1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/filemap.c 4 * 5 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 7 8 /* 9 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differently, for example) 12 */ 13 #include <linux/export.h> 14 #include <linux/compiler.h> 15 #include <linux/dax.h> 16 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 19 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 22 #include <linux/mm.h> 23 #include <linux/swap.h> 24 #include <linux/mman.h> 25 #include <linux/pagemap.h> 26 #include <linux/file.h> 27 #include <linux/uio.h> 28 #include <linux/error-injection.h> 29 #include <linux/hash.h> 30 #include <linux/writeback.h> 31 #include <linux/backing-dev.h> 32 #include <linux/pagevec.h> 33 #include <linux/blkdev.h> 34 #include <linux/security.h> 35 #include <linux/cpuset.h> 36 #include <linux/hugetlb.h> 37 #include <linux/memcontrol.h> 38 #include <linux/cleancache.h> 39 #include <linux/shmem_fs.h> 40 #include <linux/rmap.h> 41 #include <linux/delayacct.h> 42 #include <linux/psi.h> 43 #include <linux/ramfs.h> 44 #include <linux/page_idle.h> 45 #include <asm/pgalloc.h> 46 #include <asm/tlbflush.h> 47 #include "internal.h" 48 49 #define CREATE_TRACE_POINTS 50 #include <trace/events/filemap.h> 51 52 /* 53 * FIXME: remove all knowledge of the buffer layer from the core VM 54 */ 55 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 56 57 #include <asm/mman.h> 58 59 /* 60 * Shared mappings implemented 30.11.1994. It's not fully working yet, 61 * though. 62 * 63 * Shared mappings now work. 15.8.1995 Bruno. 64 * 65 * finished 'unifying' the page and buffer cache and SMP-threaded the 66 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 67 * 68 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 69 */ 70 71 /* 72 * Lock ordering: 73 * 74 * ->i_mmap_rwsem (truncate_pagecache) 75 * ->private_lock (__free_pte->__set_page_dirty_buffers) 76 * ->swap_lock (exclusive_swap_page, others) 77 * ->i_pages lock 78 * 79 * ->i_mutex 80 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 81 * 82 * ->mmap_lock 83 * ->i_mmap_rwsem 84 * ->page_table_lock or pte_lock (various, mainly in memory.c) 85 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 86 * 87 * ->mmap_lock 88 * ->lock_page (access_process_vm) 89 * 90 * ->i_mutex (generic_perform_write) 91 * ->mmap_lock (fault_in_pages_readable->do_page_fault) 92 * 93 * bdi->wb.list_lock 94 * sb_lock (fs/fs-writeback.c) 95 * ->i_pages lock (__sync_single_inode) 96 * 97 * ->i_mmap_rwsem 98 * ->anon_vma.lock (vma_adjust) 99 * 100 * ->anon_vma.lock 101 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 102 * 103 * ->page_table_lock or pte_lock 104 * ->swap_lock (try_to_unmap_one) 105 * ->private_lock (try_to_unmap_one) 106 * ->i_pages lock (try_to_unmap_one) 107 * ->lruvec->lru_lock (follow_page->mark_page_accessed) 108 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page) 109 * ->private_lock (page_remove_rmap->set_page_dirty) 110 * ->i_pages lock (page_remove_rmap->set_page_dirty) 111 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 112 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 113 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) 114 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 115 * ->inode->i_lock (zap_pte_range->set_page_dirty) 116 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 117 * 118 * ->i_mmap_rwsem 119 * ->tasklist_lock (memory_failure, collect_procs_ao) 120 */ 121 122 static void page_cache_delete(struct address_space *mapping, 123 struct page *page, void *shadow) 124 { 125 XA_STATE(xas, &mapping->i_pages, page->index); 126 unsigned int nr = 1; 127 128 mapping_set_update(&xas, mapping); 129 130 /* hugetlb pages are represented by a single entry in the xarray */ 131 if (!PageHuge(page)) { 132 xas_set_order(&xas, page->index, compound_order(page)); 133 nr = compound_nr(page); 134 } 135 136 VM_BUG_ON_PAGE(!PageLocked(page), page); 137 VM_BUG_ON_PAGE(PageTail(page), page); 138 VM_BUG_ON_PAGE(nr != 1 && shadow, page); 139 140 xas_store(&xas, shadow); 141 xas_init_marks(&xas); 142 143 page->mapping = NULL; 144 /* Leave page->index set: truncation lookup relies upon it */ 145 mapping->nrpages -= nr; 146 } 147 148 static void unaccount_page_cache_page(struct address_space *mapping, 149 struct page *page) 150 { 151 int nr; 152 153 /* 154 * if we're uptodate, flush out into the cleancache, otherwise 155 * invalidate any existing cleancache entries. We can't leave 156 * stale data around in the cleancache once our page is gone 157 */ 158 if (PageUptodate(page) && PageMappedToDisk(page)) 159 cleancache_put_page(page); 160 else 161 cleancache_invalidate_page(mapping, page); 162 163 VM_BUG_ON_PAGE(PageTail(page), page); 164 VM_BUG_ON_PAGE(page_mapped(page), page); 165 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) { 166 int mapcount; 167 168 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 169 current->comm, page_to_pfn(page)); 170 dump_page(page, "still mapped when deleted"); 171 dump_stack(); 172 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 173 174 mapcount = page_mapcount(page); 175 if (mapping_exiting(mapping) && 176 page_count(page) >= mapcount + 2) { 177 /* 178 * All vmas have already been torn down, so it's 179 * a good bet that actually the page is unmapped, 180 * and we'd prefer not to leak it: if we're wrong, 181 * some other bad page check should catch it later. 182 */ 183 page_mapcount_reset(page); 184 page_ref_sub(page, mapcount); 185 } 186 } 187 188 /* hugetlb pages do not participate in page cache accounting. */ 189 if (PageHuge(page)) 190 return; 191 192 nr = thp_nr_pages(page); 193 194 __mod_lruvec_page_state(page, NR_FILE_PAGES, -nr); 195 if (PageSwapBacked(page)) { 196 __mod_lruvec_page_state(page, NR_SHMEM, -nr); 197 if (PageTransHuge(page)) 198 __mod_lruvec_page_state(page, NR_SHMEM_THPS, -nr); 199 } else if (PageTransHuge(page)) { 200 __mod_lruvec_page_state(page, NR_FILE_THPS, -nr); 201 filemap_nr_thps_dec(mapping); 202 } 203 204 /* 205 * At this point page must be either written or cleaned by 206 * truncate. Dirty page here signals a bug and loss of 207 * unwritten data. 208 * 209 * This fixes dirty accounting after removing the page entirely 210 * but leaves PageDirty set: it has no effect for truncated 211 * page and anyway will be cleared before returning page into 212 * buddy allocator. 213 */ 214 if (WARN_ON_ONCE(PageDirty(page))) 215 account_page_cleaned(page, mapping, inode_to_wb(mapping->host)); 216 } 217 218 /* 219 * Delete a page from the page cache and free it. Caller has to make 220 * sure the page is locked and that nobody else uses it - or that usage 221 * is safe. The caller must hold the i_pages lock. 222 */ 223 void __delete_from_page_cache(struct page *page, void *shadow) 224 { 225 struct address_space *mapping = page->mapping; 226 227 trace_mm_filemap_delete_from_page_cache(page); 228 229 unaccount_page_cache_page(mapping, page); 230 page_cache_delete(mapping, page, shadow); 231 } 232 233 static void page_cache_free_page(struct address_space *mapping, 234 struct page *page) 235 { 236 void (*freepage)(struct page *); 237 238 freepage = mapping->a_ops->freepage; 239 if (freepage) 240 freepage(page); 241 242 if (PageTransHuge(page) && !PageHuge(page)) { 243 page_ref_sub(page, thp_nr_pages(page)); 244 VM_BUG_ON_PAGE(page_count(page) <= 0, page); 245 } else { 246 put_page(page); 247 } 248 } 249 250 /** 251 * delete_from_page_cache - delete page from page cache 252 * @page: the page which the kernel is trying to remove from page cache 253 * 254 * This must be called only on pages that have been verified to be in the page 255 * cache and locked. It will never put the page into the free list, the caller 256 * has a reference on the page. 257 */ 258 void delete_from_page_cache(struct page *page) 259 { 260 struct address_space *mapping = page_mapping(page); 261 unsigned long flags; 262 263 BUG_ON(!PageLocked(page)); 264 xa_lock_irqsave(&mapping->i_pages, flags); 265 __delete_from_page_cache(page, NULL); 266 xa_unlock_irqrestore(&mapping->i_pages, flags); 267 268 page_cache_free_page(mapping, page); 269 } 270 EXPORT_SYMBOL(delete_from_page_cache); 271 272 /* 273 * page_cache_delete_batch - delete several pages from page cache 274 * @mapping: the mapping to which pages belong 275 * @pvec: pagevec with pages to delete 276 * 277 * The function walks over mapping->i_pages and removes pages passed in @pvec 278 * from the mapping. The function expects @pvec to be sorted by page index 279 * and is optimised for it to be dense. 280 * It tolerates holes in @pvec (mapping entries at those indices are not 281 * modified). The function expects only THP head pages to be present in the 282 * @pvec. 283 * 284 * The function expects the i_pages lock to be held. 285 */ 286 static void page_cache_delete_batch(struct address_space *mapping, 287 struct pagevec *pvec) 288 { 289 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index); 290 int total_pages = 0; 291 int i = 0; 292 struct page *page; 293 294 mapping_set_update(&xas, mapping); 295 xas_for_each(&xas, page, ULONG_MAX) { 296 if (i >= pagevec_count(pvec)) 297 break; 298 299 /* A swap/dax/shadow entry got inserted? Skip it. */ 300 if (xa_is_value(page)) 301 continue; 302 /* 303 * A page got inserted in our range? Skip it. We have our 304 * pages locked so they are protected from being removed. 305 * If we see a page whose index is higher than ours, it 306 * means our page has been removed, which shouldn't be 307 * possible because we're holding the PageLock. 308 */ 309 if (page != pvec->pages[i]) { 310 VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index, 311 page); 312 continue; 313 } 314 315 WARN_ON_ONCE(!PageLocked(page)); 316 317 if (page->index == xas.xa_index) 318 page->mapping = NULL; 319 /* Leave page->index set: truncation lookup relies on it */ 320 321 /* 322 * Move to the next page in the vector if this is a regular 323 * page or the index is of the last sub-page of this compound 324 * page. 325 */ 326 if (page->index + compound_nr(page) - 1 == xas.xa_index) 327 i++; 328 xas_store(&xas, NULL); 329 total_pages++; 330 } 331 mapping->nrpages -= total_pages; 332 } 333 334 void delete_from_page_cache_batch(struct address_space *mapping, 335 struct pagevec *pvec) 336 { 337 int i; 338 unsigned long flags; 339 340 if (!pagevec_count(pvec)) 341 return; 342 343 xa_lock_irqsave(&mapping->i_pages, flags); 344 for (i = 0; i < pagevec_count(pvec); i++) { 345 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]); 346 347 unaccount_page_cache_page(mapping, pvec->pages[i]); 348 } 349 page_cache_delete_batch(mapping, pvec); 350 xa_unlock_irqrestore(&mapping->i_pages, flags); 351 352 for (i = 0; i < pagevec_count(pvec); i++) 353 page_cache_free_page(mapping, pvec->pages[i]); 354 } 355 356 int filemap_check_errors(struct address_space *mapping) 357 { 358 int ret = 0; 359 /* Check for outstanding write errors */ 360 if (test_bit(AS_ENOSPC, &mapping->flags) && 361 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 362 ret = -ENOSPC; 363 if (test_bit(AS_EIO, &mapping->flags) && 364 test_and_clear_bit(AS_EIO, &mapping->flags)) 365 ret = -EIO; 366 return ret; 367 } 368 EXPORT_SYMBOL(filemap_check_errors); 369 370 static int filemap_check_and_keep_errors(struct address_space *mapping) 371 { 372 /* Check for outstanding write errors */ 373 if (test_bit(AS_EIO, &mapping->flags)) 374 return -EIO; 375 if (test_bit(AS_ENOSPC, &mapping->flags)) 376 return -ENOSPC; 377 return 0; 378 } 379 380 /** 381 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 382 * @mapping: address space structure to write 383 * @start: offset in bytes where the range starts 384 * @end: offset in bytes where the range ends (inclusive) 385 * @sync_mode: enable synchronous operation 386 * 387 * Start writeback against all of a mapping's dirty pages that lie 388 * within the byte offsets <start, end> inclusive. 389 * 390 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 391 * opposed to a regular memory cleansing writeback. The difference between 392 * these two operations is that if a dirty page/buffer is encountered, it must 393 * be waited upon, and not just skipped over. 394 * 395 * Return: %0 on success, negative error code otherwise. 396 */ 397 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 398 loff_t end, int sync_mode) 399 { 400 int ret; 401 struct writeback_control wbc = { 402 .sync_mode = sync_mode, 403 .nr_to_write = LONG_MAX, 404 .range_start = start, 405 .range_end = end, 406 }; 407 408 if (!mapping_can_writeback(mapping) || 409 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 410 return 0; 411 412 wbc_attach_fdatawrite_inode(&wbc, mapping->host); 413 ret = do_writepages(mapping, &wbc); 414 wbc_detach_inode(&wbc); 415 return ret; 416 } 417 418 static inline int __filemap_fdatawrite(struct address_space *mapping, 419 int sync_mode) 420 { 421 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 422 } 423 424 int filemap_fdatawrite(struct address_space *mapping) 425 { 426 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 427 } 428 EXPORT_SYMBOL(filemap_fdatawrite); 429 430 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 431 loff_t end) 432 { 433 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 434 } 435 EXPORT_SYMBOL(filemap_fdatawrite_range); 436 437 /** 438 * filemap_flush - mostly a non-blocking flush 439 * @mapping: target address_space 440 * 441 * This is a mostly non-blocking flush. Not suitable for data-integrity 442 * purposes - I/O may not be started against all dirty pages. 443 * 444 * Return: %0 on success, negative error code otherwise. 445 */ 446 int filemap_flush(struct address_space *mapping) 447 { 448 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 449 } 450 EXPORT_SYMBOL(filemap_flush); 451 452 /** 453 * filemap_range_has_page - check if a page exists in range. 454 * @mapping: address space within which to check 455 * @start_byte: offset in bytes where the range starts 456 * @end_byte: offset in bytes where the range ends (inclusive) 457 * 458 * Find at least one page in the range supplied, usually used to check if 459 * direct writing in this range will trigger a writeback. 460 * 461 * Return: %true if at least one page exists in the specified range, 462 * %false otherwise. 463 */ 464 bool filemap_range_has_page(struct address_space *mapping, 465 loff_t start_byte, loff_t end_byte) 466 { 467 struct page *page; 468 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 469 pgoff_t max = end_byte >> PAGE_SHIFT; 470 471 if (end_byte < start_byte) 472 return false; 473 474 rcu_read_lock(); 475 for (;;) { 476 page = xas_find(&xas, max); 477 if (xas_retry(&xas, page)) 478 continue; 479 /* Shadow entries don't count */ 480 if (xa_is_value(page)) 481 continue; 482 /* 483 * We don't need to try to pin this page; we're about to 484 * release the RCU lock anyway. It is enough to know that 485 * there was a page here recently. 