1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/filemap.c 4 * 5 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 7 8 /* 9 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differently, for example) 12 */ 13 #include <linux/export.h> 14 #include <linux/compiler.h> 15 #include <linux/dax.h> 16 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 19 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 22 #include <linux/mm.h> 23 #include <linux/swap.h> 24 #include <linux/mman.h> 25 #include <linux/pagemap.h> 26 #include <linux/file.h> 27 #include <linux/uio.h> 28 #include <linux/error-injection.h> 29 #include <linux/hash.h> 30 #include <linux/writeback.h> 31 #include <linux/backing-dev.h> 32 #include <linux/pagevec.h> 33 #include <linux/blkdev.h> 34 #include <linux/security.h> 35 #include <linux/cpuset.h> 36 #include <linux/hugetlb.h> 37 #include <linux/memcontrol.h> 38 #include <linux/cleancache.h> 39 #include <linux/shmem_fs.h> 40 #include <linux/rmap.h> 41 #include <linux/delayacct.h> 42 #include <linux/psi.h> 43 #include <linux/ramfs.h> 44 #include "internal.h" 45 46 #define CREATE_TRACE_POINTS 47 #include <trace/events/filemap.h> 48 49 /* 50 * FIXME: remove all knowledge of the buffer layer from the core VM 51 */ 52 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 53 54 #include <asm/mman.h> 55 56 /* 57 * Shared mappings implemented 30.11.1994. It's not fully working yet, 58 * though. 59 * 60 * Shared mappings now work. 15.8.1995 Bruno. 61 * 62 * finished 'unifying' the page and buffer cache and SMP-threaded the 63 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 64 * 65 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 66 */ 67 68 /* 69 * Lock ordering: 70 * 71 * ->i_mmap_rwsem (truncate_pagecache) 72 * ->private_lock (__free_pte->__set_page_dirty_buffers) 73 * ->swap_lock (exclusive_swap_page, others) 74 * ->i_pages lock 75 * 76 * ->i_mutex 77 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 78 * 79 * ->mmap_sem 80 * ->i_mmap_rwsem 81 * ->page_table_lock or pte_lock (various, mainly in memory.c) 82 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 83 * 84 * ->mmap_sem 85 * ->lock_page (access_process_vm) 86 * 87 * ->i_mutex (generic_perform_write) 88 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 89 * 90 * bdi->wb.list_lock 91 * sb_lock (fs/fs-writeback.c) 92 * ->i_pages lock (__sync_single_inode) 93 * 94 * ->i_mmap_rwsem 95 * ->anon_vma.lock (vma_adjust) 96 * 97 * ->anon_vma.lock 98 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 99 * 100 * ->page_table_lock or pte_lock 101 * ->swap_lock (try_to_unmap_one) 102 * ->private_lock (try_to_unmap_one) 103 * ->i_pages lock (try_to_unmap_one) 104 * ->pgdat->lru_lock (follow_page->mark_page_accessed) 105 * ->pgdat->lru_lock (check_pte_range->isolate_lru_page) 106 * ->private_lock (page_remove_rmap->set_page_dirty) 107 * ->i_pages lock (page_remove_rmap->set_page_dirty) 108 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 109 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 110 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) 111 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 112 * ->inode->i_lock (zap_pte_range->set_page_dirty) 113 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 114 * 115 * ->i_mmap_rwsem 116 * ->tasklist_lock (memory_failure, collect_procs_ao) 117 */ 118 119 static void page_cache_delete(struct address_space *mapping, 120 struct page *page, void *shadow) 121 { 122 XA_STATE(xas, &mapping->i_pages, page->index); 123 unsigned int nr = 1; 124 125 mapping_set_update(&xas, mapping); 126 127 /* hugetlb pages are represented by a single entry in the xarray */ 128 if (!PageHuge(page)) { 129 xas_set_order(&xas, page->index, compound_order(page)); 130 nr = compound_nr(page); 131 } 132 133 VM_BUG_ON_PAGE(!PageLocked(page), page); 134 VM_BUG_ON_PAGE(PageTail(page), page); 135 VM_BUG_ON_PAGE(nr != 1 && shadow, page); 136 137 xas_store(&xas, shadow); 138 xas_init_marks(&xas); 139 140 page->mapping = NULL; 141 /* Leave page->index set: truncation lookup relies upon it */ 142 143 if (shadow) { 144 mapping->nrexceptional += nr; 145 /* 146 * Make sure the nrexceptional update is committed before 147 * the nrpages update so that final truncate racing 148 * with reclaim does not see both counters 0 at the 149 * same time and miss a shadow entry. 150 */ 151 smp_wmb(); 152 } 153 mapping->nrpages -= nr; 154 } 155 156 static void unaccount_page_cache_page(struct address_space *mapping, 157 struct page *page) 158 { 159 int nr; 160 161 /* 162 * if we're uptodate, flush out into the cleancache, otherwise 163 * invalidate any existing cleancache entries. We can't leave 164 * stale data around in the cleancache once our page is gone 165 */ 166 if (PageUptodate(page) && PageMappedToDisk(page)) 167 cleancache_put_page(page); 168 else 169 cleancache_invalidate_page(mapping, page); 170 171 VM_BUG_ON_PAGE(PageTail(page), page); 172 VM_BUG_ON_PAGE(page_mapped(page), page); 173 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) { 174 int mapcount; 175 176 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 177 current->comm, page_to_pfn(page)); 178 dump_page(page, "still mapped when deleted"); 179 dump_stack(); 180 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 181 182 mapcount = page_mapcount(page); 183 if (mapping_exiting(mapping) && 184 page_count(page) >= mapcount + 2) { 185 /* 186 * All vmas have already been torn down, so it's 187 * a good bet that actually the page is unmapped, 188 * and we'd prefer not to leak it: if we're wrong, 189 * some other bad page check should catch it later. 190 */ 191 page_mapcount_reset(page); 192 page_ref_sub(page, mapcount); 193 } 194 } 195 196 /* hugetlb pages do not participate in page cache accounting. */ 197 if (PageHuge(page)) 198 return; 199 200 nr = hpage_nr_pages(page); 201 202 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr); 203 if (PageSwapBacked(page)) { 204 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr); 205 if (PageTransHuge(page)) 206 __dec_node_page_state(page, NR_SHMEM_THPS); 207 } else if (PageTransHuge(page)) { 208 __dec_node_page_state(page, NR_FILE_THPS); 209 filemap_nr_thps_dec(mapping); 210 } 211 212 /* 213 * At this point page must be either written or cleaned by 214 * truncate. Dirty page here signals a bug and loss of 215 * unwritten data. 216 * 217 * This fixes dirty accounting after removing the page entirely 218 * but leaves PageDirty set: it has no effect for truncated 219 * page and anyway will be cleared before returning page into 220 * buddy allocator. 221 */ 222 if (WARN_ON_ONCE(PageDirty(page))) 223 account_page_cleaned(page, mapping, inode_to_wb(mapping->host)); 224 } 225 226 /* 227 * Delete a page from the page cache and free it. Caller has to make 228 * sure the page is locked and that nobody else uses it - or that usage 229 * is safe. The caller must hold the i_pages lock. 230 */ 231 void __delete_from_page_cache(struct page *page, void *shadow) 232 { 233 struct address_space *mapping = page->mapping; 234 235 trace_mm_filemap_delete_from_page_cache(page); 236 237 unaccount_page_cache_page(mapping, page); 238 page_cache_delete(mapping, page, shadow); 239 } 240 241 static void page_cache_free_page(struct address_space *mapping, 242 struct page *page) 243 { 244 void (*freepage)(struct page *); 245 246 freepage = mapping->a_ops->freepage; 247 if (freepage) 248 freepage(page); 249 250 if (PageTransHuge(page) && !PageHuge(page)) { 251 page_ref_sub(page, HPAGE_PMD_NR); 252 VM_BUG_ON_PAGE(page_count(page) <= 0, page); 253 } else { 254 put_page(page); 255 } 256 } 257 258 /** 259 * delete_from_page_cache - delete page from page cache 260 * @page: the page which the kernel is trying to remove from page cache 261 * 262 * This must be called only on pages that have been verified to be in the page 263 * cache and locked. It will never put the page into the free list, the caller 264 * has a reference on the page. 265 */ 266 void delete_from_page_cache(struct page *page) 267 { 268 struct address_space *mapping = page_mapping(page); 269 unsigned long flags; 270 271 BUG_ON(!PageLocked(page)); 272 xa_lock_irqsave(&mapping->i_pages, flags); 273 __delete_from_page_cache(page, NULL); 274 xa_unlock_irqrestore(&mapping->i_pages, flags); 275 276 page_cache_free_page(mapping, page); 277 } 278 EXPORT_SYMBOL(delete_from_page_cache); 279 280 /* 281 * page_cache_delete_batch - delete several pages from page cache 282 * @mapping: the mapping to which pages belong 283 * @pvec: pagevec with pages to delete 284 * 285 * The function walks over mapping->i_pages and removes pages passed in @pvec 286 * from the mapping. The function expects @pvec to be sorted by page index 287 * and is optimised for it to be dense. 288 * It tolerates holes in @pvec (mapping entries at those indices are not 289 * modified). The function expects only THP head pages to be present in the 290 * @pvec. 291 * 292 * The function expects the i_pages lock to be held. 293 */ 294 static void page_cache_delete_batch(struct address_space *mapping, 295 struct pagevec *pvec) 296 { 297 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index); 298 int total_pages = 0; 299 int i = 0; 300 struct page *page; 301 302 mapping_set_update(&xas, mapping); 303 xas_for_each(&xas, page, ULONG_MAX) { 304 if (i >= pagevec_count(pvec)) 305 break; 306 307 /* A swap/dax/shadow entry got inserted? Skip it. */ 308 if (xa_is_value(page)) 309 continue; 310 /* 311 * A page got inserted in our range? Skip it. We have our 312 * pages locked so they are protected from being removed. 313 * If we see a page whose index is higher than ours, it 314 * means our page has been removed, which shouldn't be 315 * possible because we're holding the PageLock. 316 */ 317 if (page != pvec->pages[i]) { 318 VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index, 319 page); 320 continue; 321 } 322 323 WARN_ON_ONCE(!PageLocked(page)); 324 325 if (page->index == xas.xa_index) 326 page->mapping = NULL; 327 /* Leave page->index set: truncation lookup relies on it */ 328 329 /* 330 * Move to the next page in the vector if this is a regular 331 * page or the index is of the last sub-page of this compound 332 * page. 333 */ 334 if (page->index + compound_nr(page) - 1 == xas.xa_index) 335 i++; 336 xas_store(&xas, NULL); 337 total_pages++; 338 } 339 mapping->nrpages -= total_pages; 340 } 341 342 void delete_from_page_cache_batch(struct address_space *mapping, 343 struct pagevec *pvec) 344 { 345 int i; 346 unsigned long flags; 347 348 if (!pagevec_count(pvec)) 349 return; 350 351 xa_lock_irqsave(&mapping->i_pages, flags); 352 for (i = 0; i < pagevec_count(pvec); i++) { 353 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]); 354 355 unaccount_page_cache_page(mapping, pvec->pages[i]); 356 } 357 page_cache_delete_batch(mapping, pvec); 358 xa_unlock_irqrestore(&mapping->i_pages, flags); 359 360 for (i = 0; i < pagevec_count(pvec); i++) 361 page_cache_free_page(mapping, pvec->pages[i]); 362 } 363 364 int filemap_check_errors(struct address_space *mapping) 365 { 366 int ret = 0; 367 /* Check for outstanding write errors */ 368 if (test_bit(AS_ENOSPC, &mapping->flags) && 369 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 370 ret = -ENOSPC; 371 if (test_bit(AS_EIO, &mapping->flags) && 372 test_and_clear_bit(AS_EIO, &mapping->flags)) 373 ret = -EIO; 374 return ret; 375 } 376 EXPORT_SYMBOL(filemap_check_errors); 377 378 static int filemap_check_and_keep_errors(struct address_space *mapping) 379 { 380 /* Check for outstanding write errors */ 381 if (test_bit(AS_EIO, &mapping->flags)) 382 return -EIO; 383 if (test_bit(AS_ENOSPC, &mapping->flags)) 384 return -ENOSPC; 385 return 0; 386 } 387 388 /** 389 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 390 * @mapping: address space structure to write 391 * @start: offset in bytes where the range starts 392 * @end: offset in bytes where the range ends (inclusive) 393 * @sync_mode: enable synchronous operation 394 * 395 * Start writeback against all of a mapping's dirty pages that lie 396 * within the byte offsets <start, end> inclusive. 397 * 398 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 399 * opposed to a regular memory cleansing writeback. The difference between 400 * these two operations is that if a dirty page/buffer is encountered, it must 401 * be waited upon, and not just skipped over. 402 * 403 * Return: %0 on success, negative error code otherwise. 404 */ 405 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 406 loff_t end, int sync_mode) 407 { 408 int ret; 409 struct writeback_control wbc = { 410 .sync_mode = sync_mode, 411 .nr_to_write = LONG_MAX, 412 .range_start = start, 413 .range_end = end, 414 }; 415 416 if (!mapping_cap_writeback_dirty(mapping) || 417 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 418 return 0; 419 420 wbc_attach_fdatawrite_inode(&wbc, mapping->host); 421 ret = do_writepages(mapping, &wbc); 422 wbc_detach_inode(&wbc); 423 return ret; 424 } 425 426 static inline int __filemap_fdatawrite(struct address_space *mapping, 427 int sync_mode) 428 { 429 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 430 } 431 432 int filemap_fdatawrite(struct address_space *mapping) 433 { 434 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 435 } 436 EXPORT_SYMBOL(filemap_fdatawrite); 437 438 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 439 loff_t end) 440 { 441 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 442 } 443 EXPORT_SYMBOL(filemap_fdatawrite_range); 444 445 /** 446 * filemap_flush - mostly a non-blocking flush 447 * @mapping: target address_space 448 * 449 * This is a mostly non-blocking flush. Not suitable for data-integrity 450 * purposes - I/O may not be started against all dirty pages. 