1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/filemap.c 4 * 5 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 7 8 /* 9 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differently, for example) 12 */ 13 #include <linux/export.h> 14 #include <linux/compiler.h> 15 #include <linux/dax.h> 16 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 19 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 22 #include <linux/mm.h> 23 #include <linux/swap.h> 24 #include <linux/mman.h> 25 #include <linux/pagemap.h> 26 #include <linux/file.h> 27 #include <linux/uio.h> 28 #include <linux/error-injection.h> 29 #include <linux/hash.h> 30 #include <linux/writeback.h> 31 #include <linux/backing-dev.h> 32 #include <linux/pagevec.h> 33 #include <linux/blkdev.h> 34 #include <linux/security.h> 35 #include <linux/cpuset.h> 36 #include <linux/hugetlb.h> 37 #include <linux/memcontrol.h> 38 #include <linux/cleancache.h> 39 #include <linux/shmem_fs.h> 40 #include <linux/rmap.h> 41 #include <linux/delayacct.h> 42 #include <linux/psi.h> 43 #include <linux/ramfs.h> 44 #include <linux/page_idle.h> 45 #include <asm/pgalloc.h> 46 #include <asm/tlbflush.h> 47 #include "internal.h" 48 49 #define CREATE_TRACE_POINTS 50 #include <trace/events/filemap.h> 51 52 /* 53 * FIXME: remove all knowledge of the buffer layer from the core VM 54 */ 55 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 56 57 #include <asm/mman.h> 58 59 /* 60 * Shared mappings implemented 30.11.1994. It's not fully working yet, 61 * though. 62 * 63 * Shared mappings now work. 15.8.1995 Bruno. 64 * 65 * finished 'unifying' the page and buffer cache and SMP-threaded the 66 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 67 * 68 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 69 */ 70 71 /* 72 * Lock ordering: 73 * 74 * ->i_mmap_rwsem (truncate_pagecache) 75 * ->private_lock (__free_pte->__set_page_dirty_buffers) 76 * ->swap_lock (exclusive_swap_page, others) 77 * ->i_pages lock 78 * 79 * ->i_mutex 80 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 81 * 82 * ->mmap_lock 83 * ->i_mmap_rwsem 84 * ->page_table_lock or pte_lock (various, mainly in memory.c) 85 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 86 * 87 * ->mmap_lock 88 * ->lock_page (access_process_vm) 89 * 90 * ->i_mutex (generic_perform_write) 91 * ->mmap_lock (fault_in_pages_readable->do_page_fault) 92 * 93 * bdi->wb.list_lock 94 * sb_lock (fs/fs-writeback.c) 95 * ->i_pages lock (__sync_single_inode) 96 * 97 * ->i_mmap_rwsem 98 * ->anon_vma.lock (vma_adjust) 99 * 100 * ->anon_vma.lock 101 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 102 * 103 * ->page_table_lock or pte_lock 104 * ->swap_lock (try_to_unmap_one) 105 * ->private_lock (try_to_unmap_one) 106 * ->i_pages lock (try_to_unmap_one) 107 * ->lruvec->lru_lock (follow_page->mark_page_accessed) 108 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page) 109 * ->private_lock (page_remove_rmap->set_page_dirty) 110 * ->i_pages lock (page_remove_rmap->set_page_dirty) 111 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 112 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 113 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) 114 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 115 * ->inode->i_lock (zap_pte_range->set_page_dirty) 116 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 117 * 118 * ->i_mmap_rwsem 119 * ->tasklist_lock (memory_failure, collect_procs_ao) 120 */ 121 122 static void page_cache_delete(struct address_space *mapping, 123 struct page *page, void *shadow) 124 { 125 XA_STATE(xas, &mapping->i_pages, page->index); 126 unsigned int nr = 1; 127 128 mapping_set_update(&xas, mapping); 129 130 /* hugetlb pages are represented by a single entry in the xarray */ 131 if (!PageHuge(page)) { 132 xas_set_order(&xas, page->index, compound_order(page)); 133 nr = compound_nr(page); 134 } 135 136 VM_BUG_ON_PAGE(!PageLocked(page), page); 137 VM_BUG_ON_PAGE(PageTail(page), page); 138 VM_BUG_ON_PAGE(nr != 1 && shadow, page); 139 140 xas_store(&xas, shadow); 141 xas_init_marks(&xas); 142 143 page->mapping = NULL; 144 /* Leave page->index set: truncation lookup relies upon it */ 145 146 if (shadow) { 147 mapping->nrexceptional += nr; 148 /* 149 * Make sure the nrexceptional update is committed before 150 * the nrpages update so that final truncate racing 151 * with reclaim does not see both counters 0 at the 152 * same time and miss a shadow entry. 153 */ 154 smp_wmb(); 155 } 156 mapping->nrpages -= nr; 157 } 158 159 static void unaccount_page_cache_page(struct address_space *mapping, 160 struct page *page) 161 { 162 int nr; 163 164 /* 165 * if we're uptodate, flush out into the cleancache, otherwise 166 * invalidate any existing cleancache entries. We can't leave 167 * stale data around in the cleancache once our page is gone 168 */ 169 if (PageUptodate(page) && PageMappedToDisk(page)) 170 cleancache_put_page(page); 171 else 172 cleancache_invalidate_page(mapping, page); 173 174 VM_BUG_ON_PAGE(PageTail(page), page); 175 VM_BUG_ON_PAGE(page_mapped(page), page); 176 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) { 177 int mapcount; 178 179 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 180 current->comm, page_to_pfn(page)); 181 dump_page(page, "still mapped when deleted"); 182 dump_stack(); 183 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 184 185 mapcount = page_mapcount(page); 186 if (mapping_exiting(mapping) && 187 page_count(page) >= mapcount + 2) { 188 /* 189 * All vmas have already been torn down, so it's 190 * a good bet that actually the page is unmapped, 191 * and we'd prefer not to leak it: if we're wrong, 192 * some other bad page check should catch it later. 193 */ 194 page_mapcount_reset(page); 195 page_ref_sub(page, mapcount); 196 } 197 } 198 199 /* hugetlb pages do not participate in page cache accounting. */ 200 if (PageHuge(page)) 201 return; 202 203 nr = thp_nr_pages(page); 204 205 __mod_lruvec_page_state(page, NR_FILE_PAGES, -nr); 206 if (PageSwapBacked(page)) { 207 __mod_lruvec_page_state(page, NR_SHMEM, -nr); 208 if (PageTransHuge(page)) 209 __mod_lruvec_page_state(page, NR_SHMEM_THPS, -nr); 210 } else if (PageTransHuge(page)) { 211 __mod_lruvec_page_state(page, NR_FILE_THPS, -nr); 212 filemap_nr_thps_dec(mapping); 213 } 214 215 /* 216 * At this point page must be either written or cleaned by 217 * truncate. Dirty page here signals a bug and loss of 218 * unwritten data. 219 * 220 * This fixes dirty accounting after removing the page entirely 221 * but leaves PageDirty set: it has no effect for truncated 222 * page and anyway will be cleared before returning page into 223 * buddy allocator. 224 */ 225 if (WARN_ON_ONCE(PageDirty(page))) 226 account_page_cleaned(page, mapping, inode_to_wb(mapping->host)); 227 } 228 229 /* 230 * Delete a page from the page cache and free it. Caller has to make 231 * sure the page is locked and that nobody else uses it - or that usage 232 * is safe. The caller must hold the i_pages lock. 233 */ 234 void __delete_from_page_cache(struct page *page, void *shadow) 235 { 236 struct address_space *mapping = page->mapping; 237 238 trace_mm_filemap_delete_from_page_cache(page); 239 240 unaccount_page_cache_page(mapping, page); 241 page_cache_delete(mapping, page, shadow); 242 } 243 244 static void page_cache_free_page(struct address_space *mapping, 245 struct page *page) 246 { 247 void (*freepage)(struct page *); 248 249 freepage = mapping->a_ops->freepage; 250 if (freepage) 251 freepage(page); 252 253 if (PageTransHuge(page) && !PageHuge(page)) { 254 page_ref_sub(page, thp_nr_pages(page)); 255 VM_BUG_ON_PAGE(page_count(page) <= 0, page); 256 } else { 257 put_page(page); 258 } 259 } 260 261 /** 262 * delete_from_page_cache - delete page from page cache 263 * @page: the page which the kernel is trying to remove from page cache 264 * 265 * This must be called only on pages that have been verified to be in the page 266 * cache and locked. It will never put the page into the free list, the caller 267 * has a reference on the page. 268 */ 269 void delete_from_page_cache(struct page *page) 270 { 271 struct address_space *mapping = page_mapping(page); 272 unsigned long flags; 273 274 BUG_ON(!PageLocked(page)); 275 xa_lock_irqsave(&mapping->i_pages, flags); 276 __delete_from_page_cache(page, NULL); 277 xa_unlock_irqrestore(&mapping->i_pages, flags); 278 279 page_cache_free_page(mapping, page); 280 } 281 EXPORT_SYMBOL(delete_from_page_cache); 282 283 /* 284 * page_cache_delete_batch - delete several pages from page cache 285 * @mapping: the mapping to which pages belong 286 * @pvec: pagevec with pages to delete 287 * 288 * The function walks over mapping->i_pages and removes pages passed in @pvec 289 * from the mapping. The function expects @pvec to be sorted by page index 290 * and is optimised for it to be dense. 291 * It tolerates holes in @pvec (mapping entries at those indices are not 292 * modified). The function expects only THP head pages to be present in the 293 * @pvec. 294 * 295 * The function expects the i_pages lock to be held. 296 */ 297 static void page_cache_delete_batch(struct address_space *mapping, 298 struct pagevec *pvec) 299 { 300 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index); 301 int total_pages = 0; 302 int i = 0; 303 struct page *page; 304 305 mapping_set_update(&xas, mapping); 306 xas_for_each(&xas, page, ULONG_MAX) { 307 if (i >= pagevec_count(pvec)) 308 break; 309 310 /* A swap/dax/shadow entry got inserted? Skip it. */ 311 if (xa_is_value(page)) 312 continue; 313 /* 314 * A page got inserted in our range? Skip it. We have our 315 * pages locked so they are protected from being removed. 316 * If we see a page whose index is higher than ours, it 317 * means our page has been removed, which shouldn't be 318 * possible because we're holding the PageLock. 319 */ 320 if (page != pvec->pages[i]) { 321 VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index, 322 page); 323 continue; 324 } 325 326 WARN_ON_ONCE(!PageLocked(page)); 327 328 if (page->index == xas.xa_index) 329 page->mapping = NULL; 330 /* Leave page->index set: truncation lookup relies on it */ 331 332 /* 333 * Move to the next page in the vector if this is a regular 334 * page or the index is of the last sub-page of this compound 335 * page. 336 */ 337 if (page->index + compound_nr(page) - 1 == xas.xa_index) 338 i++; 339 xas_store(&xas, NULL); 340 total_pages++; 341 } 342 mapping->nrpages -= total_pages; 343 } 344 345 void delete_from_page_cache_batch(struct address_space *mapping, 346 struct pagevec *pvec) 347 { 348 int i; 349 unsigned long flags; 350 351 if (!pagevec_count(pvec)) 352 return; 353 354 xa_lock_irqsave(&mapping->i_pages, flags); 355 for (i = 0; i < pagevec_count(pvec); i++) { 356 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]); 357 358 unaccount_page_cache_page(mapping, pvec->pages[i]); 359 } 360 page_cache_delete_batch(mapping, pvec); 361 xa_unlock_irqrestore(&mapping->i_pages, flags); 362 363 for (i = 0; i < pagevec_count(pvec); i++) 364 page_cache_free_page(mapping, pvec->pages[i]); 365 } 366 367 int filemap_check_errors(struct address_space *mapping) 368 { 369 int ret = 0; 370 /* Check for outstanding write errors */ 371 if (test_bit(AS_ENOSPC, &mapping->flags) && 372 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 373 ret = -ENOSPC; 374 if (test_bit(AS_EIO, &mapping->flags) && 375 test_and_clear_bit(AS_EIO, &mapping->flags)) 376 ret = -EIO; 377 return ret; 378 } 379 EXPORT_SYMBOL(filemap_check_errors); 380 381 static int filemap_check_and_keep_errors(struct address_space *mapping) 382 { 383 /* Check for outstanding write errors */ 384 if (test_bit(AS_EIO, &mapping->flags)) 385 return -EIO; 386 if (test_bit(AS_ENOSPC, &mapping->flags)) 387 return -ENOSPC; 388 return 0; 389 } 390 391 /** 392 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 393 * @mapping: address space structure to write 394 * @start: offset in bytes where the range starts 395 * @end: offset in bytes where the range ends (inclusive) 396 * @sync_mode: enable synchronous operation 397 * 398 * Start writeback against all of a mapping's dirty pages that lie 399 * within the byte offsets <start, end> inclusive. 400 * 401 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 402 * opposed to a regular memory cleansing writeback. The difference between 403 * these two operations is that if a dirty page/buffer is encountered, it must 404 * be waited upon, and not just skipped over. 405 * 406 * Return: %0 on success, negative error code otherwise. 407 */ 408 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 409 loff_t end, int sync_mode) 410 { 411 int ret; 412 struct writeback_control wbc = { 413 .sync_mode = sync_mode, 414 .nr_to_write = LONG_MAX, 415 .range_start = start, 416 .range_end = end, 417 }; 418 419 if (!mapping_can_writeback(mapping) || 420 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 421 return 0; 422 423 wbc_attach_fdatawrite_inode(&wbc, mapping->host); 424 ret = do_writepages(mapping, &wbc); 425 wbc_detach_inode(&wbc); 426 return ret; 427 } 428 429 static inline int __filemap_fdatawrite(struct address_space *mapping, 430 int sync_mode) 431 { 432 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 433 } 434 435 int filemap_fdatawrite(struct address_space *mapping) 436 { 437 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 438 } 439 EXPORT_SYMBOL(filemap_fdatawrite); 440 441 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 442 loff_t end) 443 { 444 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 445 } 446 EXPORT_SYMBOL(filemap_fdatawrite_range); 447 448 /** 449 * filemap_flush - mostly a non-blocking flush 450 * @mapping: target address_space 451 * 452 * This is a mostly non-blocking flush. Not suitable for data-integrity 453 * purposes - I/O may not be started against all dirty pages. 454 * 455 * Return: %0 on success, negative error code otherwise. 456 */ 457 int filemap_flush(struct address_space *mapping) 458 { 459 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 460 } 461 EXPORT_SYMBOL(filemap_flush); 462 463 /** 464 * filemap_range_has_page - check if a page exists in range. 465 * @mapping: address space within which to check 466 * @start_byte: offset in bytes where the range starts 467 * @end_byte: offset in bytes where the range ends (inclusive) 468 * 469 * Find at least one page in the range supplied, usually used to check if 470 * direct writing in this range will trigger a writeback. 471 * 472 * Return: %true if at least one page exists in the specified range, 473 * %false otherwise. 474 */ 475 bool filemap_range_has_page(struct address_space *mapping, 476 loff_t start_byte, loff_t end_byte) 477 { 478 struct page *page; 479 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 480 pgoff_t max = end_byte >> PAGE_SHIFT; 481 482 if (end_byte < start_byte) 483 return false; 484 485 rcu_read_lock(); 486 for (;;) { 487 page = xas_find(&xas, max); 488 if (xas_retry(&xas, page)) 489 continue; 490 /* Shadow entries don't count */ 491 if (xa_is_value(page)) 492 continue; 493 /* 494 * We don't need to try to pin this page; we're about to 495 * release the RCU lock anyway. It is enough to know that 496 * there was a page here recently. 