xref: /linux/mm/filemap.c (revision 98366c20a275e957416e9516db5dcb7195b4e101)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/backing-dev.h>
32 #include <linux/security.h>
33 #include <linux/syscalls.h>
34 #include <linux/cpuset.h>
35 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
36 #include "internal.h"
37 
38 /*
39  * FIXME: remove all knowledge of the buffer layer from the core VM
40  */
41 #include <linux/buffer_head.h> /* for generic_osync_inode */
42 
43 #include <asm/mman.h>
44 
45 static ssize_t
46 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
47 	loff_t offset, unsigned long nr_segs);
48 
49 /*
50  * Shared mappings implemented 30.11.1994. It's not fully working yet,
51  * though.
52  *
53  * Shared mappings now work. 15.8.1995  Bruno.
54  *
55  * finished 'unifying' the page and buffer cache and SMP-threaded the
56  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
57  *
58  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59  */
60 
61 /*
62  * Lock ordering:
63  *
64  *  ->i_mmap_lock		(vmtruncate)
65  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
66  *      ->swap_lock		(exclusive_swap_page, others)
67  *        ->mapping->tree_lock
68  *          ->zone.lock
69  *
70  *  ->i_mutex
71  *    ->i_mmap_lock		(truncate->unmap_mapping_range)
72  *
73  *  ->mmap_sem
74  *    ->i_mmap_lock
75  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
76  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
77  *
78  *  ->mmap_sem
79  *    ->lock_page		(access_process_vm)
80  *
81  *  ->i_mutex			(generic_file_buffered_write)
82  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
83  *
84  *  ->i_mutex
85  *    ->i_alloc_sem             (various)
86  *
87  *  ->inode_lock
88  *    ->sb_lock			(fs/fs-writeback.c)
89  *    ->mapping->tree_lock	(__sync_single_inode)
90  *
91  *  ->i_mmap_lock
92  *    ->anon_vma.lock		(vma_adjust)
93  *
94  *  ->anon_vma.lock
95  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
96  *
97  *  ->page_table_lock or pte_lock
98  *    ->swap_lock		(try_to_unmap_one)
99  *    ->private_lock		(try_to_unmap_one)
100  *    ->tree_lock		(try_to_unmap_one)
101  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
102  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
103  *    ->private_lock		(page_remove_rmap->set_page_dirty)
104  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
105  *    ->inode_lock		(page_remove_rmap->set_page_dirty)
106  *    ->inode_lock		(zap_pte_range->set_page_dirty)
107  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
108  *
109  *  ->task->proc_lock
110  *    ->dcache_lock		(proc_pid_lookup)
111  */
112 
113 /*
114  * Remove a page from the page cache and free it. Caller has to make
115  * sure the page is locked and that nobody else uses it - or that usage
116  * is safe.  The caller must hold a write_lock on the mapping's tree_lock.
117  */
118 void __remove_from_page_cache(struct page *page)
119 {
120 	struct address_space *mapping = page->mapping;
121 
122 	radix_tree_delete(&mapping->page_tree, page->index);
123 	page->mapping = NULL;
124 	mapping->nrpages--;
125 	__dec_zone_page_state(page, NR_FILE_PAGES);
126 	BUG_ON(page_mapped(page));
127 }
128 
129 void remove_from_page_cache(struct page *page)
130 {
131 	struct address_space *mapping = page->mapping;
132 
133 	BUG_ON(!PageLocked(page));
134 
135 	write_lock_irq(&mapping->tree_lock);
136 	__remove_from_page_cache(page);
137 	write_unlock_irq(&mapping->tree_lock);
138 }
139 
140 static int sync_page(void *word)
141 {
142 	struct address_space *mapping;
143 	struct page *page;
144 
145 	page = container_of((unsigned long *)word, struct page, flags);
146 
147 	/*
148 	 * page_mapping() is being called without PG_locked held.
149 	 * Some knowledge of the state and use of the page is used to
150 	 * reduce the requirements down to a memory barrier.
151 	 * The danger here is of a stale page_mapping() return value
152 	 * indicating a struct address_space different from the one it's
153 	 * associated with when it is associated with one.
154 	 * After smp_mb(), it's either the correct page_mapping() for
155 	 * the page, or an old page_mapping() and the page's own
156 	 * page_mapping() has gone NULL.
157 	 * The ->sync_page() address_space operation must tolerate
158 	 * page_mapping() going NULL. By an amazing coincidence,
159 	 * this comes about because none of the users of the page
160 	 * in the ->sync_page() methods make essential use of the
161 	 * page_mapping(), merely passing the page down to the backing
162 	 * device's unplug functions when it's non-NULL, which in turn
163 	 * ignore it for all cases but swap, where only page_private(page) is
164 	 * of interest. When page_mapping() does go NULL, the entire
165 	 * call stack gracefully ignores the page and returns.
166 	 * -- wli
167 	 */
168 	smp_mb();
169 	mapping = page_mapping(page);
170 	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
171 		mapping->a_ops->sync_page(page);
172 	io_schedule();
173 	return 0;
174 }
175 
176 /**
177  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
178  * @mapping:	address space structure to write
179  * @start:	offset in bytes where the range starts
180  * @end:	offset in bytes where the range ends (inclusive)
181  * @sync_mode:	enable synchronous operation
182  *
183  * Start writeback against all of a mapping's dirty pages that lie
184  * within the byte offsets <start, end> inclusive.
185  *
186  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
187  * opposed to a regular memory cleansing writeback.  The difference between
188  * these two operations is that if a dirty page/buffer is encountered, it must
189  * be waited upon, and not just skipped over.
190  */
191 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
192 				loff_t end, int sync_mode)
193 {
194 	int ret;
195 	struct writeback_control wbc = {
196 		.sync_mode = sync_mode,
197 		.nr_to_write = mapping->nrpages * 2,
198 		.range_start = start,
199 		.range_end = end,
200 	};
201 
202 	if (!mapping_cap_writeback_dirty(mapping))
203 		return 0;
204 
205 	ret = do_writepages(mapping, &wbc);
206 	return ret;
207 }
208 
209 static inline int __filemap_fdatawrite(struct address_space *mapping,
210 	int sync_mode)
211 {
212 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
213 }
214 
215 int filemap_fdatawrite(struct address_space *mapping)
216 {
217 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
218 }
219 EXPORT_SYMBOL(filemap_fdatawrite);
220 
221 static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
222 				loff_t end)
223 {
224 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
225 }
226 
227 /**
228  * filemap_flush - mostly a non-blocking flush
229  * @mapping:	target address_space
230  *
231  * This is a mostly non-blocking flush.  Not suitable for data-integrity
232  * purposes - I/O may not be started against all dirty pages.
233  */
234 int filemap_flush(struct address_space *mapping)
235 {
236 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
237 }
238 EXPORT_SYMBOL(filemap_flush);
239 
240 /**
241  * wait_on_page_writeback_range - wait for writeback to complete
242  * @mapping:	target address_space
243  * @start:	beginning page index
244  * @end:	ending page index
245  *
246  * Wait for writeback to complete against pages indexed by start->end
247  * inclusive
248  */
249 int wait_on_page_writeback_range(struct address_space *mapping,
250 				pgoff_t start, pgoff_t end)
251 {
252 	struct pagevec pvec;
253 	int nr_pages;
254 	int ret = 0;
255 	pgoff_t index;
256 
257 	if (end < start)
258 		return 0;
259 
260 	pagevec_init(&pvec, 0);
261 	index = start;
262 	while ((index <= end) &&
263 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
264 			PAGECACHE_TAG_WRITEBACK,
265 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
266 		unsigned i;
267 
268 		for (i = 0; i < nr_pages; i++) {
269 			struct page *page = pvec.pages[i];
270 
271 			/* until radix tree lookup accepts end_index */
272 			if (page->index > end)
273 				continue;
274 
275 			wait_on_page_writeback(page);
276 			if (PageError(page))
277 				ret = -EIO;
278 		}
279 		pagevec_release(&pvec);
280 		cond_resched();
281 	}
282 
283 	/* Check for outstanding write errors */
284 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
285 		ret = -ENOSPC;
286 	if (test_and_clear_bit(AS_EIO, &mapping->flags))
287 		ret = -EIO;
288 
289 	return ret;
290 }
291 
292 /**
293  * sync_page_range - write and wait on all pages in the passed range
294  * @inode:	target inode
295  * @mapping:	target address_space
296  * @pos:	beginning offset in pages to write
297  * @count:	number of bytes to write
298  *
299  * Write and wait upon all the pages in the passed range.  This is a "data
300  * integrity" operation.  It waits upon in-flight writeout before starting and
301  * waiting upon new writeout.  If there was an IO error, return it.
302  *
303  * We need to re-take i_mutex during the generic_osync_inode list walk because
304  * it is otherwise livelockable.
305  */
306 int sync_page_range(struct inode *inode, struct address_space *mapping,
307 			loff_t pos, loff_t count)
308 {
309 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
310 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
311 	int ret;
312 
313 	if (!mapping_cap_writeback_dirty(mapping) || !count)
314 		return 0;
315 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
316 	if (ret == 0) {
317 		mutex_lock(&inode->i_mutex);
318 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
319 		mutex_unlock(&inode->i_mutex);
320 	}
321 	if (ret == 0)
322 		ret = wait_on_page_writeback_range(mapping, start, end);
323 	return ret;
324 }
325 EXPORT_SYMBOL(sync_page_range);
326 
327 /**
328  * sync_page_range_nolock
329  * @inode:	target inode
330  * @mapping:	target address_space
331  * @pos:	beginning offset in pages to write
332  * @count:	number of bytes to write
333  *
334  * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
335  * as it forces O_SYNC writers to different parts of the same file
336  * to be serialised right until io completion.
337  */
338 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
339 			   loff_t pos, loff_t count)
340 {
341 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
342 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
343 	int ret;
344 
345 	if (!mapping_cap_writeback_dirty(mapping) || !count)
346 		return 0;
347 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
348 	if (ret == 0)
349 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
350 	if (ret == 0)
351 		ret = wait_on_page_writeback_range(mapping, start, end);
352 	return ret;
353 }
354 EXPORT_SYMBOL(sync_page_range_nolock);
355 
356 /**
357  * filemap_fdatawait - wait for all under-writeback pages to complete
358  * @mapping: address space structure to wait for
359  *
360  * Walk the list of under-writeback pages of the given address space
361  * and wait for all of them.