486 */ 487 break; 488 } 489 rcu_read_unlock(); 490 491 return page != NULL; 492 } 493 EXPORT_SYMBOL(filemap_range_has_page); 494 495 static void __filemap_fdatawait_range(struct address_space *mapping, 496 loff_t start_byte, loff_t end_byte) 497 { 498 pgoff_t index = start_byte >> PAGE_SHIFT; 499 pgoff_t end = end_byte >> PAGE_SHIFT; 500 struct pagevec pvec; 501 int nr_pages; 502 503 if (end_byte < start_byte) 504 return; 505 506 pagevec_init(&pvec); 507 while (index <= end) { 508 unsigned i; 509 510 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, 511 end, PAGECACHE_TAG_WRITEBACK); 512 if (!nr_pages) 513 break; 514 515 for (i = 0; i < nr_pages; i++) { 516 struct page *page = pvec.pages[i]; 517 518 wait_on_page_writeback(page); 519 ClearPageError(page); 520 } 521 pagevec_release(&pvec); 522 cond_resched(); 523 } 524 } 525 526 /** 527 * filemap_fdatawait_range - wait for writeback to complete 528 * @mapping: address space structure to wait for 529 * @start_byte: offset in bytes where the range starts 530 * @end_byte: offset in bytes where the range ends (inclusive) 531 * 532 * Walk the list of under-writeback pages of the given address space 533 * in the given range and wait for all of them. Check error status of 534 * the address space and return it. 535 * 536 * Since the error status of the address space is cleared by this function, 537 * callers are responsible for checking the return value and handling and/or 538 * reporting the error. 539 * 540 * Return: error status of the address space. 541 */ 542 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 543 loff_t end_byte) 544 { 545 __filemap_fdatawait_range(mapping, start_byte, end_byte); 546 return filemap_check_errors(mapping); 547 } 548 EXPORT_SYMBOL(filemap_fdatawait_range); 549 550 /** 551 * filemap_fdatawait_range_keep_errors - wait for writeback to complete 552 * @mapping: address space structure to wait for 553 * @start_byte: offset in bytes where the range starts 554 * @end_byte: offset in bytes where the range ends (inclusive) 555 * 556 * Walk the list of under-writeback pages of the given address space in the 557 * given range and wait for all of them. Unlike filemap_fdatawait_range(), 558 * this function does not clear error status of the address space. 559 * 560 * Use this function if callers don't handle errors themselves. Expected 561 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 562 * fsfreeze(8) 563 */ 564 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 565 loff_t start_byte, loff_t end_byte) 566 { 567 __filemap_fdatawait_range(mapping, start_byte, end_byte); 568 return filemap_check_and_keep_errors(mapping); 569 } 570 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); 571 572 /** 573 * file_fdatawait_range - wait for writeback to complete 574 * @file: file pointing to address space structure to wait for 575 * @start_byte: offset in bytes where the range starts 576 * @end_byte: offset in bytes where the range ends (inclusive) 577 * 578 * Walk the list of under-writeback pages of the address space that file 579 * refers to, in the given range and wait for all of them. Check error 580 * status of the address space vs. the file->f_wb_err cursor and return it. 581 * 582 * Since the error status of the file is advanced by this function, 583 * callers are responsible for checking the return value and handling and/or 584 * reporting the error. 585 * 586 * Return: error status of the address space vs. the file->f_wb_err cursor. 587 */ 588 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 589 { 590 struct address_space *mapping = file->f_mapping; 591 592 __filemap_fdatawait_range(mapping, start_byte, end_byte); 593 return file_check_and_advance_wb_err(file); 594 } 595 EXPORT_SYMBOL(file_fdatawait_range); 596 597 /** 598 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 599 * @mapping: address space structure to wait for 600 * 601 * Walk the list of under-writeback pages of the given address space 602 * and wait for all of them. Unlike filemap_fdatawait(), this function 603 * does not clear error status of the address space. 604 * 605 * Use this function if callers don't handle errors themselves. Expected 606 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 607 * fsfreeze(8) 608 * 609 * Return: error status of the address space. 610 */ 611 int filemap_fdatawait_keep_errors(struct address_space *mapping) 612 { 613 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 614 return filemap_check_and_keep_errors(mapping); 615 } 616 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 617 618 /* Returns true if writeback might be needed or already in progress. */ 619 static bool mapping_needs_writeback(struct address_space *mapping) 620 { 621 return mapping->nrpages; 622 } 623 624 /** 625 * filemap_range_needs_writeback - check if range potentially needs writeback 626 * @mapping: address space within which to check 627 * @start_byte: offset in bytes where the range starts 628 * @end_byte: offset in bytes where the range ends (inclusive) 629 * 630 * Find at least one page in the range supplied, usually used to check if 631 * direct writing in this range will trigger a writeback. Used by O_DIRECT 632 * read/write with IOCB_NOWAIT, to see if the caller needs to do 633 * filemap_write_and_wait_range() before proceeding. 634 * 635 * Return: %true if the caller should do filemap_write_and_wait_range() before 636 * doing O_DIRECT to a page in this range, %false otherwise. 637 */ 638 bool filemap_range_needs_writeback(struct address_space *mapping, 639 loff_t start_byte, loff_t end_byte) 640 { 641 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 642 pgoff_t max = end_byte >> PAGE_SHIFT; 643 struct page *page; 644 645 if (!mapping_needs_writeback(mapping)) 646 return false; 647 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 648 !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) 649 return false; 650 if (end_byte < start_byte) 651 return false; 652 653 rcu_read_lock(); 654 xas_for_each(&xas, page, max) { 655 if (xas_retry(&xas, page)) 656 continue; 657 if (xa_is_value(page)) 658 continue; 659 if (PageDirty(page) || PageLocked(page) || PageWriteback(page)) 660 break; 661 } 662 rcu_read_unlock(); 663 return page != NULL; 664 } 665 EXPORT_SYMBOL_GPL(filemap_range_needs_writeback); 666 667 /** 668 * filemap_write_and_wait_range - write out & wait on a file range 669 * @mapping: the address_space for the pages 670 * @lstart: offset in bytes where the range starts 671 * @lend: offset in bytes where the range ends (inclusive) 672 * 673 * Write out and wait upon file offsets lstart->lend, inclusive. 674 * 675 * Note that @lend is inclusive (describes the last byte to be written) so 676 * that this function can be used to write to the very end-of-file (end = -1). 677 * 678 * Return: error status of the address space. 679 */ 680 int filemap_write_and_wait_range(struct address_space *mapping, 681 loff_t lstart, loff_t lend) 682 { 683 int err = 0; 684 685 if (mapping_needs_writeback(mapping)) { 686 err = __filemap_fdatawrite_range(mapping, lstart, lend, 687 WB_SYNC_ALL); 688 /* 689 * Even if the above returned error, the pages may be 690 * written partially (e.g. -ENOSPC), so we wait for it. 691 * But the -EIO is special case, it may indicate the worst 692 * thing (e.g. bug) happened, so we avoid waiting for it. 693 */ 694 if (err != -EIO) { 695 int err2 = filemap_fdatawait_range(mapping, 696 lstart, lend); 697 if (!err) 698 err = err2; 699 } else { 700 /* Clear any previously stored errors */ 701 filemap_check_errors(mapping); 702 } 703 } else { 704 err = filemap_check_errors(mapping); 705 } 706 return err; 707 } 708 EXPORT_SYMBOL(filemap_write_and_wait_range); 709 710 void __filemap_set_wb_err(struct address_space *mapping, int err) 711 { 712 errseq_t eseq = errseq_set(&mapping->wb_err, err); 713 714 trace_filemap_set_wb_err(mapping, eseq); 715 } 716 EXPORT_SYMBOL(__filemap_set_wb_err); 717 718 /** 719 * file_check_and_advance_wb_err - report wb error (if any) that was previously 720 * and advance wb_err to current one 721 * @file: struct file on which the error is being reported 722 * 723 * When userland calls fsync (or something like nfsd does the equivalent), we 724 * want to report any writeback errors that occurred since the last fsync (or 725 * since the file was opened if there haven't been any). 726 * 727 * Grab the wb_err from the mapping. If it matches what we have in the file, 728 * then just quickly return 0. The file is all caught up. 729 * 730 * If it doesn't match, then take the mapping value, set the "seen" flag in 731 * it and try to swap it into place. If it works, or another task beat us 732 * to it with the new value, then update the f_wb_err and return the error 733 * portion. The error at this point must be reported via proper channels 734 * (a'la fsync, or NFS COMMIT operation, etc.). 735 * 736 * While we handle mapping->wb_err with atomic operations, the f_wb_err 737 * value is protected by the f_lock since we must ensure that it reflects 738 * the latest value swapped in for this file descriptor. 739 * 740 * Return: %0 on success, negative error code otherwise. 741 */ 742 int file_check_and_advance_wb_err(struct file *file) 743 { 744 int err = 0; 745 errseq_t old = READ_ONCE(file->f_wb_err); 746 struct address_space *mapping = file->f_mapping; 747 748 /* Locklessly handle the common case where nothing has changed */ 749 if (errseq_check(&mapping->wb_err, old)) { 750 /* Something changed, must use slow path */ 751 spin_lock(&file->f_lock); 752 old = file->f_wb_err; 753 err = errseq_check_and_advance(&mapping->wb_err, 754 &file->f_wb_err); 755 trace_file_check_and_advance_wb_err(file, old); 756 spin_unlock(&file->f_lock); 757 } 758 759 /* 760 * We're mostly using this function as a drop in replacement for 761 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 762 * that the legacy code would have had on these flags. 763 */ 764 clear_bit(AS_EIO, &mapping->flags); 765 clear_bit(AS_ENOSPC, &mapping->flags); 766 return err; 767 } 768 EXPORT_SYMBOL(file_check_and_advance_wb_err); 769 770 /** 771 * file_write_and_wait_range - write out & wait on a file range 772 * @file: file pointing to address_space with pages 773 * @lstart: offset in bytes where the range starts 774 * @lend: offset in bytes where the range ends (inclusive) 775 * 776 * Write out and wait upon file offsets lstart->lend, inclusive. 777 * 778 * Note that @lend is inclusive (describes the last byte to be written) so 779 * that this function can be used to write to the very end-of-file (end = -1). 780 * 781 * After writing out and waiting on the data, we check and advance the 782 * f_wb_err cursor to the latest value, and return any errors detected there. 783 * 784 * Return: %0 on success, negative error code otherwise. 785 */ 786 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 787 { 788 int err = 0, err2; 789 struct address_space *mapping = file->f_mapping; 790 791 if (mapping_needs_writeback(mapping)) { 792 err = __filemap_fdatawrite_range(mapping, lstart, lend, 793 WB_SYNC_ALL); 794 /* See comment of filemap_write_and_wait() */ 795 if (err != -EIO) 796 __filemap_fdatawait_range(mapping, lstart, lend); 797 } 798 err2 = file_check_and_advance_wb_err(file); 799 if (!err) 800 err = err2; 801 return err; 802 } 803 EXPORT_SYMBOL(file_write_and_wait_range); 804 805 /** 806 * replace_page_cache_page - replace a pagecache page with a new one 807 * @old: page to be replaced 808 * @new: page to replace with 809 * 810 * This function replaces a page in the pagecache with a new one. On 811 * success it acquires the pagecache reference for the new page and 812 * drops it for the old page. Both the old and new pages must be 813 * locked. This function does not add the new page to the LRU, the 814 * caller must do that. 815 * 816 * The remove + add is atomic. This function cannot fail. 817 */ 818 void replace_page_cache_page(struct page *old, struct page *new) 819 { 820 struct address_space *mapping = old->mapping; 821 void (*freepage)(struct page *) = mapping->a_ops->freepage; 822 pgoff_t offset = old->index; 823 XA_STATE(xas, &mapping->i_pages, offset); 824 unsigned long flags; 825 826 VM_BUG_ON_PAGE(!PageLocked(old), old); 827 VM_BUG_ON_PAGE(!PageLocked(new), new); 828 VM_BUG_ON_PAGE(new->mapping, new); 829 830 get_page(new); 831 new->mapping = mapping; 832 new->index = offset; 833 834 mem_cgroup_migrate(old, new); 835 836 xas_lock_irqsave(&xas, flags); 837 xas_store(&xas, new); 838 839 old->mapping = NULL; 840 /* hugetlb pages do not participate in page cache accounting. */ 841 if (!PageHuge(old)) 842 __dec_lruvec_page_state(old, NR_FILE_PAGES); 843 if (!PageHuge(new)) 844 __inc_lruvec_page_state(new, NR_FILE_PAGES); 845 if (PageSwapBacked(old)) 846 __dec_lruvec_page_state(old, NR_SHMEM); 847 if (PageSwapBacked(new)) 848 __inc_lruvec_page_state(new, NR_SHMEM); 849 xas_unlock_irqrestore(&xas, flags); 850 if (freepage) 851 freepage(old); 852 put_page(old); 853 } 854 EXPORT_SYMBOL_GPL(replace_page_cache_page); 855 856 noinline int __add_to_page_cache_locked(struct page *page, 857 struct address_space *mapping, 858 pgoff_t offset, gfp_t gfp, 859 void **shadowp) 860 { 861 XA_STATE(xas, &mapping->i_pages, offset); 862 int huge = PageHuge(page); 863 int error; 864 bool charged = false; 865 866 VM_BUG_ON_PAGE(!PageLocked(page), page); 867 VM_BUG_ON_PAGE(PageSwapBacked(page), page); 868 mapping_set_update(&xas, mapping); 869 870 get_page(page); 871 page->mapping = mapping; 872 page->index = offset; 873 874 if (!huge) { 875 error = mem_cgroup_charge(page, NULL, gfp); 876 if (error) 877 goto error; 878 charged = true; 879 } 880 881 gfp &= GFP_RECLAIM_MASK; 882 883 do { 884 unsigned int order = xa_get_order(xas.xa, xas.xa_index); 885 void *entry, *old = NULL; 886 887 if (order > thp_order(page)) 888 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index), 889 order, gfp); 890 xas_lock_irq(&xas); 891 xas_for_each_conflict(&xas, entry) { 892 old = entry; 893 if (!xa_is_value(entry)) { 894 xas_set_err(&xas, -EEXIST); 895 goto unlock; 896 } 897 } 898 899 if (old) { 900 if (shadowp) 901 *shadowp = old; 902 /* entry may have been split before we acquired lock */ 903 order = xa_get_order(xas.xa, xas.xa_index); 904 if (order > thp_order(page)) { 905 xas_split(&xas, old, order); 906 xas_reset(&xas); 907 } 908 } 909 910 xas_store(&xas, page); 911 if (xas_error(&xas)) 912 goto unlock; 913 914 mapping->nrpages++; 915 916 /* hugetlb pages do not participate in page cache accounting */ 917 if (!huge) 918 __inc_lruvec_page_state(page, NR_FILE_PAGES); 919 unlock: 920 xas_unlock_irq(&xas); 921 } while (xas_nomem(&xas, gfp)); 922 923 if (xas_error(&xas)) { 924 error = xas_error(&xas); 925 if (charged) 926 mem_cgroup_uncharge(page); 927 goto error; 928 } 929 930 trace_mm_filemap_add_to_page_cache(page); 931 return 0; 932 error: 933 page->mapping = NULL; 934 /* Leave page->index set: truncation relies upon it */ 935 put_page(page); 936 return error; 937 } 938 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO); 939 940 /** 941 * add_to_page_cache_locked - add a locked page to the pagecache 942 * @page: page to add 943 * @mapping: the page's address_space 944 * @offset: page index 945 * @gfp_mask: page allocation mode 946 * 947 * This function is used to add a page to the pagecache. It must be locked. 