xref: /linux/mm/filemap.c (revision 946e697c69ffeeefdd84dad90eac307284df46be)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/mm/filemap.c
4  *
5  * Copyright (C) 1994-1999  Linus Torvalds
6  */
7 
8 /*
9  * This file handles the generic file mmap semantics used by
10  * most "normal" filesystems (but you don't /have/ to use this:
11  * the NFS filesystem used to do this differently, for example)
12  */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/syscalls.h>
26 #include <linux/mman.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
29 #include <linux/uio.h>
30 #include <linux/error-injection.h>
31 #include <linux/hash.h>
32 #include <linux/writeback.h>
33 #include <linux/backing-dev.h>
34 #include <linux/pagevec.h>
35 #include <linux/security.h>
36 #include <linux/cpuset.h>
37 #include <linux/hugetlb.h>
38 #include <linux/memcontrol.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include <linux/page_idle.h>
45 #include <linux/migrate.h>
46 #include <linux/pipe_fs_i.h>
47 #include <linux/splice.h>
48 #include <asm/pgalloc.h>
49 #include <asm/tlbflush.h>
50 #include "internal.h"
51 
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/filemap.h>
54 
55 /*
56  * FIXME: remove all knowledge of the buffer layer from the core VM
57  */
58 #include <linux/buffer_head.h> /* for try_to_free_buffers */
59 
60 #include <asm/mman.h>
61 
62 #include "swap.h"
63 
64 /*
65  * Shared mappings implemented 30.11.1994. It's not fully working yet,
66  * though.
67  *
68  * Shared mappings now work. 15.8.1995  Bruno.
69  *
70  * finished 'unifying' the page and buffer cache and SMP-threaded the
71  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
72  *
73  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
74  */
75 
76 /*
77  * Lock ordering:
78  *
79  *  ->i_mmap_rwsem		(truncate_pagecache)
80  *    ->private_lock		(__free_pte->block_dirty_folio)
81  *      ->swap_lock		(exclusive_swap_page, others)
82  *        ->i_pages lock
83  *
84  *  ->i_rwsem
85  *    ->invalidate_lock		(acquired by fs in truncate path)
86  *      ->i_mmap_rwsem		(truncate->unmap_mapping_range)
87  *
88  *  ->mmap_lock
89  *    ->i_mmap_rwsem
90  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
91  *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
92  *
93  *  ->mmap_lock
94  *    ->invalidate_lock		(filemap_fault)
95  *      ->lock_page		(filemap_fault, access_process_vm)
96  *
97  *  ->i_rwsem			(generic_perform_write)
98  *    ->mmap_lock		(fault_in_readable->do_page_fault)
99  *
100  *  bdi->wb.list_lock
101  *    sb_lock			(fs/fs-writeback.c)
102  *    ->i_pages lock		(__sync_single_inode)
103  *
104  *  ->i_mmap_rwsem
105  *    ->anon_vma.lock		(vma_merge)
106  *
107  *  ->anon_vma.lock
108  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
109  *
110  *  ->page_table_lock or pte_lock
111  *    ->swap_lock		(try_to_unmap_one)
112  *    ->private_lock		(try_to_unmap_one)
113  *    ->i_pages lock		(try_to_unmap_one)
114  *    ->lruvec->lru_lock	(follow_page->mark_page_accessed)
115  *    ->lruvec->lru_lock	(check_pte_range->isolate_lru_page)
116  *    ->private_lock		(page_remove_rmap->set_page_dirty)
117  *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
118  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
119  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
120  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
121  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
122  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
123  *    ->private_lock		(zap_pte_range->block_dirty_folio)
124  *
125  * ->i_mmap_rwsem
126  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
127  */
128 
129 static void page_cache_delete(struct address_space *mapping,
130 				   struct folio *folio, void *shadow)
131 {
132 	XA_STATE(xas, &mapping->i_pages, folio->index);
133 	long nr = 1;
134 
135 	mapping_set_update(&xas, mapping);
136 
137 	/* hugetlb pages are represented by a single entry in the xarray */
138 	if (!folio_test_hugetlb(folio)) {
139 		xas_set_order(&xas, folio->index, folio_order(folio));
140 		nr = folio_nr_pages(folio);
141 	}
142 
143 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
144 
145 	xas_store(&xas, shadow);
146 	xas_init_marks(&xas);
147 
148 	folio->mapping = NULL;
149 	/* Leave page->index set: truncation lookup relies upon it */
150 	mapping->nrpages -= nr;
151 }
152 
153 static void filemap_unaccount_folio(struct address_space *mapping,
154 		struct folio *folio)
155 {
156 	long nr;
157 
158 	VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
159 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
160 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
161 			 current->comm, folio_pfn(folio));
162 		dump_page(&folio->page, "still mapped when deleted");
163 		dump_stack();
164 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
165 
166 		if (mapping_exiting(mapping) && !folio_test_large(folio)) {
167 			int mapcount = page_mapcount(&folio->page);
168 
169 			if (folio_ref_count(folio) >= mapcount + 2) {
170 				/*
171 				 * All vmas have already been torn down, so it's
172 				 * a good bet that actually the page is unmapped
173 				 * and we'd rather not leak it: if we're wrong,
174 				 * another bad page check should catch it later.
175 				 */
176 				page_mapcount_reset(&folio->page);
177 				folio_ref_sub(folio, mapcount);
178 			}
179 		}
180 	}
181 
182 	/* hugetlb folios do not participate in page cache accounting. */
183 	if (folio_test_hugetlb(folio))
184 		return;
185 
186 	nr = folio_nr_pages(folio);
187 
188 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
189 	if (folio_test_swapbacked(folio)) {
190 		__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
191 		if (folio_test_pmd_mappable(folio))
192 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
193 	} else if (folio_test_pmd_mappable(folio)) {
194 		__lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
195 		filemap_nr_thps_dec(mapping);
196 	}
197 
198 	/*
199 	 * At this point folio must be either written or cleaned by
200 	 * truncate.  Dirty folio here signals a bug and loss of
201 	 * unwritten data - on ordinary filesystems.
202 	 *
203 	 * But it's harmless on in-memory filesystems like tmpfs; and can
204 	 * occur when a driver which did get_user_pages() sets page dirty
205 	 * before putting it, while the inode is being finally evicted.
206 	 *
207 	 * Below fixes dirty accounting after removing the folio entirely
208 	 * but leaves the dirty flag set: it has no effect for truncated
209 	 * folio and anyway will be cleared before returning folio to
210 	 * buddy allocator.
211 	 */
212 	if (WARN_ON_ONCE(folio_test_dirty(folio) &&
213 			 mapping_can_writeback(mapping)))
214 		folio_account_cleaned(folio, inode_to_wb(mapping->host));
215 }
216 
217 /*
218  * Delete a page from the page cache and free it. Caller has to make
219  * sure the page is locked and that nobody else uses it - or that usage
220  * is safe.  The caller must hold the i_pages lock.
221  */
222 void __filemap_remove_folio(struct folio *folio, void *shadow)
223 {
224 	struct address_space *mapping = folio->mapping;
225 
226 	trace_mm_filemap_delete_from_page_cache(folio);
227 	filemap_unaccount_folio(mapping, folio);
228 	page_cache_delete(mapping, folio, shadow);
229 }
230 
231 void filemap_free_folio(struct address_space *mapping, struct folio *folio)
232 {
233 	void (*free_folio)(struct folio *);
234 	int refs = 1;
235 
236 	free_folio = mapping->a_ops->free_folio;
237 	if (free_folio)
238 		free_folio(folio);
239 
240 	if (folio_test_large(folio) && !folio_test_hugetlb(folio))
241 		refs = folio_nr_pages(folio);
242 	folio_put_refs(folio, refs);
243 }
244 
245 /**
246  * filemap_remove_folio - Remove folio from page cache.
247  * @folio: The folio.
248  *
249  * This must be called only on folios that are locked and have been
250  * verified to be in the page cache.  It will never put the folio into
251  * the free list because the caller has a reference on the page.
252  */
253 void filemap_remove_folio(struct folio *folio)
254 {
255 	struct address_space *mapping = folio->mapping;
256 
257 	BUG_ON(!folio_test_locked(folio));
258 	spin_lock(&mapping->host->i_lock);
259 	xa_lock_irq(&mapping->i_pages);
260 	__filemap_remove_folio(folio, NULL);
261 	xa_unlock_irq(&mapping->i_pages);
262 	if (mapping_shrinkable(mapping))
263 		inode_add_lru(mapping->host);
264 	spin_unlock(&mapping->host->i_lock);
265 
266 	filemap_free_folio(mapping, folio);
267 }
268 
269 /*
270  * page_cache_delete_batch - delete several folios from page cache
271  * @mapping: the mapping to which folios belong
272  * @fbatch: batch of folios to delete
273  *
274  * The function walks over mapping->i_pages and removes folios passed in
275  * @fbatch from the mapping. The function expects @fbatch to be sorted
276  * by page index and is optimised for it to be dense.
277  * It tolerates holes in @fbatch (mapping entries at those indices are not
278  * modified).
279  *
280  * The function expects the i_pages lock to be held.
281  */
282 static void page_cache_delete_batch(struct address_space *mapping,
283 			     struct folio_batch *fbatch)
284 {
285 	XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
286 	long total_pages = 0;
287 	int i = 0;
288 	struct folio *folio;
289 
290 	mapping_set_update(&xas, mapping);
291 	xas_for_each(&xas, folio, ULONG_MAX) {
292 		if (i >= folio_batch_count(fbatch))
293 			break;
294 
295 		/* A swap/dax/shadow entry got inserted? Skip it. */
296 		if (xa_is_value(folio))
297 			continue;
298 		/*
299 		 * A page got inserted in our range? Skip it. We have our
300 		 * pages locked so they are protected from being removed.
301 		 * If we see a page whose index is higher than ours, it
302 		 * means our page has been removed, which shouldn't be
303 		 * possible because we're holding the PageLock.
304 		 */
305 		if (folio != fbatch->folios[i]) {
306 			VM_BUG_ON_FOLIO(folio->index >
307 					fbatch->folios[i]->index, folio);
308 			continue;
309 		}
310 
311 		WARN_ON_ONCE(!folio_test_locked(folio));
312 
313 		folio->mapping = NULL;
314 		/* Leave folio->index set: truncation lookup relies on it */
315 
316 		i++;
317 		xas_store(&xas, NULL);
318 		total_pages += folio_nr_pages(folio);
319 	}
320 	mapping->nrpages -= total_pages;
321 }
322 
323 void delete_from_page_cache_batch(struct address_space *mapping,
324 				  struct folio_batch *fbatch)
325 {
326 	int i;
327 
328 	if (!folio_batch_count(fbatch))
329 		return;
330 
331 	spin_lock(&mapping->host->i_lock);
332 	xa_lock_irq(&mapping->i_pages);
333 	for (i = 0; i < folio_batch_count(fbatch); i++) {
334 		struct folio *folio = fbatch->folios[i];
335 
336 		trace_mm_filemap_delete_from_page_cache(folio);
337 		filemap_unaccount_folio(mapping, folio);
338 	}
339 	page_cache_delete_batch(mapping, fbatch);
340 	xa_unlock_irq(&mapping->i_pages);
341 	if (mapping_shrinkable(mapping))
342 		inode_add_lru(mapping->host);
343 	spin_unlock(&mapping->host->i_lock);
344 
345 	for (i = 0; i < folio_batch_count(fbatch); i++)
346 		filemap_free_folio(mapping, fbatch->folios[i]);
347 }
348 
349 int filemap_check_errors(struct address_space *mapping)
350 {
351 	int ret = 0;
352 	/* Check for outstanding write errors */
353 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
354 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
355 		ret = -ENOSPC;
356 	if (test_bit(AS_EIO, &mapping->flags) &&
357 	    test_and_clear_bit(AS_EIO, &mapping->flags))
358 		ret = -EIO;
359 	return ret;
360 }
361 EXPORT_SYMBOL(filemap_check_errors);
362 
363 static int filemap_check_and_keep_errors(struct address_space *mapping)
364 {
365 	/* Check for outstanding write errors */
366 	if (test_bit(AS_EIO, &mapping->flags))
367 		return -EIO;
368 	if (test_bit(AS_ENOSPC, &mapping->flags))
369 		return -ENOSPC;
370 	return 0;
371 }
372 
373 /**
374  * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
375  * @mapping:	address space structure to write
376  * @wbc:	the writeback_control controlling the writeout
377  *
378  * Call writepages on the mapping using the provided wbc to control the
379  * writeout.
380  *
381  * Return: %0 on success, negative error code otherwise.
382  */
383 int filemap_fdatawrite_wbc(struct address_space *mapping,
384 			   struct writeback_control *wbc)
385 {
386 	int ret;
387 
388 	if (!mapping_can_writeback(mapping) ||
389 	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
390 		return 0;
391 
392 	wbc_attach_fdatawrite_inode(wbc, mapping->host);
393 	ret = do_writepages(mapping, wbc);
394 	wbc_detach_inode(wbc);
395 	return ret;
396 }
397 EXPORT_SYMBOL(filemap_fdatawrite_wbc);
398 
399 /**
400  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
401  * @mapping:	address space structure to write
402  * @start:	offset in bytes where the range starts
403  * @end:	offset in bytes where the range ends (inclusive)
404  * @sync_mode:	enable synchronous operation
405  *
406  * Start writeback against all of a mapping's dirty pages that lie
407  * within the byte offsets <start, end> inclusive.
408  *
409  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
410  * opposed to a regular memory cleansing writeback.  The difference between
411  * these two operations is that if a dirty page/buffer is encountered, it must
412  * be waited upon, and not just skipped over.
413  *
414  * Return: %0 on success, negative error code otherwise.
415  */
416 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
417 				loff_t end, int sync_mode)
418 {
419 	struct writeback_control wbc = {
420 		.sync_mode = sync_mode,
421 		.nr_to_write = LONG_MAX,
422 		.range_start = start,
423 		.range_end = end,
424 	};
425 
426 	return filemap_fdatawrite_wbc(mapping, &wbc);
427 }
428 
429 static inline int __filemap_fdatawrite(struct address_space *mapping,
430 	int sync_mode)
431 {
432 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
433 }
434 
435 int filemap_fdatawrite(struct address_space *mapping)
436 {
437 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
438 }
439 EXPORT_SYMBOL(filemap_fdatawrite);
440 
441 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
442 				loff_t end)
443 {
444 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
445 }
446 EXPORT_SYMBOL(filemap_fdatawrite_range);
447 
448 /**
449  * filemap_flush - mostly a non-blocking flush
450  * @mapping:	target address_space
451  *
452  * This is a mostly non-blocking flush.  Not suitable for data-integrity
453  * purposes - I/O may not be started against all dirty pages.
454  *
455  * Return: %0 on success, negative error code otherwise.
456  */
457 int filemap_flush(struct address_space *mapping)
458 {
459 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
460 }
461 EXPORT_SYMBOL(filemap_flush);
462 
463 /**
464  * filemap_range_has_page - check if a page exists in range.
465  * @mapping:           address space within which to check
466  * @start_byte:        offset in bytes where the range starts
467  * @end_byte:          offset in bytes where the range ends (inclusive)
468  *
469  * Find at least one page in the range supplied, usually used to check if
470  * direct writing in this range will trigger a writeback.
471  *
472  * Return: %true if at least one page exists in the specified range,
473  * %false otherwise.
474  */
475 bool filemap_range_has_page(struct address_space *mapping,
476 			   loff_t start_byte, loff_t end_byte)
477 {
478 	struct folio *folio;
479 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
480 	pgoff_t max = end_byte >> PAGE_SHIFT;
481 
482 	if (end_byte < start_byte)
483 		return false;
484 
485 	rcu_read_lock();
486 	for (;;) {
487 		folio = xas_find(&xas, max);
488 		if (xas_retry(&xas, folio))
489 			continue;
490 		/* Shadow entries don't count */
491 		if (xa_is_value(folio))
492 			continue;
493 		/*
494 		 * We don't need to try to pin this page; we're about to
495 		 * release the RCU lock anyway.  It is enough to know that
496 		 * there was a page here recently.
497 		 */
498 		break;
499 	}
500 	rcu_read_unlock();
501 
502 	return folio != NULL;
503 }
504 EXPORT_SYMBOL(filemap_range_has_page);
505 
506 static void __filemap_fdatawait_range(struct address_space *mapping,
507 				     loff_t start_byte, loff_t end_byte)
508 {
509 	pgoff_t index = start_byte >> PAGE_SHIFT;
510 	pgoff_t end = end_byte >> PAGE_SHIFT;
511 	struct folio_batch fbatch;
512 	unsigned nr_folios;
513 
514 	folio_batch_init(&fbatch);
515 
516 	while (index <= end) {
517 		unsigned i;
518 
519 		nr_folios = filemap_get_folios_tag(mapping, &index, end,
520 				PAGECACHE_TAG_WRITEBACK, &fbatch);
521 
522 		if (!nr_folios)
523 			break;
524 
525 		for (i = 0; i < nr_folios; i++) {
526 			struct folio *folio = fbatch.folios[i];
527 
528 			folio_wait_writeback(folio);
529 			folio_clear_error(folio);
530 		}
531 		folio_batch_release(&fbatch);
532 		cond_resched();
533 	}
534 }
535 
536 /**
537  * filemap_fdatawait_range - wait for writeback to complete
538  * @mapping:		address space structure to wait for
539  * @start_byte:		offset in bytes where the range starts
540  * @end_byte:		offset in bytes where the range ends (inclusive)
541  *
542  * Walk the list of under-writeback pages of the given address space
543  * in the given range and wait for all of them.  Check error status of
544  * the address space and return it.
545  *
546  * Since the error status of the address space is cleared by this function,
547  * callers are responsible for checking the return value and handling and/or
548  * reporting the error.
549  *
550  * Return: error status of the address space.
551  */
552 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
553 			    loff_t end_byte)
554 {
555 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
556 	return filemap_check_errors(mapping);
557 }
558 EXPORT_SYMBOL(filemap_fdatawait_range);
559 
560 /**
561  * filemap_fdatawait_range_keep_errors - wait for writeback to complete
562  * @mapping:		address space structure to wait for
563  * @start_byte:		offset in bytes where the range starts
564  * @end_byte:		offset in bytes where the range ends (inclusive)
565  *
566  * Walk the list of under-writeback pages of the given address space in the
567  * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
568  * this function does not clear error status of the address space.
