1 /* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12 #include <linux/module.h> 13 #include <linux/slab.h> 14 #include <linux/compiler.h> 15 #include <linux/fs.h> 16 #include <linux/uaccess.h> 17 #include <linux/aio.h> 18 #include <linux/capability.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/mm.h> 21 #include <linux/swap.h> 22 #include <linux/mman.h> 23 #include <linux/pagemap.h> 24 #include <linux/file.h> 25 #include <linux/uio.h> 26 #include <linux/hash.h> 27 #include <linux/writeback.h> 28 #include <linux/pagevec.h> 29 #include <linux/blkdev.h> 30 #include <linux/security.h> 31 #include <linux/syscalls.h> 32 #include <linux/cpuset.h> 33 #include "filemap.h" 34 #include "internal.h" 35 36 /* 37 * FIXME: remove all knowledge of the buffer layer from the core VM 38 */ 39 #include <linux/buffer_head.h> /* for generic_osync_inode */ 40 41 #include <asm/mman.h> 42 43 static ssize_t 44 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, 45 loff_t offset, unsigned long nr_segs); 46 47 /* 48 * Shared mappings implemented 30.11.1994. It's not fully working yet, 49 * though. 50 * 51 * Shared mappings now work. 15.8.1995 Bruno. 52 * 53 * finished 'unifying' the page and buffer cache and SMP-threaded the 54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 55 * 56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 57 */ 58 59 /* 60 * Lock ordering: 61 * 62 * ->i_mmap_lock (vmtruncate) 63 * ->private_lock (__free_pte->__set_page_dirty_buffers) 64 * ->swap_lock (exclusive_swap_page, others) 65 * ->mapping->tree_lock 66 * 67 * ->i_mutex 68 * ->i_mmap_lock (truncate->unmap_mapping_range) 69 * 70 * ->mmap_sem 71 * ->i_mmap_lock 72 * ->page_table_lock or pte_lock (various, mainly in memory.c) 73 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) 74 * 75 * ->mmap_sem 76 * ->lock_page (access_process_vm) 77 * 78 * ->i_mutex (generic_file_buffered_write) 79 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 80 * 81 * ->i_mutex 82 * ->i_alloc_sem (various) 83 * 84 * ->inode_lock 85 * ->sb_lock (fs/fs-writeback.c) 86 * ->mapping->tree_lock (__sync_single_inode) 87 * 88 * ->i_mmap_lock 89 * ->anon_vma.lock (vma_adjust) 90 * 91 * ->anon_vma.lock 92 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 93 * 94 * ->page_table_lock or pte_lock 95 * ->swap_lock (try_to_unmap_one) 96 * ->private_lock (try_to_unmap_one) 97 * ->tree_lock (try_to_unmap_one) 98 * ->zone.lru_lock (follow_page->mark_page_accessed) 99 * ->zone.lru_lock (check_pte_range->isolate_lru_page) 100 * ->private_lock (page_remove_rmap->set_page_dirty) 101 * ->tree_lock (page_remove_rmap->set_page_dirty) 102 * ->inode_lock (page_remove_rmap->set_page_dirty) 103 * ->inode_lock (zap_pte_range->set_page_dirty) 104 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 105 * 106 * ->task->proc_lock 107 * ->dcache_lock (proc_pid_lookup) 108 */ 109 110 /* 111 * Remove a page from the page cache and free it. Caller has to make 112 * sure the page is locked and that nobody else uses it - or that usage 113 * is safe. The caller must hold a write_lock on the mapping's tree_lock. 114 */ 115 void __remove_from_page_cache(struct page *page) 116 { 117 struct address_space *mapping = page->mapping; 118 119 radix_tree_delete(&mapping->page_tree, page->index); 120 page->mapping = NULL; 121 mapping->nrpages--; 122 __dec_zone_page_state(page, NR_FILE_PAGES); 123 BUG_ON(page_mapped(page)); 124 } 125 126 void remove_from_page_cache(struct page *page) 127 { 128 struct address_space *mapping = page->mapping; 129 130 BUG_ON(!PageLocked(page)); 131 132 write_lock_irq(&mapping->tree_lock); 133 __remove_from_page_cache(page); 134 write_unlock_irq(&mapping->tree_lock); 135 } 136 137 static int sync_page(void *word) 138 { 139 struct address_space *mapping; 140 struct page *page; 141 142 page = container_of((unsigned long *)word, struct page, flags); 143 144 /* 145 * page_mapping() is being called without PG_locked held. 146 * Some knowledge of the state and use of the page is used to 147 * reduce the requirements down to a memory barrier. 148 * The danger here is of a stale page_mapping() return value 149 * indicating a struct address_space different from the one it's 150 * associated with when it is associated with one. 151 * After smp_mb(), it's either the correct page_mapping() for 152 * the page, or an old page_mapping() and the page's own 153 * page_mapping() has gone NULL. 154 * The ->sync_page() address_space operation must tolerate 155 * page_mapping() going NULL. By an amazing coincidence, 156 * this comes about because none of the users of the page 157 * in the ->sync_page() methods make essential use of the 158 * page_mapping(), merely passing the page down to the backing 159 * device's unplug functions when it's non-NULL, which in turn 160 * ignore it for all cases but swap, where only page_private(page) is 161 * of interest. When page_mapping() does go NULL, the entire 162 * call stack gracefully ignores the page and returns. 163 * -- wli 164 */ 165 smp_mb(); 166 mapping = page_mapping(page); 167 if (mapping && mapping->a_ops && mapping->a_ops->sync_page) 168 mapping->a_ops->sync_page(page); 169 io_schedule(); 170 return 0; 171 } 172 173 /** 174 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 175 * @mapping: address space structure to write 176 * @start: offset in bytes where the range starts 177 * @end: offset in bytes where the range ends (inclusive) 178 * @sync_mode: enable synchronous operation 179 * 180 * Start writeback against all of a mapping's dirty pages that lie 181 * within the byte offsets <start, end> inclusive. 182 * 183 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 184 * opposed to a regular memory cleansing writeback. The difference between 185 * these two operations is that if a dirty page/buffer is encountered, it must 186 * be waited upon, and not just skipped over. 187 */ 188 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 189 loff_t end, int sync_mode) 190 { 191 int ret; 192 struct writeback_control wbc = { 193 .sync_mode = sync_mode, 194 .nr_to_write = mapping->nrpages * 2, 195 .range_start = start, 196 .range_end = end, 197 }; 198 199 if (!mapping_cap_writeback_dirty(mapping)) 200 return 0; 201 202 ret = do_writepages(mapping, &wbc); 203 return ret; 204 } 205 206 static inline int __filemap_fdatawrite(struct address_space *mapping, 207 int sync_mode) 208 { 209 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 210 } 211 212 int filemap_fdatawrite(struct address_space *mapping) 213 { 214 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 215 } 216 EXPORT_SYMBOL(filemap_fdatawrite); 217 218 static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 219 loff_t end) 220 { 221 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 222 } 223 224 /** 225 * filemap_flush - mostly a non-blocking flush 226 * @mapping: target address_space 227 * 228 * This is a mostly non-blocking flush. Not suitable for data-integrity 229 * purposes - I/O may not be started against all dirty pages. 230 */ 231 int filemap_flush(struct address_space *mapping) 232 { 233 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 234 } 235 EXPORT_SYMBOL(filemap_flush); 236 237 /** 238 * wait_on_page_writeback_range - wait for writeback to complete 239 * @mapping: target address_space 240 * @start: beginning page index 241 * @end: ending page index 242 * 243 * Wait for writeback to complete against pages indexed by start->end 244 * inclusive 245 */ 246 int wait_on_page_writeback_range(struct address_space *mapping, 247 pgoff_t start, pgoff_t end) 248 { 249 struct pagevec pvec; 250 int nr_pages; 251 int ret = 0; 252 pgoff_t index; 253 254 if (end < start) 255 return 0; 256 257 pagevec_init(&pvec, 0); 258 index = start; 259 while ((index <= end) && 260 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 261 PAGECACHE_TAG_WRITEBACK, 262 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { 263 unsigned i; 264 265 for (i = 0; i < nr_pages; i++) { 266 struct page *page = pvec.pages[i]; 267 268 /* until radix tree lookup accepts end_index */ 269 if (page->index > end) 270 continue; 271 272 wait_on_page_writeback(page); 273 if (PageError(page)) 274 ret = -EIO; 275 } 276 pagevec_release(&pvec); 277 cond_resched(); 278 } 279 280 /* Check for outstanding write errors */ 281 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 282 ret = -ENOSPC; 283 if (test_and_clear_bit(AS_EIO, &mapping->flags)) 284 ret = -EIO; 285 286 return ret; 287 } 288 289 /** 290 * sync_page_range - write and wait on all pages in the passed range 291 * @inode: target inode 292 * @mapping: target address_space 293 * @pos: beginning offset in pages to write 294 * @count: number of bytes to write 295 * 296 * Write and wait upon all the pages in the passed range. This is a "data 297 * integrity" operation. It waits upon in-flight writeout before starting and 298 * waiting upon new writeout. If there was an IO error, return it. 299 * 300 * We need to re-take i_mutex during the generic_osync_inode list walk because 301 * it is otherwise livelockable. 