xref: /linux/mm/filemap.c (revision 96532151ff3567154cac92983b9edc3138fa097c)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/cpuset.h>
33 #include "filemap.h"
34 #include "internal.h"
35 
36 /*
37  * FIXME: remove all knowledge of the buffer layer from the core VM
38  */
39 #include <linux/buffer_head.h> /* for generic_osync_inode */
40 
41 #include <asm/mman.h>
42 
43 static ssize_t
44 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
45 	loff_t offset, unsigned long nr_segs);
46 
47 /*
48  * Shared mappings implemented 30.11.1994. It's not fully working yet,
49  * though.
50  *
51  * Shared mappings now work. 15.8.1995  Bruno.
52  *
53  * finished 'unifying' the page and buffer cache and SMP-threaded the
54  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55  *
56  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
57  */
58 
59 /*
60  * Lock ordering:
61  *
62  *  ->i_mmap_lock		(vmtruncate)
63  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
64  *      ->swap_lock		(exclusive_swap_page, others)
65  *        ->mapping->tree_lock
66  *
67  *  ->i_mutex
68  *    ->i_mmap_lock		(truncate->unmap_mapping_range)
69  *
70  *  ->mmap_sem
71  *    ->i_mmap_lock
72  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
73  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
74  *
75  *  ->mmap_sem
76  *    ->lock_page		(access_process_vm)
77  *
78  *  ->i_mutex			(generic_file_buffered_write)
79  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
80  *
81  *  ->i_mutex
82  *    ->i_alloc_sem             (various)
83  *
84  *  ->inode_lock
85  *    ->sb_lock			(fs/fs-writeback.c)
86  *    ->mapping->tree_lock	(__sync_single_inode)
87  *
88  *  ->i_mmap_lock
89  *    ->anon_vma.lock		(vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock		(try_to_unmap_one)
96  *    ->private_lock		(try_to_unmap_one)
97  *    ->tree_lock		(try_to_unmap_one)
98  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
99  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
100  *    ->private_lock		(page_remove_rmap->set_page_dirty)
101  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
102  *    ->inode_lock		(page_remove_rmap->set_page_dirty)
103  *    ->inode_lock		(zap_pte_range->set_page_dirty)
104  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
105  *
106  *  ->task->proc_lock
107  *    ->dcache_lock		(proc_pid_lookup)
108  */
109 
110 /*
111  * Remove a page from the page cache and free it. Caller has to make
112  * sure the page is locked and that nobody else uses it - or that usage
113  * is safe.  The caller must hold a write_lock on the mapping's tree_lock.
114  */
115 void __remove_from_page_cache(struct page *page)
116 {
117 	struct address_space *mapping = page->mapping;
118 
119 	radix_tree_delete(&mapping->page_tree, page->index);
120 	page->mapping = NULL;
121 	mapping->nrpages--;
122 	__dec_zone_page_state(page, NR_FILE_PAGES);
123 }
124 
125 void remove_from_page_cache(struct page *page)
126 {
127 	struct address_space *mapping = page->mapping;
128 
129 	BUG_ON(!PageLocked(page));
130 
131 	write_lock_irq(&mapping->tree_lock);
132 	__remove_from_page_cache(page);
133 	write_unlock_irq(&mapping->tree_lock);
134 }
135 
136 static int sync_page(void *word)
137 {
138 	struct address_space *mapping;
139 	struct page *page;
140 
141 	page = container_of((unsigned long *)word, struct page, flags);
142 
143 	/*
144 	 * page_mapping() is being called without PG_locked held.
145 	 * Some knowledge of the state and use of the page is used to
146 	 * reduce the requirements down to a memory barrier.
147 	 * The danger here is of a stale page_mapping() return value
148 	 * indicating a struct address_space different from the one it's
149 	 * associated with when it is associated with one.
150 	 * After smp_mb(), it's either the correct page_mapping() for
151 	 * the page, or an old page_mapping() and the page's own
152 	 * page_mapping() has gone NULL.
153 	 * The ->sync_page() address_space operation must tolerate
154 	 * page_mapping() going NULL. By an amazing coincidence,
155 	 * this comes about because none of the users of the page
156 	 * in the ->sync_page() methods make essential use of the
157 	 * page_mapping(), merely passing the page down to the backing
158 	 * device's unplug functions when it's non-NULL, which in turn
159 	 * ignore it for all cases but swap, where only page_private(page) is
160 	 * of interest. When page_mapping() does go NULL, the entire
161 	 * call stack gracefully ignores the page and returns.
162 	 * -- wli
163 	 */
164 	smp_mb();
165 	mapping = page_mapping(page);
166 	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
167 		mapping->a_ops->sync_page(page);
168 	io_schedule();
169 	return 0;
170 }
171 
172 /**
173  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
174  * @mapping:	address space structure to write
175  * @start:	offset in bytes where the range starts
176  * @end:	offset in bytes where the range ends (inclusive)
177  * @sync_mode:	enable synchronous operation
178  *
179  * Start writeback against all of a mapping's dirty pages that lie
180  * within the byte offsets <start, end> inclusive.
181  *
182  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
183  * opposed to a regular memory cleansing writeback.  The difference between
184  * these two operations is that if a dirty page/buffer is encountered, it must
185  * be waited upon, and not just skipped over.
186  */
187 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
188 				loff_t end, int sync_mode)
189 {
190 	int ret;
191 	struct writeback_control wbc = {
192 		.sync_mode = sync_mode,
193 		.nr_to_write = mapping->nrpages * 2,
194 		.range_start = start,
195 		.range_end = end,
196 	};
197 
198 	if (!mapping_cap_writeback_dirty(mapping))
199 		return 0;
200 
201 	ret = do_writepages(mapping, &wbc);
202 	return ret;
203 }
204 
205 static inline int __filemap_fdatawrite(struct address_space *mapping,
206 	int sync_mode)
207 {
208 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
209 }
210 
211 int filemap_fdatawrite(struct address_space *mapping)
212 {
213 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
214 }
215 EXPORT_SYMBOL(filemap_fdatawrite);
216 
217 static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
218 				loff_t end)
219 {
220 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
221 }
222 
223 /**
224  * filemap_flush - mostly a non-blocking flush
225  * @mapping:	target address_space
226  *
227  * This is a mostly non-blocking flush.  Not suitable for data-integrity
228  * purposes - I/O may not be started against all dirty pages.
229  */
230 int filemap_flush(struct address_space *mapping)
231 {
232 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
233 }
234 EXPORT_SYMBOL(filemap_flush);
235 
236 /**
237  * wait_on_page_writeback_range - wait for writeback to complete
238  * @mapping:	target address_space
239  * @start:	beginning page index
240  * @end:	ending page index
241  *
242  * Wait for writeback to complete against pages indexed by start->end
243  * inclusive
244  */
245 int wait_on_page_writeback_range(struct address_space *mapping,
246 				pgoff_t start, pgoff_t end)
247 {
248 	struct pagevec pvec;
249 	int nr_pages;
250 	int ret = 0;
251 	pgoff_t index;
252 
253 	if (end < start)
254 		return 0;
255 
256 	pagevec_init(&pvec, 0);
257 	index = start;
258 	while ((index <= end) &&
259 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
260 			PAGECACHE_TAG_WRITEBACK,
261 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
262 		unsigned i;
263 
264 		for (i = 0; i < nr_pages; i++) {
265 			struct page *page = pvec.pages[i];
266 
267 			/* until radix tree lookup accepts end_index */
268 			if (page->index > end)
269 				continue;
270 
271 			wait_on_page_writeback(page);
272 			if (PageError(page))
273 				ret = -EIO;
274 		}
275 		pagevec_release(&pvec);
276 		cond_resched();
277 	}
278 
279 	/* Check for outstanding write errors */
280 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
281 		ret = -ENOSPC;
282 	if (test_and_clear_bit(AS_EIO, &mapping->flags))
283 		ret = -EIO;
284 
285 	return ret;
286 }
287 
288 /**
289  * sync_page_range - write and wait on all pages in the passed range
290  * @inode:	target inode
291  * @mapping:	target address_space
292  * @pos:	beginning offset in pages to write
293  * @count:	number of bytes to write
294  *
295  * Write and wait upon all the pages in the passed range.  This is a "data
296  * integrity" operation.  It waits upon in-flight writeout before starting and
297  * waiting upon new writeout.  If there was an IO error, return it.
298  *
299  * We need to re-take i_mutex during the generic_osync_inode list walk because
300  * it is otherwise livelockable.
301  */
302 int sync_page_range(struct inode *inode, struct address_space *mapping,
303 			loff_t pos, loff_t count)
304 {
305 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
306 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
307 	int ret;
308 
309 	if (!mapping_cap_writeback_dirty(mapping) || !count)
310 		return 0;
311 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
312 	if (ret == 0) {
313 		mutex_lock(&inode->i_mutex);
314 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
315 		mutex_unlock(&inode->i_mutex);
316 	}
317 	if (ret == 0)
318 		ret = wait_on_page_writeback_range(mapping, start, end);
319 	return ret;
320 }
321 EXPORT_SYMBOL(sync_page_range);
322 
323 /**
324  * sync_page_range_nolock
325  * @inode:	target inode
326  * @mapping:	target address_space
327  * @pos:	beginning offset in pages to write
328  * @count:	number of bytes to write
329  *
330  * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
331  * as it forces O_SYNC writers to different parts of the same file
332  * to be serialised right until io completion.
333  */
334 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
335 			   loff_t pos, loff_t count)
336 {
337 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
338 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
339 	int ret;
340 
341 	if (!mapping_cap_writeback_dirty(mapping) || !count)
342 		return 0;
343 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
344 	if (ret == 0)
345 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
346 	if (ret == 0)
347 		ret = wait_on_page_writeback_range(mapping, start, end);
348 	return ret;
349 }
350 EXPORT_SYMBOL(sync_page_range_nolock);
351 
352 /**
353  * filemap_fdatawait - wait for all under-writeback pages to complete
354  * @mapping: address space structure to wait for
355  *
356  * Walk the list of under-writeback pages of the given address space
357  * and wait for all of them.