948 * This function does not add the page to the LRU. The caller must do that. 949 * 950 * Return: %0 on success, negative error code otherwise. 951 */ 952 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 953 pgoff_t offset, gfp_t gfp_mask) 954 { 955 return __add_to_page_cache_locked(page, mapping, offset, 956 gfp_mask, NULL); 957 } 958 EXPORT_SYMBOL(add_to_page_cache_locked); 959 960 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 961 pgoff_t offset, gfp_t gfp_mask) 962 { 963 void *shadow = NULL; 964 int ret; 965 966 __SetPageLocked(page); 967 ret = __add_to_page_cache_locked(page, mapping, offset, 968 gfp_mask, &shadow); 969 if (unlikely(ret)) 970 __ClearPageLocked(page); 971 else { 972 /* 973 * The page might have been evicted from cache only 974 * recently, in which case it should be activated like 975 * any other repeatedly accessed page. 976 * The exception is pages getting rewritten; evicting other 977 * data from the working set, only to cache data that will 978 * get overwritten with something else, is a waste of memory. 979 */ 980 WARN_ON_ONCE(PageActive(page)); 981 if (!(gfp_mask & __GFP_WRITE) && shadow) 982 workingset_refault(page, shadow); 983 lru_cache_add(page); 984 } 985 return ret; 986 } 987 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 988 989 #ifdef CONFIG_NUMA 990 struct page *__page_cache_alloc(gfp_t gfp) 991 { 992 int n; 993 struct page *page; 994 995 if (cpuset_do_page_mem_spread()) { 996 unsigned int cpuset_mems_cookie; 997 do { 998 cpuset_mems_cookie = read_mems_allowed_begin(); 999 n = cpuset_mem_spread_node(); 1000 page = __alloc_pages_node(n, gfp, 0); 1001 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie)); 1002 1003 return page; 1004 } 1005 return alloc_pages(gfp, 0); 1006 } 1007 EXPORT_SYMBOL(__page_cache_alloc); 1008 #endif 1009 1010 /* 1011 * In order to wait for pages to become available there must be 1012 * waitqueues associated with pages. By using a hash table of 1013 * waitqueues where the bucket discipline is to maintain all 1014 * waiters on the same queue and wake all when any of the pages 1015 * become available, and for the woken contexts to check to be 1016 * sure the appropriate page became available, this saves space 1017 * at a cost of "thundering herd" phenomena during rare hash 1018 * collisions. 1019 */ 1020 #define PAGE_WAIT_TABLE_BITS 8 1021 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 1022 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 1023 1024 static wait_queue_head_t *page_waitqueue(struct page *page) 1025 { 1026 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)]; 1027 } 1028 1029 void __init pagecache_init(void) 1030 { 1031 int i; 1032 1033 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 1034 init_waitqueue_head(&page_wait_table[i]); 1035 1036 page_writeback_init(); 1037 } 1038 1039 /* 1040 * The page wait code treats the "wait->flags" somewhat unusually, because 1041 * we have multiple different kinds of waits, not just the usual "exclusive" 1042 * one. 1043 * 1044 * We have: 1045 * 1046 * (a) no special bits set: 1047 * 1048 * We're just waiting for the bit to be released, and when a waker 1049 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up, 1050 * and remove it from the wait queue. 1051 * 1052 * Simple and straightforward. 1053 * 1054 * (b) WQ_FLAG_EXCLUSIVE: 1055 * 1056 * The waiter is waiting to get the lock, and only one waiter should 1057 * be woken up to avoid any thundering herd behavior. We'll set the 1058 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue. 1059 * 1060 * This is the traditional exclusive wait. 1061 * 1062 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM: 1063 * 1064 * The waiter is waiting to get the bit, and additionally wants the 1065 * lock to be transferred to it for fair lock behavior. If the lock 1066 * cannot be taken, we stop walking the wait queue without waking 1067 * the waiter. 1068 * 1069 * This is the "fair lock handoff" case, and in addition to setting 1070 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see 1071 * that it now has the lock. 1072 */ 1073 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 1074 { 1075 unsigned int flags; 1076 struct wait_page_key *key = arg; 1077 struct wait_page_queue *wait_page 1078 = container_of(wait, struct wait_page_queue, wait); 1079 1080 if (!wake_page_match(wait_page, key)) 1081 return 0; 1082 1083 /* 1084 * If it's a lock handoff wait, we get the bit for it, and 1085 * stop walking (and do not wake it up) if we can't. 1086 */ 1087 flags = wait->flags; 1088 if (flags & WQ_FLAG_EXCLUSIVE) { 1089 if (test_bit(key->bit_nr, &key->page->flags)) 1090 return -1; 1091 if (flags & WQ_FLAG_CUSTOM) { 1092 if (test_and_set_bit(key->bit_nr, &key->page->flags)) 1093 return -1; 1094 flags |= WQ_FLAG_DONE; 1095 } 1096 } 1097 1098 /* 1099 * We are holding the wait-queue lock, but the waiter that 1100 * is waiting for this will be checking the flags without 1101 * any locking. 1102 * 1103 * So update the flags atomically, and wake up the waiter 1104 * afterwards to avoid any races. This store-release pairs 1105 * with the load-acquire in wait_on_page_bit_common(). 1106 */ 1107 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN); 1108 wake_up_state(wait->private, mode); 1109 1110 /* 1111 * Ok, we have successfully done what we're waiting for, 1112 * and we can unconditionally remove the wait entry. 1113 * 1114 * Note that this pairs with the "finish_wait()" in the 1115 * waiter, and has to be the absolute last thing we do. 1116 * After this list_del_init(&wait->entry) the wait entry 1117 * might be de-allocated and the process might even have 1118 * exited. 1119 */ 1120 list_del_init_careful(&wait->entry); 1121 return (flags & WQ_FLAG_EXCLUSIVE) != 0; 1122 } 1123 1124 static void wake_up_page_bit(struct page *page, int bit_nr) 1125 { 1126 wait_queue_head_t *q = page_waitqueue(page); 1127 struct wait_page_key key; 1128 unsigned long flags; 1129 wait_queue_entry_t bookmark; 1130 1131 key.page = page; 1132 key.bit_nr = bit_nr; 1133 key.page_match = 0; 1134 1135 bookmark.flags = 0; 1136 bookmark.private = NULL; 1137 bookmark.func = NULL; 1138 INIT_LIST_HEAD(&bookmark.entry); 1139 1140 spin_lock_irqsave(&q->lock, flags); 1141 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1142 1143 while (bookmark.flags & WQ_FLAG_BOOKMARK) { 1144 /* 1145 * Take a breather from holding the lock, 1146 * allow pages that finish wake up asynchronously 1147 * to acquire the lock and remove themselves 1148 * from wait queue 1149 */ 1150 spin_unlock_irqrestore(&q->lock, flags); 1151 cpu_relax(); 1152 spin_lock_irqsave(&q->lock, flags); 1153 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1154 } 1155 1156 /* 1157 * It is possible for other pages to have collided on the waitqueue 1158 * hash, so in that case check for a page match. That prevents a long- 1159 * term waiter 1160 * 1161 * It is still possible to miss a case here, when we woke page waiters 1162 * and removed them from the waitqueue, but there are still other 1163 * page waiters. 1164 */ 1165 if (!waitqueue_active(q) || !key.page_match) { 1166 ClearPageWaiters(page); 1167 /* 1168 * It's possible to miss clearing Waiters here, when we woke 1169 * our page waiters, but the hashed waitqueue has waiters for 1170 * other pages on it. 1171 * 1172 * That's okay, it's a rare case. The next waker will clear it. 1173 */ 1174 } 1175 spin_unlock_irqrestore(&q->lock, flags); 1176 } 1177 1178 static void wake_up_page(struct page *page, int bit) 1179 { 1180 if (!PageWaiters(page)) 1181 return; 1182 wake_up_page_bit(page, bit); 1183 } 1184 1185 /* 1186 * A choice of three behaviors for wait_on_page_bit_common(): 1187 */ 1188 enum behavior { 1189 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1190 * __lock_page() waiting on then setting PG_locked. 1191 */ 1192 SHARED, /* Hold ref to page and check the bit when woken, like 1193 * wait_on_page_writeback() waiting on PG_writeback. 1194 */ 1195 DROP, /* Drop ref to page before wait, no check when woken, 1196 * like put_and_wait_on_page_locked() on PG_locked. 1197 */ 1198 }; 1199 1200 /* 1201 * Attempt to check (or get) the page bit, and mark us done 1202 * if successful. 1203 */ 1204 static inline bool trylock_page_bit_common(struct page *page, int bit_nr, 1205 struct wait_queue_entry *wait) 1206 { 1207 if (wait->flags & WQ_FLAG_EXCLUSIVE) { 1208 if (test_and_set_bit(bit_nr, &page->flags)) 1209 return false; 1210 } else if (test_bit(bit_nr, &page->flags)) 1211 return false; 1212 1213 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE; 1214 return true; 1215 } 1216 1217 /* How many times do we accept lock stealing from under a waiter? */ 1218 int sysctl_page_lock_unfairness = 5; 1219 1220 static inline int wait_on_page_bit_common(wait_queue_head_t *q, 1221 struct page *page, int bit_nr, int state, enum behavior behavior) 1222 { 1223 int unfairness = sysctl_page_lock_unfairness; 1224 struct wait_page_queue wait_page; 1225 wait_queue_entry_t *wait = &wait_page.wait; 1226 bool thrashing = false; 1227 bool delayacct = false; 1228 unsigned long pflags; 1229 1230 if (bit_nr == PG_locked && 1231 !PageUptodate(page) && PageWorkingset(page)) { 1232 if (!PageSwapBacked(page)) { 1233 delayacct_thrashing_start(); 1234 delayacct = true; 1235 } 1236 psi_memstall_enter(&pflags); 1237 thrashing = true; 1238 } 1239 1240 init_wait(wait); 1241 wait->func = wake_page_function; 1242 wait_page.page = page; 1243 wait_page.bit_nr = bit_nr; 1244 1245 repeat: 1246 wait->flags = 0; 1247 if (behavior == EXCLUSIVE) { 1248 wait->flags = WQ_FLAG_EXCLUSIVE; 1249 if (--unfairness < 0) 1250 wait->flags |= WQ_FLAG_CUSTOM; 1251 } 1252 1253 /* 1254 * Do one last check whether we can get the 1255 * page bit synchronously. 1256 * 1257 * Do the SetPageWaiters() marking before that 1258 * to let any waker we _just_ missed know they 1259 * need to wake us up (otherwise they'll never 1260 * even go to the slow case that looks at the 1261 * page queue), and add ourselves to the wait 1262 * queue if we need to sleep. 1263 * 1264 * This part needs to be done under the queue 1265 * lock to avoid races. 1266 */ 1267 spin_lock_irq(&q->lock); 1268 SetPageWaiters(page); 1269 if (!trylock_page_bit_common(page, bit_nr, wait)) 1270 __add_wait_queue_entry_tail(q, wait); 1271 spin_unlock_irq(&q->lock); 1272 1273 /* 1274 * From now on, all the logic will be based on 1275 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to 1276 * see whether the page bit testing has already 1277 * been done by the wake function. 1278 * 1279 * We can drop our reference to the page. 1280 */ 1281 if (behavior == DROP) 1282 put_page(page); 1283 1284 /* 1285 * Note that until the "finish_wait()", or until 1286 * we see the WQ_FLAG_WOKEN flag, we need to 1287 * be very careful with the 'wait->flags', because 1288 * we may race with a waker that sets them. 1289 */ 1290 for (;;) { 1291 unsigned int flags; 1292 1293 set_current_state(state); 1294 1295 /* Loop until we've been woken or interrupted */ 1296 flags = smp_load_acquire(&wait->flags); 1297 if (!(flags & WQ_FLAG_WOKEN)) { 1298 if (signal_pending_state(state, current)) 1299 break; 1300 1301 io_schedule(); 1302 continue; 1303 } 1304 1305 /* If we were non-exclusive, we're done */ 1306 if (behavior != EXCLUSIVE) 1307 break; 1308 1309 /* If the waker got the lock for us, we're done */ 1310 if (flags & WQ_FLAG_DONE) 1311 break; 1312 1313 /* 1314 * Otherwise, if we're getting the lock, we need to 1315 * try to get it ourselves. 1316 * 1317 * And if that fails, we'll have to retry this all. 1318 */ 1319 if (unlikely(test_and_set_bit(bit_nr, &page->flags))) 1320 goto repeat; 1321 1322 wait->flags |= WQ_FLAG_DONE; 1323 break; 1324 } 1325 1326 /* 1327 * If a signal happened, this 'finish_wait()' may remove the last 1328 * waiter from the wait-queues, but the PageWaiters bit will remain 1329 * set. That's ok. The next wakeup will take care of it, and trying 1330 * to do it here would be difficult and prone to races. 1331 */ 1332 finish_wait(q, wait); 1333 1334 if (thrashing) { 1335 if (delayacct) 1336 delayacct_thrashing_end(); 1337 psi_memstall_leave(&pflags); 1338 } 1339 1340 /* 1341 * NOTE! The wait->flags weren't stable until we've done the 1342 * 'finish_wait()', and we could have exited the loop above due 1343 * to a signal, and had a wakeup event happen after the signal 1344 * test but before the 'finish_wait()'. 1345 * 1346 * So only after the finish_wait() can we reliably determine 1347 * if we got woken up or not, so we can now figure out the final 1348 * return value based on that state without races. 1349 * 1350 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive 1351 * waiter, but an exclusive one requires WQ_FLAG_DONE. 1352 */ 1353 if (behavior == EXCLUSIVE) 1354 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR; 1355 1356 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR; 1357 } 1358 1359 void wait_on_page_bit(struct page *page, int bit_nr) 1360 { 1361 wait_queue_head_t *q = page_waitqueue(page); 1362 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1363 } 1364 EXPORT_SYMBOL(wait_on_page_bit); 1365 1366 int wait_on_page_bit_killable(struct page *page, int bit_nr) 1367 { 1368 wait_queue_head_t *q = page_waitqueue(page); 1369 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED); 1370 } 1371 EXPORT_SYMBOL(wait_on_page_bit_killable); 1372 1373 /** 1374 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked 1375 * @page: The page to wait for. 1376 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc). 1377 * 1378 * The caller should hold a reference on @page. They expect the page to 1379 * become unlocked relatively soon, but do not wish to hold up migration 1380 * (for example) by holding the reference while waiting for the page to 1381 * come unlocked. After this function returns, the caller should not 1382 * dereference @page. 1383 * 1384 * Return: 0 if the page was unlocked or -EINTR if interrupted by a signal. 1385 */ 1386 int put_and_wait_on_page_locked(struct page *page, int state) 1387 { 1388 wait_queue_head_t *q; 1389 1390 page = compound_head(page); 1391 q = page_waitqueue(page); 1392 return wait_on_page_bit_common(q, page, PG_locked, state, DROP); 1393 } 1394 1395 /** 1396 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 1397 * @page: Page defining the wait queue of interest 1398 * @waiter: Waiter to add to the queue 1399 * 1400 * Add an arbitrary @waiter to the wait queue for the nominated @page. 1401 */ 1402 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter) 1403 { 1404 wait_queue_head_t *q = page_waitqueue(page); 1405 unsigned long flags; 1406 1407 spin_lock_irqsave(&q->lock, flags); 1408 __add_wait_queue_entry_tail(q, waiter); 1409 SetPageWaiters(page); 1410 spin_unlock_irqrestore(&q->lock, flags); 1411 } 1412 EXPORT_SYMBOL_GPL(add_page_wait_queue); 1413 1414 #ifndef clear_bit_unlock_is_negative_byte 1415 1416 /* 1417 * PG_waiters is the high bit in the same byte as PG_lock. 1418 * 1419 * On x86 (and on many other architectures), we can clear PG_lock and 1420 * test the sign bit at the same time. But if the architecture does 1421 * not support that special operation, we just do this all by hand 1422 * instead. 