xref: /linux/mm/filemap.c (revision 940d4113f3306e07a1f86541489b686d1a979d54)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
39 
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
42 
43 /*
44  * FIXME: remove all knowledge of the buffer layer from the core VM
45  */
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47 
48 #include <asm/mman.h>
49 
50 /*
51  * Shared mappings implemented 30.11.1994. It's not fully working yet,
52  * though.
53  *
54  * Shared mappings now work. 15.8.1995  Bruno.
55  *
56  * finished 'unifying' the page and buffer cache and SMP-threaded the
57  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58  *
59  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60  */
61 
62 /*
63  * Lock ordering:
64  *
65  *  ->i_mmap_rwsem		(truncate_pagecache)
66  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
67  *      ->swap_lock		(exclusive_swap_page, others)
68  *        ->mapping->tree_lock
69  *
70  *  ->i_mutex
71  *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
72  *
73  *  ->mmap_sem
74  *    ->i_mmap_rwsem
75  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
76  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
77  *
78  *  ->mmap_sem
79  *    ->lock_page		(access_process_vm)
80  *
81  *  ->i_mutex			(generic_perform_write)
82  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
83  *
84  *  bdi->wb.list_lock
85  *    sb_lock			(fs/fs-writeback.c)
86  *    ->mapping->tree_lock	(__sync_single_inode)
87  *
88  *  ->i_mmap_rwsem
89  *    ->anon_vma.lock		(vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock		(try_to_unmap_one)
96  *    ->private_lock		(try_to_unmap_one)
97  *    ->tree_lock		(try_to_unmap_one)
98  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
99  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
100  *    ->private_lock		(page_remove_rmap->set_page_dirty)
101  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
102  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
103  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
104  *    ->memcg->move_lock	(page_remove_rmap->mem_cgroup_begin_page_stat)
105  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
106  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
107  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
108  *
109  * ->i_mmap_rwsem
110  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
111  */
112 
113 static void page_cache_tree_delete(struct address_space *mapping,
114 				   struct page *page, void *shadow)
115 {
116 	struct radix_tree_node *node;
117 	unsigned long index;
118 	unsigned int offset;
119 	unsigned int tag;
120 	void **slot;
121 
122 	VM_BUG_ON(!PageLocked(page));
123 
124 	__radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
125 
126 	if (shadow) {
127 		mapping->nrexceptional++;
128 		/*
129 		 * Make sure the nrexceptional update is committed before
130 		 * the nrpages update so that final truncate racing
131 		 * with reclaim does not see both counters 0 at the
132 		 * same time and miss a shadow entry.
133 		 */
134 		smp_wmb();
135 	}
136 	mapping->nrpages--;
137 
138 	if (!node) {
139 		/* Clear direct pointer tags in root node */
140 		mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
141 		radix_tree_replace_slot(slot, shadow);
142 		return;
143 	}
144 
145 	/* Clear tree tags for the removed page */
146 	index = page->index;
147 	offset = index & RADIX_TREE_MAP_MASK;
148 	for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
149 		if (test_bit(offset, node->tags[tag]))
150 			radix_tree_tag_clear(&mapping->page_tree, index, tag);
151 	}
152 
153 	/* Delete page, swap shadow entry */
154 	radix_tree_replace_slot(slot, shadow);
155 	workingset_node_pages_dec(node);
156 	if (shadow)
157 		workingset_node_shadows_inc(node);
158 	else
159 		if (__radix_tree_delete_node(&mapping->page_tree, node))
160 			return;
161 
162 	/*
163 	 * Track node that only contains shadow entries.
164 	 *
165 	 * Avoid acquiring the list_lru lock if already tracked.  The
166 	 * list_empty() test is safe as node->private_list is
167 	 * protected by mapping->tree_lock.
168 	 */
169 	if (!workingset_node_pages(node) &&
170 	    list_empty(&node->private_list)) {
171 		node->private_data = mapping;
172 		list_lru_add(&workingset_shadow_nodes, &node->private_list);
173 	}
174 }
175 
176 /*
177  * Delete a page from the page cache and free it. Caller has to make
178  * sure the page is locked and that nobody else uses it - or that usage
179  * is safe.  The caller must hold the mapping's tree_lock and
180  * mem_cgroup_begin_page_stat().
181  */
182 void __delete_from_page_cache(struct page *page, void *shadow,
183 			      struct mem_cgroup *memcg)
184 {
185 	struct address_space *mapping = page->mapping;
186 
187 	trace_mm_filemap_delete_from_page_cache(page);
188 	/*
189 	 * if we're uptodate, flush out into the cleancache, otherwise
190 	 * invalidate any existing cleancache entries.  We can't leave
191 	 * stale data around in the cleancache once our page is gone
192 	 */
193 	if (PageUptodate(page) && PageMappedToDisk(page))
194 		cleancache_put_page(page);
195 	else
196 		cleancache_invalidate_page(mapping, page);
197 
198 	VM_BUG_ON_PAGE(page_mapped(page), page);
199 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
200 		int mapcount;
201 
202 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
203 			 current->comm, page_to_pfn(page));
204 		dump_page(page, "still mapped when deleted");
205 		dump_stack();
206 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
207 
208 		mapcount = page_mapcount(page);
209 		if (mapping_exiting(mapping) &&
210 		    page_count(page) >= mapcount + 2) {
211 			/*
212 			 * All vmas have already been torn down, so it's
213 			 * a good bet that actually the page is unmapped,
214 			 * and we'd prefer not to leak it: if we're wrong,
215 			 * some other bad page check should catch it later.
216 			 */
217 			page_mapcount_reset(page);
218 			atomic_sub(mapcount, &page->_count);
219 		}
220 	}
221 
222 	page_cache_tree_delete(mapping, page, shadow);
223 
224 	page->mapping = NULL;
225 	/* Leave page->index set: truncation lookup relies upon it */
226 
227 	/* hugetlb pages do not participate in page cache accounting. */
228 	if (!PageHuge(page))
229 		__dec_zone_page_state(page, NR_FILE_PAGES);
230 	if (PageSwapBacked(page))
231 		__dec_zone_page_state(page, NR_SHMEM);
232 
233 	/*
234 	 * At this point page must be either written or cleaned by truncate.
235 	 * Dirty page here signals a bug and loss of unwritten data.
236 	 *
237 	 * This fixes dirty accounting after removing the page entirely but
238 	 * leaves PageDirty set: it has no effect for truncated page and
239 	 * anyway will be cleared before returning page into buddy allocator.
240 	 */
241 	if (WARN_ON_ONCE(PageDirty(page)))
242 		account_page_cleaned(page, mapping, memcg,
243 				     inode_to_wb(mapping->host));
244 }
245 
246 /**
247  * delete_from_page_cache - delete page from page cache
248  * @page: the page which the kernel is trying to remove from page cache
249  *
250  * This must be called only on pages that have been verified to be in the page
251  * cache and locked.  It will never put the page into the free list, the caller
252  * has a reference on the page.
253  */
254 void delete_from_page_cache(struct page *page)
255 {
256 	struct address_space *mapping = page->mapping;
257 	struct mem_cgroup *memcg;
258 	unsigned long flags;
259 
260 	void (*freepage)(struct page *);
261 
262 	BUG_ON(!PageLocked(page));
263 
264 	freepage = mapping->a_ops->freepage;
265 
266 	memcg = mem_cgroup_begin_page_stat(page);
267 	spin_lock_irqsave(&mapping->tree_lock, flags);
268 	__delete_from_page_cache(page, NULL, memcg);
269 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
270 	mem_cgroup_end_page_stat(memcg);
271 
272 	if (freepage)
273 		freepage(page);
274 	page_cache_release(page);
275 }
276 EXPORT_SYMBOL(delete_from_page_cache);
277 
278 static int filemap_check_errors(struct address_space *mapping)
279 {
280 	int ret = 0;
281 	/* Check for outstanding write errors */
282 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
283 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
284 		ret = -ENOSPC;
285 	if (test_bit(AS_EIO, &mapping->flags) &&
286 	    test_and_clear_bit(AS_EIO, &mapping->flags))
287 		ret = -EIO;
288 	return ret;
289 }
290 
291 /**
292  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
293  * @mapping:	address space structure to write
294  * @start:	offset in bytes where the range starts
295  * @end:	offset in bytes where the range ends (inclusive)
296  * @sync_mode:	enable synchronous operation
297  *
298  * Start writeback against all of a mapping's dirty pages that lie
299  * within the byte offsets <start, end> inclusive.
300  *
301  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
302  * opposed to a regular memory cleansing writeback.  The difference between
303  * these two operations is that if a dirty page/buffer is encountered, it must
304  * be waited upon, and not just skipped over.
305  */
306 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
307 				loff_t end, int sync_mode)
308 {
309 	int ret;
310 	struct writeback_control wbc = {
311 		.sync_mode = sync_mode,
312 		.nr_to_write = LONG_MAX,
313 		.range_start = start,
314 		.range_end = end,
315 	};
316 
317 	if (!mapping_cap_writeback_dirty(mapping))
318 		return 0;
319 
320 	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
321 	ret = do_writepages(mapping, &wbc);
322 	wbc_detach_inode(&wbc);
323 	return ret;
324 }
325 
326 static inline int __filemap_fdatawrite(struct address_space *mapping,
327 	int sync_mode)
328 {
329 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
330 }
331 
332 int filemap_fdatawrite(struct address_space *mapping)
333 {
334 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
335 }
336 EXPORT_SYMBOL(filemap_fdatawrite);
337 
338 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
339 				loff_t end)
340 {
341 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
342 }
343 EXPORT_SYMBOL(filemap_fdatawrite_range);
344 
345 /**
346  * filemap_flush - mostly a non-blocking flush
347  * @mapping:	target address_space
348  *
349  * This is a mostly non-blocking flush.  Not suitable for data-integrity
350  * purposes - I/O may not be started against all dirty pages.
351  */
352 int filemap_flush(struct address_space *mapping)
353 {
354 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
355 }
356 EXPORT_SYMBOL(filemap_flush);
357 
358 static int __filemap_fdatawait_range(struct address_space *mapping,
359 				     loff_t start_byte, loff_t end_byte)
360 {
361 	pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
362 	pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
363 	struct pagevec pvec;
364 	int nr_pages;
365 	int ret = 0;
366 
367 	if (end_byte < start_byte)
368 		goto out;
369 
370 	pagevec_init(&pvec, 0);
371 	while ((index <= end) &&
372 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
373 			PAGECACHE_TAG_WRITEBACK,
374 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
375 		unsigned i;
376 
377 		for (i = 0; i < nr_pages; i++) {
378 			struct page *page = pvec.pages[i];
379 
380 			/* until radix tree lookup accepts end_index */
381 			if (page->index > end)
382 				continue;
383 
384 			wait_on_page_writeback(page);
385 			if (TestClearPageError(page))
386 				ret = -EIO;
387 		}
388 		pagevec_release(&pvec);
389 		cond_resched();
390 	}
391 out:
392 	return ret;
393 }
394 
395 /**
396  * filemap_fdatawait_range - wait for writeback to complete
397  * @mapping:		address space structure to wait for
398  * @start_byte:		offset in bytes where the range starts
399  * @end_byte:		offset in bytes where the range ends (inclusive)
400  *
401  * Walk the list of under-writeback pages of the given address space
402  * in the given range and wait for all of them.  Check error status of
403  * the address space and return it.