569  *
570  * Use this function if callers don't handle errors themselves.  Expected
571  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
572  * fsfreeze(8)
573  */
574 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
575 		loff_t start_byte, loff_t end_byte)
576 {
577 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
578 	return filemap_check_and_keep_errors(mapping);
579 }
580 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
581 
582 /**
583  * file_fdatawait_range - wait for writeback to complete
584  * @file:		file pointing to address space structure to wait for
585  * @start_byte:		offset in bytes where the range starts
586  * @end_byte:		offset in bytes where the range ends (inclusive)
587  *
588  * Walk the list of under-writeback pages of the address space that file
589  * refers to, in the given range and wait for all of them.  Check error
590  * status of the address space vs. the file->f_wb_err cursor and return it.
591  *
592  * Since the error status of the file is advanced by this function,
593  * callers are responsible for checking the return value and handling and/or
594  * reporting the error.
595  *
596  * Return: error status of the address space vs. the file->f_wb_err cursor.
597  */
598 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
599 {
600 	struct address_space *mapping = file->f_mapping;
601 
602 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
603 	return file_check_and_advance_wb_err(file);
604 }
605 EXPORT_SYMBOL(file_fdatawait_range);
606 
607 /**
608  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
609  * @mapping: address space structure to wait for
610  *
611  * Walk the list of under-writeback pages of the given address space
612  * and wait for all of them.  Unlike filemap_fdatawait(), this function
613  * does not clear error status of the address space.
614  *
615  * Use this function if callers don't handle errors themselves.  Expected
616  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
617  * fsfreeze(8)
618  *
619  * Return: error status of the address space.
620  */
621 int filemap_fdatawait_keep_errors(struct address_space *mapping)
622 {
623 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
624 	return filemap_check_and_keep_errors(mapping);
625 }
626 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
627 
628 /* Returns true if writeback might be needed or already in progress. */
629 static bool mapping_needs_writeback(struct address_space *mapping)
630 {
631 	return mapping->nrpages;
632 }
633 
634 bool filemap_range_has_writeback(struct address_space *mapping,
635 				 loff_t start_byte, loff_t end_byte)
636 {
637 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
638 	pgoff_t max = end_byte >> PAGE_SHIFT;
639 	struct folio *folio;
640 
641 	if (end_byte < start_byte)
642 		return false;
643 
644 	rcu_read_lock();
645 	xas_for_each(&xas, folio, max) {
646 		if (xas_retry(&xas, folio))
647 			continue;
648 		if (xa_is_value(folio))
649 			continue;
650 		if (folio_test_dirty(folio) || folio_test_locked(folio) ||
651 				folio_test_writeback(folio))
652 			break;
653 	}
654 	rcu_read_unlock();
655 	return folio != NULL;
656 }
657 EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
658 
659 /**
660  * filemap_write_and_wait_range - write out & wait on a file range
661  * @mapping:	the address_space for the pages
662  * @lstart:	offset in bytes where the range starts
663  * @lend:	offset in bytes where the range ends (inclusive)
664  *
665  * Write out and wait upon file offsets lstart->lend, inclusive.
666  *
667  * Note that @lend is inclusive (describes the last byte to be written) so
668  * that this function can be used to write to the very end-of-file (end = -1).
669  *
670  * Return: error status of the address space.
671  */
672 int filemap_write_and_wait_range(struct address_space *mapping,
673 				 loff_t lstart, loff_t lend)
674 {
675 	int err = 0, err2;
676 
677 	if (lend < lstart)
678 		return 0;
679 
680 	if (mapping_needs_writeback(mapping)) {
681 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
682 						 WB_SYNC_ALL);
683 		/*
684 		 * Even if the above returned error, the pages may be
685 		 * written partially (e.g. -ENOSPC), so we wait for it.
686 		 * But the -EIO is special case, it may indicate the worst
687 		 * thing (e.g. bug) happened, so we avoid waiting for it.
688 		 */
689 		if (err != -EIO)
690 			__filemap_fdatawait_range(mapping, lstart, lend);
691 	}
692 	err2 = filemap_check_errors(mapping);
693 	if (!err)
694 		err = err2;
695 	return err;
696 }
697 EXPORT_SYMBOL(filemap_write_and_wait_range);
698 
699 void __filemap_set_wb_err(struct address_space *mapping, int err)
700 {
701 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
702 
703 	trace_filemap_set_wb_err(mapping, eseq);
704 }
705 EXPORT_SYMBOL(__filemap_set_wb_err);
706 
707 /**
708  * file_check_and_advance_wb_err - report wb error (if any) that was previously
709  * 				   and advance wb_err to current one
710  * @file: struct file on which the error is being reported
711  *
712  * When userland calls fsync (or something like nfsd does the equivalent), we
713  * want to report any writeback errors that occurred since the last fsync (or
714  * since the file was opened if there haven't been any).
715  *
716  * Grab the wb_err from the mapping. If it matches what we have in the file,
717  * then just quickly return 0. The file is all caught up.
718  *
719  * If it doesn't match, then take the mapping value, set the "seen" flag in
720  * it and try to swap it into place. If it works, or another task beat us
721  * to it with the new value, then update the f_wb_err and return the error
722  * portion. The error at this point must be reported via proper channels
723  * (a'la fsync, or NFS COMMIT operation, etc.).
724  *
725  * While we handle mapping->wb_err with atomic operations, the f_wb_err
726  * value is protected by the f_lock since we must ensure that it reflects
727  * the latest value swapped in for this file descriptor.
728  *
729  * Return: %0 on success, negative error code otherwise.
730  */
731 int file_check_and_advance_wb_err(struct file *file)
732 {
733 	int err = 0;
734 	errseq_t old = READ_ONCE(file->f_wb_err);
735 	struct address_space *mapping = file->f_mapping;
736 
737 	/* Locklessly handle the common case where nothing has changed */
738 	if (errseq_check(&mapping->wb_err, old)) {
739 		/* Something changed, must use slow path */
740 		spin_lock(&file->f_lock);
741 		old = file->f_wb_err;
742 		err = errseq_check_and_advance(&mapping->wb_err,
743 						&file->f_wb_err);
744 		trace_file_check_and_advance_wb_err(file, old);
745 		spin_unlock(&file->f_lock);
746 	}
747 
748 	/*
749 	 * We're mostly using this function as a drop in replacement for
750 	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
751 	 * that the legacy code would have had on these flags.
752 	 */
753 	clear_bit(AS_EIO, &mapping->flags);
754 	clear_bit(AS_ENOSPC, &mapping->flags);
755 	return err;
756 }
757 EXPORT_SYMBOL(file_check_and_advance_wb_err);
758 
759 /**
760  * file_write_and_wait_range - write out & wait on a file range
761  * @file:	file pointing to address_space with pages
762  * @lstart:	offset in bytes where the range starts
763  * @lend:	offset in bytes where the range ends (inclusive)
764  *
765  * Write out and wait upon file offsets lstart->lend, inclusive.
766  *
767  * Note that @lend is inclusive (describes the last byte to be written) so
768  * that this function can be used to write to the very end-of-file (end = -1).
769  *
770  * After writing out and waiting on the data, we check and advance the
771  * f_wb_err cursor to the latest value, and return any errors detected there.
772  *
773  * Return: %0 on success, negative error code otherwise.
774  */
775 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
776 {
777 	int err = 0, err2;
778 	struct address_space *mapping = file->f_mapping;
779 
780 	if (lend < lstart)
781 		return 0;
782 
783 	if (mapping_needs_writeback(mapping)) {
784 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
785 						 WB_SYNC_ALL);
786 		/* See comment of filemap_write_and_wait() */
787 		if (err != -EIO)
788 			__filemap_fdatawait_range(mapping, lstart, lend);
789 	}
790 	err2 = file_check_and_advance_wb_err(file);
791 	if (!err)
792 		err = err2;
793 	return err;
794 }
795 EXPORT_SYMBOL(file_write_and_wait_range);
796 
797 /**
798  * replace_page_cache_folio - replace a pagecache folio with a new one
799  * @old:	folio to be replaced
800  * @new:	folio to replace with
801  *
802  * This function replaces a folio in the pagecache with a new one.  On
803  * success it acquires the pagecache reference for the new folio and
804  * drops it for the old folio.  Both the old and new folios must be
805  * locked.  This function does not add the new folio to the LRU, the
806  * caller must do that.
807  *
808  * The remove + add is atomic.  This function cannot fail.
809  */
810 void replace_page_cache_folio(struct folio *old, struct folio *new)
811 {
812 	struct address_space *mapping = old->mapping;
813 	void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
814 	pgoff_t offset = old->index;
815 	XA_STATE(xas, &mapping->i_pages, offset);
816 
817 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
818 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
819 	VM_BUG_ON_FOLIO(new->mapping, new);
820 
821 	folio_get(new);
822 	new->mapping = mapping;
823 	new->index = offset;
824 
825 	mem_cgroup_migrate(old, new);
826 
827 	xas_lock_irq(&xas);
828 	xas_store(&xas, new);
829 
830 	old->mapping = NULL;
831 	/* hugetlb pages do not participate in page cache accounting. */
832 	if (!folio_test_hugetlb(old))
833 		__lruvec_stat_sub_folio(old, NR_FILE_PAGES);
834 	if (!folio_test_hugetlb(new))
835 		__lruvec_stat_add_folio(new, NR_FILE_PAGES);
836 	if (folio_test_swapbacked(old))
837 		__lruvec_stat_sub_folio(old, NR_SHMEM);
838 	if (folio_test_swapbacked(new))
839 		__lruvec_stat_add_folio(new, NR_SHMEM);
840 	xas_unlock_irq(&xas);
841 	if (free_folio)
842 		free_folio(old);
843 	folio_put(old);
844 }
845 EXPORT_SYMBOL_GPL(replace_page_cache_folio);
846 
847 noinline int __filemap_add_folio(struct address_space *mapping,
848 		struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
849 {
850 	XA_STATE(xas, &mapping->i_pages, index);
851 	int huge = folio_test_hugetlb(folio);
852 	bool charged = false;
853 	long nr = 1;
854 
855 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
856 	VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
857 	mapping_set_update(&xas, mapping);
858 
859 	if (!huge) {
860 		int error = mem_cgroup_charge(folio, NULL, gfp);
861 		VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
862 		if (error)
863 			return error;
864 		charged = true;
865 		xas_set_order(&xas, index, folio_order(folio));
866 		nr = folio_nr_pages(folio);
867 	}
868 
869 	gfp &= GFP_RECLAIM_MASK;
870 	folio_ref_add(folio, nr);
871 	folio->mapping = mapping;
872 	folio->index = xas.xa_index;
873 
874 	do {
875 		unsigned int order = xa_get_order(xas.xa, xas.xa_index);
876 		void *entry, *old = NULL;
877 
878 		if (order > folio_order(folio))
879 			xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
880 					order, gfp);
881 		xas_lock_irq(&xas);
882 		xas_for_each_conflict(&xas, entry) {
883 			old = entry;
884 			if (!xa_is_value(entry)) {
885 				xas_set_err(&xas, -EEXIST);
886 				goto unlock;
887 			}
888 		}
889 
890 		if (old) {
891 			if (shadowp)
892 				*shadowp = old;
893 			/* entry may have been split before we acquired lock */
894 			order = xa_get_order(xas.xa, xas.xa_index);
895 			if (order > folio_order(folio)) {
896 				/* How to handle large swap entries? */
897 				BUG_ON(shmem_mapping(mapping));
898 				xas_split(&xas, old, order);
899 				xas_reset(&xas);
900 			}
901 		}
902 
903 		xas_store(&xas, folio);
904 		if (xas_error(&xas))
905 			goto unlock;
906 
907 		mapping->nrpages += nr;
908 
909 		/* hugetlb pages do not participate in page cache accounting */
910 		if (!huge) {
911 			__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
912 			if (folio_test_pmd_mappable(folio))
913 				__lruvec_stat_mod_folio(folio,
914 						NR_FILE_THPS, nr);
915 		}
916 unlock:
917 		xas_unlock_irq(&xas);
918 	} while (xas_nomem(&xas, gfp));
919 
920 	if (xas_error(&xas))
921 		goto error;
922 
923 	trace_mm_filemap_add_to_page_cache(folio);
924 	return 0;
925 error:
926 	if (charged)
927 		mem_cgroup_uncharge(folio);
928 	folio->mapping = NULL;
929 	/* Leave page->index set: truncation relies upon it */
930 	folio_put_refs(folio, nr);
931 	return xas_error(&xas);
932 }
933 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
934 
935 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
936 				pgoff_t index, gfp_t gfp)
937 {
938 	void *shadow = NULL;
939 	int ret;
940 
941 	__folio_set_locked(folio);
942 	ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
943 	if (unlikely(ret))
944 		__folio_clear_locked(folio);
945 	else {
946 		/*
947 		 * The folio might have been evicted from cache only
948 		 * recently, in which case it should be activated like
949 		 * any other repeatedly accessed folio.
950 		 * The exception is folios getting rewritten; evicting other
951 		 * data from the working set, only to cache data that will
952 		 * get overwritten with something else, is a waste of memory.
953 		 */
954 		WARN_ON_ONCE(folio_test_active(folio));
955 		if (!(gfp & __GFP_WRITE) && shadow)
956 			workingset_refault(folio, shadow);
957 		folio_add_lru(folio);
958 	}
959 	return ret;
960 }
961 EXPORT_SYMBOL_GPL(filemap_add_folio);
962 
963 #ifdef CONFIG_NUMA
964 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
965 {
966 	int n;
967 	struct folio *folio;
968 
969 	if (cpuset_do_page_mem_spread()) {
970 		unsigned int cpuset_mems_cookie;
971 		do {
972 			cpuset_mems_cookie = read_mems_allowed_begin();
973 			n = cpuset_mem_spread_node();
974 			folio = __folio_alloc_node(gfp, order, n);
975 		} while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
976 
977 		return folio;
978 	}
979 	return folio_alloc(gfp, order);
980 }
981 EXPORT_SYMBOL(filemap_alloc_folio);
982 #endif
983 
984 /*
985  * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
986  *
987  * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
988  *
989  * @mapping1: the first mapping to lock
990  * @mapping2: the second mapping to lock
991  */
992 void filemap_invalidate_lock_two(struct address_space *mapping1,
993 				 struct address_space *mapping2)
994 {
995 	if (mapping1 > mapping2)
996 		swap(mapping1, mapping2);
997 	if (mapping1)
998 		down_write(&mapping1->invalidate_lock);
999 	if (mapping2 && mapping1 != mapping2)
1000 		down_write_nested(&mapping2->invalidate_lock, 1);
1001 }
1002 EXPORT_SYMBOL(filemap_invalidate_lock_two);
1003 
1004 /*
1005  * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1006  *
1007  * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1008  *
1009  * @mapping1: the first mapping to unlock
1010  * @mapping2: the second mapping to unlock
1011  */
1012 void filemap_invalidate_unlock_two(struct address_space *mapping1,
1013 				   struct address_space *mapping2)
1014 {
1015 	if (mapping1)
1016 		up_write(&mapping1->invalidate_lock);
1017 	if (mapping2 && mapping1 != mapping2)
1018 		up_write(&mapping2->invalidate_lock);
1019 }
1020 EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1021 
1022 /*
1023  * In order to wait for pages to become available there must be
1024  * waitqueues associated with pages. By using a hash table of
1025  * waitqueues where the bucket discipline is to maintain all
1026  * waiters on the same queue and wake all when any of the pages
1027  * become available, and for the woken contexts to check to be
1028  * sure the appropriate page became available, this saves space
1029  * at a cost of "thundering herd" phenomena during rare hash
1030  * collisions.
1031  */
1032 #define PAGE_WAIT_TABLE_BITS 8
1033 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1034 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1035 
1036 static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1037 {
1038 	return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1039 }
1040 
1041 void __init pagecache_init(void)
1042 {
1043 	int i;
1044 
1045 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1046 		init_waitqueue_head(&folio_wait_table[i]);
1047 
1048 	page_writeback_init();
1049 }
1050 
1051 /*
1052  * The page wait code treats the "wait->flags" somewhat unusually, because
1053  * we have multiple different kinds of waits, not just the usual "exclusive"
1054  * one.
1055  *
1056  * We have:
1057  *
1058  *  (a) no special bits set:
1059  *
1060  *	We're just waiting for the bit to be released, and when a waker
1061  *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1062  *	and remove it from the wait queue.
1063  *
1064  *	Simple and straightforward.
1065  *
1066  *  (b) WQ_FLAG_EXCLUSIVE:
1067  *
1068  *	The waiter is waiting to get the lock, and only one waiter should
1069  *	be woken up to avoid any thundering herd behavior. We'll set the
1070  *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1071  *
1072  *	This is the traditional exclusive wait.
1073  *
1074  *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1075  *
1076  *	The waiter is waiting to get the bit, and additionally wants the
1077  *	lock to be transferred to it for fair lock behavior. If the lock
1078  *	cannot be taken, we stop walking the wait queue without waking
1079  *	the waiter.
1080  *
1081  *	This is the "fair lock handoff" case, and in addition to setting
1082  *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1083  *	that it now has the lock.
1084  */
1085 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1086 {
1087 	unsigned int flags;
1088 	struct wait_page_key *key = arg;
1089 	struct wait_page_queue *wait_page
1090 		= container_of(wait, struct wait_page_queue, wait);
1091 
1092 	if (!wake_page_match(wait_page, key))
1093 		return 0;
1094 
1095 	/*
1096 	 * If it's a lock handoff wait, we get the bit for it, and
1097 	 * stop walking (and do not wake it up) if we can't.
1098 	 */
1099 	flags = wait->flags;
1100 	if (flags & WQ_FLAG_EXCLUSIVE) {
1101 		if (test_bit(key->bit_nr, &key->folio->flags))
1102 			return -1;
1103 		if (flags & WQ_FLAG_CUSTOM) {
1104 			if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1105 				return -1;
1106 			flags |= WQ_FLAG_DONE;
1107 		}
1108 	}
1109 
1110 	/*
1111 	 * We are holding the wait-queue lock, but the waiter that
1112 	 * is waiting for this will be checking the flags without
1113 	 * any locking.
