
1791 		 * DAX files, so don't bother trying.
1792 		 */
1793 		if (retval < 0 || !iov_iter_count(iter) || *ppos >= size ||
1794 		    IS_DAX(inode)) {
1795 			file_accessed(file);
1796 			goto out;
1797 		}
1798 	}
1799 
1800 	retval = do_generic_file_read(file, ppos, iter, retval);
1801 out:
1802 	return retval;
1803 }
1804 EXPORT_SYMBOL(generic_file_read_iter);
1805 
1806 #ifdef CONFIG_MMU
1807 /**
1808  * page_cache_read - adds requested page to the page cache if not already there
1809  * @file:	file to read
1810  * @offset:	page index
1811  *
1812  * This adds the requested page to the page cache if it isn't already there,
1813  * and schedules an I/O to read in its contents from disk.
1814  */
1815 static int page_cache_read(struct file *file, pgoff_t offset)
1816 {
1817 	struct address_space *mapping = file->f_mapping;
1818 	struct page *page;
1819 	int ret;
1820 
1821 	do {
1822 		page = page_cache_alloc_cold(mapping);
1823 		if (!page)
1824 			return -ENOMEM;
1825 
1826 		ret = add_to_page_cache_lru(page, mapping, offset,
1827 				mapping_gfp_constraint(mapping, GFP_KERNEL));
1828 		if (ret == 0)
1829 			ret = mapping->a_ops->readpage(file, page);
1830 		else if (ret == -EEXIST)
1831 			ret = 0; /* losing race to add is OK */
1832 
1833 		page_cache_release(page);
1834 
1835 	} while (ret == AOP_TRUNCATED_PAGE);
1836 
1837 	return ret;
1838 }
1839 
1840 #define MMAP_LOTSAMISS  (100)
1841 
1842 /*
1843  * Synchronous readahead happens when we don't even find
1844  * a page in the page cache at all.
1845  */
1846 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1847 				   struct file_ra_state *ra,
1848 				   struct file *file,
1849 				   pgoff_t offset)
1850 {
1851 	struct address_space *mapping = file->f_mapping;
1852 
1853 	/* If we don't want any read-ahead, don't bother */
1854 	if (vma->vm_flags & VM_RAND_READ)
1855 		return;
1856 	if (!ra->ra_pages)
1857 		return;
1858 
1859 	if (vma->vm_flags & VM_SEQ_READ) {
1860 		page_cache_sync_readahead(mapping, ra, file, offset,
1861 					  ra->ra_pages);
1862 		return;
1863 	}
1864 
1865 	/* Avoid banging the cache line if not needed */
1866 	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1867 		ra->mmap_miss++;
1868 
1869 	/*
1870 	 * Do we miss much more than hit in this file? If so,
1871 	 * stop bothering with read-ahead. It will only hurt.
1872 	 */
1873 	if (ra->mmap_miss > MMAP_LOTSAMISS)
1874 		return;
1875 
1876 	/*
1877 	 * mmap read-around
1878 	 */
1879 	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
1880 	ra->size = ra->ra_pages;
1881 	ra->async_size = ra->ra_pages / 4;
1882 	ra_submit(ra, mapping, file);
1883 }
1884 
1885 /*
1886  * Asynchronous readahead happens when we find the page and PG_readahead,
1887  * so we want to possibly extend the readahead further..
1888  */
1889 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1890 				    struct file_ra_state *ra,
1891 				    struct file *file,
1892 				    struct page *page,
1893 				    pgoff_t offset)
1894 {
1895 	struct address_space *mapping = file->f_mapping;
1896 
1897 	/* If we don't want any read-ahead, don't bother */
1898 	if (vma->vm_flags & VM_RAND_READ)
1899 		return;
1900 	if (ra->mmap_miss > 0)
1901 		ra->mmap_miss--;
1902 	if (PageReadahead(page))
1903 		page_cache_async_readahead(mapping, ra, file,
1904 					   page, offset, ra->ra_pages);
1905 }
1906 
1907 /**
1908  * filemap_fault - read in file data for page fault handling
1909  * @vma:	vma in which the fault was taken
1910  * @vmf:	struct vm_fault containing details of the fault
1911  *
1912  * filemap_fault() is invoked via the vma operations vector for a
1913  * mapped memory region to read in file data during a page fault.