451 * 452 * Return: %0 on success, negative error code otherwise. 453 */ 454 int filemap_flush(struct address_space *mapping) 455 { 456 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 457 } 458 EXPORT_SYMBOL(filemap_flush); 459 460 /** 461 * filemap_range_has_page - check if a page exists in range. 462 * @mapping: address space within which to check 463 * @start_byte: offset in bytes where the range starts 464 * @end_byte: offset in bytes where the range ends (inclusive) 465 * 466 * Find at least one page in the range supplied, usually used to check if 467 * direct writing in this range will trigger a writeback. 468 * 469 * Return: %true if at least one page exists in the specified range, 470 * %false otherwise. 471 */ 472 bool filemap_range_has_page(struct address_space *mapping, 473 loff_t start_byte, loff_t end_byte) 474 { 475 struct page *page; 476 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 477 pgoff_t max = end_byte >> PAGE_SHIFT; 478 479 if (end_byte < start_byte) 480 return false; 481 482 rcu_read_lock(); 483 for (;;) { 484 page = xas_find(&xas, max); 485 if (xas_retry(&xas, page)) 486 continue; 487 /* Shadow entries don't count */ 488 if (xa_is_value(page)) 489 continue; 490 /* 491 * We don't need to try to pin this page; we're about to 492 * release the RCU lock anyway. It is enough to know that 493 * there was a page here recently. 494 */ 495 break; 496 } 497 rcu_read_unlock(); 498 499 return page != NULL; 500 } 501 EXPORT_SYMBOL(filemap_range_has_page); 502 503 static void __filemap_fdatawait_range(struct address_space *mapping, 504 loff_t start_byte, loff_t end_byte) 505 { 506 pgoff_t index = start_byte >> PAGE_SHIFT; 507 pgoff_t end = end_byte >> PAGE_SHIFT; 508 struct pagevec pvec; 509 int nr_pages; 510 511 if (end_byte < start_byte) 512 return; 513 514 pagevec_init(&pvec); 515 while (index <= end) { 516 unsigned i; 517 518 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, 519 end, PAGECACHE_TAG_WRITEBACK); 520 if (!nr_pages) 521 break; 522 523 for (i = 0; i < nr_pages; i++) { 524 struct page *page = pvec.pages[i]; 525 526 wait_on_page_writeback(page); 527 ClearPageError(page); 528 } 529 pagevec_release(&pvec); 530 cond_resched(); 531 } 532 } 533 534 /** 535 * filemap_fdatawait_range - wait for writeback to complete 536 * @mapping: address space structure to wait for 537 * @start_byte: offset in bytes where the range starts 538 * @end_byte: offset in bytes where the range ends (inclusive) 539 * 540 * Walk the list of under-writeback pages of the given address space 541 * in the given range and wait for all of them. Check error status of 542 * the address space and return it. 543 * 544 * Since the error status of the address space is cleared by this function, 545 * callers are responsible for checking the return value and handling and/or 546 * reporting the error. 547 * 548 * Return: error status of the address space. 549 */ 550 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 551 loff_t end_byte) 552 { 553 __filemap_fdatawait_range(mapping, start_byte, end_byte); 554 return filemap_check_errors(mapping); 555 } 556 EXPORT_SYMBOL(filemap_fdatawait_range); 557 558 /** 559 * filemap_fdatawait_range_keep_errors - wait for writeback to complete 560 * @mapping: address space structure to wait for 561 * @start_byte: offset in bytes where the range starts 562 * @end_byte: offset in bytes where the range ends (inclusive) 563 * 564 * Walk the list of under-writeback pages of the given address space in the 565 * given range and wait for all of them. Unlike filemap_fdatawait_range(), 566 * this function does not clear error status of the address space. 567 * 568 * Use this function if callers don't handle errors themselves. Expected 569 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 570 * fsfreeze(8) 571 */ 572 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 573 loff_t start_byte, loff_t end_byte) 574 { 575 __filemap_fdatawait_range(mapping, start_byte, end_byte); 576 return filemap_check_and_keep_errors(mapping); 577 } 578 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); 579 580 /** 581 * file_fdatawait_range - wait for writeback to complete 582 * @file: file pointing to address space structure to wait for 583 * @start_byte: offset in bytes where the range starts 584 * @end_byte: offset in bytes where the range ends (inclusive) 585 * 586 * Walk the list of under-writeback pages of the address space that file 587 * refers to, in the given range and wait for all of them. Check error 588 * status of the address space vs. the file->f_wb_err cursor and return it. 589 * 590 * Since the error status of the file is advanced by this function, 591 * callers are responsible for checking the return value and handling and/or 592 * reporting the error. 593 * 594 * Return: error status of the address space vs. the file->f_wb_err cursor. 595 */ 596 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 597 { 598 struct address_space *mapping = file->f_mapping; 599 600 __filemap_fdatawait_range(mapping, start_byte, end_byte); 601 return file_check_and_advance_wb_err(file); 602 } 603 EXPORT_SYMBOL(file_fdatawait_range); 604 605 /** 606 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 607 * @mapping: address space structure to wait for 608 * 609 * Walk the list of under-writeback pages of the given address space 610 * and wait for all of them. Unlike filemap_fdatawait(), this function 611 * does not clear error status of the address space. 612 * 613 * Use this function if callers don't handle errors themselves. Expected 614 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 615 * fsfreeze(8) 616 * 617 * Return: error status of the address space. 618 */ 619 int filemap_fdatawait_keep_errors(struct address_space *mapping) 620 { 621 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 622 return filemap_check_and_keep_errors(mapping); 623 } 624 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 625 626 /* Returns true if writeback might be needed or already in progress. */ 627 static bool mapping_needs_writeback(struct address_space *mapping) 628 { 629 if (dax_mapping(mapping)) 630 return mapping->nrexceptional; 631 632 return mapping->nrpages; 633 } 634 635 int filemap_write_and_wait(struct address_space *mapping) 636 { 637 int err = 0; 638 639 if (mapping_needs_writeback(mapping)) { 640 err = filemap_fdatawrite(mapping); 641 /* 642 * Even if the above returned error, the pages may be 643 * written partially (e.g. -ENOSPC), so we wait for it. 644 * But the -EIO is special case, it may indicate the worst 645 * thing (e.g. bug) happened, so we avoid waiting for it. 646 */ 647 if (err != -EIO) { 648 int err2 = filemap_fdatawait(mapping); 649 if (!err) 650 err = err2; 651 } else { 652 /* Clear any previously stored errors */ 653 filemap_check_errors(mapping); 654 } 655 } else { 656 err = filemap_check_errors(mapping); 657 } 658 return err; 659 } 660 EXPORT_SYMBOL(filemap_write_and_wait); 661 662 /** 663 * filemap_write_and_wait_range - write out & wait on a file range 664 * @mapping: the address_space for the pages 665 * @lstart: offset in bytes where the range starts 666 * @lend: offset in bytes where the range ends (inclusive) 667 * 668 * Write out and wait upon file offsets lstart->lend, inclusive. 669 * 670 * Note that @lend is inclusive (describes the last byte to be written) so 671 * that this function can be used to write to the very end-of-file (end = -1). 672 * 673 * Return: error status of the address space. 674 */ 675 int filemap_write_and_wait_range(struct address_space *mapping, 676 loff_t lstart, loff_t lend) 677 { 678 int err = 0; 679 680 if (mapping_needs_writeback(mapping)) { 681 err = __filemap_fdatawrite_range(mapping, lstart, lend, 682 WB_SYNC_ALL); 683 /* See comment of filemap_write_and_wait() */ 684 if (err != -EIO) { 685 int err2 = filemap_fdatawait_range(mapping, 686 lstart, lend); 687 if (!err) 688 err = err2; 689 } else { 690 /* Clear any previously stored errors */ 691 filemap_check_errors(mapping); 692 } 693 } else { 694 err = filemap_check_errors(mapping); 695 } 696 return err; 697 } 698 EXPORT_SYMBOL(filemap_write_and_wait_range); 699 700 void __filemap_set_wb_err(struct address_space *mapping, int err) 701 { 702 errseq_t eseq = errseq_set(&mapping->wb_err, err); 703 704 trace_filemap_set_wb_err(mapping, eseq); 705 } 706 EXPORT_SYMBOL(__filemap_set_wb_err); 707 708 /** 709 * file_check_and_advance_wb_err - report wb error (if any) that was previously 710 * and advance wb_err to current one 711 * @file: struct file on which the error is being reported 712 * 713 * When userland calls fsync (or something like nfsd does the equivalent), we 714 * want to report any writeback errors that occurred since the last fsync (or 715 * since the file was opened if there haven't been any). 716 * 717 * Grab the wb_err from the mapping. If it matches what we have in the file, 718 * then just quickly return 0. The file is all caught up. 719 * 720 * If it doesn't match, then take the mapping value, set the "seen" flag in 721 * it and try to swap it into place. If it works, or another task beat us 722 * to it with the new value, then update the f_wb_err and return the error 723 * portion. The error at this point must be reported via proper channels 724 * (a'la fsync, or NFS COMMIT operation, etc.). 725 * 726 * While we handle mapping->wb_err with atomic operations, the f_wb_err 727 * value is protected by the f_lock since we must ensure that it reflects 728 * the latest value swapped in for this file descriptor. 729 * 730 * Return: %0 on success, negative error code otherwise. 731 */ 732 int file_check_and_advance_wb_err(struct file *file) 733 { 734 int err = 0; 735 errseq_t old = READ_ONCE(file->f_wb_err); 736 struct address_space *mapping = file->f_mapping; 737 738 /* Locklessly handle the common case where nothing has changed */ 739 if (errseq_check(&mapping->wb_err, old)) { 740 /* Something changed, must use slow path */ 741 spin_lock(&file->f_lock); 742 old = file->f_wb_err; 743 err = errseq_check_and_advance(&mapping->wb_err, 744 &file->f_wb_err); 745 trace_file_check_and_advance_wb_err(file, old); 746 spin_unlock(&file->f_lock); 747 } 748 749 /* 750 * We're mostly using this function as a drop in replacement for 751 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 752 * that the legacy code would have had on these flags. 753 */ 754 clear_bit(AS_EIO, &mapping->flags); 755 clear_bit(AS_ENOSPC, &mapping->flags); 756 return err; 757 } 758 EXPORT_SYMBOL(file_check_and_advance_wb_err); 759 760 /** 761 * file_write_and_wait_range - write out & wait on a file range 762 * @file: file pointing to address_space with pages 763 * @lstart: offset in bytes where the range starts 764 * @lend: offset in bytes where the range ends (inclusive) 765 * 766 * Write out and wait upon file offsets lstart->lend, inclusive. 767 * 768 * Note that @lend is inclusive (describes the last byte to be written) so 769 * that this function can be used to write to the very end-of-file (end = -1). 770 * 771 * After writing out and waiting on the data, we check and advance the 772 * f_wb_err cursor to the latest value, and return any errors detected there. 773 * 774 * Return: %0 on success, negative error code otherwise. 775 */ 776 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 777 { 778 int err = 0, err2; 779 struct address_space *mapping = file->f_mapping; 780 781 if (mapping_needs_writeback(mapping)) { 782 err = __filemap_fdatawrite_range(mapping, lstart, lend, 783 WB_SYNC_ALL); 784 /* See comment of filemap_write_and_wait() */ 785 if (err != -EIO) 786 __filemap_fdatawait_range(mapping, lstart, lend); 787 } 788 err2 = file_check_and_advance_wb_err(file); 789 if (!err) 790 err = err2; 791 return err; 792 } 793 EXPORT_SYMBOL(file_write_and_wait_range); 794 795 /** 796 * replace_page_cache_page - replace a pagecache page with a new one 797 * @old: page to be replaced 798 * @new: page to replace with 799 * @gfp_mask: allocation mode 800 * 801 * This function replaces a page in the pagecache with a new one. On 802 * success it acquires the pagecache reference for the new page and 803 * drops it for the old page. Both the old and new pages must be 804 * locked. This function does not add the new page to the LRU, the 805 * caller must do that. 806 * 807 * The remove + add is atomic. This function cannot fail. 808 * 809 * Return: %0 810 */ 811 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) 812 { 813 struct address_space *mapping = old->mapping; 814 void (*freepage)(struct page *) = mapping->a_ops->freepage; 815 pgoff_t offset = old->index; 816 XA_STATE(xas, &mapping->i_pages, offset); 817 unsigned long flags; 818 819 VM_BUG_ON_PAGE(!PageLocked(old), old); 820 VM_BUG_ON_PAGE(!PageLocked(new), new); 821 VM_BUG_ON_PAGE(new->mapping, new); 822 823 get_page(new); 824 new->mapping = mapping; 825 new->index = offset; 826 827 xas_lock_irqsave(&xas, flags); 828 xas_store(&xas, new); 829 830 old->mapping = NULL; 831 /* hugetlb pages do not participate in page cache accounting. */ 832 if (!PageHuge(old)) 833 __dec_node_page_state(new, NR_FILE_PAGES); 834 if (!PageHuge(new)) 835 __inc_node_page_state(new, NR_FILE_PAGES); 836 if (PageSwapBacked(old)) 837 __dec_node_page_state(new, NR_SHMEM); 838 if (PageSwapBacked(new)) 