404  *
405  * Since the error status of the address space is cleared by this function,
406  * callers are responsible for checking the return value and handling and/or
407  * reporting the error.
408  */
409 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
410 			    loff_t end_byte)
411 {
412 	int ret, ret2;
413 
414 	ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
415 	ret2 = filemap_check_errors(mapping);
416 	if (!ret)
417 		ret = ret2;
418 
419 	return ret;
420 }
421 EXPORT_SYMBOL(filemap_fdatawait_range);
422 
423 /**
424  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
425  * @mapping: address space structure to wait for
426  *
427  * Walk the list of under-writeback pages of the given address space
428  * and wait for all of them.  Unlike filemap_fdatawait(), this function
429  * does not clear error status of the address space.
430  *
431  * Use this function if callers don't handle errors themselves.  Expected
432  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
433  * fsfreeze(8)
434  */
435 void filemap_fdatawait_keep_errors(struct address_space *mapping)
436 {
437 	loff_t i_size = i_size_read(mapping->host);
438 
439 	if (i_size == 0)
440 		return;
441 
442 	__filemap_fdatawait_range(mapping, 0, i_size - 1);
443 }
444 
445 /**
446  * filemap_fdatawait - wait for all under-writeback pages to complete
447  * @mapping: address space structure to wait for
448  *
449  * Walk the list of under-writeback pages of the given address space
450  * and wait for all of them.  Check error status of the address space
451  * and return it.
452  *
453  * Since the error status of the address space is cleared by this function,
454  * callers are responsible for checking the return value and handling and/or
455  * reporting the error.
456  */
457 int filemap_fdatawait(struct address_space *mapping)
458 {
459 	loff_t i_size = i_size_read(mapping->host);
460 
461 	if (i_size == 0)
462 		return 0;
463 
464 	return filemap_fdatawait_range(mapping, 0, i_size - 1);
465 }
466 EXPORT_SYMBOL(filemap_fdatawait);
467 
468 int filemap_write_and_wait(struct address_space *mapping)
469 {
470 	int err = 0;
471 
472 	if ((!dax_mapping(mapping) && mapping->nrpages) ||
473 	    (dax_mapping(mapping) && mapping->nrexceptional)) {
474 		err = filemap_fdatawrite(mapping);
475 		/*
476 		 * Even if the above returned error, the pages may be
477 		 * written partially (e.g. -ENOSPC), so we wait for it.
478 		 * But the -EIO is special case, it may indicate the worst
479 		 * thing (e.g. bug) happened, so we avoid waiting for it.
480 		 */
481 		if (err != -EIO) {
482 			int err2 = filemap_fdatawait(mapping);
483 			if (!err)
484 				err = err2;
485 		}
486 	} else {
487 		err = filemap_check_errors(mapping);
488 	}
489 	return err;
490 }
491 EXPORT_SYMBOL(filemap_write_and_wait);
492 
493 /**
494  * filemap_write_and_wait_range - write out & wait on a file range
495  * @mapping:	the address_space for the pages
496  * @lstart:	offset in bytes where the range starts
497  * @lend:	offset in bytes where the range ends (inclusive)
498  *
499  * Write out and wait upon file offsets lstart->lend, inclusive.
500  *
501  * Note that `lend' is inclusive (describes the last byte to be written) so
502  * that this function can be used to write to the very end-of-file (end = -1).
503  */
504 int filemap_write_and_wait_range(struct address_space *mapping,
505 				 loff_t lstart, loff_t lend)
506 {
507 	int err = 0;
508 
509 	if ((!dax_mapping(mapping) && mapping->nrpages) ||
510 	    (dax_mapping(mapping) && mapping->nrexceptional)) {
511 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
512 						 WB_SYNC_ALL);
513 		/* See comment of filemap_write_and_wait() */
514 		if (err != -EIO) {
515 			int err2 = filemap_fdatawait_range(mapping,
516 						lstart, lend);
517 			if (!err)
518 				err = err2;
519 		}
520 	} else {
521 		err = filemap_check_errors(mapping);
522 	}
523 	return err;
524 }
525 EXPORT_SYMBOL(filemap_write_and_wait_range);
526 
527 /**
528  * replace_page_cache_page - replace a pagecache page with a new one
529  * @old:	page to be replaced
530  * @new:	page to replace with
531  * @gfp_mask:	allocation mode
532  *
533  * This function replaces a page in the pagecache with a new one.  On
534  * success it acquires the pagecache reference for the new page and
535  * drops it for the old page.  Both the old and new pages must be
536  * locked.  This function does not add the new page to the LRU, the
537  * caller must do that.
538  *
539  * The remove + add is atomic.  The only way this function can fail is
540  * memory allocation failure.
541  */
542 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
543 {
544 	int error;
545 
546 	VM_BUG_ON_PAGE(!PageLocked(old), old);
547 	VM_BUG_ON_PAGE(!PageLocked(new), new);
548 	VM_BUG_ON_PAGE(new->mapping, new);
549 
550 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
551 	if (!error) {
552 		struct address_space *mapping = old->mapping;
553 		void (*freepage)(struct page *);
554 		struct mem_cgroup *memcg;
555 		unsigned long flags;
556 
557 		pgoff_t offset = old->index;
558 		freepage = mapping->a_ops->freepage;
559 
560 		page_cache_get(new);
561 		new->mapping = mapping;
562 		new->index = offset;
563 
564 		memcg = mem_cgroup_begin_page_stat(old);
565 		spin_lock_irqsave(&mapping->tree_lock, flags);
566 		__delete_from_page_cache(old, NULL, memcg);
567 		error = radix_tree_insert(&mapping->page_tree, offset, new);
568 		BUG_ON(error);
569 		mapping->nrpages++;
570 
571 		/*
572 		 * hugetlb pages do not participate in page cache accounting.
573 		 */
574 		if (!PageHuge(new))
575 			__inc_zone_page_state(new, NR_FILE_PAGES);
576 		if (PageSwapBacked(new))
577 			__inc_zone_page_state(new, NR_SHMEM);
578 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
579 		mem_cgroup_end_page_stat(memcg);
580 		mem_cgroup_replace_page(old, new);
581 		radix_tree_preload_end();
582 		if (freepage)
583 			freepage(old);
584 		page_cache_release(old);
585 	}
586 
587 	return error;
588 }
589 EXPORT_SYMBOL_GPL(replace_page_cache_page);
590 
591 static int page_cache_tree_insert(struct address_space *mapping,
592 				  struct page *page, void **shadowp)
593 {
594 	struct radix_tree_node *node;
595 	void **slot;
596 	int error;
597 
598 	error = __radix_tree_create(&mapping->page_tree, page->index,
599 				    &node, &slot);
600 	if (error)
601 		return error;
602 	if (*slot) {
603 		void *p;
604 
605 		p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
606 		if (!radix_tree_exceptional_entry(p))
607 			return -EEXIST;
608 
609 		if (WARN_ON(dax_mapping(mapping)))
610 			return -EINVAL;
611 
612 		if (shadowp)
613 			*shadowp = p;
614 		mapping->nrexceptional--;
615 		if (node)
616 			workingset_node_shadows_dec(node);
617 	}
618 	radix_tree_replace_slot(slot, page);
619 	mapping->nrpages++;
620 	if (node) {
621 		workingset_node_pages_inc(node);
622 		/*
623 		 * Don't track node that contains actual pages.
624 		 *
625 		 * Avoid acquiring the list_lru lock if already
626 		 * untracked.  The list_empty() test is safe as
627 		 * node->private_list is protected by
628 		 * mapping->tree_lock.
629 		 */
630 		if (!list_empty(&node->private_list))
631 			list_lru_del(&workingset_shadow_nodes,
632 				     &node->private_list);
633 	}
634 	return 0;
635 }
636 
637 static int __add_to_page_cache_locked(struct page *page,
638 				      struct address_space *mapping,
639 				      pgoff_t offset, gfp_t gfp_mask,
640 				      void **shadowp)
641 {
642 	int huge = PageHuge(page);
643 	struct mem_cgroup *memcg;
644 	int error;
645 
646 	VM_BUG_ON_PAGE(!PageLocked(page), page);
647 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
648 
649 	if (!huge) {
650 		error = mem_cgroup_try_charge(page, current->mm,
651 					      gfp_mask, &memcg, false);
652 		if (error)
653 			return error;
654 	}
655 
656 	error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
657 	if (error) {
658 		if (!huge)
659 			mem_cgroup_cancel_charge(page, memcg, false);
660 		return error;
661 	}
662 
663 	page_cache_get(page);
664 	page->mapping = mapping;
665 	page->index = offset;
666 
667 	spin_lock_irq(&mapping->tree_lock);
668 	error = page_cache_tree_insert(mapping, page, shadowp);
669 	radix_tree_preload_end();
670 	if (unlikely(error))
671 		goto err_insert;
672 
673 	/* hugetlb pages do not participate in page cache accounting. */
674 	if (!huge)
675 		__inc_zone_page_state(page, NR_FILE_PAGES);
676 	spin_unlock_irq(&mapping->tree_lock);
677 	if (!huge)
678 		mem_cgroup_commit_charge(page, memcg, false, false);
679 	trace_mm_filemap_add_to_page_cache(page);
680 	return 0;
681 err_insert:
682 	page->mapping = NULL;
683 	/* Leave page->index set: truncation relies upon it */
684 	spin_unlock_irq(&mapping->tree_lock);
685 	if (!huge)
686 		mem_cgroup_cancel_charge(page, memcg, false);
687 	page_cache_release(page);
688 	return error;
689 }
690 
691 /**
692  * add_to_page_cache_locked - add a locked page to the pagecache
693  * @page:	page to add
694  * @mapping:	the page's address_space
695  * @offset:	page index
696  * @gfp_mask:	page allocation mode
697  *
698  * This function is used to add a page to the pagecache. It must be locked.
699  * This function does not add the page to the LRU.  The caller must do that.
700  */
701 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
702 		pgoff_t offset, gfp_t gfp_mask)
703 {
704 	return __add_to_page_cache_locked(page, mapping, offset,
705 					  gfp_mask, NULL);
706 }
707 EXPORT_SYMBOL(add_to_page_cache_locked);
708 
709 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
710 				pgoff_t offset, gfp_t gfp_mask)
711 {
712 	void *shadow = NULL;
713 	int ret;
714 
715 	__SetPageLocked(page);
716 	ret = __add_to_page_cache_locked(page, mapping, offset,
717 					 gfp_mask, &shadow);
718 	if (unlikely(ret))
719 		__ClearPageLocked(page);
720 	else {
721 		/*
722 		 * The page might have been evicted from cache only
723 		 * recently, in which case it should be activated like
724 		 * any other repeatedly accessed page.