362  */
363 int filemap_fdatawait(struct address_space *mapping)
364 {
365 	loff_t i_size = i_size_read(mapping->host);
366 
367 	if (i_size == 0)
368 		return 0;
369 
370 	return wait_on_page_writeback_range(mapping, 0,
371 				(i_size - 1) >> PAGE_CACHE_SHIFT);
372 }
373 EXPORT_SYMBOL(filemap_fdatawait);
374 
375 int filemap_write_and_wait(struct address_space *mapping)
376 {
377 	int err = 0;
378 
379 	if (mapping->nrpages) {
380 		err = filemap_fdatawrite(mapping);
381 		/*
382 		 * Even if the above returned error, the pages may be
383 		 * written partially (e.g. -ENOSPC), so we wait for it.
384 		 * But the -EIO is special case, it may indicate the worst
385 		 * thing (e.g. bug) happened, so we avoid waiting for it.
386 		 */
387 		if (err != -EIO) {
388 			int err2 = filemap_fdatawait(mapping);
389 			if (!err)
390 				err = err2;
391 		}
392 	}
393 	return err;
394 }
395 EXPORT_SYMBOL(filemap_write_and_wait);
396 
397 /**
398  * filemap_write_and_wait_range - write out & wait on a file range
399  * @mapping:	the address_space for the pages
400  * @lstart:	offset in bytes where the range starts
401  * @lend:	offset in bytes where the range ends (inclusive)
402  *
403  * Write out and wait upon file offsets lstart->lend, inclusive.
404  *
405  * Note that `lend' is inclusive (describes the last byte to be written) so
406  * that this function can be used to write to the very end-of-file (end = -1).
407  */
408 int filemap_write_and_wait_range(struct address_space *mapping,
409 				 loff_t lstart, loff_t lend)
410 {
411 	int err = 0;
412 
413 	if (mapping->nrpages) {
414 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
415 						 WB_SYNC_ALL);
416 		/* See comment of filemap_write_and_wait() */
417 		if (err != -EIO) {
418 			int err2 = wait_on_page_writeback_range(mapping,
419 						lstart >> PAGE_CACHE_SHIFT,
420 						lend >> PAGE_CACHE_SHIFT);
421 			if (!err)
422 				err = err2;
423 		}
424 	}
425 	return err;
426 }
427 
428 /**
429  * add_to_page_cache - add newly allocated pagecache pages
430  * @page:	page to add
431  * @mapping:	the page's address_space
432  * @offset:	page index
433  * @gfp_mask:	page allocation mode
434  *
435  * This function is used to add newly allocated pagecache pages;
436  * the page is new, so we can just run SetPageLocked() against it.
437  * The other page state flags were set by rmqueue().
438  *
439  * This function does not add the page to the LRU.  The caller must do that.
440  */
441 int add_to_page_cache(struct page *page, struct address_space *mapping,
442 		pgoff_t offset, gfp_t gfp_mask)
443 {
444 	int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
445 
446 	if (error == 0) {
447 		write_lock_irq(&mapping->tree_lock);
448 		error = radix_tree_insert(&mapping->page_tree, offset, page);
449 		if (!error) {
450 			page_cache_get(page);
451 			SetPageLocked(page);
452 			page->mapping = mapping;
453 			page->index = offset;
454 			mapping->nrpages++;
455 			__inc_zone_page_state(page, NR_FILE_PAGES);
456 		}
457 		write_unlock_irq(&mapping->tree_lock);
458 		radix_tree_preload_end();
459 	}
460 	return error;
461 }
462 EXPORT_SYMBOL(add_to_page_cache);
463 
464 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
465 				pgoff_t offset, gfp_t gfp_mask)
466 {
467 	int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
468 	if (ret == 0)
469 		lru_cache_add(page);
470 	return ret;
471 }
472 
473 #ifdef CONFIG_NUMA
474 struct page *__page_cache_alloc(gfp_t gfp)
475 {
476 	if (cpuset_do_page_mem_spread()) {
477 		int n = cpuset_mem_spread_node();
478 		return alloc_pages_node(n, gfp, 0);
479 	}
480 	return alloc_pages(gfp, 0);
481 }
482 EXPORT_SYMBOL(__page_cache_alloc);
483 #endif
484 
485 static int __sleep_on_page_lock(void *word)
486 {
487 	io_schedule();
488 	return 0;
489 }
490 
491 /*
492  * In order to wait for pages to become available there must be
493  * waitqueues associated with pages. By using a hash table of
494  * waitqueues where the bucket discipline is to maintain all
495  * waiters on the same queue and wake all when any of the pages
496  * become available, and for the woken contexts to check to be
497  * sure the appropriate page became available, this saves space
498  * at a cost of "thundering herd" phenomena during rare hash
499  * collisions.
500  */
501 static wait_queue_head_t *page_waitqueue(struct page *page)
502 {
503 	const struct zone *zone = page_zone(page);
504 
505 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
506 }
507 
508 static inline void wake_up_page(struct page *page, int bit)
509 {
510 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
511 }
512 
513 void fastcall wait_on_page_bit(struct page *page, int bit_nr)
514 {
515 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
516 
517 	if (test_bit(bit_nr, &page->flags))
518 		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
519 							TASK_UNINTERRUPTIBLE);
520 }
521 EXPORT_SYMBOL(wait_on_page_bit);
522 
523 /**
524  * unlock_page - unlock a locked page
525  * @page: the page
526  *
527  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
528  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
529  * mechananism between PageLocked pages and PageWriteback pages is shared.
530  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
531  *
532  * The first mb is necessary to safely close the critical section opened by the
533  * TestSetPageLocked(), the second mb is necessary to enforce ordering between
534  * the clear_bit and the read of the waitqueue (to avoid SMP races with a
535  * parallel wait_on_page_locked()).
536  */
537 void fastcall unlock_page(struct page *page)
538 {
539 	smp_mb__before_clear_bit();
540 	if (!TestClearPageLocked(page))
541 		BUG();
542 	smp_mb__after_clear_bit();
543 	wake_up_page(page, PG_locked);
544 }
545 EXPORT_SYMBOL(unlock_page);
546 
547 /**
548  * end_page_writeback - end writeback against a page
549  * @page: the page
550  */
551 void end_page_writeback(struct page *page)
552 {
553 	if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
554 		if (!test_clear_page_writeback(page))
555 			BUG();
556 	}
557 	smp_mb__after_clear_bit();
558 	wake_up_page(page, PG_writeback);
559 }
560 EXPORT_SYMBOL(end_page_writeback);
561 
562 /**
563  * __lock_page - get a lock on the page, assuming we need to sleep to get it
564  * @page: the page to lock
565  *
566  * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
567  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
568  * chances are that on the second loop, the block layer's plug list is empty,
569  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
570  */
571 void fastcall __lock_page(struct page *page)
572 {
573 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
574 
575 	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
576 							TASK_UNINTERRUPTIBLE);
577 }
578 EXPORT_SYMBOL(__lock_page);
579 
580 /*
581  * Variant of lock_page that does not require the caller to hold a reference
582  * on the page's mapping.
583  */
584 void fastcall __lock_page_nosync(struct page *page)
585 {
586 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
587 	__wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
588 							TASK_UNINTERRUPTIBLE);
589 }
590 
591 /**
592  * find_get_page - find and get a page reference
593  * @mapping: the address_space to search
594  * @offset: the page index
595  *
596  * Is there a pagecache struct page at the given (mapping, offset) tuple?
597  * If yes, increment its refcount and return it; if no, return NULL.
598  */
599 struct page * find_get_page(struct address_space *mapping, pgoff_t offset)
600 {
601 	struct page *page;
602 
603 	read_lock_irq(&mapping->tree_lock);
604 	page = radix_tree_lookup(&mapping->page_tree, offset);
605 	if (page)
606 		page_cache_get(page);
607 	read_unlock_irq(&mapping->tree_lock);
608 	return page;
609 }
610 EXPORT_SYMBOL(find_get_page);
611 
612 /**
613  * find_lock_page - locate, pin and lock a pagecache page
614  * @mapping: the address_space to search
615  * @offset: the page index
616  *
617  * Locates the desired pagecache page, locks it, increments its reference
618  * count and returns its address.
619  *
620  * Returns zero if the page was not present. find_lock_page() may sleep.
621  */
622 struct page *find_lock_page(struct address_space *mapping,
623 				pgoff_t offset)
624 {
625 	struct page *page;
626 
627 repeat:
628 	read_lock_irq(&mapping->tree_lock);
629 	page = radix_tree_lookup(&mapping->page_tree, offset);
630 	if (page) {
631 		page_cache_get(page);
632 		if (TestSetPageLocked(page)) {
633 			read_unlock_irq(&mapping->tree_lock);
634 			__lock_page(page);
635 
636 			/* Has the page been truncated while we slept? */
637 			if (unlikely(page->mapping != mapping)) {
638 				unlock_page(page);
639 				page_cache_release(page);
640 				goto repeat;
641 			}
642 			VM_BUG_ON(page->index != offset);
643 			goto out;
644 		}
645 	}
646 	read_unlock_irq(&mapping->tree_lock);
647 out:
648 	return page;
649 }
650 EXPORT_SYMBOL(find_lock_page);
651 
652 /**
653  * find_or_create_page - locate or add a pagecache page
654  * @mapping: the page's address_space
655  * @index: the page's index into the mapping
656  * @gfp_mask: page allocation mode
657  *
658  * Locates a page in the pagecache.  If the page is not present, a new page
659  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
660  * LRU list.  The returned page is locked and has its reference count
661  * incremented.
662  *
663  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
664  * allocation!
665  *
666  * find_or_create_page() returns the desired page's address, or zero on
667  * memory exhaustion.