358  */
359 int filemap_fdatawait(struct address_space *mapping)
360 {
361 	loff_t i_size = i_size_read(mapping->host);
362 
363 	if (i_size == 0)
364 		return 0;
365 
366 	return wait_on_page_writeback_range(mapping, 0,
367 				(i_size - 1) >> PAGE_CACHE_SHIFT);
368 }
369 EXPORT_SYMBOL(filemap_fdatawait);
370 
371 int filemap_write_and_wait(struct address_space *mapping)
372 {
373 	int err = 0;
374 
375 	if (mapping->nrpages) {
376 		err = filemap_fdatawrite(mapping);
377 		/*
378 		 * Even if the above returned error, the pages may be
379 		 * written partially (e.g. -ENOSPC), so we wait for it.
380 		 * But the -EIO is special case, it may indicate the worst
381 		 * thing (e.g. bug) happened, so we avoid waiting for it.
382 		 */
383 		if (err != -EIO) {
384 			int err2 = filemap_fdatawait(mapping);
385 			if (!err)
386 				err = err2;
387 		}
388 	}
389 	return err;
390 }
391 EXPORT_SYMBOL(filemap_write_and_wait);
392 
393 /**
394  * filemap_write_and_wait_range - write out & wait on a file range
395  * @mapping:	the address_space for the pages
396  * @lstart:	offset in bytes where the range starts
397  * @lend:	offset in bytes where the range ends (inclusive)
398  *
399  * Write out and wait upon file offsets lstart->lend, inclusive.
400  *
401  * Note that `lend' is inclusive (describes the last byte to be written) so
402  * that this function can be used to write to the very end-of-file (end = -1).
403  */
404 int filemap_write_and_wait_range(struct address_space *mapping,
405 				 loff_t lstart, loff_t lend)
406 {
407 	int err = 0;
408 
409 	if (mapping->nrpages) {
410 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
411 						 WB_SYNC_ALL);
412 		/* See comment of filemap_write_and_wait() */
413 		if (err != -EIO) {
414 			int err2 = wait_on_page_writeback_range(mapping,
415 						lstart >> PAGE_CACHE_SHIFT,
416 						lend >> PAGE_CACHE_SHIFT);
417 			if (!err)
418 				err = err2;
419 		}
420 	}
421 	return err;
422 }
423 
424 /**
425  * add_to_page_cache - add newly allocated pagecache pages
426  * @page:	page to add
427  * @mapping:	the page's address_space
428  * @offset:	page index
429  * @gfp_mask:	page allocation mode
430  *
431  * This function is used to add newly allocated pagecache pages;
432  * the page is new, so we can just run SetPageLocked() against it.
433  * The other page state flags were set by rmqueue().
434  *
435  * This function does not add the page to the LRU.  The caller must do that.
436  */
437 int add_to_page_cache(struct page *page, struct address_space *mapping,
438 		pgoff_t offset, gfp_t gfp_mask)
439 {
440 	int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
441 
442 	if (error == 0) {
443 		write_lock_irq(&mapping->tree_lock);
444 		error = radix_tree_insert(&mapping->page_tree, offset, page);
445 		if (!error) {
446 			page_cache_get(page);
447 			SetPageLocked(page);
448 			page->mapping = mapping;
449 			page->index = offset;
450 			mapping->nrpages++;
451 			__inc_zone_page_state(page, NR_FILE_PAGES);
452 		}
453 		write_unlock_irq(&mapping->tree_lock);
454 		radix_tree_preload_end();
455 	}
456 	return error;
457 }
458 EXPORT_SYMBOL(add_to_page_cache);
459 
460 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
461 				pgoff_t offset, gfp_t gfp_mask)
462 {
463 	int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
464 	if (ret == 0)
465 		lru_cache_add(page);
466 	return ret;
467 }
468 
469 #ifdef CONFIG_NUMA
470 struct page *__page_cache_alloc(gfp_t gfp)
471 {
472 	if (cpuset_do_page_mem_spread()) {
473 		int n = cpuset_mem_spread_node();
474 		return alloc_pages_node(n, gfp, 0);
475 	}
476 	return alloc_pages(gfp, 0);
477 }
478 EXPORT_SYMBOL(__page_cache_alloc);
479 #endif
480 
481 static int __sleep_on_page_lock(void *word)
482 {
483 	io_schedule();
484 	return 0;
485 }
486 
487 /*
488  * In order to wait for pages to become available there must be
489  * waitqueues associated with pages. By using a hash table of
490  * waitqueues where the bucket discipline is to maintain all
491  * waiters on the same queue and wake all when any of the pages
492  * become available, and for the woken contexts to check to be
493  * sure the appropriate page became available, this saves space
494  * at a cost of "thundering herd" phenomena during rare hash
495  * collisions.
496  */
497 static wait_queue_head_t *page_waitqueue(struct page *page)
498 {
499 	const struct zone *zone = page_zone(page);
500 
501 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
502 }
503 
504 static inline void wake_up_page(struct page *page, int bit)
505 {
506 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
507 }
508 
509 void fastcall wait_on_page_bit(struct page *page, int bit_nr)
510 {
511 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
512 
513 	if (test_bit(bit_nr, &page->flags))
514 		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
515 							TASK_UNINTERRUPTIBLE);
516 }
517 EXPORT_SYMBOL(wait_on_page_bit);
518 
519 /**
520  * unlock_page - unlock a locked page
521  * @page: the page
522  *
523  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
524  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
525  * mechananism between PageLocked pages and PageWriteback pages is shared.
526  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
527  *
528  * The first mb is necessary to safely close the critical section opened by the
529  * TestSetPageLocked(), the second mb is necessary to enforce ordering between
530  * the clear_bit and the read of the waitqueue (to avoid SMP races with a
531  * parallel wait_on_page_locked()).
532  */
533 void fastcall unlock_page(struct page *page)
534 {
535 	smp_mb__before_clear_bit();
536 	if (!TestClearPageLocked(page))
537 		BUG();
538 	smp_mb__after_clear_bit();
539 	wake_up_page(page, PG_locked);
540 }
541 EXPORT_SYMBOL(unlock_page);
542 
543 /**
544  * end_page_writeback - end writeback against a page
545  * @page: the page
546  */
547 void end_page_writeback(struct page *page)
548 {
549 	if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
550 		if (!test_clear_page_writeback(page))
551 			BUG();
552 	}
553 	smp_mb__after_clear_bit();
554 	wake_up_page(page, PG_writeback);
555 }
556 EXPORT_SYMBOL(end_page_writeback);
557 
558 /**
559  * __lock_page - get a lock on the page, assuming we need to sleep to get it
560  * @page: the page to lock
561  *
562  * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
563  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
564  * chances are that on the second loop, the block layer's plug list is empty,
565  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
566  */
567 void fastcall __lock_page(struct page *page)
568 {
569 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
570 
571 	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
572 							TASK_UNINTERRUPTIBLE);
573 }
574 EXPORT_SYMBOL(__lock_page);
575 
576 /*
577  * Variant of lock_page that does not require the caller to hold a reference
578  * on the page's mapping.
579  */
580 void fastcall __lock_page_nosync(struct page *page)
581 {
582 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
583 	__wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
584 							TASK_UNINTERRUPTIBLE);
585 }
586 
587 /**
588  * find_get_page - find and get a page reference
589  * @mapping: the address_space to search
590  * @offset: the page index
591  *
592  * Is there a pagecache struct page at the given (mapping, offset) tuple?
593  * If yes, increment its refcount and return it; if no, return NULL.
594  */
595 struct page * find_get_page(struct address_space *mapping, unsigned long offset)
596 {
597 	struct page *page;
598 
599 	read_lock_irq(&mapping->tree_lock);
600 	page = radix_tree_lookup(&mapping->page_tree, offset);
601 	if (page)
602 		page_cache_get(page);
603 	read_unlock_irq(&mapping->tree_lock);
604 	return page;
605 }
606 EXPORT_SYMBOL(find_get_page);
607 
608 /**
609  * find_lock_page - locate, pin and lock a pagecache page
610  * @mapping: the address_space to search
611  * @offset: the page index
612  *
613  * Locates the desired pagecache page, locks it, increments its reference
614  * count and returns its address.
615  *
616  * Returns zero if the page was not present. find_lock_page() may sleep.
617  */
618 struct page *find_lock_page(struct address_space *mapping,
619 				unsigned long offset)
620 {
621 	struct page *page;
622 
623 	read_lock_irq(&mapping->tree_lock);
624 repeat:
625 	page = radix_tree_lookup(&mapping->page_tree, offset);
626 	if (page) {
627 		page_cache_get(page);
628 		if (TestSetPageLocked(page)) {
629 			read_unlock_irq(&mapping->tree_lock);
630 			__lock_page(page);
631 			read_lock_irq(&mapping->tree_lock);
632 
633 			/* Has the page been truncated while we slept? */
634 			if (unlikely(page->mapping != mapping ||
635 				     page->index != offset)) {
636 				unlock_page(page);
637 				page_cache_release(page);
638 				goto repeat;
639 			}
640 		}
641 	}
642 	read_unlock_irq(&mapping->tree_lock);
643 	return page;
644 }
645 EXPORT_SYMBOL(find_lock_page);
646 
647 /**
648  * find_or_create_page - locate or add a pagecache page
649  * @mapping: the page's address_space
650  * @index: the page's index into the mapping
651  * @gfp_mask: page allocation mode
652  *
653  * Locates a page in the pagecache.  If the page is not present, a new page
654  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
655  * LRU list.  The returned page is locked and has its reference count
656  * incremented.
657  *
658  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
659  * allocation!