839 __inc_node_page_state(new, NR_SHMEM); 840 xas_unlock_irqrestore(&xas, flags); 841 mem_cgroup_migrate(old, new); 842 if (freepage) 843 freepage(old); 844 put_page(old); 845 846 return 0; 847 } 848 EXPORT_SYMBOL_GPL(replace_page_cache_page); 849 850 static int __add_to_page_cache_locked(struct page *page, 851 struct address_space *mapping, 852 pgoff_t offset, gfp_t gfp_mask, 853 void **shadowp) 854 { 855 XA_STATE(xas, &mapping->i_pages, offset); 856 int huge = PageHuge(page); 857 struct mem_cgroup *memcg; 858 int error; 859 void *old; 860 861 VM_BUG_ON_PAGE(!PageLocked(page), page); 862 VM_BUG_ON_PAGE(PageSwapBacked(page), page); 863 mapping_set_update(&xas, mapping); 864 865 if (!huge) { 866 error = mem_cgroup_try_charge(page, current->mm, 867 gfp_mask, &memcg, false); 868 if (error) 869 return error; 870 } 871 872 get_page(page); 873 page->mapping = mapping; 874 page->index = offset; 875 876 do { 877 xas_lock_irq(&xas); 878 old = xas_load(&xas); 879 if (old && !xa_is_value(old)) 880 xas_set_err(&xas, -EEXIST); 881 xas_store(&xas, page); 882 if (xas_error(&xas)) 883 goto unlock; 884 885 if (xa_is_value(old)) { 886 mapping->nrexceptional--; 887 if (shadowp) 888 *shadowp = old; 889 } 890 mapping->nrpages++; 891 892 /* hugetlb pages do not participate in page cache accounting */ 893 if (!huge) 894 __inc_node_page_state(page, NR_FILE_PAGES); 895 unlock: 896 xas_unlock_irq(&xas); 897 } while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK)); 898 899 if (xas_error(&xas)) 900 goto error; 901 902 if (!huge) 903 mem_cgroup_commit_charge(page, memcg, false, false); 904 trace_mm_filemap_add_to_page_cache(page); 905 return 0; 906 error: 907 page->mapping = NULL; 908 /* Leave page->index set: truncation relies upon it */ 909 if (!huge) 910 mem_cgroup_cancel_charge(page, memcg, false); 911 put_page(page); 912 return xas_error(&xas); 913 } 914 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO); 915 916 /** 917 * add_to_page_cache_locked - add a locked page to the pagecache 918 * @page: page to add 919 * @mapping: the page's address_space 920 * @offset: page index 921 * @gfp_mask: page allocation mode 922 * 923 * This function is used to add a page to the pagecache. It must be locked. 924 * This function does not add the page to the LRU. The caller must do that. 925 * 926 * Return: %0 on success, negative error code otherwise. 927 */ 928 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 929 pgoff_t offset, gfp_t gfp_mask) 930 { 931 return __add_to_page_cache_locked(page, mapping, offset, 932 gfp_mask, NULL); 933 } 934 EXPORT_SYMBOL(add_to_page_cache_locked); 935 936 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 937 pgoff_t offset, gfp_t gfp_mask) 938 { 939 void *shadow = NULL; 940 int ret; 941 942 __SetPageLocked(page); 943 ret = __add_to_page_cache_locked(page, mapping, offset, 944 gfp_mask, &shadow); 945 if (unlikely(ret)) 946 __ClearPageLocked(page); 947 else { 948 /* 949 * The page might have been evicted from cache only 950 * recently, in which case it should be activated like 951 * any other repeatedly accessed page. 952 * The exception is pages getting rewritten; evicting other 953 * data from the working set, only to cache data that will 954 * get overwritten with something else, is a waste of memory. 955 */ 956 WARN_ON_ONCE(PageActive(page)); 957 if (!(gfp_mask & __GFP_WRITE) && shadow) 958 workingset_refault(page, shadow); 959 lru_cache_add(page); 960 } 961 return ret; 962 } 963 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 964 965 #ifdef CONFIG_NUMA 966 struct page *__page_cache_alloc(gfp_t gfp) 967 { 968 int n; 969 struct page *page; 970 971 if (cpuset_do_page_mem_spread()) { 972 unsigned int cpuset_mems_cookie; 973 do { 974 cpuset_mems_cookie = read_mems_allowed_begin(); 975 n = cpuset_mem_spread_node(); 976 page = __alloc_pages_node(n, gfp, 0); 977 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie)); 978 979 return page; 980 } 981 return alloc_pages(gfp, 0); 982 } 983 EXPORT_SYMBOL(__page_cache_alloc); 984 #endif 985 986 /* 987 * In order to wait for pages to become available there must be 988 * waitqueues associated with pages. By using a hash table of 989 * waitqueues where the bucket discipline is to maintain all 990 * waiters on the same queue and wake all when any of the pages 991 * become available, and for the woken contexts to check to be 992 * sure the appropriate page became available, this saves space 993 * at a cost of "thundering herd" phenomena during rare hash 994 * collisions. 995 */ 996 #define PAGE_WAIT_TABLE_BITS 8 997 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 998 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 999 1000 static wait_queue_head_t *page_waitqueue(struct page *page) 1001 { 1002 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)]; 1003 } 1004 1005 void __init pagecache_init(void) 1006 { 1007 int i; 1008 1009 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 1010 init_waitqueue_head(&page_wait_table[i]); 1011 1012 page_writeback_init(); 1013 } 1014 1015 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */ 1016 struct wait_page_key { 1017 struct page *page; 1018 int bit_nr; 1019 int page_match; 1020 }; 1021 1022 struct wait_page_queue { 1023 struct page *page; 1024 int bit_nr; 1025 wait_queue_entry_t wait; 1026 }; 1027 1028 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 1029 { 1030 struct wait_page_key *key = arg; 1031 struct wait_page_queue *wait_page 1032 = container_of(wait, struct wait_page_queue, wait); 1033 1034 if (wait_page->page != key->page) 1035 return 0; 1036 key->page_match = 1; 1037 1038 if (wait_page->bit_nr != key->bit_nr) 1039 return 0; 1040 1041 /* 1042 * Stop walking if it's locked. 1043 * Is this safe if put_and_wait_on_page_locked() is in use? 1044 * Yes: the waker must hold a reference to this page, and if PG_locked 1045 * has now already been set by another task, that task must also hold 1046 * a reference to the *same usage* of this page; so there is no need 1047 * to walk on to wake even the put_and_wait_on_page_locked() callers. 1048 */ 1049 if (test_bit(key->bit_nr, &key->page->flags)) 1050 return -1; 1051 1052 return autoremove_wake_function(wait, mode, sync, key); 1053 } 1054 1055 static void wake_up_page_bit(struct page *page, int bit_nr) 1056 { 1057 wait_queue_head_t *q = page_waitqueue(page); 1058 struct wait_page_key key; 1059 unsigned long flags; 1060 wait_queue_entry_t bookmark; 1061 1062 key.page = page; 1063 key.bit_nr = bit_nr; 1064 key.page_match = 0; 1065 1066 bookmark.flags = 0; 1067 bookmark.private = NULL; 1068 bookmark.func = NULL; 1069 INIT_LIST_HEAD(&bookmark.entry); 1070 1071 spin_lock_irqsave(&q->lock, flags); 1072 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1073 1074 while (bookmark.flags & WQ_FLAG_BOOKMARK) { 1075 /* 1076 * Take a breather from holding the lock, 1077 * allow pages that finish wake up asynchronously 1078 * to acquire the lock and remove themselves 1079 * from wait queue 1080 */ 1081 spin_unlock_irqrestore(&q->lock, flags); 1082 cpu_relax(); 1083 spin_lock_irqsave(&q->lock, flags); 1084 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1085 } 1086 1087 /* 1088 * It is possible for other pages to have collided on the waitqueue 1089 * hash, so in that case check for a page match. That prevents a long- 1090 * term waiter 1091 * 1092 * It is still possible to miss a case here, when we woke page waiters 1093 * and removed them from the waitqueue, but there are still other 1094 * page waiters. 1095 */ 1096 if (!waitqueue_active(q) || !key.page_match) { 1097 ClearPageWaiters(page); 1098 /* 1099 * It's possible to miss clearing Waiters here, when we woke 1100 * our page waiters, but the hashed waitqueue has waiters for 1101 * other pages on it. 1102 * 1103 * That's okay, it's a rare case. The next waker will clear it. 1104 */ 1105 } 1106 spin_unlock_irqrestore(&q->lock, flags); 1107 } 1108 1109 static void wake_up_page(struct page *page, int bit) 1110 { 1111 if (!PageWaiters(page)) 1112 return; 1113 wake_up_page_bit(page, bit); 1114 } 1115 1116 /* 1117 * A choice of three behaviors for wait_on_page_bit_common(): 1118 */ 1119 enum behavior { 1120 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1121 * __lock_page() waiting on then setting PG_locked. 1122 */ 1123 SHARED, /* Hold ref to page and check the bit when woken, like 1124 * wait_on_page_writeback() waiting on PG_writeback. 1125 */ 1126 DROP, /* Drop ref to page before wait, no check when woken, 1127 * like put_and_wait_on_page_locked() on PG_locked. 1128 */ 1129 }; 1130 1131 static inline int wait_on_page_bit_common(wait_queue_head_t *q, 1132 struct page *page, int bit_nr, int state, enum behavior behavior) 1133 { 1134 struct wait_page_queue wait_page; 1135 wait_queue_entry_t *wait = &wait_page.wait; 1136 bool bit_is_set; 1137 bool thrashing = false; 1138 bool delayacct = false; 1139 unsigned long pflags; 1140 int ret = 0; 1141 1142 if (bit_nr == PG_locked && 1143 !PageUptodate(page) && PageWorkingset(page)) { 1144 if (!PageSwapBacked(page)) { 1145 delayacct_thrashing_start(); 1146 delayacct = true; 1147 } 1148 psi_memstall_enter(&pflags); 1149 thrashing = true; 1150 } 1151 1152 init_wait(wait); 1153 wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0; 1154 wait->func = wake_page_function; 1155 wait_page.page = page; 1156 wait_page.bit_nr = bit_nr; 1157 1158 for (;;) { 1159 spin_lock_irq(&q->lock); 1160 1161 if (likely(list_empty(&wait->entry))) { 1162 __add_wait_queue_entry_tail(q, wait); 1163 SetPageWaiters(page); 1164 } 1165 1166 set_current_state(state); 1167 1168 spin_unlock_irq(&q->lock); 1169 1170 bit_is_set = test_bit(bit_nr, &page->flags); 1171 if (behavior == DROP) 1172 put_page(page); 1173 1174 if (likely(bit_is_set)) 1175 io_schedule(); 1176 1177 if (behavior == EXCLUSIVE) { 1178 if (!test_and_set_bit_lock(bit_nr, &page->flags)) 1179 break; 1180 } else if (behavior == SHARED) { 1181 if (!test_bit(bit_nr, &page->flags)) 1182 break; 1183 } 1184 1185 if (signal_pending_state(state, current)) { 1186 ret = -EINTR; 1187 break; 1188 } 1189 1190 if (behavior == DROP) { 1191 /* 1192 * We can no longer safely access page->flags: 1193 * even if CONFIG_MEMORY_HOTREMOVE is not enabled, 1194 * there is a risk of waiting forever on a page reused 1195 * for something that keeps it locked indefinitely. 1196 * But best check for -EINTR above before breaking. 1197 */ 1198 break; 1199 } 1200 } 1201 1202 finish_wait(q, wait); 1203 1204 if (thrashing) { 1205 if (delayacct) 1206 delayacct_thrashing_end(); 1207 psi_memstall_leave(&pflags); 1208 } 1209 1210 /* 1211 * A signal could leave PageWaiters set. Clearing it here if 1212 * !waitqueue_active would be possible (by open-coding finish_wait), 1213 * but still fail to catch it in the case of wait hash collision. We 1214 * already can fail to clear wait hash collision cases, so don't 1215 * bother with signals either. 1216 */ 1217 1218 return ret; 1219 } 1220 1221 void wait_on_page_bit(struct page *page, int bit_nr) 1222 { 1223 wait_queue_head_t *q = page_waitqueue(page); 1224 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1225 } 1226 EXPORT_SYMBOL(wait_on_page_bit); 1227 1228 int wait_on_page_bit_killable(struct page *page, int bit_nr) 1229 { 1230 wait_queue_head_t *q = page_waitqueue(page); 1231 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED); 1232 } 1233 EXPORT_SYMBOL(wait_on_page_bit_killable); 1234 1235 /** 1236 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked 1237 * @page: The page to wait for. 1238 * 1239 * The caller should hold a reference on @page. They expect the page to 1240 * become unlocked relatively soon, but do not wish to hold up migration 1241 * (for example) by holding the reference while waiting for the page to 1242 * come unlocked. After this function returns, the caller should not 1243 * dereference @page. 1244 */ 1245 void put_and_wait_on_page_locked(struct page *page) 1246 { 1247 wait_queue_head_t *q; 1248 1249 page = compound_head(page); 1250 q = page_waitqueue(page); 1251 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP); 1252 } 1253 1254 /** 1255 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 1256 * @page: Page defining the wait queue of interest 1257 * @waiter: Waiter to add to the queue 1258 * 1259 * Add an arbitrary @waiter to the wait queue for the nominated @page. 1260 */ 1261 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter) 1262 { 1263 wait_queue_head_t *q = page_waitqueue(page); 1264 unsigned long flags; 1265 1266 spin_lock_irqsave(&q->lock, flags); 1267 __add_wait_queue_entry_tail(q, waiter); 1268 SetPageWaiters(page); 1269 spin_unlock_irqrestore(&q->lock, flags); 1270 } 1271 EXPORT_SYMBOL_GPL(add_page_wait_queue); 1272 1273 #ifndef clear_bit_unlock_is_negative_byte 1274 1275 /* 1276 * PG_waiters is the high bit in the same byte as PG_lock. 1277 * 1278 * On x86 (and on many other architectures), we can clear PG_lock and 1279 * test the sign bit at the same time. But if the architecture does 1280 * not support that special operation, we just do this all by hand 1281 * instead. 1282 * 1283 * The read of PG_waiters has to be after (or concurrently with) PG_locked 1284 * being cleared, but a memory barrier should be unneccssary since it is 1285 * in the same byte as PG_locked. 1286 */ 1287 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) 1288 { 1289 clear_bit_unlock(nr, mem); 1290 /* smp_mb__after_atomic(); */ 1291 return test_bit(PG_waiters, mem); 1292 } 1293 1294 #endif 1295 1296 /** 1297 * unlock_page - unlock a locked page 1298 * @page: the page 1299 * 1300 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 1301 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 1302 * mechanism between PageLocked pages and PageWriteback pages is shared. 