xref: /linux/mm/filemap.c (revision 9009b455811b0fa1f6b0adfa94db136984db5a38)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/mm/filemap.c
4  *
5  * Copyright (C) 1994-1999  Linus Torvalds
6  */
7 
8 /*
9  * This file handles the generic file mmap semantics used by
10  * most "normal" filesystems (but you don't /have/ to use this:
11  * the NFS filesystem used to do this differently, for example)
12  */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/mman.h>
25 #include <linux/pagemap.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/error-injection.h>
29 #include <linux/hash.h>
30 #include <linux/writeback.h>
31 #include <linux/backing-dev.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/cleancache.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include <linux/page_idle.h>
45 #include <asm/pgalloc.h>
46 #include <asm/tlbflush.h>
47 #include "internal.h"
48 
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/filemap.h>
51 
52 /*
53  * FIXME: remove all knowledge of the buffer layer from the core VM
54  */
55 #include <linux/buffer_head.h> /* for try_to_free_buffers */
56 
57 #include <asm/mman.h>
58 
59 /*
60  * Shared mappings implemented 30.11.1994. It's not fully working yet,
61  * though.
62  *
63  * Shared mappings now work. 15.8.1995  Bruno.
64  *
65  * finished 'unifying' the page and buffer cache and SMP-threaded the
66  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
67  *
68  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
69  */
70 
71 /*
72  * Lock ordering:
73  *
74  *  ->i_mmap_rwsem		(truncate_pagecache)
75  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
76  *      ->swap_lock		(exclusive_swap_page, others)
77  *        ->i_pages lock
78  *
79  *  ->i_mutex
80  *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
81  *
82  *  ->mmap_lock
83  *    ->i_mmap_rwsem
84  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
85  *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
86  *
87  *  ->mmap_lock
88  *    ->lock_page		(access_process_vm)
89  *
90  *  ->i_mutex			(generic_perform_write)
91  *    ->mmap_lock		(fault_in_pages_readable->do_page_fault)
92  *
93  *  bdi->wb.list_lock
94  *    sb_lock			(fs/fs-writeback.c)
95  *    ->i_pages lock		(__sync_single_inode)
96  *
97  *  ->i_mmap_rwsem
98  *    ->anon_vma.lock		(vma_adjust)
99  *
100  *  ->anon_vma.lock
101  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
102  *
103  *  ->page_table_lock or pte_lock
104  *    ->swap_lock		(try_to_unmap_one)
105  *    ->private_lock		(try_to_unmap_one)
106  *    ->i_pages lock		(try_to_unmap_one)
107  *    ->lruvec->lru_lock	(follow_page->mark_page_accessed)
108  *    ->lruvec->lru_lock	(check_pte_range->isolate_lru_page)
109  *    ->private_lock		(page_remove_rmap->set_page_dirty)
110  *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
111  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
112  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
113  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
114  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
115  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
116  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
117  *
118  * ->i_mmap_rwsem
119  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
120  */
121 
122 static void page_cache_delete(struct address_space *mapping,
123 				   struct page *page, void *shadow)
124 {
125 	XA_STATE(xas, &mapping->i_pages, page->index);
126 	unsigned int nr = 1;
127 
128 	mapping_set_update(&xas, mapping);
129 
130 	/* hugetlb pages are represented by a single entry in the xarray */
131 	if (!PageHuge(page)) {
132 		xas_set_order(&xas, page->index, compound_order(page));
133 		nr = compound_nr(page);
134 	}
135 
136 	VM_BUG_ON_PAGE(!PageLocked(page), page);
137 	VM_BUG_ON_PAGE(PageTail(page), page);
138 	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
139 
140 	xas_store(&xas, shadow);
141 	xas_init_marks(&xas);
142 
143 	page->mapping = NULL;
144 	/* Leave page->index set: truncation lookup relies upon it */
145 
146 	if (shadow) {
147 		mapping->nrexceptional += nr;
148 		/*
149 		 * Make sure the nrexceptional update is committed before
150 		 * the nrpages update so that final truncate racing
151 		 * with reclaim does not see both counters 0 at the
152 		 * same time and miss a shadow entry.
153 		 */
154 		smp_wmb();
155 	}
156 	mapping->nrpages -= nr;
157 }
158 
159 static void unaccount_page_cache_page(struct address_space *mapping,
160 				      struct page *page)
161 {
162 	int nr;
163 
164 	/*
165 	 * if we're uptodate, flush out into the cleancache, otherwise
166 	 * invalidate any existing cleancache entries.  We can't leave
167 	 * stale data around in the cleancache once our page is gone
168 	 */
169 	if (PageUptodate(page) && PageMappedToDisk(page))
170 		cleancache_put_page(page);
171 	else
172 		cleancache_invalidate_page(mapping, page);
173 
174 	VM_BUG_ON_PAGE(PageTail(page), page);
175 	VM_BUG_ON_PAGE(page_mapped(page), page);
176 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
177 		int mapcount;
178 
179 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
180 			 current->comm, page_to_pfn(page));
181 		dump_page(page, "still mapped when deleted");
182 		dump_stack();
183 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
184 
185 		mapcount = page_mapcount(page);
186 		if (mapping_exiting(mapping) &&
187 		    page_count(page) >= mapcount + 2) {
188 			/*
189 			 * All vmas have already been torn down, so it's
190 			 * a good bet that actually the page is unmapped,
191 			 * and we'd prefer not to leak it: if we're wrong,
192 			 * some other bad page check should catch it later.
193 			 */
194 			page_mapcount_reset(page);
195 			page_ref_sub(page, mapcount);
196 		}
197 	}
198 
199 	/* hugetlb pages do not participate in page cache accounting. */
200 	if (PageHuge(page))
201 		return;
202 
203 	nr = thp_nr_pages(page);
204 
205 	__mod_lruvec_page_state(page, NR_FILE_PAGES, -nr);
206 	if (PageSwapBacked(page)) {
207 		__mod_lruvec_page_state(page, NR_SHMEM, -nr);
208 		if (PageTransHuge(page))
209 			__mod_lruvec_page_state(page, NR_SHMEM_THPS, -nr);
210 	} else if (PageTransHuge(page)) {
211 		__mod_lruvec_page_state(page, NR_FILE_THPS, -nr);
212 		filemap_nr_thps_dec(mapping);
213 	}
214 
215 	/*
216 	 * At this point page must be either written or cleaned by
217 	 * truncate.  Dirty page here signals a bug and loss of
218 	 * unwritten data.
219 	 *
220 	 * This fixes dirty accounting after removing the page entirely
221 	 * but leaves PageDirty set: it has no effect for truncated
222 	 * page and anyway will be cleared before returning page into
223 	 * buddy allocator.
224 	 */
225 	if (WARN_ON_ONCE(PageDirty(page)))
226 		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
227 }
228 
229 /*
230  * Delete a page from the page cache and free it. Caller has to make
231  * sure the page is locked and that nobody else uses it - or that usage
232  * is safe.  The caller must hold the i_pages lock.
233  */
234 void __delete_from_page_cache(struct page *page, void *shadow)
235 {
236 	struct address_space *mapping = page->mapping;
237 
238 	trace_mm_filemap_delete_from_page_cache(page);
239 
240 	unaccount_page_cache_page(mapping, page);
241 	page_cache_delete(mapping, page, shadow);
242 }
243 
244 static void page_cache_free_page(struct address_space *mapping,
245 				struct page *page)
246 {
247 	void (*freepage)(struct page *);
248 
249 	freepage = mapping->a_ops->freepage;
250 	if (freepage)
251 		freepage(page);
252 
253 	if (PageTransHuge(page) && !PageHuge(page)) {
254 		page_ref_sub(page, thp_nr_pages(page));
255 		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
256 	} else {
257 		put_page(page);
258 	}
259 }
260 
261 /**
262  * delete_from_page_cache - delete page from page cache
263  * @page: the page which the kernel is trying to remove from page cache
264  *
265  * This must be called only on pages that have been verified to be in the page
266  * cache and locked.  It will never put the page into the free list, the caller
267  * has a reference on the page.
268  */
269 void delete_from_page_cache(struct page *page)
270 {
271 	struct address_space *mapping = page_mapping(page);
272 	unsigned long flags;
273 
274 	BUG_ON(!PageLocked(page));
275 	xa_lock_irqsave(&mapping->i_pages, flags);
276 	__delete_from_page_cache(page, NULL);
277 	xa_unlock_irqrestore(&mapping->i_pages, flags);
278 
279 	page_cache_free_page(mapping, page);
280 }
281 EXPORT_SYMBOL(delete_from_page_cache);
282 
283 /*
284  * page_cache_delete_batch - delete several pages from page cache
285  * @mapping: the mapping to which pages belong
286  * @pvec: pagevec with pages to delete
287  *
288  * The function walks over mapping->i_pages and removes pages passed in @pvec
289  * from the mapping. The function expects @pvec to be sorted by page index
290  * and is optimised for it to be dense.
291  * It tolerates holes in @pvec (mapping entries at those indices are not
292  * modified). The function expects only THP head pages to be present in the
293  * @pvec.
294  *
295  * The function expects the i_pages lock to be held.
296  */
297 static void page_cache_delete_batch(struct address_space *mapping,
298 			     struct pagevec *pvec)
299 {
300 	XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
301 	int total_pages = 0;
302 	int i = 0;
303 	struct page *page;
304 
305 	mapping_set_update(&xas, mapping);
306 	xas_for_each(&xas, page, ULONG_MAX) {
307 		if (i >= pagevec_count(pvec))
308 			break;
309 
310 		/* A swap/dax/shadow entry got inserted? Skip it. */
311 		if (xa_is_value(page))
312 			continue;
313 		/*
314 		 * A page got inserted in our range? Skip it. We have our
315 		 * pages locked so they are protected from being removed.
316 		 * If we see a page whose index is higher than ours, it
317 		 * means our page has been removed, which shouldn't be
318 		 * possible because we're holding the PageLock.
319 		 */
320 		if (page != pvec->pages[i]) {
321 			VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
322 					page);
323 			continue;
324 		}
325 
326 		WARN_ON_ONCE(!PageLocked(page));
327 
328 		if (page->index == xas.xa_index)
329 			page->mapping = NULL;
330 		/* Leave page->index set: truncation lookup relies on it */
331 
332 		/*
333 		 * Move to the next page in the vector if this is a regular
334 		 * page or the index is of the last sub-page of this compound
335 		 * page.
336 		 */
337 		if (page->index + compound_nr(page) - 1 == xas.xa_index)
338 			i++;
339 		xas_store(&xas, NULL);
340 		total_pages++;
341 	}
342 	mapping->nrpages -= total_pages;
343 }
344 
345 void delete_from_page_cache_batch(struct address_space *mapping,
346 				  struct pagevec *pvec)
347 {
348 	int i;
349 	unsigned long flags;
350 
351 	if (!pagevec_count(pvec))
352 		return;
353 
354 	xa_lock_irqsave(&mapping->i_pages, flags);
355 	for (i = 0; i < pagevec_count(pvec); i++) {
356 		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
357 
358 		unaccount_page_cache_page(mapping, pvec->pages[i]);
359 	}
360 	page_cache_delete_batch(mapping, pvec);
361 	xa_unlock_irqrestore(&mapping->i_pages, flags);
362 
363 	for (i = 0; i < pagevec_count(pvec); i++)
364 		page_cache_free_page(mapping, pvec->pages[i]);
365 }
366 
367 int filemap_check_errors(struct address_space *mapping)
368 {
369 	int ret = 0;
370 	/* Check for outstanding write errors */
371 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
372 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
373 		ret = -ENOSPC;
374 	if (test_bit(AS_EIO, &mapping->flags) &&
375 	    test_and_clear_bit(AS_EIO, &mapping->flags))
376 		ret = -EIO;
377 	return ret;
378 }
379 EXPORT_SYMBOL(filemap_check_errors);
380 
381 static int filemap_check_and_keep_errors(struct address_space *mapping)
382 {
383 	/* Check for outstanding write errors */
384 	if (test_bit(AS_EIO, &mapping->flags))
385 		return -EIO;
386 	if (test_bit(AS_ENOSPC, &mapping->flags))
387 		return -ENOSPC;
388 	return 0;
389 }
390 
391 /**
392  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
393  * @mapping:	address space structure to write
394  * @start:	offset in bytes where the range starts
395  * @end:	offset in bytes where the range ends (inclusive)
396  * @sync_mode:	enable synchronous operation
397  *
398  * Start writeback against all of a mapping's dirty pages that lie
399  * within the byte offsets <start, end> inclusive.
400  *
401  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
402  * opposed to a regular memory cleansing writeback.  The difference between
403  * these two operations is that if a dirty page/buffer is encountered, it must
404  * be waited upon, and not just skipped over.
405  *
406  * Return: %0 on success, negative error code otherwise.
407  */
408 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
409 				loff_t end, int sync_mode)
410 {
411 	int ret;
412 	struct writeback_control wbc = {
413 		.sync_mode = sync_mode,
414 		.nr_to_write = LONG_MAX,
415 		.range_start = start,
416 		.range_end = end,
417 	};
418 
419 	if (!mapping_can_writeback(mapping) ||
420 	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
421 		return 0;
422 
423 	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
424 	ret = do_writepages(mapping, &wbc);
425 	wbc_detach_inode(&wbc);
426 	return ret;
427 }
428 
429 static inline int __filemap_fdatawrite(struct address_space *mapping,
430 	int sync_mode)
431 {
432 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
433 }
434 
435 int filemap_fdatawrite(struct address_space *mapping)
436 {
437 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
438 }
439 EXPORT_SYMBOL(filemap_fdatawrite);
440 
441 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
442 				loff_t end)
443 {
444 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
445 }
446 EXPORT_SYMBOL(filemap_fdatawrite_range);
447 
448 /**
449  * filemap_flush - mostly a non-blocking flush
450  * @mapping:	target address_space
451  *
452  * This is a mostly non-blocking flush.  Not suitable for data-integrity
453  * purposes - I/O may not be started against all dirty pages.
454  *
455  * Return: %0 on success, negative error code otherwise.
456  */
457 int filemap_flush(struct address_space *mapping)
458 {
459 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
460 }
461 EXPORT_SYMBOL(filemap_flush);
462 
463 /**
464  * filemap_range_has_page - check if a page exists in range.
465  * @mapping:           address space within which to check
466  * @start_byte:        offset in bytes where the range starts
467  * @end_byte:          offset in bytes where the range ends (inclusive)
468  *
469  * Find at least one page in the range supplied, usually used to check if
470  * direct writing in this range will trigger a writeback.
471  *
472  * Return: %true if at least one page exists in the specified range,
473  * %false otherwise.
474  */
475 bool filemap_range_has_page(struct address_space *mapping,
476 			   loff_t start_byte, loff_t end_byte)
477 {
478 	struct page *page;
479 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
480 	pgoff_t max = end_byte >> PAGE_SHIFT;
481 
482 	if (end_byte < start_byte)
483 		return false;
484 
485 	rcu_read_lock();
486 	for (;;) {
487 		page = xas_find(&xas, max);
488 		if (xas_retry(&xas, page))
489 			continue;
490 		/* Shadow entries don't count */
491 		if (xa_is_value(page))
492 			continue;
493 		/*
494 		 * We don't need to try to pin this page; we're about to
495 		 * release the RCU lock anyway.  It is enough to know that
496 		 * there was a page here recently.
497 		 */
498 		break;
499 	}
500 	rcu_read_unlock();
501 
502 	return page != NULL;
503 }
504 EXPORT_SYMBOL(filemap_range_has_page);
505 
506 static void __filemap_fdatawait_range(struct address_space *mapping,
507 				     loff_t start_byte, loff_t end_byte)
508 {
509 	pgoff_t index = start_byte >> PAGE_SHIFT;
510 	pgoff_t end = end_byte >> PAGE_SHIFT;
511 	struct pagevec pvec;
512 	int nr_pages;
513 
514 	if (end_byte < start_byte)
515 		return;
516 
517 	pagevec_init(&pvec);
518 	while (index <= end) {
519 		unsigned i;
520 
521 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
522 				end, PAGECACHE_TAG_WRITEBACK);
523 		if (!nr_pages)
524 			break;
525 
526 		for (i = 0; i < nr_pages; i++) {
527 			struct page *page = pvec.pages[i];
528 
529 			wait_on_page_writeback(page);
530 			ClearPageError(page);
531 		}
532 		pagevec_release(&pvec);
533 		cond_resched();
534 	}
535 }
536 
537 /**
538  * filemap_fdatawait_range - wait for writeback to complete
539  * @mapping:		address space structure to wait for
540  * @start_byte:		offset in bytes where the range starts
541  * @end_byte:		offset in bytes where the range ends (inclusive)
542  *
543  * Walk the list of under-writeback pages of the given address space
544  * in the given range and wait for all of them.  Check error status of
545  * the address space and return it.