660  *
661  * find_or_create_page() returns the desired page's address, or zero on
662  * memory exhaustion.
663  */
664 struct page *find_or_create_page(struct address_space *mapping,
665 		unsigned long index, gfp_t gfp_mask)
666 {
667 	struct page *page, *cached_page = NULL;
668 	int err;
669 repeat:
670 	page = find_lock_page(mapping, index);
671 	if (!page) {
672 		if (!cached_page) {
673 			cached_page =
674 				__page_cache_alloc(gfp_mask);
675 			if (!cached_page)
676 				return NULL;
677 		}
678 		err = add_to_page_cache_lru(cached_page, mapping,
679 					index, gfp_mask);
680 		if (!err) {
681 			page = cached_page;
682 			cached_page = NULL;
683 		} else if (err == -EEXIST)
684 			goto repeat;
685 	}
686 	if (cached_page)
687 		page_cache_release(cached_page);
688 	return page;
689 }
690 EXPORT_SYMBOL(find_or_create_page);
691 
692 /**
693  * find_get_pages - gang pagecache lookup
694  * @mapping:	The address_space to search
695  * @start:	The starting page index
696  * @nr_pages:	The maximum number of pages
697  * @pages:	Where the resulting pages are placed
698  *
699  * find_get_pages() will search for and return a group of up to
700  * @nr_pages pages in the mapping.  The pages are placed at @pages.
701  * find_get_pages() takes a reference against the returned pages.
702  *
703  * The search returns a group of mapping-contiguous pages with ascending
704  * indexes.  There may be holes in the indices due to not-present pages.
705  *
706  * find_get_pages() returns the number of pages which were found.
707  */
708 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
709 			    unsigned int nr_pages, struct page **pages)
710 {
711 	unsigned int i;
712 	unsigned int ret;
713 
714 	read_lock_irq(&mapping->tree_lock);
715 	ret = radix_tree_gang_lookup(&mapping->page_tree,
716 				(void **)pages, start, nr_pages);
717 	for (i = 0; i < ret; i++)
718 		page_cache_get(pages[i]);
719 	read_unlock_irq(&mapping->tree_lock);
720 	return ret;
721 }
722 
723 /**
724  * find_get_pages_contig - gang contiguous pagecache lookup
725  * @mapping:	The address_space to search
726  * @index:	The starting page index
727  * @nr_pages:	The maximum number of pages
728  * @pages:	Where the resulting pages are placed
729  *
730  * find_get_pages_contig() works exactly like find_get_pages(), except
731  * that the returned number of pages are guaranteed to be contiguous.
732  *
733  * find_get_pages_contig() returns the number of pages which were found.
734  */
735 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
736 			       unsigned int nr_pages, struct page **pages)
737 {
738 	unsigned int i;
739 	unsigned int ret;
740 
741 	read_lock_irq(&mapping->tree_lock);
742 	ret = radix_tree_gang_lookup(&mapping->page_tree,
743 				(void **)pages, index, nr_pages);
744 	for (i = 0; i < ret; i++) {
745 		if (pages[i]->mapping == NULL || pages[i]->index != index)
746 			break;
747 
748 		page_cache_get(pages[i]);
749 		index++;
750 	}
751 	read_unlock_irq(&mapping->tree_lock);
752 	return i;
753 }
754 EXPORT_SYMBOL(find_get_pages_contig);
755 
756 /**
757  * find_get_pages_tag - find and return pages that match @tag
758  * @mapping:	the address_space to search
759  * @index:	the starting page index
760  * @tag:	the tag index
761  * @nr_pages:	the maximum number of pages
762  * @pages:	where the resulting pages are placed
763  *
764  * Like find_get_pages, except we only return pages which are tagged with
765  * @tag.   We update @index to index the next page for the traversal.
766  */
767 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
768 			int tag, unsigned int nr_pages, struct page **pages)
769 {
770 	unsigned int i;
771 	unsigned int ret;
772 
773 	read_lock_irq(&mapping->tree_lock);
774 	ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
775 				(void **)pages, *index, nr_pages, tag);
776 	for (i = 0; i < ret; i++)
777 		page_cache_get(pages[i]);
778 	if (ret)
779 		*index = pages[ret - 1]->index + 1;
780 	read_unlock_irq(&mapping->tree_lock);
781 	return ret;
782 }
783 EXPORT_SYMBOL(find_get_pages_tag);
784 
785 /**
786  * grab_cache_page_nowait - returns locked page at given index in given cache
787  * @mapping: target address_space
788  * @index: the page index
789  *
790  * Same as grab_cache_page(), but do not wait if the page is unavailable.
791  * This is intended for speculative data generators, where the data can
792  * be regenerated if the page couldn't be grabbed.  This routine should
793  * be safe to call while holding the lock for another page.
794  *
795  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
796  * and deadlock against the caller's locked page.
797  */
798 struct page *
799 grab_cache_page_nowait(struct address_space *mapping, unsigned long index)
800 {
801 	struct page *page = find_get_page(mapping, index);
802 
803 	if (page) {
804 		if (!TestSetPageLocked(page))
805 			return page;
806 		page_cache_release(page);
807 		return NULL;
808 	}
809 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
810 	if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
811 		page_cache_release(page);
812 		page = NULL;
813 	}
814 	return page;
815 }
816 EXPORT_SYMBOL(grab_cache_page_nowait);
817 
818 /*
819  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
820  * a _large_ part of the i/o request. Imagine the worst scenario:
821  *
822  *      ---R__________________________________________B__________
823  *         ^ reading here                             ^ bad block(assume 4k)
824  *
825  * read(R) => miss => readahead(R...B) => media error => frustrating retries
826  * => failing the whole request => read(R) => read(R+1) =>
827  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
828  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
829  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
830  *
831  * It is going insane. Fix it by quickly scaling down the readahead size.
832  */
833 static void shrink_readahead_size_eio(struct file *filp,
834 					struct file_ra_state *ra)
835 {
836 	if (!ra->ra_pages)
837 		return;
838 
839 	ra->ra_pages /= 4;
840 }
841 
842 /**
843  * do_generic_mapping_read - generic file read routine
844  * @mapping:	address_space to be read
845  * @_ra:	file's readahead state
846  * @filp:	the file to read
847  * @ppos:	current file position
848  * @desc:	read_descriptor
849  * @actor:	read method
850  *
851  * This is a generic file read routine, and uses the
852  * mapping->a_ops->readpage() function for the actual low-level stuff.
853  *
854  * This is really ugly. But the goto's actually try to clarify some
855  * of the logic when it comes to error handling etc.
856  *
857  * Note the struct file* is only passed for the use of readpage.
858  * It may be NULL.
859  */
860 void do_generic_mapping_read(struct address_space *mapping,
861 			     struct file_ra_state *_ra,
862 			     struct file *filp,
863 			     loff_t *ppos,
864 			     read_descriptor_t *desc,
865 			     read_actor_t actor)
866 {
867 	struct inode *inode = mapping->host;
868 	unsigned long index;
869 	unsigned long end_index;
870 	unsigned long offset;
871 	unsigned long last_index;
872 	unsigned long next_index;
873 	unsigned long prev_index;
874 	unsigned int prev_offset;
875 	loff_t isize;
876 	struct page *cached_page;
877 	int error;
878 	struct file_ra_state ra = *_ra;
879 
880 	cached_page = NULL;
881 	index = *ppos >> PAGE_CACHE_SHIFT;
882 	next_index = index;
883 	prev_index = ra.prev_index;
884 	prev_offset = ra.prev_offset;
885 	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
886 	offset = *ppos & ~PAGE_CACHE_MASK;
887 
888 	isize = i_size_read(inode);
889 	if (!isize)
890 		goto out;
891 
892 	end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
893 	for (;;) {
894 		struct page *page;
895 		unsigned long nr, ret;
896 
897 		/* nr is the maximum number of bytes to copy from this page */
898 		nr = PAGE_CACHE_SIZE;
899 		if (index >= end_index) {
900 			if (index > end_index)
901 				goto out;
902 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
903 			if (nr <= offset) {
904 				goto out;
905 			}
906 		}
907 		nr = nr - offset;
908 
909 		cond_resched();
910 		if (index == next_index)
911 			next_index = page_cache_readahead(mapping, &ra, filp,
912 					index, last_index - index);
913 
914 find_page:
915 		page = find_get_page(mapping, index);
916 		if (unlikely(page == NULL)) {
917 			handle_ra_miss(mapping, &ra, index);
918 			goto no_cached_page;
919 		}
920 		if (!PageUptodate(page))
921 			goto page_not_up_to_date;
922 page_ok:
923 
924 		/* If users can be writing to this page using arbitrary
925 		 * virtual addresses, take care about potential aliasing
926 		 * before reading the page on the kernel side.
927 		 */
928 		if (mapping_writably_mapped(mapping))
929 			flush_dcache_page(page);
930 
931 		/*
932 		 * When a sequential read accesses a page several times,
933 		 * only mark it as accessed the first time.
934 		 */
935 		if (prev_index != index || offset != prev_offset)
936 			mark_page_accessed(page);
937 		prev_index = index;
938 
939 		/*
940 		 * Ok, we have the page, and it's up-to-date, so
941 		 * now we can copy it to user space...
942 		 *
943 		 * The actor routine returns how many bytes were actually used..
944 		 * NOTE! This may not be the same as how much of a user buffer
945 		 * we filled up (we may be padding etc), so we can only update
946 		 * "pos" here (the actor routine has to update the user buffer
947 		 * pointers and the remaining count).