1303 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 1304 * 1305 * Note that this depends on PG_waiters being the sign bit in the byte 1306 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to 1307 * clear the PG_locked bit and test PG_waiters at the same time fairly 1308 * portably (architectures that do LL/SC can test any bit, while x86 can 1309 * test the sign bit). 1310 */ 1311 void unlock_page(struct page *page) 1312 { 1313 BUILD_BUG_ON(PG_waiters != 7); 1314 page = compound_head(page); 1315 VM_BUG_ON_PAGE(!PageLocked(page), page); 1316 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags)) 1317 wake_up_page_bit(page, PG_locked); 1318 } 1319 EXPORT_SYMBOL(unlock_page); 1320 1321 /** 1322 * end_page_writeback - end writeback against a page 1323 * @page: the page 1324 */ 1325 void end_page_writeback(struct page *page) 1326 { 1327 /* 1328 * TestClearPageReclaim could be used here but it is an atomic 1329 * operation and overkill in this particular case. Failing to 1330 * shuffle a page marked for immediate reclaim is too mild to 1331 * justify taking an atomic operation penalty at the end of 1332 * ever page writeback. 1333 */ 1334 if (PageReclaim(page)) { 1335 ClearPageReclaim(page); 1336 rotate_reclaimable_page(page); 1337 } 1338 1339 if (!test_clear_page_writeback(page)) 1340 BUG(); 1341 1342 smp_mb__after_atomic(); 1343 wake_up_page(page, PG_writeback); 1344 } 1345 EXPORT_SYMBOL(end_page_writeback); 1346 1347 /* 1348 * After completing I/O on a page, call this routine to update the page 1349 * flags appropriately 1350 */ 1351 void page_endio(struct page *page, bool is_write, int err) 1352 { 1353 if (!is_write) { 1354 if (!err) { 1355 SetPageUptodate(page); 1356 } else { 1357 ClearPageUptodate(page); 1358 SetPageError(page); 1359 } 1360 unlock_page(page); 1361 } else { 1362 if (err) { 1363 struct address_space *mapping; 1364 1365 SetPageError(page); 1366 mapping = page_mapping(page); 1367 if (mapping) 1368 mapping_set_error(mapping, err); 1369 } 1370 end_page_writeback(page); 1371 } 1372 } 1373 EXPORT_SYMBOL_GPL(page_endio); 1374 1375 /** 1376 * __lock_page - get a lock on the page, assuming we need to sleep to get it 1377 * @__page: the page to lock 1378 */ 1379 void __lock_page(struct page *__page) 1380 { 1381 struct page *page = compound_head(__page); 1382 wait_queue_head_t *q = page_waitqueue(page); 1383 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, 1384 EXCLUSIVE); 1385 } 1386 EXPORT_SYMBOL(__lock_page); 1387 1388 int __lock_page_killable(struct page *__page) 1389 { 1390 struct page *page = compound_head(__page); 1391 wait_queue_head_t *q = page_waitqueue(page); 1392 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, 1393 EXCLUSIVE); 1394 } 1395 EXPORT_SYMBOL_GPL(__lock_page_killable); 1396 1397 /* 1398 * Return values: 1399 * 1 - page is locked; mmap_sem is still held. 1400 * 0 - page is not locked. 1401 * mmap_sem has been released (up_read()), unless flags had both 1402 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 1403 * which case mmap_sem is still held. 1404 * 1405 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1 1406 * with the page locked and the mmap_sem unperturbed. 1407 */ 1408 int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 1409 unsigned int flags) 1410 { 1411 if (flags & FAULT_FLAG_ALLOW_RETRY) { 1412 /* 1413 * CAUTION! In this case, mmap_sem is not released 1414 * even though return 0. 1415 */ 1416 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1417 return 0; 1418 1419 up_read(&mm->mmap_sem); 1420 if (flags & FAULT_FLAG_KILLABLE) 1421 wait_on_page_locked_killable(page); 1422 else 1423 wait_on_page_locked(page); 1424 return 0; 1425 } else { 1426 if (flags & FAULT_FLAG_KILLABLE) { 1427 int ret; 1428 1429 ret = __lock_page_killable(page); 1430 if (ret) { 1431 up_read(&mm->mmap_sem); 1432 return 0; 1433 } 1434 } else 1435 __lock_page(page); 1436 return 1; 1437 } 1438 } 1439 1440 /** 1441 * page_cache_next_miss() - Find the next gap in the page cache. 1442 * @mapping: Mapping. 1443 * @index: Index. 1444 * @max_scan: Maximum range to search. 1445 * 1446 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1447 * gap with the lowest index. 1448 * 1449 * This function may be called under the rcu_read_lock. However, this will 1450 * not atomically search a snapshot of the cache at a single point in time. 1451 * For example, if a gap is created at index 5, then subsequently a gap is 1452 * created at index 10, page_cache_next_miss covering both indices may 1453 * return 10 if called under the rcu_read_lock. 1454 * 1455 * Return: The index of the gap if found, otherwise an index outside the 1456 * range specified (in which case 'return - index >= max_scan' will be true). 1457 * In the rare case of index wrap-around, 0 will be returned. 1458 */ 1459 pgoff_t page_cache_next_miss(struct address_space *mapping, 1460 pgoff_t index, unsigned long max_scan) 1461 { 1462 XA_STATE(xas, &mapping->i_pages, index); 1463 1464 while (max_scan--) { 1465 void *entry = xas_next(&xas); 1466 if (!entry || xa_is_value(entry)) 1467 break; 1468 if (xas.xa_index == 0) 1469 break; 1470 } 1471 1472 return xas.xa_index; 1473 } 1474 EXPORT_SYMBOL(page_cache_next_miss); 1475 1476 /** 1477 * page_cache_prev_miss() - Find the previous gap in the page cache. 1478 * @mapping: Mapping. 1479 * @index: Index. 1480 * @max_scan: Maximum range to search. 1481 * 1482 * Search the range [max(index - max_scan + 1, 0), index] for the 1483 * gap with the highest index. 1484 * 1485 * This function may be called under the rcu_read_lock. However, this will 1486 * not atomically search a snapshot of the cache at a single point in time. 1487 * For example, if a gap is created at index 10, then subsequently a gap is 1488 * created at index 5, page_cache_prev_miss() covering both indices may 1489 * return 5 if called under the rcu_read_lock. 1490 * 1491 * Return: The index of the gap if found, otherwise an index outside the 1492 * range specified (in which case 'index - return >= max_scan' will be true). 1493 * In the rare case of wrap-around, ULONG_MAX will be returned. 1494 */ 1495 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1496 pgoff_t index, unsigned long max_scan) 1497 { 1498 XA_STATE(xas, &mapping->i_pages, index); 1499 1500 while (max_scan--) { 1501 void *entry = xas_prev(&xas); 1502 if (!entry || xa_is_value(entry)) 1503 break; 1504 if (xas.xa_index == ULONG_MAX) 1505 break; 1506 } 1507 1508 return xas.xa_index; 1509 } 1510 EXPORT_SYMBOL(page_cache_prev_miss); 1511 1512 /** 1513 * find_get_entry - find and get a page cache entry 1514 * @mapping: the address_space to search 1515 * @offset: the page cache index 1516 * 1517 * Looks up the page cache slot at @mapping & @offset. If there is a 1518 * page cache page, it is returned with an increased refcount. 1519 * 1520 * If the slot holds a shadow entry of a previously evicted page, or a 1521 * swap entry from shmem/tmpfs, it is returned. 1522 * 1523 * Return: the found page or shadow entry, %NULL if nothing is found. 1524 */ 1525 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset) 1526 { 1527 XA_STATE(xas, &mapping->i_pages, offset); 1528 struct page *page; 1529 1530 rcu_read_lock(); 1531 repeat: 1532 xas_reset(&xas); 1533 page = xas_load(&xas); 1534 if (xas_retry(&xas, page)) 1535 goto repeat; 1536 /* 1537 * A shadow entry of a recently evicted page, or a swap entry from 1538 * shmem/tmpfs. Return it without attempting to raise page count. 1539 */ 1540 if (!page || xa_is_value(page)) 1541 goto out; 1542 1543 if (!page_cache_get_speculative(page)) 1544 goto repeat; 1545 1546 /* 1547 * Has the page moved or been split? 1548 * This is part of the lockless pagecache protocol. See 1549 * include/linux/pagemap.h for details. 1550 */ 1551 if (unlikely(page != xas_reload(&xas))) { 1552 put_page(page); 1553 goto repeat; 1554 } 1555 page = find_subpage(page, offset); 1556 out: 1557 rcu_read_unlock(); 1558 1559 return page; 1560 } 1561 EXPORT_SYMBOL(find_get_entry); 1562 1563 /** 1564 * find_lock_entry - locate, pin and lock a page cache entry 1565 * @mapping: the address_space to search 1566 * @offset: the page cache index 1567 * 1568 * Looks up the page cache slot at @mapping & @offset. If there is a 1569 * page cache page, it is returned locked and with an increased 1570 * refcount. 1571 * 1572 * If the slot holds a shadow entry of a previously evicted page, or a 1573 * swap entry from shmem/tmpfs, it is returned. 1574 * 1575 * find_lock_entry() may sleep. 1576 * 1577 * Return: the found page or shadow entry, %NULL if nothing is found. 1578 */ 1579 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset) 1580 { 1581 struct page *page; 1582 1583 repeat: 1584 page = find_get_entry(mapping, offset); 1585 if (page && !xa_is_value(page)) { 1586 lock_page(page); 1587 /* Has the page been truncated? */ 1588 if (unlikely(page_mapping(page) != mapping)) { 1589 unlock_page(page); 1590 put_page(page); 1591 goto repeat; 1592 } 1593 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page); 1594 } 1595 return page; 1596 } 1597 EXPORT_SYMBOL(find_lock_entry); 1598 1599 /** 1600 * pagecache_get_page - find and get a page reference 1601 * @mapping: the address_space to search 1602 * @offset: the page index 1603 * @fgp_flags: PCG flags 1604 * @gfp_mask: gfp mask to use for the page cache data page allocation 1605 * 1606 * Looks up the page cache slot at @mapping & @offset. 1607 * 1608 * PCG flags modify how the page is returned. 1609 * 1610 * @fgp_flags can be: 1611 * 1612 * - FGP_ACCESSED: the page will be marked accessed 1613 * - FGP_LOCK: Page is return locked 1614 * - FGP_CREAT: If page is not present then a new page is allocated using 1615 * @gfp_mask and added to the page cache and the VM's LRU 1616 * list. The page is returned locked and with an increased 1617 * refcount. 1618 * - FGP_FOR_MMAP: Similar to FGP_CREAT, only we want to allow the caller to do 1619 * its own locking dance if the page is already in cache, or unlock the page 1620 * before returning if we had to add the page to pagecache. 1621 * 1622 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even 1623 * if the GFP flags specified for FGP_CREAT are atomic. 1624 * 1625 * If there is a page cache page, it is returned with an increased refcount. 1626 * 1627 * Return: the found page or %NULL otherwise. 1628 */ 1629 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, 1630 int fgp_flags, gfp_t gfp_mask) 1631 { 1632 struct page *page; 1633 1634 repeat: 1635 page = find_get_entry(mapping, offset); 1636 if (xa_is_value(page)) 1637 page = NULL; 1638 if (!page) 1639 goto no_page; 1640 1641 if (fgp_flags & FGP_LOCK) { 1642 if (fgp_flags & FGP_NOWAIT) { 1643 if (!trylock_page(page)) { 1644 put_page(page); 1645 return NULL; 1646 } 1647 } else { 1648 lock_page(page); 1649 } 1650 1651 /* Has the page been truncated? */ 1652 if (unlikely(compound_head(page)->mapping != mapping)) { 1653 unlock_page(page); 1654 put_page(page); 1655 goto repeat; 1656 } 1657 VM_BUG_ON_PAGE(page->index != offset, page); 1658 } 1659 1660 if (fgp_flags & FGP_ACCESSED) 1661 mark_page_accessed(page); 1662 1663 no_page: 1664 if (!page && (fgp_flags & FGP_CREAT)) { 1665 int err; 1666 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping)) 1667 gfp_mask |= __GFP_WRITE; 1668 if (fgp_flags & FGP_NOFS) 1669 gfp_mask &= ~__GFP_FS; 1670 1671 page = __page_cache_alloc(gfp_mask); 1672 if (!page) 1673 return NULL; 1674 1675 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 1676 fgp_flags |= FGP_LOCK; 1677 1678 /* Init accessed so avoid atomic mark_page_accessed later */ 1679 if (fgp_flags & FGP_ACCESSED) 1680 __SetPageReferenced(page); 1681 1682 err = add_to_page_cache_lru(page, mapping, offset, gfp_mask); 1683 if (unlikely(err)) { 1684 put_page(page); 1685 page = NULL; 1686 if (err == -EEXIST) 1687 goto repeat; 1688 } 1689 1690 /* 1691 * add_to_page_cache_lru locks the page, and for mmap we expect 1692 * an unlocked page. 1693 */ 1694 if (page && (fgp_flags & FGP_FOR_MMAP)) 1695 unlock_page(page); 1696 } 1697 1698 return page; 1699 } 1700 EXPORT_SYMBOL(pagecache_get_page); 1701 1702 /** 1703 * find_get_entries - gang pagecache lookup 1704 * @mapping: The address_space to search 1705 * @start: The starting page cache index 1706 * @nr_entries: The maximum number of entries 1707 * @entries: Where the resulting entries are placed 1708 * @indices: The cache indices corresponding to the entries in @entries 1709 * 1710 * find_get_entries() will search for and return a group of up to 1711 * @nr_entries entries in the mapping. The entries are placed at 1712 * @entries. find_get_entries() takes a reference against any actual 1713 * pages it returns. 1714 * 1715 * The search returns a group of mapping-contiguous page cache entries 1716 * with ascending indexes. There may be holes in the indices due to 1717 * not-present pages. 1718 * 1719 * Any shadow entries of evicted pages, or swap entries from 1720 * shmem/tmpfs, are included in the returned array. 1721 * 1722 * Return: the number of pages and shadow entries which were found. 