1914  *
1915  * The goto's are kind of ugly, but this streamlines the normal case of having
1916  * it in the page cache, and handles the special cases reasonably without
1917  * having a lot of duplicated code.
1918  *
1919  * vma->vm_mm->mmap_sem must be held on entry.
1920  *
1921  * If our return value has VM_FAULT_RETRY set, it's because
1922  * lock_page_or_retry() returned 0.
1923  * The mmap_sem has usually been released in this case.
1924  * See __lock_page_or_retry() for the exception.
1925  *
1926  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
1927  * has not been released.
1928  *
1929  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1930  */
1931 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1932 {
1933 	int error;
1934 	struct file *file = vma->vm_file;
1935 	struct address_space *mapping = file->f_mapping;
1936 	struct file_ra_state *ra = &file->f_ra;
1937 	struct inode *inode = mapping->host;
1938 	pgoff_t offset = vmf->pgoff;
1939 	struct page *page;
1940 	loff_t size;
1941 	int ret = 0;
1942 
1943 	size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1944 	if (offset >= size >> PAGE_CACHE_SHIFT)
1945 		return VM_FAULT_SIGBUS;
1946 
1947 	/*
1948 	 * Do we have something in the page cache already?
1949 	 */
1950 	page = find_get_page(mapping, offset);
1951 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1952 		/*
1953 		 * We found the page, so try async readahead before
1954 		 * waiting for the lock.
1955 		 */
1956 		do_async_mmap_readahead(vma, ra, file, page, offset);
1957 	} else if (!page) {
1958 		/* No page in the page cache at all */
1959 		do_sync_mmap_readahead(vma, ra, file, offset);
1960 		count_vm_event(PGMAJFAULT);
1961 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1962 		ret = VM_FAULT_MAJOR;
1963 retry_find:
1964 		page = find_get_page(mapping, offset);
1965 		if (!page)
1966 			goto no_cached_page;
1967 	}
1968 
1969 	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1970 		page_cache_release(page);
1971 		return ret | VM_FAULT_RETRY;
1972 	}
1973 
1974 	/* Did it get truncated? */
1975 	if (unlikely(page->mapping != mapping)) {
1976 		unlock_page(page);
1977 		put_page(page);
1978 		goto retry_find;
1979 	}
1980 	VM_BUG_ON_PAGE(page->index != offset, page);
1981 
1982 	/*
1983 	 * We have a locked page in the page cache, now we need to check
1984 	 * that it's up-to-date. If not, it is going to be due to an error.
1985 	 */
1986 	if (unlikely(!PageUptodate(page)))
1987 		goto page_not_uptodate;
1988 
1989 	/*
1990 	 * Found the page and have a reference on it.
1991 	 * We must recheck i_size under page lock.
1992 	 */
1993 	size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1994 	if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
1995 		unlock_page(page);
1996 		page_cache_release(page);
1997 		return VM_FAULT_SIGBUS;
1998 	}
1999 
2000 	vmf->page = page;
2001 	return ret | VM_FAULT_LOCKED;
2002 
2003 no_cached_page:
2004 	/*
2005 	 * We're only likely to ever get here if MADV_RANDOM is in
2006 	 * effect.
2007 	 */
2008 	error = page_cache_read(file, offset);
2009 
2010 	/*
2011 	 * The page we want has now been added to the page cache.
2012 	 * In the unlikely event that someone removed it in the
2013 	 * meantime, we'll just come back here and read it again.
2014 	 */
2015 	if (error >= 0)
2016 		goto retry_find;
2017 
2018 	/*
2019 	 * An error return from page_cache_read can result if the
2020 	 * system is low on memory, or a problem occurs while trying
2021 	 * to schedule I/O.