497 */ 498 break; 499 } 500 rcu_read_unlock(); 501 502 return page != NULL; 503 } 504 EXPORT_SYMBOL(filemap_range_has_page); 505 506 static void __filemap_fdatawait_range(struct address_space *mapping, 507 loff_t start_byte, loff_t end_byte) 508 { 509 pgoff_t index = start_byte >> PAGE_SHIFT; 510 pgoff_t end = end_byte >> PAGE_SHIFT; 511 struct pagevec pvec; 512 int nr_pages; 513 514 if (end_byte < start_byte) 515 return; 516 517 pagevec_init(&pvec); 518 while (index <= end) { 519 unsigned i; 520 521 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, 522 end, PAGECACHE_TAG_WRITEBACK); 523 if (!nr_pages) 524 break; 525 526 for (i = 0; i < nr_pages; i++) { 527 struct page *page = pvec.pages[i]; 528 529 wait_on_page_writeback(page); 530 ClearPageError(page); 531 } 532 pagevec_release(&pvec); 533 cond_resched(); 534 } 535 } 536 537 /** 538 * filemap_fdatawait_range - wait for writeback to complete 539 * @mapping: address space structure to wait for 540 * @start_byte: offset in bytes where the range starts 541 * @end_byte: offset in bytes where the range ends (inclusive) 542 * 543 * Walk the list of under-writeback pages of the given address space 544 * in the given range and wait for all of them. Check error status of 545 * the address space and return it. 546 * 547 * Since the error status of the address space is cleared by this function, 548 * callers are responsible for checking the return value and handling and/or 549 * reporting the error. 550 * 551 * Return: error status of the address space. 552 */ 553 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 554 loff_t end_byte) 555 { 556 __filemap_fdatawait_range(mapping, start_byte, end_byte); 557 return filemap_check_errors(mapping); 558 } 559 EXPORT_SYMBOL(filemap_fdatawait_range); 560 561 /** 562 * filemap_fdatawait_range_keep_errors - wait for writeback to complete 563 * @mapping: address space structure to wait for 564 * @start_byte: offset in bytes where the range starts 565 * @end_byte: offset in bytes where the range ends (inclusive) 566 * 567 * Walk the list of under-writeback pages of the given address space in the 568 * given range and wait for all of them. Unlike filemap_fdatawait_range(), 569 * this function does not clear error status of the address space. 570 * 571 * Use this function if callers don't handle errors themselves. Expected 572 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 573 * fsfreeze(8) 574 */ 575 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 576 loff_t start_byte, loff_t end_byte) 577 { 578 __filemap_fdatawait_range(mapping, start_byte, end_byte); 579 return filemap_check_and_keep_errors(mapping); 580 } 581 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); 582 583 /** 584 * file_fdatawait_range - wait for writeback to complete 585 * @file: file pointing to address space structure to wait for 586 * @start_byte: offset in bytes where the range starts 587 * @end_byte: offset in bytes where the range ends (inclusive) 588 * 589 * Walk the list of under-writeback pages of the address space that file 590 * refers to, in the given range and wait for all of them. Check error 591 * status of the address space vs. the file->f_wb_err cursor and return it. 592 * 593 * Since the error status of the file is advanced by this function, 594 * callers are responsible for checking the return value and handling and/or 595 * reporting the error. 596 * 597 * Return: error status of the address space vs. the file->f_wb_err cursor. 598 */ 599 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 600 { 601 struct address_space *mapping = file->f_mapping; 602 603 __filemap_fdatawait_range(mapping, start_byte, end_byte); 604 return file_check_and_advance_wb_err(file); 605 } 606 EXPORT_SYMBOL(file_fdatawait_range); 607 608 /** 609 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 610 * @mapping: address space structure to wait for 611 * 612 * Walk the list of under-writeback pages of the given address space 613 * and wait for all of them. Unlike filemap_fdatawait(), this function 614 * does not clear error status of the address space. 615 * 616 * Use this function if callers don't handle errors themselves. Expected 617 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 618 * fsfreeze(8) 619 * 620 * Return: error status of the address space. 621 */ 622 int filemap_fdatawait_keep_errors(struct address_space *mapping) 623 { 624 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 625 return filemap_check_and_keep_errors(mapping); 626 } 627 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 628 629 /* Returns true if writeback might be needed or already in progress. */ 630 static bool mapping_needs_writeback(struct address_space *mapping) 631 { 632 if (dax_mapping(mapping)) 633 return mapping->nrexceptional; 634 635 return mapping->nrpages; 636 } 637 638 /** 639 * filemap_range_needs_writeback - check if range potentially needs writeback 640 * @mapping: address space within which to check 641 * @start_byte: offset in bytes where the range starts 642 * @end_byte: offset in bytes where the range ends (inclusive) 643 * 644 * Find at least one page in the range supplied, usually used to check if 645 * direct writing in this range will trigger a writeback. Used by O_DIRECT 646 * read/write with IOCB_NOWAIT, to see if the caller needs to do 647 * filemap_write_and_wait_range() before proceeding. 648 * 649 * Return: %true if the caller should do filemap_write_and_wait_range() before 650 * doing O_DIRECT to a page in this range, %false otherwise. 651 */ 652 bool filemap_range_needs_writeback(struct address_space *mapping, 653 loff_t start_byte, loff_t end_byte) 654 { 655 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 656 pgoff_t max = end_byte >> PAGE_SHIFT; 657 struct page *page; 658 659 if (!mapping_needs_writeback(mapping)) 660 return false; 661 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 662 !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) 663 return false; 664 if (end_byte < start_byte) 665 return false; 666 667 rcu_read_lock(); 668 xas_for_each(&xas, page, max) { 669 if (xas_retry(&xas, page)) 670 continue; 671 if (xa_is_value(page)) 672 continue; 673 if (PageDirty(page) || PageLocked(page) || PageWriteback(page)) 674 break; 675 } 676 rcu_read_unlock(); 677 return page != NULL; 678 } 679 EXPORT_SYMBOL_GPL(filemap_range_needs_writeback); 680 681 /** 682 * filemap_write_and_wait_range - write out & wait on a file range 683 * @mapping: the address_space for the pages 684 * @lstart: offset in bytes where the range starts 685 * @lend: offset in bytes where the range ends (inclusive) 686 * 687 * Write out and wait upon file offsets lstart->lend, inclusive. 688 * 689 * Note that @lend is inclusive (describes the last byte to be written) so 690 * that this function can be used to write to the very end-of-file (end = -1). 691 * 692 * Return: error status of the address space. 693 */ 694 int filemap_write_and_wait_range(struct address_space *mapping, 695 loff_t lstart, loff_t lend) 696 { 697 int err = 0; 698 699 if (mapping_needs_writeback(mapping)) { 700 err = __filemap_fdatawrite_range(mapping, lstart, lend, 701 WB_SYNC_ALL); 702 /* 703 * Even if the above returned error, the pages may be 704 * written partially (e.g. -ENOSPC), so we wait for it. 705 * But the -EIO is special case, it may indicate the worst 706 * thing (e.g. bug) happened, so we avoid waiting for it. 707 */ 708 if (err != -EIO) { 709 int err2 = filemap_fdatawait_range(mapping, 710 lstart, lend); 711 if (!err) 712 err = err2; 713 } else { 714 /* Clear any previously stored errors */ 715 filemap_check_errors(mapping); 716 } 717 } else { 718 err = filemap_check_errors(mapping); 719 } 720 return err; 721 } 722 EXPORT_SYMBOL(filemap_write_and_wait_range); 723 724 void __filemap_set_wb_err(struct address_space *mapping, int err) 725 { 726 errseq_t eseq = errseq_set(&mapping->wb_err, err); 727 728 trace_filemap_set_wb_err(mapping, eseq); 729 } 730 EXPORT_SYMBOL(__filemap_set_wb_err); 731 732 /** 733 * file_check_and_advance_wb_err - report wb error (if any) that was previously 734 * and advance wb_err to current one 735 * @file: struct file on which the error is being reported 736 * 737 * When userland calls fsync (or something like nfsd does the equivalent), we 738 * want to report any writeback errors that occurred since the last fsync (or 739 * since the file was opened if there haven't been any). 740 * 741 * Grab the wb_err from the mapping. If it matches what we have in the file, 742 * then just quickly return 0. The file is all caught up. 743 * 744 * If it doesn't match, then take the mapping value, set the "seen" flag in 745 * it and try to swap it into place. If it works, or another task beat us 746 * to it with the new value, then update the f_wb_err and return the error 747 * portion. The error at this point must be reported via proper channels 748 * (a'la fsync, or NFS COMMIT operation, etc.). 749 * 750 * While we handle mapping->wb_err with atomic operations, the f_wb_err 751 * value is protected by the f_lock since we must ensure that it reflects 752 * the latest value swapped in for this file descriptor. 753 * 754 * Return: %0 on success, negative error code otherwise. 755 */ 756 int file_check_and_advance_wb_err(struct file *file) 757 { 758 int err = 0; 759 errseq_t old = READ_ONCE(file->f_wb_err); 760 struct address_space *mapping = file->f_mapping; 761 762 /* Locklessly handle the common case where nothing has changed */ 763 if (errseq_check(&mapping->wb_err, old)) { 764 /* Something changed, must use slow path */ 765 spin_lock(&file->f_lock); 766 old = file->f_wb_err; 767 err = errseq_check_and_advance(&mapping->wb_err, 768 &file->f_wb_err); 769 trace_file_check_and_advance_wb_err(file, old); 770 spin_unlock(&file->f_lock); 771 } 772 773 /* 774 * We're mostly using this function as a drop in replacement for 775 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 776 * that the legacy code would have had on these flags. 777 */ 778 clear_bit(AS_EIO, &mapping->flags); 779 clear_bit(AS_ENOSPC, &mapping->flags); 780 return err; 781 } 782 EXPORT_SYMBOL(file_check_and_advance_wb_err); 783 784 /** 785 * file_write_and_wait_range - write out & wait on a file range 786 * @file: file pointing to address_space with pages 787 * @lstart: offset in bytes where the range starts 788 * @lend: offset in bytes where the range ends (inclusive) 789 * 790 * Write out and wait upon file offsets lstart->lend, inclusive. 791 * 792 * Note that @lend is inclusive (describes the last byte to be written) so 793 * that this function can be used to write to the very end-of-file (end = -1). 794 * 795 * After writing out and waiting on the data, we check and advance the 796 * f_wb_err cursor to the latest value, and return any errors detected there. 797 * 798 * Return: %0 on success, negative error code otherwise. 799 */ 800 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 801 { 802 int err = 0, err2; 803 struct address_space *mapping = file->f_mapping; 804 805 if (mapping_needs_writeback(mapping)) { 806 err = __filemap_fdatawrite_range(mapping, lstart, lend, 807 WB_SYNC_ALL); 808 /* See comment of filemap_write_and_wait() */ 809 if (err != -EIO) 810 __filemap_fdatawait_range(mapping, lstart, lend); 811 } 812 err2 = file_check_and_advance_wb_err(file); 813 if (!err) 814 err = err2; 815 return err; 816 } 817 EXPORT_SYMBOL(file_write_and_wait_range); 818 819 /** 820 * replace_page_cache_page - replace a pagecache page with a new one 821 * @old: page to be replaced 822 * @new: page to replace with 823 * 824 * This function replaces a page in the pagecache with a new one. On 825 * success it acquires the pagecache reference for the new page and 826 * drops it for the old page. Both the old and new pages must be 827 * locked. This function does not add the new page to the LRU, the 828 * caller must do that. 829 * 830 * The remove + add is atomic. This function cannot fail. 831 */ 832 void replace_page_cache_page(struct page *old, struct page *new) 833 { 834 struct address_space *mapping = old->mapping; 835 void (*freepage)(struct page *) = mapping->a_ops->freepage; 836 pgoff_t offset = old->index; 837 XA_STATE(xas, &mapping->i_pages, offset); 838 unsigned long flags; 839 840 VM_BUG_ON_PAGE(!PageLocked(old), old); 841 VM_BUG_ON_PAGE(!PageLocked(new), new); 842 VM_BUG_ON_PAGE(new->mapping, new); 843 844 get_page(new); 845 new->mapping = mapping; 846 new->index = offset; 847 848 mem_cgroup_migrate(old, new); 849 850 xas_lock_irqsave(&xas, flags); 851 xas_store(&xas, new); 852 853 old->mapping = NULL; 854 /* hugetlb pages do not participate in page cache accounting. */ 855 if (!PageHuge(old)) 856 __dec_lruvec_page_state(old, NR_FILE_PAGES); 857 if (!PageHuge(new)) 858 __inc_lruvec_page_state(new, NR_FILE_PAGES); 859 if (PageSwapBacked(old)) 860 __dec_lruvec_page_state(old, NR_SHMEM); 861 if (PageSwapBacked(new)) 862 __inc_lruvec_page_state(new, NR_SHMEM); 863 xas_unlock_irqrestore(&xas, flags); 864 if (freepage) 865 freepage(old); 866 put_page(old); 867 } 868 EXPORT_SYMBOL_GPL(replace_page_cache_page); 869 870 noinline int __add_to_page_cache_locked(struct page *page, 871 struct address_space *mapping, 872 pgoff_t offset, gfp_t gfp, 873 void **shadowp) 874 { 875 XA_STATE(xas, &mapping->i_pages, offset); 876 int huge = PageHuge(page); 877 int error; 878 bool charged = false; 879 880 VM_BUG_ON_PAGE(!PageLocked(page), page); 881 VM_BUG_ON_PAGE(PageSwapBacked(page), page); 882 mapping_set_update(&xas, mapping); 883 884 get_page(page); 885 page->mapping = mapping; 886 page->index = offset; 887 888 if (!huge) { 889 error = mem_cgroup_charge(page, current->mm, gfp); 890 if (error) 891 goto error; 892 charged = true; 893 } 894 895 gfp &= GFP_RECLAIM_MASK; 896 897 do { 898 unsigned int order = xa_get_order(xas.xa, xas.xa_index); 899 void *entry, *old = NULL; 900 901 if (order > thp_order(page)) 902 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index), 903 order, gfp); 904 xas_lock_irq(&xas); 905 xas_for_each_conflict(&xas, entry) { 906 old = entry; 907 if (!xa_is_value(entry)) { 908 xas_set_err(&xas, -EEXIST); 909 goto unlock; 910 } 911 } 912 913 if (old) { 914 if (shadowp) 915 *shadowp = old; 916 /* entry may have been split before we acquired lock */ 917 order = xa_get_order(xas.xa, xas.xa_index); 918 if (order > thp_order(page)) { 919 xas_split(&xas, old, order); 920 xas_reset(&xas); 921 } 922 } 923 924 xas_store(&xas, page); 925 if (xas_error(&xas)) 926 goto unlock; 927 928 if (old) 929 mapping->nrexceptional--; 930 mapping->nrpages++; 931 932 /* hugetlb pages do not participate in page cache accounting */ 933 if (!huge) 934 __inc_lruvec_page_state(page, NR_FILE_PAGES); 935 unlock: 936 xas_unlock_irq(&xas); 937 } while (xas_nomem(&xas, gfp)); 938 939 if (xas_error(&xas)) { 940 error = xas_error(&xas); 941 if (charged) 942 mem_cgroup_uncharge(page); 943 goto error; 944 } 945 946 trace_mm_filemap_add_to_page_cache(page); 947 return 0; 948 error: 949 page->mapping = NULL; 950 /* Leave page->index set: truncation relies upon it */ 951 put_page(page); 952 return error; 953 } 954 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO); 955 956 /** 957 * add_to_page_cache_locked - add a locked page to the pagecache 958 * @page: page to add 959 * @mapping: the page's address_space 960 * @offset: page index 961 * @gfp_mask: page allocation mode 962 * 963 * This function is used to add a page to the pagecache. It must be locked. 