725 		 */
726 		if (shadow && workingset_refault(shadow)) {
727 			SetPageActive(page);
728 			workingset_activation(page);
729 		} else
730 			ClearPageActive(page);
731 		lru_cache_add(page);
732 	}
733 	return ret;
734 }
735 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
736 
737 #ifdef CONFIG_NUMA
738 struct page *__page_cache_alloc(gfp_t gfp)
739 {
740 	int n;
741 	struct page *page;
742 
743 	if (cpuset_do_page_mem_spread()) {
744 		unsigned int cpuset_mems_cookie;
745 		do {
746 			cpuset_mems_cookie = read_mems_allowed_begin();
747 			n = cpuset_mem_spread_node();
748 			page = __alloc_pages_node(n, gfp, 0);
749 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
750 
751 		return page;
752 	}
753 	return alloc_pages(gfp, 0);
754 }
755 EXPORT_SYMBOL(__page_cache_alloc);
756 #endif
757 
758 /*
759  * In order to wait for pages to become available there must be
760  * waitqueues associated with pages. By using a hash table of
761  * waitqueues where the bucket discipline is to maintain all
762  * waiters on the same queue and wake all when any of the pages
763  * become available, and for the woken contexts to check to be
764  * sure the appropriate page became available, this saves space
765  * at a cost of "thundering herd" phenomena during rare hash
766  * collisions.
767  */
768 wait_queue_head_t *page_waitqueue(struct page *page)
769 {
770 	const struct zone *zone = page_zone(page);
771 
772 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
773 }
774 EXPORT_SYMBOL(page_waitqueue);
775 
776 void wait_on_page_bit(struct page *page, int bit_nr)
777 {
778 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
779 
780 	if (test_bit(bit_nr, &page->flags))
781 		__wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
782 							TASK_UNINTERRUPTIBLE);
783 }
784 EXPORT_SYMBOL(wait_on_page_bit);
785 
786 int wait_on_page_bit_killable(struct page *page, int bit_nr)
787 {
788 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
789 
790 	if (!test_bit(bit_nr, &page->flags))
791 		return 0;
792 
793 	return __wait_on_bit(page_waitqueue(page), &wait,
794 			     bit_wait_io, TASK_KILLABLE);
795 }
796 
797 int wait_on_page_bit_killable_timeout(struct page *page,
798 				       int bit_nr, unsigned long timeout)
799 {
800 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
801 
802 	wait.key.timeout = jiffies + timeout;
803 	if (!test_bit(bit_nr, &page->flags))
804 		return 0;
805 	return __wait_on_bit(page_waitqueue(page), &wait,
806 			     bit_wait_io_timeout, TASK_KILLABLE);
807 }
808 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
809 
810 /**
811  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
812  * @page: Page defining the wait queue of interest
813  * @waiter: Waiter to add to the queue
814  *
815  * Add an arbitrary @waiter to the wait queue for the nominated @page.
816  */
817 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
818 {
819 	wait_queue_head_t *q = page_waitqueue(page);
820 	unsigned long flags;
821 
822 	spin_lock_irqsave(&q->lock, flags);
823 	__add_wait_queue(q, waiter);
824 	spin_unlock_irqrestore(&q->lock, flags);
825 }
826 EXPORT_SYMBOL_GPL(add_page_wait_queue);
827 
828 /**
829  * unlock_page - unlock a locked page
830  * @page: the page
831  *
832  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
833  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
834  * mechanism between PageLocked pages and PageWriteback pages is shared.
835  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
836  *
837  * The mb is necessary to enforce ordering between the clear_bit and the read
838  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
839  */
840 void unlock_page(struct page *page)
841 {
842 	page = compound_head(page);
843 	VM_BUG_ON_PAGE(!PageLocked(page), page);
844 	clear_bit_unlock(PG_locked, &page->flags);
845 	smp_mb__after_atomic();
846 	wake_up_page(page, PG_locked);
847 }
848 EXPORT_SYMBOL(unlock_page);
849 
850 /**
851  * end_page_writeback - end writeback against a page
852  * @page: the page
853  */
854 void end_page_writeback(struct page *page)
855 {
856 	/*
857 	 * TestClearPageReclaim could be used here but it is an atomic
858 	 * operation and overkill in this particular case. Failing to
859 	 * shuffle a page marked for immediate reclaim is too mild to
860 	 * justify taking an atomic operation penalty at the end of
861 	 * ever page writeback.
862 	 */
863 	if (PageReclaim(page)) {
864 		ClearPageReclaim(page);
865 		rotate_reclaimable_page(page);
866 	}
867 
868 	if (!test_clear_page_writeback(page))
869 		BUG();
870 
871 	smp_mb__after_atomic();
872 	wake_up_page(page, PG_writeback);
873 }
874 EXPORT_SYMBOL(end_page_writeback);
875 
876 /*
877  * After completing I/O on a page, call this routine to update the page
878  * flags appropriately
879  */
880 void page_endio(struct page *page, int rw, int err)
881 {
882 	if (rw == READ) {
883 		if (!err) {
884 			SetPageUptodate(page);
885 		} else {
886 			ClearPageUptodate(page);
887 			SetPageError(page);
888 		}
889 		unlock_page(page);
890 	} else { /* rw == WRITE */
891 		if (err) {
892 			SetPageError(page);
893 			if (page->mapping)
894 				mapping_set_error(page->mapping, err);
895 		}
896 		end_page_writeback(page);
897 	}
898 }
899 EXPORT_SYMBOL_GPL(page_endio);
900 
901 /**
902  * __lock_page - get a lock on the page, assuming we need to sleep to get it
903  * @page: the page to lock
904  */
905 void __lock_page(struct page *page)
906 {
907 	struct page *page_head = compound_head(page);
908 	DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
909 
910 	__wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
911 							TASK_UNINTERRUPTIBLE);
912 }
913 EXPORT_SYMBOL(__lock_page);
914 
915 int __lock_page_killable(struct page *page)
916 {
917 	struct page *page_head = compound_head(page);
918 	DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
919 
920 	return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
921 					bit_wait_io, TASK_KILLABLE);
922 }
923 EXPORT_SYMBOL_GPL(__lock_page_killable);
924 
925 /*
926  * Return values:
927  * 1 - page is locked; mmap_sem is still held.
928  * 0 - page is not locked.
929  *     mmap_sem has been released (up_read()), unless flags had both
930  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
931  *     which case mmap_sem is still held.
932  *
933  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
934  * with the page locked and the mmap_sem unperturbed.
935  */
936 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
937 			 unsigned int flags)
938 {
939 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
940 		/*
941 		 * CAUTION! In this case, mmap_sem is not released
942 		 * even though return 0.
943 		 */
944 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
945 			return 0;
946 
947 		up_read(&mm->mmap_sem);
948 		if (flags & FAULT_FLAG_KILLABLE)
949 			wait_on_page_locked_killable(page);
950 		else
951 			wait_on_page_locked(page);
952 		return 0;
953 	} else {
954 		if (flags & FAULT_FLAG_KILLABLE) {
955 			int ret;
956 
957 			ret = __lock_page_killable(page);
958 			if (ret) {
959 				up_read(&mm->mmap_sem);
960 				return 0;
961 			}
962 		} else
963 			__lock_page(page);
964 		return 1;
965 	}
966 }
967 
968 /**
969  * page_cache_next_hole - find the next hole (not-present entry)
970  * @mapping: mapping
971  * @index: index
972  * @max_scan: maximum range to search
973  *
974  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
975  * lowest indexed hole.
976  *
977  * Returns: the index of the hole if found, otherwise returns an index
978  * outside of the set specified (in which case 'return - index >=
979  * max_scan' will be true). In rare cases of index wrap-around, 0 will
980  * be returned.
981  *
982  * page_cache_next_hole may be called under rcu_read_lock. However,
983  * like radix_tree_gang_lookup, this will not atomically search a
984  * snapshot of the tree at a single point in time. For example, if a
985  * hole is created at index 5, then subsequently a hole is created at
986  * index 10, page_cache_next_hole covering both indexes may return 10
987  * if called under rcu_read_lock.
988  */
989 pgoff_t page_cache_next_hole(struct address_space *mapping,
990 			     pgoff_t index, unsigned long max_scan)
991 {
992 	unsigned long i;
993 
994 	for (i = 0; i < max_scan; i++) {
995 		struct page *page;
996 
997 		page = radix_tree_lookup(&mapping->page_tree, index);
998 		if (!page || radix_tree_exceptional_entry(page))
999 			break;
1000 		index++;
1001 		if (index == 0)
1002 			break;
1003 	}
1004 
1005 	return index;
1006 }
1007 EXPORT_SYMBOL(page_cache_next_hole);
1008 
1009 /**
1010  * page_cache_prev_hole - find the prev hole (not-present entry)
1011  * @mapping: mapping
1012  * @index: index
1013  * @max_scan: maximum range to search
1014  *
1015  * Search backwards in the range [max(index-max_scan+1, 0), index] for
1016  * the first hole.
1017  *
1018  * Returns: the index of the hole if found, otherwise returns an index
1019  * outside of the set specified (in which case 'index - return >=
1020  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1021  * will be returned.
1022  *
1023  * page_cache_prev_hole may be called under rcu_read_lock. However,
1024  * like radix_tree_gang_lookup, this will not atomically search a
1025  * snapshot of the tree at a single point in time. For example, if a
1026  * hole is created at index 10, then subsequently a hole is created at
1027  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1028  * called under rcu_read_lock.
1029  */
1030 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1031 			     pgoff_t index, unsigned long max_scan)
1032 {
1033 	unsigned long i;
1034 
1035 	for (i = 0; i < max_scan; i++) {
1036 		struct page *page;
1037 
1038 		page = radix_tree_lookup(&mapping->page_tree, index);
1039 		if (!page || radix_tree_exceptional_entry(page))
1040 			break;
1041 		index--;
1042 		if (index == ULONG_MAX)
1043 			break;
1044 	}
1045 
1046 	return index;
1047 }
1048 EXPORT_SYMBOL(page_cache_prev_hole);
1049 
1050 /**
1051  * find_get_entry - find and get a page cache entry
1052  * @mapping: the address_space to search
1053  * @offset: the page cache index
1054  *
1055  * Looks up the page cache slot at @mapping & @offset.  If there is a
1056  * page cache page, it is returned with an increased refcount.
1057  *
1058  * If the slot holds a shadow entry of a previously evicted page, or a
1059  * swap entry from shmem/tmpfs, it is returned.
1060  *
1061  * Otherwise, %NULL is returned.
1062  */
1063 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1064 {
1065 	void **pagep;
1066 	struct page *page;
1067 
1068 	rcu_read_lock();
1069 repeat:
1070 	page = NULL;
1071 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1072 	if (pagep) {
1073 		page = radix_tree_deref_slot(pagep);
1074 		if (unlikely(!page))
1075 			goto out;
1076 		if (radix_tree_exception(page)) {
1077 			if (radix_tree_deref_retry(page))
1078 				goto repeat;
1079 			/*
1080 			 * A shadow entry of a recently evicted page,
1081 			 * or a swap entry from shmem/tmpfs.  Return
1082 			 * it without attempting to raise page count.
1083 			 */
1084 			goto out;
1085 		}
1086 		if (!page_cache_get_speculative(page))
1087 			goto repeat;
1088 
1089 		/*
1090 		 * Has the page moved?
1091 		 * This is part of the lockless pagecache protocol. See
1092 		 * include/linux/pagemap.h for details.
1093 		 */
1094 		if (unlikely(page != *pagep)) {
1095 			page_cache_release(page);
1096 			goto repeat;
1097 		}
1098 	}
1099 out:
1100 	rcu_read_unlock();
1101 
1102 	return page;
1103 }
1104 EXPORT_SYMBOL(find_get_entry);
1105 
1106 /**
1107  * find_lock_entry - locate, pin and lock a page cache entry
1108  * @mapping: the address_space to search
1109  * @offset: the page cache index
1110  *
1111  * Looks up the page cache slot at @mapping & @offset.  If there is a
1112  * page cache page, it is returned locked and with an increased
1113  * refcount.