668  */
669 struct page *find_or_create_page(struct address_space *mapping,
670 		pgoff_t index, gfp_t gfp_mask)
671 {
672 	struct page *page;
673 	int err;
674 repeat:
675 	page = find_lock_page(mapping, index);
676 	if (!page) {
677 		page = __page_cache_alloc(gfp_mask);
678 		if (!page)
679 			return NULL;
680 		err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
681 		if (unlikely(err)) {
682 			page_cache_release(page);
683 			page = NULL;
684 			if (err == -EEXIST)
685 				goto repeat;
686 		}
687 	}
688 	return page;
689 }
690 EXPORT_SYMBOL(find_or_create_page);
691 
692 /**
693  * find_get_pages - gang pagecache lookup
694  * @mapping:	The address_space to search
695  * @start:	The starting page index
696  * @nr_pages:	The maximum number of pages
697  * @pages:	Where the resulting pages are placed
698  *
699  * find_get_pages() will search for and return a group of up to
700  * @nr_pages pages in the mapping.  The pages are placed at @pages.
701  * find_get_pages() takes a reference against the returned pages.
702  *
703  * The search returns a group of mapping-contiguous pages with ascending
704  * indexes.  There may be holes in the indices due to not-present pages.
705  *
706  * find_get_pages() returns the number of pages which were found.
707  */
708 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
709 			    unsigned int nr_pages, struct page **pages)
710 {
711 	unsigned int i;
712 	unsigned int ret;
713 
714 	read_lock_irq(&mapping->tree_lock);
715 	ret = radix_tree_gang_lookup(&mapping->page_tree,
716 				(void **)pages, start, nr_pages);
717 	for (i = 0; i < ret; i++)
718 		page_cache_get(pages[i]);
719 	read_unlock_irq(&mapping->tree_lock);
720 	return ret;
721 }
722 
723 /**
724  * find_get_pages_contig - gang contiguous pagecache lookup
725  * @mapping:	The address_space to search
726  * @index:	The starting page index
727  * @nr_pages:	The maximum number of pages
728  * @pages:	Where the resulting pages are placed
729  *
730  * find_get_pages_contig() works exactly like find_get_pages(), except
731  * that the returned number of pages are guaranteed to be contiguous.
732  *
733  * find_get_pages_contig() returns the number of pages which were found.
734  */
735 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
736 			       unsigned int nr_pages, struct page **pages)
737 {
738 	unsigned int i;
739 	unsigned int ret;
740 
741 	read_lock_irq(&mapping->tree_lock);
742 	ret = radix_tree_gang_lookup(&mapping->page_tree,
743 				(void **)pages, index, nr_pages);
744 	for (i = 0; i < ret; i++) {
745 		if (pages[i]->mapping == NULL || pages[i]->index != index)
746 			break;
747 
748 		page_cache_get(pages[i]);
749 		index++;
750 	}
751 	read_unlock_irq(&mapping->tree_lock);
752 	return i;
753 }
754 EXPORT_SYMBOL(find_get_pages_contig);
755 
756 /**
757  * find_get_pages_tag - find and return pages that match @tag
758  * @mapping:	the address_space to search
759  * @index:	the starting page index
760  * @tag:	the tag index
761  * @nr_pages:	the maximum number of pages
762  * @pages:	where the resulting pages are placed
763  *
764  * Like find_get_pages, except we only return pages which are tagged with
765  * @tag.   We update @index to index the next page for the traversal.
766  */
767 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
768 			int tag, unsigned int nr_pages, struct page **pages)
769 {
770 	unsigned int i;
771 	unsigned int ret;
772 
773 	read_lock_irq(&mapping->tree_lock);
774 	ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
775 				(void **)pages, *index, nr_pages, tag);
776 	for (i = 0; i < ret; i++)
777 		page_cache_get(pages[i]);
778 	if (ret)
779 		*index = pages[ret - 1]->index + 1;
780 	read_unlock_irq(&mapping->tree_lock);
781 	return ret;
782 }
783 EXPORT_SYMBOL(find_get_pages_tag);
784 
785 /**
786  * grab_cache_page_nowait - returns locked page at given index in given cache
787  * @mapping: target address_space
788  * @index: the page index
789  *
790  * Same as grab_cache_page(), but do not wait if the page is unavailable.
791  * This is intended for speculative data generators, where the data can
792  * be regenerated if the page couldn't be grabbed.  This routine should
793  * be safe to call while holding the lock for another page.
794  *
795  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
796  * and deadlock against the caller's locked page.
797  */
798 struct page *
799 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
800 {
801 	struct page *page = find_get_page(mapping, index);
802 
803 	if (page) {
804 		if (!TestSetPageLocked(page))
805 			return page;
806 		page_cache_release(page);
807 		return NULL;
808 	}
809 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
810 	if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
811 		page_cache_release(page);
812 		page = NULL;
813 	}
814 	return page;
815 }
816 EXPORT_SYMBOL(grab_cache_page_nowait);
817 
818 /*
819  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
820  * a _large_ part of the i/o request. Imagine the worst scenario:
821  *
822  *      ---R__________________________________________B__________
823  *         ^ reading here                             ^ bad block(assume 4k)
824  *
825  * read(R) => miss => readahead(R...B) => media error => frustrating retries
826  * => failing the whole request => read(R) => read(R+1) =>
827  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
828  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
829  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
830  *
831  * It is going insane. Fix it by quickly scaling down the readahead size.
832  */
833 static void shrink_readahead_size_eio(struct file *filp,
834 					struct file_ra_state *ra)
835 {
836 	if (!ra->ra_pages)
837 		return;
838 
839 	ra->ra_pages /= 4;
840 }
841 
842 /**
843  * do_generic_mapping_read - generic file read routine
844  * @mapping:	address_space to be read
845  * @ra:		file's readahead state
846  * @filp:	the file to read
847  * @ppos:	current file position
848  * @desc:	read_descriptor
849  * @actor:	read method
850  *
851  * This is a generic file read routine, and uses the
852  * mapping->a_ops->readpage() function for the actual low-level stuff.
853  *
854  * This is really ugly. But the goto's actually try to clarify some
855  * of the logic when it comes to error handling etc.
856  *
857  * Note the struct file* is only passed for the use of readpage.
858  * It may be NULL.
859  */
860 void do_generic_mapping_read(struct address_space *mapping,
861 			     struct file_ra_state *ra,
862 			     struct file *filp,
863 			     loff_t *ppos,
864 			     read_descriptor_t *desc,
865 			     read_actor_t actor)
866 {
867 	struct inode *inode = mapping->host;
868 	pgoff_t index;
869 	pgoff_t last_index;
870 	pgoff_t prev_index;
871 	unsigned long offset;      /* offset into pagecache page */
872 	unsigned int prev_offset;
873 	int error;
874 
875 	index = *ppos >> PAGE_CACHE_SHIFT;
876 	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
877 	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
878 	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
879 	offset = *ppos & ~PAGE_CACHE_MASK;
880 
881 	for (;;) {
882 		struct page *page;
883 		pgoff_t end_index;
884 		loff_t isize;
885 		unsigned long nr, ret;
886 
887 		cond_resched();
888 find_page:
889 		page = find_get_page(mapping, index);
890 		if (!page) {
891 			page_cache_sync_readahead(mapping,
892 					ra, filp,
893 					index, last_index - index);
894 			page = find_get_page(mapping, index);
895 			if (unlikely(page == NULL))
896 				goto no_cached_page;
897 		}
898 		if (PageReadahead(page)) {
899 			page_cache_async_readahead(mapping,
900 					ra, filp, page,
901 					index, last_index - index);
902 		}
903 		if (!PageUptodate(page))
904 			goto page_not_up_to_date;
905 page_ok:
906 		/*
907 		 * i_size must be checked after we know the page is Uptodate.
908 		 *
909 		 * Checking i_size after the check allows us to calculate
910 		 * the correct value for "nr", which means the zero-filled
911 		 * part of the page is not copied back to userspace (unless
912 		 * another truncate extends the file - this is desired though).
913 		 */
914 
915 		isize = i_size_read(inode);
916 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
917 		if (unlikely(!isize || index > end_index)) {
918 			page_cache_release(page);
919 			goto out;
920 		}
921 
922 		/* nr is the maximum number of bytes to copy from this page */
923 		nr = PAGE_CACHE_SIZE;
924 		if (index == end_index) {
925 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
926 			if (nr <= offset) {
927 				page_cache_release(page);
928 				goto out;
929 			}
930 		}
931 		nr = nr - offset;
932 
933 		/* If users can be writing to this page using arbitrary
934 		 * virtual addresses, take care about potential aliasing
935 		 * before reading the page on the kernel side.
936 		 */
937 		if (mapping_writably_mapped(mapping))
938 			flush_dcache_page(page);
939 
940 		/*
941 		 * When a sequential read accesses a page several times,
942 		 * only mark it as accessed the first time.
943 		 */
944 		if (prev_index != index || offset != prev_offset)
945 			mark_page_accessed(page);
946 		prev_index = index;
947 
948 		/*
949 		 * Ok, we have the page, and it's up-to-date, so
950 		 * now we can copy it to user space...
951 		 *
952 		 * The actor routine returns how many bytes were actually used..
953 		 * NOTE! This may not be the same as how much of a user buffer
954 		 * we filled up (we may be padding etc), so we can only update
955 		 * "pos" here (the actor routine has to update the user buffer
956 		 * pointers and the remaining count).
957 		 */
958 		ret = actor(desc, page, offset, nr);
959 		offset += ret;
960 		index += offset >> PAGE_CACHE_SHIFT;
961 		offset &= ~PAGE_CACHE_MASK;
962 		prev_offset = offset;
963 
964 		page_cache_release(page);
965 		if (ret == nr && desc->count)
966 			continue;
967 		goto out;
968 
969 page_not_up_to_date:
970 		/* Get exclusive access to the page ... */
971 		lock_page(page);
972 
973 		/* Did it get truncated before we got the lock? */
974 		if (!page->mapping) {
975 			unlock_page(page);
976 			page_cache_release(page);
977 			continue;
978 		}
979 
980 		/* Did somebody else fill it already? */
981 		if (PageUptodate(page)) {
982 			unlock_page(page);
983 			goto page_ok;
984 		}
985 
986 readpage:
987 		/* Start the actual read. The read will unlock the page. */
988 		error = mapping->a_ops->readpage(filp, page);
989 
990 		if (unlikely(error)) {
991 			if (error == AOP_TRUNCATED_PAGE) {
992 				page_cache_release(page);
993 				goto find_page;
994 			}
995 			goto readpage_error;
996 		}
997 
998 		if (!PageUptodate(page)) {
999 			lock_page(page);
1000 			if (!PageUptodate(page)) {
1001 				if (page->mapping == NULL) {
1002 					/*
1003 					 * invalidate_inode_pages got it
1004 					 */
1005 					unlock_page(page);
1006 					page_cache_release(page);
1007 					goto find_page;
1008 				}
1009 				unlock_page(page);
1010 				error = -EIO;
1011 				shrink_readahead_size_eio(filp, ra);
1012 				goto readpage_error;
1013 			}
1014 			unlock_page(page);
1015 		}
1016 
1017 		goto page_ok;
1018 
1019 readpage_error:
1020 		/* UHHUH! A synchronous read error occurred. Report it */
1021 		desc->error = error;
1022 		page_cache_release(page);
1023 		goto out;
1024 
1025 no_cached_page:
1026 		/*
1027 		 * Ok, it wasn't cached, so we need to create a new
1028 		 * page..