1114 	 *
1115 	 * So update the flags atomically, and wake up the waiter
1116 	 * afterwards to avoid any races. This store-release pairs
1117 	 * with the load-acquire in folio_wait_bit_common().
1118 	 */
1119 	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1120 	wake_up_state(wait->private, mode);
1121 
1122 	/*
1123 	 * Ok, we have successfully done what we're waiting for,
1124 	 * and we can unconditionally remove the wait entry.
1125 	 *
1126 	 * Note that this pairs with the "finish_wait()" in the
1127 	 * waiter, and has to be the absolute last thing we do.
1128 	 * After this list_del_init(&wait->entry) the wait entry
1129 	 * might be de-allocated and the process might even have
1130 	 * exited.
1131 	 */
1132 	list_del_init_careful(&wait->entry);
1133 	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1134 }
1135 
1136 static void folio_wake_bit(struct folio *folio, int bit_nr)
1137 {
1138 	wait_queue_head_t *q = folio_waitqueue(folio);
1139 	struct wait_page_key key;
1140 	unsigned long flags;
1141 	wait_queue_entry_t bookmark;
1142 
1143 	key.folio = folio;
1144 	key.bit_nr = bit_nr;
1145 	key.page_match = 0;
1146 
1147 	bookmark.flags = 0;
1148 	bookmark.private = NULL;
1149 	bookmark.func = NULL;
1150 	INIT_LIST_HEAD(&bookmark.entry);
1151 
1152 	spin_lock_irqsave(&q->lock, flags);
1153 	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1154 
1155 	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1156 		/*
1157 		 * Take a breather from holding the lock,
1158 		 * allow pages that finish wake up asynchronously
1159 		 * to acquire the lock and remove themselves
1160 		 * from wait queue
1161 		 */
1162 		spin_unlock_irqrestore(&q->lock, flags);
1163 		cpu_relax();
1164 		spin_lock_irqsave(&q->lock, flags);
1165 		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1166 	}
1167 
1168 	/*
1169 	 * It's possible to miss clearing waiters here, when we woke our page
1170 	 * waiters, but the hashed waitqueue has waiters for other pages on it.
1171 	 * That's okay, it's a rare case. The next waker will clear it.
1172 	 *
1173 	 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1174 	 * other), the flag may be cleared in the course of freeing the page;
1175 	 * but that is not required for correctness.
1176 	 */
1177 	if (!waitqueue_active(q) || !key.page_match)
1178 		folio_clear_waiters(folio);
1179 
1180 	spin_unlock_irqrestore(&q->lock, flags);
1181 }
1182 
1183 static void folio_wake(struct folio *folio, int bit)
1184 {
1185 	if (!folio_test_waiters(folio))
1186 		return;
1187 	folio_wake_bit(folio, bit);
1188 }
1189 
1190 /*
1191  * A choice of three behaviors for folio_wait_bit_common():
1192  */
1193 enum behavior {
1194 	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1195 			 * __folio_lock() waiting on then setting PG_locked.
1196 			 */
1197 	SHARED,		/* Hold ref to page and check the bit when woken, like
1198 			 * folio_wait_writeback() waiting on PG_writeback.
1199 			 */
1200 	DROP,		/* Drop ref to page before wait, no check when woken,
1201 			 * like folio_put_wait_locked() on PG_locked.
1202 			 */
1203 };
1204 
1205 /*
1206  * Attempt to check (or get) the folio flag, and mark us done
1207  * if successful.
1208  */
1209 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1210 					struct wait_queue_entry *wait)
1211 {
1212 	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1213 		if (test_and_set_bit(bit_nr, &folio->flags))
1214 			return false;
1215 	} else if (test_bit(bit_nr, &folio->flags))
1216 		return false;
1217 
1218 	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1219 	return true;
1220 }
1221 
1222 /* How many times do we accept lock stealing from under a waiter? */
1223 int sysctl_page_lock_unfairness = 5;
1224 
1225 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1226 		int state, enum behavior behavior)
1227 {
1228 	wait_queue_head_t *q = folio_waitqueue(folio);
1229 	int unfairness = sysctl_page_lock_unfairness;
1230 	struct wait_page_queue wait_page;
1231 	wait_queue_entry_t *wait = &wait_page.wait;
1232 	bool thrashing = false;
1233 	unsigned long pflags;
1234 	bool in_thrashing;
1235 
1236 	if (bit_nr == PG_locked &&
1237 	    !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1238 		delayacct_thrashing_start(&in_thrashing);
1239 		psi_memstall_enter(&pflags);
1240 		thrashing = true;
1241 	}
1242 
1243 	init_wait(wait);
1244 	wait->func = wake_page_function;
1245 	wait_page.folio = folio;
1246 	wait_page.bit_nr = bit_nr;
1247 
1248 repeat:
1249 	wait->flags = 0;
1250 	if (behavior == EXCLUSIVE) {
1251 		wait->flags = WQ_FLAG_EXCLUSIVE;
1252 		if (--unfairness < 0)
1253 			wait->flags |= WQ_FLAG_CUSTOM;
1254 	}
1255 
1256 	/*
1257 	 * Do one last check whether we can get the
1258 	 * page bit synchronously.
1259 	 *
1260 	 * Do the folio_set_waiters() marking before that
1261 	 * to let any waker we _just_ missed know they
1262 	 * need to wake us up (otherwise they'll never
1263 	 * even go to the slow case that looks at the
1264 	 * page queue), and add ourselves to the wait
1265 	 * queue if we need to sleep.
1266 	 *
1267 	 * This part needs to be done under the queue
1268 	 * lock to avoid races.
1269 	 */
1270 	spin_lock_irq(&q->lock);
1271 	folio_set_waiters(folio);
1272 	if (!folio_trylock_flag(folio, bit_nr, wait))
1273 		__add_wait_queue_entry_tail(q, wait);
1274 	spin_unlock_irq(&q->lock);
1275 
1276 	/*
1277 	 * From now on, all the logic will be based on
1278 	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1279 	 * see whether the page bit testing has already
1280 	 * been done by the wake function.
1281 	 *
1282 	 * We can drop our reference to the folio.
1283 	 */
1284 	if (behavior == DROP)
1285 		folio_put(folio);
1286 
1287 	/*
1288 	 * Note that until the "finish_wait()", or until
1289 	 * we see the WQ_FLAG_WOKEN flag, we need to
1290 	 * be very careful with the 'wait->flags', because
1291 	 * we may race with a waker that sets them.
1292 	 */
1293 	for (;;) {
1294 		unsigned int flags;
1295 
1296 		set_current_state(state);
1297 
1298 		/* Loop until we've been woken or interrupted */
1299 		flags = smp_load_acquire(&wait->flags);
1300 		if (!(flags & WQ_FLAG_WOKEN)) {
1301 			if (signal_pending_state(state, current))
1302 				break;
1303 
1304 			io_schedule();
1305 			continue;
1306 		}
1307 
1308 		/* If we were non-exclusive, we're done */
1309 		if (behavior != EXCLUSIVE)
1310 			break;
1311 
1312 		/* If the waker got the lock for us, we're done */
1313 		if (flags & WQ_FLAG_DONE)
1314 			break;
1315 
1316 		/*
1317 		 * Otherwise, if we're getting the lock, we need to
1318 		 * try to get it ourselves.
1319 		 *
1320 		 * And if that fails, we'll have to retry this all.
1321 		 */
1322 		if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1323 			goto repeat;
1324 
1325 		wait->flags |= WQ_FLAG_DONE;
1326 		break;
1327 	}
1328 
1329 	/*
1330 	 * If a signal happened, this 'finish_wait()' may remove the last
1331 	 * waiter from the wait-queues, but the folio waiters bit will remain
1332 	 * set. That's ok. The next wakeup will take care of it, and trying
1333 	 * to do it here would be difficult and prone to races.
1334 	 */
1335 	finish_wait(q, wait);
1336 
1337 	if (thrashing) {
1338 		delayacct_thrashing_end(&in_thrashing);
1339 		psi_memstall_leave(&pflags);
1340 	}
1341 
1342 	/*
1343 	 * NOTE! The wait->flags weren't stable until we've done the
1344 	 * 'finish_wait()', and we could have exited the loop above due
1345 	 * to a signal, and had a wakeup event happen after the signal
1346 	 * test but before the 'finish_wait()'.
1347 	 *
1348 	 * So only after the finish_wait() can we reliably determine
1349 	 * if we got woken up or not, so we can now figure out the final
1350 	 * return value based on that state without races.
1351 	 *
1352 	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1353 	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1354 	 */
1355 	if (behavior == EXCLUSIVE)
1356 		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1357 
1358 	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1359 }
1360 
1361 #ifdef CONFIG_MIGRATION
1362 /**
1363  * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1364  * @entry: migration swap entry.
1365  * @ptep: mapped pte pointer. Will return with the ptep unmapped. Only required
1366  *        for pte entries, pass NULL for pmd entries.
1367  * @ptl: already locked ptl. This function will drop the lock.
1368  *
1369  * Wait for a migration entry referencing the given page to be removed. This is
1370  * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1371  * this can be called without taking a reference on the page. Instead this
1372  * should be called while holding the ptl for the migration entry referencing
1373  * the page.
1374  *
1375  * Returns after unmapping and unlocking the pte/ptl with pte_unmap_unlock().
1376  *
1377  * This follows the same logic as folio_wait_bit_common() so see the comments
1378  * there.
1379  */
1380 void migration_entry_wait_on_locked(swp_entry_t entry, pte_t *ptep,
1381 				spinlock_t *ptl)
1382 {
1383 	struct wait_page_queue wait_page;
1384 	wait_queue_entry_t *wait = &wait_page.wait;
1385 	bool thrashing = false;
1386 	unsigned long pflags;
1387 	bool in_thrashing;
1388 	wait_queue_head_t *q;
1389 	struct folio *folio = page_folio(pfn_swap_entry_to_page(entry));
1390 
1391 	q = folio_waitqueue(folio);
1392 	if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1393 		delayacct_thrashing_start(&in_thrashing);
1394 		psi_memstall_enter(&pflags);
1395 		thrashing = true;
1396 	}
1397 
1398 	init_wait(wait);
1399 	wait->func = wake_page_function;
1400 	wait_page.folio = folio;
1401 	wait_page.bit_nr = PG_locked;
1402 	wait->flags = 0;
1403 
1404 	spin_lock_irq(&q->lock);
1405 	folio_set_waiters(folio);
1406 	if (!folio_trylock_flag(folio, PG_locked, wait))
1407 		__add_wait_queue_entry_tail(q, wait);
1408 	spin_unlock_irq(&q->lock);
1409 
1410 	/*
1411 	 * If a migration entry exists for the page the migration path must hold
1412 	 * a valid reference to the page, and it must take the ptl to remove the
1413 	 * migration entry. So the page is valid until the ptl is dropped.
1414 	 */
1415 	if (ptep)
1416 		pte_unmap_unlock(ptep, ptl);
1417 	else
1418 		spin_unlock(ptl);
1419 
1420 	for (;;) {
1421 		unsigned int flags;
1422 
1423 		set_current_state(TASK_UNINTERRUPTIBLE);
1424 
1425 		/* Loop until we've been woken or interrupted */
1426 		flags = smp_load_acquire(&wait->flags);
1427 		if (!(flags & WQ_FLAG_WOKEN)) {
1428 			if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1429 				break;
1430 
1431 			io_schedule();
1432 			continue;
1433 		}
1434 		break;
1435 	}
1436 
1437 	finish_wait(q, wait);
1438 
1439 	if (thrashing) {
1440 		delayacct_thrashing_end(&in_thrashing);
1441 		psi_memstall_leave(&pflags);
1442 	}
1443 }
1444 #endif
1445 
1446 void folio_wait_bit(struct folio *folio, int bit_nr)
1447 {
1448 	folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1449 }
1450 EXPORT_SYMBOL(folio_wait_bit);
1451 
1452 int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1453 {
1454 	return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1455 }
1456 EXPORT_SYMBOL(folio_wait_bit_killable);
1457 
1458 /**
1459  * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1460  * @folio: The folio to wait for.
1461  * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1462  *
1463  * The caller should hold a reference on @folio.  They expect the page to
1464  * become unlocked relatively soon, but do not wish to hold up migration
1465  * (for example) by holding the reference while waiting for the folio to
1466  * come unlocked.  After this function returns, the caller should not
1467  * dereference @folio.
1468  *
1469  * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1470  */
1471 static int folio_put_wait_locked(struct folio *folio, int state)
1472 {
1473 	return folio_wait_bit_common(folio, PG_locked, state, DROP);
1474 }
1475 
1476 /**
1477  * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1478  * @folio: Folio defining the wait queue of interest
1479  * @waiter: Waiter to add to the queue
1480  *
1481  * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1482  */
1483 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1484 {
1485 	wait_queue_head_t *q = folio_waitqueue(folio);
1486 	unsigned long flags;
1487 
1488 	spin_lock_irqsave(&q->lock, flags);
1489 	__add_wait_queue_entry_tail(q, waiter);
1490 	folio_set_waiters(folio);
1491 	spin_unlock_irqrestore(&q->lock, flags);
1492 }
1493 EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1494 
1495 #ifndef clear_bit_unlock_is_negative_byte
1496 
1497 /*
1498  * PG_waiters is the high bit in the same byte as PG_lock.
1499  *
1500  * On x86 (and on many other architectures), we can clear PG_lock and
1501  * test the sign bit at the same time. But if the architecture does
1502  * not support that special operation, we just do this all by hand
1503  * instead.
1504  *
1505  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1506  * being cleared, but a memory barrier should be unnecessary since it is
1507  * in the same byte as PG_locked.
1508  */
1509 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1510 {
1511 	clear_bit_unlock(nr, mem);
1512 	/* smp_mb__after_atomic(); */
1513 	return test_bit(PG_waiters, mem);
1514 }
1515 
1516 #endif
1517 
1518 /**
1519  * folio_unlock - Unlock a locked folio.
1520  * @folio: The folio.
1521  *
1522  * Unlocks the folio and wakes up any thread sleeping on the page lock.
1523  *
1524  * Context: May be called from interrupt or process context.  May not be
1525  * called from NMI context.
1526  */
1527 void folio_unlock(struct folio *folio)
1528 {
1529 	/* Bit 7 allows x86 to check the byte's sign bit */
1530 	BUILD_BUG_ON(PG_waiters != 7);
1531 	BUILD_BUG_ON(PG_locked > 7);
1532 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1533 	if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0)))
1534 		folio_wake_bit(folio, PG_locked);
1535 }
1536 EXPORT_SYMBOL(folio_unlock);
1537 
1538 /**
1539  * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1540  * @folio: The folio.
1541  *
1542  * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1543  * it.  The folio reference held for PG_private_2 being set is released.
1544  *
1545  * This is, for example, used when a netfs folio is being written to a local
1546  * disk cache, thereby allowing writes to the cache for the same folio to be
1547  * serialised.
1548  */
1549 void folio_end_private_2(struct folio *folio)
1550 {
1551 	VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1552 	clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1553 	folio_wake_bit(folio, PG_private_2);
1554 	folio_put(folio);
1555 }
1556 EXPORT_SYMBOL(folio_end_private_2);
1557 
1558 /**
1559  * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1560  * @folio: The folio to wait on.
1561  *
1562  * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
1563  */
1564 void folio_wait_private_2(struct folio *folio)
1565 {
1566 	while (folio_test_private_2(folio))
1567 		folio_wait_bit(folio, PG_private_2);
1568 }
1569 EXPORT_SYMBOL(folio_wait_private_2);
1570 
1571 /**
1572  * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1573  * @folio: The folio to wait on.
1574  *
1575  * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
1576  * fatal signal is received by the calling task.
1577  *
1578  * Return:
1579  * - 0 if successful.
1580  * - -EINTR if a fatal signal was encountered.
1581  */
1582 int folio_wait_private_2_killable(struct folio *folio)
1583 {
1584 	int ret = 0;
1585 
1586 	while (folio_test_private_2(folio)) {
1587 		ret = folio_wait_bit_killable(folio, PG_private_2);
1588 		if (ret < 0)
1589 			break;
1590 	}
1591 
1592 	return ret;
1593 }
1594 EXPORT_SYMBOL(folio_wait_private_2_killable);
1595 
1596 /**
1597  * folio_end_writeback - End writeback against a folio.
1598  * @folio: The folio.
1599  */
1600 void folio_end_writeback(struct folio *folio)
1601 {
1602 	/*
1603 	 * folio_test_clear_reclaim() could be used here but it is an
1604 	 * atomic operation and overkill in this particular case. Failing
1605 	 * to shuffle a folio marked for immediate reclaim is too mild
1606 	 * a gain to justify taking an atomic operation penalty at the
1607 	 * end of every folio writeback.
1608 	 */
1609 	if (folio_test_reclaim(folio)) {
1610 		folio_clear_reclaim(folio);
1611 		folio_rotate_reclaimable(folio);
1612 	}
1613 
1614 	/*
1615 	 * Writeback does not hold a folio reference of its own, relying
1616 	 * on truncation to wait for the clearing of PG_writeback.
1617 	 * But here we must make sure that the folio is not freed and
1618 	 * reused before the folio_wake().
1619 	 */
1620 	folio_get(folio);
1621 	if (!__folio_end_writeback(folio))
1622 		BUG();
1623 
1624 	smp_mb__after_atomic();
1625 	folio_wake(folio, PG_writeback);
1626 	acct_reclaim_writeback(folio);
1627 	folio_put(folio);
1628 }
1629 EXPORT_SYMBOL(folio_end_writeback);
1630 
1631 /*
1632  * After completing I/O on a page, call this routine to update the page
1633  * flags appropriately
1634  */
1635 void page_endio(struct page *page, bool is_write, int err)
1636 {
1637 	struct folio *folio = page_folio(page);
1638 
1639 	if (!is_write) {
1640 		if (!err) {
1641 			folio_mark_uptodate(folio);
1642 		} else {
1643 			folio_clear_uptodate(folio);
1644 			folio_set_error(folio);
1645 		}
1646 		folio_unlock(folio);
1647 	} else {
1648 		if (err) {
1649 			struct address_space *mapping;
1650 
1651 			folio_set_error(folio);
1652 			mapping = folio_mapping(folio);
1653 			if (mapping)
1654 				mapping_set_error(mapping, err);
1655 		}
1656 		folio_end_writeback(folio);
1657 	}
1658 }
1659 EXPORT_SYMBOL_GPL(page_endio);
1660 
1661 /**
1662  * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1663  * @folio: The folio to lock
1664  */
1665 void __folio_lock(struct folio *folio)
1666 {
1667 	folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1668 				EXCLUSIVE);
1669 }
1670 EXPORT_SYMBOL(__folio_lock);
1671 
1672 int __folio_lock_killable(struct folio *folio)
1673 {
1674 	return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1675 					EXCLUSIVE);
1676 }
1677 EXPORT_SYMBOL_GPL(__folio_lock_killable);
1678 
1679 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1680 {
1681 	struct wait_queue_head *q = folio_waitqueue(folio);
1682 	int ret = 0;
1683 
1684 	wait->folio = folio;
1685 	wait->bit_nr = PG_locked;
1686 
1687 	spin_lock_irq(&q->lock);
1688 	__add_wait_queue_entry_tail(q, &wait->wait);
1689 	folio_set_waiters(folio);
1690 	ret = !folio_trylock(folio);
1691 	/*
1692 	 * If we were successful now, we know we're still on the
1693 	 * waitqueue as we're still under the lock. This means it's
1694 	 * safe to remove and return success, we know the callback
1695 	 * isn't going to trigger.