1114  *
1115  * If the slot holds a shadow entry of a previously evicted page, or a
1116  * swap entry from shmem/tmpfs, it is returned.
1117  *
1118  * Otherwise, %NULL is returned.
1119  *
1120  * find_lock_entry() may sleep.
1121  */
1122 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1123 {
1124 	struct page *page;
1125 
1126 repeat:
1127 	page = find_get_entry(mapping, offset);
1128 	if (page && !radix_tree_exception(page)) {
1129 		lock_page(page);
1130 		/* Has the page been truncated? */
1131 		if (unlikely(page->mapping != mapping)) {
1132 			unlock_page(page);
1133 			page_cache_release(page);
1134 			goto repeat;
1135 		}
1136 		VM_BUG_ON_PAGE(page->index != offset, page);
1137 	}
1138 	return page;
1139 }
1140 EXPORT_SYMBOL(find_lock_entry);
1141 
1142 /**
1143  * pagecache_get_page - find and get a page reference
1144  * @mapping: the address_space to search
1145  * @offset: the page index
1146  * @fgp_flags: PCG flags
1147  * @gfp_mask: gfp mask to use for the page cache data page allocation
1148  *
1149  * Looks up the page cache slot at @mapping & @offset.
1150  *
1151  * PCG flags modify how the page is returned.
1152  *
1153  * FGP_ACCESSED: the page will be marked accessed
1154  * FGP_LOCK: Page is return locked
1155  * FGP_CREAT: If page is not present then a new page is allocated using
1156  *		@gfp_mask and added to the page cache and the VM's LRU
1157  *		list. The page is returned locked and with an increased
1158  *		refcount. Otherwise, %NULL is returned.
1159  *
1160  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1161  * if the GFP flags specified for FGP_CREAT are atomic.
1162  *
1163  * If there is a page cache page, it is returned with an increased refcount.
1164  */
1165 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1166 	int fgp_flags, gfp_t gfp_mask)
1167 {
1168 	struct page *page;
1169 
1170 repeat:
1171 	page = find_get_entry(mapping, offset);
1172 	if (radix_tree_exceptional_entry(page))
1173 		page = NULL;
1174 	if (!page)
1175 		goto no_page;
1176 
1177 	if (fgp_flags & FGP_LOCK) {
1178 		if (fgp_flags & FGP_NOWAIT) {
1179 			if (!trylock_page(page)) {
1180 				page_cache_release(page);
1181 				return NULL;
1182 			}
1183 		} else {
1184 			lock_page(page);
1185 		}
1186 
1187 		/* Has the page been truncated? */
1188 		if (unlikely(page->mapping != mapping)) {
1189 			unlock_page(page);
1190 			page_cache_release(page);
1191 			goto repeat;
1192 		}
1193 		VM_BUG_ON_PAGE(page->index != offset, page);
1194 	}
1195 
1196 	if (page && (fgp_flags & FGP_ACCESSED))
1197 		mark_page_accessed(page);
1198 
1199 no_page:
1200 	if (!page && (fgp_flags & FGP_CREAT)) {
1201 		int err;
1202 		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1203 			gfp_mask |= __GFP_WRITE;
1204 		if (fgp_flags & FGP_NOFS)
1205 			gfp_mask &= ~__GFP_FS;
1206 
1207 		page = __page_cache_alloc(gfp_mask);
1208 		if (!page)
1209 			return NULL;
1210 
1211 		if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1212 			fgp_flags |= FGP_LOCK;
1213 
1214 		/* Init accessed so avoid atomic mark_page_accessed later */
1215 		if (fgp_flags & FGP_ACCESSED)
1216 			__SetPageReferenced(page);
1217 
1218 		err = add_to_page_cache_lru(page, mapping, offset,
1219 				gfp_mask & GFP_RECLAIM_MASK);
1220 		if (unlikely(err)) {
1221 			page_cache_release(page);
1222 			page = NULL;
1223 			if (err == -EEXIST)
1224 				goto repeat;
1225 		}
1226 	}
1227 
1228 	return page;
1229 }
1230 EXPORT_SYMBOL(pagecache_get_page);
1231 
1232 /**
1233  * find_get_entries - gang pagecache lookup
1234  * @mapping:	The address_space to search
1235  * @start:	The starting page cache index
1236  * @nr_entries:	The maximum number of entries
1237  * @entries:	Where the resulting entries are placed
1238  * @indices:	The cache indices corresponding to the entries in @entries
1239  *
1240  * find_get_entries() will search for and return a group of up to
1241  * @nr_entries entries in the mapping.  The entries are placed at
1242  * @entries.  find_get_entries() takes a reference against any actual
1243  * pages it returns.
1244  *
1245  * The search returns a group of mapping-contiguous page cache entries
1246  * with ascending indexes.  There may be holes in the indices due to
1247  * not-present pages.
1248  *
1249  * Any shadow entries of evicted pages, or swap entries from
1250  * shmem/tmpfs, are included in the returned array.
1251  *
1252  * find_get_entries() returns the number of pages and shadow entries
1253  * which were found.
1254  */
1255 unsigned find_get_entries(struct address_space *mapping,
1256 			  pgoff_t start, unsigned int nr_entries,
1257 			  struct page **entries, pgoff_t *indices)
1258 {
1259 	void **slot;
1260 	unsigned int ret = 0;
1261 	struct radix_tree_iter iter;
1262 
1263 	if (!nr_entries)
1264 		return 0;
1265 
1266 	rcu_read_lock();
1267 restart:
1268 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1269 		struct page *page;
1270 repeat:
1271 		page = radix_tree_deref_slot(slot);
1272 		if (unlikely(!page))
1273 			continue;
1274 		if (radix_tree_exception(page)) {
1275 			if (radix_tree_deref_retry(page))
1276 				goto restart;
1277 			/*
1278 			 * A shadow entry of a recently evicted page, a swap
1279 			 * entry from shmem/tmpfs or a DAX entry.  Return it
1280 			 * without attempting to raise page count.
1281 			 */
1282 			goto export;
1283 		}
1284 		if (!page_cache_get_speculative(page))
1285 			goto repeat;
1286 
1287 		/* Has the page moved? */
1288 		if (unlikely(page != *slot)) {
1289 			page_cache_release(page);
1290 			goto repeat;
1291 		}
1292 export:
1293 		indices[ret] = iter.index;
1294 		entries[ret] = page;
1295 		if (++ret == nr_entries)
1296 			break;
1297 	}
1298 	rcu_read_unlock();
1299 	return ret;
1300 }
1301 
1302 /**
1303  * find_get_pages - gang pagecache lookup
1304  * @mapping:	The address_space to search
1305  * @start:	The starting page index
1306  * @nr_pages:	The maximum number of pages
1307  * @pages:	Where the resulting pages are placed
1308  *
1309  * find_get_pages() will search for and return a group of up to
1310  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1311  * find_get_pages() takes a reference against the returned pages.
1312  *
1313  * The search returns a group of mapping-contiguous pages with ascending
1314  * indexes.  There may be holes in the indices due to not-present pages.
1315  *
1316  * find_get_pages() returns the number of pages which were found.
1317  */
1318 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1319 			    unsigned int nr_pages, struct page **pages)
1320 {
1321 	struct radix_tree_iter iter;
1322 	void **slot;
1323 	unsigned ret = 0;
1324 
1325 	if (unlikely(!nr_pages))
1326 		return 0;
1327 
1328 	rcu_read_lock();
1329 restart:
1330 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1331 		struct page *page;
1332 repeat:
1333 		page = radix_tree_deref_slot(slot);
1334 		if (unlikely(!page))
1335 			continue;
1336 
1337 		if (radix_tree_exception(page)) {
1338 			if (radix_tree_deref_retry(page)) {
1339 				/*
1340 				 * Transient condition which can only trigger
1341 				 * when entry at index 0 moves out of or back
1342 				 * to root: none yet gotten, safe to restart.
1343 				 */
1344 				WARN_ON(iter.index);
1345 				goto restart;
1346 			}
1347 			/*
1348 			 * A shadow entry of a recently evicted page,
1349 			 * or a swap entry from shmem/tmpfs.  Skip
1350 			 * over it.
1351 			 */
1352 			continue;
1353 		}
1354 
1355 		if (!page_cache_get_speculative(page))
1356 			goto repeat;
1357 
1358 		/* Has the page moved? */
1359 		if (unlikely(page != *slot)) {
1360 			page_cache_release(page);
1361 			goto repeat;
1362 		}
1363 
1364 		pages[ret] = page;
1365 		if (++ret == nr_pages)
1366 			break;
1367 	}
1368 
1369 	rcu_read_unlock();
1370 	return ret;
1371 }
1372 
1373 /**
1374  * find_get_pages_contig - gang contiguous pagecache lookup
1375  * @mapping:	The address_space to search
1376  * @index:	The starting page index
1377  * @nr_pages:	The maximum number of pages
1378  * @pages:	Where the resulting pages are placed
1379  *
1380  * find_get_pages_contig() works exactly like find_get_pages(), except
1381  * that the returned number of pages are guaranteed to be contiguous.
1382  *
1383  * find_get_pages_contig() returns the number of pages which were found.
1384  */
1385 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1386 			       unsigned int nr_pages, struct page **pages)
1387 {
1388 	struct radix_tree_iter iter;
1389 	void **slot;
1390 	unsigned int ret = 0;
1391 
1392 	if (unlikely(!nr_pages))
1393 		return 0;
1394 
1395 	rcu_read_lock();
1396 restart:
1397 	radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1398 		struct page *page;
1399 repeat:
1400 		page = radix_tree_deref_slot(slot);
1401 		/* The hole, there no reason to continue */
1402 		if (unlikely(!page))
1403 			break;
1404 
1405 		if (radix_tree_exception(page)) {
1406 			if (radix_tree_deref_retry(page)) {
1407 				/*
1408 				 * Transient condition which can only trigger
1409 				 * when entry at index 0 moves out of or back
1410 				 * to root: none yet gotten, safe to restart.
1411 				 */
1412 				goto restart;
1413 			}
1414 			/*
1415 			 * A shadow entry of a recently evicted page,
1416 			 * or a swap entry from shmem/tmpfs.  Stop
1417 			 * looking for contiguous pages.
1418 			 */
1419 			break;
1420 		}
1421 
1422 		if (!page_cache_get_speculative(page))
1423 			goto repeat;
1424 
1425 		/* Has the page moved? */
1426 		if (unlikely(page != *slot)) {
1427 			page_cache_release(page);
1428 			goto repeat;
1429 		}
1430 
1431 		/*
1432 		 * must check mapping and index after taking the ref.
1433 		 * otherwise we can get both false positives and false
1434 		 * negatives, which is just confusing to the caller.
1435 		 */
1436 		if (page->mapping == NULL || page->index != iter.index) {
1437 			page_cache_release(page);
1438 			break;
1439 		}
1440 
1441 		pages[ret] = page;
1442 		if (++ret == nr_pages)
1443 			break;
1444 	}
1445 	rcu_read_unlock();
1446 	return ret;
1447 }
1448 EXPORT_SYMBOL(find_get_pages_contig);
1449 
1450 /**
1451  * find_get_pages_tag - find and return pages that match @tag
1452  * @mapping:	the address_space to search
1453  * @index:	the starting page index
1454  * @tag:	the tag index
1455  * @nr_pages:	the maximum number of pages
1456  * @pages:	where the resulting pages are placed
1457  *
1458  * Like find_get_pages, except we only return pages which are tagged with
1459  * @tag.   We update @index to index the next page for the traversal.