1029 		 */
1030 		page = page_cache_alloc_cold(mapping);
1031 		if (!page) {
1032 			desc->error = -ENOMEM;
1033 			goto out;
1034 		}
1035 		error = add_to_page_cache_lru(page, mapping,
1036 						index, GFP_KERNEL);
1037 		if (error) {
1038 			page_cache_release(page);
1039 			if (error == -EEXIST)
1040 				goto find_page;
1041 			desc->error = error;
1042 			goto out;
1043 		}
1044 		goto readpage;
1045 	}
1046 
1047 out:
1048 	ra->prev_pos = prev_index;
1049 	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1050 	ra->prev_pos |= prev_offset;
1051 
1052 	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1053 	if (filp)
1054 		file_accessed(filp);
1055 }
1056 EXPORT_SYMBOL(do_generic_mapping_read);
1057 
1058 int file_read_actor(read_descriptor_t *desc, struct page *page,
1059 			unsigned long offset, unsigned long size)
1060 {
1061 	char *kaddr;
1062 	unsigned long left, count = desc->count;
1063 
1064 	if (size > count)
1065 		size = count;
1066 
1067 	/*
1068 	 * Faults on the destination of a read are common, so do it before
1069 	 * taking the kmap.
1070 	 */
1071 	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1072 		kaddr = kmap_atomic(page, KM_USER0);
1073 		left = __copy_to_user_inatomic(desc->arg.buf,
1074 						kaddr + offset, size);
1075 		kunmap_atomic(kaddr, KM_USER0);
1076 		if (left == 0)
1077 			goto success;
1078 	}
1079 
1080 	/* Do it the slow way */
1081 	kaddr = kmap(page);
1082 	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1083 	kunmap(page);
1084 
1085 	if (left) {
1086 		size -= left;
1087 		desc->error = -EFAULT;
1088 	}
1089 success:
1090 	desc->count = count - size;
1091 	desc->written += size;
1092 	desc->arg.buf += size;
1093 	return size;
1094 }
1095 
1096 /*
1097  * Performs necessary checks before doing a write
1098  * @iov:	io vector request
1099  * @nr_segs:	number of segments in the iovec
1100  * @count:	number of bytes to write
1101  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1102  *
1103  * Adjust number of segments and amount of bytes to write (nr_segs should be
1104  * properly initialized first). Returns appropriate error code that caller
1105  * should return or zero in case that write should be allowed.
1106  */
1107 int generic_segment_checks(const struct iovec *iov,
1108 			unsigned long *nr_segs, size_t *count, int access_flags)
1109 {
1110 	unsigned long   seg;
1111 	size_t cnt = 0;
1112 	for (seg = 0; seg < *nr_segs; seg++) {
1113 		const struct iovec *iv = &iov[seg];
1114 
1115 		/*
1116 		 * If any segment has a negative length, or the cumulative
1117 		 * length ever wraps negative then return -EINVAL.
1118 		 */
1119 		cnt += iv->iov_len;
1120 		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1121 			return -EINVAL;
1122 		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1123 			continue;
1124 		if (seg == 0)
1125 			return -EFAULT;
1126 		*nr_segs = seg;
1127 		cnt -= iv->iov_len;	/* This segment is no good */
1128 		break;
1129 	}
1130 	*count = cnt;
1131 	return 0;
1132 }
1133 EXPORT_SYMBOL(generic_segment_checks);
1134 
1135 /**
1136  * generic_file_aio_read - generic filesystem read routine
1137  * @iocb:	kernel I/O control block
1138  * @iov:	io vector request
1139  * @nr_segs:	number of segments in the iovec
1140  * @pos:	current file position
1141  *
1142  * This is the "read()" routine for all filesystems
1143  * that can use the page cache directly.
1144  */
1145 ssize_t
1146 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1147 		unsigned long nr_segs, loff_t pos)
1148 {
1149 	struct file *filp = iocb->ki_filp;
1150 	ssize_t retval;
1151 	unsigned long seg;
1152 	size_t count;
1153 	loff_t *ppos = &iocb->ki_pos;
1154 
1155 	count = 0;
1156 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1157 	if (retval)
1158 		return retval;
1159 
1160 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1161 	if (filp->f_flags & O_DIRECT) {
1162 		loff_t size;
1163 		struct address_space *mapping;
1164 		struct inode *inode;
1165 
1166 		mapping = filp->f_mapping;
1167 		inode = mapping->host;
1168 		retval = 0;
1169 		if (!count)
1170 			goto out; /* skip atime */
1171 		size = i_size_read(inode);
1172 		if (pos < size) {
1173 			retval = generic_file_direct_IO(READ, iocb,
1174 						iov, pos, nr_segs);
1175 			if (retval > 0)
1176 				*ppos = pos + retval;
1177 		}
1178 		if (likely(retval != 0)) {
1179 			file_accessed(filp);
1180 			goto out;
1181 		}
1182 	}
1183 
1184 	retval = 0;
1185 	if (count) {
1186 		for (seg = 0; seg < nr_segs; seg++) {
1187 			read_descriptor_t desc;
1188 
1189 			desc.written = 0;
1190 			desc.arg.buf = iov[seg].iov_base;
1191 			desc.count = iov[seg].iov_len;
1192 			if (desc.count == 0)
1193 				continue;
1194 			desc.error = 0;
1195 			do_generic_file_read(filp,ppos,&desc,file_read_actor);
1196 			retval += desc.written;
1197 			if (desc.error) {
1198 				retval = retval ?: desc.error;
1199 				break;
1200 			}
1201 			if (desc.count > 0)
1202 				break;
1203 		}
1204 	}
1205 out:
1206 	return retval;
1207 }
1208 EXPORT_SYMBOL(generic_file_aio_read);
1209 
1210 static ssize_t
1211 do_readahead(struct address_space *mapping, struct file *filp,
1212 	     pgoff_t index, unsigned long nr)
1213 {
1214 	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1215 		return -EINVAL;
1216 
1217 	force_page_cache_readahead(mapping, filp, index,
1218 					max_sane_readahead(nr));
1219 	return 0;
1220 }
1221 
1222 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1223 {
1224 	ssize_t ret;
1225 	struct file *file;
1226 
1227 	ret = -EBADF;
1228 	file = fget(fd);
1229 	if (file) {
1230 		if (file->f_mode & FMODE_READ) {
1231 			struct address_space *mapping = file->f_mapping;
1232 			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1233 			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1234 			unsigned long len = end - start + 1;
1235 			ret = do_readahead(mapping, file, start, len);
1236 		}
1237 		fput(file);
1238 	}
1239 	return ret;
1240 }
1241 
1242 #ifdef CONFIG_MMU
1243 /**
1244  * page_cache_read - adds requested page to the page cache if not already there
1245  * @file:	file to read
1246  * @offset:	page index
1247  *
1248  * This adds the requested page to the page cache if it isn't already there,
1249  * and schedules an I/O to read in its contents from disk.
1250  */
1251 static int fastcall page_cache_read(struct file * file, pgoff_t offset)
1252 {
1253 	struct address_space *mapping = file->f_mapping;
1254 	struct page *page;
1255 	int ret;
1256 
1257 	do {
1258 		page = page_cache_alloc_cold(mapping);
1259 		if (!page)
1260 			return -ENOMEM;
1261 
1262 		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1263 		if (ret == 0)
1264 			ret = mapping->a_ops->readpage(file, page);
1265 		else if (ret == -EEXIST)
1266 			ret = 0; /* losing race to add is OK */
1267 
1268 		page_cache_release(page);
1269 
1270 	} while (ret == AOP_TRUNCATED_PAGE);
1271 
1272 	return ret;
1273 }
1274 
1275 #define MMAP_LOTSAMISS  (100)
1276 
1277 /**
1278  * filemap_fault - read in file data for page fault handling
1279  * @vma:	vma in which the fault was taken
1280  * @vmf:	struct vm_fault containing details of the fault
1281  *
1282  * filemap_fault() is invoked via the vma operations vector for a
1283  * mapped memory region to read in file data during a page fault.
1284  *
1285  * The goto's are kind of ugly, but this streamlines the normal case of having
1286  * it in the page cache, and handles the special cases reasonably without
1287  * having a lot of duplicated code.
1288  */
1289 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1290 {
1291 	int error;
1292 	struct file *file = vma->vm_file;
1293 	struct address_space *mapping = file->f_mapping;
1294 	struct file_ra_state *ra = &file->f_ra;
1295 	struct inode *inode = mapping->host;
1296 	struct page *page;
1297 	unsigned long size;
1298 	int did_readaround = 0;
1299 	int ret = 0;
1300 
1301 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1302 	if (vmf->pgoff >= size)
1303 		return VM_FAULT_SIGBUS;
1304 
1305 	/* If we don't want any read-ahead, don't bother */
1306 	if (VM_RandomReadHint(vma))
1307 		goto no_cached_page;
1308 
1309 	/*
1310 	 * Do we have something in the page cache already?
1311 	 */
1312 retry_find:
1313 	page = find_lock_page(mapping, vmf->pgoff);
1314 	/*
1315 	 * For sequential accesses, we use the generic readahead logic.