546  *
547  * Since the error status of the address space is cleared by this function,
548  * callers are responsible for checking the return value and handling and/or
549  * reporting the error.
550  *
551  * Return: error status of the address space.
552  */
553 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
554 			    loff_t end_byte)
555 {
556 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
557 	return filemap_check_errors(mapping);
558 }
559 EXPORT_SYMBOL(filemap_fdatawait_range);
560 
561 /**
562  * filemap_fdatawait_range_keep_errors - wait for writeback to complete
563  * @mapping:		address space structure to wait for
564  * @start_byte:		offset in bytes where the range starts
565  * @end_byte:		offset in bytes where the range ends (inclusive)
566  *
567  * Walk the list of under-writeback pages of the given address space in the
568  * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
569  * this function does not clear error status of the address space.
570  *
571  * Use this function if callers don't handle errors themselves.  Expected
572  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
573  * fsfreeze(8)
574  */
575 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
576 		loff_t start_byte, loff_t end_byte)
577 {
578 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
579 	return filemap_check_and_keep_errors(mapping);
580 }
581 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
582 
583 /**
584  * file_fdatawait_range - wait for writeback to complete
585  * @file:		file pointing to address space structure to wait for
586  * @start_byte:		offset in bytes where the range starts
587  * @end_byte:		offset in bytes where the range ends (inclusive)
588  *
589  * Walk the list of under-writeback pages of the address space that file
590  * refers to, in the given range and wait for all of them.  Check error
591  * status of the address space vs. the file->f_wb_err cursor and return it.
592  *
593  * Since the error status of the file is advanced by this function,
594  * callers are responsible for checking the return value and handling and/or
595  * reporting the error.
596  *
597  * Return: error status of the address space vs. the file->f_wb_err cursor.
598  */
599 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
600 {
601 	struct address_space *mapping = file->f_mapping;
602 
603 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
604 	return file_check_and_advance_wb_err(file);
605 }
606 EXPORT_SYMBOL(file_fdatawait_range);
607 
608 /**
609  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
610  * @mapping: address space structure to wait for
611  *
612  * Walk the list of under-writeback pages of the given address space
613  * and wait for all of them.  Unlike filemap_fdatawait(), this function
614  * does not clear error status of the address space.
615  *
616  * Use this function if callers don't handle errors themselves.  Expected
617  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
618  * fsfreeze(8)
619  *
620  * Return: error status of the address space.
621  */
622 int filemap_fdatawait_keep_errors(struct address_space *mapping)
623 {
624 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
625 	return filemap_check_and_keep_errors(mapping);
626 }
627 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
628 
629 /* Returns true if writeback might be needed or already in progress. */
630 static bool mapping_needs_writeback(struct address_space *mapping)
631 {
632 	if (dax_mapping(mapping))
633 		return mapping->nrexceptional;
634 
635 	return mapping->nrpages;
636 }
637 
638 /**
639  * filemap_range_needs_writeback - check if range potentially needs writeback
640  * @mapping:           address space within which to check
641  * @start_byte:        offset in bytes where the range starts
642  * @end_byte:          offset in bytes where the range ends (inclusive)
643  *
644  * Find at least one page in the range supplied, usually used to check if
645  * direct writing in this range will trigger a writeback. Used by O_DIRECT
646  * read/write with IOCB_NOWAIT, to see if the caller needs to do
647  * filemap_write_and_wait_range() before proceeding.
648  *
649  * Return: %true if the caller should do filemap_write_and_wait_range() before
650  * doing O_DIRECT to a page in this range, %false otherwise.
651  */
652 bool filemap_range_needs_writeback(struct address_space *mapping,
653 				   loff_t start_byte, loff_t end_byte)
654 {
655 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
656 	pgoff_t max = end_byte >> PAGE_SHIFT;
657 	struct page *page;
658 
659 	if (!mapping_needs_writeback(mapping))
660 		return false;
661 	if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
662 	    !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
663 		return false;
664 	if (end_byte < start_byte)
665 		return false;
666 
667 	rcu_read_lock();
668 	xas_for_each(&xas, page, max) {
669 		if (xas_retry(&xas, page))
670 			continue;
671 		if (xa_is_value(page))
672 			continue;
673 		if (PageDirty(page) || PageLocked(page) || PageWriteback(page))
674 			break;
675 	}
676 	rcu_read_unlock();
677 	return page != NULL;
678 }
679 EXPORT_SYMBOL_GPL(filemap_range_needs_writeback);
680 
681 /**
682  * filemap_write_and_wait_range - write out & wait on a file range
683  * @mapping:	the address_space for the pages
684  * @lstart:	offset in bytes where the range starts
685  * @lend:	offset in bytes where the range ends (inclusive)
686  *
687  * Write out and wait upon file offsets lstart->lend, inclusive.
688  *
689  * Note that @lend is inclusive (describes the last byte to be written) so
690  * that this function can be used to write to the very end-of-file (end = -1).
691  *
692  * Return: error status of the address space.
693  */
694 int filemap_write_and_wait_range(struct address_space *mapping,
695 				 loff_t lstart, loff_t lend)
696 {
697 	int err = 0;
698 
699 	if (mapping_needs_writeback(mapping)) {
700 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
701 						 WB_SYNC_ALL);
702 		/*
703 		 * Even if the above returned error, the pages may be
704 		 * written partially (e.g. -ENOSPC), so we wait for it.
705 		 * But the -EIO is special case, it may indicate the worst
706 		 * thing (e.g. bug) happened, so we avoid waiting for it.
707 		 */
708 		if (err != -EIO) {
709 			int err2 = filemap_fdatawait_range(mapping,
710 						lstart, lend);
711 			if (!err)
712 				err = err2;
713 		} else {
714 			/* Clear any previously stored errors */
715 			filemap_check_errors(mapping);
716 		}
717 	} else {
718 		err = filemap_check_errors(mapping);
719 	}
720 	return err;
721 }
722 EXPORT_SYMBOL(filemap_write_and_wait_range);
723 
724 void __filemap_set_wb_err(struct address_space *mapping, int err)
725 {
726 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
727 
728 	trace_filemap_set_wb_err(mapping, eseq);
729 }
730 EXPORT_SYMBOL(__filemap_set_wb_err);
731 
732 /**
733  * file_check_and_advance_wb_err - report wb error (if any) that was previously
734  * 				   and advance wb_err to current one
735  * @file: struct file on which the error is being reported
736  *
737  * When userland calls fsync (or something like nfsd does the equivalent), we
738  * want to report any writeback errors that occurred since the last fsync (or
739  * since the file was opened if there haven't been any).
740  *
741  * Grab the wb_err from the mapping. If it matches what we have in the file,
742  * then just quickly return 0. The file is all caught up.
743  *
744  * If it doesn't match, then take the mapping value, set the "seen" flag in
745  * it and try to swap it into place. If it works, or another task beat us
746  * to it with the new value, then update the f_wb_err and return the error
747  * portion. The error at this point must be reported via proper channels
748  * (a'la fsync, or NFS COMMIT operation, etc.).
749  *
750  * While we handle mapping->wb_err with atomic operations, the f_wb_err
751  * value is protected by the f_lock since we must ensure that it reflects
752  * the latest value swapped in for this file descriptor.
753  *
754  * Return: %0 on success, negative error code otherwise.
755  */
756 int file_check_and_advance_wb_err(struct file *file)
757 {
758 	int err = 0;
759 	errseq_t old = READ_ONCE(file->f_wb_err);
760 	struct address_space *mapping = file->f_mapping;
761 
762 	/* Locklessly handle the common case where nothing has changed */
763 	if (errseq_check(&mapping->wb_err, old)) {
764 		/* Something changed, must use slow path */
765 		spin_lock(&file->f_lock);
766 		old = file->f_wb_err;
767 		err = errseq_check_and_advance(&mapping->wb_err,
768 						&file->f_wb_err);
769 		trace_file_check_and_advance_wb_err(file, old);
770 		spin_unlock(&file->f_lock);
771 	}
772 
773 	/*
774 	 * We're mostly using this function as a drop in replacement for
775 	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
776 	 * that the legacy code would have had on these flags.
777 	 */
778 	clear_bit(AS_EIO, &mapping->flags);
779 	clear_bit(AS_ENOSPC, &mapping->flags);
780 	return err;
781 }
782 EXPORT_SYMBOL(file_check_and_advance_wb_err);
783 
784 /**
785  * file_write_and_wait_range - write out & wait on a file range
786  * @file:	file pointing to address_space with pages
787  * @lstart:	offset in bytes where the range starts
788  * @lend:	offset in bytes where the range ends (inclusive)
789  *
790  * Write out and wait upon file offsets lstart->lend, inclusive.
791  *
792  * Note that @lend is inclusive (describes the last byte to be written) so
793  * that this function can be used to write to the very end-of-file (end = -1).
794  *
795  * After writing out and waiting on the data, we check and advance the
796  * f_wb_err cursor to the latest value, and return any errors detected there.
797  *
798  * Return: %0 on success, negative error code otherwise.
799  */
800 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
801 {
802 	int err = 0, err2;
803 	struct address_space *mapping = file->f_mapping;
804 
805 	if (mapping_needs_writeback(mapping)) {
806 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
807 						 WB_SYNC_ALL);
808 		/* See comment of filemap_write_and_wait() */
809 		if (err != -EIO)
810 			__filemap_fdatawait_range(mapping, lstart, lend);
811 	}
812 	err2 = file_check_and_advance_wb_err(file);
813 	if (!err)
814 		err = err2;
815 	return err;
816 }
817 EXPORT_SYMBOL(file_write_and_wait_range);
818 
819 /**
820  * replace_page_cache_page - replace a pagecache page with a new one
821  * @old:	page to be replaced
822  * @new:	page to replace with
823  *
824  * This function replaces a page in the pagecache with a new one.  On
825  * success it acquires the pagecache reference for the new page and
826  * drops it for the old page.  Both the old and new pages must be
827  * locked.  This function does not add the new page to the LRU, the
828  * caller must do that.
829  *
830  * The remove + add is atomic.  This function cannot fail.
831  */
832 void replace_page_cache_page(struct page *old, struct page *new)
833 {
834 	struct address_space *mapping = old->mapping;
835 	void (*freepage)(struct page *) = mapping->a_ops->freepage;
836 	pgoff_t offset = old->index;
837 	XA_STATE(xas, &mapping->i_pages, offset);
838 	unsigned long flags;
839 
840 	VM_BUG_ON_PAGE(!PageLocked(old), old);
841 	VM_BUG_ON_PAGE(!PageLocked(new), new);
842 	VM_BUG_ON_PAGE(new->mapping, new);
843 
844 	get_page(new);
845 	new->mapping = mapping;
846 	new->index = offset;
847 
848 	mem_cgroup_migrate(old, new);
849 
850 	xas_lock_irqsave(&xas, flags);
851 	xas_store(&xas, new);
852 
853 	old->mapping = NULL;
854 	/* hugetlb pages do not participate in page cache accounting. */
855 	if (!PageHuge(old))
856 		__dec_lruvec_page_state(old, NR_FILE_PAGES);
857 	if (!PageHuge(new))
858 		__inc_lruvec_page_state(new, NR_FILE_PAGES);
859 	if (PageSwapBacked(old))
860 		__dec_lruvec_page_state(old, NR_SHMEM);
861 	if (PageSwapBacked(new))
862 		__inc_lruvec_page_state(new, NR_SHMEM);
863 	xas_unlock_irqrestore(&xas, flags);
864 	if (freepage)
865 		freepage(old);
866 	put_page(old);
867 }
868 EXPORT_SYMBOL_GPL(replace_page_cache_page);
869 
870 noinline int __add_to_page_cache_locked(struct page *page,
871 					struct address_space *mapping,
872 					pgoff_t offset, gfp_t gfp,
873 					void **shadowp)
874 {
875 	XA_STATE(xas, &mapping->i_pages, offset);
876 	int huge = PageHuge(page);
877 	int error;
878 	bool charged = false;
879 
880 	VM_BUG_ON_PAGE(!PageLocked(page), page);
881 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
882 	mapping_set_update(&xas, mapping);
883 
884 	get_page(page);
885 	page->mapping = mapping;
886 	page->index = offset;
887 
888 	if (!huge) {
889 		error = mem_cgroup_charge(page, current->mm, gfp);
890 		if (error)
891 			goto error;
892 		charged = true;
893 	}
894 
895 	gfp &= GFP_RECLAIM_MASK;
896 
897 	do {
898 		unsigned int order = xa_get_order(xas.xa, xas.xa_index);
899 		void *entry, *old = NULL;
900 
901 		if (order > thp_order(page))
902 			xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
903 					order, gfp);
904 		xas_lock_irq(&xas);
905 		xas_for_each_conflict(&xas, entry) {
906 			old = entry;
907 			if (!xa_is_value(entry)) {
908 				xas_set_err(&xas, -EEXIST);
909 				goto unlock;
910 			}
911 		}
912 
913 		if (old) {
914 			if (shadowp)
915 				*shadowp = old;
916 			/* entry may have been split before we acquired lock */
917 			order = xa_get_order(xas.xa, xas.xa_index);
918 			if (order > thp_order(page)) {
919 				xas_split(&xas, old, order);
920 				xas_reset(&xas);
921 			}
922 		}
923 
924 		xas_store(&xas, page);
925 		if (xas_error(&xas))
926 			goto unlock;
927 
928 		if (old)
929 			mapping->nrexceptional--;
930 		mapping->nrpages++;
931 
932 		/* hugetlb pages do not participate in page cache accounting */
933 		if (!huge)
934 			__inc_lruvec_page_state(page, NR_FILE_PAGES);
935 unlock:
936 		xas_unlock_irq(&xas);
937 	} while (xas_nomem(&xas, gfp));
938 
939 	if (xas_error(&xas)) {
940 		error = xas_error(&xas);
941 		if (charged)
942 			mem_cgroup_uncharge(page);
943 		goto error;
944 	}
945 
946 	trace_mm_filemap_add_to_page_cache(page);
947 	return 0;
948 error:
949 	page->mapping = NULL;
950 	/* Leave page->index set: truncation relies upon it */
951 	put_page(page);
952 	return error;
953 }
954 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
955 
956 /**
957  * add_to_page_cache_locked - add a locked page to the pagecache
958  * @page:	page to add
959  * @mapping:	the page's address_space
960  * @offset:	page index
961  * @gfp_mask:	page allocation mode
962  *
963  * This function is used to add a page to the pagecache. It must be locked.
964  * This function does not add the page to the LRU.  The caller must do that.
965  *
966  * Return: %0 on success, negative error code otherwise.
967  */
968 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
969 		pgoff_t offset, gfp_t gfp_mask)
970 {
971 	return __add_to_page_cache_locked(page, mapping, offset,
972 					  gfp_mask, NULL);
973 }
974 EXPORT_SYMBOL(add_to_page_cache_locked);
975 
976 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
977 				pgoff_t offset, gfp_t gfp_mask)
978 {
979 	void *shadow = NULL;
980 	int ret;
981 
982 	__SetPageLocked(page);
983 	ret = __add_to_page_cache_locked(page, mapping, offset,
984 					 gfp_mask, &shadow);
985 	if (unlikely(ret))
986 		__ClearPageLocked(page);
987 	else {
988 		/*
989 		 * The page might have been evicted from cache only
990 		 * recently, in which case it should be activated like
991 		 * any other repeatedly accessed page.
992 		 * The exception is pages getting rewritten; evicting other
993 		 * data from the working set, only to cache data that will
994 		 * get overwritten with something else, is a waste of memory.