2022 	 */
2023 	if (error == -ENOMEM)
2024 		return VM_FAULT_OOM;
2025 	return VM_FAULT_SIGBUS;
2026 
2027 page_not_uptodate:
2028 	/*
2029 	 * Umm, take care of errors if the page isn't up-to-date.
2030 	 * Try to re-read it _once_. We do this synchronously,
2031 	 * because there really aren't any performance issues here
2032 	 * and we need to check for errors.
2033 	 */
2034 	ClearPageError(page);
2035 	error = mapping->a_ops->readpage(file, page);
2036 	if (!error) {
2037 		wait_on_page_locked(page);
2038 		if (!PageUptodate(page))
2039 			error = -EIO;
2040 	}
2041 	page_cache_release(page);
2042 
2043 	if (!error || error == AOP_TRUNCATED_PAGE)
2044 		goto retry_find;
2045 
2046 	/* Things didn't work out. Return zero to tell the mm layer so. */
2047 	shrink_readahead_size_eio(file, ra);
2048 	return VM_FAULT_SIGBUS;
2049 }
2050 EXPORT_SYMBOL(filemap_fault);
2051 
2052 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2053 {
2054 	struct radix_tree_iter iter;
2055 	void **slot;
2056 	struct file *file = vma->vm_file;
2057 	struct address_space *mapping = file->f_mapping;
2058 	loff_t size;
2059 	struct page *page;
2060 	unsigned long address = (unsigned long) vmf->virtual_address;
2061 	unsigned long addr;
2062 	pte_t *pte;
2063 
2064 	rcu_read_lock();
2065 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2066 		if (iter.index > vmf->max_pgoff)
2067 			break;
2068 repeat:
2069 		page = radix_tree_deref_slot(slot);
2070 		if (unlikely(!page))
2071 			goto next;
2072 		if (radix_tree_exception(page)) {
2073 			if (radix_tree_deref_retry(page))
2074 				break;
2075 			else
2076 				goto next;
2077 		}
2078 
2079 		if (!page_cache_get_speculative(page))
2080 			goto repeat;
2081 
2082 		/* Has the page moved? */
2083 		if (unlikely(page != *slot)) {
2084 			page_cache_release(page);
2085 			goto repeat;
2086 		}
2087 
2088 		if (!PageUptodate(page) ||
2089 				PageReadahead(page) ||
2090 				PageHWPoison(page))
2091 			goto skip;
2092 		if (!trylock_page(page))
2093 			goto skip;
2094 
2095 		if (page->mapping != mapping || !PageUptodate(page))
2096 			goto unlock;
2097 
2098 		size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2099 		if (page->index >= size >> PAGE_CACHE_SHIFT)
2100 			goto unlock;
2101 
2102 		pte = vmf->pte + page->index - vmf->pgoff;
2103 		if (!pte_none(*pte))
2104 			goto unlock;
2105 
2106 		if (file->f_ra.mmap_miss > 0)
2107 			file->f_ra.mmap_miss--;
2108 		addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2109 		do_set_pte(vma, addr, page, pte, false, false);
2110 		unlock_page(page);
2111 		goto next;
2112 unlock:
2113 		unlock_page(page);
2114 skip:
2115 		page_cache_release(page);
2116 next:
2117 		if (iter.index == vmf->max_pgoff)
2118 			break;
2119 	}
2120 	rcu_read_unlock();
2121 }
2122 EXPORT_SYMBOL(filemap_map_pages);
2123 
2124 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2125 {
2126 	struct page *page = vmf->page;
2127 	struct inode *inode = file_inode(vma->vm_file);
2128 	int ret = VM_FAULT_LOCKED;
2129 
2130 	sb_start_pagefault(inode->i_sb);
2131 	file_update_time(vma->vm_file);
2132 	lock_page(page);
2133 	if (page->mapping != inode->i_mapping) {
2134 		unlock_page(page);
2135 		ret = VM_FAULT_NOPAGE;
2136 		goto out;
2137 	}
2138 	/*
2139 	 * We mark the page dirty already here so that when freeze is in
2140 	 * progress, we are guaranteed that writeback during freezing will
2141 	 * see the dirty page and writeprotect it again.