1316 	 */
1317 	if (VM_SequentialReadHint(vma)) {
1318 		if (!page) {
1319 			page_cache_sync_readahead(mapping, ra, file,
1320 							   vmf->pgoff, 1);
1321 			page = find_lock_page(mapping, vmf->pgoff);
1322 			if (!page)
1323 				goto no_cached_page;
1324 		}
1325 		if (PageReadahead(page)) {
1326 			page_cache_async_readahead(mapping, ra, file, page,
1327 							   vmf->pgoff, 1);
1328 		}
1329 	}
1330 
1331 	if (!page) {
1332 		unsigned long ra_pages;
1333 
1334 		ra->mmap_miss++;
1335 
1336 		/*
1337 		 * Do we miss much more than hit in this file? If so,
1338 		 * stop bothering with read-ahead. It will only hurt.
1339 		 */
1340 		if (ra->mmap_miss > MMAP_LOTSAMISS)
1341 			goto no_cached_page;
1342 
1343 		/*
1344 		 * To keep the pgmajfault counter straight, we need to
1345 		 * check did_readaround, as this is an inner loop.
1346 		 */
1347 		if (!did_readaround) {
1348 			ret = VM_FAULT_MAJOR;
1349 			count_vm_event(PGMAJFAULT);
1350 		}
1351 		did_readaround = 1;
1352 		ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1353 		if (ra_pages) {
1354 			pgoff_t start = 0;
1355 
1356 			if (vmf->pgoff > ra_pages / 2)
1357 				start = vmf->pgoff - ra_pages / 2;
1358 			do_page_cache_readahead(mapping, file, start, ra_pages);
1359 		}
1360 		page = find_lock_page(mapping, vmf->pgoff);
1361 		if (!page)
1362 			goto no_cached_page;
1363 	}
1364 
1365 	if (!did_readaround)
1366 		ra->mmap_miss--;
1367 
1368 	/*
1369 	 * We have a locked page in the page cache, now we need to check
1370 	 * that it's up-to-date. If not, it is going to be due to an error.
1371 	 */
1372 	if (unlikely(!PageUptodate(page)))
1373 		goto page_not_uptodate;
1374 
1375 	/* Must recheck i_size under page lock */
1376 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1377 	if (unlikely(vmf->pgoff >= size)) {
1378 		unlock_page(page);
1379 		page_cache_release(page);
1380 		return VM_FAULT_SIGBUS;
1381 	}
1382 
1383 	/*
1384 	 * Found the page and have a reference on it.
1385 	 */
1386 	mark_page_accessed(page);
1387 	ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT;
1388 	vmf->page = page;
1389 	return ret | VM_FAULT_LOCKED;
1390 
1391 no_cached_page:
1392 	/*
1393 	 * We're only likely to ever get here if MADV_RANDOM is in
1394 	 * effect.
1395 	 */
1396 	error = page_cache_read(file, vmf->pgoff);
1397 
1398 	/*
1399 	 * The page we want has now been added to the page cache.
1400 	 * In the unlikely event that someone removed it in the
1401 	 * meantime, we'll just come back here and read it again.
1402 	 */
1403 	if (error >= 0)
1404 		goto retry_find;
1405 
1406 	/*
1407 	 * An error return from page_cache_read can result if the
1408 	 * system is low on memory, or a problem occurs while trying
1409 	 * to schedule I/O.
1410 	 */
1411 	if (error == -ENOMEM)
1412 		return VM_FAULT_OOM;
1413 	return VM_FAULT_SIGBUS;
1414 
1415 page_not_uptodate:
1416 	/* IO error path */
1417 	if (!did_readaround) {
1418 		ret = VM_FAULT_MAJOR;
1419 		count_vm_event(PGMAJFAULT);
1420 	}
1421 
1422 	/*
1423 	 * Umm, take care of errors if the page isn't up-to-date.
1424 	 * Try to re-read it _once_. We do this synchronously,
1425 	 * because there really aren't any performance issues here
1426 	 * and we need to check for errors.
1427 	 */
1428 	ClearPageError(page);
1429 	error = mapping->a_ops->readpage(file, page);
1430 	page_cache_release(page);
1431 
1432 	if (!error || error == AOP_TRUNCATED_PAGE)
1433 		goto retry_find;
1434 
1435 	/* Things didn't work out. Return zero to tell the mm layer so. */
1436 	shrink_readahead_size_eio(file, ra);
1437 	return VM_FAULT_SIGBUS;
1438 }
1439 EXPORT_SYMBOL(filemap_fault);
1440 
1441 struct vm_operations_struct generic_file_vm_ops = {
1442 	.fault		= filemap_fault,
1443 };
1444 
1445 /* This is used for a general mmap of a disk file */
1446 
1447 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1448 {
1449 	struct address_space *mapping = file->f_mapping;
1450 
1451 	if (!mapping->a_ops->readpage)
1452 		return -ENOEXEC;
1453 	file_accessed(file);
1454 	vma->vm_ops = &generic_file_vm_ops;
1455 	vma->vm_flags |= VM_CAN_NONLINEAR;
1456 	return 0;
1457 }
1458 
1459 /*
1460  * This is for filesystems which do not implement ->writepage.
1461  */
1462 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1463 {
1464 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1465 		return -EINVAL;
1466 	return generic_file_mmap(file, vma);
1467 }
1468 #else
1469 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1470 {
1471 	return -ENOSYS;
1472 }
1473 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1474 {
1475 	return -ENOSYS;
1476 }
1477 #endif /* CONFIG_MMU */
1478 
1479 EXPORT_SYMBOL(generic_file_mmap);
1480 EXPORT_SYMBOL(generic_file_readonly_mmap);
1481 
1482 static struct page *__read_cache_page(struct address_space *mapping,
1483 				pgoff_t index,
1484 				int (*filler)(void *,struct page*),
1485 				void *data)
1486 {
1487 	struct page *page;
1488 	int err;
1489 repeat:
1490 	page = find_get_page(mapping, index);
1491 	if (!page) {
1492 		page = page_cache_alloc_cold(mapping);
1493 		if (!page)
1494 			return ERR_PTR(-ENOMEM);
1495 		err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1496 		if (unlikely(err)) {
1497 			page_cache_release(page);
1498 			if (err == -EEXIST)
1499 				goto repeat;
1500 			/* Presumably ENOMEM for radix tree node */
1501 			return ERR_PTR(err);
1502 		}
1503 		err = filler(data, page);
1504 		if (err < 0) {
1505 			page_cache_release(page);
1506 			page = ERR_PTR(err);
1507 		}
1508 	}
1509 	return page;
1510 }
1511 
1512 /*
1513  * Same as read_cache_page, but don't wait for page to become unlocked
1514  * after submitting it to the filler.
1515  */
1516 struct page *read_cache_page_async(struct address_space *mapping,
1517 				pgoff_t index,
1518 				int (*filler)(void *,struct page*),
1519 				void *data)
1520 {
1521 	struct page *page;
1522 	int err;
1523 
1524 retry:
1525 	page = __read_cache_page(mapping, index, filler, data);
1526 	if (IS_ERR(page))
1527 		return page;
1528 	if (PageUptodate(page))
1529 		goto out;
1530 
1531 	lock_page(page);
1532 	if (!page->mapping) {
1533 		unlock_page(page);
1534 		page_cache_release(page);
1535 		goto retry;
1536 	}
1537 	if (PageUptodate(page)) {
1538 		unlock_page(page);
1539 		goto out;
1540 	}
1541 	err = filler(data, page);
1542 	if (err < 0) {
1543 		page_cache_release(page);
1544 		return ERR_PTR(err);
1545 	}
1546 out:
1547 	mark_page_accessed(page);
1548 	return page;
1549 }
1550 EXPORT_SYMBOL(read_cache_page_async);
1551 
1552 /**
1553  * read_cache_page - read into page cache, fill it if needed
1554  * @mapping:	the page's address_space
1555  * @index:	the page index
1556  * @filler:	function to perform the read
1557  * @data:	destination for read data
1558  *
1559  * Read into the page cache. If a page already exists, and PageUptodate() is
1560  * not set, try to fill the page then wait for it to become unlocked.
1561  *
1562  * If the page does not get brought uptodate, return -EIO.
1563  */
1564 struct page *read_cache_page(struct address_space *mapping,
1565 				pgoff_t index,
1566 				int (*filler)(void *,struct page*),
1567 				void *data)
1568 {
1569 	struct page *page;
1570 
1571 	page = read_cache_page_async(mapping, index, filler, data);
1572 	if (IS_ERR(page))
1573 		goto out;
1574 	wait_on_page_locked(page);
1575 	if (!PageUptodate(page)) {
1576 		page_cache_release(page);
1577 		page = ERR_PTR(-EIO);
1578 	}
1579  out:
1580 	return page;
1581 }
1582 EXPORT_SYMBOL(read_cache_page);
1583 
1584 /*
1585  * The logic we want is
1586  *
1587  *	if suid or (sgid and xgrp)
1588  *		remove privs
1589  */
1590 int should_remove_suid(struct dentry *dentry)
1591 {
1592 	mode_t mode = dentry->d_inode->i_mode;
1593 	int kill = 0;
1594 
1595 	/* suid always must be killed */
1596 	if (unlikely(mode & S_ISUID))
1597 		kill = ATTR_KILL_SUID;
1598 
1599 	/*
1600 	 * sgid without any exec bits is just a mandatory locking mark; leave
1601 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1602 	 */
1603 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1604 		kill |= ATTR_KILL_SGID;
1605 
1606 	if (unlikely(kill && !capable(CAP_FSETID)))
1607 		return kill;
1608 
1609 	return 0;
1610 }
1611 EXPORT_SYMBOL(should_remove_suid);
1612 
1613 int __remove_suid(struct dentry *dentry, int kill)
1614 {
1615 	struct iattr newattrs;
1616 
1617 	newattrs.ia_valid = ATTR_FORCE | kill;
1618 	return notify_change(dentry, &newattrs);
1619 }
1620 
1621 int remove_suid(struct dentry *dentry)
1622 {
1623 	int killsuid = should_remove_suid(dentry);
1624 	int killpriv = security_inode_need_killpriv(dentry);
1625 	int error = 0;
1626 
1627 	if (killpriv < 0)
1628 		return killpriv;
1629 	if (killpriv)
1630 		error = security_inode_killpriv(dentry);
1631 	if (!error && killsuid)
1632 		error = __remove_suid(dentry, killsuid);
1633 
1634 	return error;
1635 }
1636 EXPORT_SYMBOL(remove_suid);
1637 
1638 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1639 			const struct iovec *iov, size_t base, size_t bytes)
1640 {
1641 	size_t copied = 0, left = 0;
1642 
1643 	while (bytes) {
1644 		char __user *buf = iov->iov_base + base;
1645 		int copy = min(bytes, iov->iov_len - base);
1646 
1647 		base = 0;
1648 		left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1649 		copied += copy;
1650 		bytes -= copy;
1651 		vaddr += copy;
1652 		iov++;
1653 
1654 		if (unlikely(left))
1655 			break;
1656 	}
1657 	return copied - left;
1658 }
1659 
1660 /*
1661  * Copy as much as we can into the page and return the number of bytes which
1662  * were sucessfully copied.  If a fault is encountered then return the number of
1663  * bytes which were copied.