995 		 */
996 		WARN_ON_ONCE(PageActive(page));
997 		if (!(gfp_mask & __GFP_WRITE) && shadow)
998 			workingset_refault(page, shadow);
999 		lru_cache_add(page);
1000 	}
1001 	return ret;
1002 }
1003 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1004 
1005 #ifdef CONFIG_NUMA
1006 struct page *__page_cache_alloc(gfp_t gfp)
1007 {
1008 	int n;
1009 	struct page *page;
1010 
1011 	if (cpuset_do_page_mem_spread()) {
1012 		unsigned int cpuset_mems_cookie;
1013 		do {
1014 			cpuset_mems_cookie = read_mems_allowed_begin();
1015 			n = cpuset_mem_spread_node();
1016 			page = __alloc_pages_node(n, gfp, 0);
1017 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
1018 
1019 		return page;
1020 	}
1021 	return alloc_pages(gfp, 0);
1022 }
1023 EXPORT_SYMBOL(__page_cache_alloc);
1024 #endif
1025 
1026 /*
1027  * In order to wait for pages to become available there must be
1028  * waitqueues associated with pages. By using a hash table of
1029  * waitqueues where the bucket discipline is to maintain all
1030  * waiters on the same queue and wake all when any of the pages
1031  * become available, and for the woken contexts to check to be
1032  * sure the appropriate page became available, this saves space
1033  * at a cost of "thundering herd" phenomena during rare hash
1034  * collisions.
1035  */
1036 #define PAGE_WAIT_TABLE_BITS 8
1037 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1038 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1039 
1040 static wait_queue_head_t *page_waitqueue(struct page *page)
1041 {
1042 	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1043 }
1044 
1045 void __init pagecache_init(void)
1046 {
1047 	int i;
1048 
1049 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1050 		init_waitqueue_head(&page_wait_table[i]);
1051 
1052 	page_writeback_init();
1053 }
1054 
1055 /*
1056  * The page wait code treats the "wait->flags" somewhat unusually, because
1057  * we have multiple different kinds of waits, not just the usual "exclusive"
1058  * one.
1059  *
1060  * We have:
1061  *
1062  *  (a) no special bits set:
1063  *
1064  *	We're just waiting for the bit to be released, and when a waker
1065  *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1066  *	and remove it from the wait queue.
1067  *
1068  *	Simple and straightforward.
1069  *
1070  *  (b) WQ_FLAG_EXCLUSIVE:
1071  *
1072  *	The waiter is waiting to get the lock, and only one waiter should
1073  *	be woken up to avoid any thundering herd behavior. We'll set the
1074  *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1075  *
1076  *	This is the traditional exclusive wait.
1077  *
1078  *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1079  *
1080  *	The waiter is waiting to get the bit, and additionally wants the
1081  *	lock to be transferred to it for fair lock behavior. If the lock
1082  *	cannot be taken, we stop walking the wait queue without waking
1083  *	the waiter.
1084  *
1085  *	This is the "fair lock handoff" case, and in addition to setting
1086  *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1087  *	that it now has the lock.
1088  */
1089 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1090 {
1091 	unsigned int flags;
1092 	struct wait_page_key *key = arg;
1093 	struct wait_page_queue *wait_page
1094 		= container_of(wait, struct wait_page_queue, wait);
1095 
1096 	if (!wake_page_match(wait_page, key))
1097 		return 0;
1098 
1099 	/*
1100 	 * If it's a lock handoff wait, we get the bit for it, and
1101 	 * stop walking (and do not wake it up) if we can't.
1102 	 */
1103 	flags = wait->flags;
1104 	if (flags & WQ_FLAG_EXCLUSIVE) {
1105 		if (test_bit(key->bit_nr, &key->page->flags))
1106 			return -1;
1107 		if (flags & WQ_FLAG_CUSTOM) {
1108 			if (test_and_set_bit(key->bit_nr, &key->page->flags))
1109 				return -1;
1110 			flags |= WQ_FLAG_DONE;
1111 		}
1112 	}
1113 
1114 	/*
1115 	 * We are holding the wait-queue lock, but the waiter that
1116 	 * is waiting for this will be checking the flags without
1117 	 * any locking.
1118 	 *
1119 	 * So update the flags atomically, and wake up the waiter
1120 	 * afterwards to avoid any races. This store-release pairs
1121 	 * with the load-acquire in wait_on_page_bit_common().
1122 	 */
1123 	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1124 	wake_up_state(wait->private, mode);
1125 
1126 	/*
1127 	 * Ok, we have successfully done what we're waiting for,
1128 	 * and we can unconditionally remove the wait entry.
1129 	 *
1130 	 * Note that this pairs with the "finish_wait()" in the
1131 	 * waiter, and has to be the absolute last thing we do.
1132 	 * After this list_del_init(&wait->entry) the wait entry
1133 	 * might be de-allocated and the process might even have
1134 	 * exited.
1135 	 */
1136 	list_del_init_careful(&wait->entry);
1137 	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1138 }
1139 
1140 static void wake_up_page_bit(struct page *page, int bit_nr)
1141 {
1142 	wait_queue_head_t *q = page_waitqueue(page);
1143 	struct wait_page_key key;
1144 	unsigned long flags;
1145 	wait_queue_entry_t bookmark;
1146 
1147 	key.page = page;
1148 	key.bit_nr = bit_nr;
1149 	key.page_match = 0;
1150 
1151 	bookmark.flags = 0;
1152 	bookmark.private = NULL;
1153 	bookmark.func = NULL;
1154 	INIT_LIST_HEAD(&bookmark.entry);
1155 
1156 	spin_lock_irqsave(&q->lock, flags);
1157 	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1158 
1159 	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1160 		/*
1161 		 * Take a breather from holding the lock,
1162 		 * allow pages that finish wake up asynchronously
1163 		 * to acquire the lock and remove themselves
1164 		 * from wait queue
1165 		 */
1166 		spin_unlock_irqrestore(&q->lock, flags);
1167 		cpu_relax();
1168 		spin_lock_irqsave(&q->lock, flags);
1169 		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1170 	}
1171 
1172 	/*
1173 	 * It is possible for other pages to have collided on the waitqueue
1174 	 * hash, so in that case check for a page match. That prevents a long-
1175 	 * term waiter
1176 	 *
1177 	 * It is still possible to miss a case here, when we woke page waiters
1178 	 * and removed them from the waitqueue, but there are still other
1179 	 * page waiters.
1180 	 */
1181 	if (!waitqueue_active(q) || !key.page_match) {
1182 		ClearPageWaiters(page);
1183 		/*
1184 		 * It's possible to miss clearing Waiters here, when we woke
1185 		 * our page waiters, but the hashed waitqueue has waiters for
1186 		 * other pages on it.
1187 		 *
1188 		 * That's okay, it's a rare case. The next waker will clear it.
1189 		 */
1190 	}
1191 	spin_unlock_irqrestore(&q->lock, flags);
1192 }
1193 
1194 static void wake_up_page(struct page *page, int bit)
1195 {
1196 	if (!PageWaiters(page))
1197 		return;
1198 	wake_up_page_bit(page, bit);
1199 }
1200 
1201 /*
1202  * A choice of three behaviors for wait_on_page_bit_common():
1203  */
1204 enum behavior {
1205 	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1206 			 * __lock_page() waiting on then setting PG_locked.
1207 			 */
1208 	SHARED,		/* Hold ref to page and check the bit when woken, like
1209 			 * wait_on_page_writeback() waiting on PG_writeback.
1210 			 */
1211 	DROP,		/* Drop ref to page before wait, no check when woken,
1212 			 * like put_and_wait_on_page_locked() on PG_locked.
1213 			 */
1214 };
1215 
1216 /*
1217  * Attempt to check (or get) the page bit, and mark us done
1218  * if successful.
1219  */
1220 static inline bool trylock_page_bit_common(struct page *page, int bit_nr,
1221 					struct wait_queue_entry *wait)
1222 {
1223 	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1224 		if (test_and_set_bit(bit_nr, &page->flags))
1225 			return false;
1226 	} else if (test_bit(bit_nr, &page->flags))
1227 		return false;
1228 
1229 	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1230 	return true;
1231 }
1232 
1233 /* How many times do we accept lock stealing from under a waiter? */
1234 int sysctl_page_lock_unfairness = 5;
1235 
1236 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1237 	struct page *page, int bit_nr, int state, enum behavior behavior)
1238 {
1239 	int unfairness = sysctl_page_lock_unfairness;
1240 	struct wait_page_queue wait_page;
1241 	wait_queue_entry_t *wait = &wait_page.wait;
1242 	bool thrashing = false;
1243 	bool delayacct = false;
1244 	unsigned long pflags;
1245 
1246 	if (bit_nr == PG_locked &&
1247 	    !PageUptodate(page) && PageWorkingset(page)) {
1248 		if (!PageSwapBacked(page)) {
1249 			delayacct_thrashing_start();
1250 			delayacct = true;
1251 		}
1252 		psi_memstall_enter(&pflags);
1253 		thrashing = true;
1254 	}
1255 
1256 	init_wait(wait);
1257 	wait->func = wake_page_function;
1258 	wait_page.page = page;
1259 	wait_page.bit_nr = bit_nr;
1260 
1261 repeat:
1262 	wait->flags = 0;
1263 	if (behavior == EXCLUSIVE) {
1264 		wait->flags = WQ_FLAG_EXCLUSIVE;
1265 		if (--unfairness < 0)
1266 			wait->flags |= WQ_FLAG_CUSTOM;
1267 	}
1268 
1269 	/*
1270 	 * Do one last check whether we can get the
1271 	 * page bit synchronously.
1272 	 *
1273 	 * Do the SetPageWaiters() marking before that
1274 	 * to let any waker we _just_ missed know they
1275 	 * need to wake us up (otherwise they'll never
1276 	 * even go to the slow case that looks at the
1277 	 * page queue), and add ourselves to the wait
1278 	 * queue if we need to sleep.
1279 	 *
1280 	 * This part needs to be done under the queue
1281 	 * lock to avoid races.
1282 	 */
1283 	spin_lock_irq(&q->lock);
1284 	SetPageWaiters(page);
1285 	if (!trylock_page_bit_common(page, bit_nr, wait))
1286 		__add_wait_queue_entry_tail(q, wait);
1287 	spin_unlock_irq(&q->lock);
1288 
1289 	/*
1290 	 * From now on, all the logic will be based on
1291 	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1292 	 * see whether the page bit testing has already
1293 	 * been done by the wake function.
1294 	 *
1295 	 * We can drop our reference to the page.
1296 	 */
1297 	if (behavior == DROP)
1298 		put_page(page);
1299 
1300 	/*
1301 	 * Note that until the "finish_wait()", or until
1302 	 * we see the WQ_FLAG_WOKEN flag, we need to
1303 	 * be very careful with the 'wait->flags', because
1304 	 * we may race with a waker that sets them.
1305 	 */
1306 	for (;;) {
1307 		unsigned int flags;
1308 
1309 		set_current_state(state);
1310 
1311 		/* Loop until we've been woken or interrupted */
1312 		flags = smp_load_acquire(&wait->flags);
1313 		if (!(flags & WQ_FLAG_WOKEN)) {
1314 			if (signal_pending_state(state, current))
1315 				break;
1316 
1317 			io_schedule();
1318 			continue;
1319 		}
1320 
1321 		/* If we were non-exclusive, we're done */
1322 		if (behavior != EXCLUSIVE)
1323 			break;
1324 
1325 		/* If the waker got the lock for us, we're done */
1326 		if (flags & WQ_FLAG_DONE)
1327 			break;
1328 
1329 		/*
1330 		 * Otherwise, if we're getting the lock, we need to
1331 		 * try to get it ourselves.
1332 		 *
1333 		 * And if that fails, we'll have to retry this all.
1334 		 */
1335 		if (unlikely(test_and_set_bit(bit_nr, &page->flags)))
1336 			goto repeat;
1337 
1338 		wait->flags |= WQ_FLAG_DONE;
1339 		break;
1340 	}
1341 
1342 	/*
1343 	 * If a signal happened, this 'finish_wait()' may remove the last
1344 	 * waiter from the wait-queues, but the PageWaiters bit will remain
1345 	 * set. That's ok. The next wakeup will take care of it, and trying
1346 	 * to do it here would be difficult and prone to races.
1347 	 */
1348 	finish_wait(q, wait);
1349 
1350 	if (thrashing) {
1351 		if (delayacct)
1352 			delayacct_thrashing_end();
1353 		psi_memstall_leave(&pflags);
1354 	}
1355 
1356 	/*
1357 	 * NOTE! The wait->flags weren't stable until we've done the
1358 	 * 'finish_wait()', and we could have exited the loop above due
1359 	 * to a signal, and had a wakeup event happen after the signal
1360 	 * test but before the 'finish_wait()'.
1361 	 *
1362 	 * So only after the finish_wait() can we reliably determine
1363 	 * if we got woken up or not, so we can now figure out the final
1364 	 * return value based on that state without races.
1365 	 *
1366 	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1367 	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1368 	 */
1369 	if (behavior == EXCLUSIVE)
1370 		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1371 
1372 	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1373 }
1374 
1375 void wait_on_page_bit(struct page *page, int bit_nr)
1376 {
1377 	wait_queue_head_t *q = page_waitqueue(page);
1378 	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1379 }
1380 EXPORT_SYMBOL(wait_on_page_bit);
1381 
1382 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1383 {
1384 	wait_queue_head_t *q = page_waitqueue(page);
1385 	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1386 }
1387 EXPORT_SYMBOL(wait_on_page_bit_killable);
1388 
1389 /**
1390  * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1391  * @page: The page to wait for.
1392  * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1393  *
1394  * The caller should hold a reference on @page.  They expect the page to
1395  * become unlocked relatively soon, but do not wish to hold up migration
1396  * (for example) by holding the reference while waiting for the page to
1397  * come unlocked.  After this function returns, the caller should not
1398  * dereference @page.
1399  *
1400  * Return: 0 if the page was unlocked or -EINTR if interrupted by a signal.
1401  */
1402 int put_and_wait_on_page_locked(struct page *page, int state)
1403 {
1404 	wait_queue_head_t *q;
1405 
1406 	page = compound_head(page);
1407 	q = page_waitqueue(page);
1408 	return wait_on_page_bit_common(q, page, PG_locked, state, DROP);
1409 }
1410 
1411 /**
1412  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1413  * @page: Page defining the wait queue of interest
1414  * @waiter: Waiter to add to the queue
1415  *
1416  * Add an arbitrary @waiter to the wait queue for the nominated @page.
1417  */
1418 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1419 {
1420 	wait_queue_head_t *q = page_waitqueue(page);
1421 	unsigned long flags;
1422 
1423 	spin_lock_irqsave(&q->lock, flags);
1424 	__add_wait_queue_entry_tail(q, waiter);
1425 	SetPageWaiters(page);
1426 	spin_unlock_irqrestore(&q->lock, flags);
1427 }
1428 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1429 
1430 #ifndef clear_bit_unlock_is_negative_byte
1431 
1432 /*
1433  * PG_waiters is the high bit in the same byte as PG_lock.
1434  *
1435  * On x86 (and on many other architectures), we can clear PG_lock and
1436  * test the sign bit at the same time. But if the architecture does
1437  * not support that special operation, we just do this all by hand
1438  * instead.
1439  *
1440  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1441  * being cleared, but a memory barrier should be unnecessary since it is
1442  * in the same byte as PG_locked.
1443  */
1444 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1445 {
1446 	clear_bit_unlock(nr, mem);
1447 	/* smp_mb__after_atomic(); */
1448 	return test_bit(PG_waiters, mem);
1449 }
1450 
1451 #endif
1452 
1453 /**
1454  * unlock_page - unlock a locked page
1455  * @page: the page
1456  *
1457  * Unlocks the page and wakes up sleepers in wait_on_page_locked().
1458  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1459  * mechanism between PageLocked pages and PageWriteback pages is shared.
1460  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1461  *
1462  * Note that this depends on PG_waiters being the sign bit in the byte
1463  * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1464  * clear the PG_locked bit and test PG_waiters at the same time fairly
1465  * portably (architectures that do LL/SC can test any bit, while x86 can
1466  * test the sign bit).
1467  */
1468 void unlock_page(struct page *page)
1469 {
1470 	BUILD_BUG_ON(PG_waiters != 7);
1471 	page = compound_head(page);
1472 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1473 	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1474 		wake_up_page_bit(page, PG_locked);
1475 }
1476 EXPORT_SYMBOL(unlock_page);
1477 
1478 /**
1479  * end_page_private_2 - Clear PG_private_2 and release any waiters
1480  * @page: The page
1481  *
1482  * Clear the PG_private_2 bit on a page and wake up any sleepers waiting for
1483  * this.  The page ref held for PG_private_2 being set is released.
1484  *
1485  * This is, for example, used when a netfs page is being written to a local
1486  * disk cache, thereby allowing writes to the cache for the same page to be
1487  * serialised.