964 * This function does not add the page to the LRU. The caller must do that. 965 * 966 * Return: %0 on success, negative error code otherwise. 967 */ 968 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 969 pgoff_t offset, gfp_t gfp_mask) 970 { 971 return __add_to_page_cache_locked(page, mapping, offset, 972 gfp_mask, NULL); 973 } 974 EXPORT_SYMBOL(add_to_page_cache_locked); 975 976 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 977 pgoff_t offset, gfp_t gfp_mask) 978 { 979 void *shadow = NULL; 980 int ret; 981 982 __SetPageLocked(page); 983 ret = __add_to_page_cache_locked(page, mapping, offset, 984 gfp_mask, &shadow); 985 if (unlikely(ret)) 986 __ClearPageLocked(page); 987 else { 988 /* 989 * The page might have been evicted from cache only 990 * recently, in which case it should be activated like 991 * any other repeatedly accessed page. 992 * The exception is pages getting rewritten; evicting other 993 * data from the working set, only to cache data that will 994 * get overwritten with something else, is a waste of memory. 995 */ 996 WARN_ON_ONCE(PageActive(page)); 997 if (!(gfp_mask & __GFP_WRITE) && shadow) 998 workingset_refault(page, shadow); 999 lru_cache_add(page); 1000 } 1001 return ret; 1002 } 1003 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 1004 1005 #ifdef CONFIG_NUMA 1006 struct page *__page_cache_alloc(gfp_t gfp) 1007 { 1008 int n; 1009 struct page *page; 1010 1011 if (cpuset_do_page_mem_spread()) { 1012 unsigned int cpuset_mems_cookie; 1013 do { 1014 cpuset_mems_cookie = read_mems_allowed_begin(); 1015 n = cpuset_mem_spread_node(); 1016 page = __alloc_pages_node(n, gfp, 0); 1017 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie)); 1018 1019 return page; 1020 } 1021 return alloc_pages(gfp, 0); 1022 } 1023 EXPORT_SYMBOL(__page_cache_alloc); 1024 #endif 1025 1026 /* 1027 * In order to wait for pages to become available there must be 1028 * waitqueues associated with pages. By using a hash table of 1029 * waitqueues where the bucket discipline is to maintain all 1030 * waiters on the same queue and wake all when any of the pages 1031 * become available, and for the woken contexts to check to be 1032 * sure the appropriate page became available, this saves space 1033 * at a cost of "thundering herd" phenomena during rare hash 1034 * collisions. 1035 */ 1036 #define PAGE_WAIT_TABLE_BITS 8 1037 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 1038 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 1039 1040 static wait_queue_head_t *page_waitqueue(struct page *page) 1041 { 1042 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)]; 1043 } 1044 1045 void __init pagecache_init(void) 1046 { 1047 int i; 1048 1049 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 1050 init_waitqueue_head(&page_wait_table[i]); 1051 1052 page_writeback_init(); 1053 } 1054 1055 /* 1056 * The page wait code treats the "wait->flags" somewhat unusually, because 1057 * we have multiple different kinds of waits, not just the usual "exclusive" 1058 * one. 1059 * 1060 * We have: 1061 * 1062 * (a) no special bits set: 1063 * 1064 * We're just waiting for the bit to be released, and when a waker 1065 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up, 1066 * and remove it from the wait queue. 1067 * 1068 * Simple and straightforward. 1069 * 1070 * (b) WQ_FLAG_EXCLUSIVE: 1071 * 1072 * The waiter is waiting to get the lock, and only one waiter should 1073 * be woken up to avoid any thundering herd behavior. We'll set the 1074 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue. 1075 * 1076 * This is the traditional exclusive wait. 1077 * 1078 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM: 1079 * 1080 * The waiter is waiting to get the bit, and additionally wants the 1081 * lock to be transferred to it for fair lock behavior. If the lock 1082 * cannot be taken, we stop walking the wait queue without waking 1083 * the waiter. 1084 * 1085 * This is the "fair lock handoff" case, and in addition to setting 1086 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see 1087 * that it now has the lock. 1088 */ 1089 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 1090 { 1091 unsigned int flags; 1092 struct wait_page_key *key = arg; 1093 struct wait_page_queue *wait_page 1094 = container_of(wait, struct wait_page_queue, wait); 1095 1096 if (!wake_page_match(wait_page, key)) 1097 return 0; 1098 1099 /* 1100 * If it's a lock handoff wait, we get the bit for it, and 1101 * stop walking (and do not wake it up) if we can't. 1102 */ 1103 flags = wait->flags; 1104 if (flags & WQ_FLAG_EXCLUSIVE) { 1105 if (test_bit(key->bit_nr, &key->page->flags)) 1106 return -1; 1107 if (flags & WQ_FLAG_CUSTOM) { 1108 if (test_and_set_bit(key->bit_nr, &key->page->flags)) 1109 return -1; 1110 flags |= WQ_FLAG_DONE; 1111 } 1112 } 1113 1114 /* 1115 * We are holding the wait-queue lock, but the waiter that 1116 * is waiting for this will be checking the flags without 1117 * any locking. 1118 * 1119 * So update the flags atomically, and wake up the waiter 1120 * afterwards to avoid any races. This store-release pairs 1121 * with the load-acquire in wait_on_page_bit_common(). 1122 */ 1123 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN); 1124 wake_up_state(wait->private, mode); 1125 1126 /* 1127 * Ok, we have successfully done what we're waiting for, 1128 * and we can unconditionally remove the wait entry. 1129 * 1130 * Note that this pairs with the "finish_wait()" in the 1131 * waiter, and has to be the absolute last thing we do. 1132 * After this list_del_init(&wait->entry) the wait entry 1133 * might be de-allocated and the process might even have 1134 * exited. 1135 */ 1136 list_del_init_careful(&wait->entry); 1137 return (flags & WQ_FLAG_EXCLUSIVE) != 0; 1138 } 1139 1140 static void wake_up_page_bit(struct page *page, int bit_nr) 1141 { 1142 wait_queue_head_t *q = page_waitqueue(page); 1143 struct wait_page_key key; 1144 unsigned long flags; 1145 wait_queue_entry_t bookmark; 1146 1147 key.page = page; 1148 key.bit_nr = bit_nr; 1149 key.page_match = 0; 1150 1151 bookmark.flags = 0; 1152 bookmark.private = NULL; 1153 bookmark.func = NULL; 1154 INIT_LIST_HEAD(&bookmark.entry); 1155 1156 spin_lock_irqsave(&q->lock, flags); 1157 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1158 1159 while (bookmark.flags & WQ_FLAG_BOOKMARK) { 1160 /* 1161 * Take a breather from holding the lock, 1162 * allow pages that finish wake up asynchronously 1163 * to acquire the lock and remove themselves 1164 * from wait queue 1165 */ 1166 spin_unlock_irqrestore(&q->lock, flags); 1167 cpu_relax(); 1168 spin_lock_irqsave(&q->lock, flags); 1169 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1170 } 1171 1172 /* 1173 * It is possible for other pages to have collided on the waitqueue 1174 * hash, so in that case check for a page match. That prevents a long- 1175 * term waiter 1176 * 1177 * It is still possible to miss a case here, when we woke page waiters 1178 * and removed them from the waitqueue, but there are still other 1179 * page waiters. 1180 */ 1181 if (!waitqueue_active(q) || !key.page_match) { 1182 ClearPageWaiters(page); 1183 /* 1184 * It's possible to miss clearing Waiters here, when we woke 1185 * our page waiters, but the hashed waitqueue has waiters for 1186 * other pages on it. 1187 * 1188 * That's okay, it's a rare case. The next waker will clear it. 1189 */ 1190 } 1191 spin_unlock_irqrestore(&q->lock, flags); 1192 } 1193 1194 static void wake_up_page(struct page *page, int bit) 1195 { 1196 if (!PageWaiters(page)) 1197 return; 1198 wake_up_page_bit(page, bit); 1199 } 1200 1201 /* 1202 * A choice of three behaviors for wait_on_page_bit_common(): 1203 */ 1204 enum behavior { 1205 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1206 * __lock_page() waiting on then setting PG_locked. 1207 */ 1208 SHARED, /* Hold ref to page and check the bit when woken, like 1209 * wait_on_page_writeback() waiting on PG_writeback. 1210 */ 1211 DROP, /* Drop ref to page before wait, no check when woken, 1212 * like put_and_wait_on_page_locked() on PG_locked. 1213 */ 1214 }; 1215 1216 /* 1217 * Attempt to check (or get) the page bit, and mark us done 1218 * if successful. 1219 */ 1220 static inline bool trylock_page_bit_common(struct page *page, int bit_nr, 1221 struct wait_queue_entry *wait) 1222 { 1223 if (wait->flags & WQ_FLAG_EXCLUSIVE) { 1224 if (test_and_set_bit(bit_nr, &page->flags)) 1225 return false; 1226 } else if (test_bit(bit_nr, &page->flags)) 1227 return false; 1228 1229 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE; 1230 return true; 1231 } 1232 1233 /* How many times do we accept lock stealing from under a waiter? */ 1234 int sysctl_page_lock_unfairness = 5; 1235 1236 static inline int wait_on_page_bit_common(wait_queue_head_t *q, 1237 struct page *page, int bit_nr, int state, enum behavior behavior) 1238 { 1239 int unfairness = sysctl_page_lock_unfairness; 1240 struct wait_page_queue wait_page; 1241 wait_queue_entry_t *wait = &wait_page.wait; 1242 bool thrashing = false; 1243 bool delayacct = false; 1244 unsigned long pflags; 1245 1246 if (bit_nr == PG_locked && 1247 !PageUptodate(page) && PageWorkingset(page)) { 1248 if (!PageSwapBacked(page)) { 1249 delayacct_thrashing_start(); 1250 delayacct = true; 1251 } 1252 psi_memstall_enter(&pflags); 1253 thrashing = true; 1254 } 1255 1256 init_wait(wait); 1257 wait->func = wake_page_function; 1258 wait_page.page = page; 1259 wait_page.bit_nr = bit_nr; 1260 1261 repeat: 1262 wait->flags = 0; 1263 if (behavior == EXCLUSIVE) { 1264 wait->flags = WQ_FLAG_EXCLUSIVE; 1265 if (--unfairness < 0) 1266 wait->flags |= WQ_FLAG_CUSTOM; 1267 } 1268 1269 /* 1270 * Do one last check whether we can get the 1271 * page bit synchronously. 1272 * 1273 * Do the SetPageWaiters() marking before that 1274 * to let any waker we _just_ missed know they 1275 * need to wake us up (otherwise they'll never 1276 * even go to the slow case that looks at the 1277 * page queue), and add ourselves to the wait 1278 * queue if we need to sleep. 1279 * 1280 * This part needs to be done under the queue 1281 * lock to avoid races. 1282 */ 1283 spin_lock_irq(&q->lock); 1284 SetPageWaiters(page); 1285 if (!trylock_page_bit_common(page, bit_nr, wait)) 1286 __add_wait_queue_entry_tail(q, wait); 1287 spin_unlock_irq(&q->lock); 1288 1289 /* 1290 * From now on, all the logic will be based on 1291 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to 1292 * see whether the page bit testing has already 1293 * been done by the wake function. 1294 * 1295 * We can drop our reference to the page. 1296 */ 1297 if (behavior == DROP) 1298 put_page(page); 1299 1300 /* 1301 * Note that until the "finish_wait()", or until 1302 * we see the WQ_FLAG_WOKEN flag, we need to 1303 * be very careful with the 'wait->flags', because 1304 * we may race with a waker that sets them. 1305 */ 1306 for (;;) { 1307 unsigned int flags; 1308 1309 set_current_state(state); 1310 1311 /* Loop until we've been woken or interrupted */ 1312 flags = smp_load_acquire(&wait->flags); 1313 if (!(flags & WQ_FLAG_WOKEN)) { 1314 if (signal_pending_state(state, current)) 1315 break; 1316 1317 io_schedule(); 1318 continue; 1319 } 1320 1321 /* If we were non-exclusive, we're done */ 1322 if (behavior != EXCLUSIVE) 1323 break; 1324 1325 /* If the waker got the lock for us, we're done */ 1326 if (flags & WQ_FLAG_DONE) 1327 break; 1328 1329 /* 1330 * Otherwise, if we're getting the lock, we need to 1331 * try to get it ourselves. 1332 * 1333 * And if that fails, we'll have to retry this all. 1334 */ 1335 if (unlikely(test_and_set_bit(bit_nr, &page->flags))) 1336 goto repeat; 1337 1338 wait->flags |= WQ_FLAG_DONE; 1339 break; 1340 } 1341 1342 /* 1343 * If a signal happened, this 'finish_wait()' may remove the last 1344 * waiter from the wait-queues, but the PageWaiters bit will remain 1345 * set. That's ok. The next wakeup will take care of it, and trying 1346 * to do it here would be difficult and prone to races. 1347 */ 1348 finish_wait(q, wait); 1349 1350 if (thrashing) { 1351 if (delayacct) 1352 delayacct_thrashing_end(); 1353 psi_memstall_leave(&pflags); 1354 } 1355 1356 /* 1357 * NOTE! The wait->flags weren't stable until we've done the 1358 * 'finish_wait()', and we could have exited the loop above due 1359 * to a signal, and had a wakeup event happen after the signal 1360 * test but before the 'finish_wait()'. 1361 * 1362 * So only after the finish_wait() can we reliably determine 1363 * if we got woken up or not, so we can now figure out the final 1364 * return value based on that state without races. 1365 * 1366 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive 1367 * waiter, but an exclusive one requires WQ_FLAG_DONE. 1368 */ 1369 if (behavior == EXCLUSIVE) 1370 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR; 1371 1372 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR; 1373 } 1374 1375 void wait_on_page_bit(struct page *page, int bit_nr) 1376 { 1377 wait_queue_head_t *q = page_waitqueue(page); 1378 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1379 } 1380 EXPORT_SYMBOL(wait_on_page_bit); 1381 1382 int wait_on_page_bit_killable(struct page *page, int bit_nr) 1383 { 1384 wait_queue_head_t *q = page_waitqueue(page); 1385 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED); 1386 } 1387 EXPORT_SYMBOL(wait_on_page_bit_killable); 1388 1389 /** 1390 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked 1391 * @page: The page to wait for. 1392 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc). 1393 * 1394 * The caller should hold a reference on @page. They expect the page to 1395 * become unlocked relatively soon, but do not wish to hold up migration 1396 * (for example) by holding the reference while waiting for the page to 1397 * come unlocked. After this function returns, the caller should not 1398 * dereference @page. 1399 * 1400 * Return: 0 if the page was unlocked or -EINTR if interrupted by a signal. 1401 */ 1402 int put_and_wait_on_page_locked(struct page *page, int state) 1403 { 1404 wait_queue_head_t *q; 1405 1406 page = compound_head(page); 1407 q = page_waitqueue(page); 1408 return wait_on_page_bit_common(q, page, PG_locked, state, DROP); 1409 } 1410 1411 /** 1412 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 1413 * @page: Page defining the wait queue of interest 1414 * @waiter: Waiter to add to the queue 1415 * 1416 * Add an arbitrary @waiter to the wait queue for the nominated @page. 1417 */ 1418 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter) 1419 { 1420 wait_queue_head_t *q = page_waitqueue(page); 1421 unsigned long flags; 1422 1423 spin_lock_irqsave(&q->lock, flags); 1424 __add_wait_queue_entry_tail(q, waiter); 1425 SetPageWaiters(page); 1426 spin_unlock_irqrestore(&q->lock, flags); 1427 } 1428 EXPORT_SYMBOL_GPL(add_page_wait_queue); 1429 1430 #ifndef clear_bit_unlock_is_negative_byte 1431 1432 /* 1433 * PG_waiters is the high bit in the same byte as PG_lock. 1434 * 1435 * On x86 (and on many other architectures), we can clear PG_lock and 1436 * test the sign bit at the same time. But if the architecture does 1437 * not support that special operation, we just do this all by hand 1438 * instead. 