948 		 */
949 		ret = actor(desc, page, offset, nr);
950 		offset += ret;
951 		index += offset >> PAGE_CACHE_SHIFT;
952 		offset &= ~PAGE_CACHE_MASK;
953 		prev_offset = offset;
954 		ra.prev_offset = offset;
955 
956 		page_cache_release(page);
957 		if (ret == nr && desc->count)
958 			continue;
959 		goto out;
960 
961 page_not_up_to_date:
962 		/* Get exclusive access to the page ... */
963 		lock_page(page);
964 
965 		/* Did it get truncated before we got the lock? */
966 		if (!page->mapping) {
967 			unlock_page(page);
968 			page_cache_release(page);
969 			continue;
970 		}
971 
972 		/* Did somebody else fill it already? */
973 		if (PageUptodate(page)) {
974 			unlock_page(page);
975 			goto page_ok;
976 		}
977 
978 readpage:
979 		/* Start the actual read. The read will unlock the page. */
980 		error = mapping->a_ops->readpage(filp, page);
981 
982 		if (unlikely(error)) {
983 			if (error == AOP_TRUNCATED_PAGE) {
984 				page_cache_release(page);
985 				goto find_page;
986 			}
987 			goto readpage_error;
988 		}
989 
990 		if (!PageUptodate(page)) {
991 			lock_page(page);
992 			if (!PageUptodate(page)) {
993 				if (page->mapping == NULL) {
994 					/*
995 					 * invalidate_inode_pages got it
996 					 */
997 					unlock_page(page);
998 					page_cache_release(page);
999 					goto find_page;
1000 				}
1001 				unlock_page(page);
1002 				error = -EIO;
1003 				shrink_readahead_size_eio(filp, &ra);
1004 				goto readpage_error;
1005 			}
1006 			unlock_page(page);
1007 		}
1008 
1009 		/*
1010 		 * i_size must be checked after we have done ->readpage.
1011 		 *
1012 		 * Checking i_size after the readpage allows us to calculate
1013 		 * the correct value for "nr", which means the zero-filled
1014 		 * part of the page is not copied back to userspace (unless
1015 		 * another truncate extends the file - this is desired though).
1016 		 */
1017 		isize = i_size_read(inode);
1018 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1019 		if (unlikely(!isize || index > end_index)) {
1020 			page_cache_release(page);
1021 			goto out;
1022 		}
1023 
1024 		/* nr is the maximum number of bytes to copy from this page */
1025 		nr = PAGE_CACHE_SIZE;
1026 		if (index == end_index) {
1027 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1028 			if (nr <= offset) {
1029 				page_cache_release(page);
1030 				goto out;
1031 			}
1032 		}
1033 		nr = nr - offset;
1034 		goto page_ok;
1035 
1036 readpage_error:
1037 		/* UHHUH! A synchronous read error occurred. Report it */
1038 		desc->error = error;
1039 		page_cache_release(page);
1040 		goto out;
1041 
1042 no_cached_page:
1043 		/*
1044 		 * Ok, it wasn't cached, so we need to create a new
1045 		 * page..
1046 		 */
1047 		if (!cached_page) {
1048 			cached_page = page_cache_alloc_cold(mapping);
1049 			if (!cached_page) {
1050 				desc->error = -ENOMEM;
1051 				goto out;
1052 			}
1053 		}
1054 		error = add_to_page_cache_lru(cached_page, mapping,
1055 						index, GFP_KERNEL);
1056 		if (error) {
1057 			if (error == -EEXIST)
1058 				goto find_page;
1059 			desc->error = error;
1060 			goto out;
1061 		}
1062 		page = cached_page;
1063 		cached_page = NULL;
1064 		goto readpage;
1065 	}
1066 
1067 out:
1068 	*_ra = ra;
1069 
1070 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1071 	if (cached_page)
1072 		page_cache_release(cached_page);
1073 	if (filp)
1074 		file_accessed(filp);
1075 }
1076 EXPORT_SYMBOL(do_generic_mapping_read);
1077 
1078 int file_read_actor(read_descriptor_t *desc, struct page *page,
1079 			unsigned long offset, unsigned long size)
1080 {
1081 	char *kaddr;
1082 	unsigned long left, count = desc->count;
1083 
1084 	if (size > count)
1085 		size = count;
1086 
1087 	/*
1088 	 * Faults on the destination of a read are common, so do it before
1089 	 * taking the kmap.
1090 	 */
1091 	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1092 		kaddr = kmap_atomic(page, KM_USER0);
1093 		left = __copy_to_user_inatomic(desc->arg.buf,
1094 						kaddr + offset, size);
1095 		kunmap_atomic(kaddr, KM_USER0);
1096 		if (left == 0)
1097 			goto success;
1098 	}
1099 
1100 	/* Do it the slow way */
1101 	kaddr = kmap(page);
1102 	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1103 	kunmap(page);
1104 
1105 	if (left) {
1106 		size -= left;
1107 		desc->error = -EFAULT;
1108 	}
1109 success:
1110 	desc->count = count - size;
1111 	desc->written += size;
1112 	desc->arg.buf += size;
1113 	return size;
1114 }
1115 
1116 /*
1117  * Performs necessary checks before doing a write
1118  * @iov:	io vector request
1119  * @nr_segs:	number of segments in the iovec
1120  * @count:	number of bytes to write
1121  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1122  *
1123  * Adjust number of segments and amount of bytes to write (nr_segs should be
1124  * properly initialized first). Returns appropriate error code that caller
1125  * should return or zero in case that write should be allowed.
1126  */
1127 int generic_segment_checks(const struct iovec *iov,
1128 			unsigned long *nr_segs, size_t *count, int access_flags)
1129 {
1130 	unsigned long   seg;
1131 	size_t cnt = 0;
1132 	for (seg = 0; seg < *nr_segs; seg++) {
1133 		const struct iovec *iv = &iov[seg];
1134 
1135 		/*
1136 		 * If any segment has a negative length, or the cumulative
1137 		 * length ever wraps negative then return -EINVAL.
1138 		 */
1139 		cnt += iv->iov_len;
1140 		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1141 			return -EINVAL;
1142 		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1143 			continue;
1144 		if (seg == 0)
1145 			return -EFAULT;
1146 		*nr_segs = seg;
1147 		cnt -= iv->iov_len;	/* This segment is no good */
1148 		break;
1149 	}
1150 	*count = cnt;
1151 	return 0;
1152 }
1153 EXPORT_SYMBOL(generic_segment_checks);
1154 
1155 /**
1156  * generic_file_aio_read - generic filesystem read routine
1157  * @iocb:	kernel I/O control block
1158  * @iov:	io vector request
1159  * @nr_segs:	number of segments in the iovec
1160  * @pos:	current file position
1161  *
1162  * This is the "read()" routine for all filesystems
1163  * that can use the page cache directly.
1164  */
1165 ssize_t
1166 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1167 		unsigned long nr_segs, loff_t pos)
1168 {
1169 	struct file *filp = iocb->ki_filp;
1170 	ssize_t retval;
1171 	unsigned long seg;
1172 	size_t count;
1173 	loff_t *ppos = &iocb->ki_pos;
1174 
1175 	count = 0;
1176 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1177 	if (retval)
1178 		return retval;
1179 
1180 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1181 	if (filp->f_flags & O_DIRECT) {
1182 		loff_t size;
1183 		struct address_space *mapping;
1184 		struct inode *inode;
1185 
1186 		mapping = filp->f_mapping;
1187 		inode = mapping->host;
1188 		retval = 0;
1189 		if (!count)
1190 			goto out; /* skip atime */
1191 		size = i_size_read(inode);
1192 		if (pos < size) {
1193 			retval = generic_file_direct_IO(READ, iocb,
1194 						iov, pos, nr_segs);
1195 			if (retval > 0)
1196 				*ppos = pos + retval;
1197 		}
1198 		if (likely(retval != 0)) {
1199 			file_accessed(filp);
1200 			goto out;
1201 		}
1202 	}
1203 
1204 	retval = 0;
1205 	if (count) {
1206 		for (seg = 0; seg < nr_segs; seg++) {
1207 			read_descriptor_t desc;
1208 
1209 			desc.written = 0;
1210 			desc.arg.buf = iov[seg].iov_base;
1211 			desc.count = iov[seg].iov_len;
1212 			if (desc.count == 0)
1213 				continue;
1214 			desc.error = 0;
1215 			do_generic_file_read(filp,ppos,&desc,file_read_actor);
1216 			retval += desc.written;
1217 			if (desc.error) {
1218 				retval = retval ?: desc.error;
1219 				break;
1220 			}
1221 		}
1222 	}
1223 out:
1224 	return retval;
1225 }
1226 EXPORT_SYMBOL(generic_file_aio_read);
1227 
1228 int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size)
1229 {
1230 	ssize_t written;
1231 	unsigned long count = desc->count;
1232 	struct file *file = desc->arg.data;
1233 
1234 	if (size > count)
1235 		size = count;
1236 
1237 	written = file->f_op->sendpage(file, page, offset,
1238 				       size, &file->f_pos, size<count);
1239 	if (written < 0) {
1240 		desc->error = written;
1241 		written = 0;
1242 	}
1243 	desc->count = count - written;
1244 	desc->written += written;
1245 	return written;
1246 }
1247 
1248 static ssize_t
1249 do_readahead(struct address_space *mapping, struct file *filp,
1250 	     unsigned long index, unsigned long nr)
1251 {
1252 	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1253 		return -EINVAL;
1254 
1255 	force_page_cache_readahead(mapping, filp, index,
1256 					max_sane_readahead(nr));
1257 	return 0;
1258 }
1259 
1260 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1261 {
1262 	ssize_t ret;
1263 	struct file *file;
1264 
1265 	ret = -EBADF;
1266 	file = fget(fd);
1267 	if (file) {
1268 		if (file->f_mode & FMODE_READ) {
1269 			struct address_space *mapping = file->f_mapping;
1270 			unsigned long start = offset >> PAGE_CACHE_SHIFT;
1271 			unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1272 			unsigned long len = end - start + 1;
1273 			ret = do_readahead(mapping, file, start, len);
1274 		}
1275 		fput(file);
1276 	}
1277 	return ret;
1278 }
1279 
1280 #ifdef CONFIG_MMU
1281 static int FASTCALL(page_cache_read(struct file * file, unsigned long offset));
1282 /**
1283  * page_cache_read - adds requested page to the page cache if not already there
1284  * @file:	file to read
1285  * @offset:	page index
1286  *
1287  * This adds the requested page to the page cache if it isn't already there,
1288  * and schedules an I/O to read in its contents from disk.