1423 * 1424 * The read of PG_waiters has to be after (or concurrently with) PG_locked 1425 * being cleared, but a memory barrier should be unnecessary since it is 1426 * in the same byte as PG_locked. 1427 */ 1428 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) 1429 { 1430 clear_bit_unlock(nr, mem); 1431 /* smp_mb__after_atomic(); */ 1432 return test_bit(PG_waiters, mem); 1433 } 1434 1435 #endif 1436 1437 /** 1438 * unlock_page - unlock a locked page 1439 * @page: the page 1440 * 1441 * Unlocks the page and wakes up sleepers in wait_on_page_locked(). 1442 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 1443 * mechanism between PageLocked pages and PageWriteback pages is shared. 1444 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 1445 * 1446 * Note that this depends on PG_waiters being the sign bit in the byte 1447 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to 1448 * clear the PG_locked bit and test PG_waiters at the same time fairly 1449 * portably (architectures that do LL/SC can test any bit, while x86 can 1450 * test the sign bit). 1451 */ 1452 void unlock_page(struct page *page) 1453 { 1454 BUILD_BUG_ON(PG_waiters != 7); 1455 page = compound_head(page); 1456 VM_BUG_ON_PAGE(!PageLocked(page), page); 1457 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags)) 1458 wake_up_page_bit(page, PG_locked); 1459 } 1460 EXPORT_SYMBOL(unlock_page); 1461 1462 /** 1463 * end_page_private_2 - Clear PG_private_2 and release any waiters 1464 * @page: The page 1465 * 1466 * Clear the PG_private_2 bit on a page and wake up any sleepers waiting for 1467 * this. The page ref held for PG_private_2 being set is released. 1468 * 1469 * This is, for example, used when a netfs page is being written to a local 1470 * disk cache, thereby allowing writes to the cache for the same page to be 1471 * serialised. 1472 */ 1473 void end_page_private_2(struct page *page) 1474 { 1475 page = compound_head(page); 1476 VM_BUG_ON_PAGE(!PagePrivate2(page), page); 1477 clear_bit_unlock(PG_private_2, &page->flags); 1478 wake_up_page_bit(page, PG_private_2); 1479 put_page(page); 1480 } 1481 EXPORT_SYMBOL(end_page_private_2); 1482 1483 /** 1484 * wait_on_page_private_2 - Wait for PG_private_2 to be cleared on a page 1485 * @page: The page to wait on 1486 * 1487 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a page. 1488 */ 1489 void wait_on_page_private_2(struct page *page) 1490 { 1491 page = compound_head(page); 1492 while (PagePrivate2(page)) 1493 wait_on_page_bit(page, PG_private_2); 1494 } 1495 EXPORT_SYMBOL(wait_on_page_private_2); 1496 1497 /** 1498 * wait_on_page_private_2_killable - Wait for PG_private_2 to be cleared on a page 1499 * @page: The page to wait on 1500 * 1501 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a page or until a 1502 * fatal signal is received by the calling task. 1503 * 1504 * Return: 1505 * - 0 if successful. 1506 * - -EINTR if a fatal signal was encountered. 1507 */ 1508 int wait_on_page_private_2_killable(struct page *page) 1509 { 1510 int ret = 0; 1511 1512 page = compound_head(page); 1513 while (PagePrivate2(page)) { 1514 ret = wait_on_page_bit_killable(page, PG_private_2); 1515 if (ret < 0) 1516 break; 1517 } 1518 1519 return ret; 1520 } 1521 EXPORT_SYMBOL(wait_on_page_private_2_killable); 1522 1523 /** 1524 * end_page_writeback - end writeback against a page 1525 * @page: the page 1526 */ 1527 void end_page_writeback(struct page *page) 1528 { 1529 /* 1530 * TestClearPageReclaim could be used here but it is an atomic 1531 * operation and overkill in this particular case. Failing to 1532 * shuffle a page marked for immediate reclaim is too mild to 1533 * justify taking an atomic operation penalty at the end of 1534 * ever page writeback. 1535 */ 1536 if (PageReclaim(page)) { 1537 ClearPageReclaim(page); 1538 rotate_reclaimable_page(page); 1539 } 1540 1541 /* 1542 * Writeback does not hold a page reference of its own, relying 1543 * on truncation to wait for the clearing of PG_writeback. 1544 * But here we must make sure that the page is not freed and 1545 * reused before the wake_up_page(). 1546 */ 1547 get_page(page); 1548 if (!test_clear_page_writeback(page)) 1549 BUG(); 1550 1551 smp_mb__after_atomic(); 1552 wake_up_page(page, PG_writeback); 1553 put_page(page); 1554 } 1555 EXPORT_SYMBOL(end_page_writeback); 1556 1557 /* 1558 * After completing I/O on a page, call this routine to update the page 1559 * flags appropriately 1560 */ 1561 void page_endio(struct page *page, bool is_write, int err) 1562 { 1563 if (!is_write) { 1564 if (!err) { 1565 SetPageUptodate(page); 1566 } else { 1567 ClearPageUptodate(page); 1568 SetPageError(page); 1569 } 1570 unlock_page(page); 1571 } else { 1572 if (err) { 1573 struct address_space *mapping; 1574 1575 SetPageError(page); 1576 mapping = page_mapping(page); 1577 if (mapping) 1578 mapping_set_error(mapping, err); 1579 } 1580 end_page_writeback(page); 1581 } 1582 } 1583 EXPORT_SYMBOL_GPL(page_endio); 1584 1585 /** 1586 * __lock_page - get a lock on the page, assuming we need to sleep to get it 1587 * @__page: the page to lock 1588 */ 1589 void __lock_page(struct page *__page) 1590 { 1591 struct page *page = compound_head(__page); 1592 wait_queue_head_t *q = page_waitqueue(page); 1593 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, 1594 EXCLUSIVE); 1595 } 1596 EXPORT_SYMBOL(__lock_page); 1597 1598 int __lock_page_killable(struct page *__page) 1599 { 1600 struct page *page = compound_head(__page); 1601 wait_queue_head_t *q = page_waitqueue(page); 1602 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, 1603 EXCLUSIVE); 1604 } 1605 EXPORT_SYMBOL_GPL(__lock_page_killable); 1606 1607 int __lock_page_async(struct page *page, struct wait_page_queue *wait) 1608 { 1609 struct wait_queue_head *q = page_waitqueue(page); 1610 int ret = 0; 1611 1612 wait->page = page; 1613 wait->bit_nr = PG_locked; 1614 1615 spin_lock_irq(&q->lock); 1616 __add_wait_queue_entry_tail(q, &wait->wait); 1617 SetPageWaiters(page); 1618 ret = !trylock_page(page); 1619 /* 1620 * If we were successful now, we know we're still on the 1621 * waitqueue as we're still under the lock. This means it's 1622 * safe to remove and return success, we know the callback 1623 * isn't going to trigger. 1624 */ 1625 if (!ret) 1626 __remove_wait_queue(q, &wait->wait); 1627 else 1628 ret = -EIOCBQUEUED; 1629 spin_unlock_irq(&q->lock); 1630 return ret; 1631 } 1632 1633 /* 1634 * Return values: 1635 * 1 - page is locked; mmap_lock is still held. 1636 * 0 - page is not locked. 1637 * mmap_lock has been released (mmap_read_unlock(), unless flags had both 1638 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 1639 * which case mmap_lock is still held. 1640 * 1641 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1 1642 * with the page locked and the mmap_lock unperturbed. 1643 */ 1644 int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 1645 unsigned int flags) 1646 { 1647 if (fault_flag_allow_retry_first(flags)) { 1648 /* 1649 * CAUTION! In this case, mmap_lock is not released 1650 * even though return 0. 1651 */ 1652 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1653 return 0; 1654 1655 mmap_read_unlock(mm); 1656 if (flags & FAULT_FLAG_KILLABLE) 1657 wait_on_page_locked_killable(page); 1658 else 1659 wait_on_page_locked(page); 1660 return 0; 1661 } 1662 if (flags & FAULT_FLAG_KILLABLE) { 1663 int ret; 1664 1665 ret = __lock_page_killable(page); 1666 if (ret) { 1667 mmap_read_unlock(mm); 1668 return 0; 1669 } 1670 } else { 1671 __lock_page(page); 1672 } 1673 return 1; 1674 1675 } 1676 1677 /** 1678 * page_cache_next_miss() - Find the next gap in the page cache. 1679 * @mapping: Mapping. 1680 * @index: Index. 1681 * @max_scan: Maximum range to search. 1682 * 1683 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1684 * gap with the lowest index. 1685 * 1686 * This function may be called under the rcu_read_lock. However, this will 1687 * not atomically search a snapshot of the cache at a single point in time. 1688 * For example, if a gap is created at index 5, then subsequently a gap is 1689 * created at index 10, page_cache_next_miss covering both indices may 1690 * return 10 if called under the rcu_read_lock. 1691 * 1692 * Return: The index of the gap if found, otherwise an index outside the 1693 * range specified (in which case 'return - index >= max_scan' will be true). 1694 * In the rare case of index wrap-around, 0 will be returned. 1695 */ 1696 pgoff_t page_cache_next_miss(struct address_space *mapping, 1697 pgoff_t index, unsigned long max_scan) 1698 { 1699 XA_STATE(xas, &mapping->i_pages, index); 1700 1701 while (max_scan--) { 1702 void *entry = xas_next(&xas); 1703 if (!entry || xa_is_value(entry)) 1704 break; 1705 if (xas.xa_index == 0) 1706 break; 1707 } 1708 1709 return xas.xa_index; 1710 } 1711 EXPORT_SYMBOL(page_cache_next_miss); 1712 1713 /** 1714 * page_cache_prev_miss() - Find the previous gap in the page cache. 1715 * @mapping: Mapping. 1716 * @index: Index. 1717 * @max_scan: Maximum range to search. 1718 * 1719 * Search the range [max(index - max_scan + 1, 0), index] for the 1720 * gap with the highest index. 1721 * 1722 * This function may be called under the rcu_read_lock. However, this will 1723 * not atomically search a snapshot of the cache at a single point in time. 1724 * For example, if a gap is created at index 10, then subsequently a gap is 1725 * created at index 5, page_cache_prev_miss() covering both indices may 1726 * return 5 if called under the rcu_read_lock. 1727 * 1728 * Return: The index of the gap if found, otherwise an index outside the 1729 * range specified (in which case 'index - return >= max_scan' will be true). 1730 * In the rare case of wrap-around, ULONG_MAX will be returned. 1731 */ 1732 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1733 pgoff_t index, unsigned long max_scan) 1734 { 1735 XA_STATE(xas, &mapping->i_pages, index); 1736 1737 while (max_scan--) { 1738 void *entry = xas_prev(&xas); 1739 if (!entry || xa_is_value(entry)) 1740 break; 1741 if (xas.xa_index == ULONG_MAX) 1742 break; 1743 } 1744 1745 return xas.xa_index; 1746 } 1747 EXPORT_SYMBOL(page_cache_prev_miss); 1748 1749 /* 1750 * mapping_get_entry - Get a page cache entry. 1751 * @mapping: the address_space to search 1752 * @index: The page cache index. 1753 * 1754 * Looks up the page cache slot at @mapping & @index. If there is a 1755 * page cache page, the head page is returned with an increased refcount. 1756 * 1757 * If the slot holds a shadow entry of a previously evicted page, or a 1758 * swap entry from shmem/tmpfs, it is returned. 1759 * 1760 * Return: The head page or shadow entry, %NULL if nothing is found. 1761 */ 1762 static struct page *mapping_get_entry(struct address_space *mapping, 1763 pgoff_t index) 1764 { 1765 XA_STATE(xas, &mapping->i_pages, index); 1766 struct page *page; 1767 1768 rcu_read_lock(); 1769 repeat: 1770 xas_reset(&xas); 1771 page = xas_load(&xas); 1772 if (xas_retry(&xas, page)) 1773 goto repeat; 1774 /* 1775 * A shadow entry of a recently evicted page, or a swap entry from 1776 * shmem/tmpfs. Return it without attempting to raise page count. 1777 */ 1778 if (!page || xa_is_value(page)) 1779 goto out; 1780 1781 if (!page_cache_get_speculative(page)) 1782 goto repeat; 1783 1784 /* 1785 * Has the page moved or been split? 1786 * This is part of the lockless pagecache protocol. See 1787 * include/linux/pagemap.h for details. 1788 */ 1789 if (unlikely(page != xas_reload(&xas))) { 1790 put_page(page); 1791 goto repeat; 1792 } 1793 out: 1794 rcu_read_unlock(); 1795 1796 return page; 1797 } 1798 1799 /** 1800 * pagecache_get_page - Find and get a reference to a page. 1801 * @mapping: The address_space to search. 1802 * @index: The page index. 1803 * @fgp_flags: %FGP flags modify how the page is returned. 1804 * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified. 1805 * 1806 * Looks up the page cache entry at @mapping & @index. 1807 * 1808 * @fgp_flags can be zero or more of these flags: 1809 * 1810 * * %FGP_ACCESSED - The page will be marked accessed. 1811 * * %FGP_LOCK - The page is returned locked. 1812 * * %FGP_HEAD - If the page is present and a THP, return the head page 1813 * rather than the exact page specified by the index. 1814 * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it 1815 * instead of allocating a new page to replace it. 1816 * * %FGP_CREAT - If no page is present then a new page is allocated using 1817 * @gfp_mask and added to the page cache and the VM's LRU list. 1818 * The page is returned locked and with an increased refcount. 1819 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the 1820 * page is already in cache. If the page was allocated, unlock it before 1821 * returning so the caller can do the same dance. 1822 * * %FGP_WRITE - The page will be written 1823 * * %FGP_NOFS - __GFP_FS will get cleared in gfp mask 1824 * * %FGP_NOWAIT - Don't get blocked by page lock 1825 * 1826 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even 1827 * if the %GFP flags specified for %FGP_CREAT are atomic. 1828 * 1829 * If there is a page cache page, it is returned with an increased refcount. 1830 * 1831 * Return: The found page or %NULL otherwise. 1832 */ 1833 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index, 1834 int fgp_flags, gfp_t gfp_mask) 1835 { 1836 struct page *page; 1837 1838 repeat: 1839 page = mapping_get_entry(mapping, index); 1840 if (xa_is_value(page)) { 1841 if (fgp_flags & FGP_ENTRY) 1842 return page; 1843 page = NULL; 1844 } 1845 if (!page) 1846 goto no_page; 1847 1848 if (fgp_flags & FGP_LOCK) { 1849 if (fgp_flags & FGP_NOWAIT) { 1850 if (!trylock_page(page)) { 1851 put_page(page); 1852 return NULL; 1853 } 1854 } else { 1855 lock_page(page); 1856 } 1857 1858 /* Has the page been truncated? */ 1859 if (unlikely(page->mapping != mapping)) { 1860 unlock_page(page); 1861 put_page(page); 1862 goto repeat; 1863 } 1864 VM_BUG_ON_PAGE(!thp_contains(page, index), page); 1865 } 1866 1867 if (fgp_flags & FGP_ACCESSED) 1868 mark_page_accessed(page); 1869 else if (fgp_flags & FGP_WRITE) { 1870 /* Clear idle flag for buffer write */ 1871 if (page_is_idle(page)) 1872 clear_page_idle(page); 1873 } 1874 if (!(fgp_flags & FGP_HEAD)) 1875 page = find_subpage(page, index); 1876 1877 no_page: 1878 if (!page && (fgp_flags & FGP_CREAT)) { 1879 int err; 1880 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping)) 1881 gfp_mask |= __GFP_WRITE; 1882 if (fgp_flags & FGP_NOFS) 1883 gfp_mask &= ~__GFP_FS; 1884 1885 page = __page_cache_alloc(gfp_mask); 1886 if (!page) 1887 return NULL; 1888 1889 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 1890 fgp_flags |= FGP_LOCK; 1891 1892 /* Init accessed so avoid atomic mark_page_accessed later */ 1893 if (fgp_flags & FGP_ACCESSED) 1894 __SetPageReferenced(page); 1895 1896 err = add_to_page_cache_lru(page, mapping, index, gfp_mask); 1897 if (unlikely(err)) { 1898 put_page(page); 1899 page = NULL; 1900 if (err == -EEXIST) 1901 goto repeat; 1902 } 1903 1904 /* 1905 * add_to_page_cache_lru locks the page, and for mmap we expect 1906 * an unlocked page. 1907 */ 1908 if (page && (fgp_flags & FGP_FOR_MMAP)) 1909 unlock_page(page); 1910 } 1911 1912 return page; 1913 } 1914 EXPORT_SYMBOL(pagecache_get_page); 1915 1916 static inline struct page *find_get_entry(struct xa_state *xas, pgoff_t max, 1917 xa_mark_t mark) 1918 { 1919 struct page *page; 1920 1921 retry: 1922 if (mark == XA_PRESENT) 1923 page = xas_find(xas, max); 1924 else 1925 page = xas_find_marked(xas, max, mark); 1926 1927 if (xas_retry(xas, page)) 1928 goto retry; 1929 /* 1930 * A shadow entry of a recently evicted page, a swap 1931 * entry from shmem/tmpfs or a DAX entry. Return it 1932 * without attempting to raise page count. 