1723 */ 1724 unsigned find_get_entries(struct address_space *mapping, 1725 pgoff_t start, unsigned int nr_entries, 1726 struct page **entries, pgoff_t *indices) 1727 { 1728 XA_STATE(xas, &mapping->i_pages, start); 1729 struct page *page; 1730 unsigned int ret = 0; 1731 1732 if (!nr_entries) 1733 return 0; 1734 1735 rcu_read_lock(); 1736 xas_for_each(&xas, page, ULONG_MAX) { 1737 if (xas_retry(&xas, page)) 1738 continue; 1739 /* 1740 * A shadow entry of a recently evicted page, a swap 1741 * entry from shmem/tmpfs or a DAX entry. Return it 1742 * without attempting to raise page count. 1743 */ 1744 if (xa_is_value(page)) 1745 goto export; 1746 1747 if (!page_cache_get_speculative(page)) 1748 goto retry; 1749 1750 /* Has the page moved or been split? */ 1751 if (unlikely(page != xas_reload(&xas))) 1752 goto put_page; 1753 page = find_subpage(page, xas.xa_index); 1754 1755 export: 1756 indices[ret] = xas.xa_index; 1757 entries[ret] = page; 1758 if (++ret == nr_entries) 1759 break; 1760 continue; 1761 put_page: 1762 put_page(page); 1763 retry: 1764 xas_reset(&xas); 1765 } 1766 rcu_read_unlock(); 1767 return ret; 1768 } 1769 1770 /** 1771 * find_get_pages_range - gang pagecache lookup 1772 * @mapping: The address_space to search 1773 * @start: The starting page index 1774 * @end: The final page index (inclusive) 1775 * @nr_pages: The maximum number of pages 1776 * @pages: Where the resulting pages are placed 1777 * 1778 * find_get_pages_range() will search for and return a group of up to @nr_pages 1779 * pages in the mapping starting at index @start and up to index @end 1780 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes 1781 * a reference against the returned pages. 1782 * 1783 * The search returns a group of mapping-contiguous pages with ascending 1784 * indexes. There may be holes in the indices due to not-present pages. 1785 * We also update @start to index the next page for the traversal. 1786 * 1787 * Return: the number of pages which were found. If this number is 1788 * smaller than @nr_pages, the end of specified range has been 1789 * reached. 1790 */ 1791 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, 1792 pgoff_t end, unsigned int nr_pages, 1793 struct page **pages) 1794 { 1795 XA_STATE(xas, &mapping->i_pages, *start); 1796 struct page *page; 1797 unsigned ret = 0; 1798 1799 if (unlikely(!nr_pages)) 1800 return 0; 1801 1802 rcu_read_lock(); 1803 xas_for_each(&xas, page, end) { 1804 if (xas_retry(&xas, page)) 1805 continue; 1806 /* Skip over shadow, swap and DAX entries */ 1807 if (xa_is_value(page)) 1808 continue; 1809 1810 if (!page_cache_get_speculative(page)) 1811 goto retry; 1812 1813 /* Has the page moved or been split? */ 1814 if (unlikely(page != xas_reload(&xas))) 1815 goto put_page; 1816 1817 pages[ret] = find_subpage(page, xas.xa_index); 1818 if (++ret == nr_pages) { 1819 *start = xas.xa_index + 1; 1820 goto out; 1821 } 1822 continue; 1823 put_page: 1824 put_page(page); 1825 retry: 1826 xas_reset(&xas); 1827 } 1828 1829 /* 1830 * We come here when there is no page beyond @end. We take care to not 1831 * overflow the index @start as it confuses some of the callers. This 1832 * breaks the iteration when there is a page at index -1 but that is 1833 * already broken anyway. 1834 */ 1835 if (end == (pgoff_t)-1) 1836 *start = (pgoff_t)-1; 1837 else 1838 *start = end + 1; 1839 out: 1840 rcu_read_unlock(); 1841 1842 return ret; 1843 } 1844 1845 /** 1846 * find_get_pages_contig - gang contiguous pagecache lookup 1847 * @mapping: The address_space to search 1848 * @index: The starting page index 1849 * @nr_pages: The maximum number of pages 1850 * @pages: Where the resulting pages are placed 1851 * 1852 * find_get_pages_contig() works exactly like find_get_pages(), except 1853 * that the returned number of pages are guaranteed to be contiguous. 1854 * 1855 * Return: the number of pages which were found. 1856 */ 1857 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 1858 unsigned int nr_pages, struct page **pages) 1859 { 1860 XA_STATE(xas, &mapping->i_pages, index); 1861 struct page *page; 1862 unsigned int ret = 0; 1863 1864 if (unlikely(!nr_pages)) 1865 return 0; 1866 1867 rcu_read_lock(); 1868 for (page = xas_load(&xas); page; page = xas_next(&xas)) { 1869 if (xas_retry(&xas, page)) 1870 continue; 1871 /* 1872 * If the entry has been swapped out, we can stop looking. 1873 * No current caller is looking for DAX entries. 1874 */ 1875 if (xa_is_value(page)) 1876 break; 1877 1878 if (!page_cache_get_speculative(page)) 1879 goto retry; 1880 1881 /* Has the page moved or been split? */ 1882 if (unlikely(page != xas_reload(&xas))) 1883 goto put_page; 1884 1885 pages[ret] = find_subpage(page, xas.xa_index); 1886 if (++ret == nr_pages) 1887 break; 1888 continue; 1889 put_page: 1890 put_page(page); 1891 retry: 1892 xas_reset(&xas); 1893 } 1894 rcu_read_unlock(); 1895 return ret; 1896 } 1897 EXPORT_SYMBOL(find_get_pages_contig); 1898 1899 /** 1900 * find_get_pages_range_tag - find and return pages in given range matching @tag 1901 * @mapping: the address_space to search 1902 * @index: the starting page index 1903 * @end: The final page index (inclusive) 1904 * @tag: the tag index 1905 * @nr_pages: the maximum number of pages 1906 * @pages: where the resulting pages are placed 1907 * 1908 * Like find_get_pages, except we only return pages which are tagged with 1909 * @tag. We update @index to index the next page for the traversal. 1910 * 1911 * Return: the number of pages which were found. 1912 */ 1913 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, 1914 pgoff_t end, xa_mark_t tag, unsigned int nr_pages, 1915 struct page **pages) 1916 { 1917 XA_STATE(xas, &mapping->i_pages, *index); 1918 struct page *page; 1919 unsigned ret = 0; 1920 1921 if (unlikely(!nr_pages)) 1922 return 0; 1923 1924 rcu_read_lock(); 1925 xas_for_each_marked(&xas, page, end, tag) { 1926 if (xas_retry(&xas, page)) 1927 continue; 1928 /* 1929 * Shadow entries should never be tagged, but this iteration 1930 * is lockless so there is a window for page reclaim to evict 1931 * a page we saw tagged. Skip over it. 1932 */ 1933 if (xa_is_value(page)) 1934 continue; 1935 1936 if (!page_cache_get_speculative(page)) 1937 goto retry; 1938 1939 /* Has the page moved or been split? */ 1940 if (unlikely(page != xas_reload(&xas))) 1941 goto put_page; 1942 1943 pages[ret] = find_subpage(page, xas.xa_index); 1944 if (++ret == nr_pages) { 1945 *index = xas.xa_index + 1; 1946 goto out; 1947 } 1948 continue; 1949 put_page: 1950 put_page(page); 1951 retry: 1952 xas_reset(&xas); 1953 } 1954 1955 /* 1956 * We come here when we got to @end. We take care to not overflow the 1957 * index @index as it confuses some of the callers. This breaks the 1958 * iteration when there is a page at index -1 but that is already 1959 * broken anyway. 1960 */ 1961 if (end == (pgoff_t)-1) 1962 *index = (pgoff_t)-1; 1963 else 1964 *index = end + 1; 1965 out: 1966 rcu_read_unlock(); 1967 1968 return ret; 1969 } 1970 EXPORT_SYMBOL(find_get_pages_range_tag); 1971 1972 /* 1973 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 1974 * a _large_ part of the i/o request. Imagine the worst scenario: 1975 * 1976 * ---R__________________________________________B__________ 1977 * ^ reading here ^ bad block(assume 4k) 1978 * 1979 * read(R) => miss => readahead(R...B) => media error => frustrating retries 1980 * => failing the whole request => read(R) => read(R+1) => 1981 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 1982 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 1983 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 1984 * 1985 * It is going insane. Fix it by quickly scaling down the readahead size. 1986 */ 1987 static void shrink_readahead_size_eio(struct file *filp, 1988 struct file_ra_state *ra) 1989 { 1990 ra->ra_pages /= 4; 1991 } 1992 1993 /** 1994 * generic_file_buffered_read - generic file read routine 1995 * @iocb: the iocb to read 1996 * @iter: data destination 1997 * @written: already copied 1998 * 1999 * This is a generic file read routine, and uses the 2000 * mapping->a_ops->readpage() function for the actual low-level stuff. 2001 * 2002 * This is really ugly. But the goto's actually try to clarify some 2003 * of the logic when it comes to error handling etc. 2004 * 2005 * Return: 2006 * * total number of bytes copied, including those the were already @written 2007 * * negative error code if nothing was copied 2008 */ 2009 static ssize_t generic_file_buffered_read(struct kiocb *iocb, 2010 struct iov_iter *iter, ssize_t written) 2011 { 2012 struct file *filp = iocb->ki_filp; 2013 struct address_space *mapping = filp->f_mapping; 2014 struct inode *inode = mapping->host; 2015 struct file_ra_state *ra = &filp->f_ra; 2016 loff_t *ppos = &iocb->ki_pos; 2017 pgoff_t index; 2018 pgoff_t last_index; 2019 pgoff_t prev_index; 2020 unsigned long offset; /* offset into pagecache page */ 2021 unsigned int prev_offset; 2022 int error = 0; 2023 2024 if (unlikely(*ppos >= inode->i_sb->s_maxbytes)) 2025 return 0; 2026 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 2027 2028 index = *ppos >> PAGE_SHIFT; 2029 prev_index = ra->prev_pos >> PAGE_SHIFT; 2030 prev_offset = ra->prev_pos & (PAGE_SIZE-1); 2031 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT; 2032 offset = *ppos & ~PAGE_MASK; 2033 2034 for (;;) { 2035 struct page *page; 2036 pgoff_t end_index; 2037 loff_t isize; 2038 unsigned long nr, ret; 2039 2040 cond_resched(); 2041 find_page: 2042 if (fatal_signal_pending(current)) { 2043 error = -EINTR; 2044 goto out; 2045 } 2046 2047 page = find_get_page(mapping, index); 2048 if (!page) { 2049 if (iocb->ki_flags & IOCB_NOWAIT) 2050 goto would_block; 2051 page_cache_sync_readahead(mapping, 2052 ra, filp, 2053 index, last_index - index); 2054 page = find_get_page(mapping, index); 2055 if (unlikely(page == NULL)) 2056 goto no_cached_page; 2057 } 2058 if (PageReadahead(page)) { 2059 page_cache_async_readahead(mapping, 2060 ra, filp, page, 2061 index, last_index - index); 2062 } 2063 if (!PageUptodate(page)) { 2064 if (iocb->ki_flags & IOCB_NOWAIT) { 2065 put_page(page); 2066 goto would_block; 2067 } 2068 2069 /* 2070 * See comment in do_read_cache_page on why 2071 * wait_on_page_locked is used to avoid unnecessarily 2072 * serialisations and why it's safe. 2073 */ 2074 error = wait_on_page_locked_killable(page); 2075 if (unlikely(error)) 2076 goto readpage_error; 2077 if (PageUptodate(page)) 2078 goto page_ok; 2079 2080 if (inode->i_blkbits == PAGE_SHIFT || 2081 !mapping->a_ops->is_partially_uptodate) 2082 goto page_not_up_to_date; 2083 /* pipes can't handle partially uptodate pages */ 2084 if (unlikely(iov_iter_is_pipe(iter))) 2085 goto page_not_up_to_date; 2086 if (!trylock_page(page)) 2087 goto page_not_up_to_date; 2088 /* Did it get truncated before we got the lock? */ 2089 if (!page->mapping) 2090 goto page_not_up_to_date_locked; 2091 if (!mapping->a_ops->is_partially_uptodate(page, 2092 offset, iter->count)) 2093 goto page_not_up_to_date_locked; 2094 unlock_page(page); 2095 } 2096 page_ok: 2097 /* 2098 * i_size must be checked after we know the page is Uptodate. 2099 * 2100 * Checking i_size after the check allows us to calculate 2101 * the correct value for "nr", which means the zero-filled 2102 * part of the page is not copied back to userspace (unless 2103 * another truncate extends the file - this is desired though). 2104 */ 2105 2106 isize = i_size_read(inode); 2107 end_index = (isize - 1) >> PAGE_SHIFT; 2108 if (unlikely(!isize || index > end_index)) { 2109 put_page(page); 2110 goto out; 2111 } 2112 2113 /* nr is the maximum number of bytes to copy from this page */ 2114 nr = PAGE_SIZE; 2115 if (index == end_index) { 2116 nr = ((isize - 1) & ~PAGE_MASK) + 1; 2117 if (nr <= offset) { 2118 put_page(page); 2119 goto out; 2120 } 2121 } 2122 nr = nr - offset; 2123 2124 /* If users can be writing to this page using arbitrary 2125 * virtual addresses, take care about potential aliasing 2126 * before reading the page on the kernel side. 2127 */ 2128 if (mapping_writably_mapped(mapping)) 2129 flush_dcache_page(page); 2130 2131 /* 2132 * When a sequential read accesses a page several times, 2133 * only mark it as accessed the first time. 2134 */ 2135 if (prev_index != index || offset != prev_offset) 2136 mark_page_accessed(page); 2137 prev_index = index; 2138 2139 /* 2140 * Ok, we have the page, and it's up-to-date, so 2141 * now we can copy it to user space... 2142 */ 2143 2144 ret = copy_page_to_iter(page, offset, nr, iter); 2145 offset += ret; 2146 index += offset >> PAGE_SHIFT; 2147 offset &= ~PAGE_MASK; 2148 prev_offset = offset; 2149 2150 put_page(page); 2151 written += ret; 2152 if (!iov_iter_count(iter)) 2153 goto out; 2154 if (ret < nr) { 2155 error = -EFAULT; 2156 goto out; 2157 } 2158 continue; 2159 2160 page_not_up_to_date: 2161 /* Get exclusive access to the page ... */ 2162 error = lock_page_killable(page); 2163 if (unlikely(error)) 2164 goto readpage_error; 2165 2166 page_not_up_to_date_locked: 2167 /* Did it get truncated before we got the lock? */ 2168 if (!page->mapping) { 2169 unlock_page(page); 2170 put_page(page); 2171 continue; 2172 } 2173 2174 /* Did somebody else fill it already? */ 2175 if (PageUptodate(page)) { 2176 unlock_page(page); 2177 goto page_ok; 2178 } 2179 2180 readpage: 2181 /* 2182 * A previous I/O error may have been due to temporary 2183 * failures, eg. multipath errors. 2184 * PG_error will be set again if readpage fails. 