1289  */
1290 static int fastcall page_cache_read(struct file * file, unsigned long offset)
1291 {
1292 	struct address_space *mapping = file->f_mapping;
1293 	struct page *page;
1294 	int ret;
1295 
1296 	do {
1297 		page = page_cache_alloc_cold(mapping);
1298 		if (!page)
1299 			return -ENOMEM;
1300 
1301 		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1302 		if (ret == 0)
1303 			ret = mapping->a_ops->readpage(file, page);
1304 		else if (ret == -EEXIST)
1305 			ret = 0; /* losing race to add is OK */
1306 
1307 		page_cache_release(page);
1308 
1309 	} while (ret == AOP_TRUNCATED_PAGE);
1310 
1311 	return ret;
1312 }
1313 
1314 #define MMAP_LOTSAMISS  (100)
1315 
1316 /**
1317  * filemap_nopage - read in file data for page fault handling
1318  * @area:	the applicable vm_area
1319  * @address:	target address to read in
1320  * @type:	returned with VM_FAULT_{MINOR,MAJOR} if not %NULL
1321  *
1322  * filemap_nopage() is invoked via the vma operations vector for a
1323  * mapped memory region to read in file data during a page fault.
1324  *
1325  * The goto's are kind of ugly, but this streamlines the normal case of having
1326  * it in the page cache, and handles the special cases reasonably without
1327  * having a lot of duplicated code.
1328  */
1329 struct page *filemap_nopage(struct vm_area_struct *area,
1330 				unsigned long address, int *type)
1331 {
1332 	int error;
1333 	struct file *file = area->vm_file;
1334 	struct address_space *mapping = file->f_mapping;
1335 	struct file_ra_state *ra = &file->f_ra;
1336 	struct inode *inode = mapping->host;
1337 	struct page *page;
1338 	unsigned long size, pgoff;
1339 	int did_readaround = 0, majmin = VM_FAULT_MINOR;
1340 
1341 	pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff;
1342 
1343 retry_all:
1344 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1345 	if (pgoff >= size)
1346 		goto outside_data_content;
1347 
1348 	/* If we don't want any read-ahead, don't bother */
1349 	if (VM_RandomReadHint(area))
1350 		goto no_cached_page;
1351 
1352 	/*
1353 	 * The readahead code wants to be told about each and every page
1354 	 * so it can build and shrink its windows appropriately
1355 	 *
1356 	 * For sequential accesses, we use the generic readahead logic.
1357 	 */
1358 	if (VM_SequentialReadHint(area))
1359 		page_cache_readahead(mapping, ra, file, pgoff, 1);
1360 
1361 	/*
1362 	 * Do we have something in the page cache already?
1363 	 */
1364 retry_find:
1365 	page = find_get_page(mapping, pgoff);
1366 	if (!page) {
1367 		unsigned long ra_pages;
1368 
1369 		if (VM_SequentialReadHint(area)) {
1370 			handle_ra_miss(mapping, ra, pgoff);
1371 			goto no_cached_page;
1372 		}
1373 		ra->mmap_miss++;
1374 
1375 		/*
1376 		 * Do we miss much more than hit in this file? If so,
1377 		 * stop bothering with read-ahead. It will only hurt.
1378 		 */
1379 		if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS)
1380 			goto no_cached_page;
1381 
1382 		/*
1383 		 * To keep the pgmajfault counter straight, we need to
1384 		 * check did_readaround, as this is an inner loop.
1385 		 */
1386 		if (!did_readaround) {
1387 			majmin = VM_FAULT_MAJOR;
1388 			count_vm_event(PGMAJFAULT);
1389 		}
1390 		did_readaround = 1;
1391 		ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1392 		if (ra_pages) {
1393 			pgoff_t start = 0;
1394 
1395 			if (pgoff > ra_pages / 2)
1396 				start = pgoff - ra_pages / 2;
1397 			do_page_cache_readahead(mapping, file, start, ra_pages);
1398 		}
1399 		page = find_get_page(mapping, pgoff);
1400 		if (!page)
1401 			goto no_cached_page;
1402 	}
1403 
1404 	if (!did_readaround)
1405 		ra->mmap_hit++;
1406 
1407 	/*
1408 	 * Ok, found a page in the page cache, now we need to check
1409 	 * that it's up-to-date.
1410 	 */
1411 	if (!PageUptodate(page))
1412 		goto page_not_uptodate;
1413 
1414 success:
1415 	/*
1416 	 * Found the page and have a reference on it.
1417 	 */
1418 	mark_page_accessed(page);
1419 	if (type)
1420 		*type = majmin;
1421 	return page;
1422 
1423 outside_data_content:
1424 	/*
1425 	 * An external ptracer can access pages that normally aren't
1426 	 * accessible..
1427 	 */
1428 	if (area->vm_mm == current->mm)
1429 		return NOPAGE_SIGBUS;
1430 	/* Fall through to the non-read-ahead case */
1431 no_cached_page:
1432 	/*
1433 	 * We're only likely to ever get here if MADV_RANDOM is in
1434 	 * effect.
1435 	 */
1436 	error = page_cache_read(file, pgoff);
1437 
1438 	/*
1439 	 * The page we want has now been added to the page cache.
1440 	 * In the unlikely event that someone removed it in the
1441 	 * meantime, we'll just come back here and read it again.
1442 	 */
1443 	if (error >= 0)
1444 		goto retry_find;
1445 
1446 	/*
1447 	 * An error return from page_cache_read can result if the
1448 	 * system is low on memory, or a problem occurs while trying
1449 	 * to schedule I/O.
1450 	 */
1451 	if (error == -ENOMEM)
1452 		return NOPAGE_OOM;
1453 	return NOPAGE_SIGBUS;
1454 
1455 page_not_uptodate:
1456 	if (!did_readaround) {
1457 		majmin = VM_FAULT_MAJOR;
1458 		count_vm_event(PGMAJFAULT);
1459 	}
1460 
1461 	/*
1462 	 * Umm, take care of errors if the page isn't up-to-date.
1463 	 * Try to re-read it _once_. We do this synchronously,
1464 	 * because there really aren't any performance issues here
1465 	 * and we need to check for errors.
1466 	 */
1467 	lock_page(page);
1468 
1469 	/* Somebody truncated the page on us? */
1470 	if (!page->mapping) {
1471 		unlock_page(page);
1472 		page_cache_release(page);
1473 		goto retry_all;
1474 	}
1475 
1476 	/* Somebody else successfully read it in? */
1477 	if (PageUptodate(page)) {
1478 		unlock_page(page);
1479 		goto success;
1480 	}
1481 	ClearPageError(page);
1482 	error = mapping->a_ops->readpage(file, page);
1483 	if (!error) {
1484 		wait_on_page_locked(page);
1485 		if (PageUptodate(page))
1486 			goto success;
1487 	} else if (error == AOP_TRUNCATED_PAGE) {
1488 		page_cache_release(page);
1489 		goto retry_find;
1490 	}
1491 
1492 	/*
1493 	 * Things didn't work out. Return zero to tell the
1494 	 * mm layer so, possibly freeing the page cache page first.
1495 	 */
1496 	shrink_readahead_size_eio(file, ra);
1497 	page_cache_release(page);
1498 	return NOPAGE_SIGBUS;
1499 }
1500 EXPORT_SYMBOL(filemap_nopage);
1501 
1502 static struct page * filemap_getpage(struct file *file, unsigned long pgoff,
1503 					int nonblock)
1504 {
1505 	struct address_space *mapping = file->f_mapping;
1506 	struct page *page;
1507 	int error;
1508 
1509 	/*
1510 	 * Do we have something in the page cache already?
1511 	 */
1512 retry_find:
1513 	page = find_get_page(mapping, pgoff);
1514 	if (!page) {
1515 		if (nonblock)
1516 			return NULL;
1517 		goto no_cached_page;
1518 	}
1519 
1520 	/*
1521 	 * Ok, found a page in the page cache, now we need to check
1522 	 * that it's up-to-date.
1523 	 */
1524 	if (!PageUptodate(page)) {
1525 		if (nonblock) {
1526 			page_cache_release(page);
1527 			return NULL;
1528 		}
1529 		goto page_not_uptodate;
1530 	}
1531 
1532 success:
1533 	/*
1534 	 * Found the page and have a reference on it.
1535 	 */
1536 	mark_page_accessed(page);
1537 	return page;
1538 
1539 no_cached_page:
1540 	error = page_cache_read(file, pgoff);
1541 
1542 	/*
1543 	 * The page we want has now been added to the page cache.
1544 	 * In the unlikely event that someone removed it in the
1545 	 * meantime, we'll just come back here and read it again.
1546 	 */
1547 	if (error >= 0)
1548 		goto retry_find;
1549 
1550 	/*
1551 	 * An error return from page_cache_read can result if the
1552 	 * system is low on memory, or a problem occurs while trying
1553 	 * to schedule I/O.
1554 	 */
1555 	return NULL;
1556 
1557 page_not_uptodate:
1558 	lock_page(page);
1559 
1560 	/* Did it get truncated while we waited for it? */
1561 	if (!page->mapping) {
1562 		unlock_page(page);
1563 		goto err;
1564 	}
1565 
1566 	/* Did somebody else get it up-to-date? */
1567 	if (PageUptodate(page)) {
1568 		unlock_page(page);
1569 		goto success;
1570 	}
1571 
1572 	error = mapping->a_ops->readpage(file, page);
1573 	if (!error) {
1574 		wait_on_page_locked(page);
1575 		if (PageUptodate(page))
1576 			goto success;
1577 	} else if (error == AOP_TRUNCATED_PAGE) {
1578 		page_cache_release(page);
1579 		goto retry_find;
1580 	}
1581 
1582 	/*
1583 	 * Umm, take care of errors if the page isn't up-to-date.