1933 */ 1934 if (!page || xa_is_value(page)) 1935 return page; 1936 1937 if (!page_cache_get_speculative(page)) 1938 goto reset; 1939 1940 /* Has the page moved or been split? */ 1941 if (unlikely(page != xas_reload(xas))) { 1942 put_page(page); 1943 goto reset; 1944 } 1945 1946 return page; 1947 reset: 1948 xas_reset(xas); 1949 goto retry; 1950 } 1951 1952 /** 1953 * find_get_entries - gang pagecache lookup 1954 * @mapping: The address_space to search 1955 * @start: The starting page cache index 1956 * @end: The final page index (inclusive). 1957 * @pvec: Where the resulting entries are placed. 1958 * @indices: The cache indices corresponding to the entries in @entries 1959 * 1960 * find_get_entries() will search for and return a batch of entries in 1961 * the mapping. The entries are placed in @pvec. find_get_entries() 1962 * takes a reference on any actual pages it returns. 1963 * 1964 * The search returns a group of mapping-contiguous page cache entries 1965 * with ascending indexes. There may be holes in the indices due to 1966 * not-present pages. 1967 * 1968 * Any shadow entries of evicted pages, or swap entries from 1969 * shmem/tmpfs, are included in the returned array. 1970 * 1971 * If it finds a Transparent Huge Page, head or tail, find_get_entries() 1972 * stops at that page: the caller is likely to have a better way to handle 1973 * the compound page as a whole, and then skip its extent, than repeatedly 1974 * calling find_get_entries() to return all its tails. 1975 * 1976 * Return: the number of pages and shadow entries which were found. 1977 */ 1978 unsigned find_get_entries(struct address_space *mapping, pgoff_t start, 1979 pgoff_t end, struct pagevec *pvec, pgoff_t *indices) 1980 { 1981 XA_STATE(xas, &mapping->i_pages, start); 1982 struct page *page; 1983 unsigned int ret = 0; 1984 unsigned nr_entries = PAGEVEC_SIZE; 1985 1986 rcu_read_lock(); 1987 while ((page = find_get_entry(&xas, end, XA_PRESENT))) { 1988 /* 1989 * Terminate early on finding a THP, to allow the caller to 1990 * handle it all at once; but continue if this is hugetlbfs. 1991 */ 1992 if (!xa_is_value(page) && PageTransHuge(page) && 1993 !PageHuge(page)) { 1994 page = find_subpage(page, xas.xa_index); 1995 nr_entries = ret + 1; 1996 } 1997 1998 indices[ret] = xas.xa_index; 1999 pvec->pages[ret] = page; 2000 if (++ret == nr_entries) 2001 break; 2002 } 2003 rcu_read_unlock(); 2004 2005 pvec->nr = ret; 2006 return ret; 2007 } 2008 2009 /** 2010 * find_lock_entries - Find a batch of pagecache entries. 2011 * @mapping: The address_space to search. 2012 * @start: The starting page cache index. 2013 * @end: The final page index (inclusive). 2014 * @pvec: Where the resulting entries are placed. 2015 * @indices: The cache indices of the entries in @pvec. 2016 * 2017 * find_lock_entries() will return a batch of entries from @mapping. 2018 * Swap, shadow and DAX entries are included. Pages are returned 2019 * locked and with an incremented refcount. Pages which are locked by 2020 * somebody else or under writeback are skipped. Only the head page of 2021 * a THP is returned. Pages which are partially outside the range are 2022 * not returned. 2023 * 2024 * The entries have ascending indexes. The indices may not be consecutive 2025 * due to not-present entries, THP pages, pages which could not be locked 2026 * or pages under writeback. 2027 * 2028 * Return: The number of entries which were found. 2029 */ 2030 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start, 2031 pgoff_t end, struct pagevec *pvec, pgoff_t *indices) 2032 { 2033 XA_STATE(xas, &mapping->i_pages, start); 2034 struct page *page; 2035 2036 rcu_read_lock(); 2037 while ((page = find_get_entry(&xas, end, XA_PRESENT))) { 2038 if (!xa_is_value(page)) { 2039 if (page->index < start) 2040 goto put; 2041 VM_BUG_ON_PAGE(page->index != xas.xa_index, page); 2042 if (page->index + thp_nr_pages(page) - 1 > end) 2043 goto put; 2044 if (!trylock_page(page)) 2045 goto put; 2046 if (page->mapping != mapping || PageWriteback(page)) 2047 goto unlock; 2048 VM_BUG_ON_PAGE(!thp_contains(page, xas.xa_index), 2049 page); 2050 } 2051 indices[pvec->nr] = xas.xa_index; 2052 if (!pagevec_add(pvec, page)) 2053 break; 2054 goto next; 2055 unlock: 2056 unlock_page(page); 2057 put: 2058 put_page(page); 2059 next: 2060 if (!xa_is_value(page) && PageTransHuge(page)) { 2061 unsigned int nr_pages = thp_nr_pages(page); 2062 2063 /* Final THP may cross MAX_LFS_FILESIZE on 32-bit */ 2064 xas_set(&xas, page->index + nr_pages); 2065 if (xas.xa_index < nr_pages) 2066 break; 2067 } 2068 } 2069 rcu_read_unlock(); 2070 2071 return pagevec_count(pvec); 2072 } 2073 2074 /** 2075 * find_get_pages_range - gang pagecache lookup 2076 * @mapping: The address_space to search 2077 * @start: The starting page index 2078 * @end: The final page index (inclusive) 2079 * @nr_pages: The maximum number of pages 2080 * @pages: Where the resulting pages are placed 2081 * 2082 * find_get_pages_range() will search for and return a group of up to @nr_pages 2083 * pages in the mapping starting at index @start and up to index @end 2084 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes 2085 * a reference against the returned pages. 2086 * 2087 * The search returns a group of mapping-contiguous pages with ascending 2088 * indexes. There may be holes in the indices due to not-present pages. 2089 * We also update @start to index the next page for the traversal. 2090 * 2091 * Return: the number of pages which were found. If this number is 2092 * smaller than @nr_pages, the end of specified range has been 2093 * reached. 2094 */ 2095 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, 2096 pgoff_t end, unsigned int nr_pages, 2097 struct page **pages) 2098 { 2099 XA_STATE(xas, &mapping->i_pages, *start); 2100 struct page *page; 2101 unsigned ret = 0; 2102 2103 if (unlikely(!nr_pages)) 2104 return 0; 2105 2106 rcu_read_lock(); 2107 while ((page = find_get_entry(&xas, end, XA_PRESENT))) { 2108 /* Skip over shadow, swap and DAX entries */ 2109 if (xa_is_value(page)) 2110 continue; 2111 2112 pages[ret] = find_subpage(page, xas.xa_index); 2113 if (++ret == nr_pages) { 2114 *start = xas.xa_index + 1; 2115 goto out; 2116 } 2117 } 2118 2119 /* 2120 * We come here when there is no page beyond @end. We take care to not 2121 * overflow the index @start as it confuses some of the callers. This 2122 * breaks the iteration when there is a page at index -1 but that is 2123 * already broken anyway. 2124 */ 2125 if (end == (pgoff_t)-1) 2126 *start = (pgoff_t)-1; 2127 else 2128 *start = end + 1; 2129 out: 2130 rcu_read_unlock(); 2131 2132 return ret; 2133 } 2134 2135 /** 2136 * find_get_pages_contig - gang contiguous pagecache lookup 2137 * @mapping: The address_space to search 2138 * @index: The starting page index 2139 * @nr_pages: The maximum number of pages 2140 * @pages: Where the resulting pages are placed 2141 * 2142 * find_get_pages_contig() works exactly like find_get_pages(), except 2143 * that the returned number of pages are guaranteed to be contiguous. 2144 * 2145 * Return: the number of pages which were found. 2146 */ 2147 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 2148 unsigned int nr_pages, struct page **pages) 2149 { 2150 XA_STATE(xas, &mapping->i_pages, index); 2151 struct page *page; 2152 unsigned int ret = 0; 2153 2154 if (unlikely(!nr_pages)) 2155 return 0; 2156 2157 rcu_read_lock(); 2158 for (page = xas_load(&xas); page; page = xas_next(&xas)) { 2159 if (xas_retry(&xas, page)) 2160 continue; 2161 /* 2162 * If the entry has been swapped out, we can stop looking. 2163 * No current caller is looking for DAX entries. 2164 */ 2165 if (xa_is_value(page)) 2166 break; 2167 2168 if (!page_cache_get_speculative(page)) 2169 goto retry; 2170 2171 /* Has the page moved or been split? */ 2172 if (unlikely(page != xas_reload(&xas))) 2173 goto put_page; 2174 2175 pages[ret] = find_subpage(page, xas.xa_index); 2176 if (++ret == nr_pages) 2177 break; 2178 continue; 2179 put_page: 2180 put_page(page); 2181 retry: 2182 xas_reset(&xas); 2183 } 2184 rcu_read_unlock(); 2185 return ret; 2186 } 2187 EXPORT_SYMBOL(find_get_pages_contig); 2188 2189 /** 2190 * find_get_pages_range_tag - Find and return head pages matching @tag. 2191 * @mapping: the address_space to search 2192 * @index: the starting page index 2193 * @end: The final page index (inclusive) 2194 * @tag: the tag index 2195 * @nr_pages: the maximum number of pages 2196 * @pages: where the resulting pages are placed 2197 * 2198 * Like find_get_pages(), except we only return head pages which are tagged 2199 * with @tag. @index is updated to the index immediately after the last 2200 * page we return, ready for the next iteration. 2201 * 2202 * Return: the number of pages which were found. 2203 */ 2204 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, 2205 pgoff_t end, xa_mark_t tag, unsigned int nr_pages, 2206 struct page **pages) 2207 { 2208 XA_STATE(xas, &mapping->i_pages, *index); 2209 struct page *page; 2210 unsigned ret = 0; 2211 2212 if (unlikely(!nr_pages)) 2213 return 0; 2214 2215 rcu_read_lock(); 2216 while ((page = find_get_entry(&xas, end, tag))) { 2217 /* 2218 * Shadow entries should never be tagged, but this iteration 2219 * is lockless so there is a window for page reclaim to evict 2220 * a page we saw tagged. Skip over it. 2221 */ 2222 if (xa_is_value(page)) 2223 continue; 2224 2225 pages[ret] = page; 2226 if (++ret == nr_pages) { 2227 *index = page->index + thp_nr_pages(page); 2228 goto out; 2229 } 2230 } 2231 2232 /* 2233 * We come here when we got to @end. We take care to not overflow the 2234 * index @index as it confuses some of the callers. This breaks the 2235 * iteration when there is a page at index -1 but that is already 2236 * broken anyway. 2237 */ 2238 if (end == (pgoff_t)-1) 2239 *index = (pgoff_t)-1; 2240 else 2241 *index = end + 1; 2242 out: 2243 rcu_read_unlock(); 2244 2245 return ret; 2246 } 2247 EXPORT_SYMBOL(find_get_pages_range_tag); 2248 2249 /* 2250 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 2251 * a _large_ part of the i/o request. Imagine the worst scenario: 2252 * 2253 * ---R__________________________________________B__________ 2254 * ^ reading here ^ bad block(assume 4k) 2255 * 2256 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2257 * => failing the whole request => read(R) => read(R+1) => 2258 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2259 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2260 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2261 * 2262 * It is going insane. Fix it by quickly scaling down the readahead size. 2263 */ 2264 static void shrink_readahead_size_eio(struct file_ra_state *ra) 2265 { 2266 ra->ra_pages /= 4; 2267 } 2268 2269 /* 2270 * filemap_get_read_batch - Get a batch of pages for read 2271 * 2272 * Get a batch of pages which represent a contiguous range of bytes 2273 * in the file. No tail pages will be returned. If @index is in the 2274 * middle of a THP, the entire THP will be returned. The last page in 2275 * the batch may have Readahead set or be not Uptodate so that the 2276 * caller can take the appropriate action. 2277 */ 2278 static void filemap_get_read_batch(struct address_space *mapping, 2279 pgoff_t index, pgoff_t max, struct pagevec *pvec) 2280 { 2281 XA_STATE(xas, &mapping->i_pages, index); 2282 struct page *head; 2283 2284 rcu_read_lock(); 2285 for (head = xas_load(&xas); head; head = xas_next(&xas)) { 2286 if (xas_retry(&xas, head)) 2287 continue; 2288 if (xas.xa_index > max || xa_is_value(head)) 2289 break; 2290 if (!page_cache_get_speculative(head)) 2291 goto retry; 2292 2293 /* Has the page moved or been split? */ 2294 if (unlikely(head != xas_reload(&xas))) 2295 goto put_page; 2296 2297 if (!pagevec_add(pvec, head)) 2298 break; 2299 if (!PageUptodate(head)) 2300 break; 2301 if (PageReadahead(head)) 2302 break; 2303 xas.xa_index = head->index + thp_nr_pages(head) - 1; 2304 xas.xa_offset = (xas.xa_index >> xas.xa_shift) & XA_CHUNK_MASK; 2305 continue; 2306 put_page: 2307 put_page(head); 2308 retry: 2309 xas_reset(&xas); 2310 } 2311 rcu_read_unlock(); 2312 } 2313 2314 static int filemap_read_page(struct file *file, struct address_space *mapping, 2315 struct page *page) 2316 { 2317 int error; 2318 2319 /* 2320 * A previous I/O error may have been due to temporary failures, 2321 * eg. multipath errors. PG_error will be set again if readpage 2322 * fails. 2323 */ 2324 ClearPageError(page); 2325 /* Start the actual read. The read will unlock the page. */ 2326 error = mapping->a_ops->readpage(file, page); 2327 if (error) 2328 return error; 2329 2330 error = wait_on_page_locked_killable(page); 2331 if (error) 2332 return error; 2333 if (PageUptodate(page)) 2334 return 0; 2335 shrink_readahead_size_eio(&file->f_ra); 2336 return -EIO; 2337 } 2338 2339 static bool filemap_range_uptodate(struct address_space *mapping, 2340 loff_t pos, struct iov_iter *iter, struct page *page) 2341 { 2342 int count; 2343 2344 if (PageUptodate(page)) 2345 return true; 2346 /* pipes can't handle partially uptodate pages */ 2347 if (iov_iter_is_pipe(iter)) 2348 return false; 2349 if (!mapping->a_ops->is_partially_uptodate) 2350 return false; 2351 if (mapping->host->i_blkbits >= (PAGE_SHIFT + thp_order(page))) 2352 return false; 2353 2354 count = iter->count; 2355 if (page_offset(page) > pos) { 2356 count -= page_offset(page) - pos; 2357 pos = 0; 2358 } else { 2359 pos -= page_offset(page); 2360 } 2361 2362 return mapping->a_ops->is_partially_uptodate(page, pos, count); 2363 } 2364 2365 static int filemap_update_page(struct kiocb *iocb, 2366 struct address_space *mapping, struct iov_iter *iter, 2367 struct page *page) 2368 { 2369 int error; 2370 2371 if (!trylock_page(page)) { 2372 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) 2373 return -EAGAIN; 2374 if (!