2142 	 */
2143 	set_page_dirty(page);
2144 	wait_for_stable_page(page);
2145 out:
2146 	sb_end_pagefault(inode->i_sb);
2147 	return ret;
2148 }
2149 EXPORT_SYMBOL(filemap_page_mkwrite);
2150 
2151 const struct vm_operations_struct generic_file_vm_ops = {
2152 	.fault		= filemap_fault,
2153 	.map_pages	= filemap_map_pages,
2154 	.page_mkwrite	= filemap_page_mkwrite,
2155 };
2156 
2157 /* This is used for a general mmap of a disk file */
2158 
2159 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2160 {
2161 	struct address_space *mapping = file->f_mapping;
2162 
2163 	if (!mapping->a_ops->readpage)
2164 		return -ENOEXEC;
2165 	file_accessed(file);
2166 	vma->vm_ops = &generic_file_vm_ops;
2167 	return 0;
2168 }
2169 
2170 /*
2171  * This is for filesystems which do not implement ->writepage.
2172  */
2173 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2174 {
2175 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2176 		return -EINVAL;
2177 	return generic_file_mmap(file, vma);
2178 }
2179 #else
2180 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2181 {
2182 	return -ENOSYS;
2183 }
2184 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2185 {
2186 	return -ENOSYS;
2187 }
2188 #endif /* CONFIG_MMU */
2189 
2190 EXPORT_SYMBOL(generic_file_mmap);
2191 EXPORT_SYMBOL(generic_file_readonly_mmap);
2192 
2193 static struct page *wait_on_page_read(struct page *page)
2194 {
2195 	if (!IS_ERR(page)) {
2196 		wait_on_page_locked(page);
2197 		if (!PageUptodate(page)) {
2198 			page_cache_release(page);
2199 			page = ERR_PTR(-EIO);
2200 		}
2201 	}
2202 	return page;
2203 }
2204 
2205 static struct page *__read_cache_page(struct address_space *mapping,
2206 				pgoff_t index,
2207 				int (*filler)(void *, struct page *),
2208 				void *data,
2209 				gfp_t gfp)
2210 {
2211 	struct page *page;
2212 	int err;
2213 repeat:
2214 	page = find_get_page(mapping, index);
2215 	if (!page) {
2216 		page = __page_cache_alloc(gfp | __GFP_COLD);
2217 		if (!page)
2218 			return ERR_PTR(-ENOMEM);
2219 		err = add_to_page_cache_lru(page, mapping, index, gfp);
2220 		if (unlikely(err)) {
2221 			page_cache_release(page);
2222 			if (err == -EEXIST)
2223 				goto repeat;
2224 			/* Presumably ENOMEM for radix tree node */
2225 			return ERR_PTR(err);
2226 		}
2227 		err = filler(data, page);
2228 		if (err < 0) {
2229 			page_cache_release(page);
2230 			page = ERR_PTR(err);
2231 		} else {
2232 			page = wait_on_page_read(page);
2233 		}
2234 	}
2235 	return page;
2236 }
2237 
2238 static struct page *do_read_cache_page(struct address_space *mapping,
2239 				pgoff_t index,
2240 				int (*filler)(void *, struct page *),
2241 				void *data,
2242 				gfp_t gfp)
2243 
2244 {
2245 	struct page *page;
2246 	int err;
2247 
2248 retry:
2249 	page = __read_cache_page(mapping, index, filler, data, gfp);
2250 	if (IS_ERR(page))
2251 		return page;
2252 	if (PageUptodate(page))
2253 		goto out;
2254 
2255 	lock_page(page);
2256 	if (!page->mapping) {
2257 		unlock_page(page);
2258 		page_cache_release(page);
2259 		goto retry;
2260 	}
2261 	if (PageUptodate(page)) {
2262 		unlock_page(page);
2263 		goto out;
2264 	}
2265 	err = filler(data, page);
2266 	if (err < 0) {
2267 		page_cache_release(page);
2268 		return ERR_PTR(err);
2269 	} else {
2270 		page = wait_on_page_read(page);
2271 		if (IS_ERR(page))
2272 			return page;
2273 	}
2274 out:
2275 	mark_page_accessed(page);
2276 	return page;
2277 }
2278 
2279 /**
2280  * read_cache_page - read into page cache, fill it if needed
2281  * @mapping:	the page's address_space
2282  * @index:	the page index
2283  * @filler:	function to perform the read
2284  * @data:	first arg to filler(data, page) function, often left as NULL
2285  *
2286  * Read into the page cache. If a page already exists, and PageUptodate() is
2287  * not set, try to fill the page and wait for it to become unlocked.