1488  */
1489 void end_page_private_2(struct page *page)
1490 {
1491 	page = compound_head(page);
1492 	VM_BUG_ON_PAGE(!PagePrivate2(page), page);
1493 	clear_bit_unlock(PG_private_2, &page->flags);
1494 	wake_up_page_bit(page, PG_private_2);
1495 	put_page(page);
1496 }
1497 EXPORT_SYMBOL(end_page_private_2);
1498 
1499 /**
1500  * wait_on_page_private_2 - Wait for PG_private_2 to be cleared on a page
1501  * @page: The page to wait on
1502  *
1503  * Wait for PG_private_2 (aka PG_fscache) to be cleared on a page.
1504  */
1505 void wait_on_page_private_2(struct page *page)
1506 {
1507 	page = compound_head(page);
1508 	while (PagePrivate2(page))
1509 		wait_on_page_bit(page, PG_private_2);
1510 }
1511 EXPORT_SYMBOL(wait_on_page_private_2);
1512 
1513 /**
1514  * wait_on_page_private_2_killable - Wait for PG_private_2 to be cleared on a page
1515  * @page: The page to wait on
1516  *
1517  * Wait for PG_private_2 (aka PG_fscache) to be cleared on a page or until a
1518  * fatal signal is received by the calling task.
1519  *
1520  * Return:
1521  * - 0 if successful.
1522  * - -EINTR if a fatal signal was encountered.
1523  */
1524 int wait_on_page_private_2_killable(struct page *page)
1525 {
1526 	int ret = 0;
1527 
1528 	page = compound_head(page);
1529 	while (PagePrivate2(page)) {
1530 		ret = wait_on_page_bit_killable(page, PG_private_2);
1531 		if (ret < 0)
1532 			break;
1533 	}
1534 
1535 	return ret;
1536 }
1537 EXPORT_SYMBOL(wait_on_page_private_2_killable);
1538 
1539 /**
1540  * end_page_writeback - end writeback against a page
1541  * @page: the page
1542  */
1543 void end_page_writeback(struct page *page)
1544 {
1545 	/*
1546 	 * TestClearPageReclaim could be used here but it is an atomic
1547 	 * operation and overkill in this particular case. Failing to
1548 	 * shuffle a page marked for immediate reclaim is too mild to
1549 	 * justify taking an atomic operation penalty at the end of
1550 	 * ever page writeback.
1551 	 */
1552 	if (PageReclaim(page)) {
1553 		ClearPageReclaim(page);
1554 		rotate_reclaimable_page(page);
1555 	}
1556 
1557 	/*
1558 	 * Writeback does not hold a page reference of its own, relying
1559 	 * on truncation to wait for the clearing of PG_writeback.
1560 	 * But here we must make sure that the page is not freed and
1561 	 * reused before the wake_up_page().
1562 	 */
1563 	get_page(page);
1564 	if (!test_clear_page_writeback(page))
1565 		BUG();
1566 
1567 	smp_mb__after_atomic();
1568 	wake_up_page(page, PG_writeback);
1569 	put_page(page);
1570 }
1571 EXPORT_SYMBOL(end_page_writeback);
1572 
1573 /*
1574  * After completing I/O on a page, call this routine to update the page
1575  * flags appropriately
1576  */
1577 void page_endio(struct page *page, bool is_write, int err)
1578 {
1579 	if (!is_write) {
1580 		if (!err) {
1581 			SetPageUptodate(page);
1582 		} else {
1583 			ClearPageUptodate(page);
1584 			SetPageError(page);
1585 		}
1586 		unlock_page(page);
1587 	} else {
1588 		if (err) {
1589 			struct address_space *mapping;
1590 
1591 			SetPageError(page);
1592 			mapping = page_mapping(page);
1593 			if (mapping)
1594 				mapping_set_error(mapping, err);
1595 		}
1596 		end_page_writeback(page);
1597 	}
1598 }
1599 EXPORT_SYMBOL_GPL(page_endio);
1600 
1601 /**
1602  * __lock_page - get a lock on the page, assuming we need to sleep to get it
1603  * @__page: the page to lock
1604  */
1605 void __lock_page(struct page *__page)
1606 {
1607 	struct page *page = compound_head(__page);
1608 	wait_queue_head_t *q = page_waitqueue(page);
1609 	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1610 				EXCLUSIVE);
1611 }
1612 EXPORT_SYMBOL(__lock_page);
1613 
1614 int __lock_page_killable(struct page *__page)
1615 {
1616 	struct page *page = compound_head(__page);
1617 	wait_queue_head_t *q = page_waitqueue(page);
1618 	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1619 					EXCLUSIVE);
1620 }
1621 EXPORT_SYMBOL_GPL(__lock_page_killable);
1622 
1623 int __lock_page_async(struct page *page, struct wait_page_queue *wait)
1624 {
1625 	struct wait_queue_head *q = page_waitqueue(page);
1626 	int ret = 0;
1627 
1628 	wait->page = page;
1629 	wait->bit_nr = PG_locked;
1630 
1631 	spin_lock_irq(&q->lock);
1632 	__add_wait_queue_entry_tail(q, &wait->wait);
1633 	SetPageWaiters(page);
1634 	ret = !trylock_page(page);
1635 	/*
1636 	 * If we were successful now, we know we're still on the
1637 	 * waitqueue as we're still under the lock. This means it's
1638 	 * safe to remove and return success, we know the callback
1639 	 * isn't going to trigger.
1640 	 */
1641 	if (!ret)
1642 		__remove_wait_queue(q, &wait->wait);
1643 	else
1644 		ret = -EIOCBQUEUED;
1645 	spin_unlock_irq(&q->lock);
1646 	return ret;
1647 }
1648 
1649 /*
1650  * Return values:
1651  * 1 - page is locked; mmap_lock is still held.
1652  * 0 - page is not locked.
1653  *     mmap_lock has been released (mmap_read_unlock(), unless flags had both
1654  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1655  *     which case mmap_lock is still held.
1656  *
1657  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1658  * with the page locked and the mmap_lock unperturbed.
1659  */
1660 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1661 			 unsigned int flags)
1662 {
1663 	if (fault_flag_allow_retry_first(flags)) {
1664 		/*
1665 		 * CAUTION! In this case, mmap_lock is not released
1666 		 * even though return 0.
1667 		 */
1668 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1669 			return 0;
1670 
1671 		mmap_read_unlock(mm);
1672 		if (flags & FAULT_FLAG_KILLABLE)
1673 			wait_on_page_locked_killable(page);
1674 		else
1675 			wait_on_page_locked(page);
1676 		return 0;
1677 	}
1678 	if (flags & FAULT_FLAG_KILLABLE) {
1679 		int ret;
1680 
1681 		ret = __lock_page_killable(page);
1682 		if (ret) {
1683 			mmap_read_unlock(mm);
1684 			return 0;
1685 		}
1686 	} else {
1687 		__lock_page(page);
1688 	}
1689 	return 1;
1690 
1691 }
1692 
1693 /**
1694  * page_cache_next_miss() - Find the next gap in the page cache.
1695  * @mapping: Mapping.
1696  * @index: Index.
1697  * @max_scan: Maximum range to search.
1698  *
1699  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1700  * gap with the lowest index.
1701  *
1702  * This function may be called under the rcu_read_lock.  However, this will
1703  * not atomically search a snapshot of the cache at a single point in time.
1704  * For example, if a gap is created at index 5, then subsequently a gap is
1705  * created at index 10, page_cache_next_miss covering both indices may
1706  * return 10 if called under the rcu_read_lock.
1707  *
1708  * Return: The index of the gap if found, otherwise an index outside the
1709  * range specified (in which case 'return - index >= max_scan' will be true).
1710  * In the rare case of index wrap-around, 0 will be returned.
1711  */
1712 pgoff_t page_cache_next_miss(struct address_space *mapping,
1713 			     pgoff_t index, unsigned long max_scan)
1714 {
1715 	XA_STATE(xas, &mapping->i_pages, index);
1716 
1717 	while (max_scan--) {
1718 		void *entry = xas_next(&xas);
1719 		if (!entry || xa_is_value(entry))
1720 			break;
1721 		if (xas.xa_index == 0)
1722 			break;
1723 	}
1724 
1725 	return xas.xa_index;
1726 }
1727 EXPORT_SYMBOL(page_cache_next_miss);
1728 
1729 /**
1730  * page_cache_prev_miss() - Find the previous gap in the page cache.
1731  * @mapping: Mapping.
1732  * @index: Index.
1733  * @max_scan: Maximum range to search.
1734  *
1735  * Search the range [max(index - max_scan + 1, 0), index] for the
1736  * gap with the highest index.
1737  *
1738  * This function may be called under the rcu_read_lock.  However, this will
1739  * not atomically search a snapshot of the cache at a single point in time.
1740  * For example, if a gap is created at index 10, then subsequently a gap is
1741  * created at index 5, page_cache_prev_miss() covering both indices may
1742  * return 5 if called under the rcu_read_lock.
1743  *
1744  * Return: The index of the gap if found, otherwise an index outside the
1745  * range specified (in which case 'index - return >= max_scan' will be true).
1746  * In the rare case of wrap-around, ULONG_MAX will be returned.
1747  */
1748 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1749 			     pgoff_t index, unsigned long max_scan)
1750 {
1751 	XA_STATE(xas, &mapping->i_pages, index);
1752 
1753 	while (max_scan--) {
1754 		void *entry = xas_prev(&xas);
1755 		if (!entry || xa_is_value(entry))
1756 			break;
1757 		if (xas.xa_index == ULONG_MAX)
1758 			break;
1759 	}
1760 
1761 	return xas.xa_index;
1762 }
1763 EXPORT_SYMBOL(page_cache_prev_miss);
1764 
1765 /*
1766  * mapping_get_entry - Get a page cache entry.
1767  * @mapping: the address_space to search
1768  * @index: The page cache index.
1769  *
1770  * Looks up the page cache slot at @mapping & @index.  If there is a
1771  * page cache page, the head page is returned with an increased refcount.
1772  *
1773  * If the slot holds a shadow entry of a previously evicted page, or a
1774  * swap entry from shmem/tmpfs, it is returned.
1775  *
1776  * Return: The head page or shadow entry, %NULL if nothing is found.
1777  */
1778 static struct page *mapping_get_entry(struct address_space *mapping,
1779 		pgoff_t index)
1780 {
1781 	XA_STATE(xas, &mapping->i_pages, index);
1782 	struct page *page;
1783 
1784 	rcu_read_lock();
1785 repeat:
1786 	xas_reset(&xas);
1787 	page = xas_load(&xas);
1788 	if (xas_retry(&xas, page))
1789 		goto repeat;
1790 	/*
1791 	 * A shadow entry of a recently evicted page, or a swap entry from
1792 	 * shmem/tmpfs.  Return it without attempting to raise page count.
1793 	 */
1794 	if (!page || xa_is_value(page))
1795 		goto out;
1796 
1797 	if (!page_cache_get_speculative(page))
1798 		goto repeat;
1799 
1800 	/*
1801 	 * Has the page moved or been split?
1802 	 * This is part of the lockless pagecache protocol. See
1803 	 * include/linux/pagemap.h for details.
1804 	 */
1805 	if (unlikely(page != xas_reload(&xas))) {
1806 		put_page(page);
1807 		goto repeat;
1808 	}
1809 out:
1810 	rcu_read_unlock();
1811 
1812 	return page;
1813 }
1814 
1815 /**
1816  * pagecache_get_page - Find and get a reference to a page.
1817  * @mapping: The address_space to search.
1818  * @index: The page index.
1819  * @fgp_flags: %FGP flags modify how the page is returned.
1820  * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified.
1821  *
1822  * Looks up the page cache entry at @mapping & @index.
1823  *
1824  * @fgp_flags can be zero or more of these flags:
1825  *
1826  * * %FGP_ACCESSED - The page will be marked accessed.
1827  * * %FGP_LOCK - The page is returned locked.
1828  * * %FGP_HEAD - If the page is present and a THP, return the head page
1829  *   rather than the exact page specified by the index.
1830  * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it
1831  *   instead of allocating a new page to replace it.
1832  * * %FGP_CREAT - If no page is present then a new page is allocated using
1833  *   @gfp_mask and added to the page cache and the VM's LRU list.
1834  *   The page is returned locked and with an increased refcount.
1835  * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1836  *   page is already in cache.  If the page was allocated, unlock it before
1837  *   returning so the caller can do the same dance.
1838  * * %FGP_WRITE - The page will be written
1839  * * %FGP_NOFS - __GFP_FS will get cleared in gfp mask
1840  * * %FGP_NOWAIT - Don't get blocked by page lock
1841  *
1842  * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1843  * if the %GFP flags specified for %FGP_CREAT are atomic.
1844  *
1845  * If there is a page cache page, it is returned with an increased refcount.
1846  *
1847  * Return: The found page or %NULL otherwise.
1848  */
1849 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
1850 		int fgp_flags, gfp_t gfp_mask)
1851 {
1852 	struct page *page;
1853 
1854 repeat:
1855 	page = mapping_get_entry(mapping, index);
1856 	if (xa_is_value(page)) {
1857 		if (fgp_flags & FGP_ENTRY)
1858 			return page;
1859 		page = NULL;
1860 	}
1861 	if (!page)
1862 		goto no_page;
1863 
1864 	if (fgp_flags & FGP_LOCK) {
1865 		if (fgp_flags & FGP_NOWAIT) {
1866 			if (!trylock_page(page)) {
1867 				put_page(page);
1868 				return NULL;
1869 			}
1870 		} else {
1871 			lock_page(page);
1872 		}
1873 
1874 		/* Has the page been truncated? */
1875 		if (unlikely(page->mapping != mapping)) {
1876 			unlock_page(page);
1877 			put_page(page);
1878 			goto repeat;
1879 		}
1880 		VM_BUG_ON_PAGE(!thp_contains(page, index), page);
1881 	}
1882 
1883 	if (fgp_flags & FGP_ACCESSED)
1884 		mark_page_accessed(page);
1885 	else if (fgp_flags & FGP_WRITE) {
1886 		/* Clear idle flag for buffer write */
1887 		if (page_is_idle(page))
1888 			clear_page_idle(page);
1889 	}
1890 	if (!(fgp_flags & FGP_HEAD))
1891 		page = find_subpage(page, index);
1892 
1893 no_page:
1894 	if (!page && (fgp_flags & FGP_CREAT)) {
1895 		int err;
1896 		if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1897 			gfp_mask |= __GFP_WRITE;
1898 		if (fgp_flags & FGP_NOFS)
1899 			gfp_mask &= ~__GFP_FS;
1900 
1901 		page = __page_cache_alloc(gfp_mask);
1902 		if (!page)
1903 			return NULL;
1904 
1905 		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1906 			fgp_flags |= FGP_LOCK;
1907 
1908 		/* Init accessed so avoid atomic mark_page_accessed later */
1909 		if (fgp_flags & FGP_ACCESSED)
1910 			__SetPageReferenced(page);
1911 
1912 		err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
1913 		if (unlikely(err)) {
1914 			put_page(page);
1915 			page = NULL;
1916 			if (err == -EEXIST)
1917 				goto repeat;
1918 		}
1919 
1920 		/*
1921 		 * add_to_page_cache_lru locks the page, and for mmap we expect
1922 		 * an unlocked page.
1923 		 */
1924 		if (page && (fgp_flags & FGP_FOR_MMAP))
1925 			unlock_page(page);
1926 	}
1927 
1928 	return page;
1929 }
1930 EXPORT_SYMBOL(pagecache_get_page);
1931 
1932 static inline struct page *find_get_entry(struct xa_state *xas, pgoff_t max,
1933 		xa_mark_t mark)
1934 {
1935 	struct page *page;
1936 
1937 retry:
1938 	if (mark == XA_PRESENT)
1939 		page = xas_find(xas, max);
1940 	else
1941 		page = xas_find_marked(xas, max, mark);
1942 
1943 	if (xas_retry(xas, page))
1944 		goto retry;
1945 	/*
1946 	 * A shadow entry of a recently evicted page, a swap
1947 	 * entry from shmem/tmpfs or a DAX entry.  Return it
1948 	 * without attempting to raise page count.
1949 	 */
1950 	if (!page || xa_is_value(page))
1951 		return page;
1952 
1953 	if (!page_cache_get_speculative(page))
1954 		goto reset;
1955 
1956 	/* Has the page moved or been split? */
1957 	if (unlikely(page != xas_reload(xas))) {
1958 		put_page(page);
1959 		goto reset;
1960 	}
1961 
1962 	return page;
1963 reset:
1964 	xas_reset(xas);
1965 	goto retry;
1966 }
1967 
1968 /**
1969  * find_get_entries - gang pagecache lookup
1970  * @mapping:	The address_space to search
1971  * @start:	The starting page cache index
1972  * @end:	The final page index (inclusive).