302 */ 303 int sync_page_range(struct inode *inode, struct address_space *mapping, 304 loff_t pos, loff_t count) 305 { 306 pgoff_t start = pos >> PAGE_CACHE_SHIFT; 307 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT; 308 int ret; 309 310 if (!mapping_cap_writeback_dirty(mapping) || !count) 311 return 0; 312 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1); 313 if (ret == 0) { 314 mutex_lock(&inode->i_mutex); 315 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA); 316 mutex_unlock(&inode->i_mutex); 317 } 318 if (ret == 0) 319 ret = wait_on_page_writeback_range(mapping, start, end); 320 return ret; 321 } 322 EXPORT_SYMBOL(sync_page_range); 323 324 /** 325 * sync_page_range_nolock 326 * @inode: target inode 327 * @mapping: target address_space 328 * @pos: beginning offset in pages to write 329 * @count: number of bytes to write 330 * 331 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea 332 * as it forces O_SYNC writers to different parts of the same file 333 * to be serialised right until io completion. 334 */ 335 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping, 336 loff_t pos, loff_t count) 337 { 338 pgoff_t start = pos >> PAGE_CACHE_SHIFT; 339 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT; 340 int ret; 341 342 if (!mapping_cap_writeback_dirty(mapping) || !count) 343 return 0; 344 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1); 345 if (ret == 0) 346 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA); 347 if (ret == 0) 348 ret = wait_on_page_writeback_range(mapping, start, end); 349 return ret; 350 } 351 EXPORT_SYMBOL(sync_page_range_nolock); 352 353 /** 354 * filemap_fdatawait - wait for all under-writeback pages to complete 355 * @mapping: address space structure to wait for 356 * 357 * Walk the list of under-writeback pages of the given address space 358 * and wait for all of them. 359 */ 360 int filemap_fdatawait(struct address_space *mapping) 361 { 362 loff_t i_size = i_size_read(mapping->host); 363 364 if (i_size == 0) 365 return 0; 366 367 return wait_on_page_writeback_range(mapping, 0, 368 (i_size - 1) >> PAGE_CACHE_SHIFT); 369 } 370 EXPORT_SYMBOL(filemap_fdatawait); 371 372 int filemap_write_and_wait(struct address_space *mapping) 373 { 374 int err = 0; 375 376 if (mapping->nrpages) { 377 err = filemap_fdatawrite(mapping); 378 /* 379 * Even if the above returned error, the pages may be 380 * written partially (e.g. -ENOSPC), so we wait for it. 381 * But the -EIO is special case, it may indicate the worst 382 * thing (e.g. bug) happened, so we avoid waiting for it. 383 */ 384 if (err != -EIO) { 385 int err2 = filemap_fdatawait(mapping); 386 if (!err) 387 err = err2; 388 } 389 } 390 return err; 391 } 392 EXPORT_SYMBOL(filemap_write_and_wait); 393 394 /** 395 * filemap_write_and_wait_range - write out & wait on a file range 396 * @mapping: the address_space for the pages 397 * @lstart: offset in bytes where the range starts 398 * @lend: offset in bytes where the range ends (inclusive) 399 * 400 * Write out and wait upon file offsets lstart->lend, inclusive. 401 * 402 * Note that `lend' is inclusive (describes the last byte to be written) so 403 * that this function can be used to write to the very end-of-file (end = -1). 404 */ 405 int filemap_write_and_wait_range(struct address_space *mapping, 406 loff_t lstart, loff_t lend) 407 { 408 int err = 0; 409 410 if (mapping->nrpages) { 411 err = __filemap_fdatawrite_range(mapping, lstart, lend, 412 WB_SYNC_ALL); 413 /* See comment of filemap_write_and_wait() */ 414 if (err != -EIO) { 415 int err2 = wait_on_page_writeback_range(mapping, 416 lstart >> PAGE_CACHE_SHIFT, 417 lend >> PAGE_CACHE_SHIFT); 418 if (!err) 419 err = err2; 420 } 421 } 422 return err; 423 } 424 425 /** 426 * add_to_page_cache - add newly allocated pagecache pages 427 * @page: page to add 428 * @mapping: the page's address_space 429 * @offset: page index 430 * @gfp_mask: page allocation mode 431 * 432 * This function is used to add newly allocated pagecache pages; 433 * the page is new, so we can just run SetPageLocked() against it. 434 * The other page state flags were set by rmqueue(). 435 * 436 * This function does not add the page to the LRU. The caller must do that. 437 */ 438 int add_to_page_cache(struct page *page, struct address_space *mapping, 439 pgoff_t offset, gfp_t gfp_mask) 440 { 441 int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 442 443 if (error == 0) { 444 write_lock_irq(&mapping->tree_lock); 445 error = radix_tree_insert(&mapping->page_tree, offset, page); 446 if (!error) { 447 page_cache_get(page); 448 SetPageLocked(page); 449 page->mapping = mapping; 450 page->index = offset; 451 mapping->nrpages++; 452 __inc_zone_page_state(page, NR_FILE_PAGES); 453 } 454 write_unlock_irq(&mapping->tree_lock); 455 radix_tree_preload_end(); 456 } 457 return error; 458 } 459 EXPORT_SYMBOL(add_to_page_cache); 460 461 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 462 pgoff_t offset, gfp_t gfp_mask) 463 { 464 int ret = add_to_page_cache(page, mapping, offset, gfp_mask); 465 if (ret == 0) 466 lru_cache_add(page); 467 return ret; 468 } 469 470 #ifdef CONFIG_NUMA 471 struct page *__page_cache_alloc(gfp_t gfp) 472 { 473 if (cpuset_do_page_mem_spread()) { 474 int n = cpuset_mem_spread_node(); 475 return alloc_pages_node(n, gfp, 0); 476 } 477 return alloc_pages(gfp, 0); 478 } 479 EXPORT_SYMBOL(__page_cache_alloc); 480 #endif 481 482 static int __sleep_on_page_lock(void *word) 483 { 484 io_schedule(); 485 return 0; 486 } 487 488 /* 489 * In order to wait for pages to become available there must be 490 * waitqueues associated with pages. By using a hash table of 491 * waitqueues where the bucket discipline is to maintain all 492 * waiters on the same queue and wake all when any of the pages 493 * become available, and for the woken contexts to check to be 494 * sure the appropriate page became available, this saves space 495 * at a cost of "thundering herd" phenomena during rare hash 496 * collisions. 497 */ 498 static wait_queue_head_t *page_waitqueue(struct page *page) 499 { 500 const struct zone *zone = page_zone(page); 501 502 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)]; 503 } 504 505 static inline void wake_up_page(struct page *page, int bit) 506 { 507 __wake_up_bit(page_waitqueue(page), &page->flags, bit); 508 } 509 510 void fastcall wait_on_page_bit(struct page *page, int bit_nr) 511 { 512 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 513 514 if (test_bit(bit_nr, &page->flags)) 515 __wait_on_bit(page_waitqueue(page), &wait, sync_page, 516 TASK_UNINTERRUPTIBLE); 517 } 518 EXPORT_SYMBOL(wait_on_page_bit); 519 520 /** 521 * unlock_page - unlock a locked page 522 * @page: the page 523 * 524 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 525 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 526 * mechananism between PageLocked pages and PageWriteback pages is shared. 527 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 528 * 529 * The first mb is necessary to safely close the critical section opened by the 530 * TestSetPageLocked(), the second mb is necessary to enforce ordering between 531 * the clear_bit and the read of the waitqueue (to avoid SMP races with a 532 * parallel wait_on_page_locked()). 533 */ 534 void fastcall unlock_page(struct page *page) 535 { 536 smp_mb__before_clear_bit(); 537 if (!TestClearPageLocked(page)) 538 BUG(); 539 smp_mb__after_clear_bit(); 540 wake_up_page(page, PG_locked); 541 } 542 EXPORT_SYMBOL(unlock_page); 543 544 /** 545 * end_page_writeback - end writeback against a page 546 * @page: the page 547 */ 548 void end_page_writeback(struct page *page) 549 { 550 if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) { 551 if (!test_clear_page_writeback(page)) 552 BUG(); 553 } 554 smp_mb__after_clear_bit(); 555 wake_up_page(page, PG_writeback); 556 } 557 EXPORT_SYMBOL(end_page_writeback); 558 559 /** 560 * __lock_page - get a lock on the page, assuming we need to sleep to get it 561 * @page: the page to lock 562 * 563 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some 564 * random driver's requestfn sets TASK_RUNNING, we could busywait. However 565 * chances are that on the second loop, the block layer's plug list is empty, 566 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE. 567 */ 568 void fastcall __lock_page(struct page *page) 569 { 570 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 571 572 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page, 573 TASK_UNINTERRUPTIBLE); 574 } 575 EXPORT_SYMBOL(__lock_page); 576 577 /* 578 * Variant of lock_page that does not require the caller to hold a reference 579 * on the page's mapping. 