1460  */
1461 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1462 			int tag, unsigned int nr_pages, struct page **pages)
1463 {
1464 	struct radix_tree_iter iter;
1465 	void **slot;
1466 	unsigned ret = 0;
1467 
1468 	if (unlikely(!nr_pages))
1469 		return 0;
1470 
1471 	rcu_read_lock();
1472 restart:
1473 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1474 				   &iter, *index, tag) {
1475 		struct page *page;
1476 repeat:
1477 		page = radix_tree_deref_slot(slot);
1478 		if (unlikely(!page))
1479 			continue;
1480 
1481 		if (radix_tree_exception(page)) {
1482 			if (radix_tree_deref_retry(page)) {
1483 				/*
1484 				 * Transient condition which can only trigger
1485 				 * when entry at index 0 moves out of or back
1486 				 * to root: none yet gotten, safe to restart.
1487 				 */
1488 				goto restart;
1489 			}
1490 			/*
1491 			 * A shadow entry of a recently evicted page.
1492 			 *
1493 			 * Those entries should never be tagged, but
1494 			 * this tree walk is lockless and the tags are
1495 			 * looked up in bulk, one radix tree node at a
1496 			 * time, so there is a sizable window for page
1497 			 * reclaim to evict a page we saw tagged.
1498 			 *
1499 			 * Skip over it.
1500 			 */
1501 			continue;
1502 		}
1503 
1504 		if (!page_cache_get_speculative(page))
1505 			goto repeat;
1506 
1507 		/* Has the page moved? */
1508 		if (unlikely(page != *slot)) {
1509 			page_cache_release(page);
1510 			goto repeat;
1511 		}
1512 
1513 		pages[ret] = page;
1514 		if (++ret == nr_pages)
1515 			break;
1516 	}
1517 
1518 	rcu_read_unlock();
1519 
1520 	if (ret)
1521 		*index = pages[ret - 1]->index + 1;
1522 
1523 	return ret;
1524 }
1525 EXPORT_SYMBOL(find_get_pages_tag);
1526 
1527 /**
1528  * find_get_entries_tag - find and return entries that match @tag
1529  * @mapping:	the address_space to search
1530  * @start:	the starting page cache index
1531  * @tag:	the tag index
1532  * @nr_entries:	the maximum number of entries
1533  * @entries:	where the resulting entries are placed
1534  * @indices:	the cache indices corresponding to the entries in @entries
1535  *
1536  * Like find_get_entries, except we only return entries which are tagged with
1537  * @tag.
1538  */
1539 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1540 			int tag, unsigned int nr_entries,
1541 			struct page **entries, pgoff_t *indices)
1542 {
1543 	void **slot;
1544 	unsigned int ret = 0;
1545 	struct radix_tree_iter iter;
1546 
1547 	if (!nr_entries)
1548 		return 0;
1549 
1550 	rcu_read_lock();
1551 restart:
1552 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1553 				   &iter, start, tag) {
1554 		struct page *page;
1555 repeat:
1556 		page = radix_tree_deref_slot(slot);
1557 		if (unlikely(!page))
1558 			continue;
1559 		if (radix_tree_exception(page)) {
1560 			if (radix_tree_deref_retry(page)) {
1561 				/*
1562 				 * Transient condition which can only trigger
1563 				 * when entry at index 0 moves out of or back
1564 				 * to root: none yet gotten, safe to restart.
1565 				 */
1566 				goto restart;
1567 			}
1568 
1569 			/*
1570 			 * A shadow entry of a recently evicted page, a swap
1571 			 * entry from shmem/tmpfs or a DAX entry.  Return it
1572 			 * without attempting to raise page count.
1573 			 */
1574 			goto export;
1575 		}
1576 		if (!page_cache_get_speculative(page))
1577 			goto repeat;
1578 
1579 		/* Has the page moved? */
1580 		if (unlikely(page != *slot)) {
1581 			page_cache_release(page);
1582 			goto repeat;
1583 		}
1584 export:
1585 		indices[ret] = iter.index;
1586 		entries[ret] = page;
1587 		if (++ret == nr_entries)
1588 			break;
1589 	}
1590 	rcu_read_unlock();
1591 	return ret;
1592 }
1593 EXPORT_SYMBOL(find_get_entries_tag);
1594 
1595 /*
1596  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1597  * a _large_ part of the i/o request. Imagine the worst scenario:
1598  *
1599  *      ---R__________________________________________B__________
1600  *         ^ reading here                             ^ bad block(assume 4k)
1601  *
1602  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1603  * => failing the whole request => read(R) => read(R+1) =>
1604  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1605  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1606  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1607  *
1608  * It is going insane. Fix it by quickly scaling down the readahead size.
1609  */
1610 static void shrink_readahead_size_eio(struct file *filp,
1611 					struct file_ra_state *ra)
1612 {
1613 	ra->ra_pages /= 4;
1614 }
1615 
1616 /**
1617  * do_generic_file_read - generic file read routine
1618  * @filp:	the file to read
1619  * @ppos:	current file position
1620  * @iter:	data destination
1621  * @written:	already copied
1622  *
1623  * This is a generic file read routine, and uses the
1624  * mapping->a_ops->readpage() function for the actual low-level stuff.
1625  *
1626  * This is really ugly. But the goto's actually try to clarify some
1627  * of the logic when it comes to error handling etc.
1628  */
1629 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1630 		struct iov_iter *iter, ssize_t written)
1631 {
1632 	struct address_space *mapping = filp->f_mapping;
1633 	struct inode *inode = mapping->host;
1634 	struct file_ra_state *ra = &filp->f_ra;
1635 	pgoff_t index;
1636 	pgoff_t last_index;
1637 	pgoff_t prev_index;
1638 	unsigned long offset;      /* offset into pagecache page */
1639 	unsigned int prev_offset;
1640 	int error = 0;
1641 
1642 	index = *ppos >> PAGE_CACHE_SHIFT;
1643 	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1644 	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1645 	last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1646 	offset = *ppos & ~PAGE_CACHE_MASK;
1647 
1648 	for (;;) {
1649 		struct page *page;
1650 		pgoff_t end_index;
1651 		loff_t isize;
1652 		unsigned long nr, ret;
1653 
1654 		cond_resched();
1655 find_page:
1656 		page = find_get_page(mapping, index);
1657 		if (!page) {
1658 			page_cache_sync_readahead(mapping,
1659 					ra, filp,
1660 					index, last_index - index);
1661 			page = find_get_page(mapping, index);
1662 			if (unlikely(page == NULL))
1663 				goto no_cached_page;
1664 		}
1665 		if (PageReadahead(page)) {
1666 			page_cache_async_readahead(mapping,
1667 					ra, filp, page,
1668 					index, last_index - index);
1669 		}
1670 		if (!PageUptodate(page)) {
1671 			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1672 					!mapping->a_ops->is_partially_uptodate)
1673 				goto page_not_up_to_date;
1674 			if (!trylock_page(page))
1675 				goto page_not_up_to_date;
1676 			/* Did it get truncated before we got the lock? */
1677 			if (!page->mapping)
1678 				goto page_not_up_to_date_locked;
1679 			if (!mapping->a_ops->is_partially_uptodate(page,
1680 							offset, iter->count))
1681 				goto page_not_up_to_date_locked;
1682 			unlock_page(page);
1683 		}
1684 page_ok:
1685 		/*
1686 		 * i_size must be checked after we know the page is Uptodate.
1687 		 *
1688 		 * Checking i_size after the check allows us to calculate
1689 		 * the correct value for "nr", which means the zero-filled
1690 		 * part of the page is not copied back to userspace (unless
1691 		 * another truncate extends the file - this is desired though).
1692 		 */
1693 
1694 		isize = i_size_read(inode);
1695 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1696 		if (unlikely(!isize || index > end_index)) {
1697 			page_cache_release(page);
1698 			goto out;
1699 		}
1700 
1701 		/* nr is the maximum number of bytes to copy from this page */
1702 		nr = PAGE_CACHE_SIZE;
1703 		if (index == end_index) {
1704 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1705 			if (nr <= offset) {
1706 				page_cache_release(page);
1707 				goto out;
1708 			}
1709 		}
1710 		nr = nr - offset;
1711 
1712 		/* If users can be writing to this page using arbitrary
1713 		 * virtual addresses, take care about potential aliasing
1714 		 * before reading the page on the kernel side.
1715 		 */
1716 		if (mapping_writably_mapped(mapping))
1717 			flush_dcache_page(page);
1718 
1719 		/*
1720 		 * When a sequential read accesses a page several times,
1721 		 * only mark it as accessed the first time.
1722 		 */
1723 		if (prev_index != index || offset != prev_offset)
1724 			mark_page_accessed(page);
1725 		prev_index = index;
1726 
1727 		/*
1728 		 * Ok, we have the page, and it's up-to-date, so
1729 		 * now we can copy it to user space...
1730 		 */
1731 
1732 		ret = copy_page_to_iter(page, offset, nr, iter);
1733 		offset += ret;
1734 		index += offset >> PAGE_CACHE_SHIFT;
1735 		offset &= ~PAGE_CACHE_MASK;
1736 		prev_offset = offset;
1737 
1738 		page_cache_release(page);
1739 		written += ret;
1740 		if (!iov_iter_count(iter))
1741 			goto out;
1742 		if (ret < nr) {
1743 			error = -EFAULT;
1744 			goto out;
1745 		}
1746 		continue;
1747 
1748 page_not_up_to_date:
1749 		/* Get exclusive access to the page ... */
1750 		error = lock_page_killable(page);
1751 		if (unlikely(error))
1752 			goto readpage_error;
1753 
1754 page_not_up_to_date_locked:
1755 		/* Did it get truncated before we got the lock? */
1756 		if (!page->mapping) {
1757 			unlock_page(page);
1758 			page_cache_release(page);
1759 			continue;
1760 		}
1761 
1762 		/* Did somebody else fill it already? */
1763 		if (PageUptodate(page)) {
1764 			unlock_page(page);
1765 			goto page_ok;
1766 		}
1767 
1768 readpage:
1769 		/*
1770 		 * A previous I/O error may have been due to temporary
1771 		 * failures, eg. multipath errors.
1772 		 * PG_error will be set again if readpage fails.
1773 		 */
1774 		ClearPageError(page);
1775 		/* Start the actual read. The read will unlock the page. */
1776 		error = mapping->a_ops->readpage(filp, page);
1777 
1778 		if (unlikely(error)) {
1779 			if (error == AOP_TRUNCATED_PAGE) {
1780 				page_cache_release(page);
1781 				error = 0;
1782 				goto find_page;
1783 			}
1784 			goto readpage_error;
1785 		}
1786 
1787 		if (!PageUptodate(page)) {
1788 			error = lock_page_killable(page);
1789 			if (unlikely(error))
1790 				goto readpage_error;
1791 			if (!PageUptodate(page)) {
1792 				if (page->mapping == NULL) {
1793 					/*
1794 					 * invalidate_mapping_pages got it
1795 					 */
1796 					unlock_page(page);
1797 					page_cache_release(page);
1798 					goto find_page;
1799 				}
1800 				unlock_page(page);
1801 				shrink_readahead_size_eio(filp, ra);
1802 				error = -EIO;
1803 				goto readpage_error;
1804 			}
1805 			unlock_page(page);
1806 		}
1807 
1808 		goto page_ok;
1809 
1810 readpage_error:
1811 		/* UHHUH! A synchronous read error occurred. Report it */
1812 		page_cache_release(page);
1813 		goto out;
1814 
1815 no_cached_page:
1816 		/*
1817 		 * Ok, it wasn't cached, so we need to create a new
1818 		 * page..