1439 * 1440 * The read of PG_waiters has to be after (or concurrently with) PG_locked 1441 * being cleared, but a memory barrier should be unnecessary since it is 1442 * in the same byte as PG_locked. 1443 */ 1444 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) 1445 { 1446 clear_bit_unlock(nr, mem); 1447 /* smp_mb__after_atomic(); */ 1448 return test_bit(PG_waiters, mem); 1449 } 1450 1451 #endif 1452 1453 /** 1454 * unlock_page - unlock a locked page 1455 * @page: the page 1456 * 1457 * Unlocks the page and wakes up sleepers in wait_on_page_locked(). 1458 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 1459 * mechanism between PageLocked pages and PageWriteback pages is shared. 1460 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 1461 * 1462 * Note that this depends on PG_waiters being the sign bit in the byte 1463 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to 1464 * clear the PG_locked bit and test PG_waiters at the same time fairly 1465 * portably (architectures that do LL/SC can test any bit, while x86 can 1466 * test the sign bit). 1467 */ 1468 void unlock_page(struct page *page) 1469 { 1470 BUILD_BUG_ON(PG_waiters != 7); 1471 page = compound_head(page); 1472 VM_BUG_ON_PAGE(!PageLocked(page), page); 1473 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags)) 1474 wake_up_page_bit(page, PG_locked); 1475 } 1476 EXPORT_SYMBOL(unlock_page); 1477 1478 /** 1479 * end_page_private_2 - Clear PG_private_2 and release any waiters 1480 * @page: The page 1481 * 1482 * Clear the PG_private_2 bit on a page and wake up any sleepers waiting for 1483 * this. The page ref held for PG_private_2 being set is released. 1484 * 1485 * This is, for example, used when a netfs page is being written to a local 1486 * disk cache, thereby allowing writes to the cache for the same page to be 1487 * serialised. 1488 */ 1489 void end_page_private_2(struct page *page) 1490 { 1491 page = compound_head(page); 1492 VM_BUG_ON_PAGE(!PagePrivate2(page), page); 1493 clear_bit_unlock(PG_private_2, &page->flags); 1494 wake_up_page_bit(page, PG_private_2); 1495 put_page(page); 1496 } 1497 EXPORT_SYMBOL(end_page_private_2); 1498 1499 /** 1500 * wait_on_page_private_2 - Wait for PG_private_2 to be cleared on a page 1501 * @page: The page to wait on 1502 * 1503 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a page. 1504 */ 1505 void wait_on_page_private_2(struct page *page) 1506 { 1507 page = compound_head(page); 1508 while (PagePrivate2(page)) 1509 wait_on_page_bit(page, PG_private_2); 1510 } 1511 EXPORT_SYMBOL(wait_on_page_private_2); 1512 1513 /** 1514 * wait_on_page_private_2_killable - Wait for PG_private_2 to be cleared on a page 1515 * @page: The page to wait on 1516 * 1517 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a page or until a 1518 * fatal signal is received by the calling task. 1519 * 1520 * Return: 1521 * - 0 if successful. 1522 * - -EINTR if a fatal signal was encountered. 1523 */ 1524 int wait_on_page_private_2_killable(struct page *page) 1525 { 1526 int ret = 0; 1527 1528 page = compound_head(page); 1529 while (PagePrivate2(page)) { 1530 ret = wait_on_page_bit_killable(page, PG_private_2); 1531 if (ret < 0) 1532 break; 1533 } 1534 1535 return ret; 1536 } 1537 EXPORT_SYMBOL(wait_on_page_private_2_killable); 1538 1539 /** 1540 * end_page_writeback - end writeback against a page 1541 * @page: the page 1542 */ 1543 void end_page_writeback(struct page *page) 1544 { 1545 /* 1546 * TestClearPageReclaim could be used here but it is an atomic 1547 * operation and overkill in this particular case. Failing to 1548 * shuffle a page marked for immediate reclaim is too mild to 1549 * justify taking an atomic operation penalty at the end of 1550 * ever page writeback. 1551 */ 1552 if (PageReclaim(page)) { 1553 ClearPageReclaim(page); 1554 rotate_reclaimable_page(page); 1555 } 1556 1557 /* 1558 * Writeback does not hold a page reference of its own, relying 1559 * on truncation to wait for the clearing of PG_writeback. 1560 * But here we must make sure that the page is not freed and 1561 * reused before the wake_up_page(). 1562 */ 1563 get_page(page); 1564 if (!test_clear_page_writeback(page)) 1565 BUG(); 1566 1567 smp_mb__after_atomic(); 1568 wake_up_page(page, PG_writeback); 1569 put_page(page); 1570 } 1571 EXPORT_SYMBOL(end_page_writeback); 1572 1573 /* 1574 * After completing I/O on a page, call this routine to update the page 1575 * flags appropriately 1576 */ 1577 void page_endio(struct page *page, bool is_write, int err) 1578 { 1579 if (!is_write) { 1580 if (!err) { 1581 SetPageUptodate(page); 1582 } else { 1583 ClearPageUptodate(page); 1584 SetPageError(page); 1585 } 1586 unlock_page(page); 1587 } else { 1588 if (err) { 1589 struct address_space *mapping; 1590 1591 SetPageError(page); 1592 mapping = page_mapping(page); 1593 if (mapping) 1594 mapping_set_error(mapping, err); 1595 } 1596 end_page_writeback(page); 1597 } 1598 } 1599 EXPORT_SYMBOL_GPL(page_endio); 1600 1601 /** 1602 * __lock_page - get a lock on the page, assuming we need to sleep to get it 1603 * @__page: the page to lock 1604 */ 1605 void __lock_page(struct page *__page) 1606 { 1607 struct page *page = compound_head(__page); 1608 wait_queue_head_t *q = page_waitqueue(page); 1609 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, 1610 EXCLUSIVE); 1611 } 1612 EXPORT_SYMBOL(__lock_page); 1613 1614 int __lock_page_killable(struct page *__page) 1615 { 1616 struct page *page = compound_head(__page); 1617 wait_queue_head_t *q = page_waitqueue(page); 1618 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, 1619 EXCLUSIVE); 1620 } 1621 EXPORT_SYMBOL_GPL(__lock_page_killable); 1622 1623 int __lock_page_async(struct page *page, struct wait_page_queue *wait) 1624 { 1625 struct wait_queue_head *q = page_waitqueue(page); 1626 int ret = 0; 1627 1628 wait->page = page; 1629 wait->bit_nr = PG_locked; 1630 1631 spin_lock_irq(&q->lock); 1632 __add_wait_queue_entry_tail(q, &wait->wait); 1633 SetPageWaiters(page); 1634 ret = !trylock_page(page); 1635 /* 1636 * If we were successful now, we know we're still on the 1637 * waitqueue as we're still under the lock. This means it's 1638 * safe to remove and return success, we know the callback 1639 * isn't going to trigger. 1640 */ 1641 if (!ret) 1642 __remove_wait_queue(q, &wait->wait); 1643 else 1644 ret = -EIOCBQUEUED; 1645 spin_unlock_irq(&q->lock); 1646 return ret; 1647 } 1648 1649 /* 1650 * Return values: 1651 * 1 - page is locked; mmap_lock is still held. 1652 * 0 - page is not locked. 1653 * mmap_lock has been released (mmap_read_unlock(), unless flags had both 1654 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 1655 * which case mmap_lock is still held. 1656 * 1657 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1 1658 * with the page locked and the mmap_lock unperturbed. 1659 */ 1660 int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 1661 unsigned int flags) 1662 { 1663 if (fault_flag_allow_retry_first(flags)) { 1664 /* 1665 * CAUTION! In this case, mmap_lock is not released 1666 * even though return 0. 1667 */ 1668 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1669 return 0; 1670 1671 mmap_read_unlock(mm); 1672 if (flags & FAULT_FLAG_KILLABLE) 1673 wait_on_page_locked_killable(page); 1674 else 1675 wait_on_page_locked(page); 1676 return 0; 1677 } 1678 if (flags & FAULT_FLAG_KILLABLE) { 1679 int ret; 1680 1681 ret = __lock_page_killable(page); 1682 if (ret) { 1683 mmap_read_unlock(mm); 1684 return 0; 1685 } 1686 } else { 1687 __lock_page(page); 1688 } 1689 return 1; 1690 1691 } 1692 1693 /** 1694 * page_cache_next_miss() - Find the next gap in the page cache. 1695 * @mapping: Mapping. 1696 * @index: Index. 1697 * @max_scan: Maximum range to search. 1698 * 1699 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1700 * gap with the lowest index. 1701 * 1702 * This function may be called under the rcu_read_lock. However, this will 1703 * not atomically search a snapshot of the cache at a single point in time. 1704 * For example, if a gap is created at index 5, then subsequently a gap is 1705 * created at index 10, page_cache_next_miss covering both indices may 1706 * return 10 if called under the rcu_read_lock. 1707 * 1708 * Return: The index of the gap if found, otherwise an index outside the 1709 * range specified (in which case 'return - index >= max_scan' will be true). 1710 * In the rare case of index wrap-around, 0 will be returned. 1711 */ 1712 pgoff_t page_cache_next_miss(struct address_space *mapping, 1713 pgoff_t index, unsigned long max_scan) 1714 { 1715 XA_STATE(xas, &mapping->i_pages, index); 1716 1717 while (max_scan--) { 1718 void *entry = xas_next(&xas); 1719 if (!entry || xa_is_value(entry)) 1720 break; 1721 if (xas.xa_index == 0) 1722 break; 1723 } 1724 1725 return xas.xa_index; 1726 } 1727 EXPORT_SYMBOL(page_cache_next_miss); 1728 1729 /** 1730 * page_cache_prev_miss() - Find the previous gap in the page cache. 1731 * @mapping: Mapping. 1732 * @index: Index. 1733 * @max_scan: Maximum range to search. 1734 * 1735 * Search the range [max(index - max_scan + 1, 0), index] for the 1736 * gap with the highest index. 1737 * 1738 * This function may be called under the rcu_read_lock. However, this will 1739 * not atomically search a snapshot of the cache at a single point in time. 1740 * For example, if a gap is created at index 10, then subsequently a gap is 1741 * created at index 5, page_cache_prev_miss() covering both indices may 1742 * return 5 if called under the rcu_read_lock. 1743 * 1744 * Return: The index of the gap if found, otherwise an index outside the 1745 * range specified (in which case 'index - return >= max_scan' will be true). 1746 * In the rare case of wrap-around, ULONG_MAX will be returned. 1747 */ 1748 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1749 pgoff_t index, unsigned long max_scan) 1750 { 1751 XA_STATE(xas, &mapping->i_pages, index); 1752 1753 while (max_scan--) { 1754 void *entry = xas_prev(&xas); 1755 if (!entry || xa_is_value(entry)) 1756 break; 1757 if (xas.xa_index == ULONG_MAX) 1758 break; 1759 } 1760 1761 return xas.xa_index; 1762 } 1763 EXPORT_SYMBOL(page_cache_prev_miss); 1764 1765 /* 1766 * mapping_get_entry - Get a page cache entry. 1767 * @mapping: the address_space to search 1768 * @index: The page cache index. 1769 * 1770 * Looks up the page cache slot at @mapping & @index. If there is a 1771 * page cache page, the head page is returned with an increased refcount. 1772 * 1773 * If the slot holds a shadow entry of a previously evicted page, or a 1774 * swap entry from shmem/tmpfs, it is returned. 1775 * 1776 * Return: The head page or shadow entry, %NULL if nothing is found. 1777 */ 1778 static struct page *mapping_get_entry(struct address_space *mapping, 1779 pgoff_t index) 1780 { 1781 XA_STATE(xas, &mapping->i_pages, index); 1782 struct page *page; 1783 1784 rcu_read_lock(); 1785 repeat: 1786 xas_reset(&xas); 1787 page = xas_load(&xas); 1788 if (xas_retry(&xas, page)) 1789 goto repeat; 1790 /* 1791 * A shadow entry of a recently evicted page, or a swap entry from 1792 * shmem/tmpfs. Return it without attempting to raise page count. 1793 */ 1794 if (!page || xa_is_value(page)) 1795 goto out; 1796 1797 if (!page_cache_get_speculative(page)) 1798 goto repeat; 1799 1800 /* 1801 * Has the page moved or been split? 1802 * This is part of the lockless pagecache protocol. See 1803 * include/linux/pagemap.h for details. 1804 */ 1805 if (unlikely(page != xas_reload(&xas))) { 1806 put_page(page); 1807 goto repeat; 1808 } 1809 out: 1810 rcu_read_unlock(); 1811 1812 return page; 1813 } 1814 1815 /** 1816 * pagecache_get_page - Find and get a reference to a page. 1817 * @mapping: The address_space to search. 1818 * @index: The page index. 1819 * @fgp_flags: %FGP flags modify how the page is returned. 1820 * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified. 1821 * 1822 * Looks up the page cache entry at @mapping & @index. 1823 * 1824 * @fgp_flags can be zero or more of these flags: 1825 * 1826 * * %FGP_ACCESSED - The page will be marked accessed. 1827 * * %FGP_LOCK - The page is returned locked. 1828 * * %FGP_HEAD - If the page is present and a THP, return the head page 1829 * rather than the exact page specified by the index. 1830 * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it 1831 * instead of allocating a new page to replace it. 1832 * * %FGP_CREAT - If no page is present then a new page is allocated using 1833 * @gfp_mask and added to the page cache and the VM's LRU list. 1834 * The page is returned locked and with an increased refcount. 1835 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the 1836 * page is already in cache. If the page was allocated, unlock it before 1837 * returning so the caller can do the same dance. 1838 * * %FGP_WRITE - The page will be written 1839 * * %FGP_NOFS - __GFP_FS will get cleared in gfp mask 1840 * * %FGP_NOWAIT - Don't get blocked by page lock 1841 * 1842 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even 1843 * if the %GFP flags specified for %FGP_CREAT are atomic. 1844 * 1845 * If there is a page cache page, it is returned with an increased refcount. 1846 * 1847 * Return: The found page or %NULL otherwise. 1848 */ 1849 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index, 1850 int fgp_flags, gfp_t gfp_mask) 1851 { 1852 struct page *page; 1853 1854 repeat: 1855 page = mapping_get_entry(mapping, index); 1856 if (xa_is_value(page)) { 1857 if (fgp_flags & FGP_ENTRY) 1858 return page; 1859 page = NULL; 1860 } 1861 if (!page) 1862 goto no_page; 1863 1864 if (fgp_flags & FGP_LOCK) { 1865 if (fgp_flags & FGP_NOWAIT) { 1866 if (!trylock_page(page)) { 1867 put_page(page); 1868 return NULL; 1869 } 1870 } else { 1871 lock_page(page); 1872 } 1873 1874 /* Has the page been truncated? */ 1875 if (unlikely(page->mapping != mapping)) { 1876 unlock_page(page); 1877 put_page(page); 1878 goto repeat; 1879 } 1880 VM_BUG_ON_PAGE(!thp_contains(page, index), page); 1881 } 1882 1883 if (fgp_flags & FGP_ACCESSED) 1884 mark_page_accessed(page); 1885 else if (fgp_flags & FGP_WRITE) { 1886 /* Clear idle flag for buffer write */ 1887 if (page_is_idle(page)) 1888 clear_page_idle(page); 1889 } 1890 if (!