1696 	 */
1697 	if (!ret)
1698 		__remove_wait_queue(q, &wait->wait);
1699 	else
1700 		ret = -EIOCBQUEUED;
1701 	spin_unlock_irq(&q->lock);
1702 	return ret;
1703 }
1704 
1705 /*
1706  * Return values:
1707  * true - folio is locked; mmap_lock is still held.
1708  * false - folio is not locked.
1709  *     mmap_lock has been released (mmap_read_unlock(), unless flags had both
1710  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1711  *     which case mmap_lock is still held.
1712  *
1713  * If neither ALLOW_RETRY nor KILLABLE are set, will always return true
1714  * with the folio locked and the mmap_lock unperturbed.
1715  */
1716 bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm,
1717 			 unsigned int flags)
1718 {
1719 	if (fault_flag_allow_retry_first(flags)) {
1720 		/*
1721 		 * CAUTION! In this case, mmap_lock is not released
1722 		 * even though return 0.
1723 		 */
1724 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1725 			return false;
1726 
1727 		mmap_read_unlock(mm);
1728 		if (flags & FAULT_FLAG_KILLABLE)
1729 			folio_wait_locked_killable(folio);
1730 		else
1731 			folio_wait_locked(folio);
1732 		return false;
1733 	}
1734 	if (flags & FAULT_FLAG_KILLABLE) {
1735 		bool ret;
1736 
1737 		ret = __folio_lock_killable(folio);
1738 		if (ret) {
1739 			mmap_read_unlock(mm);
1740 			return false;
1741 		}
1742 	} else {
1743 		__folio_lock(folio);
1744 	}
1745 
1746 	return true;
1747 }
1748 
1749 /**
1750  * page_cache_next_miss() - Find the next gap in the page cache.
1751  * @mapping: Mapping.
1752  * @index: Index.
1753  * @max_scan: Maximum range to search.
1754  *
1755  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1756  * gap with the lowest index.
1757  *
1758  * This function may be called under the rcu_read_lock.  However, this will
1759  * not atomically search a snapshot of the cache at a single point in time.
1760  * For example, if a gap is created at index 5, then subsequently a gap is
1761  * created at index 10, page_cache_next_miss covering both indices may
1762  * return 10 if called under the rcu_read_lock.
1763  *
1764  * Return: The index of the gap if found, otherwise an index outside the
1765  * range specified (in which case 'return - index >= max_scan' will be true).
1766  * In the rare case of index wrap-around, 0 will be returned.
1767  */
1768 pgoff_t page_cache_next_miss(struct address_space *mapping,
1769 			     pgoff_t index, unsigned long max_scan)
1770 {
1771 	XA_STATE(xas, &mapping->i_pages, index);
1772 
1773 	while (max_scan--) {
1774 		void *entry = xas_next(&xas);
1775 		if (!entry || xa_is_value(entry))
1776 			break;
1777 		if (xas.xa_index == 0)
1778 			break;
1779 	}
1780 
1781 	return xas.xa_index;
1782 }
1783 EXPORT_SYMBOL(page_cache_next_miss);
1784 
1785 /**
1786  * page_cache_prev_miss() - Find the previous gap in the page cache.
1787  * @mapping: Mapping.
1788  * @index: Index.
1789  * @max_scan: Maximum range to search.
1790  *
1791  * Search the range [max(index - max_scan + 1, 0), index] for the
1792  * gap with the highest index.
1793  *
1794  * This function may be called under the rcu_read_lock.  However, this will
1795  * not atomically search a snapshot of the cache at a single point in time.
1796  * For example, if a gap is created at index 10, then subsequently a gap is
1797  * created at index 5, page_cache_prev_miss() covering both indices may
1798  * return 5 if called under the rcu_read_lock.
1799  *
1800  * Return: The index of the gap if found, otherwise an index outside the
1801  * range specified (in which case 'index - return >= max_scan' will be true).
1802  * In the rare case of wrap-around, ULONG_MAX will be returned.
1803  */
1804 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1805 			     pgoff_t index, unsigned long max_scan)
1806 {
1807 	XA_STATE(xas, &mapping->i_pages, index);
1808 
1809 	while (max_scan--) {
1810 		void *entry = xas_prev(&xas);
1811 		if (!entry || xa_is_value(entry))
1812 			break;
1813 		if (xas.xa_index == ULONG_MAX)
1814 			break;
1815 	}
1816 
1817 	return xas.xa_index;
1818 }
1819 EXPORT_SYMBOL(page_cache_prev_miss);
1820 
1821 /*
1822  * Lockless page cache protocol:
1823  * On the lookup side:
1824  * 1. Load the folio from i_pages
1825  * 2. Increment the refcount if it's not zero
1826  * 3. If the folio is not found by xas_reload(), put the refcount and retry
1827  *
1828  * On the removal side:
1829  * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1830  * B. Remove the page from i_pages
1831  * C. Return the page to the page allocator
1832  *
1833  * This means that any page may have its reference count temporarily
1834  * increased by a speculative page cache (or fast GUP) lookup as it can
1835  * be allocated by another user before the RCU grace period expires.
1836  * Because the refcount temporarily acquired here may end up being the
1837  * last refcount on the page, any page allocation must be freeable by
1838  * folio_put().
1839  */
1840 
1841 /*
1842  * filemap_get_entry - Get a page cache entry.
1843  * @mapping: the address_space to search
1844  * @index: The page cache index.
1845  *
1846  * Looks up the page cache entry at @mapping & @index.  If it is a folio,
1847  * it is returned with an increased refcount.  If it is a shadow entry
1848  * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1849  * it is returned without further action.
1850  *
1851  * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1852  */
1853 void *filemap_get_entry(struct address_space *mapping, pgoff_t index)
1854 {
1855 	XA_STATE(xas, &mapping->i_pages, index);
1856 	struct folio *folio;
1857 
1858 	rcu_read_lock();
1859 repeat:
1860 	xas_reset(&xas);
1861 	folio = xas_load(&xas);
1862 	if (xas_retry(&xas, folio))
1863 		goto repeat;
1864 	/*
1865 	 * A shadow entry of a recently evicted page, or a swap entry from
1866 	 * shmem/tmpfs.  Return it without attempting to raise page count.
1867 	 */
1868 	if (!folio || xa_is_value(folio))
1869 		goto out;
1870 
1871 	if (!folio_try_get_rcu(folio))
1872 		goto repeat;
1873 
1874 	if (unlikely(folio != xas_reload(&xas))) {
1875 		folio_put(folio);
1876 		goto repeat;
1877 	}
1878 out:
1879 	rcu_read_unlock();
1880 
1881 	return folio;
1882 }
1883 
1884 /**
1885  * __filemap_get_folio - Find and get a reference to a folio.
1886  * @mapping: The address_space to search.
1887  * @index: The page index.
1888  * @fgp_flags: %FGP flags modify how the folio is returned.
1889  * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1890  *
1891  * Looks up the page cache entry at @mapping & @index.
1892  *
1893  * @fgp_flags can be zero or more of these flags:
1894  *
1895  * * %FGP_ACCESSED - The folio will be marked accessed.
1896  * * %FGP_LOCK - The folio is returned locked.
1897  * * %FGP_CREAT - If no page is present then a new page is allocated using
1898  *   @gfp and added to the page cache and the VM's LRU list.
1899  *   The page is returned locked and with an increased refcount.
1900  * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1901  *   page is already in cache.  If the page was allocated, unlock it before
1902  *   returning so the caller can do the same dance.
1903  * * %FGP_WRITE - The page will be written to by the caller.
1904  * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
1905  * * %FGP_NOWAIT - Don't get blocked by page lock.
1906  * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
1907  *
1908  * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1909  * if the %GFP flags specified for %FGP_CREAT are atomic.
1910  *
1911  * If there is a page cache page, it is returned with an increased refcount.
1912  *
1913  * Return: The found folio or an ERR_PTR() otherwise.
1914  */
1915 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1916 		int fgp_flags, gfp_t gfp)
1917 {
1918 	struct folio *folio;
1919 
1920 repeat:
1921 	folio = filemap_get_entry(mapping, index);
1922 	if (xa_is_value(folio))
1923 		folio = NULL;
1924 	if (!folio)
1925 		goto no_page;
1926 
1927 	if (fgp_flags & FGP_LOCK) {
1928 		if (fgp_flags & FGP_NOWAIT) {
1929 			if (!folio_trylock(folio)) {
1930 				folio_put(folio);
1931 				return ERR_PTR(-EAGAIN);
1932 			}
1933 		} else {
1934 			folio_lock(folio);
1935 		}
1936 
1937 		/* Has the page been truncated? */
1938 		if (unlikely(folio->mapping != mapping)) {
1939 			folio_unlock(folio);
1940 			folio_put(folio);
1941 			goto repeat;
1942 		}
1943 		VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1944 	}
1945 
1946 	if (fgp_flags & FGP_ACCESSED)
1947 		folio_mark_accessed(folio);
1948 	else if (fgp_flags & FGP_WRITE) {
1949 		/* Clear idle flag for buffer write */
1950 		if (folio_test_idle(folio))
1951 			folio_clear_idle(folio);
1952 	}
1953 
1954 	if (fgp_flags & FGP_STABLE)
1955 		folio_wait_stable(folio);
1956 no_page:
1957 	if (!folio && (fgp_flags & FGP_CREAT)) {
1958 		int err;
1959 		if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1960 			gfp |= __GFP_WRITE;
1961 		if (fgp_flags & FGP_NOFS)
1962 			gfp &= ~__GFP_FS;
1963 		if (fgp_flags & FGP_NOWAIT) {
1964 			gfp &= ~GFP_KERNEL;
1965 			gfp |= GFP_NOWAIT | __GFP_NOWARN;
1966 		}
1967 
1968 		folio = filemap_alloc_folio(gfp, 0);
1969 		if (!folio)
1970 			return ERR_PTR(-ENOMEM);
1971 
1972 		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1973 			fgp_flags |= FGP_LOCK;
1974 
1975 		/* Init accessed so avoid atomic mark_page_accessed later */
1976 		if (fgp_flags & FGP_ACCESSED)
1977 			__folio_set_referenced(folio);
1978 
1979 		err = filemap_add_folio(mapping, folio, index, gfp);
1980 		if (unlikely(err)) {
1981 			folio_put(folio);
1982 			folio = NULL;
1983 			if (err == -EEXIST)
1984 				goto repeat;
1985 		}
1986 
1987 		/*
1988 		 * filemap_add_folio locks the page, and for mmap
1989 		 * we expect an unlocked page.
1990 		 */
1991 		if (folio && (fgp_flags & FGP_FOR_MMAP))
1992 			folio_unlock(folio);
1993 	}
1994 
1995 	if (!folio)
1996 		return ERR_PTR(-ENOENT);
1997 	return folio;
1998 }
1999 EXPORT_SYMBOL(__filemap_get_folio);
2000 
2001 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
2002 		xa_mark_t mark)
2003 {
2004 	struct folio *folio;
2005 
2006 retry:
2007 	if (mark == XA_PRESENT)
2008 		folio = xas_find(xas, max);
2009 	else
2010 		folio = xas_find_marked(xas, max, mark);
2011 
2012 	if (xas_retry(xas, folio))
2013 		goto retry;
2014 	/*
2015 	 * A shadow entry of a recently evicted page, a swap
2016 	 * entry from shmem/tmpfs or a DAX entry.  Return it
2017 	 * without attempting to raise page count.
2018 	 */
2019 	if (!folio || xa_is_value(folio))
2020 		return folio;
2021 
2022 	if (!folio_try_get_rcu(folio))
2023 		goto reset;
2024 
2025 	if (unlikely(folio != xas_reload(xas))) {
2026 		folio_put(folio);
2027 		goto reset;
2028 	}
2029 
2030 	return folio;
2031 reset:
2032 	xas_reset(xas);
2033 	goto retry;
2034 }
2035 
2036 /**
2037  * find_get_entries - gang pagecache lookup
2038  * @mapping:	The address_space to search
2039  * @start:	The starting page cache index
2040  * @end:	The final page index (inclusive).
2041  * @fbatch:	Where the resulting entries are placed.
2042  * @indices:	The cache indices corresponding to the entries in @entries
2043  *
2044  * find_get_entries() will search for and return a batch of entries in
2045  * the mapping.  The entries are placed in @fbatch.  find_get_entries()
2046  * takes a reference on any actual folios it returns.
2047  *
2048  * The entries have ascending indexes.  The indices may not be consecutive
2049  * due to not-present entries or large folios.
2050  *
2051  * Any shadow entries of evicted folios, or swap entries from
2052  * shmem/tmpfs, are included in the returned array.
2053  *
2054  * Return: The number of entries which were found.
2055  */
2056 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
2057 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2058 {
2059 	XA_STATE(xas, &mapping->i_pages, *start);
2060 	struct folio *folio;
2061 
2062 	rcu_read_lock();
2063 	while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2064 		indices[fbatch->nr] = xas.xa_index;
2065 		if (!folio_batch_add(fbatch, folio))
2066 			break;
2067 	}
2068 	rcu_read_unlock();
2069 
2070 	if (folio_batch_count(fbatch)) {
2071 		unsigned long nr = 1;
2072 		int idx = folio_batch_count(fbatch) - 1;
2073 
2074 		folio = fbatch->folios[idx];
2075 		if (!xa_is_value(folio) && !folio_test_hugetlb(folio))
2076 			nr = folio_nr_pages(folio);
2077 		*start = indices[idx] + nr;
2078 	}
2079 	return folio_batch_count(fbatch);
2080 }
2081 
2082 /**
2083  * find_lock_entries - Find a batch of pagecache entries.
2084  * @mapping:	The address_space to search.
2085  * @start:	The starting page cache index.
2086  * @end:	The final page index (inclusive).
2087  * @fbatch:	Where the resulting entries are placed.
2088  * @indices:	The cache indices of the entries in @fbatch.
2089  *
2090  * find_lock_entries() will return a batch of entries from @mapping.
2091  * Swap, shadow and DAX entries are included.  Folios are returned
2092  * locked and with an incremented refcount.  Folios which are locked
2093  * by somebody else or under writeback are skipped.  Folios which are
2094  * partially outside the range are not returned.
2095  *
2096  * The entries have ascending indexes.  The indices may not be consecutive
2097  * due to not-present entries, large folios, folios which could not be
2098  * locked or folios under writeback.
2099  *
2100  * Return: The number of entries which were found.
2101  */
2102 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
2103 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2104 {
2105 	XA_STATE(xas, &mapping->i_pages, *start);
2106 	struct folio *folio;
2107 
2108 	rcu_read_lock();
2109 	while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2110 		if (!xa_is_value(folio)) {
2111 			if (folio->index < *start)
2112 				goto put;
2113 			if (folio->index + folio_nr_pages(folio) - 1 > end)
2114 				goto put;
2115 			if (!folio_trylock(folio))
2116 				goto put;
2117 			if (folio->mapping != mapping ||
2118 			    folio_test_writeback(folio))
2119 				goto unlock;
2120 			VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2121 					folio);
2122 		}
2123 		indices[fbatch->nr] = xas.xa_index;
2124 		if (!folio_batch_add(fbatch, folio))
2125 			break;
2126 		continue;
2127 unlock:
2128 		folio_unlock(folio);
2129 put:
2130 		folio_put(folio);
2131 	}
2132 	rcu_read_unlock();
2133 
2134 	if (folio_batch_count(fbatch)) {
2135 		unsigned long nr = 1;
2136 		int idx = folio_batch_count(fbatch) - 1;
2137 
2138 		folio = fbatch->folios[idx];
2139 		if (!xa_is_value(folio) && !folio_test_hugetlb(folio))
2140 			nr = folio_nr_pages(folio);
2141 		*start = indices[idx] + nr;
2142 	}
2143 	return folio_batch_count(fbatch);
2144 }
2145 
2146 /**
2147  * filemap_get_folios - Get a batch of folios
2148  * @mapping:	The address_space to search
2149  * @start:	The starting page index
2150  * @end:	The final page index (inclusive)
2151  * @fbatch:	The batch to fill.
2152  *
2153  * Search for and return a batch of folios in the mapping starting at
2154  * index @start and up to index @end (inclusive).  The folios are returned
2155  * in @fbatch with an elevated reference count.
2156  *
2157  * The first folio may start before @start; if it does, it will contain
2158  * @start.  The final folio may extend beyond @end; if it does, it will
2159  * contain @end.  The folios have ascending indices.  There may be gaps
2160  * between the folios if there are indices which have no folio in the
2161  * page cache.  If folios are added to or removed from the page cache
2162  * while this is running, they may or may not be found by this call.
2163  *
2164  * Return: The number of folios which were found.
2165  * We also update @start to index the next folio for the traversal.