580 */ 581 void fastcall __lock_page_nosync(struct page *page) 582 { 583 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 584 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock, 585 TASK_UNINTERRUPTIBLE); 586 } 587 588 /** 589 * find_get_page - find and get a page reference 590 * @mapping: the address_space to search 591 * @offset: the page index 592 * 593 * Is there a pagecache struct page at the given (mapping, offset) tuple? 594 * If yes, increment its refcount and return it; if no, return NULL. 595 */ 596 struct page * find_get_page(struct address_space *mapping, unsigned long offset) 597 { 598 struct page *page; 599 600 read_lock_irq(&mapping->tree_lock); 601 page = radix_tree_lookup(&mapping->page_tree, offset); 602 if (page) 603 page_cache_get(page); 604 read_unlock_irq(&mapping->tree_lock); 605 return page; 606 } 607 EXPORT_SYMBOL(find_get_page); 608 609 /** 610 * find_lock_page - locate, pin and lock a pagecache page 611 * @mapping: the address_space to search 612 * @offset: the page index 613 * 614 * Locates the desired pagecache page, locks it, increments its reference 615 * count and returns its address. 616 * 617 * Returns zero if the page was not present. find_lock_page() may sleep. 618 */ 619 struct page *find_lock_page(struct address_space *mapping, 620 unsigned long offset) 621 { 622 struct page *page; 623 624 read_lock_irq(&mapping->tree_lock); 625 repeat: 626 page = radix_tree_lookup(&mapping->page_tree, offset); 627 if (page) { 628 page_cache_get(page); 629 if (TestSetPageLocked(page)) { 630 read_unlock_irq(&mapping->tree_lock); 631 __lock_page(page); 632 read_lock_irq(&mapping->tree_lock); 633 634 /* Has the page been truncated while we slept? */ 635 if (unlikely(page->mapping != mapping || 636 page->index != offset)) { 637 unlock_page(page); 638 page_cache_release(page); 639 goto repeat; 640 } 641 } 642 } 643 read_unlock_irq(&mapping->tree_lock); 644 return page; 645 } 646 EXPORT_SYMBOL(find_lock_page); 647 648 /** 649 * find_or_create_page - locate or add a pagecache page 650 * @mapping: the page's address_space 651 * @index: the page's index into the mapping 652 * @gfp_mask: page allocation mode 653 * 654 * Locates a page in the pagecache. If the page is not present, a new page 655 * is allocated using @gfp_mask and is added to the pagecache and to the VM's 656 * LRU list. The returned page is locked and has its reference count 657 * incremented. 658 * 659 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic 660 * allocation! 661 * 662 * find_or_create_page() returns the desired page's address, or zero on 663 * memory exhaustion. 664 */ 665 struct page *find_or_create_page(struct address_space *mapping, 666 unsigned long index, gfp_t gfp_mask) 667 { 668 struct page *page, *cached_page = NULL; 669 int err; 670 repeat: 671 page = find_lock_page(mapping, index); 672 if (!page) { 673 if (!cached_page) { 674 cached_page = 675 __page_cache_alloc(gfp_mask); 676 if (!cached_page) 677 return NULL; 678 } 679 err = add_to_page_cache_lru(cached_page, mapping, 680 index, gfp_mask); 681 if (!err) { 682 page = cached_page; 683 cached_page = NULL; 684 } else if (err == -EEXIST) 685 goto repeat; 686 } 687 if (cached_page) 688 page_cache_release(cached_page); 689 return page; 690 } 691 EXPORT_SYMBOL(find_or_create_page); 692 693 /** 694 * find_get_pages - gang pagecache lookup 695 * @mapping: The address_space to search 696 * @start: The starting page index 697 * @nr_pages: The maximum number of pages 698 * @pages: Where the resulting pages are placed 699 * 700 * find_get_pages() will search for and return a group of up to 701 * @nr_pages pages in the mapping. The pages are placed at @pages. 702 * find_get_pages() takes a reference against the returned pages. 703 * 704 * The search returns a group of mapping-contiguous pages with ascending 705 * indexes. There may be holes in the indices due to not-present pages. 706 * 707 * find_get_pages() returns the number of pages which were found. 708 */ 709 unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 710 unsigned int nr_pages, struct page **pages) 711 { 712 unsigned int i; 713 unsigned int ret; 714 715 read_lock_irq(&mapping->tree_lock); 716 ret = radix_tree_gang_lookup(&mapping->page_tree, 717 (void **)pages, start, nr_pages); 718 for (i = 0; i < ret; i++) 719 page_cache_get(pages[i]); 720 read_unlock_irq(&mapping->tree_lock); 721 return ret; 722 } 723 724 /** 725 * find_get_pages_contig - gang contiguous pagecache lookup 726 * @mapping: The address_space to search 727 * @index: The starting page index 728 * @nr_pages: The maximum number of pages 729 * @pages: Where the resulting pages are placed 730 * 731 * find_get_pages_contig() works exactly like find_get_pages(), except 732 * that the returned number of pages are guaranteed to be contiguous. 733 * 734 * find_get_pages_contig() returns the number of pages which were found. 735 */ 736 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 737 unsigned int nr_pages, struct page **pages) 738 { 739 unsigned int i; 740 unsigned int ret; 741 742 read_lock_irq(&mapping->tree_lock); 743 ret = radix_tree_gang_lookup(&mapping->page_tree, 744 (void **)pages, index, nr_pages); 745 for (i = 0; i < ret; i++) { 746 if (pages[i]->mapping == NULL || pages[i]->index != index) 747 break; 748 749 page_cache_get(pages[i]); 750 index++; 751 } 752 read_unlock_irq(&mapping->tree_lock); 753 return i; 754 } 755 EXPORT_SYMBOL(find_get_pages_contig); 756 757 /** 758 * find_get_pages_tag - find and return pages that match @tag 759 * @mapping: the address_space to search 760 * @index: the starting page index 761 * @tag: the tag index 762 * @nr_pages: the maximum number of pages 763 * @pages: where the resulting pages are placed 764 * 765 * Like find_get_pages, except we only return pages which are tagged with 766 * @tag. We update @index to index the next page for the traversal. 767 */ 768 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 769 int tag, unsigned int nr_pages, struct page **pages) 770 { 771 unsigned int i; 772 unsigned int ret; 773 774 read_lock_irq(&mapping->tree_lock); 775 ret = radix_tree_gang_lookup_tag(&mapping->page_tree, 776 (void **)pages, *index, nr_pages, tag); 777 for (i = 0; i < ret; i++) 778 page_cache_get(pages[i]); 779 if (ret) 780 *index = pages[ret - 1]->index + 1; 781 read_unlock_irq(&mapping->tree_lock); 782 return ret; 783 } 784 EXPORT_SYMBOL(find_get_pages_tag); 785 786 /** 787 * grab_cache_page_nowait - returns locked page at given index in given cache 788 * @mapping: target address_space 789 * @index: the page index 790 * 791 * Same as grab_cache_page(), but do not wait if the page is unavailable. 792 * This is intended for speculative data generators, where the data can 793 * be regenerated if the page couldn't be grabbed. This routine should 794 * be safe to call while holding the lock for another page. 795 * 796 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 797 * and deadlock against the caller's locked page. 798 */ 799 struct page * 800 grab_cache_page_nowait(struct address_space *mapping, unsigned long index) 801 { 802 struct page *page = find_get_page(mapping, index); 803 804 if (page) { 805 if (!TestSetPageLocked(page)) 806 return page; 807 page_cache_release(page); 808 return NULL; 809 } 810 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS); 811 if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) { 812 page_cache_release(page); 813 page = NULL; 814 } 815 return page; 816 } 817 EXPORT_SYMBOL(grab_cache_page_nowait); 818 819 /* 820 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 821 * a _large_ part of the i/o request. Imagine the worst scenario: 822 * 823 * ---R__________________________________________B__________ 824 * ^ reading here ^ bad block(assume 4k) 825 * 826 * read(R) => miss => readahead(R...B) => media error => frustrating retries 827 * => failing the whole request => read(R) => read(R+1) => 828 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 829 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 830 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 831 * 832 * It is going insane. Fix it by quickly scaling down the readahead size. 833 */ 834 static void shrink_readahead_size_eio(struct file *filp, 835 struct file_ra_state *ra) 836 { 837 if (!ra->ra_pages) 838 return; 839 840 ra->ra_pages /= 4; 841 } 842 843 /** 844 * do_generic_mapping_read - generic file read routine 845 * @mapping: address_space to be read 846 * @_ra: file's readahead state 847 * @filp: the file to read 848 * @ppos: current file position 849 * @desc: read_descriptor 850 * @actor: read method 851 * 852 * This is a generic file read routine, and uses the 853 * mapping->a_ops->readpage() function for the actual low-level stuff. 854 * 855 * This is really ugly. But the goto's actually try to clarify some 856 * of the logic when it comes to error handling etc. 857 * 858 * Note the struct file* is only passed for the use of readpage. 