2288  *
2289  * If the page does not get brought uptodate, return -EIO.
2290  */
2291 struct page *read_cache_page(struct address_space *mapping,
2292 				pgoff_t index,
2293 				int (*filler)(void *, struct page *),
2294 				void *data)
2295 {
2296 	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2297 }
2298 EXPORT_SYMBOL(read_cache_page);
2299 
2300 /**
2301  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2302  * @mapping:	the page's address_space
2303  * @index:	the page index
2304  * @gfp:	the page allocator flags to use if allocating
2305  *
2306  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2307  * any new page allocations done using the specified allocation flags.
2308  *
2309  * If the page does not get brought uptodate, return -EIO.
2310  */
2311 struct page *read_cache_page_gfp(struct address_space *mapping,
2312 				pgoff_t index,
2313 				gfp_t gfp)
2314 {
2315 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2316 
2317 	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2318 }
2319 EXPORT_SYMBOL(read_cache_page_gfp);
2320 
2321 /*
2322  * Performs necessary checks before doing a write
2323  *
2324  * Can adjust writing position or amount of bytes to write.
2325  * Returns appropriate error code that caller should return or
2326  * zero in case that write should be allowed.
2327  */
2328 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2329 {
2330 	struct file *file = iocb->ki_filp;
2331 	struct inode *inode = file->f_mapping->host;
2332 	unsigned long limit = rlimit(RLIMIT_FSIZE);
2333 	loff_t pos;
2334 
2335 	if (!iov_iter_count(from))
2336 		return 0;
2337 
2338 	/* FIXME: this is for backwards compatibility with 2.4 */
2339 	if (iocb->ki_flags & IOCB_APPEND)
2340 		iocb->ki_pos = i_size_read(inode);
2341 
2342 	pos = iocb->ki_pos;
2343 
2344 	if (limit != RLIM_INFINITY) {
2345 		if (iocb->ki_pos >= limit) {
2346 			send_sig(SIGXFSZ, current, 0);
2347 			return -EFBIG;
2348 		}
2349 		iov_iter_truncate(from, limit - (unsigned long)pos);
2350 	}
2351 
2352 	/*
2353 	 * LFS rule
2354 	 */
2355 	if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2356 				!(file->f_flags & O_LARGEFILE))) {
2357 		if (pos >= MAX_NON_LFS)
2358 			return -EFBIG;
2359 		iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2360 	}
2361 
2362 	/*
2363 	 * Are we about to exceed the fs block limit ?
2364 	 *
2365 	 * If we have written data it becomes a short write.  If we have
2366 	 * exceeded without writing data we send a signal and return EFBIG.
2367 	 * Linus frestrict idea will clean these up nicely..