2166  */
2167 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2168 		pgoff_t end, struct folio_batch *fbatch)
2169 {
2170 	XA_STATE(xas, &mapping->i_pages, *start);
2171 	struct folio *folio;
2172 
2173 	rcu_read_lock();
2174 	while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2175 		/* Skip over shadow, swap and DAX entries */
2176 		if (xa_is_value(folio))
2177 			continue;
2178 		if (!folio_batch_add(fbatch, folio)) {
2179 			unsigned long nr = folio_nr_pages(folio);
2180 
2181 			if (folio_test_hugetlb(folio))
2182 				nr = 1;
2183 			*start = folio->index + nr;
2184 			goto out;
2185 		}
2186 	}
2187 
2188 	/*
2189 	 * We come here when there is no page beyond @end. We take care to not
2190 	 * overflow the index @start as it confuses some of the callers. This
2191 	 * breaks the iteration when there is a page at index -1 but that is
2192 	 * already broken anyway.
2193 	 */
2194 	if (end == (pgoff_t)-1)
2195 		*start = (pgoff_t)-1;
2196 	else
2197 		*start = end + 1;
2198 out:
2199 	rcu_read_unlock();
2200 
2201 	return folio_batch_count(fbatch);
2202 }
2203 EXPORT_SYMBOL(filemap_get_folios);
2204 
2205 static inline
2206 bool folio_more_pages(struct folio *folio, pgoff_t index, pgoff_t max)
2207 {
2208 	if (!folio_test_large(folio) || folio_test_hugetlb(folio))
2209 		return false;
2210 	if (index >= max)
2211 		return false;
2212 	return index < folio->index + folio_nr_pages(folio) - 1;
2213 }
2214 
2215 /**
2216  * filemap_get_folios_contig - Get a batch of contiguous folios
2217  * @mapping:	The address_space to search
2218  * @start:	The starting page index
2219  * @end:	The final page index (inclusive)
2220  * @fbatch:	The batch to fill
2221  *
2222  * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2223  * except the returned folios are guaranteed to be contiguous. This may
2224  * not return all contiguous folios if the batch gets filled up.
2225  *
2226  * Return: The number of folios found.
2227  * Also update @start to be positioned for traversal of the next folio.
2228  */
2229 
2230 unsigned filemap_get_folios_contig(struct address_space *mapping,
2231 		pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
2232 {
2233 	XA_STATE(xas, &mapping->i_pages, *start);
2234 	unsigned long nr;
2235 	struct folio *folio;
2236 
2237 	rcu_read_lock();
2238 
2239 	for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2240 			folio = xas_next(&xas)) {
2241 		if (xas_retry(&xas, folio))
2242 			continue;
2243 		/*
2244 		 * If the entry has been swapped out, we can stop looking.
2245 		 * No current caller is looking for DAX entries.
2246 		 */
2247 		if (xa_is_value(folio))
2248 			goto update_start;
2249 
2250 		if (!folio_try_get_rcu(folio))
2251 			goto retry;
2252 
2253 		if (unlikely(folio != xas_reload(&xas)))
2254 			goto put_folio;
2255 
2256 		if (!folio_batch_add(fbatch, folio)) {
2257 			nr = folio_nr_pages(folio);
2258 
2259 			if (folio_test_hugetlb(folio))
2260 				nr = 1;
2261 			*start = folio->index + nr;
2262 			goto out;
2263 		}
2264 		continue;
2265 put_folio:
2266 		folio_put(folio);
2267 
2268 retry:
2269 		xas_reset(&xas);
2270 	}
2271 
2272 update_start:
2273 	nr = folio_batch_count(fbatch);
2274 
2275 	if (nr) {
2276 		folio = fbatch->folios[nr - 1];
2277 		if (folio_test_hugetlb(folio))
2278 			*start = folio->index + 1;
2279 		else
2280 			*start = folio->index + folio_nr_pages(folio);
2281 	}
2282 out:
2283 	rcu_read_unlock();
2284 	return folio_batch_count(fbatch);
2285 }
2286 EXPORT_SYMBOL(filemap_get_folios_contig);
2287 
2288 /**
2289  * filemap_get_folios_tag - Get a batch of folios matching @tag
2290  * @mapping:    The address_space to search
2291  * @start:      The starting page index
2292  * @end:        The final page index (inclusive)
2293  * @tag:        The tag index
2294  * @fbatch:     The batch to fill
2295  *
2296  * Same as filemap_get_folios(), but only returning folios tagged with @tag.
2297  *
2298  * Return: The number of folios found.
2299  * Also update @start to index the next folio for traversal.
2300  */
2301 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
2302 			pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
2303 {
2304 	XA_STATE(xas, &mapping->i_pages, *start);
2305 	struct folio *folio;
2306 
2307 	rcu_read_lock();
2308 	while ((folio = find_get_entry(&xas, end, tag)) != NULL) {
2309 		/*
2310 		 * Shadow entries should never be tagged, but this iteration
2311 		 * is lockless so there is a window for page reclaim to evict
2312 		 * a page we saw tagged. Skip over it.
2313 		 */
2314 		if (xa_is_value(folio))
2315 			continue;
2316 		if (!folio_batch_add(fbatch, folio)) {
2317 			unsigned long nr = folio_nr_pages(folio);
2318 
2319 			if (folio_test_hugetlb(folio))
2320 				nr = 1;
2321 			*start = folio->index + nr;
2322 			goto out;
2323 		}
2324 	}
2325 	/*
2326 	 * We come here when there is no page beyond @end. We take care to not
2327 	 * overflow the index @start as it confuses some of the callers. This
2328 	 * breaks the iteration when there is a page at index -1 but that is
2329 	 * already broke anyway.
2330 	 */
2331 	if (end == (pgoff_t)-1)
2332 		*start = (pgoff_t)-1;
2333 	else
2334 		*start = end + 1;
2335 out:
2336 	rcu_read_unlock();
2337 
2338 	return folio_batch_count(fbatch);
2339 }
2340 EXPORT_SYMBOL(filemap_get_folios_tag);
2341 
2342 /*
2343  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2344  * a _large_ part of the i/o request. Imagine the worst scenario:
2345  *
2346  *      ---R__________________________________________B__________
2347  *         ^ reading here                             ^ bad block(assume 4k)
2348  *
2349  * read(R) => miss => readahead(R...B) => media error => frustrating retries
2350  * => failing the whole request => read(R) => read(R+1) =>
2351  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2352  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2353  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2354  *
2355  * It is going insane. Fix it by quickly scaling down the readahead size.
2356  */
2357 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2358 {
2359 	ra->ra_pages /= 4;
2360 }
2361 
2362 /*
2363  * filemap_get_read_batch - Get a batch of folios for read
2364  *
2365  * Get a batch of folios which represent a contiguous range of bytes in
2366  * the file.  No exceptional entries will be returned.  If @index is in
2367  * the middle of a folio, the entire folio will be returned.  The last
2368  * folio in the batch may have the readahead flag set or the uptodate flag
2369  * clear so that the caller can take the appropriate action.
2370  */
2371 static void filemap_get_read_batch(struct address_space *mapping,
2372 		pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2373 {
2374 	XA_STATE(xas, &mapping->i_pages, index);
2375 	struct folio *folio;
2376 
2377 	rcu_read_lock();
2378 	for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2379 		if (xas_retry(&xas, folio))
2380 			continue;
2381 		if (xas.xa_index > max || xa_is_value(folio))
2382 			break;
2383 		if (xa_is_sibling(folio))
2384 			break;
2385 		if (!folio_try_get_rcu(folio))
2386 			goto retry;
2387 
2388 		if (unlikely(folio != xas_reload(&xas)))
2389 			goto put_folio;
2390 
2391 		if (!folio_batch_add(fbatch, folio))
2392 			break;
2393 		if (!folio_test_uptodate(folio))
2394 			break;
2395 		if (folio_test_readahead(folio))
2396 			break;
2397 		xas_advance(&xas, folio->index + folio_nr_pages(folio) - 1);
2398 		continue;
2399 put_folio:
2400 		folio_put(folio);
2401 retry:
2402 		xas_reset(&xas);
2403 	}
2404 	rcu_read_unlock();
2405 }
2406 
2407 static int filemap_read_folio(struct file *file, filler_t filler,
2408 		struct folio *folio)
2409 {
2410 	bool workingset = folio_test_workingset(folio);
2411 	unsigned long pflags;
2412 	int error;
2413 
2414 	/*
2415 	 * A previous I/O error may have been due to temporary failures,
2416 	 * eg. multipath errors.  PG_error will be set again if read_folio
2417 	 * fails.
2418 	 */
2419 	folio_clear_error(folio);
2420 
2421 	/* Start the actual read. The read will unlock the page. */
2422 	if (unlikely(workingset))
2423 		psi_memstall_enter(&pflags);
2424 	error = filler(file, folio);
2425 	if (unlikely(workingset))
2426 		psi_memstall_leave(&pflags);
2427 	if (error)
2428 		return error;
2429 
2430 	error = folio_wait_locked_killable(folio);
2431 	if (error)
2432 		return error;
2433 	if (folio_test_uptodate(folio))
2434 		return 0;
2435 	if (file)
2436 		shrink_readahead_size_eio(&file->f_ra);
2437 	return -EIO;
2438 }
2439 
2440 static bool filemap_range_uptodate(struct address_space *mapping,
2441 		loff_t pos, size_t count, struct folio *folio,
2442 		bool need_uptodate)
2443 {
2444 	if (folio_test_uptodate(folio))
2445 		return true;
2446 	/* pipes can't handle partially uptodate pages */
2447 	if (need_uptodate)
2448 		return false;
2449 	if (!mapping->a_ops->is_partially_uptodate)
2450 		return false;
2451 	if (mapping->host->i_blkbits >= folio_shift(folio))
2452 		return false;
2453 
2454 	if (folio_pos(folio) > pos) {
2455 		count -= folio_pos(folio) - pos;
2456 		pos = 0;
2457 	} else {
2458 		pos -= folio_pos(folio);
2459 	}
2460 
2461 	return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2462 }
2463 
2464 static int filemap_update_page(struct kiocb *iocb,
2465 		struct address_space *mapping, size_t count,
2466 		struct folio *folio, bool need_uptodate)
2467 {
2468 	int error;
2469 
2470 	if (iocb->ki_flags & IOCB_NOWAIT) {
2471 		if (!filemap_invalidate_trylock_shared(mapping))
2472 			return -EAGAIN;
2473 	} else {
2474 		filemap_invalidate_lock_shared(mapping);
2475 	}
2476 
2477 	if (!folio_trylock(folio)) {
2478 		error = -EAGAIN;
2479 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2480 			goto unlock_mapping;
2481 		if (!(iocb->ki_flags & IOCB_WAITQ)) {
2482 			filemap_invalidate_unlock_shared(mapping);
2483 			/*
2484 			 * This is where we usually end up waiting for a
2485 			 * previously submitted readahead to finish.
2486 			 */
2487 			folio_put_wait_locked(folio, TASK_KILLABLE);
2488 			return AOP_TRUNCATED_PAGE;
2489 		}
2490 		error = __folio_lock_async(folio, iocb->ki_waitq);
2491 		if (error)
2492 			goto unlock_mapping;
2493 	}
2494 
2495 	error = AOP_TRUNCATED_PAGE;
2496 	if (!folio->mapping)
2497 		goto unlock;
2498 
2499 	error = 0;
2500 	if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio,
2501 				   need_uptodate))
2502 		goto unlock;
2503 
2504 	error = -EAGAIN;
2505 	if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2506 		goto unlock;
2507 
2508 	error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2509 			folio);
2510 	goto unlock_mapping;
2511 unlock:
2512 	folio_unlock(folio);
2513 unlock_mapping:
2514 	filemap_invalidate_unlock_shared(mapping);
2515 	if (error == AOP_TRUNCATED_PAGE)
2516 		folio_put(folio);
2517 	return error;
2518 }
2519 
2520 static int filemap_create_folio(struct file *file,
2521 		struct address_space *mapping, pgoff_t index,
2522 		struct folio_batch *fbatch)
2523 {
2524 	struct folio *folio;
2525 	int error;
2526 
2527 	folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2528 	if (!folio)
2529 		return -ENOMEM;
2530 
2531 	/*
2532 	 * Protect against truncate / hole punch. Grabbing invalidate_lock
2533 	 * here assures we cannot instantiate and bring uptodate new
2534 	 * pagecache folios after evicting page cache during truncate
2535 	 * and before actually freeing blocks.	Note that we could
2536 	 * release invalidate_lock after inserting the folio into
2537 	 * the page cache as the locked folio would then be enough to
2538 	 * synchronize with hole punching. But there are code paths
2539 	 * such as filemap_update_page() filling in partially uptodate
2540 	 * pages or ->readahead() that need to hold invalidate_lock
2541 	 * while mapping blocks for IO so let's hold the lock here as
2542 	 * well to keep locking rules simple.
2543 	 */
2544 	filemap_invalidate_lock_shared(mapping);
2545 	error = filemap_add_folio(mapping, folio, index,
2546 			mapping_gfp_constraint(mapping, GFP_KERNEL));
2547 	if (error == -EEXIST)
2548 		error = AOP_TRUNCATED_PAGE;
2549 	if (error)
2550 		goto error;
2551 
2552 	error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
2553 	if (error)
2554 		goto error;
2555 
2556 	filemap_invalidate_unlock_shared(mapping);
2557 	folio_batch_add(fbatch, folio);
2558 	return 0;
2559 error:
2560 	filemap_invalidate_unlock_shared(mapping);
2561 	folio_put(folio);
2562 	return error;
2563 }
2564 
2565 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2566 		struct address_space *mapping, struct folio *folio,
2567 		pgoff_t last_index)
2568 {
2569 	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2570 
2571 	if (iocb->ki_flags & IOCB_NOIO)
2572 		return -EAGAIN;
2573 	page_cache_async_ra(&ractl, folio, last_index - folio->index);
2574 	return 0;
2575 }
2576 
2577 static int filemap_get_pages(struct kiocb *iocb, size_t count,
2578 		struct folio_batch *fbatch, bool need_uptodate)
2579 {
2580 	struct file *filp = iocb->ki_filp;
2581 	struct address_space *mapping = filp->f_mapping;
2582 	struct file_ra_state *ra = &filp->f_ra;
2583 	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2584 	pgoff_t last_index;
2585 	struct folio *folio;
2586 	int err = 0;
2587 
2588 	/* "last_index" is the index of the page beyond the end of the read */
2589 	last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE);
2590 retry:
2591 	if (fatal_signal_pending(current))
2592 		return -EINTR;
2593 
2594 	filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2595 	if (!folio_batch_count(fbatch)) {
2596 		if (iocb->ki_flags & IOCB_NOIO)
2597 			return -EAGAIN;
2598 		page_cache_sync_readahead(mapping, ra, filp, index,
2599 				last_index - index);
2600 		filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2601 	}
2602 	if (!folio_batch_count(fbatch)) {
2603 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2604 			return -EAGAIN;
2605 		err = filemap_create_folio(filp, mapping,
2606 				iocb->ki_pos >> PAGE_SHIFT, fbatch);
2607 		if (err == AOP_TRUNCATED_PAGE)
2608 			goto retry;
2609 		return err;
2610 	}
2611 
2612 	folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2613 	if (folio_test_readahead(folio)) {
2614 		err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2615 		if (err)
2616 			goto err;
2617 	}
2618 	if (!folio_test_uptodate(folio)) {
2619 		if ((iocb->ki_flags & IOCB_WAITQ) &&
2620 		    folio_batch_count(fbatch) > 1)
2621 			iocb->ki_flags |= IOCB_NOWAIT;
2622 		err = filemap_update_page(iocb, mapping, count, folio,
2623 					  need_uptodate);
2624 		if (err)
2625 			goto err;
2626 	}
2627 
2628 	return 0;
2629 err:
2630 	if (err < 0)
2631 		folio_put(folio);
2632 	if (likely(--fbatch->nr))
2633 		return 0;
2634 	if (err == AOP_TRUNCATED_PAGE)
2635 		goto retry;
2636 	return err;
2637 }
2638 
2639 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2640 {
2641 	unsigned int shift = folio_shift(folio);
2642 
2643 	return (pos1 >> shift == pos2 >> shift);
2644 }
2645 
2646 /**
2647  * filemap_read - Read data from the page cache.
2648  * @iocb: The iocb to read.
2649  * @iter: Destination for the data.
2650  * @already_read: Number of bytes already read by the caller.
2651  *
2652  * Copies data from the page cache.  If the data is not currently present,
2653  * uses the readahead and read_folio address_space operations to fetch it.
2654  *
2655  * Return: Total number of bytes copied, including those already read by
2656  * the caller.  If an error happens before any bytes are copied, returns
2657  * a negative error number.
2658  */
2659 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2660 		ssize_t already_read)
2661 {
2662 	struct file *filp = iocb->ki_filp;
2663 	struct file_ra_state *ra = &filp->f_ra;
2664 	struct address_space *mapping = filp->f_mapping;
2665 	struct inode *inode = mapping->host;
2666 	struct folio_batch fbatch;
2667 	int i, error = 0;
2668 	bool writably_mapped;
2669 	loff_t isize, end_offset;
2670 
2671 	if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2672 		return 0;
2673 	if (unlikely(!iov_iter_count(iter)))
2674 		return 0;
2675 
2676 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2677 	folio_batch_init(&fbatch);
2678 
2679 	do {
2680 		cond_resched();
2681 
2682 		/*
2683 		 * If we've already successfully copied some data, then we
2684 		 * can no longer safely return -EIOCBQUEUED. Hence mark
2685 		 * an async read NOWAIT at that point.
2686 		 */
2687 		if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2688 			iocb->ki_flags |= IOCB_NOWAIT;
2689 
2690 		if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2691 			break;
2692 
2693 		error = filemap_get_pages(iocb, iter->count, &fbatch,
2694 					  iov_iter_is_pipe(iter));
2695 		if (error < 0)
2696 			break;
2697 
2698 		/*
2699 		 * i_size must be checked after we know the pages are Uptodate.
2700 		 *
2701 		 * Checking i_size after the check allows us to calculate
2702 		 * the correct value for "nr", which means the zero-filled
2703 		 * part of the page is not copied back to userspace (unless
2704 		 * another truncate extends the file - this is desired though).
2705 		 */
2706 		isize = i_size_read(inode);
2707 		if (unlikely(iocb->ki_pos >= isize))
2708 			goto put_folios;
2709 		end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2710 
2711 		/*
2712 		 * Once we start copying data, we don't want to be touching any
2713 		 * cachelines that might be contended:
2714 		 */
2715 		writably_mapped = mapping_writably_mapped(mapping);
2716 
2717 		/*
2718 		 * When a read accesses the same folio several times, only
2719 		 * mark it as accessed the first time.