1973  * @pvec:	Where the resulting entries are placed.
1974  * @indices:	The cache indices corresponding to the entries in @entries
1975  *
1976  * find_get_entries() will search for and return a batch of entries in
1977  * the mapping.  The entries are placed in @pvec.  find_get_entries()
1978  * takes a reference on any actual pages it returns.
1979  *
1980  * The search returns a group of mapping-contiguous page cache entries
1981  * with ascending indexes.  There may be holes in the indices due to
1982  * not-present pages.
1983  *
1984  * Any shadow entries of evicted pages, or swap entries from
1985  * shmem/tmpfs, are included in the returned array.
1986  *
1987  * If it finds a Transparent Huge Page, head or tail, find_get_entries()
1988  * stops at that page: the caller is likely to have a better way to handle
1989  * the compound page as a whole, and then skip its extent, than repeatedly
1990  * calling find_get_entries() to return all its tails.
1991  *
1992  * Return: the number of pages and shadow entries which were found.
1993  */
1994 unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
1995 		pgoff_t end, struct pagevec *pvec, pgoff_t *indices)
1996 {
1997 	XA_STATE(xas, &mapping->i_pages, start);
1998 	struct page *page;
1999 	unsigned int ret = 0;
2000 	unsigned nr_entries = PAGEVEC_SIZE;
2001 
2002 	rcu_read_lock();
2003 	while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
2004 		/*
2005 		 * Terminate early on finding a THP, to allow the caller to
2006 		 * handle it all at once; but continue if this is hugetlbfs.
2007 		 */
2008 		if (!xa_is_value(page) && PageTransHuge(page) &&
2009 				!PageHuge(page)) {
2010 			page = find_subpage(page, xas.xa_index);
2011 			nr_entries = ret + 1;
2012 		}
2013 
2014 		indices[ret] = xas.xa_index;
2015 		pvec->pages[ret] = page;
2016 		if (++ret == nr_entries)
2017 			break;
2018 	}
2019 	rcu_read_unlock();
2020 
2021 	pvec->nr = ret;
2022 	return ret;
2023 }
2024 
2025 /**
2026  * find_lock_entries - Find a batch of pagecache entries.
2027  * @mapping:	The address_space to search.
2028  * @start:	The starting page cache index.
2029  * @end:	The final page index (inclusive).
2030  * @pvec:	Where the resulting entries are placed.
2031  * @indices:	The cache indices of the entries in @pvec.
2032  *
2033  * find_lock_entries() will return a batch of entries from @mapping.
2034  * Swap, shadow and DAX entries are included.  Pages are returned
2035  * locked and with an incremented refcount.  Pages which are locked by
2036  * somebody else or under writeback are skipped.  Only the head page of
2037  * a THP is returned.  Pages which are partially outside the range are
2038  * not returned.
2039  *
2040  * The entries have ascending indexes.  The indices may not be consecutive
2041  * due to not-present entries, THP pages, pages which could not be locked
2042  * or pages under writeback.
2043  *
2044  * Return: The number of entries which were found.
2045  */
2046 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
2047 		pgoff_t end, struct pagevec *pvec, pgoff_t *indices)
2048 {
2049 	XA_STATE(xas, &mapping->i_pages, start);
2050 	struct page *page;
2051 
2052 	rcu_read_lock();
2053 	while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
2054 		if (!xa_is_value(page)) {
2055 			if (page->index < start)
2056 				goto put;
2057 			VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
2058 			if (page->index + thp_nr_pages(page) - 1 > end)
2059 				goto put;
2060 			if (!trylock_page(page))
2061 				goto put;
2062 			if (page->mapping != mapping || PageWriteback(page))
2063 				goto unlock;
2064 			VM_BUG_ON_PAGE(!thp_contains(page, xas.xa_index),
2065 					page);
2066 		}
2067 		indices[pvec->nr] = xas.xa_index;
2068 		if (!pagevec_add(pvec, page))
2069 			break;
2070 		goto next;
2071 unlock:
2072 		unlock_page(page);
2073 put:
2074 		put_page(page);
2075 next:
2076 		if (!xa_is_value(page) && PageTransHuge(page)) {
2077 			unsigned int nr_pages = thp_nr_pages(page);
2078 
2079 			/* Final THP may cross MAX_LFS_FILESIZE on 32-bit */
2080 			xas_set(&xas, page->index + nr_pages);
2081 			if (xas.xa_index < nr_pages)
2082 				break;
2083 		}
2084 	}
2085 	rcu_read_unlock();
2086 
2087 	return pagevec_count(pvec);
2088 }
2089 
2090 /**
2091  * find_get_pages_range - gang pagecache lookup
2092  * @mapping:	The address_space to search
2093  * @start:	The starting page index
2094  * @end:	The final page index (inclusive)
2095  * @nr_pages:	The maximum number of pages
2096  * @pages:	Where the resulting pages are placed
2097  *
2098  * find_get_pages_range() will search for and return a group of up to @nr_pages
2099  * pages in the mapping starting at index @start and up to index @end
2100  * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
2101  * a reference against the returned pages.
2102  *
2103  * The search returns a group of mapping-contiguous pages with ascending
2104  * indexes.  There may be holes in the indices due to not-present pages.
2105  * We also update @start to index the next page for the traversal.
2106  *
2107  * Return: the number of pages which were found. If this number is
2108  * smaller than @nr_pages, the end of specified range has been
2109  * reached.
2110  */
2111 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
2112 			      pgoff_t end, unsigned int nr_pages,
2113 			      struct page **pages)
2114 {
2115 	XA_STATE(xas, &mapping->i_pages, *start);
2116 	struct page *page;
2117 	unsigned ret = 0;
2118 
2119 	if (unlikely(!nr_pages))
2120 		return 0;
2121 
2122 	rcu_read_lock();
2123 	while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
2124 		/* Skip over shadow, swap and DAX entries */
2125 		if (xa_is_value(page))
2126 			continue;
2127 
2128 		pages[ret] = find_subpage(page, xas.xa_index);
2129 		if (++ret == nr_pages) {
2130 			*start = xas.xa_index + 1;
2131 			goto out;
2132 		}
2133 	}
2134 
2135 	/*
2136 	 * We come here when there is no page beyond @end. We take care to not
2137 	 * overflow the index @start as it confuses some of the callers. This
2138 	 * breaks the iteration when there is a page at index -1 but that is
2139 	 * already broken anyway.
2140 	 */
2141 	if (end == (pgoff_t)-1)
2142 		*start = (pgoff_t)-1;
2143 	else
2144 		*start = end + 1;
2145 out:
2146 	rcu_read_unlock();
2147 
2148 	return ret;
2149 }
2150 
2151 /**
2152  * find_get_pages_contig - gang contiguous pagecache lookup
2153  * @mapping:	The address_space to search
2154  * @index:	The starting page index
2155  * @nr_pages:	The maximum number of pages
2156  * @pages:	Where the resulting pages are placed
2157  *
2158  * find_get_pages_contig() works exactly like find_get_pages(), except
2159  * that the returned number of pages are guaranteed to be contiguous.
2160  *
2161  * Return: the number of pages which were found.
2162  */
2163 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
2164 			       unsigned int nr_pages, struct page **pages)
2165 {
2166 	XA_STATE(xas, &mapping->i_pages, index);
2167 	struct page *page;
2168 	unsigned int ret = 0;
2169 
2170 	if (unlikely(!nr_pages))
2171 		return 0;
2172 
2173 	rcu_read_lock();
2174 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
2175 		if (xas_retry(&xas, page))
2176 			continue;
2177 		/*
2178 		 * If the entry has been swapped out, we can stop looking.
2179 		 * No current caller is looking for DAX entries.
2180 		 */
2181 		if (xa_is_value(page))
2182 			break;
2183 
2184 		if (!page_cache_get_speculative(page))
2185 			goto retry;
2186 
2187 		/* Has the page moved or been split? */
2188 		if (unlikely(page != xas_reload(&xas)))
2189 			goto put_page;
2190 
2191 		pages[ret] = find_subpage(page, xas.xa_index);
2192 		if (++ret == nr_pages)
2193 			break;
2194 		continue;
2195 put_page:
2196 		put_page(page);
2197 retry:
2198 		xas_reset(&xas);
2199 	}
2200 	rcu_read_unlock();
2201 	return ret;
2202 }
2203 EXPORT_SYMBOL(find_get_pages_contig);
2204 
2205 /**
2206  * find_get_pages_range_tag - Find and return head pages matching @tag.
2207  * @mapping:	the address_space to search
2208  * @index:	the starting page index
2209  * @end:	The final page index (inclusive)
2210  * @tag:	the tag index
2211  * @nr_pages:	the maximum number of pages
2212  * @pages:	where the resulting pages are placed
2213  *
2214  * Like find_get_pages(), except we only return head pages which are tagged
2215  * with @tag.  @index is updated to the index immediately after the last
2216  * page we return, ready for the next iteration.
2217  *
2218  * Return: the number of pages which were found.
2219  */
2220 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
2221 			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
2222 			struct page **pages)
2223 {
2224 	XA_STATE(xas, &mapping->i_pages, *index);
2225 	struct page *page;
2226 	unsigned ret = 0;
2227 
2228 	if (unlikely(!nr_pages))
2229 		return 0;
2230 
2231 	rcu_read_lock();
2232 	while ((page = find_get_entry(&xas, end, tag))) {
2233 		/*
2234 		 * Shadow entries should never be tagged, but this iteration
2235 		 * is lockless so there is a window for page reclaim to evict
2236 		 * a page we saw tagged.  Skip over it.
2237 		 */
2238 		if (xa_is_value(page))
2239 			continue;
2240 
2241 		pages[ret] = page;
2242 		if (++ret == nr_pages) {
2243 			*index = page->index + thp_nr_pages(page);
2244 			goto out;
2245 		}
2246 	}
2247 
2248 	/*
2249 	 * We come here when we got to @end. We take care to not overflow the
2250 	 * index @index as it confuses some of the callers. This breaks the
2251 	 * iteration when there is a page at index -1 but that is already
2252 	 * broken anyway.
2253 	 */
2254 	if (end == (pgoff_t)-1)
2255 		*index = (pgoff_t)-1;
2256 	else
2257 		*index = end + 1;
2258 out:
2259 	rcu_read_unlock();
2260 
2261 	return ret;
2262 }
2263 EXPORT_SYMBOL(find_get_pages_range_tag);
2264 
2265 /*
2266  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2267  * a _large_ part of the i/o request. Imagine the worst scenario:
2268  *
2269  *      ---R__________________________________________B__________
2270  *         ^ reading here                             ^ bad block(assume 4k)
2271  *
2272  * read(R) => miss => readahead(R...B) => media error => frustrating retries
2273  * => failing the whole request => read(R) => read(R+1) =>
2274  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2275  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2276  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2277  *
2278  * It is going insane. Fix it by quickly scaling down the readahead size.
2279  */
2280 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2281 {
2282 	ra->ra_pages /= 4;
2283 }
2284 
2285 /*
2286  * filemap_get_read_batch - Get a batch of pages for read
2287  *
2288  * Get a batch of pages which represent a contiguous range of bytes
2289  * in the file.  No tail pages will be returned.  If @index is in the
2290  * middle of a THP, the entire THP will be returned.  The last page in
2291  * the batch may have Readahead set or be not Uptodate so that the
2292  * caller can take the appropriate action.
2293  */
2294 static void filemap_get_read_batch(struct address_space *mapping,
2295 		pgoff_t index, pgoff_t max, struct pagevec *pvec)
2296 {
2297 	XA_STATE(xas, &mapping->i_pages, index);
2298 	struct page *head;
2299 
2300 	rcu_read_lock();
2301 	for (head = xas_load(&xas); head; head = xas_next(&xas)) {
2302 		if (xas_retry(&xas, head))
2303 			continue;
2304 		if (xas.xa_index > max || xa_is_value(head))
2305 			break;
2306 		if (!page_cache_get_speculative(head))
2307 			goto retry;
2308 
2309 		/* Has the page moved or been split? */
2310 		if (unlikely(head != xas_reload(&xas)))
2311 			goto put_page;
2312 
2313 		if (!pagevec_add(pvec, head))
2314 			break;
2315 		if (!PageUptodate(head))
2316 			break;
2317 		if (PageReadahead(head))
2318 			break;
2319 		xas.xa_index = head->index + thp_nr_pages(head) - 1;
2320 		xas.xa_offset = (xas.xa_index >> xas.xa_shift) & XA_CHUNK_MASK;
2321 		continue;
2322 put_page:
2323 		put_page(head);
2324 retry:
2325 		xas_reset(&xas);
2326 	}
2327 	rcu_read_unlock();
2328 }
2329 
2330 static int filemap_read_page(struct file *file, struct address_space *mapping,
2331 		struct page *page)
2332 {
2333 	int error;
2334 
2335 	/*
2336 	 * A previous I/O error may have been due to temporary failures,
2337 	 * eg. multipath errors.  PG_error will be set again if readpage
2338 	 * fails.
2339 	 */
2340 	ClearPageError(page);
2341 	/* Start the actual read. The read will unlock the page. */
2342 	error = mapping->a_ops->readpage(file, page);
2343 	if (error)
2344 		return error;
2345 
2346 	error = wait_on_page_locked_killable(page);
2347 	if (error)
2348 		return error;
2349 	if (PageUptodate(page))
2350 		return 0;
2351 	shrink_readahead_size_eio(&file->f_ra);
2352 	return -EIO;
2353 }
2354 
2355 static bool filemap_range_uptodate(struct address_space *mapping,
2356 		loff_t pos, struct iov_iter *iter, struct page *page)
2357 {
2358 	int count;
2359 
2360 	if (PageUptodate(page))
2361 		return true;
2362 	/* pipes can't handle partially uptodate pages */
2363 	if (iov_iter_is_pipe(iter))
2364 		return false;
2365 	if (!mapping->a_ops->is_partially_uptodate)
2366 		return false;
2367 	if (mapping->host->i_blkbits >= (PAGE_SHIFT + thp_order(page)))
2368 		return false;
2369 
2370 	count = iter->count;
2371 	if (page_offset(page) > pos) {
2372 		count -= page_offset(page) - pos;
2373 		pos = 0;
2374 	} else {
2375 		pos -= page_offset(page);
2376 	}
2377 
2378 	return mapping->a_ops->is_partially_uptodate(page, pos, count);
2379 }
2380 
2381 static int filemap_update_page(struct kiocb *iocb,
2382 		struct address_space *mapping, struct iov_iter *iter,
2383 		struct page *page)
2384 {
2385 	int error;
2386 
2387 	if (!trylock_page(page)) {
2388 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2389 			return -EAGAIN;
2390 		if (!(iocb->ki_flags & IOCB_WAITQ)) {
2391 			put_and_wait_on_page_locked(page, TASK_KILLABLE);
2392 			return AOP_TRUNCATED_PAGE;
2393 		}
2394 		error = __lock_page_async(page, iocb->ki_waitq);
2395 		if (error)
2396 			return error;
2397 	}
2398 
2399 	if (!page->mapping)
2400 		goto truncated;
2401 
2402 	error = 0;
2403 	if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, page))
2404 		goto unlock;
2405 
2406 	error = -EAGAIN;
2407 	if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2408 		goto unlock;
2409 
2410 	error = filemap_read_page(iocb->ki_filp, mapping, page);
2411 	if (error == AOP_TRUNCATED_PAGE)
2412 		put_page(page);
2413 	return error;
2414 truncated:
2415 	unlock_page(page);
2416 	put_page(page);
2417 	return AOP_TRUNCATED_PAGE;
2418 unlock:
2419 	unlock_page(page);
2420 	return error;
2421 }
2422 
2423 static int filemap_create_page(struct file *file,
2424 		struct address_space *mapping, pgoff_t index,
2425 		struct pagevec *pvec)
2426 {
2427 	struct page *page;
2428 	int error;
2429 
2430 	page = page_cache_alloc(mapping);
2431 	if (!page)
2432 		return -ENOMEM;
2433 
2434 	error = add_to_page_cache_lru(page, mapping, index,
2435 			mapping_gfp_constraint(mapping, GFP_KERNEL));
2436 	if (error == -EEXIST)
2437 		error = AOP_TRUNCATED_PAGE;
2438 	if (error)
2439 		goto error;
2440 
2441 	error = filemap_read_page(file, mapping, page);
2442 	if (error)
2443 		goto error;
2444 
2445 	pagevec_add(pvec, page);
2446 	return 0;
2447 error:
2448 	put_page(page);
2449 	return error;
2450 }
2451 
2452 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2453 		struct address_space *mapping, struct page *page,
2454 		pgoff_t last_index)
2455 {
2456 	if (iocb->ki_flags & IOCB_NOIO)
2457 		return -EAGAIN;
2458 	page_cache_async_readahead(mapping, &file->f_ra, file, page,
2459 			page->index, last_index - page->index);
2460 	return 0;
2461 }
2462 
2463 static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter,
2464 		struct pagevec *pvec)
2465 {
2466 	struct file *filp = iocb->ki_filp;
2467 	struct address_space *mapping = filp->f_mapping;
2468 	struct file_ra_state *ra = &filp->f_ra;
2469 	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2470 	pgoff_t last_index;
2471 	struct page *page;
2472 	int err = 0;
2473 
2474 	last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE);
2475 retry:
2476 	if (fatal_signal_pending(current))
2477 		return -EINTR;
2478 
2479 	filemap_get_read_batch(mapping, index, last_index, pvec);
2480 	if (!pagevec_count(pvec)) {
2481 		if (iocb->ki_flags & IOCB_NOIO)
2482 			return -EAGAIN;
2483 		page_cache_sync_readahead(mapping, ra, filp, index,
2484 				last_index - index);
2485 		filemap_get_read_batch(mapping, index, last_index, pvec);
2486 	}
2487 	if (!pagevec_count(pvec)) {
2488 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2489 			return -EAGAIN;
2490 		err = filemap_create_page(filp, mapping,
2491 				iocb->ki_pos >> PAGE_SHIFT, pvec);
2492 		if (err == AOP_TRUNCATED_PAGE)
2493 			goto retry;
2494 		return err;
2495 	}
2496 
2497 	page = pvec->pages[pagevec_count(pvec) - 1];
2498 	if (PageReadahead(page)) {
2499 		err = filemap_readahead(iocb, filp, mapping, page, last_index);
2500 		if (err)
2501 			goto err;
2502 	}
2503 	if (!PageUptodate(page)) {
2504 		if ((iocb->ki_flags & IOCB_WAITQ) && pagevec_count(pvec) > 1)
2505 			iocb->ki_flags |= IOCB_NOWAIT;
2506 		err = filemap_update_page(iocb, mapping, iter, page);
2507 		if (err)
2508 			goto err;
2509 	}
2510 
2511 	return 0;
2512 err:
2513 	if (err < 0)
2514 		put_page(page);
2515 	if (likely(--pvec->nr))
2516 		return 0;
2517 	if (err == AOP_TRUNCATED_PAGE)
2518 		goto retry;
2519 	return err;
2520 }
2521 
2522 /**
2523  * filemap_read - Read data from the page cache.