1664  */
1665 size_t iov_iter_copy_from_user_atomic(struct page *page,
1666 		struct iov_iter *i, unsigned long offset, size_t bytes)
1667 {
1668 	char *kaddr;
1669 	size_t copied;
1670 
1671 	BUG_ON(!in_atomic());
1672 	kaddr = kmap_atomic(page, KM_USER0);
1673 	if (likely(i->nr_segs == 1)) {
1674 		int left;
1675 		char __user *buf = i->iov->iov_base + i->iov_offset;
1676 		left = __copy_from_user_inatomic_nocache(kaddr + offset,
1677 							buf, bytes);
1678 		copied = bytes - left;
1679 	} else {
1680 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1681 						i->iov, i->iov_offset, bytes);
1682 	}
1683 	kunmap_atomic(kaddr, KM_USER0);
1684 
1685 	return copied;
1686 }
1687 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1688 
1689 /*
1690  * This has the same sideeffects and return value as
1691  * iov_iter_copy_from_user_atomic().
1692  * The difference is that it attempts to resolve faults.
1693  * Page must not be locked.
1694  */
1695 size_t iov_iter_copy_from_user(struct page *page,
1696 		struct iov_iter *i, unsigned long offset, size_t bytes)
1697 {
1698 	char *kaddr;
1699 	size_t copied;
1700 
1701 	kaddr = kmap(page);
1702 	if (likely(i->nr_segs == 1)) {
1703 		int left;
1704 		char __user *buf = i->iov->iov_base + i->iov_offset;
1705 		left = __copy_from_user_nocache(kaddr + offset, buf, bytes);
1706 		copied = bytes - left;
1707 	} else {
1708 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1709 						i->iov, i->iov_offset, bytes);
1710 	}
1711 	kunmap(page);
1712 	return copied;
1713 }
1714 EXPORT_SYMBOL(iov_iter_copy_from_user);
1715 
1716 static void __iov_iter_advance_iov(struct iov_iter *i, size_t bytes)
1717 {
1718 	if (likely(i->nr_segs == 1)) {
1719 		i->iov_offset += bytes;
1720 	} else {
1721 		const struct iovec *iov = i->iov;
1722 		size_t base = i->iov_offset;
1723 
1724 		while (bytes) {
1725 			int copy = min(bytes, iov->iov_len - base);
1726 
1727 			bytes -= copy;
1728 			base += copy;
1729 			if (iov->iov_len == base) {
1730 				iov++;
1731 				base = 0;
1732 			}
1733 		}
1734 		i->iov = iov;
1735 		i->iov_offset = base;
1736 	}
1737 }
1738 
1739 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1740 {
1741 	BUG_ON(i->count < bytes);
1742 
1743 	__iov_iter_advance_iov(i, bytes);
1744 	i->count -= bytes;
1745 }
1746 EXPORT_SYMBOL(iov_iter_advance);
1747 
1748 /*
1749  * Fault in the first iovec of the given iov_iter, to a maximum length
1750  * of bytes. Returns 0 on success, or non-zero if the memory could not be
1751  * accessed (ie. because it is an invalid address).
1752  *
1753  * writev-intensive code may want this to prefault several iovecs -- that
1754  * would be possible (callers must not rely on the fact that _only_ the
1755  * first iovec will be faulted with the current implementation).
1756  */
1757 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1758 {
1759 	char __user *buf = i->iov->iov_base + i->iov_offset;
1760 	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1761 	return fault_in_pages_readable(buf, bytes);
1762 }
1763 EXPORT_SYMBOL(iov_iter_fault_in_readable);
1764 
1765 /*
1766  * Return the count of just the current iov_iter segment.
1767  */
1768 size_t iov_iter_single_seg_count(struct iov_iter *i)
1769 {
1770 	const struct iovec *iov = i->iov;
1771 	if (i->nr_segs == 1)
1772 		return i->count;
1773 	else
1774 		return min(i->count, iov->iov_len - i->iov_offset);
1775 }
1776 EXPORT_SYMBOL(iov_iter_single_seg_count);
1777 
1778 /*
1779  * Performs necessary checks before doing a write
1780  *
1781  * Can adjust writing position or amount of bytes to write.
1782  * Returns appropriate error code that caller should return or
1783  * zero in case that write should be allowed.
1784  */
1785 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1786 {
1787 	struct inode *inode = file->f_mapping->host;
1788 	unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1789 
1790         if (unlikely(*pos < 0))
1791                 return -EINVAL;
1792 
1793 	if (!isblk) {
1794 		/* FIXME: this is for backwards compatibility with 2.4 */
1795 		if (file->f_flags & O_APPEND)
1796                         *pos = i_size_read(inode);
1797 
1798 		if (limit != RLIM_INFINITY) {
1799 			if (*pos >= limit) {
1800 				send_sig(SIGXFSZ, current, 0);
1801 				return -EFBIG;
1802 			}
1803 			if (*count > limit - (typeof(limit))*pos) {
1804 				*count = limit - (typeof(limit))*pos;
1805 			}
1806 		}
1807 	}
1808 
1809 	/*
1810 	 * LFS rule
1811 	 */
1812 	if (unlikely(*pos + *count > MAX_NON_LFS &&
1813 				!(file->f_flags & O_LARGEFILE))) {
1814 		if (*pos >= MAX_NON_LFS) {
1815 			return -EFBIG;
1816 		}
1817 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1818 			*count = MAX_NON_LFS - (unsigned long)*pos;
1819 		}
1820 	}
1821 
1822 	/*
1823 	 * Are we about to exceed the fs block limit ?
1824 	 *
1825 	 * If we have written data it becomes a short write.  If we have
1826 	 * exceeded without writing data we send a signal and return EFBIG.
1827 	 * Linus frestrict idea will clean these up nicely..
1828 	 */
1829 	if (likely(!isblk)) {
1830 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1831 			if (*count || *pos > inode->i_sb->s_maxbytes) {
1832 				return -EFBIG;
1833 			}
1834 			/* zero-length writes at ->s_maxbytes are OK */
1835 		}
1836 
1837 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1838 			*count = inode->i_sb->s_maxbytes - *pos;
1839 	} else {
1840 #ifdef CONFIG_BLOCK
1841 		loff_t isize;
1842 		if (bdev_read_only(I_BDEV(inode)))
1843 			return -EPERM;
1844 		isize = i_size_read(inode);
1845 		if (*pos >= isize) {
1846 			if (*count || *pos > isize)
1847 				return -ENOSPC;
1848 		}
1849 
1850 		if (*pos + *count > isize)
1851 			*count = isize - *pos;
1852 #else
1853 		return -EPERM;
1854 #endif
1855 	}
1856 	return 0;
1857 }
1858 EXPORT_SYMBOL(generic_write_checks);
1859 
1860 int pagecache_write_begin(struct file *file, struct address_space *mapping,
1861 				loff_t pos, unsigned len, unsigned flags,
1862 				struct page **pagep, void **fsdata)
1863 {
1864 	const struct address_space_operations *aops = mapping->a_ops;
1865 
1866 	if (aops->write_begin) {
1867 		return aops->write_begin(file, mapping, pos, len, flags,
1868 							pagep, fsdata);
1869 	} else {
1870 		int ret;
1871 		pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1872 		unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1873 		struct inode *inode = mapping->host;
1874 		struct page *page;
1875 again:
1876 		page = __grab_cache_page(mapping, index);
1877 		*pagep = page;
1878 		if (!page)
1879 			return -ENOMEM;
1880 
1881 		if (flags & AOP_FLAG_UNINTERRUPTIBLE && !PageUptodate(page)) {
1882 			/*
1883 			 * There is no way to resolve a short write situation
1884 			 * for a !Uptodate page (except by double copying in
1885 			 * the caller done by generic_perform_write_2copy).
1886 			 *
1887 			 * Instead, we have to bring it uptodate here.
1888 			 */
1889 			ret = aops->readpage(file, page);
1890 			page_cache_release(page);
1891 			if (ret) {
1892 				if (ret == AOP_TRUNCATED_PAGE)
1893 					goto again;
1894 				return ret;
1895 			}
1896 			goto again;
1897 		}
1898 
1899 		ret = aops->prepare_write(file, page, offset, offset+len);
1900 		if (ret) {
1901 			unlock_page(page);
1902 			page_cache_release(page);
1903 			if (pos + len > inode->i_size)
1904 				vmtruncate(inode, inode->i_size);
1905 		}
1906 		return ret;
1907 	}
1908 }
1909 EXPORT_SYMBOL(pagecache_write_begin);
1910 
1911 int pagecache_write_end(struct file *file, struct address_space *mapping,
1912 				loff_t pos, unsigned len, unsigned copied,
1913 				struct page *page, void *fsdata)
1914 {
1915 	const struct address_space_operations *aops = mapping->a_ops;
1916 	int ret;
1917 
1918 	if (aops->write_end) {
1919 		mark_page_accessed(page);
1920 		ret = aops->write_end(file, mapping, pos, len, copied,
1921 							page, fsdata);
1922 	} else {
1923 		unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1924 		struct inode *inode = mapping->host;
1925 
1926 		flush_dcache_page(page);
1927 		ret = aops->commit_write(file, page, offset, offset+len);
1928 		unlock_page(page);
1929 		mark_page_accessed(page);
1930 		page_cache_release(page);
1931 
1932 		if (ret < 0) {
1933 			if (pos + len > inode->i_size)
1934 				vmtruncate(inode, inode->i_size);
1935 		} else if (ret > 0)
1936 			ret = min_t(size_t, copied, ret);
1937 		else
1938 			ret = copied;
1939 	}
1940 
1941 	return ret;
1942 }
1943 EXPORT_SYMBOL(pagecache_write_end);
1944 
1945 ssize_t
1946 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1947 		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
1948 		size_t count, size_t ocount)
1949 {
1950 	struct file	*file = iocb->ki_filp;
1951 	struct address_space *mapping = file->f_mapping;
1952 	struct inode	*inode = mapping->host;
1953 	ssize_t		written;
1954 
1955 	if (count != ocount)
1956 		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
1957 
1958 	written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
1959 	if (written > 0) {
1960 		loff_t end = pos + written;
1961 		if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
1962 			i_size_write(inode,  end);
1963 			mark_inode_dirty(inode);
1964 		}
1965 		*ppos = end;
1966 	}
1967 
1968 	/*
1969 	 * Sync the fs metadata but not the minor inode changes and
1970 	 * of course not the data as we did direct DMA for the IO.