859 * It may be NULL. 860 */ 861 void do_generic_mapping_read(struct address_space *mapping, 862 struct file_ra_state *_ra, 863 struct file *filp, 864 loff_t *ppos, 865 read_descriptor_t *desc, 866 read_actor_t actor) 867 { 868 struct inode *inode = mapping->host; 869 unsigned long index; 870 unsigned long offset; 871 unsigned long last_index; 872 unsigned long next_index; 873 unsigned long prev_index; 874 unsigned int prev_offset; 875 struct page *cached_page; 876 int error; 877 struct file_ra_state ra = *_ra; 878 879 cached_page = NULL; 880 index = *ppos >> PAGE_CACHE_SHIFT; 881 next_index = index; 882 prev_index = ra.prev_index; 883 prev_offset = ra.prev_offset; 884 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; 885 offset = *ppos & ~PAGE_CACHE_MASK; 886 887 for (;;) { 888 struct page *page; 889 unsigned long end_index; 890 loff_t isize; 891 unsigned long nr, ret; 892 893 cond_resched(); 894 if (index == next_index) 895 next_index = page_cache_readahead(mapping, &ra, filp, 896 index, last_index - index); 897 898 find_page: 899 page = find_get_page(mapping, index); 900 if (unlikely(page == NULL)) { 901 handle_ra_miss(mapping, &ra, index); 902 goto no_cached_page; 903 } 904 if (!PageUptodate(page)) 905 goto page_not_up_to_date; 906 page_ok: 907 /* 908 * i_size must be checked after we know the page is Uptodate. 909 * 910 * Checking i_size after the check allows us to calculate 911 * the correct value for "nr", which means the zero-filled 912 * part of the page is not copied back to userspace (unless 913 * another truncate extends the file - this is desired though). 914 */ 915 916 isize = i_size_read(inode); 917 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 918 if (unlikely(!isize || index > end_index)) { 919 page_cache_release(page); 920 goto out; 921 } 922 923 /* nr is the maximum number of bytes to copy from this page */ 924 nr = PAGE_CACHE_SIZE; 925 if (index == end_index) { 926 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 927 if (nr <= offset) { 928 page_cache_release(page); 929 goto out; 930 } 931 } 932 nr = nr - offset; 933 934 /* If users can be writing to this page using arbitrary 935 * virtual addresses, take care about potential aliasing 936 * before reading the page on the kernel side. 937 */ 938 if (mapping_writably_mapped(mapping)) 939 flush_dcache_page(page); 940 941 /* 942 * When a sequential read accesses a page several times, 943 * only mark it as accessed the first time. 944 */ 945 if (prev_index != index || offset != prev_offset) 946 mark_page_accessed(page); 947 prev_index = index; 948 949 /* 950 * Ok, we have the page, and it's up-to-date, so 951 * now we can copy it to user space... 952 * 953 * The actor routine returns how many bytes were actually used.. 954 * NOTE! This may not be the same as how much of a user buffer 955 * we filled up (we may be padding etc), so we can only update 956 * "pos" here (the actor routine has to update the user buffer 957 * pointers and the remaining count). 958 */ 959 ret = actor(desc, page, offset, nr); 960 offset += ret; 961 index += offset >> PAGE_CACHE_SHIFT; 962 offset &= ~PAGE_CACHE_MASK; 963 prev_offset = offset; 964 ra.prev_offset = offset; 965 966 page_cache_release(page); 967 if (ret == nr && desc->count) 968 continue; 969 goto out; 970 971 page_not_up_to_date: 972 /* Get exclusive access to the page ... */ 973 lock_page(page); 974 975 /* Did it get truncated before we got the lock? */ 976 if (!page->mapping) { 977 unlock_page(page); 978 page_cache_release(page); 979 continue; 980 } 981 982 /* Did somebody else fill it already? */ 983 if (PageUptodate(page)) { 984 unlock_page(page); 985 goto page_ok; 986 } 987 988 readpage: 989 /* Start the actual read. The read will unlock the page. */ 990 error = mapping->a_ops->readpage(filp, page); 991 992 if (unlikely(error)) { 993 if (error == AOP_TRUNCATED_PAGE) { 994 page_cache_release(page); 995 goto find_page; 996 } 997 goto readpage_error; 998 } 999 1000 if (!PageUptodate(page)) { 1001 lock_page(page); 1002 if (!PageUptodate(page)) { 1003 if (page->mapping == NULL) { 1004 /* 1005 * invalidate_inode_pages got it 1006 */ 1007 unlock_page(page); 1008 page_cache_release(page); 1009 goto find_page; 1010 } 1011 unlock_page(page); 1012 error = -EIO; 1013 shrink_readahead_size_eio(filp, &ra); 1014 goto readpage_error; 1015 } 1016 unlock_page(page); 1017 } 1018 1019 goto page_ok; 1020 1021 readpage_error: 1022 /* UHHUH! A synchronous read error occurred. Report it */ 1023 desc->error = error; 1024 page_cache_release(page); 1025 goto out; 1026 1027 no_cached_page: 1028 /* 1029 * Ok, it wasn't cached, so we need to create a new 1030 * page.. 1031 */ 1032 if (!cached_page) { 1033 cached_page = page_cache_alloc_cold(mapping); 1034 if (!cached_page) { 1035 desc->error = -ENOMEM; 1036 goto out; 1037 } 1038 } 1039 error = add_to_page_cache_lru(cached_page, mapping, 1040 index, GFP_KERNEL); 1041 if (error) { 1042 if (error == -EEXIST) 1043 goto find_page; 1044 desc->error = error; 1045 goto out; 1046 } 1047 page = cached_page; 1048 cached_page = NULL; 1049 goto readpage; 1050 } 1051 1052 out: 1053 *_ra = ra; 1054 1055 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset; 1056 if (cached_page) 1057 page_cache_release(cached_page); 1058 if (filp) 1059 file_accessed(filp); 1060 } 1061 EXPORT_SYMBOL(do_generic_mapping_read); 1062 1063 int file_read_actor(read_descriptor_t *desc, struct page *page, 1064 unsigned long offset, unsigned long size) 1065 { 1066 char *kaddr; 1067 unsigned long left, count = desc->count; 1068 1069 if (size > count) 1070 size = count; 1071 1072 /* 1073 * Faults on the destination of a read are common, so do it before 1074 * taking the kmap. 1075 */ 1076 if (!fault_in_pages_writeable(desc->arg.buf, size)) { 1077 kaddr = kmap_atomic(page, KM_USER0); 1078 left = __copy_to_user_inatomic(desc->arg.buf, 1079 kaddr + offset, size); 1080 kunmap_atomic(kaddr, KM_USER0); 1081 if (left == 0) 1082 goto success; 1083 } 1084 1085 /* Do it the slow way */ 1086 kaddr = kmap(page); 1087 left = __copy_to_user(desc->arg.buf, kaddr + offset, size); 1088 kunmap(page); 1089 1090 if (left) { 1091 size -= left; 1092 desc->error = -EFAULT; 1093 } 1094 success: 1095 desc->count = count - size; 1096 desc->written += size; 1097 desc->arg.buf += size; 1098 return size; 1099 } 1100 1101 /* 1102 * Performs necessary checks before doing a write 1103 * @iov: io vector request 1104 * @nr_segs: number of segments in the iovec 1105 * @count: number of bytes to write 1106 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE 1107 * 1108 * Adjust number of segments and amount of bytes to write (nr_segs should be 1109 * properly initialized first). Returns appropriate error code that caller 1110 * should return or zero in case that write should be allowed. 1111 */ 1112 int generic_segment_checks(const struct iovec *iov, 1113 unsigned long *nr_segs, size_t *count, int access_flags) 1114 { 1115 unsigned long seg; 1116 size_t cnt = 0; 1117 for (seg = 0; seg < *nr_segs; seg++) { 1118 const struct iovec *iv = &iov[seg]; 1119 1120 /* 1121 * If any segment has a negative length, or the cumulative 1122 * length ever wraps negative then return -EINVAL. 1123 */ 1124 cnt += iv->iov_len; 1125 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0)) 1126 return -EINVAL; 1127 if (access_ok(access_flags, iv->iov_base, iv->iov_len)) 1128 continue; 1129 if (seg == 0) 1130 return -EFAULT; 1131 *nr_segs = seg; 1132 cnt -= iv->iov_len; /* This segment is no good */ 1133 break; 1134 } 1135 *count = cnt; 1136 return 0; 1137 } 1138 EXPORT_SYMBOL(generic_segment_checks); 1139 1140 /** 1141 * generic_file_aio_read - generic filesystem read routine 1142 * @iocb: kernel I/O control block 1143 * @iov: io vector request 1144 * @nr_segs: number of segments in the iovec 1145 * @pos: current file position 1146 * 1147 * This is the "read()" routine for all filesystems 1148 * that can use the page cache directly. 