1584 	 * Try to re-read it _once_. We do this synchronously,
1585 	 * because there really aren't any performance issues here
1586 	 * and we need to check for errors.
1587 	 */
1588 	lock_page(page);
1589 
1590 	/* Somebody truncated the page on us? */
1591 	if (!page->mapping) {
1592 		unlock_page(page);
1593 		goto err;
1594 	}
1595 	/* Somebody else successfully read it in? */
1596 	if (PageUptodate(page)) {
1597 		unlock_page(page);
1598 		goto success;
1599 	}
1600 
1601 	ClearPageError(page);
1602 	error = mapping->a_ops->readpage(file, page);
1603 	if (!error) {
1604 		wait_on_page_locked(page);
1605 		if (PageUptodate(page))
1606 			goto success;
1607 	} else if (error == AOP_TRUNCATED_PAGE) {
1608 		page_cache_release(page);
1609 		goto retry_find;
1610 	}
1611 
1612 	/*
1613 	 * Things didn't work out. Return zero to tell the
1614 	 * mm layer so, possibly freeing the page cache page first.
1615 	 */
1616 err:
1617 	page_cache_release(page);
1618 
1619 	return NULL;
1620 }
1621 
1622 int filemap_populate(struct vm_area_struct *vma, unsigned long addr,
1623 		unsigned long len, pgprot_t prot, unsigned long pgoff,
1624 		int nonblock)
1625 {
1626 	struct file *file = vma->vm_file;
1627 	struct address_space *mapping = file->f_mapping;
1628 	struct inode *inode = mapping->host;
1629 	unsigned long size;
1630 	struct mm_struct *mm = vma->vm_mm;
1631 	struct page *page;
1632 	int err;
1633 
1634 	if (!nonblock)
1635 		force_page_cache_readahead(mapping, vma->vm_file,
1636 					pgoff, len >> PAGE_CACHE_SHIFT);
1637 
1638 repeat:
1639 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1640 	if (pgoff + (len >> PAGE_CACHE_SHIFT) > size)
1641 		return -EINVAL;
1642 
1643 	page = filemap_getpage(file, pgoff, nonblock);
1644 
1645 	/* XXX: This is wrong, a filesystem I/O error may have happened. Fix that as
1646 	 * done in shmem_populate calling shmem_getpage */
1647 	if (!page && !nonblock)
1648 		return -ENOMEM;
1649 
1650 	if (page) {
1651 		err = install_page(mm, vma, addr, page, prot);
1652 		if (err) {
1653 			page_cache_release(page);
1654 			return err;
1655 		}
1656 	} else if (vma->vm_flags & VM_NONLINEAR) {
1657 		/* No page was found just because we can't read it in now (being
1658 		 * here implies nonblock != 0), but the page may exist, so set
1659 		 * the PTE to fault it in later. */
1660 		err = install_file_pte(mm, vma, addr, pgoff, prot);
1661 		if (err)
1662 			return err;
1663 	}
1664 
1665 	len -= PAGE_SIZE;
1666 	addr += PAGE_SIZE;
1667 	pgoff++;
1668 	if (len)
1669 		goto repeat;
1670 
1671 	return 0;
1672 }
1673 EXPORT_SYMBOL(filemap_populate);
1674 
1675 struct vm_operations_struct generic_file_vm_ops = {
1676 	.nopage		= filemap_nopage,
1677 	.populate	= filemap_populate,
1678 };
1679 
1680 /* This is used for a general mmap of a disk file */
1681 
1682 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1683 {
1684 	struct address_space *mapping = file->f_mapping;
1685 
1686 	if (!mapping->a_ops->readpage)
1687 		return -ENOEXEC;
1688 	file_accessed(file);
1689 	vma->vm_ops = &generic_file_vm_ops;
1690 	return 0;
1691 }
1692 
1693 /*
1694  * This is for filesystems which do not implement ->writepage.
1695  */
1696 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1697 {
1698 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1699 		return -EINVAL;
1700 	return generic_file_mmap(file, vma);
1701 }
1702 #else
1703 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1704 {
1705 	return -ENOSYS;
1706 }
1707 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1708 {
1709 	return -ENOSYS;
1710 }
1711 #endif /* CONFIG_MMU */
1712 
1713 EXPORT_SYMBOL(generic_file_mmap);
1714 EXPORT_SYMBOL(generic_file_readonly_mmap);
1715 
1716 static struct page *__read_cache_page(struct address_space *mapping,
1717 				unsigned long index,
1718 				int (*filler)(void *,struct page*),
1719 				void *data)
1720 {
1721 	struct page *page, *cached_page = NULL;
1722 	int err;
1723 repeat:
1724 	page = find_get_page(mapping, index);
1725 	if (!page) {
1726 		if (!cached_page) {
1727 			cached_page = page_cache_alloc_cold(mapping);
1728 			if (!cached_page)
1729 				return ERR_PTR(-ENOMEM);
1730 		}
1731 		err = add_to_page_cache_lru(cached_page, mapping,
1732 					index, GFP_KERNEL);
1733 		if (err == -EEXIST)
1734 			goto repeat;
1735 		if (err < 0) {
1736 			/* Presumably ENOMEM for radix tree node */
1737 			page_cache_release(cached_page);
1738 			return ERR_PTR(err);
1739 		}
1740 		page = cached_page;
1741 		cached_page = NULL;
1742 		err = filler(data, page);
1743 		if (err < 0) {
1744 			page_cache_release(page);
1745 			page = ERR_PTR(err);
1746 		}
1747 	}
1748 	if (cached_page)
1749 		page_cache_release(cached_page);
1750 	return page;
1751 }
1752 
1753 /*
1754  * Same as read_cache_page, but don't wait for page to become unlocked
1755  * after submitting it to the filler.
1756  */
1757 struct page *read_cache_page_async(struct address_space *mapping,
1758 				unsigned long index,
1759 				int (*filler)(void *,struct page*),
1760 				void *data)
1761 {
1762 	struct page *page;
1763 	int err;
1764 
1765 retry:
1766 	page = __read_cache_page(mapping, index, filler, data);
1767 	if (IS_ERR(page))
1768 		return page;
1769 	if (PageUptodate(page))
1770 		goto out;
1771 
1772 	lock_page(page);
1773 	if (!page->mapping) {
1774 		unlock_page(page);
1775 		page_cache_release(page);
1776 		goto retry;
1777 	}
1778 	if (PageUptodate(page)) {
1779 		unlock_page(page);
1780 		goto out;
1781 	}
1782 	err = filler(data, page);
1783 	if (err < 0) {
1784 		page_cache_release(page);
1785 		return ERR_PTR(err);
1786 	}
1787 out:
1788 	mark_page_accessed(page);
1789 	return page;
1790 }
1791 EXPORT_SYMBOL(read_cache_page_async);
1792 
1793 /**
1794  * read_cache_page - read into page cache, fill it if needed
1795  * @mapping:	the page's address_space
1796  * @index:	the page index
1797  * @filler:	function to perform the read
1798  * @data:	destination for read data
1799  *
1800  * Read into the page cache. If a page already exists, and PageUptodate() is
1801  * not set, try to fill the page then wait for it to become unlocked.
1802  *
1803  * If the page does not get brought uptodate, return -EIO.
1804  */
1805 struct page *read_cache_page(struct address_space *mapping,
1806 				unsigned long index,
1807 				int (*filler)(void *,struct page*),
1808 				void *data)
1809 {
1810 	struct page *page;
1811 
1812 	page = read_cache_page_async(mapping, index, filler, data);
1813 	if (IS_ERR(page))
1814 		goto out;
1815 	wait_on_page_locked(page);
1816 	if (!PageUptodate(page)) {
1817 		page_cache_release(page);
1818 		page = ERR_PTR(-EIO);
1819 	}
1820  out:
1821 	return page;
1822 }
1823 EXPORT_SYMBOL(read_cache_page);
1824 
1825 /*
1826  * If the page was newly created, increment its refcount and add it to the
1827  * caller's lru-buffering pagevec.  This function is specifically for
1828  * generic_file_write().