2720 		 */
2721 		if (!pos_same_folio(iocb->ki_pos, ra->prev_pos - 1,
2722 							fbatch.folios[0]))
2723 			folio_mark_accessed(fbatch.folios[0]);
2724 
2725 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2726 			struct folio *folio = fbatch.folios[i];
2727 			size_t fsize = folio_size(folio);
2728 			size_t offset = iocb->ki_pos & (fsize - 1);
2729 			size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2730 					     fsize - offset);
2731 			size_t copied;
2732 
2733 			if (end_offset < folio_pos(folio))
2734 				break;
2735 			if (i > 0)
2736 				folio_mark_accessed(folio);
2737 			/*
2738 			 * If users can be writing to this folio using arbitrary
2739 			 * virtual addresses, take care of potential aliasing
2740 			 * before reading the folio on the kernel side.
2741 			 */
2742 			if (writably_mapped)
2743 				flush_dcache_folio(folio);
2744 
2745 			copied = copy_folio_to_iter(folio, offset, bytes, iter);
2746 
2747 			already_read += copied;
2748 			iocb->ki_pos += copied;
2749 			ra->prev_pos = iocb->ki_pos;
2750 
2751 			if (copied < bytes) {
2752 				error = -EFAULT;
2753 				break;
2754 			}
2755 		}
2756 put_folios:
2757 		for (i = 0; i < folio_batch_count(&fbatch); i++)
2758 			folio_put(fbatch.folios[i]);
2759 		folio_batch_init(&fbatch);
2760 	} while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2761 
2762 	file_accessed(filp);
2763 
2764 	return already_read ? already_read : error;
2765 }
2766 EXPORT_SYMBOL_GPL(filemap_read);
2767 
2768 /**
2769  * generic_file_read_iter - generic filesystem read routine
2770  * @iocb:	kernel I/O control block
2771  * @iter:	destination for the data read
2772  *
2773  * This is the "read_iter()" routine for all filesystems
2774  * that can use the page cache directly.
2775  *
2776  * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2777  * be returned when no data can be read without waiting for I/O requests
2778  * to complete; it doesn't prevent readahead.
2779  *
2780  * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2781  * requests shall be made for the read or for readahead.  When no data
2782  * can be read, -EAGAIN shall be returned.  When readahead would be
2783  * triggered, a partial, possibly empty read shall be returned.
2784  *
2785  * Return:
2786  * * number of bytes copied, even for partial reads
2787  * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2788  */
2789 ssize_t
2790 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2791 {
2792 	size_t count = iov_iter_count(iter);
2793 	ssize_t retval = 0;
2794 
2795 	if (!count)
2796 		return 0; /* skip atime */
2797 
2798 	if (iocb->ki_flags & IOCB_DIRECT) {
2799 		struct file *file = iocb->ki_filp;
2800 		struct address_space *mapping = file->f_mapping;
2801 		struct inode *inode = mapping->host;
2802 
2803 		if (iocb->ki_flags & IOCB_NOWAIT) {
2804 			if (filemap_range_needs_writeback(mapping, iocb->ki_pos,
2805 						iocb->ki_pos + count - 1))
2806 				return -EAGAIN;
2807 		} else {
2808 			retval = filemap_write_and_wait_range(mapping,
2809 						iocb->ki_pos,
2810 					        iocb->ki_pos + count - 1);
2811 			if (retval < 0)
2812 				return retval;
2813 		}
2814 
2815 		file_accessed(file);
2816 
2817 		retval = mapping->a_ops->direct_IO(iocb, iter);
2818 		if (retval >= 0) {
2819 			iocb->ki_pos += retval;
2820 			count -= retval;
2821 		}
2822 		if (retval != -EIOCBQUEUED)
2823 			iov_iter_revert(iter, count - iov_iter_count(iter));
2824 
2825 		/*
2826 		 * Btrfs can have a short DIO read if we encounter
2827 		 * compressed extents, so if there was an error, or if
2828 		 * we've already read everything we wanted to, or if
2829 		 * there was a short read because we hit EOF, go ahead
2830 		 * and return.  Otherwise fallthrough to buffered io for
2831 		 * the rest of the read.  Buffered reads will not work for
2832 		 * DAX files, so don't bother trying.
2833 		 */
2834 		if (retval < 0 || !count || IS_DAX(inode))
2835 			return retval;
2836 		if (iocb->ki_pos >= i_size_read(inode))
2837 			return retval;
2838 	}
2839 
2840 	return filemap_read(iocb, iter, retval);
2841 }
2842 EXPORT_SYMBOL(generic_file_read_iter);
2843 
2844 /*
2845  * Splice subpages from a folio into a pipe.
2846  */
2847 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
2848 			      struct folio *folio, loff_t fpos, size_t size)
2849 {
2850 	struct page *page;
2851 	size_t spliced = 0, offset = offset_in_folio(folio, fpos);
2852 
2853 	page = folio_page(folio, offset / PAGE_SIZE);
2854 	size = min(size, folio_size(folio) - offset);
2855 	offset %= PAGE_SIZE;
2856 
2857 	while (spliced < size &&
2858 	       !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2859 		struct pipe_buffer *buf = pipe_head_buf(pipe);
2860 		size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
2861 
2862 		*buf = (struct pipe_buffer) {
2863 			.ops	= &page_cache_pipe_buf_ops,
2864 			.page	= page,
2865 			.offset	= offset,
2866 			.len	= part,
2867 		};
2868 		folio_get(folio);
2869 		pipe->head++;
2870 		page++;
2871 		spliced += part;
2872 		offset = 0;
2873 	}
2874 
2875 	return spliced;
2876 }
2877 
2878 /*
2879  * Splice folios from the pagecache of a buffered (ie. non-O_DIRECT) file into
2880  * a pipe.
2881  */
2882 ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
2883 			    struct pipe_inode_info *pipe,
2884 			    size_t len, unsigned int flags)
2885 {
2886 	struct folio_batch fbatch;
2887 	struct kiocb iocb;
2888 	size_t total_spliced = 0, used, npages;
2889 	loff_t isize, end_offset;
2890 	bool writably_mapped;
2891 	int i, error = 0;
2892 
2893 	init_sync_kiocb(&iocb, in);
2894 	iocb.ki_pos = *ppos;
2895 
2896 	/* Work out how much data we can actually add into the pipe */
2897 	used = pipe_occupancy(pipe->head, pipe->tail);
2898 	npages = max_t(ssize_t, pipe->max_usage - used, 0);
2899 	len = min_t(size_t, len, npages * PAGE_SIZE);
2900 
2901 	folio_batch_init(&fbatch);
2902 
2903 	do {
2904 		cond_resched();
2905 
2906 		if (*ppos >= i_size_read(file_inode(in)))
2907 			break;
2908 
2909 		iocb.ki_pos = *ppos;
2910 		error = filemap_get_pages(&iocb, len, &fbatch, true);
2911 		if (error < 0)
2912 			break;
2913 
2914 		/*
2915 		 * i_size must be checked after we know the pages are Uptodate.
2916 		 *
2917 		 * Checking i_size after the check allows us to calculate
2918 		 * the correct value for "nr", which means the zero-filled
2919 		 * part of the page is not copied back to userspace (unless
2920 		 * another truncate extends the file - this is desired though).
2921 		 */
2922 		isize = i_size_read(file_inode(in));
2923 		if (unlikely(*ppos >= isize))
2924 			break;
2925 		end_offset = min_t(loff_t, isize, *ppos + len);
2926 
2927 		/*
2928 		 * Once we start copying data, we don't want to be touching any
2929 		 * cachelines that might be contended:
2930 		 */
2931 		writably_mapped = mapping_writably_mapped(in->f_mapping);
2932 
2933 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2934 			struct folio *folio = fbatch.folios[i];
2935 			size_t n;
2936 
2937 			if (folio_pos(folio) >= end_offset)
2938 				goto out;
2939 			folio_mark_accessed(folio);
2940 
2941 			/*
2942 			 * If users can be writing to this folio using arbitrary
2943 			 * virtual addresses, take care of potential aliasing
2944 			 * before reading the folio on the kernel side.
2945 			 */
2946 			if (writably_mapped)
2947 				flush_dcache_folio(folio);
2948 
2949 			n = min_t(loff_t, len, isize - *ppos);
2950 			n = splice_folio_into_pipe(pipe, folio, *ppos, n);
2951 			if (!n)
2952 				goto out;
2953 			len -= n;
2954 			total_spliced += n;
2955 			*ppos += n;
2956 			in->f_ra.prev_pos = *ppos;
2957 			if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
2958 				goto out;
2959 		}
2960 
2961 		folio_batch_release(&fbatch);
2962 	} while (len);
2963 
2964 out:
2965 	folio_batch_release(&fbatch);
2966 	file_accessed(in);
2967 
2968 	return total_spliced ? total_spliced : error;
2969 }
2970 EXPORT_SYMBOL(filemap_splice_read);
2971 
2972 static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2973 		struct address_space *mapping, struct folio *folio,
2974 		loff_t start, loff_t end, bool seek_data)
2975 {
2976 	const struct address_space_operations *ops = mapping->a_ops;
2977 	size_t offset, bsz = i_blocksize(mapping->host);
2978 
2979 	if (xa_is_value(folio) || folio_test_uptodate(folio))
2980 		return seek_data ? start : end;
2981 	if (!ops->is_partially_uptodate)
2982 		return seek_data ? end : start;
2983 
2984 	xas_pause(xas);
2985 	rcu_read_unlock();
2986 	folio_lock(folio);
2987 	if (unlikely(folio->mapping != mapping))
2988 		goto unlock;
2989 
2990 	offset = offset_in_folio(folio, start) & ~(bsz - 1);
2991 
2992 	do {
2993 		if (ops->is_partially_uptodate(folio, offset, bsz) ==
2994 							seek_data)
2995 			break;
2996 		start = (start + bsz) & ~(bsz - 1);
2997 		offset += bsz;
2998 	} while (offset < folio_size(folio));
2999 unlock:
3000 	folio_unlock(folio);
3001 	rcu_read_lock();
3002 	return start;
3003 }
3004 
3005 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
3006 {
3007 	if (xa_is_value(folio))
3008 		return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
3009 	return folio_size(folio);
3010 }
3011 
3012 /**
3013  * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3014  * @mapping: Address space to search.
3015  * @start: First byte to consider.
3016  * @end: Limit of search (exclusive).
3017  * @whence: Either SEEK_HOLE or SEEK_DATA.
3018  *
3019  * If the page cache knows which blocks contain holes and which blocks
3020  * contain data, your filesystem can use this function to implement
3021  * SEEK_HOLE and SEEK_DATA.  This is useful for filesystems which are
3022  * entirely memory-based such as tmpfs, and filesystems which support
3023  * unwritten extents.
3024  *
3025  * Return: The requested offset on success, or -ENXIO if @whence specifies
3026  * SEEK_DATA and there is no data after @start.  There is an implicit hole
3027  * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
3028  * and @end contain data.
3029  */
3030 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
3031 		loff_t end, int whence)
3032 {
3033 	XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
3034 	pgoff_t max = (end - 1) >> PAGE_SHIFT;
3035 	bool seek_data = (whence == SEEK_DATA);
3036 	struct folio *folio;
3037 
3038 	if (end <= start)
3039 		return -ENXIO;
3040 
3041 	rcu_read_lock();
3042 	while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
3043 		loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
3044 		size_t seek_size;
3045 
3046 		if (start < pos) {
3047 			if (!seek_data)
3048 				goto unlock;
3049 			start = pos;
3050 		}
3051 
3052 		seek_size = seek_folio_size(&xas, folio);
3053 		pos = round_up((u64)pos + 1, seek_size);
3054 		start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
3055 				seek_data);
3056 		if (start < pos)
3057 			goto unlock;
3058 		if (start >= end)
3059 			break;
3060 		if (seek_size > PAGE_SIZE)
3061 			xas_set(&xas, pos >> PAGE_SHIFT);
3062 		if (!xa_is_value(folio))
3063 			folio_put(folio);
3064 	}
3065 	if (seek_data)
3066 		start = -ENXIO;
3067 unlock:
3068 	rcu_read_unlock();
3069 	if (folio && !xa_is_value(folio))
3070 		folio_put(folio);
3071 	if (start > end)
3072 		return end;
3073 	return start;
3074 }
3075 
3076 #ifdef CONFIG_MMU
3077 #define MMAP_LOTSAMISS  (100)
3078 /*
3079  * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
3080  * @vmf - the vm_fault for this fault.
3081  * @folio - the folio to lock.
3082  * @fpin - the pointer to the file we may pin (or is already pinned).
3083  *
3084  * This works similar to lock_folio_or_retry in that it can drop the
3085  * mmap_lock.  It differs in that it actually returns the folio locked
3086  * if it returns 1 and 0 if it couldn't lock the folio.  If we did have
3087  * to drop the mmap_lock then fpin will point to the pinned file and
3088  * needs to be fput()'ed at a later point.
3089  */
3090 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
3091 				     struct file **fpin)
3092 {
3093 	if (folio_trylock(folio))
3094 		return 1;
3095 
3096 	/*
3097 	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
3098 	 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
3099 	 * is supposed to work. We have way too many special cases..
3100 	 */
3101 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3102 		return 0;
3103 
3104 	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
3105 	if (vmf->flags & FAULT_FLAG_KILLABLE) {
3106 		if (__folio_lock_killable(folio)) {
3107 			/*
3108 			 * We didn't have the right flags to drop the mmap_lock,
3109 			 * but all fault_handlers only check for fatal signals
3110 			 * if we return VM_FAULT_RETRY, so we need to drop the
3111 			 * mmap_lock here and return 0 if we don't have a fpin.
3112 			 */
3113 			if (*fpin == NULL)
3114 				mmap_read_unlock(vmf->vma->vm_mm);
3115 			return 0;
3116 		}
3117 	} else
3118 		__folio_lock(folio);
3119 
3120 	return 1;
3121 }
3122 
3123 /*
3124  * Synchronous readahead happens when we don't even find a page in the page
3125  * cache at all.  We don't want to perform IO under the mmap sem, so if we have
3126  * to drop the mmap sem we return the file that was pinned in order for us to do
3127  * that.  If we didn't pin a file then we return NULL.  The file that is
3128  * returned needs to be fput()'ed when we're done with it.
3129  */
3130 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
3131 {
3132 	struct file *file = vmf->vma->vm_file;
3133 	struct file_ra_state *ra = &file->f_ra;
3134 	struct address_space *mapping = file->f_mapping;
3135 	DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
3136 	struct file *fpin = NULL;
3137 	unsigned long vm_flags = vmf->vma->vm_flags;
3138 	unsigned int mmap_miss;
3139 
3140 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3141 	/* Use the readahead code, even if readahead is disabled */
3142 	if (vm_flags & VM_HUGEPAGE) {
3143 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3144 		ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3145 		ra->size = HPAGE_PMD_NR;
3146 		/*
3147 		 * Fetch two PMD folios, so we get the chance to actually
3148 		 * readahead, unless we've been told not to.
3149 		 */
3150 		if (!(vm_flags & VM_RAND_READ))
3151 			ra->size *= 2;
3152 		ra->async_size = HPAGE_PMD_NR;
3153 		page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3154 		return fpin;
3155 	}
3156 #endif
3157 
3158 	/* If we don't want any read-ahead, don't bother */
3159 	if (vm_flags & VM_RAND_READ)
3160 		return fpin;
3161 	if (!ra->ra_pages)
3162 		return fpin;
3163 
3164 	if (vm_flags & VM_SEQ_READ) {
3165 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3166 		page_cache_sync_ra(&ractl, ra->ra_pages);
3167 		return fpin;
3168 	}
3169 
3170 	/* Avoid banging the cache line if not needed */
3171 	mmap_miss = READ_ONCE(ra->mmap_miss);
3172 	if (mmap_miss < MMAP_LOTSAMISS * 10)
3173 		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3174 
3175 	/*
3176 	 * Do we miss much more than hit in this file? If so,
3177 	 * stop bothering with read-ahead. It will only hurt.
3178 	 */
3179 	if (mmap_miss > MMAP_LOTSAMISS)
3180 		return fpin;
3181 
3182 	/*
3183 	 * mmap read-around
3184 	 */
3185 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3186 	ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3187 	ra->size = ra->ra_pages;
3188 	ra->async_size = ra->ra_pages / 4;
3189 	ractl._index = ra->start;
3190 	page_cache_ra_order(&ractl, ra, 0);
3191 	return fpin;
3192 }
3193 
3194 /*
3195  * Asynchronous readahead happens when we find the page and PG_readahead,
3196  * so we want to possibly extend the readahead further.  We return the file that
3197  * was pinned if we have to drop the mmap_lock in order to do IO.
3198  */
3199 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3200 					    struct folio *folio)
3201 {
3202 	struct file *file = vmf->vma->vm_file;
3203 	struct file_ra_state *ra = &file->f_ra;
3204 	DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3205 	struct file *fpin = NULL;
3206 	unsigned int mmap_miss;
3207 
3208 	/* If we don't want any read-ahead, don't bother */
3209 	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3210 		return fpin;
3211 
3212 	mmap_miss = READ_ONCE(ra->mmap_miss);
3213 	if (mmap_miss)
3214 		WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3215 
3216 	if (folio_test_readahead(folio)) {
3217 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3218 		page_cache_async_ra(&ractl, folio, ra->ra_pages);
3219 	}
3220 	return fpin;
3221 }
3222 
3223 /**
3224  * filemap_fault - read in file data for page fault handling
3225  * @vmf:	struct vm_fault containing details of the fault
3226  *
3227  * filemap_fault() is invoked via the vma operations vector for a
3228  * mapped memory region to read in file data during a page fault.
3229  *
3230  * The goto's are kind of ugly, but this streamlines the normal case of having
3231  * it in the page cache, and handles the special cases reasonably without
3232  * having a lot of duplicated code.
3233  *
3234  * vma->vm_mm->mmap_lock must be held on entry.
3235  *
3236  * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3237  * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3238  *
3239  * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3240  * has not been released.
3241  *
3242  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3243  *
3244  * Return: bitwise-OR of %VM_FAULT_ codes.