1971 	 * i_mutex is held, which protects generic_osync_inode() from
1972 	 * livelocking.  AIO O_DIRECT ops attempt to sync metadata here.
1973 	 */
1974 	if ((written >= 0 || written == -EIOCBQUEUED) &&
1975 	    ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
1976 		int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
1977 		if (err < 0)
1978 			written = err;
1979 	}
1980 	return written;
1981 }
1982 EXPORT_SYMBOL(generic_file_direct_write);
1983 
1984 /*
1985  * Find or create a page at the given pagecache position. Return the locked
1986  * page. This function is specifically for buffered writes.
1987  */
1988 struct page *__grab_cache_page(struct address_space *mapping, pgoff_t index)
1989 {
1990 	int status;
1991 	struct page *page;
1992 repeat:
1993 	page = find_lock_page(mapping, index);
1994 	if (likely(page))
1995 		return page;
1996 
1997 	page = page_cache_alloc(mapping);
1998 	if (!page)
1999 		return NULL;
2000 	status = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
2001 	if (unlikely(status)) {
2002 		page_cache_release(page);
2003 		if (status == -EEXIST)
2004 			goto repeat;
2005 		return NULL;
2006 	}
2007 	return page;
2008 }
2009 EXPORT_SYMBOL(__grab_cache_page);
2010 
2011 static ssize_t generic_perform_write_2copy(struct file *file,
2012 				struct iov_iter *i, loff_t pos)
2013 {
2014 	struct address_space *mapping = file->f_mapping;
2015 	const struct address_space_operations *a_ops = mapping->a_ops;
2016 	struct inode *inode = mapping->host;
2017 	long status = 0;
2018 	ssize_t written = 0;
2019 
2020 	do {
2021 		struct page *src_page;
2022 		struct page *page;
2023 		pgoff_t index;		/* Pagecache index for current page */
2024 		unsigned long offset;	/* Offset into pagecache page */
2025 		unsigned long bytes;	/* Bytes to write to page */
2026 		size_t copied;		/* Bytes copied from user */
2027 
2028 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2029 		index = pos >> PAGE_CACHE_SHIFT;
2030 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2031 						iov_iter_count(i));
2032 
2033 		/*
2034 		 * a non-NULL src_page indicates that we're doing the
2035 		 * copy via get_user_pages and kmap.
2036 		 */
2037 		src_page = NULL;
2038 
2039 		/*
2040 		 * Bring in the user page that we will copy from _first_.
2041 		 * Otherwise there's a nasty deadlock on copying from the
2042 		 * same page as we're writing to, without it being marked
2043 		 * up-to-date.
2044 		 *
2045 		 * Not only is this an optimisation, but it is also required
2046 		 * to check that the address is actually valid, when atomic
2047 		 * usercopies are used, below.
2048 		 */
2049 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2050 			status = -EFAULT;
2051 			break;
2052 		}
2053 
2054 		page = __grab_cache_page(mapping, index);
2055 		if (!page) {
2056 			status = -ENOMEM;
2057 			break;
2058 		}
2059 
2060 		/*
2061 		 * non-uptodate pages cannot cope with short copies, and we
2062 		 * cannot take a pagefault with the destination page locked.
2063 		 * So pin the source page to copy it.
2064 		 */
2065 		if (!PageUptodate(page) && !segment_eq(get_fs(), KERNEL_DS)) {
2066 			unlock_page(page);
2067 
2068 			src_page = alloc_page(GFP_KERNEL);
2069 			if (!src_page) {
2070 				page_cache_release(page);
2071 				status = -ENOMEM;
2072 				break;
2073 			}
2074 
2075 			/*
2076 			 * Cannot get_user_pages with a page locked for the
2077 			 * same reason as we can't take a page fault with a
2078 			 * page locked (as explained below).
2079 			 */
2080 			copied = iov_iter_copy_from_user(src_page, i,
2081 								offset, bytes);
2082 			if (unlikely(copied == 0)) {
2083 				status = -EFAULT;
2084 				page_cache_release(page);
2085 				page_cache_release(src_page);
2086 				break;
2087 			}
2088 			bytes = copied;
2089 
2090 			lock_page(page);
2091 			/*
2092 			 * Can't handle the page going uptodate here, because
2093 			 * that means we would use non-atomic usercopies, which
2094 			 * zero out the tail of the page, which can cause
2095 			 * zeroes to become transiently visible. We could just
2096 			 * use a non-zeroing copy, but the APIs aren't too
2097 			 * consistent.
2098 			 */
2099 			if (unlikely(!page->mapping || PageUptodate(page))) {
2100 				unlock_page(page);
2101 				page_cache_release(page);
2102 				page_cache_release(src_page);
2103 				continue;
2104 			}
2105 		}
2106 
2107 		status = a_ops->prepare_write(file, page, offset, offset+bytes);
2108 		if (unlikely(status))
2109 			goto fs_write_aop_error;
2110 
2111 		if (!src_page) {
2112 			/*
2113 			 * Must not enter the pagefault handler here, because
2114 			 * we hold the page lock, so we might recursively
2115 			 * deadlock on the same lock, or get an ABBA deadlock
2116 			 * against a different lock, or against the mmap_sem
2117 			 * (which nests outside the page lock).  So increment
2118 			 * preempt count, and use _atomic usercopies.
2119 			 *
2120 			 * The page is uptodate so we are OK to encounter a
2121 			 * short copy: if unmodified parts of the page are
2122 			 * marked dirty and written out to disk, it doesn't
2123 			 * really matter.
2124 			 */
2125 			pagefault_disable();
2126 			copied = iov_iter_copy_from_user_atomic(page, i,
2127 								offset, bytes);
2128 			pagefault_enable();
2129 		} else {
2130 			void *src, *dst;
2131 			src = kmap_atomic(src_page, KM_USER0);
2132 			dst = kmap_atomic(page, KM_USER1);
2133 			memcpy(dst + offset, src + offset, bytes);
2134 			kunmap_atomic(dst, KM_USER1);
2135 			kunmap_atomic(src, KM_USER0);
2136 			copied = bytes;
2137 		}
2138 		flush_dcache_page(page);
2139 
2140 		status = a_ops->commit_write(file, page, offset, offset+bytes);
2141 		if (unlikely(status < 0))
2142 			goto fs_write_aop_error;
2143 		if (unlikely(status > 0)) /* filesystem did partial write */
2144 			copied = min_t(size_t, copied, status);
2145 
2146 		unlock_page(page);
2147 		mark_page_accessed(page);
2148 		page_cache_release(page);
2149 		if (src_page)
2150 			page_cache_release(src_page);
2151 
2152 		iov_iter_advance(i, copied);
2153 		pos += copied;
2154 		written += copied;
2155 
2156 		balance_dirty_pages_ratelimited(mapping);
2157 		cond_resched();
2158 		continue;
2159 
2160 fs_write_aop_error:
2161 		unlock_page(page);
2162 		page_cache_release(page);
2163 		if (src_page)
2164 			page_cache_release(src_page);
2165 
2166 		/*
2167 		 * prepare_write() may have instantiated a few blocks
2168 		 * outside i_size.  Trim these off again. Don't need
2169 		 * i_size_read because we hold i_mutex.
2170 		 */
2171 		if (pos + bytes > inode->i_size)
2172 			vmtruncate(inode, inode->i_size);
2173 		break;
2174 	} while (iov_iter_count(i));
2175 
2176 	return written ? written : status;
2177 }
2178 
2179 static ssize_t generic_perform_write(struct file *file,
2180 				struct iov_iter *i, loff_t pos)
2181 {
2182 	struct address_space *mapping = file->f_mapping;
2183 	const struct address_space_operations *a_ops = mapping->a_ops;
2184 	long status = 0;
2185 	ssize_t written = 0;
2186 	unsigned int flags = 0;
2187 
2188 	/*
2189 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2190 	 */
2191 	if (segment_eq(get_fs(), KERNEL_DS))
2192 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2193 
2194 	do {
2195 		struct page *page;
2196 		pgoff_t index;		/* Pagecache index for current page */
2197 		unsigned long offset;	/* Offset into pagecache page */
2198 		unsigned long bytes;	/* Bytes to write to page */
2199 		size_t copied;		/* Bytes copied from user */
2200 		void *fsdata;
2201 
2202 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2203 		index = pos >> PAGE_CACHE_SHIFT;
2204 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2205 						iov_iter_count(i));
2206 
2207 again:
2208 
2209 		/*
2210 		 * Bring in the user page that we will copy from _first_.
2211 		 * Otherwise there's a nasty deadlock on copying from the
2212 		 * same page as we're writing to, without it being marked
2213 		 * up-to-date.
2214 		 *
2215 		 * Not only is this an optimisation, but it is also required
2216 		 * to check that the address is actually valid, when atomic
2217 		 * usercopies are used, below.
2218 		 */
2219 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2220 			status = -EFAULT;
2221 			break;
2222 		}
2223 
2224 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2225 						&page, &fsdata);
2226 		if (unlikely(status))
2227 			break;
2228 
2229 		pagefault_disable();
2230 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2231 		pagefault_enable();
2232 		flush_dcache_page(page);
2233 
2234 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2235 						page, fsdata);
2236 		if (unlikely(status < 0))
2237 			break;
2238 		copied = status;
2239 
2240 		cond_resched();
2241 
2242 		if (unlikely(copied == 0)) {
2243 			/*
2244 			 * If we were unable to copy any data at all, we must
2245 			 * fall back to a single segment length write.