2524  * @iocb: The iocb to read.
2525  * @iter: Destination for the data.
2526  * @already_read: Number of bytes already read by the caller.
2527  *
2528  * Copies data from the page cache.  If the data is not currently present,
2529  * uses the readahead and readpage address_space operations to fetch it.
2530  *
2531  * Return: Total number of bytes copied, including those already read by
2532  * the caller.  If an error happens before any bytes are copied, returns
2533  * a negative error number.
2534  */
2535 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2536 		ssize_t already_read)
2537 {
2538 	struct file *filp = iocb->ki_filp;
2539 	struct file_ra_state *ra = &filp->f_ra;
2540 	struct address_space *mapping = filp->f_mapping;
2541 	struct inode *inode = mapping->host;
2542 	struct pagevec pvec;
2543 	int i, error = 0;
2544 	bool writably_mapped;
2545 	loff_t isize, end_offset;
2546 
2547 	if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2548 		return 0;
2549 	if (unlikely(!iov_iter_count(iter)))
2550 		return 0;
2551 
2552 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2553 	pagevec_init(&pvec);
2554 
2555 	do {
2556 		cond_resched();
2557 
2558 		/*
2559 		 * If we've already successfully copied some data, then we
2560 		 * can no longer safely return -EIOCBQUEUED. Hence mark
2561 		 * an async read NOWAIT at that point.
2562 		 */
2563 		if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2564 			iocb->ki_flags |= IOCB_NOWAIT;
2565 
2566 		error = filemap_get_pages(iocb, iter, &pvec);
2567 		if (error < 0)
2568 			break;
2569 
2570 		/*
2571 		 * i_size must be checked after we know the pages are Uptodate.
2572 		 *
2573 		 * Checking i_size after the check allows us to calculate
2574 		 * the correct value for "nr", which means the zero-filled
2575 		 * part of the page is not copied back to userspace (unless
2576 		 * another truncate extends the file - this is desired though).
2577 		 */
2578 		isize = i_size_read(inode);
2579 		if (unlikely(iocb->ki_pos >= isize))
2580 			goto put_pages;
2581 		end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2582 
2583 		/*
2584 		 * Once we start copying data, we don't want to be touching any
2585 		 * cachelines that might be contended:
2586 		 */
2587 		writably_mapped = mapping_writably_mapped(mapping);
2588 
2589 		/*
2590 		 * When a sequential read accesses a page several times, only
2591 		 * mark it as accessed the first time.
2592 		 */
2593 		if (iocb->ki_pos >> PAGE_SHIFT !=
2594 		    ra->prev_pos >> PAGE_SHIFT)
2595 			mark_page_accessed(pvec.pages[0]);
2596 
2597 		for (i = 0; i < pagevec_count(&pvec); i++) {
2598 			struct page *page = pvec.pages[i];
2599 			size_t page_size = thp_size(page);
2600 			size_t offset = iocb->ki_pos & (page_size - 1);
2601 			size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2602 					     page_size - offset);
2603 			size_t copied;
2604 
2605 			if (end_offset < page_offset(page))
2606 				break;
2607 			if (i > 0)
2608 				mark_page_accessed(page);
2609 			/*
2610 			 * If users can be writing to this page using arbitrary
2611 			 * virtual addresses, take care about potential aliasing
2612 			 * before reading the page on the kernel side.
2613 			 */
2614 			if (writably_mapped) {
2615 				int j;
2616 
2617 				for (j = 0; j < thp_nr_pages(page); j++)
2618 					flush_dcache_page(page + j);
2619 			}
2620 
2621 			copied = copy_page_to_iter(page, offset, bytes, iter);
2622 
2623 			already_read += copied;
2624 			iocb->ki_pos += copied;
2625 			ra->prev_pos = iocb->ki_pos;
2626 
2627 			if (copied < bytes) {
2628 				error = -EFAULT;
2629 				break;
2630 			}
2631 		}
2632 put_pages:
2633 		for (i = 0; i < pagevec_count(&pvec); i++)
2634 			put_page(pvec.pages[i]);
2635 		pagevec_reinit(&pvec);
2636 	} while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2637 
2638 	file_accessed(filp);
2639 
2640 	return already_read ? already_read : error;
2641 }
2642 EXPORT_SYMBOL_GPL(filemap_read);
2643 
2644 /**
2645  * generic_file_read_iter - generic filesystem read routine
2646  * @iocb:	kernel I/O control block
2647  * @iter:	destination for the data read
2648  *
2649  * This is the "read_iter()" routine for all filesystems
2650  * that can use the page cache directly.
2651  *
2652  * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2653  * be returned when no data can be read without waiting for I/O requests
2654  * to complete; it doesn't prevent readahead.
2655  *
2656  * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2657  * requests shall be made for the read or for readahead.  When no data
2658  * can be read, -EAGAIN shall be returned.  When readahead would be
2659  * triggered, a partial, possibly empty read shall be returned.
2660  *
2661  * Return:
2662  * * number of bytes copied, even for partial reads
2663  * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2664  */
2665 ssize_t
2666 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2667 {
2668 	size_t count = iov_iter_count(iter);
2669 	ssize_t retval = 0;
2670 
2671 	if (!count)
2672 		return 0; /* skip atime */
2673 
2674 	if (iocb->ki_flags & IOCB_DIRECT) {
2675 		struct file *file = iocb->ki_filp;
2676 		struct address_space *mapping = file->f_mapping;
2677 		struct inode *inode = mapping->host;
2678 		loff_t size;
2679 
2680 		size = i_size_read(inode);
2681 		if (iocb->ki_flags & IOCB_NOWAIT) {
2682 			if (filemap_range_needs_writeback(mapping, iocb->ki_pos,
2683 						iocb->ki_pos + count - 1))
2684 				return -EAGAIN;
2685 		} else {
2686 			retval = filemap_write_and_wait_range(mapping,
2687 						iocb->ki_pos,
2688 					        iocb->ki_pos + count - 1);
2689 			if (retval < 0)
2690 				return retval;
2691 		}
2692 
2693 		file_accessed(file);
2694 
2695 		retval = mapping->a_ops->direct_IO(iocb, iter);
2696 		if (retval >= 0) {
2697 			iocb->ki_pos += retval;
2698 			count -= retval;
2699 		}
2700 		if (retval != -EIOCBQUEUED)
2701 			iov_iter_revert(iter, count - iov_iter_count(iter));
2702 
2703 		/*
2704 		 * Btrfs can have a short DIO read if we encounter
2705 		 * compressed extents, so if there was an error, or if
2706 		 * we've already read everything we wanted to, or if
2707 		 * there was a short read because we hit EOF, go ahead
2708 		 * and return.  Otherwise fallthrough to buffered io for
2709 		 * the rest of the read.  Buffered reads will not work for
2710 		 * DAX files, so don't bother trying.
2711 		 */
2712 		if (retval < 0 || !count || iocb->ki_pos >= size ||
2713 		    IS_DAX(inode))
2714 			return retval;
2715 	}
2716 
2717 	return filemap_read(iocb, iter, retval);
2718 }
2719 EXPORT_SYMBOL(generic_file_read_iter);
2720 
2721 static inline loff_t page_seek_hole_data(struct xa_state *xas,
2722 		struct address_space *mapping, struct page *page,
2723 		loff_t start, loff_t end, bool seek_data)
2724 {
2725 	const struct address_space_operations *ops = mapping->a_ops;
2726 	size_t offset, bsz = i_blocksize(mapping->host);
2727 
2728 	if (xa_is_value(page) || PageUptodate(page))
2729 		return seek_data ? start : end;
2730 	if (!ops->is_partially_uptodate)
2731 		return seek_data ? end : start;
2732 
2733 	xas_pause(xas);
2734 	rcu_read_unlock();
2735 	lock_page(page);
2736 	if (unlikely(page->mapping != mapping))
2737 		goto unlock;
2738 
2739 	offset = offset_in_thp(page, start) & ~(bsz - 1);
2740 
2741 	do {
2742 		if (ops->is_partially_uptodate(page, offset, bsz) == seek_data)
2743 			break;
2744 		start = (start + bsz) & ~(bsz - 1);
2745 		offset += bsz;
2746 	} while (offset < thp_size(page));
2747 unlock:
2748 	unlock_page(page);
2749 	rcu_read_lock();
2750 	return start;
2751 }
2752 
2753 static inline
2754 unsigned int seek_page_size(struct xa_state *xas, struct page *page)
2755 {
2756 	if (xa_is_value(page))
2757 		return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2758 	return thp_size(page);
2759 }
2760 
2761 /**
2762  * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2763  * @mapping: Address space to search.
2764  * @start: First byte to consider.
2765  * @end: Limit of search (exclusive).
2766  * @whence: Either SEEK_HOLE or SEEK_DATA.
2767  *
2768  * If the page cache knows which blocks contain holes and which blocks
2769  * contain data, your filesystem can use this function to implement
2770  * SEEK_HOLE and SEEK_DATA.  This is useful for filesystems which are
2771  * entirely memory-based such as tmpfs, and filesystems which support
2772  * unwritten extents.
2773  *
2774  * Return: The requested offset on successs, or -ENXIO if @whence specifies
2775  * SEEK_DATA and there is no data after @start.  There is an implicit hole
2776  * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2777  * and @end contain data.
2778  */
2779 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2780 		loff_t end, int whence)
2781 {
2782 	XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
2783 	pgoff_t max = (end - 1) >> PAGE_SHIFT;
2784 	bool seek_data = (whence == SEEK_DATA);
2785 	struct page *page;
2786 
2787 	if (end <= start)
2788 		return -ENXIO;
2789 
2790 	rcu_read_lock();
2791 	while ((page = find_get_entry(&xas, max, XA_PRESENT))) {
2792 		loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
2793 		unsigned int seek_size;
2794 
2795 		if (start < pos) {
2796 			if (!seek_data)
2797 				goto unlock;
2798 			start = pos;
2799 		}
2800 
2801 		seek_size = seek_page_size(&xas, page);
2802 		pos = round_up(pos + 1, seek_size);
2803 		start = page_seek_hole_data(&xas, mapping, page, start, pos,
2804 				seek_data);
2805 		if (start < pos)
2806 			goto unlock;
2807 		if (start >= end)
2808 			break;
2809 		if (seek_size > PAGE_SIZE)
2810 			xas_set(&xas, pos >> PAGE_SHIFT);
2811 		if (!xa_is_value(page))
2812 			put_page(page);
2813 	}
2814 	if (seek_data)
2815 		start = -ENXIO;
2816 unlock:
2817 	rcu_read_unlock();
2818 	if (page && !xa_is_value(page))
2819 		put_page(page);
2820 	if (start > end)
2821 		return end;
2822 	return start;
2823 }
2824 
2825 #ifdef CONFIG_MMU
2826 #define MMAP_LOTSAMISS  (100)
2827 /*
2828  * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2829  * @vmf - the vm_fault for this fault.
2830  * @page - the page to lock.
2831  * @fpin - the pointer to the file we may pin (or is already pinned).
2832  *
2833  * This works similar to lock_page_or_retry in that it can drop the mmap_lock.
2834  * It differs in that it actually returns the page locked if it returns 1 and 0
2835  * if it couldn't lock the page.  If we did have to drop the mmap_lock then fpin
2836  * will point to the pinned file and needs to be fput()'ed at a later point.
2837  */
2838 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2839 				     struct file **fpin)
2840 {
2841 	if (trylock_page(page))
2842 		return 1;
2843 
2844 	/*
2845 	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2846 	 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2847 	 * is supposed to work. We have way too many special cases..
2848 	 */
2849 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2850 		return 0;
2851 
2852 	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2853 	if (vmf->flags & FAULT_FLAG_KILLABLE) {
2854 		if (__lock_page_killable(page)) {
2855 			/*
2856 			 * We didn't have the right flags to drop the mmap_lock,
2857 			 * but all fault_handlers only check for fatal signals
2858 			 * if we return VM_FAULT_RETRY, so we need to drop the
2859 			 * mmap_lock here and return 0 if we don't have a fpin.
2860 			 */
2861 			if (*fpin == NULL)
2862 				mmap_read_unlock(vmf->vma->vm_mm);
2863 			return 0;
2864 		}
2865 	} else
2866 		__lock_page(page);
2867 	return 1;
2868 }
2869 
2870 
2871 /*
2872  * Synchronous readahead happens when we don't even find a page in the page
2873  * cache at all.  We don't want to perform IO under the mmap sem, so if we have
2874  * to drop the mmap sem we return the file that was pinned in order for us to do
2875  * that.  If we didn't pin a file then we return NULL.  The file that is
2876  * returned needs to be fput()'ed when we're done with it.
2877  */
2878 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2879 {
2880 	struct file *file = vmf->vma->vm_file;
2881 	struct file_ra_state *ra = &file->f_ra;
2882 	struct address_space *mapping = file->f_mapping;
2883 	DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
2884 	struct file *fpin = NULL;
2885 	unsigned int mmap_miss;
2886 
2887 	/* If we don't want any read-ahead, don't bother */
2888 	if (vmf->vma->vm_flags & VM_RAND_READ)
2889 		return fpin;
2890 	if (!ra->ra_pages)
2891 		return fpin;
2892 
2893 	if (vmf->vma->vm_flags & VM_SEQ_READ) {
2894 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2895 		page_cache_sync_ra(&ractl, ra->ra_pages);
2896 		return fpin;
2897 	}
2898 
2899 	/* Avoid banging the cache line if not needed */
2900 	mmap_miss = READ_ONCE(ra->mmap_miss);
2901 	if (mmap_miss < MMAP_LOTSAMISS * 10)
2902 		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
2903 
2904 	/*
2905 	 * Do we miss much more than hit in this file? If so,
2906 	 * stop bothering with read-ahead. It will only hurt.