3245  */
3246 vm_fault_t filemap_fault(struct vm_fault *vmf)
3247 {
3248 	int error;
3249 	struct file *file = vmf->vma->vm_file;
3250 	struct file *fpin = NULL;
3251 	struct address_space *mapping = file->f_mapping;
3252 	struct inode *inode = mapping->host;
3253 	pgoff_t max_idx, index = vmf->pgoff;
3254 	struct folio *folio;
3255 	vm_fault_t ret = 0;
3256 	bool mapping_locked = false;
3257 
3258 	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3259 	if (unlikely(index >= max_idx))
3260 		return VM_FAULT_SIGBUS;
3261 
3262 	/*
3263 	 * Do we have something in the page cache already?
3264 	 */
3265 	folio = filemap_get_folio(mapping, index);
3266 	if (likely(!IS_ERR(folio))) {
3267 		/*
3268 		 * We found the page, so try async readahead before waiting for
3269 		 * the lock.
3270 		 */
3271 		if (!(vmf->flags & FAULT_FLAG_TRIED))
3272 			fpin = do_async_mmap_readahead(vmf, folio);
3273 		if (unlikely(!folio_test_uptodate(folio))) {
3274 			filemap_invalidate_lock_shared(mapping);
3275 			mapping_locked = true;
3276 		}
3277 	} else {
3278 		/* No page in the page cache at all */
3279 		count_vm_event(PGMAJFAULT);
3280 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3281 		ret = VM_FAULT_MAJOR;
3282 		fpin = do_sync_mmap_readahead(vmf);
3283 retry_find:
3284 		/*
3285 		 * See comment in filemap_create_folio() why we need
3286 		 * invalidate_lock
3287 		 */
3288 		if (!mapping_locked) {
3289 			filemap_invalidate_lock_shared(mapping);
3290 			mapping_locked = true;
3291 		}
3292 		folio = __filemap_get_folio(mapping, index,
3293 					  FGP_CREAT|FGP_FOR_MMAP,
3294 					  vmf->gfp_mask);
3295 		if (IS_ERR(folio)) {
3296 			if (fpin)
3297 				goto out_retry;
3298 			filemap_invalidate_unlock_shared(mapping);
3299 			return VM_FAULT_OOM;
3300 		}
3301 	}
3302 
3303 	if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3304 		goto out_retry;
3305 
3306 	/* Did it get truncated? */
3307 	if (unlikely(folio->mapping != mapping)) {
3308 		folio_unlock(folio);
3309 		folio_put(folio);
3310 		goto retry_find;
3311 	}
3312 	VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3313 
3314 	/*
3315 	 * We have a locked page in the page cache, now we need to check
3316 	 * that it's up-to-date. If not, it is going to be due to an error.
3317 	 */
3318 	if (unlikely(!folio_test_uptodate(folio))) {
3319 		/*
3320 		 * The page was in cache and uptodate and now it is not.
3321 		 * Strange but possible since we didn't hold the page lock all
3322 		 * the time. Let's drop everything get the invalidate lock and
3323 		 * try again.
3324 		 */
3325 		if (!mapping_locked) {
3326 			folio_unlock(folio);
3327 			folio_put(folio);
3328 			goto retry_find;
3329 		}
3330 		goto page_not_uptodate;
3331 	}
3332 
3333 	/*
3334 	 * We've made it this far and we had to drop our mmap_lock, now is the
3335 	 * time to return to the upper layer and have it re-find the vma and
3336 	 * redo the fault.
3337 	 */
3338 	if (fpin) {
3339 		folio_unlock(folio);
3340 		goto out_retry;
3341 	}
3342 	if (mapping_locked)
3343 		filemap_invalidate_unlock_shared(mapping);
3344 
3345 	/*
3346 	 * Found the page and have a reference on it.
3347 	 * We must recheck i_size under page lock.
3348 	 */
3349 	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3350 	if (unlikely(index >= max_idx)) {
3351 		folio_unlock(folio);
3352 		folio_put(folio);
3353 		return VM_FAULT_SIGBUS;
3354 	}
3355 
3356 	vmf->page = folio_file_page(folio, index);
3357 	return ret | VM_FAULT_LOCKED;
3358 
3359 page_not_uptodate:
3360 	/*
3361 	 * Umm, take care of errors if the page isn't up-to-date.
3362 	 * Try to re-read it _once_. We do this synchronously,
3363 	 * because there really aren't any performance issues here
3364 	 * and we need to check for errors.
3365 	 */
3366 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3367 	error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
3368 	if (fpin)
3369 		goto out_retry;
3370 	folio_put(folio);
3371 
3372 	if (!error || error == AOP_TRUNCATED_PAGE)
3373 		goto retry_find;
3374 	filemap_invalidate_unlock_shared(mapping);
3375 
3376 	return VM_FAULT_SIGBUS;
3377 
3378 out_retry:
3379 	/*
3380 	 * We dropped the mmap_lock, we need to return to the fault handler to
3381 	 * re-find the vma and come back and find our hopefully still populated
3382 	 * page.
3383 	 */
3384 	if (!IS_ERR(folio))
3385 		folio_put(folio);
3386 	if (mapping_locked)
3387 		filemap_invalidate_unlock_shared(mapping);
3388 	if (fpin)
3389 		fput(fpin);
3390 	return ret | VM_FAULT_RETRY;
3391 }
3392 EXPORT_SYMBOL(filemap_fault);
3393 
3394 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio,
3395 		pgoff_t start)
3396 {
3397 	struct mm_struct *mm = vmf->vma->vm_mm;
3398 
3399 	/* Huge page is mapped? No need to proceed. */
3400 	if (pmd_trans_huge(*vmf->pmd)) {
3401 		folio_unlock(folio);
3402 		folio_put(folio);
3403 		return true;
3404 	}
3405 
3406 	if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) {
3407 		struct page *page = folio_file_page(folio, start);
3408 		vm_fault_t ret = do_set_pmd(vmf, page);
3409 		if (!ret) {
3410 			/* The page is mapped successfully, reference consumed. */
3411 			folio_unlock(folio);
3412 			return true;
3413 		}
3414 	}
3415 
3416 	if (pmd_none(*vmf->pmd))
3417 		pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3418 
3419 	/* See comment in handle_pte_fault() */
3420 	if (pmd_devmap_trans_unstable(vmf->pmd)) {
3421 		folio_unlock(folio);
3422 		folio_put(folio);
3423 		return true;
3424 	}
3425 
3426 	return false;
3427 }
3428 
3429 static struct folio *next_uptodate_page(struct folio *folio,
3430 				       struct address_space *mapping,
3431 				       struct xa_state *xas, pgoff_t end_pgoff)
3432 {
3433 	unsigned long max_idx;
3434 
3435 	do {
3436 		if (!folio)
3437 			return NULL;
3438 		if (xas_retry(xas, folio))
3439 			continue;
3440 		if (xa_is_value(folio))
3441 			continue;
3442 		if (folio_test_locked(folio))
3443 			continue;
3444 		if (!folio_try_get_rcu(folio))
3445 			continue;
3446 		/* Has the page moved or been split? */
3447 		if (unlikely(folio != xas_reload(xas)))
3448 			goto skip;
3449 		if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3450 			goto skip;
3451 		if (!folio_trylock(folio))
3452 			goto skip;
3453 		if (folio->mapping != mapping)
3454 			goto unlock;
3455 		if (!folio_test_uptodate(folio))
3456 			goto unlock;
3457 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3458 		if (xas->xa_index >= max_idx)
3459 			goto unlock;
3460 		return folio;
3461 unlock:
3462 		folio_unlock(folio);
3463 skip:
3464 		folio_put(folio);
3465 	} while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3466 
3467 	return NULL;
3468 }
3469 
3470 static inline struct folio *first_map_page(struct address_space *mapping,
3471 					  struct xa_state *xas,
3472 					  pgoff_t end_pgoff)
3473 {
3474 	return next_uptodate_page(xas_find(xas, end_pgoff),
3475 				  mapping, xas, end_pgoff);
3476 }
3477 
3478 static inline struct folio *next_map_page(struct address_space *mapping,
3479 					 struct xa_state *xas,
3480 					 pgoff_t end_pgoff)
3481 {
3482 	return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3483 				  mapping, xas, end_pgoff);
3484 }
3485 
3486 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3487 			     pgoff_t start_pgoff, pgoff_t end_pgoff)
3488 {
3489 	struct vm_area_struct *vma = vmf->vma;
3490 	struct file *file = vma->vm_file;
3491 	struct address_space *mapping = file->f_mapping;
3492 	pgoff_t last_pgoff = start_pgoff;
3493 	unsigned long addr;
3494 	XA_STATE(xas, &mapping->i_pages, start_pgoff);
3495 	struct folio *folio;
3496 	struct page *page;
3497 	unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
3498 	vm_fault_t ret = 0;
3499 
3500 	rcu_read_lock();
3501 	folio = first_map_page(mapping, &xas, end_pgoff);
3502 	if (!folio)
3503 		goto out;
3504 
3505 	if (filemap_map_pmd(vmf, folio, start_pgoff)) {
3506 		ret = VM_FAULT_NOPAGE;
3507 		goto out;
3508 	}
3509 
3510 	addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3511 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3512 	do {
3513 again:
3514 		page = folio_file_page(folio, xas.xa_index);
3515 		if (PageHWPoison(page))
3516 			goto unlock;
3517 
3518 		if (mmap_miss > 0)
3519 			mmap_miss--;
3520 
3521 		addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3522 		vmf->pte += xas.xa_index - last_pgoff;
3523 		last_pgoff = xas.xa_index;
3524 
3525 		/*
3526 		 * NOTE: If there're PTE markers, we'll leave them to be
3527 		 * handled in the specific fault path, and it'll prohibit the
3528 		 * fault-around logic.
3529 		 */
3530 		if (!pte_none(*vmf->pte))
3531 			goto unlock;
3532 
3533 		/* We're about to handle the fault */
3534 		if (vmf->address == addr)
3535 			ret = VM_FAULT_NOPAGE;
3536 
3537 		do_set_pte(vmf, page, addr);
3538 		/* no need to invalidate: a not-present page won't be cached */
3539 		update_mmu_cache(vma, addr, vmf->pte);
3540 		if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3541 			xas.xa_index++;
3542 			folio_ref_inc(folio);
3543 			goto again;
3544 		}
3545 		folio_unlock(folio);
3546 		continue;
3547 unlock:
3548 		if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3549 			xas.xa_index++;
3550 			goto again;
3551 		}
3552 		folio_unlock(folio);
3553 		folio_put(folio);
3554 	} while ((folio = next_map_page(mapping, &xas, end_pgoff)) != NULL);
3555 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3556 out:
3557 	rcu_read_unlock();
3558 	WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
3559 	return ret;
3560 }
3561 EXPORT_SYMBOL(filemap_map_pages);
3562 
3563 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3564 {
3565 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3566 	struct folio *folio = page_folio(vmf->page);
3567 	vm_fault_t ret = VM_FAULT_LOCKED;
3568 
3569 	sb_start_pagefault(mapping->host->i_sb);
3570 	file_update_time(vmf->vma->vm_file);
3571 	folio_lock(folio);
3572 	if (folio->mapping != mapping) {
3573 		folio_unlock(folio);
3574 		ret = VM_FAULT_NOPAGE;
3575 		goto out;
3576 	}
3577 	/*
3578 	 * We mark the folio dirty already here so that when freeze is in
3579 	 * progress, we are guaranteed that writeback during freezing will
3580 	 * see the dirty folio and writeprotect it again.
3581 	 */
3582 	folio_mark_dirty(folio);
3583 	folio_wait_stable(folio);
3584 out:
3585 	sb_end_pagefault(mapping->host->i_sb);
3586 	return ret;
3587 }
3588 
3589 const struct vm_operations_struct generic_file_vm_ops = {
3590 	.fault		= filemap_fault,
3591 	.map_pages	= filemap_map_pages,
3592 	.page_mkwrite	= filemap_page_mkwrite,
3593 };
3594 
3595 /* This is used for a general mmap of a disk file */
3596 
3597 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3598 {
3599 	struct address_space *mapping = file->f_mapping;
3600 
3601 	if (!mapping->a_ops->read_folio)
3602 		return -ENOEXEC;
3603 	file_accessed(file);
3604 	vma->vm_ops = &generic_file_vm_ops;
3605 	return 0;
3606 }
3607 
3608 /*
3609  * This is for filesystems which do not implement ->writepage.
3610  */
3611 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3612 {
3613 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3614 		return -EINVAL;
3615 	return generic_file_mmap(file, vma);
3616 }
3617 #else
3618 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3619 {
3620 	return VM_FAULT_SIGBUS;
3621 }
3622 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3623 {
3624 	return -ENOSYS;
3625 }
3626 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3627 {
3628 	return -ENOSYS;
3629 }
3630 #endif /* CONFIG_MMU */
3631 
3632 EXPORT_SYMBOL(filemap_page_mkwrite);
3633 EXPORT_SYMBOL(generic_file_mmap);
3634 EXPORT_SYMBOL(generic_file_readonly_mmap);
3635 
3636 static struct folio *do_read_cache_folio(struct address_space *mapping,
3637 		pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
3638 {
3639 	struct folio *folio;
3640 	int err;
3641 
3642 	if (!filler)
3643 		filler = mapping->a_ops->read_folio;
3644 repeat:
3645 	folio = filemap_get_folio(mapping, index);
3646 	if (IS_ERR(folio)) {
3647 		folio = filemap_alloc_folio(gfp, 0);
3648 		if (!folio)
3649 			return ERR_PTR(-ENOMEM);
3650 		err = filemap_add_folio(mapping, folio, index, gfp);
3651 		if (unlikely(err)) {
3652 			folio_put(folio);
3653 			if (err == -EEXIST)
3654 				goto repeat;
3655 			/* Presumably ENOMEM for xarray node */
3656 			return ERR_PTR(err);
3657 		}
3658 
3659 		goto filler;
3660 	}
3661 	if (folio_test_uptodate(folio))
3662 		goto out;
3663 
3664 	if (!folio_trylock(folio)) {
3665 		folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3666 		goto repeat;
3667 	}
3668 
3669 	/* Folio was truncated from mapping */
3670 	if (!folio->mapping) {
3671 		folio_unlock(folio);
3672 		folio_put(folio);
3673 		goto repeat;
3674 	}
3675 
3676 	/* Someone else locked and filled the page in a very small window */
3677 	if (folio_test_uptodate(folio)) {
3678 		folio_unlock(folio);
3679 		goto out;
3680 	}
3681 
3682 filler:
3683 	err = filemap_read_folio(file, filler, folio);
3684 	if (err) {
3685 		folio_put(folio);
3686 		if (err == AOP_TRUNCATED_PAGE)
3687 			goto repeat;
3688 		return ERR_PTR(err);
3689 	}
3690 
3691 out:
3692 	folio_mark_accessed(folio);
3693 	return folio;
3694 }
3695 
3696 /**
3697  * read_cache_folio - Read into page cache, fill it if needed.
3698  * @mapping: The address_space to read from.
3699  * @index: The index to read.
3700  * @filler: Function to perform the read, or NULL to use aops->read_folio().
3701  * @file: Passed to filler function, may be NULL if not required.
3702  *
3703  * Read one page into the page cache.  If it succeeds, the folio returned
3704  * will contain @index, but it may not be the first page of the folio.
3705  *
3706  * If the filler function returns an error, it will be returned to the
3707  * caller.
3708  *
3709  * Context: May sleep.  Expects mapping->invalidate_lock to be held.
3710  * Return: An uptodate folio on success, ERR_PTR() on failure.
3711  */
3712 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3713 		filler_t filler, struct file *file)
3714 {
3715 	return do_read_cache_folio(mapping, index, filler, file,
3716 			mapping_gfp_mask(mapping));
3717 }
3718 EXPORT_SYMBOL(read_cache_folio);
3719 
3720 /**
3721  * mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
3722  * @mapping:	The address_space for the folio.
3723  * @index:	The index that the allocated folio will contain.
3724  * @gfp:	The page allocator flags to use if allocating.
3725  *
3726  * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
3727  * any new memory allocations done using the specified allocation flags.
3728  *
3729  * The most likely error from this function is EIO, but ENOMEM is
3730  * possible and so is EINTR.  If ->read_folio returns another error,
3731  * that will be returned to the caller.
3732  *
3733  * The function expects mapping->invalidate_lock to be already held.
3734  *
3735  * Return: Uptodate folio on success, ERR_PTR() on failure.
3736  */
3737 struct folio *mapping_read_folio_gfp(struct address_space *mapping,
3738 		pgoff_t index, gfp_t gfp)
3739 {
3740 	return do_read_cache_folio(mapping, index, NULL, NULL, gfp);
3741 }
3742 EXPORT_SYMBOL(mapping_read_folio_gfp);
3743 
3744 static struct page *do_read_cache_page(struct address_space *mapping,
3745 		pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
3746 {
3747 	struct folio *folio;
3748 
3749 	folio = do_read_cache_folio(mapping, index, filler, file, gfp);
3750 	if (IS_ERR(folio))
3751 		return &folio->page;
3752 	return folio_file_page(folio, index);
3753 }
3754 
3755 struct page *read_cache_page(struct address_space *mapping,
3756 			pgoff_t index, filler_t *filler, struct file *file)
3757 {
3758 	return do_read_cache_page(mapping, index, filler, file,
3759 			mapping_gfp_mask(mapping));
3760 }
3761 EXPORT_SYMBOL(read_cache_page);
3762 
3763 /**
3764  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3765  * @mapping:	the page's address_space
3766  * @index:	the page index
3767  * @gfp:	the page allocator flags to use if allocating
3768  *
3769  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3770  * any new page allocations done using the specified allocation flags.
3771  *
3772  * If the page does not get brought uptodate, return -EIO.
3773  *
3774  * The function expects mapping->invalidate_lock to be already held.
3775  *
3776  * Return: up to date page on success, ERR_PTR() on failure.
3777  */
3778 struct page *read_cache_page_gfp(struct address_space *mapping,
3779 				pgoff_t index,
3780 				gfp_t gfp)
3781 {
3782 	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3783 }
3784 EXPORT_SYMBOL(read_cache_page_gfp);
3785 
3786 /*
3787  * Warn about a page cache invalidation failure during a direct I/O write.