1819 		 */
1820 		page = page_cache_alloc_cold(mapping);
1821 		if (!page) {
1822 			error = -ENOMEM;
1823 			goto out;
1824 		}
1825 		error = add_to_page_cache_lru(page, mapping, index,
1826 				mapping_gfp_constraint(mapping, GFP_KERNEL));
1827 		if (error) {
1828 			page_cache_release(page);
1829 			if (error == -EEXIST) {
1830 				error = 0;
1831 				goto find_page;
1832 			}
1833 			goto out;
1834 		}
1835 		goto readpage;
1836 	}
1837 
1838 out:
1839 	ra->prev_pos = prev_index;
1840 	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1841 	ra->prev_pos |= prev_offset;
1842 
1843 	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1844 	file_accessed(filp);
1845 	return written ? written : error;
1846 }
1847 
1848 /**
1849  * generic_file_read_iter - generic filesystem read routine
1850  * @iocb:	kernel I/O control block
1851  * @iter:	destination for the data read
1852  *
1853  * This is the "read_iter()" routine for all filesystems
1854  * that can use the page cache directly.
1855  */
1856 ssize_t
1857 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1858 {
1859 	struct file *file = iocb->ki_filp;
1860 	ssize_t retval = 0;
1861 	loff_t *ppos = &iocb->ki_pos;
1862 	loff_t pos = *ppos;
1863 
1864 	if (iocb->ki_flags & IOCB_DIRECT) {
1865 		struct address_space *mapping = file->f_mapping;
1866 		struct inode *inode = mapping->host;
1867 		size_t count = iov_iter_count(iter);
1868 		loff_t size;
1869 
1870 		if (!count)
1871 			goto out; /* skip atime */
1872 		size = i_size_read(inode);
1873 		retval = filemap_write_and_wait_range(mapping, pos,
1874 					pos + count - 1);
1875 		if (!retval) {
1876 			struct iov_iter data = *iter;
1877 			retval = mapping->a_ops->direct_IO(iocb, &data, pos);
1878 		}
1879 
1880 		if (retval > 0) {
1881 			*ppos = pos + retval;
1882 			iov_iter_advance(iter, retval);
1883 		}
1884 
1885 		/*
1886 		 * Btrfs can have a short DIO read if we encounter
1887 		 * compressed extents, so if there was an error, or if
1888 		 * we've already read everything we wanted to, or if
1889 		 * there was a short read because we hit EOF, go ahead
1890 		 * and return.  Otherwise fallthrough to buffered io for
1891 		 * the rest of the read.  Buffered reads will not work for
1892 		 * DAX files, so don't bother trying.
1893 		 */
1894 		if (retval < 0 || !iov_iter_count(iter) || *ppos >= size ||
1895 		    IS_DAX(inode)) {
1896 			file_accessed(file);
1897 			goto out;
1898 		}
1899 	}
1900 
1901 	retval = do_generic_file_read(file, ppos, iter, retval);
1902 out:
1903 	return retval;
1904 }
1905 EXPORT_SYMBOL(generic_file_read_iter);
1906 
1907 #ifdef CONFIG_MMU
1908 /**
1909  * page_cache_read - adds requested page to the page cache if not already there
1910  * @file:	file to read
1911  * @offset:	page index
1912  * @gfp_mask:	memory allocation flags
1913  *
1914  * This adds the requested page to the page cache if it isn't already there,
1915  * and schedules an I/O to read in its contents from disk.
1916  */
1917 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1918 {
1919 	struct address_space *mapping = file->f_mapping;
1920 	struct page *page;
1921 	int ret;
1922 
1923 	do {
1924 		page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1925 		if (!page)
1926 			return -ENOMEM;
1927 
1928 		ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
1929 		if (ret == 0)
1930 			ret = mapping->a_ops->readpage(file, page);
1931 		else if (ret == -EEXIST)
1932 			ret = 0; /* losing race to add is OK */
1933 
1934 		page_cache_release(page);
1935 
1936 	} while (ret == AOP_TRUNCATED_PAGE);
1937 
1938 	return ret;
1939 }
1940 
1941 #define MMAP_LOTSAMISS  (100)
1942 
1943 /*
1944  * Synchronous readahead happens when we don't even find
1945  * a page in the page cache at all.
1946  */
1947 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1948 				   struct file_ra_state *ra,
1949 				   struct file *file,
1950 				   pgoff_t offset)
1951 {
1952 	struct address_space *mapping = file->f_mapping;
1953 
1954 	/* If we don't want any read-ahead, don't bother */
1955 	if (vma->vm_flags & VM_RAND_READ)
1956 		return;
1957 	if (!ra->ra_pages)
1958 		return;
1959 
1960 	if (vma->vm_flags & VM_SEQ_READ) {
1961 		page_cache_sync_readahead(mapping, ra, file, offset,
1962 					  ra->ra_pages);
1963 		return;
1964 	}
1965 
1966 	/* Avoid banging the cache line if not needed */
1967 	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1968 		ra->mmap_miss++;
1969 
1970 	/*
1971 	 * Do we miss much more than hit in this file? If so,
1972 	 * stop bothering with read-ahead. It will only hurt.
1973 	 */
1974 	if (ra->mmap_miss > MMAP_LOTSAMISS)
1975 		return;
1976 
1977 	/*
1978 	 * mmap read-around
1979 	 */
1980 	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
1981 	ra->size = ra->ra_pages;
1982 	ra->async_size = ra->ra_pages / 4;
1983 	ra_submit(ra, mapping, file);
1984 }
1985 
1986 /*
1987  * Asynchronous readahead happens when we find the page and PG_readahead,
1988  * so we want to possibly extend the readahead further..
1989  */
1990 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1991 				    struct file_ra_state *ra,
1992 				    struct file *file,
1993 				    struct page *page,
1994 				    pgoff_t offset)
1995 {
1996 	struct address_space *mapping = file->f_mapping;
1997 
1998 	/* If we don't want any read-ahead, don't bother */
1999 	if (vma->vm_flags & VM_RAND_READ)
2000 		return;
2001 	if (ra->mmap_miss > 0)
2002 		ra->mmap_miss--;
2003 	if (PageReadahead(page))
2004 		page_cache_async_readahead(mapping, ra, file,
2005 					   page, offset, ra->ra_pages);
2006 }
2007 
2008 /**
2009  * filemap_fault - read in file data for page fault handling
2010  * @vma:	vma in which the fault was taken
2011  * @vmf:	struct vm_fault containing details of the fault
2012  *
2013  * filemap_fault() is invoked via the vma operations vector for a
2014  * mapped memory region to read in file data during a page fault.
2015  *
2016  * The goto's are kind of ugly, but this streamlines the normal case of having
2017  * it in the page cache, and handles the special cases reasonably without
2018  * having a lot of duplicated code.
2019  *
2020  * vma->vm_mm->mmap_sem must be held on entry.
2021  *
2022  * If our return value has VM_FAULT_RETRY set, it's because
2023  * lock_page_or_retry() returned 0.
2024  * The mmap_sem has usually been released in this case.
2025  * See __lock_page_or_retry() for the exception.
2026  *
2027  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2028  * has not been released.
2029  *
2030  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2031  */
2032 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2033 {
2034 	int error;
2035 	struct file *file = vma->vm_file;
2036 	struct address_space *mapping = file->f_mapping;
2037 	struct file_ra_state *ra = &file->f_ra;
2038 	struct inode *inode = mapping->host;
2039 	pgoff_t offset = vmf->pgoff;
2040 	struct page *page;
2041 	loff_t size;
2042 	int ret = 0;
2043 
2044 	size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
2045 	if (offset >= size >> PAGE_CACHE_SHIFT)
2046 		return VM_FAULT_SIGBUS;
2047 
2048 	/*
2049 	 * Do we have something in the page cache already?
2050 	 */
2051 	page = find_get_page(mapping, offset);
2052 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2053 		/*
2054 		 * We found the page, so try async readahead before
2055 		 * waiting for the lock.
2056 		 */
2057 		do_async_mmap_readahead(vma, ra, file, page, offset);
2058 	} else if (!page) {
2059 		/* No page in the page cache at all */
2060 		do_sync_mmap_readahead(vma, ra, file, offset);
2061 		count_vm_event(PGMAJFAULT);
2062 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2063 		ret = VM_FAULT_MAJOR;
2064 retry_find:
2065 		page = find_get_page(mapping, offset);
2066 		if (!page)
2067 			goto no_cached_page;
2068 	}
2069 
2070 	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2071 		page_cache_release(page);
2072 		return ret | VM_FAULT_RETRY;
2073 	}
2074 
2075 	/* Did it get truncated? */
2076 	if (unlikely(page->mapping != mapping)) {
2077 		unlock_page(page);
2078 		put_page(page);
2079 		goto retry_find;
2080 	}
2081 	VM_BUG_ON_PAGE(page->index != offset, page);
2082 
2083 	/*
2084 	 * We have a locked page in the page cache, now we need to check
2085 	 * that it's up-to-date. If not, it is going to be due to an error.
2086 	 */
2087 	if (unlikely(!PageUptodate(page)))
2088 		goto page_not_uptodate;
2089 
2090 	/*
2091 	 * Found the page and have a reference on it.
2092 	 * We must recheck i_size under page lock.
2093 	 */
2094 	size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
2095 	if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
2096 		unlock_page(page);
2097 		page_cache_release(page);
2098 		return VM_FAULT_SIGBUS;
2099 	}
2100 
2101 	vmf->page = page;
2102 	return ret | VM_FAULT_LOCKED;
2103 
2104 no_cached_page:
2105 	/*
2106 	 * We're only likely to ever get here if MADV_RANDOM is in
2107 	 * effect.
2108 	 */
2109 	error = page_cache_read(file, offset, vmf->gfp_mask);
2110 
2111 	/*
2112 	 * The page we want has now been added to the page cache.
2113 	 * In the unlikely event that someone removed it in the
2114 	 * meantime, we'll just come back here and read it again.
2115 	 */
2116 	if (error >= 0)
2117 		goto retry_find;
2118 
2119 	/*
2120 	 * An error return from page_cache_read can result if the
2121 	 * system is low on memory, or a problem occurs while trying
2122 	 * to schedule I/O.
2123 	 */
2124 	if (error == -ENOMEM)
2125 		return VM_FAULT_OOM;
2126 	return VM_FAULT_SIGBUS;
2127 
2128 page_not_uptodate:
2129 	/*
2130 	 * Umm, take care of errors if the page isn't up-to-date.
2131 	 * Try to re-read it _once_. We do this synchronously,
2132 	 * because there really aren't any performance issues here
2133 	 * and we need to check for errors.