2368 	 */
2369 	if (unlikely(pos >= inode->i_sb->s_maxbytes))
2370 		return -EFBIG;
2371 
2372 	iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2373 	return iov_iter_count(from);
2374 }
2375 EXPORT_SYMBOL(generic_write_checks);
2376 
2377 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2378 				loff_t pos, unsigned len, unsigned flags,
2379 				struct page **pagep, void **fsdata)
2380 {
2381 	const struct address_space_operations *aops = mapping->a_ops;
2382 
2383 	return aops->write_begin(file, mapping, pos, len, flags,
2384 							pagep, fsdata);
2385 }
2386 EXPORT_SYMBOL(pagecache_write_begin);
2387 
2388 int pagecache_write_end(struct file *file, struct address_space *mapping,
2389 				loff_t pos, unsigned len, unsigned copied,
2390 				struct page *page, void *fsdata)
2391 {
2392 	const struct address_space_operations *aops = mapping->a_ops;
2393 
2394 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2395 }
2396 EXPORT_SYMBOL(pagecache_write_end);
2397 
2398 ssize_t
2399 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
2400 {
2401 	struct file	*file = iocb->ki_filp;
2402 	struct address_space *mapping = file->f_mapping;
2403 	struct inode	*inode = mapping->host;
2404 	ssize_t		written;
2405 	size_t		write_len;
2406 	pgoff_t		end;
2407 	struct iov_iter data;
2408 
2409 	write_len = iov_iter_count(from);
2410 	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2411 
2412 	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2413 	if (written)
2414 		goto out;
2415 
2416 	/*
2417 	 * After a write we want buffered reads to be sure to go to disk to get
2418 	 * the new data.  We invalidate clean cached page from the region we're
2419 	 * about to write.  We do this *before* the write so that we can return
2420 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2421 	 */
2422 	if (mapping->nrpages) {
2423 		written = invalidate_inode_pages2_range(mapping,
2424 					pos >> PAGE_CACHE_SHIFT, end);
2425 		/*
2426 		 * If a page can not be invalidated, return 0 to fall back
2427 		 * to buffered write.
2428 		 */
2429 		if (written) {
2430 			if (written == -EBUSY)
2431 				return 0;
2432 			goto out;
2433 		}
2434 	}
2435 
2436 	data = *from;
2437 	written = mapping->a_ops->direct_IO(iocb, &data, pos);
2438 
2439 	/*
2440 	 * Finally, try again to invalidate clean pages which might have been
2441 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2442 	 * if the source of the write was an mmap'ed region of the file
2443 	 * we're writing.  Either one is a pretty crazy thing to do,
2444 	 * so we don't support it 100%.  If this invalidation
2445 	 * fails, tough, the write still worked...
2446 	 */
2447 	if (mapping->nrpages) {
2448 		invalidate_inode_pages2_range(mapping,
2449 					      pos >> PAGE_CACHE_SHIFT, end);
2450 	}
2451 
2452 	if (written > 0) {
2453 		pos += written;
2454 		iov_iter_advance(from, written);
2455 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2456 			i_size_write(inode, pos);
2457 			mark_inode_dirty(inode);
2458 		}
2459 		iocb->ki_pos = pos;
2460 	}
2461 out:
2462 	return written;
2463 }
2464 EXPORT_SYMBOL(generic_file_direct_write);
2465 
2466 /*
2467  * Find or create a page at the given pagecache position. Return the locked
2468  * page. This function is specifically for buffered writes.
2469  */
2470 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2471 					pgoff_t index, unsigned flags)
2472 {
2473 	struct page *page;
2474 	int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2475 
2476 	if (flags & AOP_FLAG_NOFS)
2477 		fgp_flags |= FGP_NOFS;
2478 
2479 	page = pagecache_get_page(mapping, index, fgp_flags,
2480 			mapping_gfp_mask(mapping));
2481 	if (page)
2482 		wait_for_stable_page(page);
2483 
2484 	return page;
2485 }
2486 EXPORT_SYMBOL(grab_cache_page_write_begin);
2487 
2488 ssize_t generic_perform_write(struct file *file,
2489 				struct iov_iter *i, loff_t pos)
2490 {
2491 	struct address_space *mapping = file->f_mapping;
2492 	const struct address_space_operations *a_ops = mapping->a_ops;
2493 	long status = 0;
2494 	ssize_t written = 0;
2495 	unsigned int flags = 0;
2496 
2497 	/*
2498 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2499 	 */
2500 	if (!iter_is_iovec(i))
2501 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2502 
2503 	do {
2504 		struct page *page;
2505 		unsigned long offset;	/* Offset into pagecache page */
2506 		unsigned long bytes;	/* Bytes to write to page */
2507 		size_t copied;		/* Bytes copied from user */
2508 		void *fsdata;
2509 
2510 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2511 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2512 						iov_iter_count(i));
2513 
2514 again:
2515 		/*
2516 		 * Bring in the user page that we will copy from _first_.