(fgp_flags & FGP_HEAD)) 1891 page = find_subpage(page, index); 1892 1893 no_page: 1894 if (!page && (fgp_flags & FGP_CREAT)) { 1895 int err; 1896 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping)) 1897 gfp_mask |= __GFP_WRITE; 1898 if (fgp_flags & FGP_NOFS) 1899 gfp_mask &= ~__GFP_FS; 1900 1901 page = __page_cache_alloc(gfp_mask); 1902 if (!page) 1903 return NULL; 1904 1905 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 1906 fgp_flags |= FGP_LOCK; 1907 1908 /* Init accessed so avoid atomic mark_page_accessed later */ 1909 if (fgp_flags & FGP_ACCESSED) 1910 __SetPageReferenced(page); 1911 1912 err = add_to_page_cache_lru(page, mapping, index, gfp_mask); 1913 if (unlikely(err)) { 1914 put_page(page); 1915 page = NULL; 1916 if (err == -EEXIST) 1917 goto repeat; 1918 } 1919 1920 /* 1921 * add_to_page_cache_lru locks the page, and for mmap we expect 1922 * an unlocked page. 1923 */ 1924 if (page && (fgp_flags & FGP_FOR_MMAP)) 1925 unlock_page(page); 1926 } 1927 1928 return page; 1929 } 1930 EXPORT_SYMBOL(pagecache_get_page); 1931 1932 static inline struct page *find_get_entry(struct xa_state *xas, pgoff_t max, 1933 xa_mark_t mark) 1934 { 1935 struct page *page; 1936 1937 retry: 1938 if (mark == XA_PRESENT) 1939 page = xas_find(xas, max); 1940 else 1941 page = xas_find_marked(xas, max, mark); 1942 1943 if (xas_retry(xas, page)) 1944 goto retry; 1945 /* 1946 * A shadow entry of a recently evicted page, a swap 1947 * entry from shmem/tmpfs or a DAX entry. Return it 1948 * without attempting to raise page count. 1949 */ 1950 if (!page || xa_is_value(page)) 1951 return page; 1952 1953 if (!page_cache_get_speculative(page)) 1954 goto reset; 1955 1956 /* Has the page moved or been split? */ 1957 if (unlikely(page != xas_reload(xas))) { 1958 put_page(page); 1959 goto reset; 1960 } 1961 1962 return page; 1963 reset: 1964 xas_reset(xas); 1965 goto retry; 1966 } 1967 1968 /** 1969 * find_get_entries - gang pagecache lookup 1970 * @mapping: The address_space to search 1971 * @start: The starting page cache index 1972 * @end: The final page index (inclusive). 1973 * @pvec: Where the resulting entries are placed. 1974 * @indices: The cache indices corresponding to the entries in @entries 1975 * 1976 * find_get_entries() will search for and return a batch of entries in 1977 * the mapping. The entries are placed in @pvec. find_get_entries() 1978 * takes a reference on any actual pages it returns. 1979 * 1980 * The search returns a group of mapping-contiguous page cache entries 1981 * with ascending indexes. There may be holes in the indices due to 1982 * not-present pages. 1983 * 1984 * Any shadow entries of evicted pages, or swap entries from 1985 * shmem/tmpfs, are included in the returned array. 1986 * 1987 * If it finds a Transparent Huge Page, head or tail, find_get_entries() 1988 * stops at that page: the caller is likely to have a better way to handle 1989 * the compound page as a whole, and then skip its extent, than repeatedly 1990 * calling find_get_entries() to return all its tails. 1991 * 1992 * Return: the number of pages and shadow entries which were found. 1993 */ 1994 unsigned find_get_entries(struct address_space *mapping, pgoff_t start, 1995 pgoff_t end, struct pagevec *pvec, pgoff_t *indices) 1996 { 1997 XA_STATE(xas, &mapping->i_pages, start); 1998 struct page *page; 1999 unsigned int ret = 0; 2000 unsigned nr_entries = PAGEVEC_SIZE; 2001 2002 rcu_read_lock(); 2003 while ((page = find_get_entry(&xas, end, XA_PRESENT))) { 2004 /* 2005 * Terminate early on finding a THP, to allow the caller to 2006 * handle it all at once; but continue if this is hugetlbfs. 2007 */ 2008 if (!xa_is_value(page) && PageTransHuge(page) && 2009 !PageHuge(page)) { 2010 page = find_subpage(page, xas.xa_index); 2011 nr_entries = ret + 1; 2012 } 2013 2014 indices[ret] = xas.xa_index; 2015 pvec->pages[ret] = page; 2016 if (++ret == nr_entries) 2017 break; 2018 } 2019 rcu_read_unlock(); 2020 2021 pvec->nr = ret; 2022 return ret; 2023 } 2024 2025 /** 2026 * find_lock_entries - Find a batch of pagecache entries. 2027 * @mapping: The address_space to search. 2028 * @start: The starting page cache index. 2029 * @end: The final page index (inclusive). 2030 * @pvec: Where the resulting entries are placed. 2031 * @indices: The cache indices of the entries in @pvec. 2032 * 2033 * find_lock_entries() will return a batch of entries from @mapping. 2034 * Swap, shadow and DAX entries are included. Pages are returned 2035 * locked and with an incremented refcount. Pages which are locked by 2036 * somebody else or under writeback are skipped. Only the head page of 2037 * a THP is returned. Pages which are partially outside the range are 2038 * not returned. 2039 * 2040 * The entries have ascending indexes. The indices may not be consecutive 2041 * due to not-present entries, THP pages, pages which could not be locked 2042 * or pages under writeback. 2043 * 2044 * Return: The number of entries which were found. 2045 */ 2046 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start, 2047 pgoff_t end, struct pagevec *pvec, pgoff_t *indices) 2048 { 2049 XA_STATE(xas, &mapping->i_pages, start); 2050 struct page *page; 2051 2052 rcu_read_lock(); 2053 while ((page = find_get_entry(&xas, end, XA_PRESENT))) { 2054 if (!xa_is_value(page)) { 2055 if (page->index < start) 2056 goto put; 2057 VM_BUG_ON_PAGE(page->index != xas.xa_index, page); 2058 if (page->index + thp_nr_pages(page) - 1 > end) 2059 goto put; 2060 if (!trylock_page(page)) 2061 goto put; 2062 if (page->mapping != mapping || PageWriteback(page)) 2063 goto unlock; 2064 VM_BUG_ON_PAGE(!thp_contains(page, xas.xa_index), 2065 page); 2066 } 2067 indices[pvec->nr] = xas.xa_index; 2068 if (!pagevec_add(pvec, page)) 2069 break; 2070 goto next; 2071 unlock: 2072 unlock_page(page); 2073 put: 2074 put_page(page); 2075 next: 2076 if (!xa_is_value(page) && PageTransHuge(page)) { 2077 unsigned int nr_pages = thp_nr_pages(page); 2078 2079 /* Final THP may cross MAX_LFS_FILESIZE on 32-bit */ 2080 xas_set(&xas, page->index + nr_pages); 2081 if (xas.xa_index < nr_pages) 2082 break; 2083 } 2084 } 2085 rcu_read_unlock(); 2086 2087 return pagevec_count(pvec); 2088 } 2089 2090 /** 2091 * find_get_pages_range - gang pagecache lookup 2092 * @mapping: The address_space to search 2093 * @start: The starting page index 2094 * @end: The final page index (inclusive) 2095 * @nr_pages: The maximum number of pages 2096 * @pages: Where the resulting pages are placed 2097 * 2098 * find_get_pages_range() will search for and return a group of up to @nr_pages 2099 * pages in the mapping starting at index @start and up to index @end 2100 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes 2101 * a reference against the returned pages. 2102 * 2103 * The search returns a group of mapping-contiguous pages with ascending 2104 * indexes. There may be holes in the indices due to not-present pages. 2105 * We also update @start to index the next page for the traversal. 2106 * 2107 * Return: the number of pages which were found. If this number is 2108 * smaller than @nr_pages, the end of specified range has been 2109 * reached. 2110 */ 2111 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, 2112 pgoff_t end, unsigned int nr_pages, 2113 struct page **pages) 2114 { 2115 XA_STATE(xas, &mapping->i_pages, *start); 2116 struct page *page; 2117 unsigned ret = 0; 2118 2119 if (unlikely(!nr_pages)) 2120 return 0; 2121 2122 rcu_read_lock(); 2123 while ((page = find_get_entry(&xas, end, XA_PRESENT))) { 2124 /* Skip over shadow, swap and DAX entries */ 2125 if (xa_is_value(page)) 2126 continue; 2127 2128 pages[ret] = find_subpage(page, xas.xa_index); 2129 if (++ret == nr_pages) { 2130 *start = xas.xa_index + 1; 2131 goto out; 2132 } 2133 } 2134 2135 /* 2136 * We come here when there is no page beyond @end. We take care to not 2137 * overflow the index @start as it confuses some of the callers. This 2138 * breaks the iteration when there is a page at index -1 but that is 2139 * already broken anyway. 2140 */ 2141 if (end == (pgoff_t)-1) 2142 *start = (pgoff_t)-1; 2143 else 2144 *start = end + 1; 2145 out: 2146 rcu_read_unlock(); 2147 2148 return ret; 2149 } 2150 2151 /** 2152 * find_get_pages_contig - gang contiguous pagecache lookup 2153 * @mapping: The address_space to search 2154 * @index: The starting page index 2155 * @nr_pages: The maximum number of pages 2156 * @pages: Where the resulting pages are placed 2157 * 2158 * find_get_pages_contig() works exactly like find_get_pages(), except 2159 * that the returned number of pages are guaranteed to be contiguous. 2160 * 2161 * Return: the number of pages which were found. 2162 */ 2163 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 2164 unsigned int nr_pages, struct page **pages) 2165 { 2166 XA_STATE(xas, &mapping->i_pages, index); 2167 struct page *page; 2168 unsigned int ret = 0; 2169 2170 if (unlikely(!nr_pages)) 2171 return 0; 2172 2173 rcu_read_lock(); 2174 for (page = xas_load(&xas); page; page = xas_next(&xas)) { 2175 if (xas_retry(&xas, page)) 2176 continue; 2177 /* 2178 * If the entry has been swapped out, we can stop looking. 2179 * No current caller is looking for DAX entries. 2180 */ 2181 if (xa_is_value(page)) 2182 break; 2183 2184 if (!page_cache_get_speculative(page)) 2185 goto retry; 2186 2187 /* Has the page moved or been split? */ 2188 if (unlikely(page != xas_reload(&xas))) 2189 goto put_page; 2190 2191 pages[ret] = find_subpage(page, xas.xa_index); 2192 if (++ret == nr_pages) 2193 break; 2194 continue; 2195 put_page: 2196 put_page(page); 2197 retry: 2198 xas_reset(&xas); 2199 } 2200 rcu_read_unlock(); 2201 return ret; 2202 } 2203 EXPORT_SYMBOL(find_get_pages_contig); 2204 2205 /** 2206 * find_get_pages_range_tag - Find and return head pages matching @tag. 2207 * @mapping: the address_space to search 2208 * @index: the starting page index 2209 * @end: The final page index (inclusive) 2210 * @tag: the tag index 2211 * @nr_pages: the maximum number of pages 2212 * @pages: where the resulting pages are placed 2213 * 2214 * Like find_get_pages(), except we only return head pages which are tagged 2215 * with @tag. @index is updated to the index immediately after the last 2216 * page we return, ready for the next iteration. 2217 * 2218 * Return: the number of pages which were found. 2219 */ 2220 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, 2221 pgoff_t end, xa_mark_t tag, unsigned int nr_pages, 2222 struct page **pages) 2223 { 2224 XA_STATE(xas, &mapping->i_pages, *index); 2225 struct page *page; 2226 unsigned ret = 0; 2227 2228 if (unlikely(!nr_pages)) 2229 return 0; 2230 2231 rcu_read_lock(); 2232 while ((page = find_get_entry(&xas, end, tag))) { 2233 /* 2234 * Shadow entries should never be tagged, but this iteration 2235 * is lockless so there is a window for page reclaim to evict 2236 * a page we saw tagged. Skip over it. 2237 */ 2238 if (xa_is_value(page)) 2239 continue; 2240 2241 pages[ret] = page; 2242 if (++ret == nr_pages) { 2243 *index = page->index + thp_nr_pages(page); 2244 goto out; 2245 } 2246 } 2247 2248 /* 2249 * We come here when we got to @end. We take care to not overflow the 2250 * index @index as it confuses some of the callers. This breaks the 2251 * iteration when there is a page at index -1 but that is already 2252 * broken anyway. 2253 */ 2254 if (end == (pgoff_t)-1) 2255 *index = (pgoff_t)-1; 2256 else 2257 *index = end + 1; 2258 out: 2259 rcu_read_unlock(); 2260 2261 return ret; 2262 } 2263 EXPORT_SYMBOL(find_get_pages_range_tag); 2264 2265 /* 2266 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 2267 * a _large_ part of the i/o request. Imagine the worst scenario: 2268 * 2269 * ---R__________________________________________B__________ 2270 * ^ reading here ^ bad block(assume 4k) 2271 * 2272 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2273 * => failing the whole request => read(R) => read(R+1) => 2274 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2275 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2276 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2277 * 2278 * It is going insane. Fix it by quickly scaling down the readahead size. 2279 */ 2280 static void shrink_readahead_size_eio(struct file_ra_state *ra) 2281 { 2282 ra->ra_pages /= 4; 2283 } 2284 2285 /* 2286 * filemap_get_read_batch - Get a batch of pages for read 2287 * 2288 * Get a batch of pages which represent a contiguous range of bytes 2289 * in the file. No tail pages will be returned. If @index is in the 2290 * middle of a THP, the entire THP will be returned. The last page in 2291 * the batch may have Readahead set or be not Uptodate so that the 2292 * caller can take the appropriate action. 2293 */ 2294 static void filemap_get_read_batch(struct address_space *mapping, 2295 pgoff_t index, pgoff_t max, struct pagevec *pvec) 2296 { 2297 XA_STATE(xas, &mapping->i_pages, index); 2298 struct page *head; 2299 2300 rcu_read_lock(); 2301 for (head = xas_load(&xas); head; head = xas_next(&xas)) { 2302 if (xas_retry(&xas, head)) 2303 continue; 2304 if (xas.xa_index > max || xa_is_value(head)) 2305 break; 2306 if (!page_cache_get_speculative(head)) 2307 goto retry; 2308 2309 /* Has the page moved or been split? */ 2310 if (unlikely(head != xas_reload(&xas))) 2311 goto put_page; 2312 2313 if (!pagevec_add(pvec, head)) 2314 break; 2315 if (!PageUptodate(head)) 2316 break; 2317 if (PageReadahead(head)) 2318 break; 2319 xas.xa_index = head->index + thp_nr_pages(head) - 1; 2320 xas.xa_offset = (xas.xa_index >> xas.xa_shift) & XA_CHUNK_MASK; 2321 continue; 2322 put_page: 2323 put_page(head); 2324 retry: 2325 xas_reset(&xas); 2326 } 2327 rcu_read_unlock(); 2328 } 2329 2330 static int filemap_read_page(struct file *file, struct address_space *mapping, 2331 struct page *page) 2332 { 2333 int error; 2334 2335 /* 2336 * A previous I/O error may have been due to temporary failures, 2337 * eg. multipath errors. PG_error will be set again if readpage 2338 * fails. 2339 */ 2340 ClearPageError(page); 2341 /* Start the actual read. The read will unlock the page. */ 2342 error = mapping->a_ops->readpage(file, page); 2343 if (error) 2344 return error; 2345 2346 error = wait_on_page_locked_killable(page); 2347 if (error) 2348 return error; 2349 if (PageUptodate(page)) 2350 return 0; 2351 shrink_readahead_size_eio(&file->f_ra); 2352 return -EIO; 2353 } 2354 2355 static bool filemap_range_uptodate(struct address_space *mapping, 2356 loff_t pos, struct iov_iter *iter, struct page *page) 2357 { 2358 int count; 2359 2360 if (PageUptodate(page)) 2361 return true; 2362 /* pipes can't handle partially uptodate pages */ 2363 if (iov_iter_is_pipe(iter)) 2364 return false; 2365 if (!mapping->a_ops->is_partially_uptodate) 2366 return false; 2367 if (mapping->host->i_blkbits >= (PAGE_SHIFT + thp_order(page))) 2368 return false; 2369 2370 count = iter->count; 2371 if (page_offset(page) > pos) { 2372 count -= page_offset(page) - pos; 2373 pos = 0; 2374 } else { 2375 pos -= page_offset(page); 2376 } 2377 2378 return mapping->a_ops->is_partially_uptodate(page, pos, count); 2379 } 2380 2381 static int filemap_update_page(struct kiocb *iocb, 2382 struct address_space *mapping, struct iov_iter *iter, 2383 struct page *page) 2384 { 2385 int error; 2386 2387 if (!trylock_page(page)) { 2388 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) 2389 return -EAGAIN; 2390 if (!