(iocb->ki_flags & IOCB_WAITQ)) { 2375 put_and_wait_on_page_locked(page, TASK_KILLABLE); 2376 return AOP_TRUNCATED_PAGE; 2377 } 2378 error = __lock_page_async(page, iocb->ki_waitq); 2379 if (error) 2380 return error; 2381 } 2382 2383 if (!page->mapping) 2384 goto truncated; 2385 2386 error = 0; 2387 if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, page)) 2388 goto unlock; 2389 2390 error = -EAGAIN; 2391 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ)) 2392 goto unlock; 2393 2394 error = filemap_read_page(iocb->ki_filp, mapping, page); 2395 if (error == AOP_TRUNCATED_PAGE) 2396 put_page(page); 2397 return error; 2398 truncated: 2399 unlock_page(page); 2400 put_page(page); 2401 return AOP_TRUNCATED_PAGE; 2402 unlock: 2403 unlock_page(page); 2404 return error; 2405 } 2406 2407 static int filemap_create_page(struct file *file, 2408 struct address_space *mapping, pgoff_t index, 2409 struct pagevec *pvec) 2410 { 2411 struct page *page; 2412 int error; 2413 2414 page = page_cache_alloc(mapping); 2415 if (!page) 2416 return -ENOMEM; 2417 2418 error = add_to_page_cache_lru(page, mapping, index, 2419 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2420 if (error == -EEXIST) 2421 error = AOP_TRUNCATED_PAGE; 2422 if (error) 2423 goto error; 2424 2425 error = filemap_read_page(file, mapping, page); 2426 if (error) 2427 goto error; 2428 2429 pagevec_add(pvec, page); 2430 return 0; 2431 error: 2432 put_page(page); 2433 return error; 2434 } 2435 2436 static int filemap_readahead(struct kiocb *iocb, struct file *file, 2437 struct address_space *mapping, struct page *page, 2438 pgoff_t last_index) 2439 { 2440 if (iocb->ki_flags & IOCB_NOIO) 2441 return -EAGAIN; 2442 page_cache_async_readahead(mapping, &file->f_ra, file, page, 2443 page->index, last_index - page->index); 2444 return 0; 2445 } 2446 2447 static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter, 2448 struct pagevec *pvec) 2449 { 2450 struct file *filp = iocb->ki_filp; 2451 struct address_space *mapping = filp->f_mapping; 2452 struct file_ra_state *ra = &filp->f_ra; 2453 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT; 2454 pgoff_t last_index; 2455 struct page *page; 2456 int err = 0; 2457 2458 last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE); 2459 retry: 2460 if (fatal_signal_pending(current)) 2461 return -EINTR; 2462 2463 filemap_get_read_batch(mapping, index, last_index, pvec); 2464 if (!pagevec_count(pvec)) { 2465 if (iocb->ki_flags & IOCB_NOIO) 2466 return -EAGAIN; 2467 page_cache_sync_readahead(mapping, ra, filp, index, 2468 last_index - index); 2469 filemap_get_read_batch(mapping, index, last_index, pvec); 2470 } 2471 if (!pagevec_count(pvec)) { 2472 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ)) 2473 return -EAGAIN; 2474 err = filemap_create_page(filp, mapping, 2475 iocb->ki_pos >> PAGE_SHIFT, pvec); 2476 if (err == AOP_TRUNCATED_PAGE) 2477 goto retry; 2478 return err; 2479 } 2480 2481 page = pvec->pages[pagevec_count(pvec) - 1]; 2482 if (PageReadahead(page)) { 2483 err = filemap_readahead(iocb, filp, mapping, page, last_index); 2484 if (err) 2485 goto err; 2486 } 2487 if (!PageUptodate(page)) { 2488 if ((iocb->ki_flags & IOCB_WAITQ) && pagevec_count(pvec) > 1) 2489 iocb->ki_flags |= IOCB_NOWAIT; 2490 err = filemap_update_page(iocb, mapping, iter, page); 2491 if (err) 2492 goto err; 2493 } 2494 2495 return 0; 2496 err: 2497 if (err < 0) 2498 put_page(page); 2499 if (likely(--pvec->nr)) 2500 return 0; 2501 if (err == AOP_TRUNCATED_PAGE) 2502 goto retry; 2503 return err; 2504 } 2505 2506 /** 2507 * filemap_read - Read data from the page cache. 2508 * @iocb: The iocb to read. 2509 * @iter: Destination for the data. 2510 * @already_read: Number of bytes already read by the caller. 2511 * 2512 * Copies data from the page cache. If the data is not currently present, 2513 * uses the readahead and readpage address_space operations to fetch it. 2514 * 2515 * Return: Total number of bytes copied, including those already read by 2516 * the caller. If an error happens before any bytes are copied, returns 2517 * a negative error number. 2518 */ 2519 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter, 2520 ssize_t already_read) 2521 { 2522 struct file *filp = iocb->ki_filp; 2523 struct file_ra_state *ra = &filp->f_ra; 2524 struct address_space *mapping = filp->f_mapping; 2525 struct inode *inode = mapping->host; 2526 struct pagevec pvec; 2527 int i, error = 0; 2528 bool writably_mapped; 2529 loff_t isize, end_offset; 2530 2531 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes)) 2532 return 0; 2533 if (unlikely(!iov_iter_count(iter))) 2534 return 0; 2535 2536 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 2537 pagevec_init(&pvec); 2538 2539 do { 2540 cond_resched(); 2541 2542 /* 2543 * If we've already successfully copied some data, then we 2544 * can no longer safely return -EIOCBQUEUED. Hence mark 2545 * an async read NOWAIT at that point. 2546 */ 2547 if ((iocb->ki_flags & IOCB_WAITQ) && already_read) 2548 iocb->ki_flags |= IOCB_NOWAIT; 2549 2550 error = filemap_get_pages(iocb, iter, &pvec); 2551 if (error < 0) 2552 break; 2553 2554 /* 2555 * i_size must be checked after we know the pages are Uptodate. 2556 * 2557 * Checking i_size after the check allows us to calculate 2558 * the correct value for "nr", which means the zero-filled 2559 * part of the page is not copied back to userspace (unless 2560 * another truncate extends the file - this is desired though). 2561 */ 2562 isize = i_size_read(inode); 2563 if (unlikely(iocb->ki_pos >= isize)) 2564 goto put_pages; 2565 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count); 2566 2567 /* 2568 * Once we start copying data, we don't want to be touching any 2569 * cachelines that might be contended: 2570 */ 2571 writably_mapped = mapping_writably_mapped(mapping); 2572 2573 /* 2574 * When a sequential read accesses a page several times, only 2575 * mark it as accessed the first time. 2576 */ 2577 if (iocb->ki_pos >> PAGE_SHIFT != 2578 ra->prev_pos >> PAGE_SHIFT) 2579 mark_page_accessed(pvec.pages[0]); 2580 2581 for (i = 0; i < pagevec_count(&pvec); i++) { 2582 struct page *page = pvec.pages[i]; 2583 size_t page_size = thp_size(page); 2584 size_t offset = iocb->ki_pos & (page_size - 1); 2585 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos, 2586 page_size - offset); 2587 size_t copied; 2588 2589 if (end_offset < page_offset(page)) 2590 break; 2591 if (i > 0) 2592 mark_page_accessed(page); 2593 /* 2594 * If users can be writing to this page using arbitrary 2595 * virtual addresses, take care about potential aliasing 2596 * before reading the page on the kernel side. 2597 */ 2598 if (writably_mapped) { 2599 int j; 2600 2601 for (j = 0; j < thp_nr_pages(page); j++) 2602 flush_dcache_page(page + j); 2603 } 2604 2605 copied = copy_page_to_iter(page, offset, bytes, iter); 2606 2607 already_read += copied; 2608 iocb->ki_pos += copied; 2609 ra->prev_pos = iocb->ki_pos; 2610 2611 if (copied < bytes) { 2612 error = -EFAULT; 2613 break; 2614 } 2615 } 2616 put_pages: 2617 for (i = 0; i < pagevec_count(&pvec); i++) 2618 put_page(pvec.pages[i]); 2619 pagevec_reinit(&pvec); 2620 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error); 2621 2622 file_accessed(filp); 2623 2624 return already_read ? already_read : error; 2625 } 2626 EXPORT_SYMBOL_GPL(filemap_read); 2627 2628 /** 2629 * generic_file_read_iter - generic filesystem read routine 2630 * @iocb: kernel I/O control block 2631 * @iter: destination for the data read 2632 * 2633 * This is the "read_iter()" routine for all filesystems 2634 * that can use the page cache directly. 2635 * 2636 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall 2637 * be returned when no data can be read without waiting for I/O requests 2638 * to complete; it doesn't prevent readahead. 2639 * 2640 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O 2641 * requests shall be made for the read or for readahead. When no data 2642 * can be read, -EAGAIN shall be returned. When readahead would be 2643 * triggered, a partial, possibly empty read shall be returned. 2644 * 2645 * Return: 2646 * * number of bytes copied, even for partial reads 2647 * * negative error code (or 0 if IOCB_NOIO) if nothing was read 2648 */ 2649 ssize_t 2650 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2651 { 2652 size_t count = iov_iter_count(iter); 2653 ssize_t retval = 0; 2654 2655 if (!count) 2656 return 0; /* skip atime */ 2657 2658 if (iocb->ki_flags & IOCB_DIRECT) { 2659 struct file *file = iocb->ki_filp; 2660 struct address_space *mapping = file->f_mapping; 2661 struct inode *inode = mapping->host; 2662 loff_t size; 2663 2664 size = i_size_read(inode); 2665 if (iocb->ki_flags & IOCB_NOWAIT) { 2666 if (filemap_range_needs_writeback(mapping, iocb->ki_pos, 2667 iocb->ki_pos + count - 1)) 2668 return -EAGAIN; 2669 } else { 2670 retval = filemap_write_and_wait_range(mapping, 2671 iocb->ki_pos, 2672 iocb->ki_pos + count - 1); 2673 if (retval < 0) 2674 return retval; 2675 } 2676 2677 file_accessed(file); 2678 2679 retval = mapping->a_ops->direct_IO(iocb, iter); 2680 if (retval >= 0) { 2681 iocb->ki_pos += retval; 2682 count -= retval; 2683 } 2684 if (retval != -EIOCBQUEUED) 2685 iov_iter_revert(iter, count - iov_iter_count(iter)); 2686 2687 /* 2688 * Btrfs can have a short DIO read if we encounter 2689 * compressed extents, so if there was an error, or if 2690 * we've already read everything we wanted to, or if 2691 * there was a short read because we hit EOF, go ahead 2692 * and return. Otherwise fallthrough to buffered io for 2693 * the rest of the read. Buffered reads will not work for 2694 * DAX files, so don't bother trying. 2695 */ 2696 if (retval < 0 || !count || iocb->ki_pos >= size || 2697 IS_DAX(inode)) 2698 return retval; 2699 } 2700 2701 return filemap_read(iocb, iter, retval); 2702 } 2703 EXPORT_SYMBOL(generic_file_read_iter); 2704 2705 static inline loff_t page_seek_hole_data(struct xa_state *xas, 2706 struct address_space *mapping, struct page *page, 2707 loff_t start, loff_t end, bool seek_data) 2708 { 2709 const struct address_space_operations *ops = mapping->a_ops; 2710 size_t offset, bsz = i_blocksize(mapping->host); 2711 2712 if (xa_is_value(page) || PageUptodate(page)) 2713 return seek_data ? start : end; 2714 if (!ops->is_partially_uptodate) 2715 return seek_data ? end : start; 2716 2717 xas_pause(xas); 2718 rcu_read_unlock(); 2719 lock_page(page); 2720 if (unlikely(page->mapping != mapping)) 2721 goto unlock; 2722 2723 offset = offset_in_thp(page, start) & ~(bsz - 1); 2724 2725 do { 2726 if (ops->is_partially_uptodate(page, offset, bsz) == seek_data) 2727 break; 2728 start = (start + bsz) & ~(bsz - 1); 2729 offset += bsz; 2730 } while (offset < thp_size(page)); 2731 unlock: 2732 unlock_page(page); 2733 rcu_read_lock(); 2734 return start; 2735 } 2736 2737 static inline 2738 unsigned int seek_page_size(struct xa_state *xas, struct page *page) 2739 { 2740 if (xa_is_value(page)) 2741 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index); 2742 return thp_size(page); 2743 } 2744 2745 /** 2746 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache. 2747 * @mapping: Address space to search. 2748 * @start: First byte to consider. 2749 * @end: Limit of search (exclusive). 2750 * @whence: Either SEEK_HOLE or SEEK_DATA. 2751 * 2752 * If the page cache knows which blocks contain holes and which blocks 2753 * contain data, your filesystem can use this function to implement 2754 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are 2755 * entirely memory-based such as tmpfs, and filesystems which support 2756 * unwritten extents. 2757 * 2758 * Return: The requested offset on success, or -ENXIO if @whence specifies 2759 * SEEK_DATA and there is no data after @start. There is an implicit hole 2760 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start 2761 * and @end contain data. 2762 */ 2763 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start, 2764 loff_t end, int whence) 2765 { 2766 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT); 2767 pgoff_t max = (end - 1) >> PAGE_SHIFT; 2768 bool seek_data = (whence == SEEK_DATA); 2769 struct page *page; 2770 2771 if (end <= start) 2772 return -ENXIO; 2773 2774 rcu_read_lock(); 2775 while ((page = find_get_entry(&xas, max, XA_PRESENT))) { 2776 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT; 2777 unsigned int seek_size; 2778 2779 if (start < pos) { 2780 if (!seek_data) 2781 goto unlock; 2782 start = pos; 2783 } 2784 2785 seek_size = seek_page_size(&xas, page); 2786 pos = round_up(pos + 1, seek_size); 2787 start = page_seek_hole_data(&xas, mapping, page, start, pos, 2788 seek_data); 2789 if (start < pos) 2790 goto unlock; 2791 if (start >= end) 2792 break; 2793 if (seek_size > PAGE_SIZE) 2794 xas_set(&xas, pos >> PAGE_SHIFT); 2795 if (!xa_is_value(page)) 2796 put_page(page); 2797 } 2798 if (seek_data) 2799 start = -ENXIO; 2800 unlock: 2801 rcu_read_unlock(); 2802 if (page && !xa_is_value(page)) 2803 put_page(page); 2804 if (start > end) 2805 return end; 2806 return start; 2807 } 2808 2809 #ifdef CONFIG_MMU 2810 #define MMAP_LOTSAMISS (100) 2811 /* 2812 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock 2813 * @vmf - the vm_fault for this fault. 2814 * @page - the page to lock. 2815 * @fpin - the pointer to the file we may pin (or is already pinned). 2816 * 2817 * This works similar to lock_page_or_retry in that it can drop the mmap_lock. 2818 * It differs in that it actually returns the page locked if it returns 1 and 0 2819 * if it couldn't lock the page. If we did have to drop the mmap_lock then fpin 2820 * will point to the pinned file and needs to be fput()'ed at a later point. 2821 */ 2822 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page, 2823 struct file **fpin) 2824 { 2825 if (trylock_page(page)) 2826 return 1; 2827 2828 /* 2829 * NOTE! This will make us return with VM_FAULT_RETRY, but with 2830 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT 2831 * is supposed to work. We have way too many special cases.. 