2907 	 */
2908 	if (mmap_miss > MMAP_LOTSAMISS)
2909 		return fpin;
2910 
2911 	/*
2912 	 * mmap read-around
2913 	 */
2914 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2915 	ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
2916 	ra->size = ra->ra_pages;
2917 	ra->async_size = ra->ra_pages / 4;
2918 	ractl._index = ra->start;
2919 	do_page_cache_ra(&ractl, ra->size, ra->async_size);
2920 	return fpin;
2921 }
2922 
2923 /*
2924  * Asynchronous readahead happens when we find the page and PG_readahead,
2925  * so we want to possibly extend the readahead further.  We return the file that
2926  * was pinned if we have to drop the mmap_lock in order to do IO.
2927  */
2928 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2929 					    struct page *page)
2930 {
2931 	struct file *file = vmf->vma->vm_file;
2932 	struct file_ra_state *ra = &file->f_ra;
2933 	struct address_space *mapping = file->f_mapping;
2934 	struct file *fpin = NULL;
2935 	unsigned int mmap_miss;
2936 	pgoff_t offset = vmf->pgoff;
2937 
2938 	/* If we don't want any read-ahead, don't bother */
2939 	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
2940 		return fpin;
2941 	mmap_miss = READ_ONCE(ra->mmap_miss);
2942 	if (mmap_miss)
2943 		WRITE_ONCE(ra->mmap_miss, --mmap_miss);
2944 	if (PageReadahead(page)) {
2945 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2946 		page_cache_async_readahead(mapping, ra, file,
2947 					   page, offset, ra->ra_pages);
2948 	}
2949 	return fpin;
2950 }
2951 
2952 /**
2953  * filemap_fault - read in file data for page fault handling
2954  * @vmf:	struct vm_fault containing details of the fault
2955  *
2956  * filemap_fault() is invoked via the vma operations vector for a
2957  * mapped memory region to read in file data during a page fault.
2958  *
2959  * The goto's are kind of ugly, but this streamlines the normal case of having
2960  * it in the page cache, and handles the special cases reasonably without
2961  * having a lot of duplicated code.
2962  *
2963  * vma->vm_mm->mmap_lock must be held on entry.
2964  *
2965  * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
2966  * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
2967  *
2968  * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
2969  * has not been released.
2970  *
2971  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2972  *
2973  * Return: bitwise-OR of %VM_FAULT_ codes.
2974  */
2975 vm_fault_t filemap_fault(struct vm_fault *vmf)
2976 {
2977 	int error;
2978 	struct file *file = vmf->vma->vm_file;
2979 	struct file *fpin = NULL;
2980 	struct address_space *mapping = file->f_mapping;
2981 	struct inode *inode = mapping->host;
2982 	pgoff_t offset = vmf->pgoff;
2983 	pgoff_t max_off;
2984 	struct page *page;
2985 	vm_fault_t ret = 0;
2986 
2987 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2988 	if (unlikely(offset >= max_off))
2989 		return VM_FAULT_SIGBUS;
2990 
2991 	/*
2992 	 * Do we have something in the page cache already?
2993 	 */
2994 	page = find_get_page(mapping, offset);
2995 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2996 		/*
2997 		 * We found the page, so try async readahead before
2998 		 * waiting for the lock.
2999 		 */
3000 		fpin = do_async_mmap_readahead(vmf, page);
3001 	} else if (!page) {
3002 		/* No page in the page cache at all */
3003 		count_vm_event(PGMAJFAULT);
3004 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3005 		ret = VM_FAULT_MAJOR;
3006 		fpin = do_sync_mmap_readahead(vmf);
3007 retry_find:
3008 		page = pagecache_get_page(mapping, offset,
3009 					  FGP_CREAT|FGP_FOR_MMAP,
3010 					  vmf->gfp_mask);
3011 		if (!page) {
3012 			if (fpin)
3013 				goto out_retry;
3014 			return VM_FAULT_OOM;
3015 		}
3016 	}
3017 
3018 	if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
3019 		goto out_retry;
3020 
3021 	/* Did it get truncated? */
3022 	if (unlikely(compound_head(page)->mapping != mapping)) {
3023 		unlock_page(page);
3024 		put_page(page);
3025 		goto retry_find;
3026 	}
3027 	VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
3028 
3029 	/*
3030 	 * We have a locked page in the page cache, now we need to check
3031 	 * that it's up-to-date. If not, it is going to be due to an error.
3032 	 */
3033 	if (unlikely(!PageUptodate(page)))
3034 		goto page_not_uptodate;
3035 
3036 	/*
3037 	 * We've made it this far and we had to drop our mmap_lock, now is the
3038 	 * time to return to the upper layer and have it re-find the vma and
3039 	 * redo the fault.
3040 	 */
3041 	if (fpin) {
3042 		unlock_page(page);
3043 		goto out_retry;
3044 	}
3045 
3046 	/*
3047 	 * Found the page and have a reference on it.
3048 	 * We must recheck i_size under page lock.
3049 	 */
3050 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3051 	if (unlikely(offset >= max_off)) {
3052 		unlock_page(page);
3053 		put_page(page);
3054 		return VM_FAULT_SIGBUS;
3055 	}
3056 
3057 	vmf->page = page;
3058 	return ret | VM_FAULT_LOCKED;
3059 
3060 page_not_uptodate:
3061 	/*
3062 	 * Umm, take care of errors if the page isn't up-to-date.
3063 	 * Try to re-read it _once_. We do this synchronously,
3064 	 * because there really aren't any performance issues here
3065 	 * and we need to check for errors.
3066 	 */
3067 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3068 	error = filemap_read_page(file, mapping, page);
3069 	if (fpin)
3070 		goto out_retry;
3071 	put_page(page);
3072 
3073 	if (!error || error == AOP_TRUNCATED_PAGE)
3074 		goto retry_find;
3075 
3076 	return VM_FAULT_SIGBUS;
3077 
3078 out_retry:
3079 	/*
3080 	 * We dropped the mmap_lock, we need to return to the fault handler to
3081 	 * re-find the vma and come back and find our hopefully still populated
3082 	 * page.
3083 	 */
3084 	if (page)
3085 		put_page(page);
3086 	if (fpin)
3087 		fput(fpin);
3088 	return ret | VM_FAULT_RETRY;
3089 }
3090 EXPORT_SYMBOL(filemap_fault);
3091 
3092 static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
3093 {
3094 	struct mm_struct *mm = vmf->vma->vm_mm;
3095 
3096 	/* Huge page is mapped? No need to proceed. */
3097 	if (pmd_trans_huge(*vmf->pmd)) {
3098 		unlock_page(page);
3099 		put_page(page);
3100 		return true;
3101 	}
3102 
3103 	if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
3104 	    vm_fault_t ret = do_set_pmd(vmf, page);
3105 	    if (!ret) {
3106 		    /* The page is mapped successfully, reference consumed. */
3107 		    unlock_page(page);
3108 		    return true;
3109 	    }
3110 	}
3111 
3112 	if (pmd_none(*vmf->pmd)) {
3113 		vmf->ptl = pmd_lock(mm, vmf->pmd);
3114 		if (likely(pmd_none(*vmf->pmd))) {
3115 			mm_inc_nr_ptes(mm);
3116 			pmd_populate(mm, vmf->pmd, vmf->prealloc_pte);
3117 			vmf->prealloc_pte = NULL;
3118 		}
3119 		spin_unlock(vmf->ptl);
3120 	}
3121 
3122 	/* See comment in handle_pte_fault() */
3123 	if (pmd_devmap_trans_unstable(vmf->pmd)) {
3124 		unlock_page(page);
3125 		put_page(page);
3126 		return true;
3127 	}
3128 
3129 	return false;
3130 }
3131 
3132 static struct page *next_uptodate_page(struct page *page,
3133 				       struct address_space *mapping,
3134 				       struct xa_state *xas, pgoff_t end_pgoff)
3135 {
3136 	unsigned long max_idx;
3137 
3138 	do {
3139 		if (!page)
3140 			return NULL;
3141 		if (xas_retry(xas, page))
3142 			continue;
3143 		if (xa_is_value(page))
3144 			continue;
3145 		if (PageLocked(page))
3146 			continue;
3147 		if (!page_cache_get_speculative(page))
3148 			continue;
3149 		/* Has the page moved or been split? */
3150 		if (unlikely(page != xas_reload(xas)))
3151 			goto skip;
3152 		if (!PageUptodate(page) || PageReadahead(page))
3153 			goto skip;
3154 		if (PageHWPoison(page))
3155 			goto skip;
3156 		if (!trylock_page(page))
3157 			goto skip;
3158 		if (page->mapping != mapping)
3159 			goto unlock;
3160 		if (!PageUptodate(page))
3161 			goto unlock;
3162 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3163 		if (xas->xa_index >= max_idx)
3164 			goto unlock;
3165 		return page;
3166 unlock:
3167 		unlock_page(page);
3168 skip:
3169 		put_page(page);
3170 	} while ((page = xas_next_entry(xas, end_pgoff)) != NULL);
3171 
3172 	return NULL;
3173 }
3174 
3175 static inline struct page *first_map_page(struct address_space *mapping,
3176 					  struct xa_state *xas,
3177 					  pgoff_t end_pgoff)
3178 {
3179 	return next_uptodate_page(xas_find(xas, end_pgoff),
3180 				  mapping, xas, end_pgoff);
3181 }
3182 
3183 static inline struct page *next_map_page(struct address_space *mapping,
3184 					 struct xa_state *xas,
3185 					 pgoff_t end_pgoff)
3186 {
3187 	return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3188 				  mapping, xas, end_pgoff);
3189 }
3190 
3191 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3192 			     pgoff_t start_pgoff, pgoff_t end_pgoff)
3193 {
3194 	struct vm_area_struct *vma = vmf->vma;
3195 	struct file *file = vma->vm_file;
3196 	struct address_space *mapping = file->f_mapping;
3197 	pgoff_t last_pgoff = start_pgoff;
3198 	unsigned long addr;
3199 	XA_STATE(xas, &mapping->i_pages, start_pgoff);
3200 	struct page *head, *page;
3201 	unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
3202 	vm_fault_t ret = 0;
3203 
3204 	rcu_read_lock();
3205 	head = first_map_page(mapping, &xas, end_pgoff);
3206 	if (!head)
3207 		goto out;
3208 
3209 	if (filemap_map_pmd(vmf, head)) {
3210 		ret = VM_FAULT_NOPAGE;
3211 		goto out;
3212 	}
3213 
3214 	addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3215 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3216 	do {
3217 		page = find_subpage(head, xas.xa_index);
3218 		if (PageHWPoison(page))
3219 			goto unlock;
3220 
3221 		if (mmap_miss > 0)
3222 			mmap_miss--;
3223 
3224 		addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3225 		vmf->pte += xas.xa_index - last_pgoff;
3226 		last_pgoff = xas.xa_index;
3227 
3228 		if (!pte_none(*vmf->pte))
3229 			goto unlock;
3230 
3231 		/* We're about to handle the fault */
3232 		if (vmf->address == addr)
3233 			ret = VM_FAULT_NOPAGE;
3234 
3235 		do_set_pte(vmf, page, addr);
3236 		/* no need to invalidate: a not-present page won't be cached */
3237 		update_mmu_cache(vma, addr, vmf->pte);
3238 		unlock_page(head);
3239 		continue;
3240 unlock:
3241 		unlock_page(head);
3242 		put_page(head);
3243 	} while ((head = next_map_page(mapping, &xas, end_pgoff)) != NULL);
3244 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3245 out:
3246 	rcu_read_unlock();
3247 	WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
3248 	return ret;
3249 }
3250 EXPORT_SYMBOL(filemap_map_pages);
3251 
3252 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3253 {
3254 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3255 	struct page *page = vmf->page;
3256 	vm_fault_t ret = VM_FAULT_LOCKED;
3257 
3258 	sb_start_pagefault(mapping->host->i_sb);
3259 	file_update_time(vmf->vma->vm_file);
3260 	lock_page(page);
3261 	if (page->mapping != mapping) {
3262 		unlock_page(page);
3263 		ret = VM_FAULT_NOPAGE;
3264 		goto out;
3265 	}
3266 	/*
3267 	 * We mark the page dirty already here so that when freeze is in
3268 	 * progress, we are guaranteed that writeback during freezing will
3269 	 * see the dirty page and writeprotect it again.
3270 	 */
3271 	set_page_dirty(page);
3272 	wait_for_stable_page(page);
3273 out:
3274 	sb_end_pagefault(mapping->host->i_sb);
3275 	return ret;
3276 }
3277 
3278 const struct vm_operations_struct generic_file_vm_ops = {
3279 	.fault		= filemap_fault,
3280 	.map_pages	= filemap_map_pages,
3281 	.page_mkwrite	= filemap_page_mkwrite,
3282 };
3283 
3284 /* This is used for a general mmap of a disk file */
3285 
3286 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
3287 {
3288 	struct address_space *mapping = file->f_mapping;
3289 
3290 	if (!mapping->a_ops->readpage)
3291 		return -ENOEXEC;
3292 	file_accessed(file);
3293 	vma->vm_ops = &generic_file_vm_ops;
3294 	return 0;
3295 }
3296 
3297 /*
3298  * This is for filesystems which do not implement ->writepage.
3299  */
3300 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3301 {
3302 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3303 		return -EINVAL;
3304 	return generic_file_mmap(file, vma);
3305 }
3306 #else
3307 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3308 {
3309 	return VM_FAULT_SIGBUS;
3310 }
3311 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
3312 {
3313 	return -ENOSYS;
3314 }
3315 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
3316 {
3317 	return -ENOSYS;
3318 }
3319 #endif /* CONFIG_MMU */
3320 
3321 EXPORT_SYMBOL(filemap_page_mkwrite);
3322 EXPORT_SYMBOL(generic_file_mmap);
3323 EXPORT_SYMBOL(generic_file_readonly_mmap);
3324 
3325 static struct page *wait_on_page_read(struct page *page)
3326 {
3327 	if (!IS_ERR(page)) {
3328 		wait_on_page_locked(page);
3329 		if (!PageUptodate(page)) {
3330 			put_page(page);
3331 			page = ERR_PTR(-EIO);
3332 		}
3333 	}
3334 	return page;
3335 }
3336 
3337 static struct page *do_read_cache_page(struct address_space *mapping,
3338 				pgoff_t index,
3339 				int (*filler)(void *, struct page *),
3340 				void *data,
3341 				gfp_t gfp)
3342 {
3343 	struct page *page;
3344 	int err;
3345 repeat:
3346 	page = find_get_page(mapping, index);
3347 	if (!page) {
3348 		page = __page_cache_alloc(gfp);
3349 		if (!page)
3350 			return ERR_PTR(-ENOMEM);
3351 		err = add_to_page_cache_lru(page, mapping, index, gfp);
3352 		if (unlikely(err)) {
3353 			put_page(page);
3354 			if (err == -EEXIST)
3355 				goto repeat;
3356 			/* Presumably ENOMEM for xarray node */
3357 			return ERR_PTR(err);
3358 		}
3359 
3360 filler:
3361 		if (filler)
3362 			err = filler(data, page);
3363 		else
3364 			err = mapping->a_ops->readpage(data, page);
3365 
3366 		if (err < 0) {
3367 			put_page(page);
3368 			return ERR_PTR(err);
3369 		}
3370 
3371 		page = wait_on_page_read(page);
3372 		if (IS_ERR(page))
3373 			return page;
3374 		goto out;
3375 	}
3376 	if (PageUptodate(page))
3377 		goto out;
3378 
3379 	/*
3380 	 * Page is not up to date and may be locked due to one of the following
3381 	 * case a: Page is being filled and the page lock is held
3382 	 * case b: Read/write error clearing the page uptodate status
3383 	 * case c: Truncation in progress (page locked)
3384 	 * case d: Reclaim in progress
3385 	 *
3386 	 * Case a, the page will be up to date when the page is unlocked.
3387 	 *    There is no need to serialise on the page lock here as the page
3388 	 *    is pinned so the lock gives no additional protection. Even if the
3389 	 *    page is truncated, the data is still valid if PageUptodate as
3390 	 *    it's a race vs truncate race.
3391 	 * Case b, the page will not be up to date
3392 	 * Case c, the page may be truncated but in itself, the data may still
3393 	 *    be valid after IO completes as it's a read vs truncate race. The
3394 	 *    operation must restart if the page is not uptodate on unlock but
3395 	 *    otherwise serialising on page lock to stabilise the mapping gives
3396 	 *    no additional guarantees to the caller as the page lock is
3397 	 *    released before return.
3398 	 * Case d, similar to truncation. If reclaim holds the page lock, it
3399 	 *    will be a race with remove_mapping that determines if the mapping
3400 	 *    is valid on unlock but otherwise the data is valid and there is
3401 	 *    no need to serialise with page lock.