3788  */
3789 void dio_warn_stale_pagecache(struct file *filp)
3790 {
3791 	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3792 	char pathname[128];
3793 	char *path;
3794 
3795 	errseq_set(&filp->f_mapping->wb_err, -EIO);
3796 	if (__ratelimit(&_rs)) {
3797 		path = file_path(filp, pathname, sizeof(pathname));
3798 		if (IS_ERR(path))
3799 			path = "(unknown)";
3800 		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3801 		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3802 			current->comm);
3803 	}
3804 }
3805 
3806 ssize_t
3807 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3808 {
3809 	struct file	*file = iocb->ki_filp;
3810 	struct address_space *mapping = file->f_mapping;
3811 	struct inode	*inode = mapping->host;
3812 	loff_t		pos = iocb->ki_pos;
3813 	ssize_t		written;
3814 	size_t		write_len;
3815 	pgoff_t		end;
3816 
3817 	write_len = iov_iter_count(from);
3818 	end = (pos + write_len - 1) >> PAGE_SHIFT;
3819 
3820 	if (iocb->ki_flags & IOCB_NOWAIT) {
3821 		/* If there are pages to writeback, return */
3822 		if (filemap_range_has_page(file->f_mapping, pos,
3823 					   pos + write_len - 1))
3824 			return -EAGAIN;
3825 	} else {
3826 		written = filemap_write_and_wait_range(mapping, pos,
3827 							pos + write_len - 1);
3828 		if (written)
3829 			goto out;
3830 	}
3831 
3832 	/*
3833 	 * After a write we want buffered reads to be sure to go to disk to get
3834 	 * the new data.  We invalidate clean cached page from the region we're
3835 	 * about to write.  We do this *before* the write so that we can return
3836 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3837 	 */
3838 	written = invalidate_inode_pages2_range(mapping,
3839 					pos >> PAGE_SHIFT, end);
3840 	/*
3841 	 * If a page can not be invalidated, return 0 to fall back
3842 	 * to buffered write.
3843 	 */
3844 	if (written) {
3845 		if (written == -EBUSY)
3846 			return 0;
3847 		goto out;
3848 	}
3849 
3850 	written = mapping->a_ops->direct_IO(iocb, from);
3851 
3852 	/*
3853 	 * Finally, try again to invalidate clean pages which might have been
3854 	 * cached by non-direct readahead, or faulted in by get_user_pages()
3855 	 * if the source of the write was an mmap'ed region of the file
3856 	 * we're writing.  Either one is a pretty crazy thing to do,
3857 	 * so we don't support it 100%.  If this invalidation
3858 	 * fails, tough, the write still worked...
3859 	 *
3860 	 * Most of the time we do not need this since dio_complete() will do
3861 	 * the invalidation for us. However there are some file systems that
3862 	 * do not end up with dio_complete() being called, so let's not break
3863 	 * them by removing it completely.
3864 	 *
3865 	 * Noticeable example is a blkdev_direct_IO().
3866 	 *
3867 	 * Skip invalidation for async writes or if mapping has no pages.
3868 	 */
3869 	if (written > 0 && mapping->nrpages &&
3870 	    invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3871 		dio_warn_stale_pagecache(file);
3872 
3873 	if (written > 0) {
3874 		pos += written;
3875 		write_len -= written;
3876 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3877 			i_size_write(inode, pos);
3878 			mark_inode_dirty(inode);
3879 		}
3880 		iocb->ki_pos = pos;
3881 	}
3882 	if (written != -EIOCBQUEUED)
3883 		iov_iter_revert(from, write_len - iov_iter_count(from));
3884 out:
3885 	return written;
3886 }
3887 EXPORT_SYMBOL(generic_file_direct_write);
3888 
3889 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
3890 {
3891 	struct file *file = iocb->ki_filp;
3892 	loff_t pos = iocb->ki_pos;
3893 	struct address_space *mapping = file->f_mapping;
3894 	const struct address_space_operations *a_ops = mapping->a_ops;
3895 	long status = 0;
3896 	ssize_t written = 0;
3897 
3898 	do {
3899 		struct page *page;
3900 		unsigned long offset;	/* Offset into pagecache page */
3901 		unsigned long bytes;	/* Bytes to write to page */
3902 		size_t copied;		/* Bytes copied from user */
3903 		void *fsdata = NULL;
3904 
3905 		offset = (pos & (PAGE_SIZE - 1));
3906 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3907 						iov_iter_count(i));
3908 
3909 again:
3910 		/*
3911 		 * Bring in the user page that we will copy from _first_.
3912 		 * Otherwise there's a nasty deadlock on copying from the
3913 		 * same page as we're writing to, without it being marked
3914 		 * up-to-date.
3915 		 */
3916 		if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
3917 			status = -EFAULT;
3918 			break;
3919 		}
3920 
3921 		if (fatal_signal_pending(current)) {
3922 			status = -EINTR;
3923 			break;
3924 		}
3925 
3926 		status = a_ops->write_begin(file, mapping, pos, bytes,
3927 						&page, &fsdata);
3928 		if (unlikely(status < 0))
3929 			break;
3930 
3931 		if (mapping_writably_mapped(mapping))
3932 			flush_dcache_page(page);
3933 
3934 		copied = copy_page_from_iter_atomic(page, offset, bytes, i);
3935 		flush_dcache_page(page);
3936 
3937 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3938 						page, fsdata);
3939 		if (unlikely(status != copied)) {
3940 			iov_iter_revert(i, copied - max(status, 0L));
3941 			if (unlikely(status < 0))
3942 				break;
3943 		}
3944 		cond_resched();
3945 
3946 		if (unlikely(status == 0)) {
3947 			/*
3948 			 * A short copy made ->write_end() reject the
3949 			 * thing entirely.  Might be memory poisoning
3950 			 * halfway through, might be a race with munmap,
3951 			 * might be severe memory pressure.
3952 			 */
3953 			if (copied)
3954 				bytes = copied;
3955 			goto again;
3956 		}
3957 		pos += status;
3958 		written += status;
3959 
3960 		balance_dirty_pages_ratelimited(mapping);
3961 	} while (iov_iter_count(i));
3962 
3963 	return written ? written : status;
3964 }
3965 EXPORT_SYMBOL(generic_perform_write);
3966 
3967 /**
3968  * __generic_file_write_iter - write data to a file
3969  * @iocb:	IO state structure (file, offset, etc.)
3970  * @from:	iov_iter with data to write
3971  *
3972  * This function does all the work needed for actually writing data to a
3973  * file. It does all basic checks, removes SUID from the file, updates
3974  * modification times and calls proper subroutines depending on whether we
3975  * do direct IO or a standard buffered write.
3976  *
3977  * It expects i_rwsem to be grabbed unless we work on a block device or similar
3978  * object which does not need locking at all.
3979  *
3980  * This function does *not* take care of syncing data in case of O_SYNC write.
3981  * A caller has to handle it. This is mainly due to the fact that we want to
3982  * avoid syncing under i_rwsem.
3983  *
3984  * Return:
3985  * * number of bytes written, even for truncated writes
3986  * * negative error code if no data has been written at all
3987  */
3988 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3989 {
3990 	struct file *file = iocb->ki_filp;
3991 	struct address_space *mapping = file->f_mapping;
3992 	struct inode 	*inode = mapping->host;
3993 	ssize_t		written = 0;
3994 	ssize_t		err;
3995 	ssize_t		status;
3996 
3997 	/* We can write back this queue in page reclaim */
3998 	current->backing_dev_info = inode_to_bdi(inode);
3999 	err = file_remove_privs(file);
4000 	if (err)
4001 		goto out;
4002 
4003 	err = file_update_time(file);
4004 	if (err)
4005 		goto out;
4006 
4007 	if (iocb->ki_flags & IOCB_DIRECT) {
4008 		loff_t pos, endbyte;
4009 
4010 		written = generic_file_direct_write(iocb, from);
4011 		/*
4012 		 * If the write stopped short of completing, fall back to
4013 		 * buffered writes.  Some filesystems do this for writes to
4014 		 * holes, for example.  For DAX files, a buffered write will
4015 		 * not succeed (even if it did, DAX does not handle dirty
4016 		 * page-cache pages correctly).
4017 		 */
4018 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
4019 			goto out;
4020 
4021 		pos = iocb->ki_pos;
4022 		status = generic_perform_write(iocb, from);
4023 		/*
4024 		 * If generic_perform_write() returned a synchronous error
4025 		 * then we want to return the number of bytes which were
4026 		 * direct-written, or the error code if that was zero.  Note
4027 		 * that this differs from normal direct-io semantics, which
4028 		 * will return -EFOO even if some bytes were written.
4029 		 */
4030 		if (unlikely(status < 0)) {
4031 			err = status;
4032 			goto out;
4033 		}
4034 		/*
4035 		 * We need to ensure that the page cache pages are written to
4036 		 * disk and invalidated to preserve the expected O_DIRECT
4037 		 * semantics.
4038 		 */
4039 		endbyte = pos + status - 1;
4040 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
4041 		if (err == 0) {
4042 			iocb->ki_pos = endbyte + 1;
4043 			written += status;
4044 			invalidate_mapping_pages(mapping,
4045 						 pos >> PAGE_SHIFT,
4046 						 endbyte >> PAGE_SHIFT);
4047 		} else {
4048 			/*
4049 			 * We don't know how much we wrote, so just return
4050 			 * the number of bytes which were direct-written
4051 			 */
4052 		}
4053 	} else {
4054 		written = generic_perform_write(iocb, from);
4055 		if (likely(written > 0))
4056 			iocb->ki_pos += written;
4057 	}
4058 out:
4059 	current->backing_dev_info = NULL;
4060 	return written ? written : err;
4061 }
4062 EXPORT_SYMBOL(__generic_file_write_iter);
4063 
4064 /**
4065  * generic_file_write_iter - write data to a file
4066  * @iocb:	IO state structure
4067  * @from:	iov_iter with data to write
4068  *
4069  * This is a wrapper around __generic_file_write_iter() to be used by most
4070  * filesystems. It takes care of syncing the file in case of O_SYNC file
4071  * and acquires i_rwsem as needed.
4072  * Return:
4073  * * negative error code if no data has been written at all of
4074  *   vfs_fsync_range() failed for a synchronous write
4075  * * number of bytes written, even for truncated writes
4076  */
4077 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4078 {
4079 	struct file *file = iocb->ki_filp;
4080 	struct inode *inode = file->f_mapping->host;
4081 	ssize_t ret;
4082 
4083 	inode_lock(inode);
4084 	ret = generic_write_checks(iocb, from);
4085 	if (ret > 0)
4086 		ret = __generic_file_write_iter(iocb, from);
4087 	inode_unlock(inode);
4088 
4089 	if (ret > 0)
4090 		ret = generic_write_sync(iocb, ret);
4091 	return ret;
4092 }
4093 EXPORT_SYMBOL(generic_file_write_iter);
4094 
4095 /**
4096  * filemap_release_folio() - Release fs-specific metadata on a folio.
4097  * @folio: The folio which the kernel is trying to free.
4098  * @gfp: Memory allocation flags (and I/O mode).
4099  *
4100  * The address_space is trying to release any data attached to a folio
4101  * (presumably at folio->private).
4102  *
4103  * This will also be called if the private_2 flag is set on a page,
4104  * indicating that the folio has other metadata associated with it.
4105  *
4106  * The @gfp argument specifies whether I/O may be performed to release
4107  * this page (__GFP_IO), and whether the call may block
4108  * (__GFP_RECLAIM & __GFP_FS).
4109  *
4110  * Return: %true if the release was successful, otherwise %false.
4111  */
4112 bool filemap_release_folio(struct folio *folio, gfp_t gfp)
4113 {
4114 	struct address_space * const mapping = folio->mapping;
4115 
4116 	BUG_ON(!folio_test_locked(folio));
4117 	if (folio_test_writeback(folio))
4118 		return false;
4119 
4120 	if (mapping && mapping->a_ops->release_folio)
4121 		return mapping->a_ops->release_folio(folio, gfp);
4122 	return try_to_free_buffers(folio);
4123 }
4124 EXPORT_SYMBOL(filemap_release_folio);
4125 
4126 #ifdef CONFIG_CACHESTAT_SYSCALL
4127 /**
4128  * filemap_cachestat() - compute the page cache statistics of a mapping
4129  * @mapping:	The mapping to compute the statistics for.
4130  * @first_index:	The starting page cache index.
4131  * @last_index:	The final page index (inclusive).
4132  * @cs:	the cachestat struct to write the result to.
4133  *
4134  * This will query the page cache statistics of a mapping in the
4135  * page range of [first_index, last_index] (inclusive). The statistics
4136  * queried include: number of dirty pages, number of pages marked for
4137  * writeback, and the number of (recently) evicted pages.
4138  */
4139 static void filemap_cachestat(struct address_space *mapping,
4140 		pgoff_t first_index, pgoff_t last_index, struct cachestat *cs)
4141 {
4142 	XA_STATE(xas, &mapping->i_pages, first_index);
4143 	struct folio *folio;
4144 
4145 	rcu_read_lock();
4146 	xas_for_each(&xas, folio, last_index) {
4147 		unsigned long nr_pages;
4148 		pgoff_t folio_first_index, folio_last_index;
4149 
4150 		if (xas_retry(&xas, folio))
4151 			continue;
4152 
4153 		if (xa_is_value(folio)) {
4154 			/* page is evicted */
4155 			void *shadow = (void *)folio;
4156 			bool workingset; /* not used */
4157 			int order = xa_get_order(xas.xa, xas.xa_index);
4158 
4159 			nr_pages = 1 << order;
4160 			folio_first_index = round_down(xas.xa_index, 1 << order);
4161 			folio_last_index = folio_first_index + nr_pages - 1;
4162 
4163 			/* Folios might straddle the range boundaries, only count covered pages */
4164 			if (folio_first_index < first_index)
4165 				nr_pages -= first_index - folio_first_index;
4166 
4167 			if (folio_last_index > last_index)
4168 				nr_pages -= folio_last_index - last_index;
4169 
4170 			cs->nr_evicted += nr_pages;
4171 
4172 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */
4173 			if (shmem_mapping(mapping)) {
4174 				/* shmem file - in swap cache */
4175 				swp_entry_t swp = radix_to_swp_entry(folio);
4176 
4177 				shadow = get_shadow_from_swap_cache(swp);
4178 			}
4179 #endif
4180 			if (workingset_test_recent(shadow, true, &workingset))
4181 				cs->nr_recently_evicted += nr_pages;
4182 
4183 			goto resched;
4184 		}
4185 
4186 		nr_pages = folio_nr_pages(folio);
4187 		folio_first_index = folio_pgoff(folio);
4188 		folio_last_index = folio_first_index + nr_pages - 1;
4189 
4190 		/* Folios might straddle the range boundaries, only count covered pages */
4191 		if (folio_first_index < first_index)
4192 			nr_pages -= first_index - folio_first_index;
4193 
4194 		if (folio_last_index > last_index)
4195 			nr_pages -= folio_last_index - last_index;
4196 
4197 		/* page is in cache */
4198 		cs->nr_cache += nr_pages;
4199 
4200 		if (folio_test_dirty(folio))
4201 			cs->nr_dirty += nr_pages;
4202 
4203 		if (folio_test_writeback(folio))
4204 			cs->nr_writeback += nr_pages;
4205 
4206 resched:
4207 		if (need_resched()) {
4208 			xas_pause(&xas);
4209 			cond_resched_rcu();
4210 		}
4211 	}
4212 	rcu_read_unlock();
4213 }
4214 
4215 /*
4216  * The cachestat(2) system call.
4217  *
4218  * cachestat() returns the page cache statistics of a file in the
4219  * bytes range specified by `off` and `len`: number of cached pages,
4220  * number of dirty pages, number of pages marked for writeback,
4221  * number of evicted pages, and number of recently evicted pages.
4222  *
4223  * An evicted page is a page that is previously in the page cache
4224  * but has been evicted since. A page is recently evicted if its last
4225  * eviction was recent enough that its reentry to the cache would
4226  * indicate that it is actively being used by the system, and that
4227  * there is memory pressure on the system.
4228  *
4229  * `off` and `len` must be non-negative integers. If `len` > 0,
4230  * the queried range is [`off`, `off` + `len`]. If `len` == 0,
4231  * we will query in the range from `off` to the end of the file.
4232  *
4233  * The `flags` argument is unused for now, but is included for future
4234  * extensibility. User should pass 0 (i.e no flag specified).
4235  *
4236  * Currently, hugetlbfs is not supported.
4237  *
4238  * Because the status of a page can change after cachestat() checks it
4239  * but before it returns to the application, the returned values may
4240  * contain stale information.
4241  *
4242  * return values:
4243  *  zero        - success
4244  *  -EFAULT     - cstat or cstat_range points to an illegal address
4245  *  -EINVAL     - invalid flags
4246  *  -EBADF      - invalid file descriptor
4247  *  -EOPNOTSUPP - file descriptor is of a hugetlbfs file
4248  */
4249 SYSCALL_DEFINE4(cachestat, unsigned int, fd,
4250 		struct cachestat_range __user *, cstat_range,
4251 		struct cachestat __user *, cstat, unsigned int, flags)
4252 {
4253 	struct fd f = fdget(fd);
4254 	struct address_space *mapping;
4255 	struct cachestat_range csr;
4256 	struct cachestat cs;
4257 	pgoff_t first_index, last_index;
4258 
4259 	if (!f.file)
4260 		return -EBADF;
4261 
4262 	if (copy_from_user(&csr, cstat_range,
4263 			sizeof(struct cachestat_range))) {
4264 		fdput(f);
4265 		return -EFAULT;
4266 	}
4267 
4268 	/* hugetlbfs is not supported */
4269 	if (is_file_hugepages(f.file)) {
4270 		fdput(f);
4271 		return -EOPNOTSUPP;
4272 	}
4273 
4274 	if (flags != 0) {
4275 		fdput(f);
4276 		return -EINVAL;
4277 	}
4278 
4279 	first_index = csr.off >> PAGE_SHIFT;
4280 	last_index =
4281 		csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT;
4282 	memset(&cs, 0, sizeof(struct cachestat));
4283 	mapping = f.file->f_mapping;
4284 	filemap_cachestat(mapping, first_index, last_index, &cs);
4285 	fdput(f);
4286 
4287 	if (copy_to_user(cstat, &cs, sizeof(struct cachestat)))
4288 		return -EFAULT;
4289 
4290 	return 0;
4291 }
4292 #endif /* CONFIG_CACHESTAT_SYSCALL */
4293