1149 */ 1150 ssize_t 1151 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov, 1152 unsigned long nr_segs, loff_t pos) 1153 { 1154 struct file *filp = iocb->ki_filp; 1155 ssize_t retval; 1156 unsigned long seg; 1157 size_t count; 1158 loff_t *ppos = &iocb->ki_pos; 1159 1160 count = 0; 1161 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE); 1162 if (retval) 1163 return retval; 1164 1165 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 1166 if (filp->f_flags & O_DIRECT) { 1167 loff_t size; 1168 struct address_space *mapping; 1169 struct inode *inode; 1170 1171 mapping = filp->f_mapping; 1172 inode = mapping->host; 1173 retval = 0; 1174 if (!count) 1175 goto out; /* skip atime */ 1176 size = i_size_read(inode); 1177 if (pos < size) { 1178 retval = generic_file_direct_IO(READ, iocb, 1179 iov, pos, nr_segs); 1180 if (retval > 0) 1181 *ppos = pos + retval; 1182 } 1183 if (likely(retval != 0)) { 1184 file_accessed(filp); 1185 goto out; 1186 } 1187 } 1188 1189 retval = 0; 1190 if (count) { 1191 for (seg = 0; seg < nr_segs; seg++) { 1192 read_descriptor_t desc; 1193 1194 desc.written = 0; 1195 desc.arg.buf = iov[seg].iov_base; 1196 desc.count = iov[seg].iov_len; 1197 if (desc.count == 0) 1198 continue; 1199 desc.error = 0; 1200 do_generic_file_read(filp,ppos,&desc,file_read_actor); 1201 retval += desc.written; 1202 if (desc.error) { 1203 retval = retval ?: desc.error; 1204 break; 1205 } 1206 if (desc.count > 0) 1207 break; 1208 } 1209 } 1210 out: 1211 return retval; 1212 } 1213 EXPORT_SYMBOL(generic_file_aio_read); 1214 1215 int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size) 1216 { 1217 ssize_t written; 1218 unsigned long count = desc->count; 1219 struct file *file = desc->arg.data; 1220 1221 if (size > count) 1222 size = count; 1223 1224 written = file->f_op->sendpage(file, page, offset, 1225 size, &file->f_pos, size<count); 1226 if (written < 0) { 1227 desc->error = written; 1228 written = 0; 1229 } 1230 desc->count = count - written; 1231 desc->written += written; 1232 return written; 1233 } 1234 1235 static ssize_t 1236 do_readahead(struct address_space *mapping, struct file *filp, 1237 unsigned long index, unsigned long nr) 1238 { 1239 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage) 1240 return -EINVAL; 1241 1242 force_page_cache_readahead(mapping, filp, index, 1243 max_sane_readahead(nr)); 1244 return 0; 1245 } 1246 1247 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count) 1248 { 1249 ssize_t ret; 1250 struct file *file; 1251 1252 ret = -EBADF; 1253 file = fget(fd); 1254 if (file) { 1255 if (file->f_mode & FMODE_READ) { 1256 struct address_space *mapping = file->f_mapping; 1257 unsigned long start = offset >> PAGE_CACHE_SHIFT; 1258 unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT; 1259 unsigned long len = end - start + 1; 1260 ret = do_readahead(mapping, file, start, len); 1261 } 1262 fput(file); 1263 } 1264 return ret; 1265 } 1266 1267 #ifdef CONFIG_MMU 1268 static int FASTCALL(page_cache_read(struct file * file, unsigned long offset)); 1269 /** 1270 * page_cache_read - adds requested page to the page cache if not already there 1271 * @file: file to read 1272 * @offset: page index 1273 * 1274 * This adds the requested page to the page cache if it isn't already there, 1275 * and schedules an I/O to read in its contents from disk. 1276 */ 1277 static int fastcall page_cache_read(struct file * file, unsigned long offset) 1278 { 1279 struct address_space *mapping = file->f_mapping; 1280 struct page *page; 1281 int ret; 1282 1283 do { 1284 page = page_cache_alloc_cold(mapping); 1285 if (!page) 1286 return -ENOMEM; 1287 1288 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL); 1289 if (ret == 0) 1290 ret = mapping->a_ops->readpage(file, page); 1291 else if (ret == -EEXIST) 1292 ret = 0; /* losing race to add is OK */ 1293 1294 page_cache_release(page); 1295 1296 } while (ret == AOP_TRUNCATED_PAGE); 1297 1298 return ret; 1299 } 1300 1301 #define MMAP_LOTSAMISS (100) 1302 1303 /** 1304 * filemap_nopage - read in file data for page fault handling 1305 * @area: the applicable vm_area 1306 * @address: target address to read in 1307 * @type: returned with VM_FAULT_{MINOR,MAJOR} if not %NULL 1308 * 1309 * filemap_nopage() is invoked via the vma operations vector for a 1310 * mapped memory region to read in file data during a page fault. 1311 * 1312 * The goto's are kind of ugly, but this streamlines the normal case of having 1313 * it in the page cache, and handles the special cases reasonably without 1314 * having a lot of duplicated code. 1315 */ 1316 struct page *filemap_nopage(struct vm_area_struct *area, 1317 unsigned long address, int *type) 1318 { 1319 int error; 1320 struct file *file = area->vm_file; 1321 struct address_space *mapping = file->f_mapping; 1322 struct file_ra_state *ra = &file->f_ra; 1323 struct inode *inode = mapping->host; 1324 struct page *page; 1325 unsigned long size, pgoff; 1326 int did_readaround = 0, majmin = VM_FAULT_MINOR; 1327 1328 pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff; 1329 1330 retry_all: 1331 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1332 if (pgoff >= size) 1333 goto outside_data_content; 1334 1335 /* If we don't want any read-ahead, don't bother */ 1336 if (VM_RandomReadHint(area)) 1337 goto no_cached_page; 1338 1339 /* 1340 * The readahead code wants to be told about each and every page 1341 * so it can build and shrink its windows appropriately 1342 * 1343 * For sequential accesses, we use the generic readahead logic. 1344 */ 1345 if (VM_SequentialReadHint(area)) 1346 page_cache_readahead(mapping, ra, file, pgoff, 1); 1347 1348 /* 1349 * Do we have something in the page cache already? 1350 */ 1351 retry_find: 1352 page = find_get_page(mapping, pgoff); 1353 if (!page) { 1354 unsigned long ra_pages; 1355 1356 if (VM_SequentialReadHint(area)) { 1357 handle_ra_miss(mapping, ra, pgoff); 1358 goto no_cached_page; 1359 } 1360 ra->mmap_miss++; 1361 1362 /* 1363 * Do we miss much more than hit in this file? If so, 1364 * stop bothering with read-ahead. It will only hurt. 1365 */ 1366 if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS) 1367 goto no_cached_page; 1368 1369 /* 1370 * To keep the pgmajfault counter straight, we need to 1371 * check did_readaround, as this is an inner loop. 1372 */ 1373 if (!did_readaround) { 1374 majmin = VM_FAULT_MAJOR; 1375 count_vm_event(PGMAJFAULT); 1376 } 1377 did_readaround = 1; 1378 ra_pages = max_sane_readahead(file->f_ra.ra_pages); 1379 if (ra_pages) { 1380 pgoff_t start = 0; 1381 1382 if (pgoff > ra_pages / 2) 1383 start = pgoff - ra_pages / 2; 1384 do_page_cache_readahead(mapping, file, start, ra_pages); 1385 } 1386 page = find_get_page(mapping, pgoff); 1387 if (!page) 1388 goto no_cached_page; 1389 } 1390 1391 if (!did_readaround) 1392 ra->mmap_hit++; 1393 1394 /* 1395 * Ok, found a page in the page cache, now we need to check 1396 * that it's up-to-date. 1397 */ 1398 if (!PageUptodate(page)) 1399 goto page_not_uptodate; 1400 1401 success: 1402 /* 1403 * Found the page and have a reference on it. 1404 */ 1405 mark_page_accessed(page); 1406 if (type) 1407 *type = majmin; 1408 return page; 1409 1410 outside_data_content: 1411 /* 1412 * An external ptracer can access pages that normally aren't 1413 * accessible.. 1414 */ 1415 if (area->vm_mm == current->mm) 1416 return NOPAGE_SIGBUS; 1417 /* Fall through to the non-read-ahead case */ 1418 no_cached_page: 1419 /* 1420 * We're only likely to ever get here if MADV_RANDOM is in 1421 * effect. 1422 */ 1423 error = page_cache_read(file, pgoff); 1424 1425 /* 1426 * The page we want has now been added to the page cache. 1427 * In the unlikely event that someone removed it in the 1428 * meantime, we'll just come back here and read it again. 1429 */ 1430 if (error >= 0) 1431 goto retry_find; 1432 1433 /* 1434 * An error return from page_cache_read can result if the 1435 * system is low on memory, or a problem occurs while trying 1436 * to schedule I/O. 1437 */ 1438 if (error == -ENOMEM) 1439 return NOPAGE_OOM; 1440 return NOPAGE_SIGBUS; 1441 1442 page_not_uptodate: 1443 if (!did_readaround) { 1444 majmin = VM_FAULT_MAJOR; 1445 count_vm_event(PGMAJFAULT); 1446 } 1447 1448 /* 1449 * Umm, take care of errors if the page isn't up-to-date. 1450 * Try to re-read it _once_. We do this synchronously, 1451 * because there really aren't any performance issues here 1452 * and we need to check for errors. 1453 */ 1454 lock_page(page); 1455 1456 /* Somebody truncated the page on us? */ 1457 if (!page->mapping) { 1458 unlock_page(page); 1459 page_cache_release(page); 1460 goto retry_all; 1461 } 1462 1463 /* Somebody else successfully read it in? */ 1464 if (PageUptodate(page)) { 1465 unlock_page(page); 1466 goto success; 1467 } 1468 ClearPageError(page); 1469 error = mapping->a_ops->readpage(file, page); 1470 if (!error) { 1471 wait_on_page_locked(page); 1472 if (PageUptodate(page)) 1473 goto success; 1474 } else if (error == AOP_TRUNCATED_PAGE) { 1475 page_cache_release(page); 1476 goto retry_find; 1477 } 1478 1479 /* 1480 * Things didn't work out. Return zero to tell the 1481 * mm layer so, possibly freeing the page cache page first. 1482 */ 1483 shrink_readahead_size_eio(file, ra); 1484 page_cache_release(page); 1485 return NOPAGE_SIGBUS; 1486 } 1487 EXPORT_SYMBOL(filemap_nopage); 1488 1489 static struct page * filemap_getpage(struct file *file, unsigned long pgoff, 1490 int nonblock) 1491 { 1492 struct address_space *mapping = file->f_mapping; 1493 struct page *page; 1494 int error; 1495 1496 /* 1497 * Do we have something in the page cache already? 