3402 	 *
3403 	 * As the page lock gives no additional guarantee, we optimistically
3404 	 * wait on the page to be unlocked and check if it's up to date and
3405 	 * use the page if it is. Otherwise, the page lock is required to
3406 	 * distinguish between the different cases. The motivation is that we
3407 	 * avoid spurious serialisations and wakeups when multiple processes
3408 	 * wait on the same page for IO to complete.
3409 	 */
3410 	wait_on_page_locked(page);
3411 	if (PageUptodate(page))
3412 		goto out;
3413 
3414 	/* Distinguish between all the cases under the safety of the lock */
3415 	lock_page(page);
3416 
3417 	/* Case c or d, restart the operation */
3418 	if (!page->mapping) {
3419 		unlock_page(page);
3420 		put_page(page);
3421 		goto repeat;
3422 	}
3423 
3424 	/* Someone else locked and filled the page in a very small window */
3425 	if (PageUptodate(page)) {
3426 		unlock_page(page);
3427 		goto out;
3428 	}
3429 
3430 	/*
3431 	 * A previous I/O error may have been due to temporary
3432 	 * failures.
3433 	 * Clear page error before actual read, PG_error will be
3434 	 * set again if read page fails.
3435 	 */
3436 	ClearPageError(page);
3437 	goto filler;
3438 
3439 out:
3440 	mark_page_accessed(page);
3441 	return page;
3442 }
3443 
3444 /**
3445  * read_cache_page - read into page cache, fill it if needed
3446  * @mapping:	the page's address_space
3447  * @index:	the page index
3448  * @filler:	function to perform the read
3449  * @data:	first arg to filler(data, page) function, often left as NULL
3450  *
3451  * Read into the page cache. If a page already exists, and PageUptodate() is
3452  * not set, try to fill the page and wait for it to become unlocked.
3453  *
3454  * If the page does not get brought uptodate, return -EIO.
3455  *
3456  * Return: up to date page on success, ERR_PTR() on failure.
3457  */
3458 struct page *read_cache_page(struct address_space *mapping,
3459 				pgoff_t index,
3460 				int (*filler)(void *, struct page *),
3461 				void *data)
3462 {
3463 	return do_read_cache_page(mapping, index, filler, data,
3464 			mapping_gfp_mask(mapping));
3465 }
3466 EXPORT_SYMBOL(read_cache_page);
3467 
3468 /**
3469  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3470  * @mapping:	the page's address_space
3471  * @index:	the page index
3472  * @gfp:	the page allocator flags to use if allocating
3473  *
3474  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3475  * any new page allocations done using the specified allocation flags.
3476  *
3477  * If the page does not get brought uptodate, return -EIO.
3478  *
3479  * Return: up to date page on success, ERR_PTR() on failure.
3480  */
3481 struct page *read_cache_page_gfp(struct address_space *mapping,
3482 				pgoff_t index,
3483 				gfp_t gfp)
3484 {
3485 	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3486 }
3487 EXPORT_SYMBOL(read_cache_page_gfp);
3488 
3489 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3490 				loff_t pos, unsigned len, unsigned flags,
3491 				struct page **pagep, void **fsdata)
3492 {
3493 	const struct address_space_operations *aops = mapping->a_ops;
3494 
3495 	return aops->write_begin(file, mapping, pos, len, flags,
3496 							pagep, fsdata);
3497 }
3498 EXPORT_SYMBOL(pagecache_write_begin);
3499 
3500 int pagecache_write_end(struct file *file, struct address_space *mapping,
3501 				loff_t pos, unsigned len, unsigned copied,
3502 				struct page *page, void *fsdata)
3503 {
3504 	const struct address_space_operations *aops = mapping->a_ops;
3505 
3506 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3507 }
3508 EXPORT_SYMBOL(pagecache_write_end);
3509 
3510 /*
3511  * Warn about a page cache invalidation failure during a direct I/O write.
3512  */
3513 void dio_warn_stale_pagecache(struct file *filp)
3514 {
3515 	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3516 	char pathname[128];
3517 	char *path;
3518 
3519 	errseq_set(&filp->f_mapping->wb_err, -EIO);
3520 	if (__ratelimit(&_rs)) {
3521 		path = file_path(filp, pathname, sizeof(pathname));
3522 		if (IS_ERR(path))
3523 			path = "(unknown)";
3524 		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3525 		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3526 			current->comm);
3527 	}
3528 }
3529 
3530 ssize_t
3531 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3532 {
3533 	struct file	*file = iocb->ki_filp;
3534 	struct address_space *mapping = file->f_mapping;
3535 	struct inode	*inode = mapping->host;
3536 	loff_t		pos = iocb->ki_pos;
3537 	ssize_t		written;
3538 	size_t		write_len;
3539 	pgoff_t		end;
3540 
3541 	write_len = iov_iter_count(from);
3542 	end = (pos + write_len - 1) >> PAGE_SHIFT;
3543 
3544 	if (iocb->ki_flags & IOCB_NOWAIT) {
3545 		/* If there are pages to writeback, return */
3546 		if (filemap_range_has_page(file->f_mapping, pos,
3547 					   pos + write_len - 1))
3548 			return -EAGAIN;
3549 	} else {
3550 		written = filemap_write_and_wait_range(mapping, pos,
3551 							pos + write_len - 1);
3552 		if (written)
3553 			goto out;
3554 	}
3555 
3556 	/*
3557 	 * After a write we want buffered reads to be sure to go to disk to get
3558 	 * the new data.  We invalidate clean cached page from the region we're
3559 	 * about to write.  We do this *before* the write so that we can return
3560 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3561 	 */
3562 	written = invalidate_inode_pages2_range(mapping,
3563 					pos >> PAGE_SHIFT, end);
3564 	/*
3565 	 * If a page can not be invalidated, return 0 to fall back
3566 	 * to buffered write.
3567 	 */
3568 	if (written) {
3569 		if (written == -EBUSY)
3570 			return 0;
3571 		goto out;
3572 	}
3573 
3574 	written = mapping->a_ops->direct_IO(iocb, from);
3575 
3576 	/*
3577 	 * Finally, try again to invalidate clean pages which might have been
3578 	 * cached by non-direct readahead, or faulted in by get_user_pages()
3579 	 * if the source of the write was an mmap'ed region of the file
3580 	 * we're writing.  Either one is a pretty crazy thing to do,
3581 	 * so we don't support it 100%.  If this invalidation
3582 	 * fails, tough, the write still worked...
3583 	 *
3584 	 * Most of the time we do not need this since dio_complete() will do
3585 	 * the invalidation for us. However there are some file systems that
3586 	 * do not end up with dio_complete() being called, so let's not break
3587 	 * them by removing it completely.
3588 	 *
3589 	 * Noticeable example is a blkdev_direct_IO().
3590 	 *
3591 	 * Skip invalidation for async writes or if mapping has no pages.
3592 	 */
3593 	if (written > 0 && mapping->nrpages &&
3594 	    invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3595 		dio_warn_stale_pagecache(file);
3596 
3597 	if (written > 0) {
3598 		pos += written;
3599 		write_len -= written;
3600 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3601 			i_size_write(inode, pos);
3602 			mark_inode_dirty(inode);
3603 		}
3604 		iocb->ki_pos = pos;
3605 	}
3606 	if (written != -EIOCBQUEUED)
3607 		iov_iter_revert(from, write_len - iov_iter_count(from));
3608 out:
3609 	return written;
3610 }
3611 EXPORT_SYMBOL(generic_file_direct_write);
3612 
3613 /*
3614  * Find or create a page at the given pagecache position. Return the locked
3615  * page. This function is specifically for buffered writes.
3616  */
3617 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3618 					pgoff_t index, unsigned flags)
3619 {
3620 	struct page *page;
3621 	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3622 
3623 	if (flags & AOP_FLAG_NOFS)
3624 		fgp_flags |= FGP_NOFS;
3625 
3626 	page = pagecache_get_page(mapping, index, fgp_flags,
3627 			mapping_gfp_mask(mapping));
3628 	if (page)
3629 		wait_for_stable_page(page);
3630 
3631 	return page;
3632 }
3633 EXPORT_SYMBOL(grab_cache_page_write_begin);
3634 
3635 ssize_t generic_perform_write(struct file *file,
3636 				struct iov_iter *i, loff_t pos)
3637 {
3638 	struct address_space *mapping = file->f_mapping;
3639 	const struct address_space_operations *a_ops = mapping->a_ops;
3640 	long status = 0;
3641 	ssize_t written = 0;
3642 	unsigned int flags = 0;
3643 
3644 	do {
3645 		struct page *page;
3646 		unsigned long offset;	/* Offset into pagecache page */
3647 		unsigned long bytes;	/* Bytes to write to page */
3648 		size_t copied;		/* Bytes copied from user */
3649 		void *fsdata;
3650 
3651 		offset = (pos & (PAGE_SIZE - 1));
3652 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3653 						iov_iter_count(i));
3654 
3655 again:
3656 		/*
3657 		 * Bring in the user page that we will copy from _first_.
3658 		 * Otherwise there's a nasty deadlock on copying from the
3659 		 * same page as we're writing to, without it being marked
3660 		 * up-to-date.
3661 		 *
3662 		 * Not only is this an optimisation, but it is also required
3663 		 * to check that the address is actually valid, when atomic
3664 		 * usercopies are used, below.
3665 		 */
3666 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3667 			status = -EFAULT;
3668 			break;
3669 		}
3670 
3671 		if (fatal_signal_pending(current)) {
3672 			status = -EINTR;
3673 			break;
3674 		}
3675 
3676 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3677 						&page, &fsdata);
3678 		if (unlikely(status < 0))
3679 			break;
3680 
3681 		if (mapping_writably_mapped(mapping))
3682 			flush_dcache_page(page);
3683 
3684 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3685 		flush_dcache_page(page);
3686 
3687 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3688 						page, fsdata);
3689 		if (unlikely(status < 0))
3690 			break;
3691 		copied = status;
3692 
3693 		cond_resched();
3694 
3695 		iov_iter_advance(i, copied);
3696 		if (unlikely(copied == 0)) {
3697 			/*
3698 			 * If we were unable to copy any data at all, we must
3699 			 * fall back to a single segment length write.
3700 			 *
3701 			 * If we didn't fallback here, we could livelock
3702 			 * because not all segments in the iov can be copied at
3703 			 * once without a pagefault.
3704 			 */
3705 			bytes = min_t(unsigned long, PAGE_SIZE - offset,
3706 						iov_iter_single_seg_count(i));
3707 			goto again;
3708 		}
3709 		pos += copied;
3710 		written += copied;
3711 
3712 		balance_dirty_pages_ratelimited(mapping);
3713 	} while (iov_iter_count(i));
3714 
3715 	return written ? written : status;
3716 }
3717 EXPORT_SYMBOL(generic_perform_write);
3718 
3719 /**
3720  * __generic_file_write_iter - write data to a file
3721  * @iocb:	IO state structure (file, offset, etc.)
3722  * @from:	iov_iter with data to write
3723  *
3724  * This function does all the work needed for actually writing data to a
3725  * file. It does all basic checks, removes SUID from the file, updates
3726  * modification times and calls proper subroutines depending on whether we
3727  * do direct IO or a standard buffered write.
3728  *
3729  * It expects i_mutex to be grabbed unless we work on a block device or similar
3730  * object which does not need locking at all.
3731  *
3732  * This function does *not* take care of syncing data in case of O_SYNC write.
3733  * A caller has to handle it. This is mainly due to the fact that we want to
3734  * avoid syncing under i_mutex.
3735  *
3736  * Return:
3737  * * number of bytes written, even for truncated writes
3738  * * negative error code if no data has been written at all
3739  */
3740 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3741 {
3742 	struct file *file = iocb->ki_filp;
3743 	struct address_space * mapping = file->f_mapping;
3744 	struct inode 	*inode = mapping->host;
3745 	ssize_t		written = 0;
3746 	ssize_t		err;
3747 	ssize_t		status;
3748 
3749 	/* We can write back this queue in page reclaim */
3750 	current->backing_dev_info = inode_to_bdi(inode);
3751 	err = file_remove_privs(file);
3752 	if (err)
3753 		goto out;
3754 
3755 	err = file_update_time(file);
3756 	if (err)
3757 		goto out;
3758 
3759 	if (iocb->ki_flags & IOCB_DIRECT) {
3760 		loff_t pos, endbyte;
3761 
3762 		written = generic_file_direct_write(iocb, from);
3763 		/*
3764 		 * If the write stopped short of completing, fall back to
3765 		 * buffered writes.  Some filesystems do this for writes to
3766 		 * holes, for example.  For DAX files, a buffered write will
3767 		 * not succeed (even if it did, DAX does not handle dirty
3768 		 * page-cache pages correctly).
3769 		 */
3770 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3771 			goto out;
3772 
3773 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3774 		/*
3775 		 * If generic_perform_write() returned a synchronous error
3776 		 * then we want to return the number of bytes which were
3777 		 * direct-written, or the error code if that was zero.  Note
3778 		 * that this differs from normal direct-io semantics, which
3779 		 * will return -EFOO even if some bytes were written.
3780 		 */
3781 		if (unlikely(status < 0)) {
3782 			err = status;
3783 			goto out;
3784 		}
3785 		/*
3786 		 * We need to ensure that the page cache pages are written to
3787 		 * disk and invalidated to preserve the expected O_DIRECT
3788 		 * semantics.
3789 		 */
3790 		endbyte = pos + status - 1;
3791 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3792 		if (err == 0) {
3793 			iocb->ki_pos = endbyte + 1;
3794 			written += status;
3795 			invalidate_mapping_pages(mapping,
3796 						 pos >> PAGE_SHIFT,
3797 						 endbyte >> PAGE_SHIFT);
3798 		} else {
3799 			/*
3800 			 * We don't know how much we wrote, so just return
3801 			 * the number of bytes which were direct-written
3802 			 */
3803 		}
3804 	} else {
3805 		written = generic_perform_write(file, from, iocb->ki_pos);
3806 		if (likely(written > 0))
3807 			iocb->ki_pos += written;
3808 	}
3809 out:
3810 	current->backing_dev_info = NULL;
3811 	return written ? written : err;
3812 }
3813 EXPORT_SYMBOL(__generic_file_write_iter);
3814 
3815 /**
3816  * generic_file_write_iter - write data to a file
3817  * @iocb:	IO state structure
3818  * @from:	iov_iter with data to write
3819  *
3820  * This is a wrapper around __generic_file_write_iter() to be used by most
3821  * filesystems. It takes care of syncing the file in case of O_SYNC file
3822  * and acquires i_mutex as needed.
3823  * Return:
3824  * * negative error code if no data has been written at all of
3825  *   vfs_fsync_range() failed for a synchronous write
3826  * * number of bytes written, even for truncated writes
3827  */
3828 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3829 {
3830 	struct file *file = iocb->ki_filp;
3831 	struct inode *inode = file->f_mapping->host;
3832 	ssize_t ret;
3833 
3834 	inode_lock(inode);
3835 	ret = generic_write_checks(iocb, from);
3836 	if (ret > 0)
3837 		ret = __generic_file_write_iter(iocb, from);
3838 	inode_unlock(inode);
3839 
3840 	if (ret > 0)
3841 		ret = generic_write_sync(iocb, ret);
3842 	return ret;
3843 }
3844 EXPORT_SYMBOL(generic_file_write_iter);
3845 
3846 /**
3847  * try_to_release_page() - release old fs-specific metadata on a page
3848  *
3849  * @page: the page which the kernel is trying to free
3850  * @gfp_mask: memory allocation flags (and I/O mode)
3851  *
3852  * The address_space is to try to release any data against the page
3853  * (presumably at page->private).
3854  *
3855  * This may also be called if PG_fscache is set on a page, indicating that the
3856  * page is known to the local caching routines.
3857  *
3858  * The @gfp_mask argument specifies whether I/O may be performed to release
3859  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3860  *
3861  * Return: %1 if the release was successful, otherwise return zero.
3862  */
3863 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3864 {
3865 	struct address_space * const mapping = page->mapping;
3866 
3867 	BUG_ON(!PageLocked(page));
3868 	if (PageWriteback(page))
3869 		return 0;
3870 
3871 	if (mapping && mapping->a_ops->releasepage)
3872 		return mapping->a_ops->releasepage(page, gfp_mask);
3873 	return try_to_free_buffers(page);
3874 }
3875 
3876 EXPORT_SYMBOL(try_to_release_page);
3877