2832 */ 2833 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 2834 return 0; 2835 2836 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 2837 if (vmf->flags & FAULT_FLAG_KILLABLE) { 2838 if (__lock_page_killable(page)) { 2839 /* 2840 * We didn't have the right flags to drop the mmap_lock, 2841 * but all fault_handlers only check for fatal signals 2842 * if we return VM_FAULT_RETRY, so we need to drop the 2843 * mmap_lock here and return 0 if we don't have a fpin. 2844 */ 2845 if (*fpin == NULL) 2846 mmap_read_unlock(vmf->vma->vm_mm); 2847 return 0; 2848 } 2849 } else 2850 __lock_page(page); 2851 return 1; 2852 } 2853 2854 2855 /* 2856 * Synchronous readahead happens when we don't even find a page in the page 2857 * cache at all. We don't want to perform IO under the mmap sem, so if we have 2858 * to drop the mmap sem we return the file that was pinned in order for us to do 2859 * that. If we didn't pin a file then we return NULL. The file that is 2860 * returned needs to be fput()'ed when we're done with it. 2861 */ 2862 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 2863 { 2864 struct file *file = vmf->vma->vm_file; 2865 struct file_ra_state *ra = &file->f_ra; 2866 struct address_space *mapping = file->f_mapping; 2867 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff); 2868 struct file *fpin = NULL; 2869 unsigned int mmap_miss; 2870 2871 /* If we don't want any read-ahead, don't bother */ 2872 if (vmf->vma->vm_flags & VM_RAND_READ) 2873 return fpin; 2874 if (!ra->ra_pages) 2875 return fpin; 2876 2877 if (vmf->vma->vm_flags & VM_SEQ_READ) { 2878 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2879 page_cache_sync_ra(&ractl, ra->ra_pages); 2880 return fpin; 2881 } 2882 2883 /* Avoid banging the cache line if not needed */ 2884 mmap_miss = READ_ONCE(ra->mmap_miss); 2885 if (mmap_miss < MMAP_LOTSAMISS * 10) 2886 WRITE_ONCE(ra->mmap_miss, ++mmap_miss); 2887 2888 /* 2889 * Do we miss much more than hit in this file? If so, 2890 * stop bothering with read-ahead. It will only hurt. 2891 */ 2892 if (mmap_miss > MMAP_LOTSAMISS) 2893 return fpin; 2894 2895 /* 2896 * mmap read-around 2897 */ 2898 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2899 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2); 2900 ra->size = ra->ra_pages; 2901 ra->async_size = ra->ra_pages / 4; 2902 ractl._index = ra->start; 2903 do_page_cache_ra(&ractl, ra->size, ra->async_size); 2904 return fpin; 2905 } 2906 2907 /* 2908 * Asynchronous readahead happens when we find the page and PG_readahead, 2909 * so we want to possibly extend the readahead further. We return the file that 2910 * was pinned if we have to drop the mmap_lock in order to do IO. 2911 */ 2912 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 2913 struct page *page) 2914 { 2915 struct file *file = vmf->vma->vm_file; 2916 struct file_ra_state *ra = &file->f_ra; 2917 struct address_space *mapping = file->f_mapping; 2918 struct file *fpin = NULL; 2919 unsigned int mmap_miss; 2920 pgoff_t offset = vmf->pgoff; 2921 2922 /* If we don't want any read-ahead, don't bother */ 2923 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages) 2924 return fpin; 2925 mmap_miss = READ_ONCE(ra->mmap_miss); 2926 if (mmap_miss) 2927 WRITE_ONCE(ra->mmap_miss, --mmap_miss); 2928 if (PageReadahead(page)) { 2929 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2930 page_cache_async_readahead(mapping, ra, file, 2931 page, offset, ra->ra_pages); 2932 } 2933 return fpin; 2934 } 2935 2936 /** 2937 * filemap_fault - read in file data for page fault handling 2938 * @vmf: struct vm_fault containing details of the fault 2939 * 2940 * filemap_fault() is invoked via the vma operations vector for a 2941 * mapped memory region to read in file data during a page fault. 2942 * 2943 * The goto's are kind of ugly, but this streamlines the normal case of having 2944 * it in the page cache, and handles the special cases reasonably without 2945 * having a lot of duplicated code. 2946 * 2947 * vma->vm_mm->mmap_lock must be held on entry. 2948 * 2949 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock 2950 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap(). 2951 * 2952 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock 2953 * has not been released. 2954 * 2955 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 2956 * 2957 * Return: bitwise-OR of %VM_FAULT_ codes. 2958 */ 2959 vm_fault_t filemap_fault(struct vm_fault *vmf) 2960 { 2961 int error; 2962 struct file *file = vmf->vma->vm_file; 2963 struct file *fpin = NULL; 2964 struct address_space *mapping = file->f_mapping; 2965 struct inode *inode = mapping->host; 2966 pgoff_t offset = vmf->pgoff; 2967 pgoff_t max_off; 2968 struct page *page; 2969 vm_fault_t ret = 0; 2970 2971 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2972 if (unlikely(offset >= max_off)) 2973 return VM_FAULT_SIGBUS; 2974 2975 /* 2976 * Do we have something in the page cache already? 2977 */ 2978 page = find_get_page(mapping, offset); 2979 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { 2980 /* 2981 * We found the page, so try async readahead before 2982 * waiting for the lock. 2983 */ 2984 fpin = do_async_mmap_readahead(vmf, page); 2985 } else if (!page) { 2986 /* No page in the page cache at all */ 2987 count_vm_event(PGMAJFAULT); 2988 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 2989 ret = VM_FAULT_MAJOR; 2990 fpin = do_sync_mmap_readahead(vmf); 2991 retry_find: 2992 page = pagecache_get_page(mapping, offset, 2993 FGP_CREAT|FGP_FOR_MMAP, 2994 vmf->gfp_mask); 2995 if (!page) { 2996 if (fpin) 2997 goto out_retry; 2998 return VM_FAULT_OOM; 2999 } 3000 } 3001 3002 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin)) 3003 goto out_retry; 3004 3005 /* Did it get truncated? */ 3006 if (unlikely(compound_head(page)->mapping != mapping)) { 3007 unlock_page(page); 3008 put_page(page); 3009 goto retry_find; 3010 } 3011 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page); 3012 3013 /* 3014 * We have a locked page in the page cache, now we need to check 3015 * that it's up-to-date. If not, it is going to be due to an error. 3016 */ 3017 if (unlikely(!PageUptodate(page))) 3018 goto page_not_uptodate; 3019 3020 /* 3021 * We've made it this far and we had to drop our mmap_lock, now is the 3022 * time to return to the upper layer and have it re-find the vma and 3023 * redo the fault. 3024 */ 3025 if (fpin) { 3026 unlock_page(page); 3027 goto out_retry; 3028 } 3029 3030 /* 3031 * Found the page and have a reference on it. 3032 * We must recheck i_size under page lock. 3033 */ 3034 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3035 if (unlikely(offset >= max_off)) { 3036 unlock_page(page); 3037 put_page(page); 3038 return VM_FAULT_SIGBUS; 3039 } 3040 3041 vmf->page = page; 3042 return ret | VM_FAULT_LOCKED; 3043 3044 page_not_uptodate: 3045 /* 3046 * Umm, take care of errors if the page isn't up-to-date. 3047 * Try to re-read it _once_. We do this synchronously, 3048 * because there really aren't any performance issues here 3049 * and we need to check for errors. 3050 */ 3051 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3052 error = filemap_read_page(file, mapping, page); 3053 if (fpin) 3054 goto out_retry; 3055 put_page(page); 3056 3057 if (!error || error == AOP_TRUNCATED_PAGE) 3058 goto retry_find; 3059 3060 return VM_FAULT_SIGBUS; 3061 3062 out_retry: 3063 /* 3064 * We dropped the mmap_lock, we need to return to the fault handler to 3065 * re-find the vma and come back and find our hopefully still populated 3066 * page. 3067 */ 3068 if (page) 3069 put_page(page); 3070 if (fpin) 3071 fput(fpin); 3072 return ret | VM_FAULT_RETRY; 3073 } 3074 EXPORT_SYMBOL(filemap_fault); 3075 3076 static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page) 3077 { 3078 struct mm_struct *mm = vmf->vma->vm_mm; 3079 3080 /* Huge page is mapped? No need to proceed. */ 3081 if (pmd_trans_huge(*vmf->pmd)) { 3082 unlock_page(page); 3083 put_page(page); 3084 return true; 3085 } 3086 3087 if (pmd_none(*vmf->pmd) && PageTransHuge(page)) { 3088 vm_fault_t ret = do_set_pmd(vmf, page); 3089 if (!ret) { 3090 /* The page is mapped successfully, reference consumed. */ 3091 unlock_page(page); 3092 return true; 3093 } 3094 } 3095 3096 if (pmd_none(*vmf->pmd)) { 3097 vmf->ptl = pmd_lock(mm, vmf->pmd); 3098 if (likely(pmd_none(*vmf->pmd))) { 3099 mm_inc_nr_ptes(mm); 3100 pmd_populate(mm, vmf->pmd, vmf->prealloc_pte); 3101 vmf->prealloc_pte = NULL; 3102 } 3103 spin_unlock(vmf->ptl); 3104 } 3105 3106 /* See comment in handle_pte_fault() */ 3107 if (pmd_devmap_trans_unstable(vmf->pmd)) { 3108 unlock_page(page); 3109 put_page(page); 3110 return true; 3111 } 3112 3113 return false; 3114 } 3115 3116 static struct page *next_uptodate_page(struct page *page, 3117 struct address_space *mapping, 3118 struct xa_state *xas, pgoff_t end_pgoff) 3119 { 3120 unsigned long max_idx; 3121 3122 do { 3123 if (!page) 3124 return NULL; 3125 if (xas_retry(xas, page)) 3126 continue; 3127 if (xa_is_value(page)) 3128 continue; 3129 if (PageLocked(page)) 3130 continue; 3131 if (!page_cache_get_speculative(page)) 3132 continue; 3133 /* Has the page moved or been split? */ 3134 if (unlikely(page != xas_reload(xas))) 3135 goto skip; 3136 if (!PageUptodate(page) || PageReadahead(page)) 3137 goto skip; 3138 if (PageHWPoison(page)) 3139 goto skip; 3140 if (!trylock_page(page)) 3141 goto skip; 3142 if (page->mapping != mapping) 3143 goto unlock; 3144 if (!PageUptodate(page)) 3145 goto unlock; 3146 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3147 if (xas->xa_index >= max_idx) 3148 goto unlock; 3149 return page; 3150 unlock: 3151 unlock_page(page); 3152 skip: 3153 put_page(page); 3154 } while ((page = xas_next_entry(xas, end_pgoff)) != NULL); 3155 3156 return NULL; 3157 } 3158 3159 static inline struct page *first_map_page(struct address_space *mapping, 3160 struct xa_state *xas, 3161 pgoff_t end_pgoff) 3162 { 3163 return next_uptodate_page(xas_find(xas, end_pgoff), 3164 mapping, xas, end_pgoff); 3165 } 3166 3167 static inline struct page *next_map_page(struct address_space *mapping, 3168 struct xa_state *xas, 3169 pgoff_t end_pgoff) 3170 { 3171 return next_uptodate_page(xas_next_entry(xas, end_pgoff), 3172 mapping, xas, end_pgoff); 3173 } 3174 3175 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3176 pgoff_t start_pgoff, pgoff_t end_pgoff) 3177 { 3178 struct vm_area_struct *vma = vmf->vma; 3179 struct file *file = vma->vm_file; 3180 struct address_space *mapping = file->f_mapping; 3181 pgoff_t last_pgoff = start_pgoff; 3182 unsigned long addr; 3183 XA_STATE(xas, &mapping->i_pages, start_pgoff); 3184 struct page *head, *page; 3185 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss); 3186 vm_fault_t ret = 0; 3187 3188 rcu_read_lock(); 3189 head = first_map_page(mapping, &xas, end_pgoff); 3190 if (!head) 3191 goto out; 3192 3193 if (filemap_map_pmd(vmf, head)) { 3194 ret = VM_FAULT_NOPAGE; 3195 goto out; 3196 } 3197 3198 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT); 3199 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 3200 do { 3201 page = find_subpage(head, xas.xa_index); 3202 if (PageHWPoison(page)) 3203 goto unlock; 3204 3205 if (mmap_miss > 0) 3206 mmap_miss--; 3207 3208 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 3209 vmf->pte += xas.xa_index - last_pgoff; 3210 last_pgoff = xas.xa_index; 3211 3212 if (!pte_none(*vmf->pte)) 3213 goto unlock; 3214 3215 /* We're about to handle the fault */ 3216 if (vmf->address == addr) 3217 ret = VM_FAULT_NOPAGE; 3218 3219 do_set_pte(vmf, page, addr); 3220 /* no need to invalidate: a not-present page won't be cached */ 3221 update_mmu_cache(vma, addr, vmf->pte); 3222 unlock_page(head); 3223 continue; 3224 unlock: 3225 unlock_page(head); 3226 put_page(head); 3227 } while ((head = next_map_page(mapping, &xas, end_pgoff)) != NULL); 3228 pte_unmap_unlock(vmf->pte, vmf->ptl); 3229 out: 3230 rcu_read_unlock(); 3231 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss); 3232 return ret; 3233 } 3234 EXPORT_SYMBOL(filemap_map_pages); 3235 3236 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3237 { 3238 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 3239 struct page *page = vmf->page; 3240 vm_fault_t ret = VM_FAULT_LOCKED; 3241 3242 sb_start_pagefault(mapping->host->i_sb); 3243 file_update_time(vmf->vma->vm_file); 3244 lock_page(page); 3245 if (page->mapping != mapping) { 3246 unlock_page(page); 3247 ret = VM_FAULT_NOPAGE; 3248 goto out; 3249 } 3250 /* 3251 * We mark the page dirty already here so that when freeze is in 3252 * progress, we are guaranteed that writeback during freezing will 3253 * see the dirty page and writeprotect it again. 3254 */ 3255 set_page_dirty(page); 3256 wait_for_stable_page(page); 3257 out: 3258 sb_end_pagefault(mapping->host->i_sb); 3259 return ret; 3260 } 3261 3262 const struct vm_operations_struct generic_file_vm_ops = { 3263 .fault = filemap_fault, 3264 .map_pages = filemap_map_pages, 3265 .page_mkwrite = filemap_page_mkwrite, 3266 }; 3267 3268 /* This is used for a general mmap of a disk file */ 3269 3270 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3271 { 3272 struct address_space *mapping = file->f_mapping; 3273 3274 if (!mapping->a_ops->readpage) 3275 return -ENOEXEC; 3276 file_accessed(file); 3277 vma->vm_ops = &generic_file_vm_ops; 3278 return 0; 3279 } 3280 3281 /* 3282 * This is for filesystems which do not implement ->writepage. 3283 */ 3284 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3285 { 3286 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 3287 return -EINVAL; 3288 return generic_file_mmap(file, vma); 3289 } 3290 #else 3291 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3292 { 3293 return VM_FAULT_SIGBUS; 3294 } 3295 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3296 { 3297 return -ENOSYS; 3298 } 3299 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3300 { 3301 return -ENOSYS; 3302 } 3303 #endif /* CONFIG_MMU */ 3304 3305 EXPORT_SYMBOL(filemap_page_mkwrite); 3306 EXPORT_SYMBOL(generic_file_mmap); 3307 EXPORT_SYMBOL(generic_file_readonly_mmap); 3308 3309 static struct page *wait_on_page_read(struct page *page) 3310 { 3311 if (!IS_ERR(page)) { 3312 wait_on_page_locked(page); 3313 if (!PageUptodate(page)) { 3314 put_page(page); 3315 page = ERR_PTR(-EIO); 3316 } 3317 } 3318 return page; 3319 } 3320 3321 static struct page *do_read_cache_page(struct address_space *mapping, 3322 pgoff_t index, 3323 int (*filler)(void *, struct page *), 3324 void *data, 3325 gfp_t gfp) 3326 { 3327 struct page *page; 3328 int err; 3329 repeat: 3330 page = find_get_page(mapping, index); 3331 if (!page) { 3332 page = __page_cache_alloc(gfp); 3333 if (!page) 3334 return ERR_PTR(-ENOMEM); 3335 err = add_to_page_cache_lru(page, mapping, index, gfp); 3336 if (unlikely(err)) { 3337 put_page(page); 3338 if (err == -EEXIST) 3339 goto repeat; 3340 /* Presumably ENOMEM for xarray node */ 3341 return ERR_PTR(err); 3342 } 3343 3344 filler: 3345 if (filler) 3346 err = filler(data, page); 3347 else 3348 err = mapping->a_ops->readpage(data, page); 3349 3350 if (err < 0) { 3351 put_page(page); 3352 return ERR_PTR(err); 3353 } 3354 3355 page = wait_on_page_read(page); 3356 if (IS_ERR(page)) 3357 return page; 3358 goto out; 3359 } 3360 if (PageUptodate(page)) 3361 goto out; 3362 3363 /* 3364 * Page is not up to date and may be locked due to one of the following 3365 * case a: Page is being filled and the page lock is held 3366 * case b: Read/write error clearing the page uptodate status 3367 * case c: Truncation in progress (page locked) 3368 * case d: Reclaim in progress 3369 * 3370 * Case a, the page will be up to date when the page is unlocked. 3371 * There is no need to serialise on the page lock here as the page 3372 * is pinned so the lock gives no additional protection. Even if the 3373 * page is truncated, the data is still valid if PageUptodate as 3374 * it's a race vs truncate race. 3375 * Case b, the page will not be up to date 3376 * Case c, the page may be truncated but in itself, the data may still 3377 * be valid after IO completes as it's a read vs truncate race. The 3378 * operation must restart if the page is not uptodate on unlock but 3379 * otherwise serialising on page lock to stabilise the mapping gives 3380 * no additional guarantees to the caller as the page lock is 3381 * released before return. 