2246 			 *
2247 			 * If we didn't fallback here, we could livelock
2248 			 * because not all segments in the iov can be copied at
2249 			 * once without a pagefault.
2250 			 */
2251 			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2252 						iov_iter_single_seg_count(i));
2253 			goto again;
2254 		}
2255 		iov_iter_advance(i, copied);
2256 		pos += copied;
2257 		written += copied;
2258 
2259 		balance_dirty_pages_ratelimited(mapping);
2260 
2261 	} while (iov_iter_count(i));
2262 
2263 	return written ? written : status;
2264 }
2265 
2266 ssize_t
2267 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2268 		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2269 		size_t count, ssize_t written)
2270 {
2271 	struct file *file = iocb->ki_filp;
2272 	struct address_space *mapping = file->f_mapping;
2273 	const struct address_space_operations *a_ops = mapping->a_ops;
2274 	struct inode *inode = mapping->host;
2275 	ssize_t status;
2276 	struct iov_iter i;
2277 
2278 	iov_iter_init(&i, iov, nr_segs, count, written);
2279 	if (a_ops->write_begin)
2280 		status = generic_perform_write(file, &i, pos);
2281 	else
2282 		status = generic_perform_write_2copy(file, &i, pos);
2283 
2284 	if (likely(status >= 0)) {
2285 		written += status;
2286 		*ppos = pos + status;
2287 
2288 		/*
2289 		 * For now, when the user asks for O_SYNC, we'll actually give
2290 		 * O_DSYNC
2291 		 */
2292 		if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2293 			if (!a_ops->writepage || !is_sync_kiocb(iocb))
2294 				status = generic_osync_inode(inode, mapping,
2295 						OSYNC_METADATA|OSYNC_DATA);
2296 		}
2297   	}
2298 
2299 	/*
2300 	 * If we get here for O_DIRECT writes then we must have fallen through
2301 	 * to buffered writes (block instantiation inside i_size).  So we sync
2302 	 * the file data here, to try to honour O_DIRECT expectations.
2303 	 */
2304 	if (unlikely(file->f_flags & O_DIRECT) && written)
2305 		status = filemap_write_and_wait(mapping);
2306 
2307 	return written ? written : status;
2308 }
2309 EXPORT_SYMBOL(generic_file_buffered_write);
2310 
2311 static ssize_t
2312 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2313 				unsigned long nr_segs, loff_t *ppos)
2314 {
2315 	struct file *file = iocb->ki_filp;
2316 	struct address_space * mapping = file->f_mapping;
2317 	size_t ocount;		/* original count */
2318 	size_t count;		/* after file limit checks */
2319 	struct inode 	*inode = mapping->host;
2320 	loff_t		pos;
2321 	ssize_t		written;
2322 	ssize_t		err;
2323 
2324 	ocount = 0;
2325 	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2326 	if (err)
2327 		return err;
2328 
2329 	count = ocount;
2330 	pos = *ppos;
2331 
2332 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2333 
2334 	/* We can write back this queue in page reclaim */
2335 	current->backing_dev_info = mapping->backing_dev_info;
2336 	written = 0;
2337 
2338 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2339 	if (err)
2340 		goto out;
2341 
2342 	if (count == 0)
2343 		goto out;
2344 
2345 	err = remove_suid(file->f_path.dentry);
2346 	if (err)
2347 		goto out;
2348 
2349 	file_update_time(file);
2350 
2351 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2352 	if (unlikely(file->f_flags & O_DIRECT)) {
2353 		loff_t endbyte;
2354 		ssize_t written_buffered;
2355 
2356 		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2357 							ppos, count, ocount);
2358 		if (written < 0 || written == count)
2359 			goto out;
2360 		/*
2361 		 * direct-io write to a hole: fall through to buffered I/O
2362 		 * for completing the rest of the request.
2363 		 */
2364 		pos += written;
2365 		count -= written;
2366 		written_buffered = generic_file_buffered_write(iocb, iov,
2367 						nr_segs, pos, ppos, count,
2368 						written);
2369 		/*
2370 		 * If generic_file_buffered_write() retuned a synchronous error
2371 		 * then we want to return the number of bytes which were
2372 		 * direct-written, or the error code if that was zero.  Note
2373 		 * that this differs from normal direct-io semantics, which
2374 		 * will return -EFOO even if some bytes were written.
2375 		 */
2376 		if (written_buffered < 0) {
2377 			err = written_buffered;
2378 			goto out;
2379 		}
2380 
2381 		/*
2382 		 * We need to ensure that the page cache pages are written to
2383 		 * disk and invalidated to preserve the expected O_DIRECT
2384 		 * semantics.
2385 		 */
2386 		endbyte = pos + written_buffered - written - 1;
2387 		err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2388 					    SYNC_FILE_RANGE_WAIT_BEFORE|
2389 					    SYNC_FILE_RANGE_WRITE|
2390 					    SYNC_FILE_RANGE_WAIT_AFTER);
2391 		if (err == 0) {
2392 			written = written_buffered;
2393 			invalidate_mapping_pages(mapping,
2394 						 pos >> PAGE_CACHE_SHIFT,
2395 						 endbyte >> PAGE_CACHE_SHIFT);
2396 		} else {
2397 			/*
2398 			 * We don't know how much we wrote, so just return
2399 			 * the number of bytes which were direct-written
2400 			 */
2401 		}
2402 	} else {
2403 		written = generic_file_buffered_write(iocb, iov, nr_segs,
2404 				pos, ppos, count, written);
2405 	}
2406 out:
2407 	current->backing_dev_info = NULL;
2408 	return written ? written : err;
2409 }
2410 
2411 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2412 		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2413 {
2414 	struct file *file = iocb->ki_filp;
2415 	struct address_space *mapping = file->f_mapping;
2416 	struct inode *inode = mapping->host;
2417 	ssize_t ret;
2418 
2419 	BUG_ON(iocb->ki_pos != pos);
2420 
2421 	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2422 			&iocb->ki_pos);
2423 
2424 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2425 		ssize_t err;
2426 
2427 		err = sync_page_range_nolock(inode, mapping, pos, ret);
2428 		if (err < 0)
2429 			ret = err;
2430 	}
2431 	return ret;
2432 }
2433 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2434 
2435 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2436 		unsigned long nr_segs, loff_t pos)
2437 {
2438 	struct file *file = iocb->ki_filp;
2439 	struct address_space *mapping = file->f_mapping;
2440 	struct inode *inode = mapping->host;
2441 	ssize_t ret;
2442 
2443 	BUG_ON(iocb->ki_pos != pos);
2444 
2445 	mutex_lock(&inode->i_mutex);
2446 	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2447 			&iocb->ki_pos);
2448 	mutex_unlock(&inode->i_mutex);
2449 
2450 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2451 		ssize_t err;
2452 
2453 		err = sync_page_range(inode, mapping, pos, ret);
2454 		if (err < 0)
2455 			ret = err;
2456 	}
2457 	return ret;
2458 }
2459 EXPORT_SYMBOL(generic_file_aio_write);
2460 
2461 /*
2462  * Called under i_mutex for writes to S_ISREG files.   Returns -EIO if something
2463  * went wrong during pagecache shootdown.
2464  */
2465 static ssize_t
2466 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2467 	loff_t offset, unsigned long nr_segs)
2468 {
2469 	struct file *file = iocb->ki_filp;
2470 	struct address_space *mapping = file->f_mapping;
2471 	ssize_t retval;
2472 	size_t write_len;
2473 	pgoff_t end = 0; /* silence gcc */
2474 
2475 	/*
2476 	 * If it's a write, unmap all mmappings of the file up-front.  This
2477 	 * will cause any pte dirty bits to be propagated into the pageframes
2478 	 * for the subsequent filemap_write_and_wait().
2479 	 */
2480 	if (rw == WRITE) {
2481 		write_len = iov_length(iov, nr_segs);
2482 		end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT;
2483 	       	if (mapping_mapped(mapping))
2484 			unmap_mapping_range(mapping, offset, write_len, 0);
2485 	}
2486 
2487 	retval = filemap_write_and_wait(mapping);
2488 	if (retval)
2489 		goto out;
2490 
2491 	/*
2492 	 * After a write we want buffered reads to be sure to go to disk to get
2493 	 * the new data.  We invalidate clean cached page from the region we're
2494 	 * about to write.  We do this *before* the write so that we can return
2495 	 * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2496 	 */
2497 	if (rw == WRITE && mapping->nrpages) {
2498 		retval = invalidate_inode_pages2_range(mapping,
2499 					offset >> PAGE_CACHE_SHIFT, end);
2500 		if (retval)
2501 			goto out;
2502 	}
2503 
2504 	retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs);
2505 
2506 	/*
2507 	 * Finally, try again to invalidate clean pages which might have been
2508 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2509 	 * if the source of the write was an mmap'ed region of the file
2510 	 * we're writing.  Either one is a pretty crazy thing to do,
2511 	 * so we don't support it 100%.  If this invalidation
2512 	 * fails, tough, the write still worked...
2513 	 */
2514 	if (rw == WRITE && mapping->nrpages) {
2515 		invalidate_inode_pages2_range(mapping, offset >> PAGE_CACHE_SHIFT, end);
2516 	}
2517 out:
2518 	return retval;
2519 }
2520 
2521 /**
2522  * try_to_release_page() - release old fs-specific metadata on a page
2523  *
2524  * @page: the page which the kernel is trying to free
2525  * @gfp_mask: memory allocation flags (and I/O mode)
2526  *
2527  * The address_space is to try to release any data against the page
2528  * (presumably at page->private).  If the release was successful, return `1'.
2529  * Otherwise return zero.
2530  *
2531  * The @gfp_mask argument specifies whether I/O may be performed to release
2532  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2533  *
2534  * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2535  */
2536 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2537 {
2538 	struct address_space * const mapping = page->mapping;
2539 
2540 	BUG_ON(!PageLocked(page));
2541 	if (PageWriteback(page))
2542 		return 0;
2543 
2544 	if (mapping && mapping->a_ops->releasepage)
2545 		return mapping->a_ops->releasepage(page, gfp_mask);
2546 	return try_to_free_buffers(page);
2547 }
2548 
2549 EXPORT_SYMBOL(try_to_release_page);
2550