2185 */ 2186 ClearPageError(page); 2187 /* Start the actual read. The read will unlock the page. */ 2188 error = mapping->a_ops->readpage(filp, page); 2189 2190 if (unlikely(error)) { 2191 if (error == AOP_TRUNCATED_PAGE) { 2192 put_page(page); 2193 error = 0; 2194 goto find_page; 2195 } 2196 goto readpage_error; 2197 } 2198 2199 if (!PageUptodate(page)) { 2200 error = lock_page_killable(page); 2201 if (unlikely(error)) 2202 goto readpage_error; 2203 if (!PageUptodate(page)) { 2204 if (page->mapping == NULL) { 2205 /* 2206 * invalidate_mapping_pages got it 2207 */ 2208 unlock_page(page); 2209 put_page(page); 2210 goto find_page; 2211 } 2212 unlock_page(page); 2213 shrink_readahead_size_eio(filp, ra); 2214 error = -EIO; 2215 goto readpage_error; 2216 } 2217 unlock_page(page); 2218 } 2219 2220 goto page_ok; 2221 2222 readpage_error: 2223 /* UHHUH! A synchronous read error occurred. Report it */ 2224 put_page(page); 2225 goto out; 2226 2227 no_cached_page: 2228 /* 2229 * Ok, it wasn't cached, so we need to create a new 2230 * page.. 2231 */ 2232 page = page_cache_alloc(mapping); 2233 if (!page) { 2234 error = -ENOMEM; 2235 goto out; 2236 } 2237 error = add_to_page_cache_lru(page, mapping, index, 2238 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2239 if (error) { 2240 put_page(page); 2241 if (error == -EEXIST) { 2242 error = 0; 2243 goto find_page; 2244 } 2245 goto out; 2246 } 2247 goto readpage; 2248 } 2249 2250 would_block: 2251 error = -EAGAIN; 2252 out: 2253 ra->prev_pos = prev_index; 2254 ra->prev_pos <<= PAGE_SHIFT; 2255 ra->prev_pos |= prev_offset; 2256 2257 *ppos = ((loff_t)index << PAGE_SHIFT) + offset; 2258 file_accessed(filp); 2259 return written ? written : error; 2260 } 2261 2262 /** 2263 * generic_file_read_iter - generic filesystem read routine 2264 * @iocb: kernel I/O control block 2265 * @iter: destination for the data read 2266 * 2267 * This is the "read_iter()" routine for all filesystems 2268 * that can use the page cache directly. 2269 * Return: 2270 * * number of bytes copied, even for partial reads 2271 * * negative error code if nothing was read 2272 */ 2273 ssize_t 2274 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2275 { 2276 size_t count = iov_iter_count(iter); 2277 ssize_t retval = 0; 2278 2279 if (!count) 2280 goto out; /* skip atime */ 2281 2282 if (iocb->ki_flags & IOCB_DIRECT) { 2283 struct file *file = iocb->ki_filp; 2284 struct address_space *mapping = file->f_mapping; 2285 struct inode *inode = mapping->host; 2286 loff_t size; 2287 2288 size = i_size_read(inode); 2289 if (iocb->ki_flags & IOCB_NOWAIT) { 2290 if (filemap_range_has_page(mapping, iocb->ki_pos, 2291 iocb->ki_pos + count - 1)) 2292 return -EAGAIN; 2293 } else { 2294 retval = filemap_write_and_wait_range(mapping, 2295 iocb->ki_pos, 2296 iocb->ki_pos + count - 1); 2297 if (retval < 0) 2298 goto out; 2299 } 2300 2301 file_accessed(file); 2302 2303 retval = mapping->a_ops->direct_IO(iocb, iter); 2304 if (retval >= 0) { 2305 iocb->ki_pos += retval; 2306 count -= retval; 2307 } 2308 iov_iter_revert(iter, count - iov_iter_count(iter)); 2309 2310 /* 2311 * Btrfs can have a short DIO read if we encounter 2312 * compressed extents, so if there was an error, or if 2313 * we've already read everything we wanted to, or if 2314 * there was a short read because we hit EOF, go ahead 2315 * and return. Otherwise fallthrough to buffered io for 2316 * the rest of the read. Buffered reads will not work for 2317 * DAX files, so don't bother trying. 2318 */ 2319 if (retval < 0 || !count || iocb->ki_pos >= size || 2320 IS_DAX(inode)) 2321 goto out; 2322 } 2323 2324 retval = generic_file_buffered_read(iocb, iter, retval); 2325 out: 2326 return retval; 2327 } 2328 EXPORT_SYMBOL(generic_file_read_iter); 2329 2330 #ifdef CONFIG_MMU 2331 #define MMAP_LOTSAMISS (100) 2332 /* 2333 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_sem 2334 * @vmf - the vm_fault for this fault. 2335 * @page - the page to lock. 2336 * @fpin - the pointer to the file we may pin (or is already pinned). 2337 * 2338 * This works similar to lock_page_or_retry in that it can drop the mmap_sem. 2339 * It differs in that it actually returns the page locked if it returns 1 and 0 2340 * if it couldn't lock the page. If we did have to drop the mmap_sem then fpin 2341 * will point to the pinned file and needs to be fput()'ed at a later point. 2342 */ 2343 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page, 2344 struct file **fpin) 2345 { 2346 if (trylock_page(page)) 2347 return 1; 2348 2349 /* 2350 * NOTE! This will make us return with VM_FAULT_RETRY, but with 2351 * the mmap_sem still held. That's how FAULT_FLAG_RETRY_NOWAIT 2352 * is supposed to work. We have way too many special cases.. 2353 */ 2354 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 2355 return 0; 2356 2357 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 2358 if (vmf->flags & FAULT_FLAG_KILLABLE) { 2359 if (__lock_page_killable(page)) { 2360 /* 2361 * We didn't have the right flags to drop the mmap_sem, 2362 * but all fault_handlers only check for fatal signals 2363 * if we return VM_FAULT_RETRY, so we need to drop the 2364 * mmap_sem here and return 0 if we don't have a fpin. 2365 */ 2366 if (*fpin == NULL) 2367 up_read(&vmf->vma->vm_mm->mmap_sem); 2368 return 0; 2369 } 2370 } else 2371 __lock_page(page); 2372 return 1; 2373 } 2374 2375 2376 /* 2377 * Synchronous readahead happens when we don't even find a page in the page 2378 * cache at all. We don't want to perform IO under the mmap sem, so if we have 2379 * to drop the mmap sem we return the file that was pinned in order for us to do 2380 * that. If we didn't pin a file then we return NULL. The file that is 2381 * returned needs to be fput()'ed when we're done with it. 2382 */ 2383 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 2384 { 2385 struct file *file = vmf->vma->vm_file; 2386 struct file_ra_state *ra = &file->f_ra; 2387 struct address_space *mapping = file->f_mapping; 2388 struct file *fpin = NULL; 2389 pgoff_t offset = vmf->pgoff; 2390 2391 /* If we don't want any read-ahead, don't bother */ 2392 if (vmf->vma->vm_flags & VM_RAND_READ) 2393 return fpin; 2394 if (!ra->ra_pages) 2395 return fpin; 2396 2397 if (vmf->vma->vm_flags & VM_SEQ_READ) { 2398 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2399 page_cache_sync_readahead(mapping, ra, file, offset, 2400 ra->ra_pages); 2401 return fpin; 2402 } 2403 2404 /* Avoid banging the cache line if not needed */ 2405 if (ra->mmap_miss < MMAP_LOTSAMISS * 10) 2406 ra->mmap_miss++; 2407 2408 /* 2409 * Do we miss much more than hit in this file? If so, 2410 * stop bothering with read-ahead. It will only hurt. 2411 */ 2412 if (ra->mmap_miss > MMAP_LOTSAMISS) 2413 return fpin; 2414 2415 /* 2416 * mmap read-around 2417 */ 2418 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2419 ra->start = max_t(long, 0, offset - ra->ra_pages / 2); 2420 ra->size = ra->ra_pages; 2421 ra->async_size = ra->ra_pages / 4; 2422 ra_submit(ra, mapping, file); 2423 return fpin; 2424 } 2425 2426 /* 2427 * Asynchronous readahead happens when we find the page and PG_readahead, 2428 * so we want to possibly extend the readahead further. We return the file that 2429 * was pinned if we have to drop the mmap_sem in order to do IO. 2430 */ 2431 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 2432 struct page *page) 2433 { 2434 struct file *file = vmf->vma->vm_file; 2435 struct file_ra_state *ra = &file->f_ra; 2436 struct address_space *mapping = file->f_mapping; 2437 struct file *fpin = NULL; 2438 pgoff_t offset = vmf->pgoff; 2439 2440 /* If we don't want any read-ahead, don't bother */ 2441 if (vmf->vma->vm_flags & VM_RAND_READ) 2442 return fpin; 2443 if (ra->mmap_miss > 0) 2444 ra->mmap_miss--; 2445 if (PageReadahead(page)) { 2446 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2447 page_cache_async_readahead(mapping, ra, file, 2448 page, offset, ra->ra_pages); 2449 } 2450 return fpin; 2451 } 2452 2453 /** 2454 * filemap_fault - read in file data for page fault handling 2455 * @vmf: struct vm_fault containing details of the fault 2456 * 2457 * filemap_fault() is invoked via the vma operations vector for a 2458 * mapped memory region to read in file data during a page fault. 2459 * 2460 * The goto's are kind of ugly, but this streamlines the normal case of having 2461 * it in the page cache, and handles the special cases reasonably without 2462 * having a lot of duplicated code. 2463 * 2464 * vma->vm_mm->mmap_sem must be held on entry. 2465 * 2466 * If our return value has VM_FAULT_RETRY set, it's because the mmap_sem 2467 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap(). 2468 * 2469 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem 2470 * has not been released. 2471 * 2472 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 2473 * 2474 * Return: bitwise-OR of %VM_FAULT_ codes. 2475 */ 2476 vm_fault_t filemap_fault(struct vm_fault *vmf) 2477 { 2478 int error; 2479 struct file *file = vmf->vma->vm_file; 2480 struct file *fpin = NULL; 2481 struct address_space *mapping = file->f_mapping; 2482 struct file_ra_state *ra = &file->f_ra; 2483 struct inode *inode = mapping->host; 2484 pgoff_t offset = vmf->pgoff; 2485 pgoff_t max_off; 2486 struct page *page; 2487 vm_fault_t ret = 0; 2488 2489 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2490 if (unlikely(offset >= max_off)) 2491 return VM_FAULT_SIGBUS; 2492 2493 /* 2494 * Do we have something in the page cache already? 2495 */ 2496 page = find_get_page(mapping, offset); 2497 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { 2498 /* 2499 * We found the page, so try async readahead before 2500 * waiting for the lock. 2501 */ 2502 fpin = do_async_mmap_readahead(vmf, page); 2503 } else if (!page) { 2504 /* No page in the page cache at all */ 2505 count_vm_event(PGMAJFAULT); 2506 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 2507 ret = VM_FAULT_MAJOR; 2508 fpin = do_sync_mmap_readahead(vmf); 2509 retry_find: 2510 page = pagecache_get_page(mapping, offset, 2511 FGP_CREAT|FGP_FOR_MMAP, 2512 vmf->gfp_mask); 2513 if (!page) { 2514 if (fpin) 2515 goto out_retry; 2516 return vmf_error(-ENOMEM); 2517 } 2518 } 2519 2520 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin)) 2521 goto out_retry; 2522 2523 /* Did it get truncated? */ 2524 if (unlikely(compound_head(page)->mapping != mapping)) { 2525 unlock_page(page); 2526 put_page(page); 2527 goto retry_find; 2528 } 2529 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page); 2530 2531 /* 2532 * We have a locked page in the page cache, now we need to check 2533 * that it's up-to-date. If not, it is going to be due to an error. 2534 */ 2535 if (unlikely(!PageUptodate(page))) 2536 goto page_not_uptodate; 2537 2538 /* 2539 * We've made it this far and we had to drop our mmap_sem, now is the 2540 * time to return to the upper layer and have it re-find the vma and 2541 * redo the fault. 2542 */ 2543 if (fpin) { 2544 unlock_page(page); 2545 goto out_retry; 2546 } 2547 2548 /* 2549 * Found the page and have a reference on it. 2550 * We must recheck i_size under page lock. 2551 */ 2552 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2553 if (unlikely(offset >= max_off)) { 2554 unlock_page(page); 2555 put_page(page); 2556 return VM_FAULT_SIGBUS; 2557 } 2558 2559 vmf->page = page; 2560 return ret | VM_FAULT_LOCKED; 2561 2562 page_not_uptodate: 2563 /* 2564 * Umm, take care of errors if the page isn't up-to-date. 2565 * Try to re-read it _once_. We do this synchronously, 2566 * because there really aren't any performance issues here 2567 * and we need to check for errors. 2568 */ 2569 ClearPageError(page); 2570 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2571 error = mapping->a_ops->readpage(file, page); 2572 if (!error) { 2573 wait_on_page_locked(page); 2574 if (!PageUptodate(page)) 2575 error = -EIO; 2576 } 2577 if (fpin) 2578 goto out_retry; 2579 put_page(page); 2580 2581 if (!error || error == AOP_TRUNCATED_PAGE) 2582 goto retry_find; 2583 2584 /* Things didn't work out. Return zero to tell the mm layer so. */ 2585 shrink_readahead_size_eio(file, ra); 2586 return VM_FAULT_SIGBUS; 2587 2588 out_retry: 2589 /* 2590 * We dropped the mmap_sem, we need to return to the fault handler to 2591 * re-find the vma and come back and find our hopefully still populated 2592 * page. 2593 */ 2594 if (page) 2595 put_page(page); 2596 if (fpin) 2597 fput(fpin); 2598 return ret | VM_FAULT_RETRY; 2599 } 2600 EXPORT_SYMBOL(filemap_fault); 2601 2602 void filemap_map_pages(struct vm_fault *vmf, 2603 pgoff_t start_pgoff, pgoff_t end_pgoff) 2604 { 2605 struct file *file = vmf->vma->vm_file; 2606 struct address_space *mapping = file->f_mapping; 2607 pgoff_t last_pgoff = start_pgoff; 2608 unsigned long max_idx; 2609 XA_STATE(xas, &mapping->i_pages, start_pgoff); 2610 struct page *page; 2611 2612 rcu_read_lock(); 2613 xas_for_each(&xas, page, end_pgoff) { 2614 if (xas_retry(&xas, page)) 2615 continue; 2616 if (xa_is_value(page)) 2617 goto next; 2618 2619 /* 2620 * Check for a locked page first, as a speculative 2621 * reference may adversely influence page migration. 