2134 	 */
2135 	ClearPageError(page);
2136 	error = mapping->a_ops->readpage(file, page);
2137 	if (!error) {
2138 		wait_on_page_locked(page);
2139 		if (!PageUptodate(page))
2140 			error = -EIO;
2141 	}
2142 	page_cache_release(page);
2143 
2144 	if (!error || error == AOP_TRUNCATED_PAGE)
2145 		goto retry_find;
2146 
2147 	/* Things didn't work out. Return zero to tell the mm layer so. */
2148 	shrink_readahead_size_eio(file, ra);
2149 	return VM_FAULT_SIGBUS;
2150 }
2151 EXPORT_SYMBOL(filemap_fault);
2152 
2153 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2154 {
2155 	struct radix_tree_iter iter;
2156 	void **slot;
2157 	struct file *file = vma->vm_file;
2158 	struct address_space *mapping = file->f_mapping;
2159 	loff_t size;
2160 	struct page *page;
2161 	unsigned long address = (unsigned long) vmf->virtual_address;
2162 	unsigned long addr;
2163 	pte_t *pte;
2164 
2165 	rcu_read_lock();
2166 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2167 		if (iter.index > vmf->max_pgoff)
2168 			break;
2169 repeat:
2170 		page = radix_tree_deref_slot(slot);
2171 		if (unlikely(!page))
2172 			goto next;
2173 		if (radix_tree_exception(page)) {
2174 			if (radix_tree_deref_retry(page))
2175 				break;
2176 			else
2177 				goto next;
2178 		}
2179 
2180 		if (!page_cache_get_speculative(page))
2181 			goto repeat;
2182 
2183 		/* Has the page moved? */
2184 		if (unlikely(page != *slot)) {
2185 			page_cache_release(page);
2186 			goto repeat;
2187 		}
2188 
2189 		if (!PageUptodate(page) ||
2190 				PageReadahead(page) ||
2191 				PageHWPoison(page))
2192 			goto skip;
2193 		if (!trylock_page(page))
2194 			goto skip;
2195 
2196 		if (page->mapping != mapping || !PageUptodate(page))
2197 			goto unlock;
2198 
2199 		size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2200 		if (page->index >= size >> PAGE_CACHE_SHIFT)
2201 			goto unlock;
2202 
2203 		pte = vmf->pte + page->index - vmf->pgoff;
2204 		if (!pte_none(*pte))
2205 			goto unlock;
2206 
2207 		if (file->f_ra.mmap_miss > 0)
2208 			file->f_ra.mmap_miss--;
2209 		addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2210 		do_set_pte(vma, addr, page, pte, false, false);
2211 		unlock_page(page);
2212 		goto next;
2213 unlock:
2214 		unlock_page(page);
2215 skip:
2216 		page_cache_release(page);
2217 next:
2218 		if (iter.index == vmf->max_pgoff)
2219 			break;
2220 	}
2221 	rcu_read_unlock();
2222 }
2223 EXPORT_SYMBOL(filemap_map_pages);
2224 
2225 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2226 {
2227 	struct page *page = vmf->page;
2228 	struct inode *inode = file_inode(vma->vm_file);
2229 	int ret = VM_FAULT_LOCKED;
2230 
2231 	sb_start_pagefault(inode->i_sb);
2232 	file_update_time(vma->vm_file);
2233 	lock_page(page);
2234 	if (page->mapping != inode->i_mapping) {
2235 		unlock_page(page);
2236 		ret = VM_FAULT_NOPAGE;
2237 		goto out;
2238 	}
2239 	/*
2240 	 * We mark the page dirty already here so that when freeze is in
2241 	 * progress, we are guaranteed that writeback during freezing will
2242 	 * see the dirty page and writeprotect it again.
2243 	 */
2244 	set_page_dirty(page);
2245 	wait_for_stable_page(page);
2246 out:
2247 	sb_end_pagefault(inode->i_sb);
2248 	return ret;
2249 }
2250 EXPORT_SYMBOL(filemap_page_mkwrite);
2251 
2252 const struct vm_operations_struct generic_file_vm_ops = {
2253 	.fault		= filemap_fault,
2254 	.map_pages	= filemap_map_pages,
2255 	.page_mkwrite	= filemap_page_mkwrite,
2256 };
2257 
2258 /* This is used for a general mmap of a disk file */
2259 
2260 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2261 {
2262 	struct address_space *mapping = file->f_mapping;
2263 
2264 	if (!mapping->a_ops->readpage)
2265 		return -ENOEXEC;
2266 	file_accessed(file);
2267 	vma->vm_ops = &generic_file_vm_ops;
2268 	return 0;
2269 }
2270 
2271 /*
2272  * This is for filesystems which do not implement ->writepage.
2273  */
2274 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2275 {
2276 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2277 		return -EINVAL;
2278 	return generic_file_mmap(file, vma);
2279 }
2280 #else
2281 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2282 {
2283 	return -ENOSYS;
2284 }
2285 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2286 {
2287 	return -ENOSYS;
2288 }
2289 #endif /* CONFIG_MMU */
2290 
2291 EXPORT_SYMBOL(generic_file_mmap);
2292 EXPORT_SYMBOL(generic_file_readonly_mmap);
2293 
2294 static struct page *wait_on_page_read(struct page *page)
2295 {
2296 	if (!IS_ERR(page)) {
2297 		wait_on_page_locked(page);
2298 		if (!PageUptodate(page)) {
2299 			page_cache_release(page);
2300 			page = ERR_PTR(-EIO);
2301 		}
2302 	}
2303 	return page;
2304 }
2305 
2306 static struct page *__read_cache_page(struct address_space *mapping,
2307 				pgoff_t index,
2308 				int (*filler)(void *, struct page *),
2309 				void *data,
2310 				gfp_t gfp)
2311 {
2312 	struct page *page;
2313 	int err;
2314 repeat:
2315 	page = find_get_page(mapping, index);
2316 	if (!page) {
2317 		page = __page_cache_alloc(gfp | __GFP_COLD);
2318 		if (!page)
2319 			return ERR_PTR(-ENOMEM);
2320 		err = add_to_page_cache_lru(page, mapping, index, gfp);
2321 		if (unlikely(err)) {
2322 			page_cache_release(page);
2323 			if (err == -EEXIST)
2324 				goto repeat;
2325 			/* Presumably ENOMEM for radix tree node */
2326 			return ERR_PTR(err);
2327 		}
2328 		err = filler(data, page);
2329 		if (err < 0) {
2330 			page_cache_release(page);
2331 			page = ERR_PTR(err);
2332 		} else {
2333 			page = wait_on_page_read(page);
2334 		}
2335 	}
2336 	return page;
2337 }
2338 
2339 static struct page *do_read_cache_page(struct address_space *mapping,
2340 				pgoff_t index,
2341 				int (*filler)(void *, struct page *),
2342 				void *data,
2343 				gfp_t gfp)
2344 
2345 {
2346 	struct page *page;
2347 	int err;
2348 
2349 retry:
2350 	page = __read_cache_page(mapping, index, filler, data, gfp);
2351 	if (IS_ERR(page))
2352 		return page;
2353 	if (PageUptodate(page))
2354 		goto out;
2355 
2356 	lock_page(page);
2357 	if (!page->mapping) {
2358 		unlock_page(page);
2359 		page_cache_release(page);
2360 		goto retry;
2361 	}
2362 	if (PageUptodate(page)) {
2363 		unlock_page(page);
2364 		goto out;
2365 	}
2366 	err = filler(data, page);
2367 	if (err < 0) {
2368 		page_cache_release(page);
2369 		return ERR_PTR(err);
2370 	} else {
2371 		page = wait_on_page_read(page);
2372 		if (IS_ERR(page))
2373 			return page;
2374 	}
2375 out:
2376 	mark_page_accessed(page);
2377 	return page;
2378 }
2379 
2380 /**
2381  * read_cache_page - read into page cache, fill it if needed
2382  * @mapping:	the page's address_space
2383  * @index:	the page index
2384  * @filler:	function to perform the read
2385  * @data:	first arg to filler(data, page) function, often left as NULL
2386  *
2387  * Read into the page cache. If a page already exists, and PageUptodate() is
2388  * not set, try to fill the page and wait for it to become unlocked.
2389  *
2390  * If the page does not get brought uptodate, return -EIO.
2391  */
2392 struct page *read_cache_page(struct address_space *mapping,
2393 				pgoff_t index,
2394 				int (*filler)(void *, struct page *),
2395 				void *data)
2396 {
2397 	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2398 }
2399 EXPORT_SYMBOL(read_cache_page);
2400 
2401 /**
2402  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2403  * @mapping:	the page's address_space
2404  * @index:	the page index
2405  * @gfp:	the page allocator flags to use if allocating
2406  *
2407  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2408  * any new page allocations done using the specified allocation flags.
2409  *
2410  * If the page does not get brought uptodate, return -EIO.
2411  */
2412 struct page *read_cache_page_gfp(struct address_space *mapping,
2413 				pgoff_t index,
2414 				gfp_t gfp)
2415 {
2416 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2417 
2418 	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2419 }
2420 EXPORT_SYMBOL(read_cache_page_gfp);
2421 
2422 /*
2423  * Performs necessary checks before doing a write
2424  *
2425  * Can adjust writing position or amount of bytes to write.
2426  * Returns appropriate error code that caller should return or
2427  * zero in case that write should be allowed.
2428  */
2429 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2430 {
2431 	struct file *file = iocb->ki_filp;
2432 	struct inode *inode = file->f_mapping->host;
2433 	unsigned long limit = rlimit(RLIMIT_FSIZE);
2434 	loff_t pos;
2435 
2436 	if (!iov_iter_count(from))
2437 		return 0;
2438 
2439 	/* FIXME: this is for backwards compatibility with 2.4 */
2440 	if (iocb->ki_flags & IOCB_APPEND)
2441 		iocb->ki_pos = i_size_read(inode);
2442 
2443 	pos = iocb->ki_pos;
2444 
2445 	if (limit != RLIM_INFINITY) {
2446 		if (iocb->ki_pos >= limit) {
2447 			send_sig(SIGXFSZ, current, 0);
2448 			return -EFBIG;
2449 		}
2450 		iov_iter_truncate(from, limit - (unsigned long)pos);
2451 	}
2452 
2453 	/*
2454 	 * LFS rule
2455 	 */
2456 	if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2457 				!(file->f_flags & O_LARGEFILE))) {
2458 		if (pos >= MAX_NON_LFS)
2459 			return -EFBIG;
2460 		iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2461 	}
2462 
2463 	/*
2464 	 * Are we about to exceed the fs block limit ?
2465 	 *
2466 	 * If we have written data it becomes a short write.  If we have
2467 	 * exceeded without writing data we send a signal and return EFBIG.
2468 	 * Linus frestrict idea will clean these up nicely..