1498 */ 1499 retry_find: 1500 page = find_get_page(mapping, pgoff); 1501 if (!page) { 1502 if (nonblock) 1503 return NULL; 1504 goto no_cached_page; 1505 } 1506 1507 /* 1508 * Ok, found a page in the page cache, now we need to check 1509 * that it's up-to-date. 1510 */ 1511 if (!PageUptodate(page)) { 1512 if (nonblock) { 1513 page_cache_release(page); 1514 return NULL; 1515 } 1516 goto page_not_uptodate; 1517 } 1518 1519 success: 1520 /* 1521 * Found the page and have a reference on it. 1522 */ 1523 mark_page_accessed(page); 1524 return page; 1525 1526 no_cached_page: 1527 error = page_cache_read(file, pgoff); 1528 1529 /* 1530 * The page we want has now been added to the page cache. 1531 * In the unlikely event that someone removed it in the 1532 * meantime, we'll just come back here and read it again. 1533 */ 1534 if (error >= 0) 1535 goto retry_find; 1536 1537 /* 1538 * An error return from page_cache_read can result if the 1539 * system is low on memory, or a problem occurs while trying 1540 * to schedule I/O. 1541 */ 1542 return NULL; 1543 1544 page_not_uptodate: 1545 lock_page(page); 1546 1547 /* Did it get truncated while we waited for it? */ 1548 if (!page->mapping) { 1549 unlock_page(page); 1550 goto err; 1551 } 1552 1553 /* Did somebody else get it up-to-date? */ 1554 if (PageUptodate(page)) { 1555 unlock_page(page); 1556 goto success; 1557 } 1558 1559 error = mapping->a_ops->readpage(file, page); 1560 if (!error) { 1561 wait_on_page_locked(page); 1562 if (PageUptodate(page)) 1563 goto success; 1564 } else if (error == AOP_TRUNCATED_PAGE) { 1565 page_cache_release(page); 1566 goto retry_find; 1567 } 1568 1569 /* 1570 * Umm, take care of errors if the page isn't up-to-date. 1571 * Try to re-read it _once_. We do this synchronously, 1572 * because there really aren't any performance issues here 1573 * and we need to check for errors. 1574 */ 1575 lock_page(page); 1576 1577 /* Somebody truncated the page on us? */ 1578 if (!page->mapping) { 1579 unlock_page(page); 1580 goto err; 1581 } 1582 /* Somebody else successfully read it in? */ 1583 if (PageUptodate(page)) { 1584 unlock_page(page); 1585 goto success; 1586 } 1587 1588 ClearPageError(page); 1589 error = mapping->a_ops->readpage(file, page); 1590 if (!error) { 1591 wait_on_page_locked(page); 1592 if (PageUptodate(page)) 1593 goto success; 1594 } else if (error == AOP_TRUNCATED_PAGE) { 1595 page_cache_release(page); 1596 goto retry_find; 1597 } 1598 1599 /* 1600 * Things didn't work out. Return zero to tell the 1601 * mm layer so, possibly freeing the page cache page first. 1602 */ 1603 err: 1604 page_cache_release(page); 1605 1606 return NULL; 1607 } 1608 1609 int filemap_populate(struct vm_area_struct *vma, unsigned long addr, 1610 unsigned long len, pgprot_t prot, unsigned long pgoff, 1611 int nonblock) 1612 { 1613 struct file *file = vma->vm_file; 1614 struct address_space *mapping = file->f_mapping; 1615 struct inode *inode = mapping->host; 1616 unsigned long size; 1617 struct mm_struct *mm = vma->vm_mm; 1618 struct page *page; 1619 int err; 1620 1621 if (!nonblock) 1622 force_page_cache_readahead(mapping, vma->vm_file, 1623 pgoff, len >> PAGE_CACHE_SHIFT); 1624 1625 repeat: 1626 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1627 if (pgoff + (len >> PAGE_CACHE_SHIFT) > size) 1628 return -EINVAL; 1629 1630 page = filemap_getpage(file, pgoff, nonblock); 1631 1632 /* XXX: This is wrong, a filesystem I/O error may have happened. Fix that as 1633 * done in shmem_populate calling shmem_getpage */ 1634 if (!page && !nonblock) 1635 return -ENOMEM; 1636 1637 if (page) { 1638 err = install_page(mm, vma, addr, page, prot); 1639 if (err) { 1640 page_cache_release(page); 1641 return err; 1642 } 1643 } else if (vma->vm_flags & VM_NONLINEAR) { 1644 /* No page was found just because we can't read it in now (being 1645 * here implies nonblock != 0), but the page may exist, so set 1646 * the PTE to fault it in later. */ 1647 err = install_file_pte(mm, vma, addr, pgoff, prot); 1648 if (err) 1649 return err; 1650 } 1651 1652 len -= PAGE_SIZE; 1653 addr += PAGE_SIZE; 1654 pgoff++; 1655 if (len) 1656 goto repeat; 1657 1658 return 0; 1659 } 1660 EXPORT_SYMBOL(filemap_populate); 1661 1662 struct vm_operations_struct generic_file_vm_ops = { 1663 .nopage = filemap_nopage, 1664 .populate = filemap_populate, 1665 }; 1666 1667 /* This is used for a general mmap of a disk file */ 1668 1669 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1670 { 1671 struct address_space *mapping = file->f_mapping; 1672 1673 if (!mapping->a_ops->readpage) 1674 return -ENOEXEC; 1675 file_accessed(file); 1676 vma->vm_ops = &generic_file_vm_ops; 1677 return 0; 1678 } 1679 1680 /* 1681 * This is for filesystems which do not implement ->writepage. 1682 */ 1683 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 1684 { 1685 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 1686 return -EINVAL; 1687 return generic_file_mmap(file, vma); 1688 } 1689 #else 1690 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1691 { 1692 return -ENOSYS; 1693 } 1694 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 1695 { 1696 return -ENOSYS; 1697 } 1698 #endif /* CONFIG_MMU */ 1699 1700 EXPORT_SYMBOL(generic_file_mmap); 1701 EXPORT_SYMBOL(generic_file_readonly_mmap); 1702 1703 static struct page *__read_cache_page(struct address_space *mapping, 1704 unsigned long index, 1705 int (*filler)(void *,struct page*), 1706 void *data) 1707 { 1708 struct page *page, *cached_page = NULL; 1709 int err; 1710 repeat: 1711 page = find_get_page(mapping, index); 1712 if (!page) { 1713 if (!cached_page) { 1714 cached_page = page_cache_alloc_cold(mapping); 1715 if (!cached_page) 1716 return ERR_PTR(-ENOMEM); 1717 } 1718 err = add_to_page_cache_lru(cached_page, mapping, 1719 index, GFP_KERNEL); 1720 if (err == -EEXIST) 1721 goto repeat; 1722 if (err < 0) { 1723 /* Presumably ENOMEM for radix tree node */ 1724 page_cache_release(cached_page); 1725 return ERR_PTR(err); 1726 } 1727 page = cached_page; 1728 cached_page = NULL; 1729 err = filler(data, page); 1730 if (err < 0) { 1731 page_cache_release(page); 1732 page = ERR_PTR(err); 1733 } 1734 } 1735 if (cached_page) 1736 page_cache_release(cached_page); 1737 return page; 1738 } 1739 1740 /* 1741 * Same as read_cache_page, but don't wait for page to become unlocked 1742 * after submitting it to the filler. 1743 */ 1744 struct page *read_cache_page_async(struct address_space *mapping, 1745 unsigned long index, 1746 int (*filler)(void *,struct page*), 1747 void *data) 1748 { 1749 struct page *page; 1750 int err; 1751 1752 retry: 1753 page = __read_cache_page(mapping, index, filler, data); 1754 if (IS_ERR(page)) 1755 return page; 1756 if (PageUptodate(page)) 1757 goto out; 1758 1759 lock_page(page); 1760 if (!page->mapping) { 1761 unlock_page(page); 1762 page_cache_release(page); 1763 goto retry; 1764 } 1765 if (PageUptodate(page)) { 1766 unlock_page(page); 1767 goto out; 1768 } 1769 err = filler(data, page); 1770 if (err < 0) { 1771 page_cache_release(page); 1772 return ERR_PTR(err); 1773 } 1774 out: 1775 mark_page_accessed(page); 1776 return page; 1777 } 1778 EXPORT_SYMBOL(read_cache_page_async); 1779 1780 /** 1781 * read_cache_page - read into page cache, fill it if needed 1782 * @mapping: the page's address_space 1783 * @index: the page index 1784 * @filler: function to perform the read 1785 * @data: destination for read data 1786 * 1787 * Read into the page cache. If a page already exists, and PageUptodate() is 1788 * not set, try to fill the page then wait for it to become unlocked. 1789 * 1790 * If the page does not get brought uptodate, return -EIO. 1791 */ 1792 struct page *read_cache_page(struct address_space *mapping, 1793 unsigned long index, 1794 int (*filler)(void *,struct page*), 1795 void *data) 1796 { 1797 struct page *page; 1798 1799 page = read_cache_page_async(mapping, index, filler, data); 1800 if (IS_ERR(page)) 1801 goto out; 1802 wait_on_page_locked(page); 1803 if (!PageUptodate(page)) { 1804 page_cache_release(page); 1805 page = ERR_PTR(-EIO); 1806 } 1807 out: 1808 return page; 1809 } 1810 EXPORT_SYMBOL(read_cache_page); 1811 1812 /* 1813 * If the page was newly created, increment its refcount and add it to the 1814 * caller's lru-buffering pagevec. This function is specifically for 1815 * generic_file_write(). 1816 */ 1817 static inline struct page * 1818 __grab_cache_page(struct address_space *mapping, unsigned long index, 1819 struct page **cached_page, struct pagevec *lru_pvec) 1820 { 1821 int err; 1822 struct page *page; 1823 repeat: 1824 page = find_lock_page(mapping, index); 1825 if (!page) { 1826 if (!*cached_page) { 1827 *cached_page = page_cache_alloc(mapping); 1828 if (!