2622 */ 2623 if (PageLocked(page)) 2624 goto next; 2625 if (!page_cache_get_speculative(page)) 2626 goto next; 2627 2628 /* Has the page moved or been split? */ 2629 if (unlikely(page != xas_reload(&xas))) 2630 goto skip; 2631 page = find_subpage(page, xas.xa_index); 2632 2633 if (!PageUptodate(page) || 2634 PageReadahead(page) || 2635 PageHWPoison(page)) 2636 goto skip; 2637 if (!trylock_page(page)) 2638 goto skip; 2639 2640 if (page->mapping != mapping || !PageUptodate(page)) 2641 goto unlock; 2642 2643 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 2644 if (page->index >= max_idx) 2645 goto unlock; 2646 2647 if (file->f_ra.mmap_miss > 0) 2648 file->f_ra.mmap_miss--; 2649 2650 vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 2651 if (vmf->pte) 2652 vmf->pte += xas.xa_index - last_pgoff; 2653 last_pgoff = xas.xa_index; 2654 if (alloc_set_pte(vmf, NULL, page)) 2655 goto unlock; 2656 unlock_page(page); 2657 goto next; 2658 unlock: 2659 unlock_page(page); 2660 skip: 2661 put_page(page); 2662 next: 2663 /* Huge page is mapped? No need to proceed. */ 2664 if (pmd_trans_huge(*vmf->pmd)) 2665 break; 2666 } 2667 rcu_read_unlock(); 2668 } 2669 EXPORT_SYMBOL(filemap_map_pages); 2670 2671 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 2672 { 2673 struct page *page = vmf->page; 2674 struct inode *inode = file_inode(vmf->vma->vm_file); 2675 vm_fault_t ret = VM_FAULT_LOCKED; 2676 2677 sb_start_pagefault(inode->i_sb); 2678 file_update_time(vmf->vma->vm_file); 2679 lock_page(page); 2680 if (page->mapping != inode->i_mapping) { 2681 unlock_page(page); 2682 ret = VM_FAULT_NOPAGE; 2683 goto out; 2684 } 2685 /* 2686 * We mark the page dirty already here so that when freeze is in 2687 * progress, we are guaranteed that writeback during freezing will 2688 * see the dirty page and writeprotect it again. 2689 */ 2690 set_page_dirty(page); 2691 wait_for_stable_page(page); 2692 out: 2693 sb_end_pagefault(inode->i_sb); 2694 return ret; 2695 } 2696 2697 const struct vm_operations_struct generic_file_vm_ops = { 2698 .fault = filemap_fault, 2699 .map_pages = filemap_map_pages, 2700 .page_mkwrite = filemap_page_mkwrite, 2701 }; 2702 2703 /* This is used for a general mmap of a disk file */ 2704 2705 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2706 { 2707 struct address_space *mapping = file->f_mapping; 2708 2709 if (!mapping->a_ops->readpage) 2710 return -ENOEXEC; 2711 file_accessed(file); 2712 vma->vm_ops = &generic_file_vm_ops; 2713 return 0; 2714 } 2715 2716 /* 2717 * This is for filesystems which do not implement ->writepage. 2718 */ 2719 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 2720 { 2721 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 2722 return -EINVAL; 2723 return generic_file_mmap(file, vma); 2724 } 2725 #else 2726 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 2727 { 2728 return VM_FAULT_SIGBUS; 2729 } 2730 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2731 { 2732 return -ENOSYS; 2733 } 2734 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 2735 { 2736 return -ENOSYS; 2737 } 2738 #endif /* CONFIG_MMU */ 2739 2740 EXPORT_SYMBOL(filemap_page_mkwrite); 2741 EXPORT_SYMBOL(generic_file_mmap); 2742 EXPORT_SYMBOL(generic_file_readonly_mmap); 2743 2744 static struct page *wait_on_page_read(struct page *page) 2745 { 2746 if (!IS_ERR(page)) { 2747 wait_on_page_locked(page); 2748 if (!PageUptodate(page)) { 2749 put_page(page); 2750 page = ERR_PTR(-EIO); 2751 } 2752 } 2753 return page; 2754 } 2755 2756 static struct page *do_read_cache_page(struct address_space *mapping, 2757 pgoff_t index, 2758 int (*filler)(void *, struct page *), 2759 void *data, 2760 gfp_t gfp) 2761 { 2762 struct page *page; 2763 int err; 2764 repeat: 2765 page = find_get_page(mapping, index); 2766 if (!page) { 2767 page = __page_cache_alloc(gfp); 2768 if (!page) 2769 return ERR_PTR(-ENOMEM); 2770 err = add_to_page_cache_lru(page, mapping, index, gfp); 2771 if (unlikely(err)) { 2772 put_page(page); 2773 if (err == -EEXIST) 2774 goto repeat; 2775 /* Presumably ENOMEM for xarray node */ 2776 return ERR_PTR(err); 2777 } 2778 2779 filler: 2780 if (filler) 2781 err = filler(data, page); 2782 else 2783 err = mapping->a_ops->readpage(data, page); 2784 2785 if (err < 0) { 2786 put_page(page); 2787 return ERR_PTR(err); 2788 } 2789 2790 page = wait_on_page_read(page); 2791 if (IS_ERR(page)) 2792 return page; 2793 goto out; 2794 } 2795 if (PageUptodate(page)) 2796 goto out; 2797 2798 /* 2799 * Page is not up to date and may be locked due one of the following 2800 * case a: Page is being filled and the page lock is held 2801 * case b: Read/write error clearing the page uptodate status 2802 * case c: Truncation in progress (page locked) 2803 * case d: Reclaim in progress 2804 * 2805 * Case a, the page will be up to date when the page is unlocked. 2806 * There is no need to serialise on the page lock here as the page 2807 * is pinned so the lock gives no additional protection. Even if the 2808 * the page is truncated, the data is still valid if PageUptodate as 2809 * it's a race vs truncate race. 2810 * Case b, the page will not be up to date 2811 * Case c, the page may be truncated but in itself, the data may still 2812 * be valid after IO completes as it's a read vs truncate race. The 2813 * operation must restart if the page is not uptodate on unlock but 2814 * otherwise serialising on page lock to stabilise the mapping gives 2815 * no additional guarantees to the caller as the page lock is 2816 * released before return. 2817 * Case d, similar to truncation. If reclaim holds the page lock, it 2818 * will be a race with remove_mapping that determines if the mapping 2819 * is valid on unlock but otherwise the data is valid and there is 2820 * no need to serialise with page lock. 2821 * 2822 * As the page lock gives no additional guarantee, we optimistically 2823 * wait on the page to be unlocked and check if it's up to date and 2824 * use the page if it is. Otherwise, the page lock is required to 2825 * distinguish between the different cases. The motivation is that we 2826 * avoid spurious serialisations and wakeups when multiple processes 2827 * wait on the same page for IO to complete. 2828 */ 2829 wait_on_page_locked(page); 2830 if (PageUptodate(page)) 2831 goto out; 2832 2833 /* Distinguish between all the cases under the safety of the lock */ 2834 lock_page(page); 2835 2836 /* Case c or d, restart the operation */ 2837 if (!page->mapping) { 2838 unlock_page(page); 2839 put_page(page); 2840 goto repeat; 2841 } 2842 2843 /* Someone else locked and filled the page in a very small window */ 2844 if (PageUptodate(page)) { 2845 unlock_page(page); 2846 goto out; 2847 } 2848 goto filler; 2849 2850 out: 2851 mark_page_accessed(page); 2852 return page; 2853 } 2854 2855 /** 2856 * read_cache_page - read into page cache, fill it if needed 2857 * @mapping: the page's address_space 2858 * @index: the page index 2859 * @filler: function to perform the read 2860 * @data: first arg to filler(data, page) function, often left as NULL 2861 * 2862 * Read into the page cache. If a page already exists, and PageUptodate() is 2863 * not set, try to fill the page and wait for it to become unlocked. 2864 * 2865 * If the page does not get brought uptodate, return -EIO. 2866 * 2867 * Return: up to date page on success, ERR_PTR() on failure. 2868 */ 2869 struct page *read_cache_page(struct address_space *mapping, 2870 pgoff_t index, 2871 int (*filler)(void *, struct page *), 2872 void *data) 2873 { 2874 return do_read_cache_page(mapping, index, filler, data, 2875 mapping_gfp_mask(mapping)); 2876 } 2877 EXPORT_SYMBOL(read_cache_page); 2878 2879 /** 2880 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 2881 * @mapping: the page's address_space 2882 * @index: the page index 2883 * @gfp: the page allocator flags to use if allocating 2884 * 2885 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 2886 * any new page allocations done using the specified allocation flags. 2887 * 2888 * If the page does not get brought uptodate, return -EIO. 2889 * 2890 * Return: up to date page on success, ERR_PTR() on failure. 2891 */ 2892 struct page *read_cache_page_gfp(struct address_space *mapping, 2893 pgoff_t index, 2894 gfp_t gfp) 2895 { 2896 return do_read_cache_page(mapping, index, NULL, NULL, gfp); 2897 } 2898 EXPORT_SYMBOL(read_cache_page_gfp); 2899 2900 /* 2901 * Don't operate on ranges the page cache doesn't support, and don't exceed the 2902 * LFS limits. If pos is under the limit it becomes a short access. If it 2903 * exceeds the limit we return -EFBIG. 2904 */ 2905 static int generic_write_check_limits(struct file *file, loff_t pos, 2906 loff_t *count) 2907 { 2908 struct inode *inode = file->f_mapping->host; 2909 loff_t max_size = inode->i_sb->s_maxbytes; 2910 loff_t limit = rlimit(RLIMIT_FSIZE); 2911 2912 if (limit != RLIM_INFINITY) { 2913 if (pos >= limit) { 2914 send_sig(SIGXFSZ, current, 0); 2915 return -EFBIG; 2916 } 2917 *count = min(*count, limit - pos); 2918 } 2919 2920 if (!(file->f_flags & O_LARGEFILE)) 2921 max_size = MAX_NON_LFS; 2922 2923 if (unlikely(pos >= max_size)) 2924 return -EFBIG; 2925 2926 *count = min(*count, max_size - pos); 2927 2928 return 0; 2929 } 2930 2931 /* 2932 * Performs necessary checks before doing a write 2933 * 2934 * Can adjust writing position or amount of bytes to write. 2935 * Returns appropriate error code that caller should return or 2936 * zero in case that write should be allowed. 2937 */ 2938 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from) 2939 { 2940 struct file *file = iocb->ki_filp; 2941 struct inode *inode = file->f_mapping->host; 2942 loff_t count; 2943 int ret; 2944 2945 if (IS_SWAPFILE(inode)) 2946 return -ETXTBSY; 2947 2948 if (!iov_iter_count(from)) 2949 return 0; 2950 2951 /* FIXME: this is for backwards compatibility with 2.4 */ 2952 if (iocb->ki_flags & IOCB_APPEND) 2953 iocb->ki_pos = i_size_read(inode); 2954 2955 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT)) 2956 return -EINVAL; 2957 2958 count = iov_iter_count(from); 2959 ret = generic_write_check_limits(file, iocb->ki_pos, &count); 2960 if (ret) 2961 return ret; 2962 2963 iov_iter_truncate(from, count); 2964 return iov_iter_count(from); 2965 } 2966 EXPORT_SYMBOL(generic_write_checks); 2967 2968 /* 2969 * Performs necessary checks before doing a clone. 2970 * 2971 * Can adjust amount of bytes to clone via @req_count argument. 2972 * Returns appropriate error code that caller should return or 2973 * zero in case the clone should be allowed. 2974 */ 2975 int generic_remap_checks(struct file *file_in, loff_t pos_in, 2976 struct file *file_out, loff_t pos_out, 2977 loff_t *req_count, unsigned int remap_flags) 2978 { 2979 struct inode *inode_in = file_in->f_mapping->host; 2980 struct inode *inode_out = file_out->f_mapping->host; 2981 uint64_t count = *req_count; 2982 uint64_t bcount; 2983 loff_t size_in, size_out; 2984 loff_t bs = inode_out->i_sb->s_blocksize; 2985 int ret; 2986 2987 /* The start of both ranges must be aligned to an fs block. */ 2988 if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs)) 2989 return -EINVAL; 2990 2991 /* Ensure offsets don't wrap. */ 2992 if (pos_in + count < pos_in || pos_out + count < pos_out) 2993 return -EINVAL; 2994 2995 size_in = i_size_read(inode_in); 2996 size_out = i_size_read(inode_out); 2997 2998 /* Dedupe requires both ranges to be within EOF. */ 2999 if ((remap_flags & REMAP_FILE_DEDUP) && 3000 (pos_in >= size_in || pos_in + count > size_in || 3001 pos_out >= size_out || pos_out + count > size_out)) 3002 return -EINVAL; 3003 3004 /* Ensure the infile range is within the infile. */ 3005 if (pos_in >= size_in) 3006 return -EINVAL; 3007 count = min(count, size_in - (uint64_t)pos_in); 3008 3009 ret = generic_write_check_limits(file_out, pos_out, &count); 3010 if (ret) 3011 return ret; 3012 3013 /* 3014 * If the user wanted us to link to the infile's EOF, round up to the 3015 * next block boundary for this check. 3016 * 3017 * Otherwise, make sure the count is also block-aligned, having 3018 * already confirmed the starting offsets' block alignment. 3019 */ 3020 if (pos_in + count == size_in) { 3021 bcount = ALIGN(size_in, bs) - pos_in; 3022 } else { 3023 if (!IS_ALIGNED(count, bs)) 3024 count = ALIGN_DOWN(count, bs); 3025 bcount = count; 3026 } 3027 3028 /* Don't allow overlapped cloning within the same file. */ 3029 if (inode_in == inode_out && 3030 pos_out + bcount > pos_in && 3031 pos_out < pos_in + bcount) 3032 return -EINVAL; 3033 3034 /* 3035 * We shortened the request but the caller can't deal with that, so 3036 * bounce the request back to userspace. 3037 */ 3038 if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN)) 3039 return -EINVAL; 3040 3041 *req_count = count; 3042 return 0; 3043 } 3044 3045 3046 /* 3047 * Performs common checks before doing a file copy/clone 3048 * from @file_in to @file_out. 3049 */ 3050 int generic_file_rw_checks(struct file *file_in, struct file *file_out) 3051 { 3052 struct inode *inode_in = file_inode(file_in); 3053 struct inode *inode_out = file_inode(file_out); 3054 3055 /* Don't copy dirs, pipes, sockets... */ 3056 if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode)) 3057 return -EISDIR; 3058 if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode)) 3059 return -EINVAL; 3060 3061 if (!(file_in->f_mode & FMODE_READ) || 3062 !(file_out->f_mode & FMODE_WRITE) || 3063 (file_out->f_flags & O_APPEND)) 3064 return -EBADF; 3065 3066 return 0; 3067 } 3068 3069 /* 3070 * Performs necessary checks before doing a file copy 3071 * 3072 * Can adjust amount of bytes to copy via @req_count argument. 3073 * Returns appropriate error code that caller should return or 3074 * zero in case the copy should be allowed. 