(iocb->ki_flags & IOCB_WAITQ)) { 2391 put_and_wait_on_page_locked(page, TASK_KILLABLE); 2392 return AOP_TRUNCATED_PAGE; 2393 } 2394 error = __lock_page_async(page, iocb->ki_waitq); 2395 if (error) 2396 return error; 2397 } 2398 2399 if (!page->mapping) 2400 goto truncated; 2401 2402 error = 0; 2403 if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, page)) 2404 goto unlock; 2405 2406 error = -EAGAIN; 2407 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ)) 2408 goto unlock; 2409 2410 error = filemap_read_page(iocb->ki_filp, mapping, page); 2411 if (error == AOP_TRUNCATED_PAGE) 2412 put_page(page); 2413 return error; 2414 truncated: 2415 unlock_page(page); 2416 put_page(page); 2417 return AOP_TRUNCATED_PAGE; 2418 unlock: 2419 unlock_page(page); 2420 return error; 2421 } 2422 2423 static int filemap_create_page(struct file *file, 2424 struct address_space *mapping, pgoff_t index, 2425 struct pagevec *pvec) 2426 { 2427 struct page *page; 2428 int error; 2429 2430 page = page_cache_alloc(mapping); 2431 if (!page) 2432 return -ENOMEM; 2433 2434 error = add_to_page_cache_lru(page, mapping, index, 2435 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2436 if (error == -EEXIST) 2437 error = AOP_TRUNCATED_PAGE; 2438 if (error) 2439 goto error; 2440 2441 error = filemap_read_page(file, mapping, page); 2442 if (error) 2443 goto error; 2444 2445 pagevec_add(pvec, page); 2446 return 0; 2447 error: 2448 put_page(page); 2449 return error; 2450 } 2451 2452 static int filemap_readahead(struct kiocb *iocb, struct file *file, 2453 struct address_space *mapping, struct page *page, 2454 pgoff_t last_index) 2455 { 2456 if (iocb->ki_flags & IOCB_NOIO) 2457 return -EAGAIN; 2458 page_cache_async_readahead(mapping, &file->f_ra, file, page, 2459 page->index, last_index - page->index); 2460 return 0; 2461 } 2462 2463 static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter, 2464 struct pagevec *pvec) 2465 { 2466 struct file *filp = iocb->ki_filp; 2467 struct address_space *mapping = filp->f_mapping; 2468 struct file_ra_state *ra = &filp->f_ra; 2469 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT; 2470 pgoff_t last_index; 2471 struct page *page; 2472 int err = 0; 2473 2474 last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE); 2475 retry: 2476 if (fatal_signal_pending(current)) 2477 return -EINTR; 2478 2479 filemap_get_read_batch(mapping, index, last_index, pvec); 2480 if (!pagevec_count(pvec)) { 2481 if (iocb->ki_flags & IOCB_NOIO) 2482 return -EAGAIN; 2483 page_cache_sync_readahead(mapping, ra, filp, index, 2484 last_index - index); 2485 filemap_get_read_batch(mapping, index, last_index, pvec); 2486 } 2487 if (!pagevec_count(pvec)) { 2488 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ)) 2489 return -EAGAIN; 2490 err = filemap_create_page(filp, mapping, 2491 iocb->ki_pos >> PAGE_SHIFT, pvec); 2492 if (err == AOP_TRUNCATED_PAGE) 2493 goto retry; 2494 return err; 2495 } 2496 2497 page = pvec->pages[pagevec_count(pvec) - 1]; 2498 if (PageReadahead(page)) { 2499 err = filemap_readahead(iocb, filp, mapping, page, last_index); 2500 if (err) 2501 goto err; 2502 } 2503 if (!PageUptodate(page)) { 2504 if ((iocb->ki_flags & IOCB_WAITQ) && pagevec_count(pvec) > 1) 2505 iocb->ki_flags |= IOCB_NOWAIT; 2506 err = filemap_update_page(iocb, mapping, iter, page); 2507 if (err) 2508 goto err; 2509 } 2510 2511 return 0; 2512 err: 2513 if (err < 0) 2514 put_page(page); 2515 if (likely(--pvec->nr)) 2516 return 0; 2517 if (err == AOP_TRUNCATED_PAGE) 2518 goto retry; 2519 return err; 2520 } 2521 2522 /** 2523 * filemap_read - Read data from the page cache. 2524 * @iocb: The iocb to read. 2525 * @iter: Destination for the data. 2526 * @already_read: Number of bytes already read by the caller. 2527 * 2528 * Copies data from the page cache. If the data is not currently present, 2529 * uses the readahead and readpage address_space operations to fetch it. 2530 * 2531 * Return: Total number of bytes copied, including those already read by 2532 * the caller. If an error happens before any bytes are copied, returns 2533 * a negative error number. 2534 */ 2535 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter, 2536 ssize_t already_read) 2537 { 2538 struct file *filp = iocb->ki_filp; 2539 struct file_ra_state *ra = &filp->f_ra; 2540 struct address_space *mapping = filp->f_mapping; 2541 struct inode *inode = mapping->host; 2542 struct pagevec pvec; 2543 int i, error = 0; 2544 bool writably_mapped; 2545 loff_t isize, end_offset; 2546 2547 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes)) 2548 return 0; 2549 if (unlikely(!iov_iter_count(iter))) 2550 return 0; 2551 2552 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 2553 pagevec_init(&pvec); 2554 2555 do { 2556 cond_resched(); 2557 2558 /* 2559 * If we've already successfully copied some data, then we 2560 * can no longer safely return -EIOCBQUEUED. Hence mark 2561 * an async read NOWAIT at that point. 2562 */ 2563 if ((iocb->ki_flags & IOCB_WAITQ) && already_read) 2564 iocb->ki_flags |= IOCB_NOWAIT; 2565 2566 error = filemap_get_pages(iocb, iter, &pvec); 2567 if (error < 0) 2568 break; 2569 2570 /* 2571 * i_size must be checked after we know the pages are Uptodate. 2572 * 2573 * Checking i_size after the check allows us to calculate 2574 * the correct value for "nr", which means the zero-filled 2575 * part of the page is not copied back to userspace (unless 2576 * another truncate extends the file - this is desired though). 2577 */ 2578 isize = i_size_read(inode); 2579 if (unlikely(iocb->ki_pos >= isize)) 2580 goto put_pages; 2581 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count); 2582 2583 /* 2584 * Once we start copying data, we don't want to be touching any 2585 * cachelines that might be contended: 2586 */ 2587 writably_mapped = mapping_writably_mapped(mapping); 2588 2589 /* 2590 * When a sequential read accesses a page several times, only 2591 * mark it as accessed the first time. 2592 */ 2593 if (iocb->ki_pos >> PAGE_SHIFT != 2594 ra->prev_pos >> PAGE_SHIFT) 2595 mark_page_accessed(pvec.pages[0]); 2596 2597 for (i = 0; i < pagevec_count(&pvec); i++) { 2598 struct page *page = pvec.pages[i]; 2599 size_t page_size = thp_size(page); 2600 size_t offset = iocb->ki_pos & (page_size - 1); 2601 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos, 2602 page_size - offset); 2603 size_t copied; 2604 2605 if (end_offset < page_offset(page)) 2606 break; 2607 if (i > 0) 2608 mark_page_accessed(page); 2609 /* 2610 * If users can be writing to this page using arbitrary 2611 * virtual addresses, take care about potential aliasing 2612 * before reading the page on the kernel side. 2613 */ 2614 if (writably_mapped) { 2615 int j; 2616 2617 for (j = 0; j < thp_nr_pages(page); j++) 2618 flush_dcache_page(page + j); 2619 } 2620 2621 copied = copy_page_to_iter(page, offset, bytes, iter); 2622 2623 already_read += copied; 2624 iocb->ki_pos += copied; 2625 ra->prev_pos = iocb->ki_pos; 2626 2627 if (copied < bytes) { 2628 error = -EFAULT; 2629 break; 2630 } 2631 } 2632 put_pages: 2633 for (i = 0; i < pagevec_count(&pvec); i++) 2634 put_page(pvec.pages[i]); 2635 pagevec_reinit(&pvec); 2636 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error); 2637 2638 file_accessed(filp); 2639 2640 return already_read ? already_read : error; 2641 } 2642 EXPORT_SYMBOL_GPL(filemap_read); 2643 2644 /** 2645 * generic_file_read_iter - generic filesystem read routine 2646 * @iocb: kernel I/O control block 2647 * @iter: destination for the data read 2648 * 2649 * This is the "read_iter()" routine for all filesystems 2650 * that can use the page cache directly. 2651 * 2652 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall 2653 * be returned when no data can be read without waiting for I/O requests 2654 * to complete; it doesn't prevent readahead. 2655 * 2656 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O 2657 * requests shall be made for the read or for readahead. When no data 2658 * can be read, -EAGAIN shall be returned. When readahead would be 2659 * triggered, a partial, possibly empty read shall be returned. 2660 * 2661 * Return: 2662 * * number of bytes copied, even for partial reads 2663 * * negative error code (or 0 if IOCB_NOIO) if nothing was read 2664 */ 2665 ssize_t 2666 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2667 { 2668 size_t count = iov_iter_count(iter); 2669 ssize_t retval = 0; 2670 2671 if (!count) 2672 return 0; /* skip atime */ 2673 2674 if (iocb->ki_flags & IOCB_DIRECT) { 2675 struct file *file = iocb->ki_filp; 2676 struct address_space *mapping = file->f_mapping; 2677 struct inode *inode = mapping->host; 2678 loff_t size; 2679 2680 size = i_size_read(inode); 2681 if (iocb->ki_flags & IOCB_NOWAIT) { 2682 if (filemap_range_needs_writeback(mapping, iocb->ki_pos, 2683 iocb->ki_pos + count - 1)) 2684 return -EAGAIN; 2685 } else { 2686 retval = filemap_write_and_wait_range(mapping, 2687 iocb->ki_pos, 2688 iocb->ki_pos + count - 1); 2689 if (retval < 0) 2690 return retval; 2691 } 2692 2693 file_accessed(file); 2694 2695 retval = mapping->a_ops->direct_IO(iocb, iter); 2696 if (retval >= 0) { 2697 iocb->ki_pos += retval; 2698 count -= retval; 2699 } 2700 if (retval != -EIOCBQUEUED) 2701 iov_iter_revert(iter, count - iov_iter_count(iter)); 2702 2703 /* 2704 * Btrfs can have a short DIO read if we encounter 2705 * compressed extents, so if there was an error, or if 2706 * we've already read everything we wanted to, or if 2707 * there was a short read because we hit EOF, go ahead 2708 * and return. Otherwise fallthrough to buffered io for 2709 * the rest of the read. Buffered reads will not work for 2710 * DAX files, so don't bother trying. 2711 */ 2712 if (retval < 0 || !count || iocb->ki_pos >= size || 2713 IS_DAX(inode)) 2714 return retval; 2715 } 2716 2717 return filemap_read(iocb, iter, retval); 2718 } 2719 EXPORT_SYMBOL(generic_file_read_iter); 2720 2721 static inline loff_t page_seek_hole_data(struct xa_state *xas, 2722 struct address_space *mapping, struct page *page, 2723 loff_t start, loff_t end, bool seek_data) 2724 { 2725 const struct address_space_operations *ops = mapping->a_ops; 2726 size_t offset, bsz = i_blocksize(mapping->host); 2727 2728 if (xa_is_value(page) || PageUptodate(page)) 2729 return seek_data ? start : end; 2730 if (!ops->is_partially_uptodate) 2731 return seek_data ? end : start; 2732 2733 xas_pause(xas); 2734 rcu_read_unlock(); 2735 lock_page(page); 2736 if (unlikely(page->mapping != mapping)) 2737 goto unlock; 2738 2739 offset = offset_in_thp(page, start) & ~(bsz - 1); 2740 2741 do { 2742 if (ops->is_partially_uptodate(page, offset, bsz) == seek_data) 2743 break; 2744 start = (start + bsz) & ~(bsz - 1); 2745 offset += bsz; 2746 } while (offset < thp_size(page)); 2747 unlock: 2748 unlock_page(page); 2749 rcu_read_lock(); 2750 return start; 2751 } 2752 2753 static inline 2754 unsigned int seek_page_size(struct xa_state *xas, struct page *page) 2755 { 2756 if (xa_is_value(page)) 2757 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index); 2758 return thp_size(page); 2759 } 2760 2761 /** 2762 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache. 2763 * @mapping: Address space to search. 2764 * @start: First byte to consider. 2765 * @end: Limit of search (exclusive). 2766 * @whence: Either SEEK_HOLE or SEEK_DATA. 2767 * 2768 * If the page cache knows which blocks contain holes and which blocks 2769 * contain data, your filesystem can use this function to implement 2770 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are 2771 * entirely memory-based such as tmpfs, and filesystems which support 2772 * unwritten extents. 2773 * 2774 * Return: The requested offset on successs, or -ENXIO if @whence specifies 2775 * SEEK_DATA and there is no data after @start. There is an implicit hole 2776 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start 2777 * and @end contain data. 2778 */ 2779 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start, 2780 loff_t end, int whence) 2781 { 2782 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT); 2783 pgoff_t max = (end - 1) >> PAGE_SHIFT; 2784 bool seek_data = (whence == SEEK_DATA); 2785 struct page *page; 2786 2787 if (end <= start) 2788 return -ENXIO; 2789 2790 rcu_read_lock(); 2791 while ((page = find_get_entry(&xas, max, XA_PRESENT))) { 2792 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT; 2793 unsigned int seek_size; 2794 2795 if (start < pos) { 2796 if (!seek_data) 2797 goto unlock; 2798 start = pos; 2799 } 2800 2801 seek_size = seek_page_size(&xas, page); 2802 pos = round_up(pos + 1, seek_size); 2803 start = page_seek_hole_data(&xas, mapping, page, start, pos, 2804 seek_data); 2805 if (start < pos) 2806 goto unlock; 2807 if (start >= end) 2808 break; 2809 if (seek_size > PAGE_SIZE) 2810 xas_set(&xas, pos >> PAGE_SHIFT); 2811 if (!xa_is_value(page)) 2812 put_page(page); 2813 } 2814 if (seek_data) 2815 start = -ENXIO; 2816 unlock: 2817 rcu_read_unlock(); 2818 if (page && !xa_is_value(page)) 2819 put_page(page); 2820 if (start > end) 2821 return end; 2822 return start; 2823 } 2824 2825 #ifdef CONFIG_MMU 2826 #define MMAP_LOTSAMISS (100) 2827 /* 2828 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock 2829 * @vmf - the vm_fault for this fault. 2830 * @page - the page to lock. 2831 * @fpin - the pointer to the file we may pin (or is already pinned). 2832 * 2833 * This works similar to lock_page_or_retry in that it can drop the mmap_lock. 2834 * It differs in that it actually returns the page locked if it returns 1 and 0 2835 * if it couldn't lock the page. If we did have to drop the mmap_lock then fpin 2836 * will point to the pinned file and needs to be fput()'ed at a later point. 2837 */ 2838 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page, 2839 struct file **fpin) 2840 { 2841 if (trylock_page(page)) 2842 return 1; 2843 2844 /* 2845 * NOTE! This will make us return with VM_FAULT_RETRY, but with 2846 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT 2847 * is supposed to work. We have way too many special cases.. 