2469 	 */
2470 	if (unlikely(pos >= inode->i_sb->s_maxbytes))
2471 		return -EFBIG;
2472 
2473 	iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2474 	return iov_iter_count(from);
2475 }
2476 EXPORT_SYMBOL(generic_write_checks);
2477 
2478 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2479 				loff_t pos, unsigned len, unsigned flags,
2480 				struct page **pagep, void **fsdata)
2481 {
2482 	const struct address_space_operations *aops = mapping->a_ops;
2483 
2484 	return aops->write_begin(file, mapping, pos, len, flags,
2485 							pagep, fsdata);
2486 }
2487 EXPORT_SYMBOL(pagecache_write_begin);
2488 
2489 int pagecache_write_end(struct file *file, struct address_space *mapping,
2490 				loff_t pos, unsigned len, unsigned copied,
2491 				struct page *page, void *fsdata)
2492 {
2493 	const struct address_space_operations *aops = mapping->a_ops;
2494 
2495 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2496 }
2497 EXPORT_SYMBOL(pagecache_write_end);
2498 
2499 ssize_t
2500 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
2501 {
2502 	struct file	*file = iocb->ki_filp;
2503 	struct address_space *mapping = file->f_mapping;
2504 	struct inode	*inode = mapping->host;
2505 	ssize_t		written;
2506 	size_t		write_len;
2507 	pgoff_t		end;
2508 	struct iov_iter data;
2509 
2510 	write_len = iov_iter_count(from);
2511 	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2512 
2513 	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2514 	if (written)
2515 		goto out;
2516 
2517 	/*
2518 	 * After a write we want buffered reads to be sure to go to disk to get
2519 	 * the new data.  We invalidate clean cached page from the region we're
2520 	 * about to write.  We do this *before* the write so that we can return
2521 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2522 	 */
2523 	if (mapping->nrpages) {
2524 		written = invalidate_inode_pages2_range(mapping,
2525 					pos >> PAGE_CACHE_SHIFT, end);
2526 		/*
2527 		 * If a page can not be invalidated, return 0 to fall back
2528 		 * to buffered write.
2529 		 */
2530 		if (written) {
2531 			if (written == -EBUSY)
2532 				return 0;
2533 			goto out;
2534 		}
2535 	}
2536 
2537 	data = *from;
2538 	written = mapping->a_ops->direct_IO(iocb, &data, pos);
2539 
2540 	/*
2541 	 * Finally, try again to invalidate clean pages which might have been
2542 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2543 	 * if the source of the write was an mmap'ed region of the file
2544 	 * we're writing.  Either one is a pretty crazy thing to do,
2545 	 * so we don't support it 100%.  If this invalidation
2546 	 * fails, tough, the write still worked...
2547 	 */
2548 	if (mapping->nrpages) {
2549 		invalidate_inode_pages2_range(mapping,
2550 					      pos >> PAGE_CACHE_SHIFT, end);
2551 	}
2552 
2553 	if (written > 0) {
2554 		pos += written;
2555 		iov_iter_advance(from, written);
2556 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2557 			i_size_write(inode, pos);
2558 			mark_inode_dirty(inode);
2559 		}
2560 		iocb->ki_pos = pos;
2561 	}
2562 out:
2563 	return written;
2564 }
2565 EXPORT_SYMBOL(generic_file_direct_write);
2566 
2567 /*
2568  * Find or create a page at the given pagecache position. Return the locked
2569  * page. This function is specifically for buffered writes.
2570  */
2571 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2572 					pgoff_t index, unsigned flags)
2573 {
2574 	struct page *page;
2575 	int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2576 
2577 	if (flags & AOP_FLAG_NOFS)
2578 		fgp_flags |= FGP_NOFS;
2579 
2580 	page = pagecache_get_page(mapping, index, fgp_flags,
2581 			mapping_gfp_mask(mapping));
2582 	if (page)
2583 		wait_for_stable_page(page);
2584 
2585 	return page;
2586 }
2587 EXPORT_SYMBOL(grab_cache_page_write_begin);
2588 
2589 ssize_t generic_perform_write(struct file *file,
2590 				struct iov_iter *i, loff_t pos)
2591 {
2592 	struct address_space *mapping = file->f_mapping;
2593 	const struct address_space_operations *a_ops = mapping->a_ops;
2594 	long status = 0;
2595 	ssize_t written = 0;
2596 	unsigned int flags = 0;
2597 
2598 	/*
2599 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2600 	 */
2601 	if (!iter_is_iovec(i))
2602 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2603 
2604 	do {
2605 		struct page *page;
2606 		unsigned long offset;	/* Offset into pagecache page */
2607 		unsigned long bytes;	/* Bytes to write to page */
2608 		size_t copied;		/* Bytes copied from user */
2609 		void *fsdata;
2610 
2611 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2612 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2613 						iov_iter_count(i));
2614 
2615 again:
2616 		/*
2617 		 * Bring in the user page that we will copy from _first_.
2618 		 * Otherwise there's a nasty deadlock on copying from the
2619 		 * same page as we're writing to, without it being marked
2620 		 * up-to-date.
2621 		 *
2622 		 * Not only is this an optimisation, but it is also required
2623 		 * to check that the address is actually valid, when atomic
2624 		 * usercopies are used, below.
2625 		 */
2626 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2627 			status = -EFAULT;
2628 			break;
2629 		}
2630 
2631 		if (fatal_signal_pending(current)) {
2632 			status = -EINTR;
2633 			break;
2634 		}
2635 
2636 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2637 						&page, &fsdata);
2638 		if (unlikely(status < 0))
2639 			break;
2640 
2641 		if (mapping_writably_mapped(mapping))
2642 			flush_dcache_page(page);
2643 
2644 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2645 		flush_dcache_page(page);
2646 
2647 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2648 						page, fsdata);
2649 		if (unlikely(status < 0))
2650 			break;
2651 		copied = status;
2652 
2653 		cond_resched();
2654 
2655 		iov_iter_advance(i, copied);
2656 		if (unlikely(copied == 0)) {
2657 			/*
2658 			 * If we were unable to copy any data at all, we must
2659 			 * fall back to a single segment length write.
2660 			 *
2661 			 * If we didn't fallback here, we could livelock
2662 			 * because not all segments in the iov can be copied at
2663 			 * once without a pagefault.
2664 			 */
2665 			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2666 						iov_iter_single_seg_count(i));
2667 			goto again;
2668 		}
2669 		pos += copied;
2670 		written += copied;
2671 
2672 		balance_dirty_pages_ratelimited(mapping);
2673 	} while (iov_iter_count(i));
2674 
2675 	return written ? written : status;
2676 }
2677 EXPORT_SYMBOL(generic_perform_write);
2678 
2679 /**
2680  * __generic_file_write_iter - write data to a file
2681  * @iocb:	IO state structure (file, offset, etc.)
2682  * @from:	iov_iter with data to write
2683  *
2684  * This function does all the work needed for actually writing data to a
2685  * file. It does all basic checks, removes SUID from the file, updates
2686  * modification times and calls proper subroutines depending on whether we
2687  * do direct IO or a standard buffered write.
2688  *
2689  * It expects i_mutex to be grabbed unless we work on a block device or similar
2690  * object which does not need locking at all.
2691  *
2692  * This function does *not* take care of syncing data in case of O_SYNC write.
2693  * A caller has to handle it. This is mainly due to the fact that we want to
2694  * avoid syncing under i_mutex.
2695  */
2696 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2697 {
2698 	struct file *file = iocb->ki_filp;
2699 	struct address_space * mapping = file->f_mapping;
2700 	struct inode 	*inode = mapping->host;
2701 	ssize_t		written = 0;
2702 	ssize_t		err;
2703 	ssize_t		status;
2704 
2705 	/* We can write back this queue in page reclaim */
2706 	current->backing_dev_info = inode_to_bdi(inode);
2707 	err = file_remove_privs(file);
2708 	if (err)
2709 		goto out;
2710 
2711 	err = file_update_time(file);
2712 	if (err)
2713 		goto out;
2714 
2715 	if (iocb->ki_flags & IOCB_DIRECT) {
2716 		loff_t pos, endbyte;
2717 
2718 		written = generic_file_direct_write(iocb, from, iocb->ki_pos);
2719 		/*
2720 		 * If the write stopped short of completing, fall back to
2721 		 * buffered writes.  Some filesystems do this for writes to
2722 		 * holes, for example.  For DAX files, a buffered write will
2723 		 * not succeed (even if it did, DAX does not handle dirty
2724 		 * page-cache pages correctly).
2725 		 */
2726 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2727 			goto out;
2728 
2729 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
2730 		/*
2731 		 * If generic_perform_write() returned a synchronous error
2732 		 * then we want to return the number of bytes which were
2733 		 * direct-written, or the error code if that was zero.  Note
2734 		 * that this differs from normal direct-io semantics, which
2735 		 * will return -EFOO even if some bytes were written.
2736 		 */
2737 		if (unlikely(status < 0)) {
2738 			err = status;
2739 			goto out;
2740 		}
2741 		/*
2742 		 * We need to ensure that the page cache pages are written to
2743 		 * disk and invalidated to preserve the expected O_DIRECT
2744 		 * semantics.
2745 		 */
2746 		endbyte = pos + status - 1;
2747 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
2748 		if (err == 0) {
2749 			iocb->ki_pos = endbyte + 1;
2750 			written += status;
2751 			invalidate_mapping_pages(mapping,
2752 						 pos >> PAGE_CACHE_SHIFT,
2753 						 endbyte >> PAGE_CACHE_SHIFT);
2754 		} else {
2755 			/*
2756 			 * We don't know how much we wrote, so just return
2757 			 * the number of bytes which were direct-written
2758 			 */
2759 		}
2760 	} else {
2761 		written = generic_perform_write(file, from, iocb->ki_pos);
2762 		if (likely(written > 0))
2763 			iocb->ki_pos += written;
2764 	}
2765 out:
2766 	current->backing_dev_info = NULL;
2767 	return written ? written : err;
2768 }
2769 EXPORT_SYMBOL(__generic_file_write_iter);
2770 
2771 /**
2772  * generic_file_write_iter - write data to a file
2773  * @iocb:	IO state structure
2774  * @from:	iov_iter with data to write
2775  *
2776  * This is a wrapper around __generic_file_write_iter() to be used by most
2777  * filesystems. It takes care of syncing the file in case of O_SYNC file
2778  * and acquires i_mutex as needed.
2779  */
2780 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2781 {
2782 	struct file *file = iocb->ki_filp;
2783 	struct inode *inode = file->f_mapping->host;
2784 	ssize_t ret;
2785 
2786 	inode_lock(inode);
2787 	ret = generic_write_checks(iocb, from);
2788 	if (ret > 0)
2789 		ret = __generic_file_write_iter(iocb, from);
2790 	inode_unlock(inode);
2791 
2792 	if (ret > 0) {
2793 		ssize_t err;
2794 
2795 		err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2796 		if (err < 0)
2797 			ret = err;
2798 	}
2799 	return ret;
2800 }
2801 EXPORT_SYMBOL(generic_file_write_iter);
2802 
2803 /**
2804  * try_to_release_page() - release old fs-specific metadata on a page
2805  *
2806  * @page: the page which the kernel is trying to free
2807  * @gfp_mask: memory allocation flags (and I/O mode)
2808  *
2809  * The address_space is to try to release any data against the page
2810  * (presumably at page->private).  If the release was successful, return `1'.
2811  * Otherwise return zero.
2812  *
2813  * This may also be called if PG_fscache is set on a page, indicating that the
2814  * page is known to the local caching routines.
2815  *
2816  * The @gfp_mask argument specifies whether I/O may be performed to release
2817  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2818  *
2819  */
2820 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2821 {
2822 	struct address_space * const mapping = page->mapping;
2823 
2824 	BUG_ON(!PageLocked(page));
2825 	if (PageWriteback(page))
2826 		return 0;
2827 
2828 	if (mapping && mapping->a_ops->releasepage)
2829 		return mapping->a_ops->releasepage(page, gfp_mask);
2830 	return try_to_free_buffers(page);
2831 }
2832 
2833 EXPORT_SYMBOL(try_to_release_page);
2834