3382 * Case d, similar to truncation. If reclaim holds the page lock, it 3383 * will be a race with remove_mapping that determines if the mapping 3384 * is valid on unlock but otherwise the data is valid and there is 3385 * no need to serialise with page lock. 3386 * 3387 * As the page lock gives no additional guarantee, we optimistically 3388 * wait on the page to be unlocked and check if it's up to date and 3389 * use the page if it is. Otherwise, the page lock is required to 3390 * distinguish between the different cases. The motivation is that we 3391 * avoid spurious serialisations and wakeups when multiple processes 3392 * wait on the same page for IO to complete. 3393 */ 3394 wait_on_page_locked(page); 3395 if (PageUptodate(page)) 3396 goto out; 3397 3398 /* Distinguish between all the cases under the safety of the lock */ 3399 lock_page(page); 3400 3401 /* Case c or d, restart the operation */ 3402 if (!page->mapping) { 3403 unlock_page(page); 3404 put_page(page); 3405 goto repeat; 3406 } 3407 3408 /* Someone else locked and filled the page in a very small window */ 3409 if (PageUptodate(page)) { 3410 unlock_page(page); 3411 goto out; 3412 } 3413 3414 /* 3415 * A previous I/O error may have been due to temporary 3416 * failures. 3417 * Clear page error before actual read, PG_error will be 3418 * set again if read page fails. 3419 */ 3420 ClearPageError(page); 3421 goto filler; 3422 3423 out: 3424 mark_page_accessed(page); 3425 return page; 3426 } 3427 3428 /** 3429 * read_cache_page - read into page cache, fill it if needed 3430 * @mapping: the page's address_space 3431 * @index: the page index 3432 * @filler: function to perform the read 3433 * @data: first arg to filler(data, page) function, often left as NULL 3434 * 3435 * Read into the page cache. If a page already exists, and PageUptodate() is 3436 * not set, try to fill the page and wait for it to become unlocked. 3437 * 3438 * If the page does not get brought uptodate, return -EIO. 3439 * 3440 * Return: up to date page on success, ERR_PTR() on failure. 3441 */ 3442 struct page *read_cache_page(struct address_space *mapping, 3443 pgoff_t index, 3444 int (*filler)(void *, struct page *), 3445 void *data) 3446 { 3447 return do_read_cache_page(mapping, index, filler, data, 3448 mapping_gfp_mask(mapping)); 3449 } 3450 EXPORT_SYMBOL(read_cache_page); 3451 3452 /** 3453 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 3454 * @mapping: the page's address_space 3455 * @index: the page index 3456 * @gfp: the page allocator flags to use if allocating 3457 * 3458 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 3459 * any new page allocations done using the specified allocation flags. 3460 * 3461 * If the page does not get brought uptodate, return -EIO. 3462 * 3463 * Return: up to date page on success, ERR_PTR() on failure. 3464 */ 3465 struct page *read_cache_page_gfp(struct address_space *mapping, 3466 pgoff_t index, 3467 gfp_t gfp) 3468 { 3469 return do_read_cache_page(mapping, index, NULL, NULL, gfp); 3470 } 3471 EXPORT_SYMBOL(read_cache_page_gfp); 3472 3473 int pagecache_write_begin(struct file *file, struct address_space *mapping, 3474 loff_t pos, unsigned len, unsigned flags, 3475 struct page **pagep, void **fsdata) 3476 { 3477 const struct address_space_operations *aops = mapping->a_ops; 3478 3479 return aops->write_begin(file, mapping, pos, len, flags, 3480 pagep, fsdata); 3481 } 3482 EXPORT_SYMBOL(pagecache_write_begin); 3483 3484 int pagecache_write_end(struct file *file, struct address_space *mapping, 3485 loff_t pos, unsigned len, unsigned copied, 3486 struct page *page, void *fsdata) 3487 { 3488 const struct address_space_operations *aops = mapping->a_ops; 3489 3490 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 3491 } 3492 EXPORT_SYMBOL(pagecache_write_end); 3493 3494 /* 3495 * Warn about a page cache invalidation failure during a direct I/O write. 3496 */ 3497 void dio_warn_stale_pagecache(struct file *filp) 3498 { 3499 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 3500 char pathname[128]; 3501 char *path; 3502 3503 errseq_set(&filp->f_mapping->wb_err, -EIO); 3504 if (__ratelimit(&_rs)) { 3505 path = file_path(filp, pathname, sizeof(pathname)); 3506 if (IS_ERR(path)) 3507 path = "(unknown)"; 3508 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); 3509 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, 3510 current->comm); 3511 } 3512 } 3513 3514 ssize_t 3515 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 3516 { 3517 struct file *file = iocb->ki_filp; 3518 struct address_space *mapping = file->f_mapping; 3519 struct inode *inode = mapping->host; 3520 loff_t pos = iocb->ki_pos; 3521 ssize_t written; 3522 size_t write_len; 3523 pgoff_t end; 3524 3525 write_len = iov_iter_count(from); 3526 end = (pos + write_len - 1) >> PAGE_SHIFT; 3527 3528 if (iocb->ki_flags & IOCB_NOWAIT) { 3529 /* If there are pages to writeback, return */ 3530 if (filemap_range_has_page(file->f_mapping, pos, 3531 pos + write_len - 1)) 3532 return -EAGAIN; 3533 } else { 3534 written = filemap_write_and_wait_range(mapping, pos, 3535 pos + write_len - 1); 3536 if (written) 3537 goto out; 3538 } 3539 3540 /* 3541 * After a write we want buffered reads to be sure to go to disk to get 3542 * the new data. We invalidate clean cached page from the region we're 3543 * about to write. We do this *before* the write so that we can return 3544 * without clobbering -EIOCBQUEUED from ->direct_IO(). 3545 */ 3546 written = invalidate_inode_pages2_range(mapping, 3547 pos >> PAGE_SHIFT, end); 3548 /* 3549 * If a page can not be invalidated, return 0 to fall back 3550 * to buffered write. 3551 */ 3552 if (written) { 3553 if (written == -EBUSY) 3554 return 0; 3555 goto out; 3556 } 3557 3558 written = mapping->a_ops->direct_IO(iocb, from); 3559 3560 /* 3561 * Finally, try again to invalidate clean pages which might have been 3562 * cached by non-direct readahead, or faulted in by get_user_pages() 3563 * if the source of the write was an mmap'ed region of the file 3564 * we're writing. Either one is a pretty crazy thing to do, 3565 * so we don't support it 100%. If this invalidation 3566 * fails, tough, the write still worked... 3567 * 3568 * Most of the time we do not need this since dio_complete() will do 3569 * the invalidation for us. However there are some file systems that 3570 * do not end up with dio_complete() being called, so let's not break 3571 * them by removing it completely. 3572 * 3573 * Noticeable example is a blkdev_direct_IO(). 3574 * 3575 * Skip invalidation for async writes or if mapping has no pages. 3576 */ 3577 if (written > 0 && mapping->nrpages && 3578 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end)) 3579 dio_warn_stale_pagecache(file); 3580 3581 if (written > 0) { 3582 pos += written; 3583 write_len -= written; 3584 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 3585 i_size_write(inode, pos); 3586 mark_inode_dirty(inode); 3587 } 3588 iocb->ki_pos = pos; 3589 } 3590 if (written != -EIOCBQUEUED) 3591 iov_iter_revert(from, write_len - iov_iter_count(from)); 3592 out: 3593 return written; 3594 } 3595 EXPORT_SYMBOL(generic_file_direct_write); 3596 3597 /* 3598 * Find or create a page at the given pagecache position. Return the locked 3599 * page. This function is specifically for buffered writes. 3600 */ 3601 struct page *grab_cache_page_write_begin(struct address_space *mapping, 3602 pgoff_t index, unsigned flags) 3603 { 3604 struct page *page; 3605 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT; 3606 3607 if (flags & AOP_FLAG_NOFS) 3608 fgp_flags |= FGP_NOFS; 3609 3610 page = pagecache_get_page(mapping, index, fgp_flags, 3611 mapping_gfp_mask(mapping)); 3612 if (page) 3613 wait_for_stable_page(page); 3614 3615 return page; 3616 } 3617 EXPORT_SYMBOL(grab_cache_page_write_begin); 3618 3619 ssize_t generic_perform_write(struct file *file, 3620 struct iov_iter *i, loff_t pos) 3621 { 3622 struct address_space *mapping = file->f_mapping; 3623 const struct address_space_operations *a_ops = mapping->a_ops; 3624 long status = 0; 3625 ssize_t written = 0; 3626 unsigned int flags = 0; 3627 3628 do { 3629 struct page *page; 3630 unsigned long offset; /* Offset into pagecache page */ 3631 unsigned long bytes; /* Bytes to write to page */ 3632 size_t copied; /* Bytes copied from user */ 3633 void *fsdata; 3634 3635 offset = (pos & (PAGE_SIZE - 1)); 3636 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3637 iov_iter_count(i)); 3638 3639 again: 3640 /* 3641 * Bring in the user page that we will copy from _first_. 3642 * Otherwise there's a nasty deadlock on copying from the 3643 * same page as we're writing to, without it being marked 3644 * up-to-date. 3645 */ 3646 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 3647 status = -EFAULT; 3648 break; 3649 } 3650 3651 if (fatal_signal_pending(current)) { 3652 status = -EINTR; 3653 break; 3654 } 3655 3656 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 3657 &page, &fsdata); 3658 if (unlikely(status < 0)) 3659 break; 3660 3661 if (mapping_writably_mapped(mapping)) 3662 flush_dcache_page(page); 3663 3664 copied = copy_page_from_iter_atomic(page, offset, bytes, i); 3665 flush_dcache_page(page); 3666 3667 status = a_ops->write_end(file, mapping, pos, bytes, copied, 3668 page, fsdata); 3669 if (unlikely(status != copied)) { 3670 iov_iter_revert(i, copied - max(status, 0L)); 3671 if (unlikely(status < 0)) 3672 break; 3673 } 3674 cond_resched(); 3675 3676 if (unlikely(status == 0)) { 3677 /* 3678 * A short copy made ->write_end() reject the 3679 * thing entirely. Might be memory poisoning 3680 * halfway through, might be a race with munmap, 3681 * might be severe memory pressure. 3682 */ 3683 if (copied) 3684 bytes = copied; 3685 goto again; 3686 } 3687 pos += status; 3688 written += status; 3689 3690 balance_dirty_pages_ratelimited(mapping); 3691 } while (iov_iter_count(i)); 3692 3693 return written ? written : status; 3694 } 3695 EXPORT_SYMBOL(generic_perform_write); 3696 3697 /** 3698 * __generic_file_write_iter - write data to a file 3699 * @iocb: IO state structure (file, offset, etc.) 3700 * @from: iov_iter with data to write 3701 * 3702 * This function does all the work needed for actually writing data to a 3703 * file. It does all basic checks, removes SUID from the file, updates 3704 * modification times and calls proper subroutines depending on whether we 3705 * do direct IO or a standard buffered write. 3706 * 3707 * It expects i_mutex to be grabbed unless we work on a block device or similar 3708 * object which does not need locking at all. 3709 * 3710 * This function does *not* take care of syncing data in case of O_SYNC write. 3711 * A caller has to handle it. This is mainly due to the fact that we want to 3712 * avoid syncing under i_mutex. 3713 * 3714 * Return: 3715 * * number of bytes written, even for truncated writes 3716 * * negative error code if no data has been written at all 3717 */ 3718 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3719 { 3720 struct file *file = iocb->ki_filp; 3721 struct address_space *mapping = file->f_mapping; 3722 struct inode *inode = mapping->host; 3723 ssize_t written = 0; 3724 ssize_t err; 3725 ssize_t status; 3726 3727 /* We can write back this queue in page reclaim */ 3728 current->backing_dev_info = inode_to_bdi(inode); 3729 err = file_remove_privs(file); 3730 if (err) 3731 goto out; 3732 3733 err = file_update_time(file); 3734 if (err) 3735 goto out; 3736 3737 if (iocb->ki_flags & IOCB_DIRECT) { 3738 loff_t pos, endbyte; 3739 3740 written = generic_file_direct_write(iocb, from); 3741 /* 3742 * If the write stopped short of completing, fall back to 3743 * buffered writes. Some filesystems do this for writes to 3744 * holes, for example. For DAX files, a buffered write will 3745 * not succeed (even if it did, DAX does not handle dirty 3746 * page-cache pages correctly). 3747 */ 3748 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) 3749 goto out; 3750 3751 status = generic_perform_write(file, from, pos = iocb->ki_pos); 3752 /* 3753 * If generic_perform_write() returned a synchronous error 3754 * then we want to return the number of bytes which were 3755 * direct-written, or the error code if that was zero. Note 3756 * that this differs from normal direct-io semantics, which 3757 * will return -EFOO even if some bytes were written. 3758 */ 3759 if (unlikely(status < 0)) { 3760 err = status; 3761 goto out; 3762 } 3763 /* 3764 * We need to ensure that the page cache pages are written to 3765 * disk and invalidated to preserve the expected O_DIRECT 3766 * semantics. 3767 */ 3768 endbyte = pos + status - 1; 3769 err = filemap_write_and_wait_range(mapping, pos, endbyte); 3770 if (err == 0) { 3771 iocb->ki_pos = endbyte + 1; 3772 written += status; 3773 invalidate_mapping_pages(mapping, 3774 pos >> PAGE_SHIFT, 3775 endbyte >> PAGE_SHIFT); 3776 } else { 3777 /* 3778 * We don't know how much we wrote, so just return 3779 * the number of bytes which were direct-written 3780 */ 3781 } 3782 } else { 3783 written = generic_perform_write(file, from, iocb->ki_pos); 3784 if (likely(written > 0)) 3785 iocb->ki_pos += written; 3786 } 3787 out: 3788 current->backing_dev_info = NULL; 3789 return written ? written : err; 3790 } 3791 EXPORT_SYMBOL(__generic_file_write_iter); 3792 3793 /** 3794 * generic_file_write_iter - write data to a file 3795 * @iocb: IO state structure 3796 * @from: iov_iter with data to write 3797 * 3798 * This is a wrapper around __generic_file_write_iter() to be used by most 3799 * filesystems. It takes care of syncing the file in case of O_SYNC file 3800 * and acquires i_mutex as needed. 3801 * Return: 3802 * * negative error code if no data has been written at all of 3803 * vfs_fsync_range() failed for a synchronous write 3804 * * number of bytes written, even for truncated writes 3805 */ 3806 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3807 { 3808 struct file *file = iocb->ki_filp; 3809 struct inode *inode = file->f_mapping->host; 3810 ssize_t ret; 3811 3812 inode_lock(inode); 3813 ret = generic_write_checks(iocb, from); 3814 if (ret > 0) 3815 ret = __generic_file_write_iter(iocb, from); 3816 inode_unlock(inode); 3817 3818 if (ret > 0) 3819 ret = generic_write_sync(iocb, ret); 3820 return ret; 3821 } 3822 EXPORT_SYMBOL(generic_file_write_iter); 3823 3824 /** 3825 * try_to_release_page() - release old fs-specific metadata on a page 3826 * 3827 * @page: the page which the kernel is trying to free 3828 * @gfp_mask: memory allocation flags (and I/O mode) 3829 * 3830 * The address_space is to try to release any data against the page 3831 * (presumably at page->private). 3832 * 3833 * This may also be called if PG_fscache is set on a page, indicating that the 3834 * page is known to the local caching routines. 3835 * 3836 * The @gfp_mask argument specifies whether I/O may be performed to release 3837 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS). 3838 * 3839 * Return: %1 if the release was successful, otherwise return zero. 3840 */ 3841 int try_to_release_page(struct page *page, gfp_t gfp_mask) 3842 { 3843 struct address_space * const mapping = page->mapping; 3844 3845 BUG_ON(!PageLocked(page)); 3846 if (PageWriteback(page)) 3847 return 0; 3848 3849 if (mapping && mapping->a_ops->releasepage) 3850 return mapping->a_ops->releasepage(page, gfp_mask); 3851 return try_to_free_buffers(page); 3852 } 3853 3854 EXPORT_SYMBOL(try_to_release_page); 3855