2848 */ 2849 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 2850 return 0; 2851 2852 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 2853 if (vmf->flags & FAULT_FLAG_KILLABLE) { 2854 if (__lock_page_killable(page)) { 2855 /* 2856 * We didn't have the right flags to drop the mmap_lock, 2857 * but all fault_handlers only check for fatal signals 2858 * if we return VM_FAULT_RETRY, so we need to drop the 2859 * mmap_lock here and return 0 if we don't have a fpin. 2860 */ 2861 if (*fpin == NULL) 2862 mmap_read_unlock(vmf->vma->vm_mm); 2863 return 0; 2864 } 2865 } else 2866 __lock_page(page); 2867 return 1; 2868 } 2869 2870 2871 /* 2872 * Synchronous readahead happens when we don't even find a page in the page 2873 * cache at all. We don't want to perform IO under the mmap sem, so if we have 2874 * to drop the mmap sem we return the file that was pinned in order for us to do 2875 * that. If we didn't pin a file then we return NULL. The file that is 2876 * returned needs to be fput()'ed when we're done with it. 2877 */ 2878 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 2879 { 2880 struct file *file = vmf->vma->vm_file; 2881 struct file_ra_state *ra = &file->f_ra; 2882 struct address_space *mapping = file->f_mapping; 2883 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff); 2884 struct file *fpin = NULL; 2885 unsigned int mmap_miss; 2886 2887 /* If we don't want any read-ahead, don't bother */ 2888 if (vmf->vma->vm_flags & VM_RAND_READ) 2889 return fpin; 2890 if (!ra->ra_pages) 2891 return fpin; 2892 2893 if (vmf->vma->vm_flags & VM_SEQ_READ) { 2894 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2895 page_cache_sync_ra(&ractl, ra->ra_pages); 2896 return fpin; 2897 } 2898 2899 /* Avoid banging the cache line if not needed */ 2900 mmap_miss = READ_ONCE(ra->mmap_miss); 2901 if (mmap_miss < MMAP_LOTSAMISS * 10) 2902 WRITE_ONCE(ra->mmap_miss, ++mmap_miss); 2903 2904 /* 2905 * Do we miss much more than hit in this file? If so, 2906 * stop bothering with read-ahead. It will only hurt. 2907 */ 2908 if (mmap_miss > MMAP_LOTSAMISS) 2909 return fpin; 2910 2911 /* 2912 * mmap read-around 2913 */ 2914 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2915 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2); 2916 ra->size = ra->ra_pages; 2917 ra->async_size = ra->ra_pages / 4; 2918 ractl._index = ra->start; 2919 do_page_cache_ra(&ractl, ra->size, ra->async_size); 2920 return fpin; 2921 } 2922 2923 /* 2924 * Asynchronous readahead happens when we find the page and PG_readahead, 2925 * so we want to possibly extend the readahead further. We return the file that 2926 * was pinned if we have to drop the mmap_lock in order to do IO. 2927 */ 2928 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 2929 struct page *page) 2930 { 2931 struct file *file = vmf->vma->vm_file; 2932 struct file_ra_state *ra = &file->f_ra; 2933 struct address_space *mapping = file->f_mapping; 2934 struct file *fpin = NULL; 2935 unsigned int mmap_miss; 2936 pgoff_t offset = vmf->pgoff; 2937 2938 /* If we don't want any read-ahead, don't bother */ 2939 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages) 2940 return fpin; 2941 mmap_miss = READ_ONCE(ra->mmap_miss); 2942 if (mmap_miss) 2943 WRITE_ONCE(ra->mmap_miss, --mmap_miss); 2944 if (PageReadahead(page)) { 2945 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2946 page_cache_async_readahead(mapping, ra, file, 2947 page, offset, ra->ra_pages); 2948 } 2949 return fpin; 2950 } 2951 2952 /** 2953 * filemap_fault - read in file data for page fault handling 2954 * @vmf: struct vm_fault containing details of the fault 2955 * 2956 * filemap_fault() is invoked via the vma operations vector for a 2957 * mapped memory region to read in file data during a page fault. 2958 * 2959 * The goto's are kind of ugly, but this streamlines the normal case of having 2960 * it in the page cache, and handles the special cases reasonably without 2961 * having a lot of duplicated code. 2962 * 2963 * vma->vm_mm->mmap_lock must be held on entry. 2964 * 2965 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock 2966 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap(). 2967 * 2968 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock 2969 * has not been released. 2970 * 2971 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 2972 * 2973 * Return: bitwise-OR of %VM_FAULT_ codes. 2974 */ 2975 vm_fault_t filemap_fault(struct vm_fault *vmf) 2976 { 2977 int error; 2978 struct file *file = vmf->vma->vm_file; 2979 struct file *fpin = NULL; 2980 struct address_space *mapping = file->f_mapping; 2981 struct inode *inode = mapping->host; 2982 pgoff_t offset = vmf->pgoff; 2983 pgoff_t max_off; 2984 struct page *page; 2985 vm_fault_t ret = 0; 2986 2987 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2988 if (unlikely(offset >= max_off)) 2989 return VM_FAULT_SIGBUS; 2990 2991 /* 2992 * Do we have something in the page cache already? 2993 */ 2994 page = find_get_page(mapping, offset); 2995 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { 2996 /* 2997 * We found the page, so try async readahead before 2998 * waiting for the lock. 2999 */ 3000 fpin = do_async_mmap_readahead(vmf, page); 3001 } else if (!page) { 3002 /* No page in the page cache at all */ 3003 count_vm_event(PGMAJFAULT); 3004 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 3005 ret = VM_FAULT_MAJOR; 3006 fpin = do_sync_mmap_readahead(vmf); 3007 retry_find: 3008 page = pagecache_get_page(mapping, offset, 3009 FGP_CREAT|FGP_FOR_MMAP, 3010 vmf->gfp_mask); 3011 if (!page) { 3012 if (fpin) 3013 goto out_retry; 3014 return VM_FAULT_OOM; 3015 } 3016 } 3017 3018 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin)) 3019 goto out_retry; 3020 3021 /* Did it get truncated? */ 3022 if (unlikely(compound_head(page)->mapping != mapping)) { 3023 unlock_page(page); 3024 put_page(page); 3025 goto retry_find; 3026 } 3027 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page); 3028 3029 /* 3030 * We have a locked page in the page cache, now we need to check 3031 * that it's up-to-date. If not, it is going to be due to an error. 3032 */ 3033 if (unlikely(!PageUptodate(page))) 3034 goto page_not_uptodate; 3035 3036 /* 3037 * We've made it this far and we had to drop our mmap_lock, now is the 3038 * time to return to the upper layer and have it re-find the vma and 3039 * redo the fault. 3040 */ 3041 if (fpin) { 3042 unlock_page(page); 3043 goto out_retry; 3044 } 3045 3046 /* 3047 * Found the page and have a reference on it. 3048 * We must recheck i_size under page lock. 3049 */ 3050 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3051 if (unlikely(offset >= max_off)) { 3052 unlock_page(page); 3053 put_page(page); 3054 return VM_FAULT_SIGBUS; 3055 } 3056 3057 vmf->page = page; 3058 return ret | VM_FAULT_LOCKED; 3059 3060 page_not_uptodate: 3061 /* 3062 * Umm, take care of errors if the page isn't up-to-date. 3063 * Try to re-read it _once_. We do this synchronously, 3064 * because there really aren't any performance issues here 3065 * and we need to check for errors. 3066 */ 3067 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3068 error = filemap_read_page(file, mapping, page); 3069 if (fpin) 3070 goto out_retry; 3071 put_page(page); 3072 3073 if (!error || error == AOP_TRUNCATED_PAGE) 3074 goto retry_find; 3075 3076 return VM_FAULT_SIGBUS; 3077 3078 out_retry: 3079 /* 3080 * We dropped the mmap_lock, we need to return to the fault handler to 3081 * re-find the vma and come back and find our hopefully still populated 3082 * page. 3083 */ 3084 if (page) 3085 put_page(page); 3086 if (fpin) 3087 fput(fpin); 3088 return ret | VM_FAULT_RETRY; 3089 } 3090 EXPORT_SYMBOL(filemap_fault); 3091 3092 static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page) 3093 { 3094 struct mm_struct *mm = vmf->vma->vm_mm; 3095 3096 /* Huge page is mapped? No need to proceed. */ 3097 if (pmd_trans_huge(*vmf->pmd)) { 3098 unlock_page(page); 3099 put_page(page); 3100 return true; 3101 } 3102 3103 if (pmd_none(*vmf->pmd) && PageTransHuge(page)) { 3104 vm_fault_t ret = do_set_pmd(vmf, page); 3105 if (!ret) { 3106 /* The page is mapped successfully, reference consumed. */ 3107 unlock_page(page); 3108 return true; 3109 } 3110 } 3111 3112 if (pmd_none(*vmf->pmd)) { 3113 vmf->ptl = pmd_lock(mm, vmf->pmd); 3114 if (likely(pmd_none(*vmf->pmd))) { 3115 mm_inc_nr_ptes(mm); 3116 pmd_populate(mm, vmf->pmd, vmf->prealloc_pte); 3117 vmf->prealloc_pte = NULL; 3118 } 3119 spin_unlock(vmf->ptl); 3120 } 3121 3122 /* See comment in handle_pte_fault() */ 3123 if (pmd_devmap_trans_unstable(vmf->pmd)) { 3124 unlock_page(page); 3125 put_page(page); 3126 return true; 3127 } 3128 3129 return false; 3130 } 3131 3132 static struct page *next_uptodate_page(struct page *page, 3133 struct address_space *mapping, 3134 struct xa_state *xas, pgoff_t end_pgoff) 3135 { 3136 unsigned long max_idx; 3137 3138 do { 3139 if (!page) 3140 return NULL; 3141 if (xas_retry(xas, page)) 3142 continue; 3143 if (xa_is_value(page)) 3144 continue; 3145 if (PageLocked(page)) 3146 continue; 3147 if (!page_cache_get_speculative(page)) 3148 continue; 3149 /* Has the page moved or been split? */ 3150 if (unlikely(page != xas_reload(xas))) 3151 goto skip; 3152 if (!PageUptodate(page) || PageReadahead(page)) 3153 goto skip; 3154 if (PageHWPoison(page)) 3155 goto skip; 3156 if (!trylock_page(page)) 3157 goto skip; 3158 if (page->mapping != mapping) 3159 goto unlock; 3160 if (!PageUptodate(page)) 3161 goto unlock; 3162 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3163 if (xas->xa_index >= max_idx) 3164 goto unlock; 3165 return page; 3166 unlock: 3167 unlock_page(page); 3168 skip: 3169 put_page(page); 3170 } while ((page = xas_next_entry(xas, end_pgoff)) != NULL); 3171 3172 return NULL; 3173 } 3174 3175 static inline struct page *first_map_page(struct address_space *mapping, 3176 struct xa_state *xas, 3177 pgoff_t end_pgoff) 3178 { 3179 return next_uptodate_page(xas_find(xas, end_pgoff), 3180 mapping, xas, end_pgoff); 3181 } 3182 3183 static inline struct page *next_map_page(struct address_space *mapping, 3184 struct xa_state *xas, 3185 pgoff_t end_pgoff) 3186 { 3187 return next_uptodate_page(xas_next_entry(xas, end_pgoff), 3188 mapping, xas, end_pgoff); 3189 } 3190 3191 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3192 pgoff_t start_pgoff, pgoff_t end_pgoff) 3193 { 3194 struct vm_area_struct *vma = vmf->vma; 3195 struct file *file = vma->vm_file; 3196 struct address_space *mapping = file->f_mapping; 3197 pgoff_t last_pgoff = start_pgoff; 3198 unsigned long addr; 3199 XA_STATE(xas, &mapping->i_pages, start_pgoff); 3200 struct page *head, *page; 3201 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss); 3202 vm_fault_t ret = 0; 3203 3204 rcu_read_lock(); 3205 head = first_map_page(mapping, &xas, end_pgoff); 3206 if (!head) 3207 goto out; 3208 3209 if (filemap_map_pmd(vmf, head)) { 3210 ret = VM_FAULT_NOPAGE; 3211 goto out; 3212 } 3213 3214 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT); 3215 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 3216 do { 3217 page = find_subpage(head, xas.xa_index); 3218 if (PageHWPoison(page)) 3219 goto unlock; 3220 3221 if (mmap_miss > 0) 3222 mmap_miss--; 3223 3224 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 3225 vmf->pte += xas.xa_index - last_pgoff; 3226 last_pgoff = xas.xa_index; 3227 3228 if (!pte_none(*vmf->pte)) 3229 goto unlock; 3230 3231 /* We're about to handle the fault */ 3232 if (vmf->address == addr) 3233 ret = VM_FAULT_NOPAGE; 3234 3235 do_set_pte(vmf, page, addr); 3236 /* no need to invalidate: a not-present page won't be cached */ 3237 update_mmu_cache(vma, addr, vmf->pte); 3238 unlock_page(head); 3239 continue; 3240 unlock: 3241 unlock_page(head); 3242 put_page(head); 3243 } while ((head = next_map_page(mapping, &xas, end_pgoff)) != NULL); 3244 pte_unmap_unlock(vmf->pte, vmf->ptl); 3245 out: 3246 rcu_read_unlock(); 3247 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss); 3248 return ret; 3249 } 3250 EXPORT_SYMBOL(filemap_map_pages); 3251 3252 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3253 { 3254 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 3255 struct page *page = vmf->page; 3256 vm_fault_t ret = VM_FAULT_LOCKED; 3257 3258 sb_start_pagefault(mapping->host->i_sb); 3259 file_update_time(vmf->vma->vm_file); 3260 lock_page(page); 3261 if (page->mapping != mapping) { 3262 unlock_page(page); 3263 ret = VM_FAULT_NOPAGE; 3264 goto out; 3265 } 3266 /* 3267 * We mark the page dirty already here so that when freeze is in 3268 * progress, we are guaranteed that writeback during freezing will 3269 * see the dirty page and writeprotect it again. 3270 */ 3271 set_page_dirty(page); 3272 wait_for_stable_page(page); 3273 out: 3274 sb_end_pagefault(mapping->host->i_sb); 3275 return ret; 3276 } 3277 3278 const struct vm_operations_struct generic_file_vm_ops = { 3279 .fault = filemap_fault, 3280 .map_pages = filemap_map_pages, 3281 .page_mkwrite = filemap_page_mkwrite, 3282 }; 3283 3284 /* This is used for a general mmap of a disk file */ 3285 3286 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 3287 { 3288 struct address_space *mapping = file->f_mapping; 3289 3290 if (!mapping->a_ops->readpage) 3291 return -ENOEXEC; 3292 file_accessed(file); 3293 vma->vm_ops = &generic_file_vm_ops; 3294 return 0; 3295 } 3296 3297 /* 3298 * This is for filesystems which do not implement ->writepage. 3299 */ 3300 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3301 { 3302 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 3303 return -EINVAL; 3304 return generic_file_mmap(file, vma); 3305 } 3306 #else 3307 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3308 { 3309 return VM_FAULT_SIGBUS; 3310 } 3311 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 3312 { 3313 return -ENOSYS; 3314 } 3315 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 3316 { 3317 return -ENOSYS; 3318 } 3319 #endif /* CONFIG_MMU */ 3320 3321 EXPORT_SYMBOL(filemap_page_mkwrite); 3322 EXPORT_SYMBOL(generic_file_mmap); 3323 EXPORT_SYMBOL(generic_file_readonly_mmap); 3324 3325 static struct page *wait_on_page_read(struct page *page) 3326 { 3327 if (!IS_ERR(page)) { 3328 wait_on_page_locked(page); 3329 if (!PageUptodate(page)) { 3330 put_page(page); 3331 page = ERR_PTR(-EIO); 3332 } 3333 } 3334 return page; 3335 } 3336 3337 static struct page *do_read_cache_page(struct address_space *mapping, 3338 pgoff_t index, 3339 int (*filler)(void *, struct page *), 3340 void *data, 3341 gfp_t gfp) 3342 { 3343 struct page *page; 3344 int err; 3345 repeat: 3346 page = find_get_page(mapping, index); 3347 if (!page) { 3348 page = __page_cache_alloc(gfp); 3349 if (!page) 3350 return ERR_PTR(-ENOMEM); 3351 err = add_to_page_cache_lru(page, mapping, index, gfp); 3352 if (unlikely(err)) { 3353 put_page(page); 3354 if (err == -EEXIST) 3355 goto repeat; 3356 /* Presumably ENOMEM for xarray node */ 3357 return ERR_PTR(err); 3358 } 3359 3360 filler: 3361 if (filler) 3362 err = filler(data, page); 3363 else 3364 err = mapping->a_ops->readpage(data, page); 3365 3366 if (err < 0) { 3367 put_page(page); 3368 return ERR_PTR(err); 3369 } 3370 3371 page = wait_on_page_read(page); 3372 if (IS_ERR(page)) 3373 return page; 3374 goto out; 3375 } 3376 if (PageUptodate(page)) 3377 goto out; 3378 3379 /* 3380 * Page is not up to date and may be locked due to one of the following 3381 * case a: Page is being filled and the page lock is held 3382 * case b: Read/write error clearing the page uptodate status 3383 * case c: Truncation in progress (page locked) 3384 * case d: Reclaim in progress 3385 * 3386 * Case a, the page will be up to date when the page is unlocked. 3387 * There is no need to serialise on the page lock here as the page 3388 * is pinned so the lock gives no additional protection. Even if the 3389 * page is truncated, the data is still valid if PageUptodate as 3390 * it's a race vs truncate race. 3391 * Case b, the page will not be up to date 3392 * Case c, the page may be truncated but in itself, the data may still 3393 * be valid after IO completes as it's a read vs truncate race. The 3394 * operation must restart if the page is not uptodate on unlock but 3395 * otherwise serialising on page lock to stabilise the mapping gives 3396 * no additional guarantees to the caller as the page lock is 3397 * released before return. 3398 * Case d, similar to truncation. If reclaim holds the page lock, it 3399 * will be a race with remove_mapping that determines if the mapping 3400 * is valid on unlock but otherwise the data is valid and there is 3401 * no need to serialise with page lock. 3402 * 3403 * As the page lock gives no additional guarantee, we optimistically 3404 * wait on the page to be unlocked and check if it's up to date and 3405 * use the page if it is. Otherwise, the page lock is required to 3406 * distinguish between the different cases. The motivation is that we 3407 * avoid spurious serialisations and wakeups when multiple processes 3408 * wait on the same page for IO to complete. 