*cached_page) 1829 return NULL; 1830 } 1831 err = add_to_page_cache(*cached_page, mapping, 1832 index, GFP_KERNEL); 1833 if (err == -EEXIST) 1834 goto repeat; 1835 if (err == 0) { 1836 page = *cached_page; 1837 page_cache_get(page); 1838 if (!pagevec_add(lru_pvec, page)) 1839 __pagevec_lru_add(lru_pvec); 1840 *cached_page = NULL; 1841 } 1842 } 1843 return page; 1844 } 1845 1846 /* 1847 * The logic we want is 1848 * 1849 * if suid or (sgid and xgrp) 1850 * remove privs 1851 */ 1852 int should_remove_suid(struct dentry *dentry) 1853 { 1854 mode_t mode = dentry->d_inode->i_mode; 1855 int kill = 0; 1856 1857 /* suid always must be killed */ 1858 if (unlikely(mode & S_ISUID)) 1859 kill = ATTR_KILL_SUID; 1860 1861 /* 1862 * sgid without any exec bits is just a mandatory locking mark; leave 1863 * it alone. If some exec bits are set, it's a real sgid; kill it. 1864 */ 1865 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1866 kill |= ATTR_KILL_SGID; 1867 1868 if (unlikely(kill && !capable(CAP_FSETID))) 1869 return kill; 1870 1871 return 0; 1872 } 1873 EXPORT_SYMBOL(should_remove_suid); 1874 1875 int __remove_suid(struct dentry *dentry, int kill) 1876 { 1877 struct iattr newattrs; 1878 1879 newattrs.ia_valid = ATTR_FORCE | kill; 1880 return notify_change(dentry, &newattrs); 1881 } 1882 1883 int remove_suid(struct dentry *dentry) 1884 { 1885 int kill = should_remove_suid(dentry); 1886 1887 if (unlikely(kill)) 1888 return __remove_suid(dentry, kill); 1889 1890 return 0; 1891 } 1892 EXPORT_SYMBOL(remove_suid); 1893 1894 size_t 1895 __filemap_copy_from_user_iovec_inatomic(char *vaddr, 1896 const struct iovec *iov, size_t base, size_t bytes) 1897 { 1898 size_t copied = 0, left = 0; 1899 1900 while (bytes) { 1901 char __user *buf = iov->iov_base + base; 1902 int copy = min(bytes, iov->iov_len - base); 1903 1904 base = 0; 1905 left = __copy_from_user_inatomic_nocache(vaddr, buf, copy); 1906 copied += copy; 1907 bytes -= copy; 1908 vaddr += copy; 1909 iov++; 1910 1911 if (unlikely(left)) 1912 break; 1913 } 1914 return copied - left; 1915 } 1916 1917 /* 1918 * Performs necessary checks before doing a write 1919 * 1920 * Can adjust writing position or amount of bytes to write. 1921 * Returns appropriate error code that caller should return or 1922 * zero in case that write should be allowed. 1923 */ 1924 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk) 1925 { 1926 struct inode *inode = file->f_mapping->host; 1927 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 1928 1929 if (unlikely(*pos < 0)) 1930 return -EINVAL; 1931 1932 if (!isblk) { 1933 /* FIXME: this is for backwards compatibility with 2.4 */ 1934 if (file->f_flags & O_APPEND) 1935 *pos = i_size_read(inode); 1936 1937 if (limit != RLIM_INFINITY) { 1938 if (*pos >= limit) { 1939 send_sig(SIGXFSZ, current, 0); 1940 return -EFBIG; 1941 } 1942 if (*count > limit - (typeof(limit))*pos) { 1943 *count = limit - (typeof(limit))*pos; 1944 } 1945 } 1946 } 1947 1948 /* 1949 * LFS rule 1950 */ 1951 if (unlikely(*pos + *count > MAX_NON_LFS && 1952 !(file->f_flags & O_LARGEFILE))) { 1953 if (*pos >= MAX_NON_LFS) { 1954 return -EFBIG; 1955 } 1956 if (*count > MAX_NON_LFS - (unsigned long)*pos) { 1957 *count = MAX_NON_LFS - (unsigned long)*pos; 1958 } 1959 } 1960 1961 /* 1962 * Are we about to exceed the fs block limit ? 1963 * 1964 * If we have written data it becomes a short write. If we have 1965 * exceeded without writing data we send a signal and return EFBIG. 1966 * Linus frestrict idea will clean these up nicely.. 1967 */ 1968 if (likely(!isblk)) { 1969 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) { 1970 if (*count || *pos > inode->i_sb->s_maxbytes) { 1971 return -EFBIG; 1972 } 1973 /* zero-length writes at ->s_maxbytes are OK */ 1974 } 1975 1976 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes)) 1977 *count = inode->i_sb->s_maxbytes - *pos; 1978 } else { 1979 #ifdef CONFIG_BLOCK 1980 loff_t isize; 1981 if (bdev_read_only(I_BDEV(inode))) 1982 return -EPERM; 1983 isize = i_size_read(inode); 1984 if (*pos >= isize) { 1985 if (*count || *pos > isize) 1986 return -ENOSPC; 1987 } 1988 1989 if (*pos + *count > isize) 1990 *count = isize - *pos; 1991 #else 1992 return -EPERM; 1993 #endif 1994 } 1995 return 0; 1996 } 1997 EXPORT_SYMBOL(generic_write_checks); 1998 1999 ssize_t 2000 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov, 2001 unsigned long *nr_segs, loff_t pos, loff_t *ppos, 2002 size_t count, size_t ocount) 2003 { 2004 struct file *file = iocb->ki_filp; 2005 struct address_space *mapping = file->f_mapping; 2006 struct inode *inode = mapping->host; 2007 ssize_t written; 2008 2009 if (count != ocount) 2010 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count); 2011 2012 written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs); 2013 if (written > 0) { 2014 loff_t end = pos + written; 2015 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 2016 i_size_write(inode, end); 2017 mark_inode_dirty(inode); 2018 } 2019 *ppos = end; 2020 } 2021 2022 /* 2023 * Sync the fs metadata but not the minor inode changes and 2024 * of course not the data as we did direct DMA for the IO. 2025 * i_mutex is held, which protects generic_osync_inode() from 2026 * livelocking. AIO O_DIRECT ops attempt to sync metadata here. 2027 */ 2028 if ((written >= 0 || written == -EIOCBQUEUED) && 2029 ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2030 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA); 2031 if (err < 0) 2032 written = err; 2033 } 2034 return written; 2035 } 2036 EXPORT_SYMBOL(generic_file_direct_write); 2037 2038 ssize_t 2039 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov, 2040 unsigned long nr_segs, loff_t pos, loff_t *ppos, 2041 size_t count, ssize_t written) 2042 { 2043 struct file *file = iocb->ki_filp; 2044 struct address_space * mapping = file->f_mapping; 2045 const struct address_space_operations *a_ops = mapping->a_ops; 2046 struct inode *inode = mapping->host; 2047 long status = 0; 2048 struct page *page; 2049 struct page *cached_page = NULL; 2050 size_t bytes; 2051 struct pagevec lru_pvec; 2052 const struct iovec *cur_iov = iov; /* current iovec */ 2053 size_t iov_base = 0; /* offset in the current iovec */ 2054 char __user *buf; 2055 2056 pagevec_init(&lru_pvec, 0); 2057 2058 /* 2059 * handle partial DIO write. Adjust cur_iov if needed. 2060 */ 2061 if (likely(nr_segs == 1)) 2062 buf = iov->iov_base + written; 2063 else { 2064 filemap_set_next_iovec(&cur_iov, &iov_base, written); 2065 buf = cur_iov->iov_base + iov_base; 2066 } 2067 2068 do { 2069 unsigned long index; 2070 unsigned long offset; 2071 size_t copied; 2072 2073 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */ 2074 index = pos >> PAGE_CACHE_SHIFT; 2075 bytes = PAGE_CACHE_SIZE - offset; 2076 2077 /* Limit the size of the copy to the caller's write size */ 2078 bytes = min(bytes, count); 2079 2080 /* We only need to worry about prefaulting when writes are from 2081 * user-space. NFSd uses vfs_writev with several non-aligned 2082 * segments in the vector, and limiting to one segment a time is 2083 * a noticeable performance for re-write 2084 */ 2085 if (!segment_eq(get_fs(), KERNEL_DS)) { 2086 /* 2087 * Limit the size of the copy to that of the current 2088 * segment, because fault_in_pages_readable() doesn't 2089 * know how to walk segments. 2090 */ 2091 bytes = min(bytes, cur_iov->iov_len - iov_base); 2092 2093 /* 2094 * Bring in the user page that we will copy from 2095 * _first_. Otherwise there's a nasty deadlock on 2096 * copying from the same page as we're writing to, 2097 * without it being marked up-to-date. 2098 */ 2099 fault_in_pages_readable(buf, bytes); 2100 } 2101 page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec); 2102 if (!page) { 2103 status = -ENOMEM; 2104 break; 2105 } 2106 2107 if (unlikely(bytes == 0)) { 2108 status = 0; 2109 copied = 0; 2110 goto zero_length_segment; 2111 } 2112 2113 status = a_ops->prepare_write(file, page, offset, offset+bytes); 2114 if (unlikely(status)) { 2115 loff_t isize = i_size_read(inode); 2116 2117 if (status != AOP_TRUNCATED_PAGE) 2118 unlock_page(page); 2119 page_cache_release(page); 2120 if (status == AOP_TRUNCATED_PAGE) 2121 continue; 2122 /* 2123 * prepare_write() may have instantiated a few blocks 2124 * outside i_size. Trim these off again. 