1829  */
1830 static inline struct page *
1831 __grab_cache_page(struct address_space *mapping, unsigned long index,
1832 			struct page **cached_page, struct pagevec *lru_pvec)
1833 {
1834 	int err;
1835 	struct page *page;
1836 repeat:
1837 	page = find_lock_page(mapping, index);
1838 	if (!page) {
1839 		if (!*cached_page) {
1840 			*cached_page = page_cache_alloc(mapping);
1841 			if (!*cached_page)
1842 				return NULL;
1843 		}
1844 		err = add_to_page_cache(*cached_page, mapping,
1845 					index, GFP_KERNEL);
1846 		if (err == -EEXIST)
1847 			goto repeat;
1848 		if (err == 0) {
1849 			page = *cached_page;
1850 			page_cache_get(page);
1851 			if (!pagevec_add(lru_pvec, page))
1852 				__pagevec_lru_add(lru_pvec);
1853 			*cached_page = NULL;
1854 		}
1855 	}
1856 	return page;
1857 }
1858 
1859 /*
1860  * The logic we want is
1861  *
1862  *	if suid or (sgid and xgrp)
1863  *		remove privs
1864  */
1865 int should_remove_suid(struct dentry *dentry)
1866 {
1867 	mode_t mode = dentry->d_inode->i_mode;
1868 	int kill = 0;
1869 
1870 	/* suid always must be killed */
1871 	if (unlikely(mode & S_ISUID))
1872 		kill = ATTR_KILL_SUID;
1873 
1874 	/*
1875 	 * sgid without any exec bits is just a mandatory locking mark; leave
1876 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1877 	 */
1878 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1879 		kill |= ATTR_KILL_SGID;
1880 
1881 	if (unlikely(kill && !capable(CAP_FSETID)))
1882 		return kill;
1883 
1884 	return 0;
1885 }
1886 EXPORT_SYMBOL(should_remove_suid);
1887 
1888 int __remove_suid(struct dentry *dentry, int kill)
1889 {
1890 	struct iattr newattrs;
1891 
1892 	newattrs.ia_valid = ATTR_FORCE | kill;
1893 	return notify_change(dentry, &newattrs);
1894 }
1895 
1896 int remove_suid(struct dentry *dentry)
1897 {
1898 	int kill = should_remove_suid(dentry);
1899 
1900 	if (unlikely(kill))
1901 		return __remove_suid(dentry, kill);
1902 
1903 	return 0;
1904 }
1905 EXPORT_SYMBOL(remove_suid);
1906 
1907 size_t
1908 __filemap_copy_from_user_iovec_inatomic(char *vaddr,
1909 			const struct iovec *iov, size_t base, size_t bytes)
1910 {
1911 	size_t copied = 0, left = 0;
1912 
1913 	while (bytes) {
1914 		char __user *buf = iov->iov_base + base;
1915 		int copy = min(bytes, iov->iov_len - base);
1916 
1917 		base = 0;
1918 		left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1919 		copied += copy;
1920 		bytes -= copy;
1921 		vaddr += copy;
1922 		iov++;
1923 
1924 		if (unlikely(left))
1925 			break;
1926 	}
1927 	return copied - left;
1928 }
1929 
1930 /*
1931  * Performs necessary checks before doing a write
1932  *
1933  * Can adjust writing position or amount of bytes to write.
1934  * Returns appropriate error code that caller should return or
1935  * zero in case that write should be allowed.
1936  */
1937 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1938 {
1939 	struct inode *inode = file->f_mapping->host;
1940 	unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1941 
1942         if (unlikely(*pos < 0))
1943                 return -EINVAL;
1944 
1945 	if (!isblk) {
1946 		/* FIXME: this is for backwards compatibility with 2.4 */
1947 		if (file->f_flags & O_APPEND)
1948                         *pos = i_size_read(inode);
1949 
1950 		if (limit != RLIM_INFINITY) {
1951 			if (*pos >= limit) {
1952 				send_sig(SIGXFSZ, current, 0);
1953 				return -EFBIG;
1954 			}
1955 			if (*count > limit - (typeof(limit))*pos) {
1956 				*count = limit - (typeof(limit))*pos;
1957 			}
1958 		}
1959 	}
1960 
1961 	/*
1962 	 * LFS rule
1963 	 */
1964 	if (unlikely(*pos + *count > MAX_NON_LFS &&
1965 				!(file->f_flags & O_LARGEFILE))) {
1966 		if (*pos >= MAX_NON_LFS) {
1967 			send_sig(SIGXFSZ, current, 0);
1968 			return -EFBIG;
1969 		}
1970 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1971 			*count = MAX_NON_LFS - (unsigned long)*pos;
1972 		}
1973 	}
1974 
1975 	/*
1976 	 * Are we about to exceed the fs block limit ?
1977 	 *
1978 	 * If we have written data it becomes a short write.  If we have
1979 	 * exceeded without writing data we send a signal and return EFBIG.
1980 	 * Linus frestrict idea will clean these up nicely..
1981 	 */
1982 	if (likely(!isblk)) {
1983 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1984 			if (*count || *pos > inode->i_sb->s_maxbytes) {
1985 				send_sig(SIGXFSZ, current, 0);
1986 				return -EFBIG;
1987 			}
1988 			/* zero-length writes at ->s_maxbytes are OK */
1989 		}
1990 
1991 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1992 			*count = inode->i_sb->s_maxbytes - *pos;
1993 	} else {
1994 #ifdef CONFIG_BLOCK
1995 		loff_t isize;
1996 		if (bdev_read_only(I_BDEV(inode)))
1997 			return -EPERM;
1998 		isize = i_size_read(inode);
1999 		if (*pos >= isize) {
2000 			if (*count || *pos > isize)
2001 				return -ENOSPC;
2002 		}
2003 
2004 		if (*pos + *count > isize)
2005 			*count = isize - *pos;
2006 #else
2007 		return -EPERM;
2008 #endif
2009 	}
2010 	return 0;
2011 }
2012 EXPORT_SYMBOL(generic_write_checks);
2013 
2014 ssize_t
2015 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2016 		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2017 		size_t count, size_t ocount)
2018 {
2019 	struct file	*file = iocb->ki_filp;
2020 	struct address_space *mapping = file->f_mapping;
2021 	struct inode	*inode = mapping->host;
2022 	ssize_t		written;
2023 
2024 	if (count != ocount)
2025 		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2026 
2027 	written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2028 	if (written > 0) {
2029 		loff_t end = pos + written;
2030 		if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2031 			i_size_write(inode,  end);
2032 			mark_inode_dirty(inode);
2033 		}
2034 		*ppos = end;
2035 	}
2036 
2037 	/*
2038 	 * Sync the fs metadata but not the minor inode changes and
2039 	 * of course not the data as we did direct DMA for the IO.
2040 	 * i_mutex is held, which protects generic_osync_inode() from
2041 	 * livelocking.  AIO O_DIRECT ops attempt to sync metadata here.
2042 	 */
2043 	if ((written >= 0 || written == -EIOCBQUEUED) &&
2044 	    ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2045 		int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2046 		if (err < 0)
2047 			written = err;
2048 	}
2049 	return written;
2050 }
2051 EXPORT_SYMBOL(generic_file_direct_write);
2052 
2053 ssize_t
2054 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2055 		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2056 		size_t count, ssize_t written)
2057 {
2058 	struct file *file = iocb->ki_filp;
2059 	struct address_space * mapping = file->f_mapping;
2060 	const struct address_space_operations *a_ops = mapping->a_ops;
2061 	struct inode 	*inode = mapping->host;
2062 	long		status = 0;
2063 	struct page	*page;
2064 	struct page	*cached_page = NULL;
2065 	size_t		bytes;
2066 	struct pagevec	lru_pvec;
2067 	const struct iovec *cur_iov = iov; /* current iovec */
2068 	size_t		iov_base = 0;	   /* offset in the current iovec */
2069 	char __user	*buf;
2070 
2071 	pagevec_init(&lru_pvec, 0);
2072 
2073 	/*
2074 	 * handle partial DIO write.  Adjust cur_iov if needed.
2075 	 */
2076 	if (likely(nr_segs == 1))
2077 		buf = iov->iov_base + written;
2078 	else {
2079 		filemap_set_next_iovec(&cur_iov, &iov_base, written);
2080 		buf = cur_iov->iov_base + iov_base;
2081 	}
2082 
2083 	do {
2084 		unsigned long index;
2085 		unsigned long offset;
2086 		size_t copied;
2087 
2088 		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
2089 		index = pos >> PAGE_CACHE_SHIFT;
2090 		bytes = PAGE_CACHE_SIZE - offset;
2091 
2092 		/* Limit the size of the copy to the caller's write size */
2093 		bytes = min(bytes, count);
2094 
2095 		/* We only need to worry about prefaulting when writes are from
2096 		 * user-space.  NFSd uses vfs_writev with several non-aligned
2097 		 * segments in the vector, and limiting to one segment a time is
2098 		 * a noticeable performance for re-write
2099 		 */
2100 		if (!segment_eq(get_fs(), KERNEL_DS)) {
2101 			/*
2102 			 * Limit the size of the copy to that of the current
2103 			 * segment, because fault_in_pages_readable() doesn't
2104 			 * know how to walk segments.
2105 			 */
2106 			bytes = min(bytes, cur_iov->iov_len - iov_base);
2107 
2108 			/*
2109 			 * Bring in the user page that we will copy from
2110 			 * _first_.  Otherwise there's a nasty deadlock on
2111 			 * copying from the same page as we're writing to,
2112 			 * without it being marked up-to-date.
2113 			 */
2114 			fault_in_pages_readable(buf, bytes);
2115 		}
2116 		page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec);
2117 		if (!page) {
2118 			status = -ENOMEM;
2119 			break;
2120 		}
2121 
2122 		if (unlikely(bytes == 0)) {
2123 			status = 0;
2124 			copied = 0;
2125 			goto zero_length_segment;
2126 		}
2127 
2128 		status = a_ops->prepare_write(file, page, offset, offset+bytes);
2129 		if (unlikely(status)) {
2130 			loff_t isize = i_size_read(inode);
2131 
2132 			if (status != AOP_TRUNCATED_PAGE)
2133 				unlock_page(page);
2134 			page_cache_release(page);
2135 			if (status == AOP_TRUNCATED_PAGE)
2136 				continue;
2137 			/*
2138 			 * prepare_write() may have instantiated a few blocks
2139 			 * outside i_size.  Trim these off again.