3409 */ 3410 wait_on_page_locked(page); 3411 if (PageUptodate(page)) 3412 goto out; 3413 3414 /* Distinguish between all the cases under the safety of the lock */ 3415 lock_page(page); 3416 3417 /* Case c or d, restart the operation */ 3418 if (!page->mapping) { 3419 unlock_page(page); 3420 put_page(page); 3421 goto repeat; 3422 } 3423 3424 /* Someone else locked and filled the page in a very small window */ 3425 if (PageUptodate(page)) { 3426 unlock_page(page); 3427 goto out; 3428 } 3429 3430 /* 3431 * A previous I/O error may have been due to temporary 3432 * failures. 3433 * Clear page error before actual read, PG_error will be 3434 * set again if read page fails. 3435 */ 3436 ClearPageError(page); 3437 goto filler; 3438 3439 out: 3440 mark_page_accessed(page); 3441 return page; 3442 } 3443 3444 /** 3445 * read_cache_page - read into page cache, fill it if needed 3446 * @mapping: the page's address_space 3447 * @index: the page index 3448 * @filler: function to perform the read 3449 * @data: first arg to filler(data, page) function, often left as NULL 3450 * 3451 * Read into the page cache. If a page already exists, and PageUptodate() is 3452 * not set, try to fill the page and wait for it to become unlocked. 3453 * 3454 * If the page does not get brought uptodate, return -EIO. 3455 * 3456 * Return: up to date page on success, ERR_PTR() on failure. 3457 */ 3458 struct page *read_cache_page(struct address_space *mapping, 3459 pgoff_t index, 3460 int (*filler)(void *, struct page *), 3461 void *data) 3462 { 3463 return do_read_cache_page(mapping, index, filler, data, 3464 mapping_gfp_mask(mapping)); 3465 } 3466 EXPORT_SYMBOL(read_cache_page); 3467 3468 /** 3469 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 3470 * @mapping: the page's address_space 3471 * @index: the page index 3472 * @gfp: the page allocator flags to use if allocating 3473 * 3474 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 3475 * any new page allocations done using the specified allocation flags. 3476 * 3477 * If the page does not get brought uptodate, return -EIO. 3478 * 3479 * Return: up to date page on success, ERR_PTR() on failure. 3480 */ 3481 struct page *read_cache_page_gfp(struct address_space *mapping, 3482 pgoff_t index, 3483 gfp_t gfp) 3484 { 3485 return do_read_cache_page(mapping, index, NULL, NULL, gfp); 3486 } 3487 EXPORT_SYMBOL(read_cache_page_gfp); 3488 3489 int pagecache_write_begin(struct file *file, struct address_space *mapping, 3490 loff_t pos, unsigned len, unsigned flags, 3491 struct page **pagep, void **fsdata) 3492 { 3493 const struct address_space_operations *aops = mapping->a_ops; 3494 3495 return aops->write_begin(file, mapping, pos, len, flags, 3496 pagep, fsdata); 3497 } 3498 EXPORT_SYMBOL(pagecache_write_begin); 3499 3500 int pagecache_write_end(struct file *file, struct address_space *mapping, 3501 loff_t pos, unsigned len, unsigned copied, 3502 struct page *page, void *fsdata) 3503 { 3504 const struct address_space_operations *aops = mapping->a_ops; 3505 3506 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 3507 } 3508 EXPORT_SYMBOL(pagecache_write_end); 3509 3510 /* 3511 * Warn about a page cache invalidation failure during a direct I/O write. 3512 */ 3513 void dio_warn_stale_pagecache(struct file *filp) 3514 { 3515 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 3516 char pathname[128]; 3517 char *path; 3518 3519 errseq_set(&filp->f_mapping->wb_err, -EIO); 3520 if (__ratelimit(&_rs)) { 3521 path = file_path(filp, pathname, sizeof(pathname)); 3522 if (IS_ERR(path)) 3523 path = "(unknown)"; 3524 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); 3525 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, 3526 current->comm); 3527 } 3528 } 3529 3530 ssize_t 3531 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 3532 { 3533 struct file *file = iocb->ki_filp; 3534 struct address_space *mapping = file->f_mapping; 3535 struct inode *inode = mapping->host; 3536 loff_t pos = iocb->ki_pos; 3537 ssize_t written; 3538 size_t write_len; 3539 pgoff_t end; 3540 3541 write_len = iov_iter_count(from); 3542 end = (pos + write_len - 1) >> PAGE_SHIFT; 3543 3544 if (iocb->ki_flags & IOCB_NOWAIT) { 3545 /* If there are pages to writeback, return */ 3546 if (filemap_range_has_page(file->f_mapping, pos, 3547 pos + write_len - 1)) 3548 return -EAGAIN; 3549 } else { 3550 written = filemap_write_and_wait_range(mapping, pos, 3551 pos + write_len - 1); 3552 if (written) 3553 goto out; 3554 } 3555 3556 /* 3557 * After a write we want buffered reads to be sure to go to disk to get 3558 * the new data. We invalidate clean cached page from the region we're 3559 * about to write. We do this *before* the write so that we can return 3560 * without clobbering -EIOCBQUEUED from ->direct_IO(). 3561 */ 3562 written = invalidate_inode_pages2_range(mapping, 3563 pos >> PAGE_SHIFT, end); 3564 /* 3565 * If a page can not be invalidated, return 0 to fall back 3566 * to buffered write. 3567 */ 3568 if (written) { 3569 if (written == -EBUSY) 3570 return 0; 3571 goto out; 3572 } 3573 3574 written = mapping->a_ops->direct_IO(iocb, from); 3575 3576 /* 3577 * Finally, try again to invalidate clean pages which might have been 3578 * cached by non-direct readahead, or faulted in by get_user_pages() 3579 * if the source of the write was an mmap'ed region of the file 3580 * we're writing. Either one is a pretty crazy thing to do, 3581 * so we don't support it 100%. If this invalidation 3582 * fails, tough, the write still worked... 3583 * 3584 * Most of the time we do not need this since dio_complete() will do 3585 * the invalidation for us. However there are some file systems that 3586 * do not end up with dio_complete() being called, so let's not break 3587 * them by removing it completely. 3588 * 3589 * Noticeable example is a blkdev_direct_IO(). 3590 * 3591 * Skip invalidation for async writes or if mapping has no pages. 3592 */ 3593 if (written > 0 && mapping->nrpages && 3594 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end)) 3595 dio_warn_stale_pagecache(file); 3596 3597 if (written > 0) { 3598 pos += written; 3599 write_len -= written; 3600 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 3601 i_size_write(inode, pos); 3602 mark_inode_dirty(inode); 3603 } 3604 iocb->ki_pos = pos; 3605 } 3606 if (written != -EIOCBQUEUED) 3607 iov_iter_revert(from, write_len - iov_iter_count(from)); 3608 out: 3609 return written; 3610 } 3611 EXPORT_SYMBOL(generic_file_direct_write); 3612 3613 /* 3614 * Find or create a page at the given pagecache position. Return the locked 3615 * page. This function is specifically for buffered writes. 3616 */ 3617 struct page *grab_cache_page_write_begin(struct address_space *mapping, 3618 pgoff_t index, unsigned flags) 3619 { 3620 struct page *page; 3621 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT; 3622 3623 if (flags & AOP_FLAG_NOFS) 3624 fgp_flags |= FGP_NOFS; 3625 3626 page = pagecache_get_page(mapping, index, fgp_flags, 3627 mapping_gfp_mask(mapping)); 3628 if (page) 3629 wait_for_stable_page(page); 3630 3631 return page; 3632 } 3633 EXPORT_SYMBOL(grab_cache_page_write_begin); 3634 3635 ssize_t generic_perform_write(struct file *file, 3636 struct iov_iter *i, loff_t pos) 3637 { 3638 struct address_space *mapping = file->f_mapping; 3639 const struct address_space_operations *a_ops = mapping->a_ops; 3640 long status = 0; 3641 ssize_t written = 0; 3642 unsigned int flags = 0; 3643 3644 do { 3645 struct page *page; 3646 unsigned long offset; /* Offset into pagecache page */ 3647 unsigned long bytes; /* Bytes to write to page */ 3648 size_t copied; /* Bytes copied from user */ 3649 void *fsdata; 3650 3651 offset = (pos & (PAGE_SIZE - 1)); 3652 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3653 iov_iter_count(i)); 3654 3655 again: 3656 /* 3657 * Bring in the user page that we will copy from _first_. 3658 * Otherwise there's a nasty deadlock on copying from the 3659 * same page as we're writing to, without it being marked 3660 * up-to-date. 3661 * 3662 * Not only is this an optimisation, but it is also required 3663 * to check that the address is actually valid, when atomic 3664 * usercopies are used, below. 3665 */ 3666 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 3667 status = -EFAULT; 3668 break; 3669 } 3670 3671 if (fatal_signal_pending(current)) { 3672 status = -EINTR; 3673 break; 3674 } 3675 3676 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 3677 &page, &fsdata); 3678 if (unlikely(status < 0)) 3679 break; 3680 3681 if (mapping_writably_mapped(mapping)) 3682 flush_dcache_page(page); 3683 3684 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 3685 flush_dcache_page(page); 3686 3687 status = a_ops->write_end(file, mapping, pos, bytes, copied, 3688 page, fsdata); 3689 if (unlikely(status < 0)) 3690 break; 3691 copied = status; 3692 3693 cond_resched(); 3694 3695 iov_iter_advance(i, copied); 3696 if (unlikely(copied == 0)) { 3697 /* 3698 * If we were unable to copy any data at all, we must 3699 * fall back to a single segment length write. 3700 * 3701 * If we didn't fallback here, we could livelock 3702 * because not all segments in the iov can be copied at 3703 * once without a pagefault. 3704 */ 3705 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3706 iov_iter_single_seg_count(i)); 3707 goto again; 3708 } 3709 pos += copied; 3710 written += copied; 3711 3712 balance_dirty_pages_ratelimited(mapping); 3713 } while (iov_iter_count(i)); 3714 3715 return written ? written : status; 3716 } 3717 EXPORT_SYMBOL(generic_perform_write); 3718 3719 /** 3720 * __generic_file_write_iter - write data to a file 3721 * @iocb: IO state structure (file, offset, etc.) 3722 * @from: iov_iter with data to write 3723 * 3724 * This function does all the work needed for actually writing data to a 3725 * file. It does all basic checks, removes SUID from the file, updates 3726 * modification times and calls proper subroutines depending on whether we 3727 * do direct IO or a standard buffered write. 3728 * 3729 * It expects i_mutex to be grabbed unless we work on a block device or similar 3730 * object which does not need locking at all. 3731 * 3732 * This function does *not* take care of syncing data in case of O_SYNC write. 3733 * A caller has to handle it. This is mainly due to the fact that we want to 3734 * avoid syncing under i_mutex. 3735 * 3736 * Return: 3737 * * number of bytes written, even for truncated writes 3738 * * negative error code if no data has been written at all 3739 */ 3740 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3741 { 3742 struct file *file = iocb->ki_filp; 3743 struct address_space * mapping = file->f_mapping; 3744 struct inode *inode = mapping->host; 3745 ssize_t written = 0; 3746 ssize_t err; 3747 ssize_t status; 3748 3749 /* We can write back this queue in page reclaim */ 3750 current->backing_dev_info = inode_to_bdi(inode); 3751 err = file_remove_privs(file); 3752 if (err) 3753 goto out; 3754 3755 err = file_update_time(file); 3756 if (err) 3757 goto out; 3758 3759 if (iocb->ki_flags & IOCB_DIRECT) { 3760 loff_t pos, endbyte; 3761 3762 written = generic_file_direct_write(iocb, from); 3763 /* 3764 * If the write stopped short of completing, fall back to 3765 * buffered writes. Some filesystems do this for writes to 3766 * holes, for example. For DAX files, a buffered write will 3767 * not succeed (even if it did, DAX does not handle dirty 3768 * page-cache pages correctly). 3769 */ 3770 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) 3771 goto out; 3772 3773 status = generic_perform_write(file, from, pos = iocb->ki_pos); 3774 /* 3775 * If generic_perform_write() returned a synchronous error 3776 * then we want to return the number of bytes which were 3777 * direct-written, or the error code if that was zero. Note 3778 * that this differs from normal direct-io semantics, which 3779 * will return -EFOO even if some bytes were written. 3780 */ 3781 if (unlikely(status < 0)) { 3782 err = status; 3783 goto out; 3784 } 3785 /* 3786 * We need to ensure that the page cache pages are written to 3787 * disk and invalidated to preserve the expected O_DIRECT 3788 * semantics. 3789 */ 3790 endbyte = pos + status - 1; 3791 err = filemap_write_and_wait_range(mapping, pos, endbyte); 3792 if (err == 0) { 3793 iocb->ki_pos = endbyte + 1; 3794 written += status; 3795 invalidate_mapping_pages(mapping, 3796 pos >> PAGE_SHIFT, 3797 endbyte >> PAGE_SHIFT); 3798 } else { 3799 /* 3800 * We don't know how much we wrote, so just return 3801 * the number of bytes which were direct-written 3802 */ 3803 } 3804 } else { 3805 written = generic_perform_write(file, from, iocb->ki_pos); 3806 if (likely(written > 0)) 3807 iocb->ki_pos += written; 3808 } 3809 out: 3810 current->backing_dev_info = NULL; 3811 return written ? written : err; 3812 } 3813 EXPORT_SYMBOL(__generic_file_write_iter); 3814 3815 /** 3816 * generic_file_write_iter - write data to a file 3817 * @iocb: IO state structure 3818 * @from: iov_iter with data to write 3819 * 3820 * This is a wrapper around __generic_file_write_iter() to be used by most 3821 * filesystems. It takes care of syncing the file in case of O_SYNC file 3822 * and acquires i_mutex as needed. 3823 * Return: 3824 * * negative error code if no data has been written at all of 3825 * vfs_fsync_range() failed for a synchronous write 3826 * * number of bytes written, even for truncated writes 3827 */ 3828 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3829 { 3830 struct file *file = iocb->ki_filp; 3831 struct inode *inode = file->f_mapping->host; 3832 ssize_t ret; 3833 3834 inode_lock(inode); 3835 ret = generic_write_checks(iocb, from); 3836 if (ret > 0) 3837 ret = __generic_file_write_iter(iocb, from); 3838 inode_unlock(inode); 3839 3840 if (ret > 0) 3841 ret = generic_write_sync(iocb, ret); 3842 return ret; 3843 } 3844 EXPORT_SYMBOL(generic_file_write_iter); 3845 3846 /** 3847 * try_to_release_page() - release old fs-specific metadata on a page 3848 * 3849 * @page: the page which the kernel is trying to free 3850 * @gfp_mask: memory allocation flags (and I/O mode) 3851 * 3852 * The address_space is to try to release any data against the page 3853 * (presumably at page->private). 3854 * 3855 * This may also be called if PG_fscache is set on a page, indicating that the 3856 * page is known to the local caching routines. 3857 * 3858 * The @gfp_mask argument specifies whether I/O may be performed to release 3859 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS). 3860 * 3861 * Return: %1 if the release was successful, otherwise return zero. 3862 */ 3863 int try_to_release_page(struct page *page, gfp_t gfp_mask) 3864 { 3865 struct address_space * const mapping = page->mapping; 3866 3867 BUG_ON(!PageLocked(page)); 3868 if (PageWriteback(page)) 3869 return 0; 3870 3871 if (mapping && mapping->a_ops->releasepage) 3872 return mapping->a_ops->releasepage(page, gfp_mask); 3873 return try_to_free_buffers(page); 3874 } 3875 3876 EXPORT_SYMBOL(try_to_release_page); 3877