3075 */ 3076 int generic_copy_file_checks(struct file *file_in, loff_t pos_in, 3077 struct file *file_out, loff_t pos_out, 3078 size_t *req_count, unsigned int flags) 3079 { 3080 struct inode *inode_in = file_inode(file_in); 3081 struct inode *inode_out = file_inode(file_out); 3082 uint64_t count = *req_count; 3083 loff_t size_in; 3084 int ret; 3085 3086 ret = generic_file_rw_checks(file_in, file_out); 3087 if (ret) 3088 return ret; 3089 3090 /* Don't touch certain kinds of inodes */ 3091 if (IS_IMMUTABLE(inode_out)) 3092 return -EPERM; 3093 3094 if (IS_SWAPFILE(inode_in) || IS_SWAPFILE(inode_out)) 3095 return -ETXTBSY; 3096 3097 /* Ensure offsets don't wrap. */ 3098 if (pos_in + count < pos_in || pos_out + count < pos_out) 3099 return -EOVERFLOW; 3100 3101 /* Shorten the copy to EOF */ 3102 size_in = i_size_read(inode_in); 3103 if (pos_in >= size_in) 3104 count = 0; 3105 else 3106 count = min(count, size_in - (uint64_t)pos_in); 3107 3108 ret = generic_write_check_limits(file_out, pos_out, &count); 3109 if (ret) 3110 return ret; 3111 3112 /* Don't allow overlapped copying within the same file. */ 3113 if (inode_in == inode_out && 3114 pos_out + count > pos_in && 3115 pos_out < pos_in + count) 3116 return -EINVAL; 3117 3118 *req_count = count; 3119 return 0; 3120 } 3121 3122 int pagecache_write_begin(struct file *file, struct address_space *mapping, 3123 loff_t pos, unsigned len, unsigned flags, 3124 struct page **pagep, void **fsdata) 3125 { 3126 const struct address_space_operations *aops = mapping->a_ops; 3127 3128 return aops->write_begin(file, mapping, pos, len, flags, 3129 pagep, fsdata); 3130 } 3131 EXPORT_SYMBOL(pagecache_write_begin); 3132 3133 int pagecache_write_end(struct file *file, struct address_space *mapping, 3134 loff_t pos, unsigned len, unsigned copied, 3135 struct page *page, void *fsdata) 3136 { 3137 const struct address_space_operations *aops = mapping->a_ops; 3138 3139 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 3140 } 3141 EXPORT_SYMBOL(pagecache_write_end); 3142 3143 /* 3144 * Warn about a page cache invalidation failure during a direct I/O write. 3145 */ 3146 void dio_warn_stale_pagecache(struct file *filp) 3147 { 3148 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 3149 char pathname[128]; 3150 struct inode *inode = file_inode(filp); 3151 char *path; 3152 3153 errseq_set(&inode->i_mapping->wb_err, -EIO); 3154 if (__ratelimit(&_rs)) { 3155 path = file_path(filp, pathname, sizeof(pathname)); 3156 if (IS_ERR(path)) 3157 path = "(unknown)"; 3158 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); 3159 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, 3160 current->comm); 3161 } 3162 } 3163 3164 ssize_t 3165 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 3166 { 3167 struct file *file = iocb->ki_filp; 3168 struct address_space *mapping = file->f_mapping; 3169 struct inode *inode = mapping->host; 3170 loff_t pos = iocb->ki_pos; 3171 ssize_t written; 3172 size_t write_len; 3173 pgoff_t end; 3174 3175 write_len = iov_iter_count(from); 3176 end = (pos + write_len - 1) >> PAGE_SHIFT; 3177 3178 if (iocb->ki_flags & IOCB_NOWAIT) { 3179 /* If there are pages to writeback, return */ 3180 if (filemap_range_has_page(inode->i_mapping, pos, 3181 pos + write_len - 1)) 3182 return -EAGAIN; 3183 } else { 3184 written = filemap_write_and_wait_range(mapping, pos, 3185 pos + write_len - 1); 3186 if (written) 3187 goto out; 3188 } 3189 3190 /* 3191 * After a write we want buffered reads to be sure to go to disk to get 3192 * the new data. We invalidate clean cached page from the region we're 3193 * about to write. We do this *before* the write so that we can return 3194 * without clobbering -EIOCBQUEUED from ->direct_IO(). 3195 */ 3196 written = invalidate_inode_pages2_range(mapping, 3197 pos >> PAGE_SHIFT, end); 3198 /* 3199 * If a page can not be invalidated, return 0 to fall back 3200 * to buffered write. 3201 */ 3202 if (written) { 3203 if (written == -EBUSY) 3204 return 0; 3205 goto out; 3206 } 3207 3208 written = mapping->a_ops->direct_IO(iocb, from); 3209 3210 /* 3211 * Finally, try again to invalidate clean pages which might have been 3212 * cached by non-direct readahead, or faulted in by get_user_pages() 3213 * if the source of the write was an mmap'ed region of the file 3214 * we're writing. Either one is a pretty crazy thing to do, 3215 * so we don't support it 100%. If this invalidation 3216 * fails, tough, the write still worked... 3217 * 3218 * Most of the time we do not need this since dio_complete() will do 3219 * the invalidation for us. However there are some file systems that 3220 * do not end up with dio_complete() being called, so let's not break 3221 * them by removing it completely. 3222 * 3223 * Noticeable example is a blkdev_direct_IO(). 3224 * 3225 * Skip invalidation for async writes or if mapping has no pages. 3226 */ 3227 if (written > 0 && mapping->nrpages && 3228 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end)) 3229 dio_warn_stale_pagecache(file); 3230 3231 if (written > 0) { 3232 pos += written; 3233 write_len -= written; 3234 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 3235 i_size_write(inode, pos); 3236 mark_inode_dirty(inode); 3237 } 3238 iocb->ki_pos = pos; 3239 } 3240 iov_iter_revert(from, write_len - iov_iter_count(from)); 3241 out: 3242 return written; 3243 } 3244 EXPORT_SYMBOL(generic_file_direct_write); 3245 3246 /* 3247 * Find or create a page at the given pagecache position. Return the locked 3248 * page. This function is specifically for buffered writes. 3249 */ 3250 struct page *grab_cache_page_write_begin(struct address_space *mapping, 3251 pgoff_t index, unsigned flags) 3252 { 3253 struct page *page; 3254 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT; 3255 3256 if (flags & AOP_FLAG_NOFS) 3257 fgp_flags |= FGP_NOFS; 3258 3259 page = pagecache_get_page(mapping, index, fgp_flags, 3260 mapping_gfp_mask(mapping)); 3261 if (page) 3262 wait_for_stable_page(page); 3263 3264 return page; 3265 } 3266 EXPORT_SYMBOL(grab_cache_page_write_begin); 3267 3268 ssize_t generic_perform_write(struct file *file, 3269 struct iov_iter *i, loff_t pos) 3270 { 3271 struct address_space *mapping = file->f_mapping; 3272 const struct address_space_operations *a_ops = mapping->a_ops; 3273 long status = 0; 3274 ssize_t written = 0; 3275 unsigned int flags = 0; 3276 3277 do { 3278 struct page *page; 3279 unsigned long offset; /* Offset into pagecache page */ 3280 unsigned long bytes; /* Bytes to write to page */ 3281 size_t copied; /* Bytes copied from user */ 3282 void *fsdata; 3283 3284 offset = (pos & (PAGE_SIZE - 1)); 3285 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3286 iov_iter_count(i)); 3287 3288 again: 3289 /* 3290 * Bring in the user page that we will copy from _first_. 3291 * Otherwise there's a nasty deadlock on copying from the 3292 * same page as we're writing to, without it being marked 3293 * up-to-date. 3294 * 3295 * Not only is this an optimisation, but it is also required 3296 * to check that the address is actually valid, when atomic 3297 * usercopies are used, below. 3298 */ 3299 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 3300 status = -EFAULT; 3301 break; 3302 } 3303 3304 if (fatal_signal_pending(current)) { 3305 status = -EINTR; 3306 break; 3307 } 3308 3309 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 3310 &page, &fsdata); 3311 if (unlikely(status < 0)) 3312 break; 3313 3314 if (mapping_writably_mapped(mapping)) 3315 flush_dcache_page(page); 3316 3317 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 3318 flush_dcache_page(page); 3319 3320 status = a_ops->write_end(file, mapping, pos, bytes, copied, 3321 page, fsdata); 3322 if (unlikely(status < 0)) 3323 break; 3324 copied = status; 3325 3326 cond_resched(); 3327 3328 iov_iter_advance(i, copied); 3329 if (unlikely(copied == 0)) { 3330 /* 3331 * If we were unable to copy any data at all, we must 3332 * fall back to a single segment length write. 3333 * 3334 * If we didn't fallback here, we could livelock 3335 * because not all segments in the iov can be copied at 3336 * once without a pagefault. 3337 */ 3338 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3339 iov_iter_single_seg_count(i)); 3340 goto again; 3341 } 3342 pos += copied; 3343 written += copied; 3344 3345 balance_dirty_pages_ratelimited(mapping); 3346 } while (iov_iter_count(i)); 3347 3348 return written ? written : status; 3349 } 3350 EXPORT_SYMBOL(generic_perform_write); 3351 3352 /** 3353 * __generic_file_write_iter - write data to a file 3354 * @iocb: IO state structure (file, offset, etc.) 3355 * @from: iov_iter with data to write 3356 * 3357 * This function does all the work needed for actually writing data to a 3358 * file. It does all basic checks, removes SUID from the file, updates 3359 * modification times and calls proper subroutines depending on whether we 3360 * do direct IO or a standard buffered write. 3361 * 3362 * It expects i_mutex to be grabbed unless we work on a block device or similar 3363 * object which does not need locking at all. 3364 * 3365 * This function does *not* take care of syncing data in case of O_SYNC write. 3366 * A caller has to handle it. This is mainly due to the fact that we want to 3367 * avoid syncing under i_mutex. 3368 * 3369 * Return: 3370 * * number of bytes written, even for truncated writes 3371 * * negative error code if no data has been written at all 3372 */ 3373 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3374 { 3375 struct file *file = iocb->ki_filp; 3376 struct address_space * mapping = file->f_mapping; 3377 struct inode *inode = mapping->host; 3378 ssize_t written = 0; 3379 ssize_t err; 3380 ssize_t status; 3381 3382 /* We can write back this queue in page reclaim */ 3383 current->backing_dev_info = inode_to_bdi(inode); 3384 err = file_remove_privs(file); 3385 if (err) 3386 goto out; 3387 3388 err = file_update_time(file); 3389 if (err) 3390 goto out; 3391 3392 if (iocb->ki_flags & IOCB_DIRECT) { 3393 loff_t pos, endbyte; 3394 3395 written = generic_file_direct_write(iocb, from); 3396 /* 3397 * If the write stopped short of completing, fall back to 3398 * buffered writes. Some filesystems do this for writes to 3399 * holes, for example. For DAX files, a buffered write will 3400 * not succeed (even if it did, DAX does not handle dirty 3401 * page-cache pages correctly). 3402 */ 3403 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) 3404 goto out; 3405 3406 status = generic_perform_write(file, from, pos = iocb->ki_pos); 3407 /* 3408 * If generic_perform_write() returned a synchronous error 3409 * then we want to return the number of bytes which were 3410 * direct-written, or the error code if that was zero. Note 3411 * that this differs from normal direct-io semantics, which 3412 * will return -EFOO even if some bytes were written. 3413 */ 3414 if (unlikely(status < 0)) { 3415 err = status; 3416 goto out; 3417 } 3418 /* 3419 * We need to ensure that the page cache pages are written to 3420 * disk and invalidated to preserve the expected O_DIRECT 3421 * semantics. 3422 */ 3423 endbyte = pos + status - 1; 3424 err = filemap_write_and_wait_range(mapping, pos, endbyte); 3425 if (err == 0) { 3426 iocb->ki_pos = endbyte + 1; 3427 written += status; 3428 invalidate_mapping_pages(mapping, 3429 pos >> PAGE_SHIFT, 3430 endbyte >> PAGE_SHIFT); 3431 } else { 3432 /* 3433 * We don't know how much we wrote, so just return 3434 * the number of bytes which were direct-written 3435 */ 3436 } 3437 } else { 3438 written = generic_perform_write(file, from, iocb->ki_pos); 3439 if (likely(written > 0)) 3440 iocb->ki_pos += written; 3441 } 3442 out: 3443 current->backing_dev_info = NULL; 3444 return written ? written : err; 3445 } 3446 EXPORT_SYMBOL(__generic_file_write_iter); 3447 3448 /** 3449 * generic_file_write_iter - write data to a file 3450 * @iocb: IO state structure 3451 * @from: iov_iter with data to write 3452 * 3453 * This is a wrapper around __generic_file_write_iter() to be used by most 3454 * filesystems. It takes care of syncing the file in case of O_SYNC file 3455 * and acquires i_mutex as needed. 3456 * Return: 3457 * * negative error code if no data has been written at all of 3458 * vfs_fsync_range() failed for a synchronous write 3459 * * number of bytes written, even for truncated writes 3460 */ 3461 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3462 { 3463 struct file *file = iocb->ki_filp; 3464 struct inode *inode = file->f_mapping->host; 3465 ssize_t ret; 3466 3467 inode_lock(inode); 3468 ret = generic_write_checks(iocb, from); 3469 if (ret > 0) 3470 ret = __generic_file_write_iter(iocb, from); 3471 inode_unlock(inode); 3472 3473 if (ret > 0) 3474 ret = generic_write_sync(iocb, ret); 3475 return ret; 3476 } 3477 EXPORT_SYMBOL(generic_file_write_iter); 3478 3479 /** 3480 * try_to_release_page() - release old fs-specific metadata on a page 3481 * 3482 * @page: the page which the kernel is trying to free 3483 * @gfp_mask: memory allocation flags (and I/O mode) 3484 * 3485 * The address_space is to try to release any data against the page 3486 * (presumably at page->private). 3487 * 3488 * This may also be called if PG_fscache is set on a page, indicating that the 3489 * page is known to the local caching routines. 3490 * 3491 * The @gfp_mask argument specifies whether I/O may be performed to release 3492 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS). 3493 * 3494 * Return: %1 if the release was successful, otherwise return zero. 3495 */ 3496 int try_to_release_page(struct page *page, gfp_t gfp_mask) 3497 { 3498 struct address_space * const mapping = page->mapping; 3499 3500 BUG_ON(!PageLocked(page)); 3501 if (PageWriteback(page)) 3502 return 0; 3503 3504 if (mapping && mapping->a_ops->releasepage) 3505 return mapping->a_ops->releasepage(page, gfp_mask); 3506 return try_to_free_buffers(page); 3507 } 3508 3509 EXPORT_SYMBOL(try_to_release_page); 3510