2140 			 */
2141 			if (pos + bytes > isize)
2142 				vmtruncate(inode, isize);
2143 			break;
2144 		}
2145 		if (likely(nr_segs == 1))
2146 			copied = filemap_copy_from_user(page, offset,
2147 							buf, bytes);
2148 		else
2149 			copied = filemap_copy_from_user_iovec(page, offset,
2150 						cur_iov, iov_base, bytes);
2151 		flush_dcache_page(page);
2152 		status = a_ops->commit_write(file, page, offset, offset+bytes);
2153 		if (status == AOP_TRUNCATED_PAGE) {
2154 			page_cache_release(page);
2155 			continue;
2156 		}
2157 zero_length_segment:
2158 		if (likely(copied >= 0)) {
2159 			if (!status)
2160 				status = copied;
2161 
2162 			if (status >= 0) {
2163 				written += status;
2164 				count -= status;
2165 				pos += status;
2166 				buf += status;
2167 				if (unlikely(nr_segs > 1)) {
2168 					filemap_set_next_iovec(&cur_iov,
2169 							&iov_base, status);
2170 					if (count)
2171 						buf = cur_iov->iov_base +
2172 							iov_base;
2173 				} else {
2174 					iov_base += status;
2175 				}
2176 			}
2177 		}
2178 		if (unlikely(copied != bytes))
2179 			if (status >= 0)
2180 				status = -EFAULT;
2181 		unlock_page(page);
2182 		mark_page_accessed(page);
2183 		page_cache_release(page);
2184 		if (status < 0)
2185 			break;
2186 		balance_dirty_pages_ratelimited(mapping);
2187 		cond_resched();
2188 	} while (count);
2189 	*ppos = pos;
2190 
2191 	if (cached_page)
2192 		page_cache_release(cached_page);
2193 
2194 	/*
2195 	 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
2196 	 */
2197 	if (likely(status >= 0)) {
2198 		if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2199 			if (!a_ops->writepage || !is_sync_kiocb(iocb))
2200 				status = generic_osync_inode(inode, mapping,
2201 						OSYNC_METADATA|OSYNC_DATA);
2202 		}
2203   	}
2204 
2205 	/*
2206 	 * If we get here for O_DIRECT writes then we must have fallen through
2207 	 * to buffered writes (block instantiation inside i_size).  So we sync
2208 	 * the file data here, to try to honour O_DIRECT expectations.
2209 	 */
2210 	if (unlikely(file->f_flags & O_DIRECT) && written)
2211 		status = filemap_write_and_wait(mapping);
2212 
2213 	pagevec_lru_add(&lru_pvec);
2214 	return written ? written : status;
2215 }
2216 EXPORT_SYMBOL(generic_file_buffered_write);
2217 
2218 static ssize_t
2219 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2220 				unsigned long nr_segs, loff_t *ppos)
2221 {
2222 	struct file *file = iocb->ki_filp;
2223 	struct address_space * mapping = file->f_mapping;
2224 	size_t ocount;		/* original count */
2225 	size_t count;		/* after file limit checks */
2226 	struct inode 	*inode = mapping->host;
2227 	loff_t		pos;
2228 	ssize_t		written;
2229 	ssize_t		err;
2230 
2231 	ocount = 0;
2232 	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2233 	if (err)
2234 		return err;
2235 
2236 	count = ocount;
2237 	pos = *ppos;
2238 
2239 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2240 
2241 	/* We can write back this queue in page reclaim */
2242 	current->backing_dev_info = mapping->backing_dev_info;
2243 	written = 0;
2244 
2245 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2246 	if (err)
2247 		goto out;
2248 
2249 	if (count == 0)
2250 		goto out;
2251 
2252 	err = remove_suid(file->f_path.dentry);
2253 	if (err)
2254 		goto out;
2255 
2256 	file_update_time(file);
2257 
2258 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2259 	if (unlikely(file->f_flags & O_DIRECT)) {
2260 		loff_t endbyte;
2261 		ssize_t written_buffered;
2262 
2263 		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2264 							ppos, count, ocount);
2265 		if (written < 0 || written == count)
2266 			goto out;
2267 		/*
2268 		 * direct-io write to a hole: fall through to buffered I/O
2269 		 * for completing the rest of the request.
2270 		 */
2271 		pos += written;
2272 		count -= written;
2273 		written_buffered = generic_file_buffered_write(iocb, iov,
2274 						nr_segs, pos, ppos, count,
2275 						written);
2276 		/*
2277 		 * If generic_file_buffered_write() retuned a synchronous error
2278 		 * then we want to return the number of bytes which were
2279 		 * direct-written, or the error code if that was zero.  Note
2280 		 * that this differs from normal direct-io semantics, which
2281 		 * will return -EFOO even if some bytes were written.
2282 		 */
2283 		if (written_buffered < 0) {
2284 			err = written_buffered;
2285 			goto out;
2286 		}
2287 
2288 		/*
2289 		 * We need to ensure that the page cache pages are written to
2290 		 * disk and invalidated to preserve the expected O_DIRECT
2291 		 * semantics.
2292 		 */
2293 		endbyte = pos + written_buffered - written - 1;
2294 		err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2295 					    SYNC_FILE_RANGE_WAIT_BEFORE|
2296 					    SYNC_FILE_RANGE_WRITE|
2297 					    SYNC_FILE_RANGE_WAIT_AFTER);
2298 		if (err == 0) {
2299 			written = written_buffered;
2300 			invalidate_mapping_pages(mapping,
2301 						 pos >> PAGE_CACHE_SHIFT,
2302 						 endbyte >> PAGE_CACHE_SHIFT);
2303 		} else {
2304 			/*
2305 			 * We don't know how much we wrote, so just return
2306 			 * the number of bytes which were direct-written
2307 			 */
2308 		}
2309 	} else {
2310 		written = generic_file_buffered_write(iocb, iov, nr_segs,
2311 				pos, ppos, count, written);
2312 	}
2313 out:
2314 	current->backing_dev_info = NULL;
2315 	return written ? written : err;
2316 }
2317 
2318 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2319 		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2320 {
2321 	struct file *file = iocb->ki_filp;
2322 	struct address_space *mapping = file->f_mapping;
2323 	struct inode *inode = mapping->host;
2324 	ssize_t ret;
2325 
2326 	BUG_ON(iocb->ki_pos != pos);
2327 
2328 	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2329 			&iocb->ki_pos);
2330 
2331 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2332 		ssize_t err;
2333 
2334 		err = sync_page_range_nolock(inode, mapping, pos, ret);
2335 		if (err < 0)
2336 			ret = err;
2337 	}
2338 	return ret;
2339 }
2340 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2341 
2342 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2343 		unsigned long nr_segs, loff_t pos)
2344 {
2345 	struct file *file = iocb->ki_filp;
2346 	struct address_space *mapping = file->f_mapping;
2347 	struct inode *inode = mapping->host;
2348 	ssize_t ret;
2349 
2350 	BUG_ON(iocb->ki_pos != pos);
2351 
2352 	mutex_lock(&inode->i_mutex);
2353 	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2354 			&iocb->ki_pos);
2355 	mutex_unlock(&inode->i_mutex);
2356 
2357 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2358 		ssize_t err;
2359 
2360 		err = sync_page_range(inode, mapping, pos, ret);
2361 		if (err < 0)
2362 			ret = err;
2363 	}
2364 	return ret;
2365 }
2366 EXPORT_SYMBOL(generic_file_aio_write);
2367 
2368 /*
2369  * Called under i_mutex for writes to S_ISREG files.   Returns -EIO if something
2370  * went wrong during pagecache shootdown.
2371  */
2372 static ssize_t
2373 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2374 	loff_t offset, unsigned long nr_segs)
2375 {
2376 	struct file *file = iocb->ki_filp;
2377 	struct address_space *mapping = file->f_mapping;
2378 	ssize_t retval;
2379 	size_t write_len;
2380 	pgoff_t end = 0; /* silence gcc */
2381 
2382 	/*
2383 	 * If it's a write, unmap all mmappings of the file up-front.  This
2384 	 * will cause any pte dirty bits to be propagated into the pageframes
2385 	 * for the subsequent filemap_write_and_wait().
2386 	 */
2387 	if (rw == WRITE) {
2388 		write_len = iov_length(iov, nr_segs);
2389 		end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT;
2390 	       	if (mapping_mapped(mapping))
2391 			unmap_mapping_range(mapping, offset, write_len, 0);
2392 	}
2393 
2394 	retval = filemap_write_and_wait(mapping);
2395 	if (retval)
2396 		goto out;
2397 
2398 	/*
2399 	 * After a write we want buffered reads to be sure to go to disk to get
2400 	 * the new data.  We invalidate clean cached page from the region we're
2401 	 * about to write.  We do this *before* the write so that we can return
2402 	 * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2403 	 */
2404 	if (rw == WRITE && mapping->nrpages) {
2405 		retval = invalidate_inode_pages2_range(mapping,
2406 					offset >> PAGE_CACHE_SHIFT, end);
2407 		if (retval)
2408 			goto out;
2409 	}
2410 
2411 	retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs);
2412 	if (retval)
2413 		goto out;
2414 
2415 	/*
2416 	 * Finally, try again to invalidate clean pages which might have been
2417 	 * faulted in by get_user_pages() if the source of the write was an
2418 	 * mmap()ed region of the file we're writing.  That's a pretty crazy
2419 	 * thing to do, so we don't support it 100%.  If this invalidation
2420 	 * fails and we have -EIOCBQUEUED we ignore the failure.
2421 	 */
2422 	if (rw == WRITE && mapping->nrpages) {
2423 		int err = invalidate_inode_pages2_range(mapping,
2424 					      offset >> PAGE_CACHE_SHIFT, end);
2425 		if (err && retval >= 0)
2426 			retval = err;
2427 	}
2428 out:
2429 	return retval;
2430 }
2431 
2432 /**
2433  * try_to_release_page() - release old fs-specific metadata on a page
2434  *
2435  * @page: the page which the kernel is trying to free
2436  * @gfp_mask: memory allocation flags (and I/O mode)
2437  *
2438  * The address_space is to try to release any data against the page
2439  * (presumably at page->private).  If the release was successful, return `1'.
2440  * Otherwise return zero.
2441  *
2442  * The @gfp_mask argument specifies whether I/O may be performed to release
2443  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2444  *
2445  * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2446  */
2447 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2448 {
2449 	struct address_space * const mapping = page->mapping;
2450 
2451 	BUG_ON(!PageLocked(page));
2452 	if (PageWriteback(page))
2453 		return 0;
2454 
2455 	if (mapping && mapping->a_ops->releasepage)
2456 		return mapping->a_ops->releasepage(page, gfp_mask);
2457 	return try_to_free_buffers(page);
2458 }
2459 
2460 EXPORT_SYMBOL(try_to_release_page);
2461