2517 		 * Otherwise there's a nasty deadlock on copying from the
2518 		 * same page as we're writing to, without it being marked
2519 		 * up-to-date.
2520 		 *
2521 		 * Not only is this an optimisation, but it is also required
2522 		 * to check that the address is actually valid, when atomic
2523 		 * usercopies are used, below.
2524 		 */
2525 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2526 			status = -EFAULT;
2527 			break;
2528 		}
2529 
2530 		if (fatal_signal_pending(current)) {
2531 			status = -EINTR;
2532 			break;
2533 		}
2534 
2535 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2536 						&page, &fsdata);
2537 		if (unlikely(status < 0))
2538 			break;
2539 
2540 		if (mapping_writably_mapped(mapping))
2541 			flush_dcache_page(page);
2542 
2543 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2544 		flush_dcache_page(page);
2545 
2546 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2547 						page, fsdata);
2548 		if (unlikely(status < 0))
2549 			break;
2550 		copied = status;
2551 
2552 		cond_resched();
2553 
2554 		iov_iter_advance(i, copied);
2555 		if (unlikely(copied == 0)) {
2556 			/*
2557 			 * If we were unable to copy any data at all, we must
2558 			 * fall back to a single segment length write.
2559 			 *
2560 			 * If we didn't fallback here, we could livelock
2561 			 * because not all segments in the iov can be copied at
2562 			 * once without a pagefault.
2563 			 */
2564 			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2565 						iov_iter_single_seg_count(i));
2566 			goto again;
2567 		}
2568 		pos += copied;
2569 		written += copied;
2570 
2571 		balance_dirty_pages_ratelimited(mapping);
2572 	} while (iov_iter_count(i));
2573 
2574 	return written ? written : status;
2575 }
2576 EXPORT_SYMBOL(generic_perform_write);
2577 
2578 /**
2579  * __generic_file_write_iter - write data to a file
2580  * @iocb:	IO state structure (file, offset, etc.)
2581  * @from:	iov_iter with data to write
2582  *
2583  * This function does all the work needed for actually writing data to a
2584  * file. It does all basic checks, removes SUID from the file, updates
2585  * modification times and calls proper subroutines depending on whether we
2586  * do direct IO or a standard buffered write.
2587  *
2588  * It expects i_mutex to be grabbed unless we work on a block device or similar
2589  * object which does not need locking at all.
2590  *
2591  * This function does *not* take care of syncing data in case of O_SYNC write.
2592  * A caller has to handle it. This is mainly due to the fact that we want to
2593  * avoid syncing under i_mutex.
2594  */
2595 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2596 {
2597 	struct file *file = iocb->ki_filp;
2598 	struct address_space * mapping = file->f_mapping;
2599 	struct inode 	*inode = mapping->host;
2600 	ssize_t		written = 0;
2601 	ssize_t		err;
2602 	ssize_t		status;
2603 
2604 	/* We can write back this queue in page reclaim */
2605 	current->backing_dev_info = inode_to_bdi(inode);
2606 	err = file_remove_privs(file);
2607 	if (err)
2608 		goto out;
2609 
2610 	err = file_update_time(file);
2611 	if (err)
2612 		goto out;
2613 
2614 	if (iocb->ki_flags & IOCB_DIRECT) {
2615 		loff_t pos, endbyte;
2616 
2617 		written = generic_file_direct_write(iocb, from, iocb->ki_pos);
2618 		/*
2619 		 * If the write stopped short of completing, fall back to
2620 		 * buffered writes.  Some filesystems do this for writes to
2621 		 * holes, for example.  For DAX files, a buffered write will
2622 		 * not succeed (even if it did, DAX does not handle dirty
2623 		 * page-cache pages correctly).