2125 */ 2126 if (pos + bytes > isize) 2127 vmtruncate(inode, isize); 2128 break; 2129 } 2130 if (likely(nr_segs == 1)) 2131 copied = filemap_copy_from_user(page, offset, 2132 buf, bytes); 2133 else 2134 copied = filemap_copy_from_user_iovec(page, offset, 2135 cur_iov, iov_base, bytes); 2136 flush_dcache_page(page); 2137 status = a_ops->commit_write(file, page, offset, offset+bytes); 2138 if (status == AOP_TRUNCATED_PAGE) { 2139 page_cache_release(page); 2140 continue; 2141 } 2142 zero_length_segment: 2143 if (likely(copied >= 0)) { 2144 if (!status) 2145 status = copied; 2146 2147 if (status >= 0) { 2148 written += status; 2149 count -= status; 2150 pos += status; 2151 buf += status; 2152 if (unlikely(nr_segs > 1)) { 2153 filemap_set_next_iovec(&cur_iov, 2154 &iov_base, status); 2155 if (count) 2156 buf = cur_iov->iov_base + 2157 iov_base; 2158 } else { 2159 iov_base += status; 2160 } 2161 } 2162 } 2163 if (unlikely(copied != bytes)) 2164 if (status >= 0) 2165 status = -EFAULT; 2166 unlock_page(page); 2167 mark_page_accessed(page); 2168 page_cache_release(page); 2169 if (status < 0) 2170 break; 2171 balance_dirty_pages_ratelimited(mapping); 2172 cond_resched(); 2173 } while (count); 2174 *ppos = pos; 2175 2176 if (cached_page) 2177 page_cache_release(cached_page); 2178 2179 /* 2180 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC 2181 */ 2182 if (likely(status >= 0)) { 2183 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2184 if (!a_ops->writepage || !is_sync_kiocb(iocb)) 2185 status = generic_osync_inode(inode, mapping, 2186 OSYNC_METADATA|OSYNC_DATA); 2187 } 2188 } 2189 2190 /* 2191 * If we get here for O_DIRECT writes then we must have fallen through 2192 * to buffered writes (block instantiation inside i_size). So we sync 2193 * the file data here, to try to honour O_DIRECT expectations. 2194 */ 2195 if (unlikely(file->f_flags & O_DIRECT) && written) 2196 status = filemap_write_and_wait(mapping); 2197 2198 pagevec_lru_add(&lru_pvec); 2199 return written ? written : status; 2200 } 2201 EXPORT_SYMBOL(generic_file_buffered_write); 2202 2203 static ssize_t 2204 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov, 2205 unsigned long nr_segs, loff_t *ppos) 2206 { 2207 struct file *file = iocb->ki_filp; 2208 struct address_space * mapping = file->f_mapping; 2209 size_t ocount; /* original count */ 2210 size_t count; /* after file limit checks */ 2211 struct inode *inode = mapping->host; 2212 loff_t pos; 2213 ssize_t written; 2214 ssize_t err; 2215 2216 ocount = 0; 2217 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ); 2218 if (err) 2219 return err; 2220 2221 count = ocount; 2222 pos = *ppos; 2223 2224 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); 2225 2226 /* We can write back this queue in page reclaim */ 2227 current->backing_dev_info = mapping->backing_dev_info; 2228 written = 0; 2229 2230 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 2231 if (err) 2232 goto out; 2233 2234 if (count == 0) 2235 goto out; 2236 2237 err = remove_suid(file->f_path.dentry); 2238 if (err) 2239 goto out; 2240 2241 file_update_time(file); 2242 2243 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 2244 if (unlikely(file->f_flags & O_DIRECT)) { 2245 loff_t endbyte; 2246 ssize_t written_buffered; 2247 2248 written = generic_file_direct_write(iocb, iov, &nr_segs, pos, 2249 ppos, count, ocount); 2250 if (written < 0 || written == count) 2251 goto out; 2252 /* 2253 * direct-io write to a hole: fall through to buffered I/O 2254 * for completing the rest of the request. 2255 */ 2256 pos += written; 2257 count -= written; 2258 written_buffered = generic_file_buffered_write(iocb, iov, 2259 nr_segs, pos, ppos, count, 2260 written); 2261 /* 2262 * If generic_file_buffered_write() retuned a synchronous error 2263 * then we want to return the number of bytes which were 2264 * direct-written, or the error code if that was zero. Note 2265 * that this differs from normal direct-io semantics, which 2266 * will return -EFOO even if some bytes were written. 2267 */ 2268 if (written_buffered < 0) { 2269 err = written_buffered; 2270 goto out; 2271 } 2272 2273 /* 2274 * We need to ensure that the page cache pages are written to 2275 * disk and invalidated to preserve the expected O_DIRECT 2276 * semantics. 2277 */ 2278 endbyte = pos + written_buffered - written - 1; 2279 err = do_sync_mapping_range(file->f_mapping, pos, endbyte, 2280 SYNC_FILE_RANGE_WAIT_BEFORE| 2281 SYNC_FILE_RANGE_WRITE| 2282 SYNC_FILE_RANGE_WAIT_AFTER); 2283 if (err == 0) { 2284 written = written_buffered; 2285 invalidate_mapping_pages(mapping, 2286 pos >> PAGE_CACHE_SHIFT, 2287 endbyte >> PAGE_CACHE_SHIFT); 2288 } else { 2289 /* 2290 * We don't know how much we wrote, so just return 2291 * the number of bytes which were direct-written 2292 */ 2293 } 2294 } else { 2295 written = generic_file_buffered_write(iocb, iov, nr_segs, 2296 pos, ppos, count, written); 2297 } 2298 out: 2299 current->backing_dev_info = NULL; 2300 return written ? written : err; 2301 } 2302 2303 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb, 2304 const struct iovec *iov, unsigned long nr_segs, loff_t pos) 2305 { 2306 struct file *file = iocb->ki_filp; 2307 struct address_space *mapping = file->f_mapping; 2308 struct inode *inode = mapping->host; 2309 ssize_t ret; 2310 2311 BUG_ON(iocb->ki_pos != pos); 2312 2313 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, 2314 &iocb->ki_pos); 2315 2316 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2317 ssize_t err; 2318 2319 err = sync_page_range_nolock(inode, mapping, pos, ret); 2320 if (err < 0) 2321 ret = err; 2322 } 2323 return ret; 2324 } 2325 EXPORT_SYMBOL(generic_file_aio_write_nolock); 2326 2327 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, 2328 unsigned long nr_segs, loff_t pos) 2329 { 2330 struct file *file = iocb->ki_filp; 2331 struct address_space *mapping = file->f_mapping; 2332 struct inode *inode = mapping->host; 2333 ssize_t ret; 2334 2335 BUG_ON(iocb->ki_pos != pos); 2336 2337 mutex_lock(&inode->i_mutex); 2338 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, 2339 &iocb->ki_pos); 2340 mutex_unlock(&inode->i_mutex); 2341 2342 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2343 ssize_t err; 2344 2345 err = sync_page_range(inode, mapping, pos, ret); 2346 if (err < 0) 2347 ret = err; 2348 } 2349 return ret; 2350 } 2351 EXPORT_SYMBOL(generic_file_aio_write); 2352 2353 /* 2354 * Called under i_mutex for writes to S_ISREG files. Returns -EIO if something 2355 * went wrong during pagecache shootdown. 2356 */ 2357 static ssize_t 2358 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, 2359 loff_t offset, unsigned long nr_segs) 2360 { 2361 struct file *file = iocb->ki_filp; 2362 struct address_space *mapping = file->f_mapping; 2363 ssize_t retval; 2364 size_t write_len; 2365 pgoff_t end = 0; /* silence gcc */ 2366 2367 /* 2368 * If it's a write, unmap all mmappings of the file up-front. This 2369 * will cause any pte dirty bits to be propagated into the pageframes 2370 * for the subsequent filemap_write_and_wait(). 2371 */ 2372 if (rw == WRITE) { 2373 write_len = iov_length(iov, nr_segs); 2374 end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT; 2375 if (mapping_mapped(mapping)) 2376 unmap_mapping_range(mapping, offset, write_len, 0); 2377 } 2378 2379 retval = filemap_write_and_wait(mapping); 2380 if (retval) 2381 goto out; 2382 2383 /* 2384 * After a write we want buffered reads to be sure to go to disk to get 2385 * the new data. We invalidate clean cached page from the region we're 2386 * about to write. We do this *before* the write so that we can return 2387 * -EIO without clobbering -EIOCBQUEUED from ->direct_IO(). 2388 */ 2389 if (rw == WRITE && mapping->nrpages) { 2390 retval = invalidate_inode_pages2_range(mapping, 2391 offset >> PAGE_CACHE_SHIFT, end); 2392 if (retval) 2393 goto out; 2394 } 2395 2396 retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs); 2397 if (retval) 2398 goto out; 2399 2400 /* 2401 * Finally, try again to invalidate clean pages which might have been 2402 * faulted in by get_user_pages() if the source of the write was an 2403 * mmap()ed region of the file we're writing. That's a pretty crazy 2404 * thing to do, so we don't support it 100%. If this invalidation 2405 * fails and we have -EIOCBQUEUED we ignore the failure. 2406 */ 2407 if (rw == WRITE && mapping->nrpages) { 2408 int err = invalidate_inode_pages2_range(mapping, 2409 offset >> PAGE_CACHE_SHIFT, end); 2410 if (err && retval >= 0) 2411 retval = err; 2412 } 2413 out: 2414 return retval; 2415 } 2416 2417 /** 2418 * try_to_release_page() - release old fs-specific metadata on a page 2419 * 2420 * @page: the page which the kernel is trying to free 2421 * @gfp_mask: memory allocation flags (and I/O mode) 2422 * 2423 * The address_space is to try to release any data against the page 2424 * (presumably at page->private). If the release was successful, return `1'. 2425 * Otherwise return zero. 2426 * 2427 * The @gfp_mask argument specifies whether I/O may be performed to release 2428 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT). 2429 * 2430 * NOTE: @gfp_mask may go away, and this function may become non-blocking. 2431 */ 2432 int try_to_release_page(struct page *page, gfp_t gfp_mask) 2433 { 2434 struct address_space * const mapping = page->mapping; 2435 2436 BUG_ON(!PageLocked(page)); 2437 if (PageWriteback(page)) 2438 return 0; 2439 2440 if (mapping && mapping->a_ops->releasepage) 2441 return mapping->a_ops->releasepage(page, gfp_mask); 2442 return try_to_free_buffers(page); 2443 } 2444 2445 EXPORT_SYMBOL(try_to_release_page); 2446