2624 		 */
2625 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2626 			goto out;
2627 
2628 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
2629 		/*
2630 		 * If generic_perform_write() returned a synchronous error
2631 		 * then we want to return the number of bytes which were
2632 		 * direct-written, or the error code if that was zero.  Note
2633 		 * that this differs from normal direct-io semantics, which
2634 		 * will return -EFOO even if some bytes were written.
2635 		 */
2636 		if (unlikely(status < 0)) {
2637 			err = status;
2638 			goto out;
2639 		}
2640 		/*
2641 		 * We need to ensure that the page cache pages are written to
2642 		 * disk and invalidated to preserve the expected O_DIRECT
2643 		 * semantics.
2644 		 */
2645 		endbyte = pos + status - 1;
2646 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
2647 		if (err == 0) {
2648 			iocb->ki_pos = endbyte + 1;
2649 			written += status;
2650 			invalidate_mapping_pages(mapping,
2651 						 pos >> PAGE_CACHE_SHIFT,
2652 						 endbyte >> PAGE_CACHE_SHIFT);
2653 		} else {
2654 			/*
2655 			 * We don't know how much we wrote, so just return
2656 			 * the number of bytes which were direct-written
2657 			 */
2658 		}
2659 	} else {
2660 		written = generic_perform_write(file, from, iocb->ki_pos);
2661 		if (likely(written > 0))
2662 			iocb->ki_pos += written;
2663 	}
2664 out:
2665 	current->backing_dev_info = NULL;
2666 	return written ? written : err;
2667 }
2668 EXPORT_SYMBOL(__generic_file_write_iter);
2669 
2670 /**
2671  * generic_file_write_iter - write data to a file
2672  * @iocb:	IO state structure
2673  * @from:	iov_iter with data to write
2674  *
2675  * This is a wrapper around __generic_file_write_iter() to be used by most
2676  * filesystems. It takes care of syncing the file in case of O_SYNC file
2677  * and acquires i_mutex as needed.
2678  */
2679 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2680 {
2681 	struct file *file = iocb->ki_filp;
2682 	struct inode *inode = file->f_mapping->host;
2683 	ssize_t ret;
2684 
2685 	mutex_lock(&inode->i_mutex);
2686 	ret = generic_write_checks(iocb, from);
2687 	if (ret > 0)
2688 		ret = __generic_file_write_iter(iocb, from);
2689 	mutex_unlock(&inode->i_mutex);
2690 
2691 	if (ret > 0) {
2692 		ssize_t err;
2693 
2694 		err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2695 		if (err < 0)
2696 			ret = err;
2697 	}
2698 	return ret;
2699 }
2700 EXPORT_SYMBOL(generic_file_write_iter);
2701 
2702 /**
2703  * try_to_release_page() - release old fs-specific metadata on a page
2704  *
2705  * @page: the page which the kernel is trying to free
2706  * @gfp_mask: memory allocation flags (and I/O mode)
2707  *
2708  * The address_space is to try to release any data against the page
2709  * (presumably at page->private).  If the release was successful, return `1'.
2710  * Otherwise return zero.
2711  *
2712  * This may also be called if PG_fscache is set on a page, indicating that the
2713  * page is known to the local caching routines.
2714  *
2715  * The @gfp_mask argument specifies whether I/O may be performed to release
2716  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2717  *
2718  */
2719 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2720 {
2721 	struct address_space * const mapping = page->mapping;
2722 
2723 	BUG_ON(!PageLocked(page));
2724 	if (PageWriteback(page))
2725 		return 0;
2726 
2727 	if (mapping && mapping->a_ops->releasepage)
2728 		return mapping->a_ops->releasepage(page, gfp_mask);
2729 	return try_to_free_buffers(page);
2730 }
2731 
2732 EXPORT_SYMBOL(try_to_release_page);
2733