1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/filemap.c 4 * 5 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 7 8 /* 9 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differently, for example) 12 */ 13 #include <linux/export.h> 14 #include <linux/compiler.h> 15 #include <linux/dax.h> 16 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 19 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 22 #include <linux/mm.h> 23 #include <linux/swap.h> 24 #include <linux/swapops.h> 25 #include <linux/syscalls.h> 26 #include <linux/mman.h> 27 #include <linux/pagemap.h> 28 #include <linux/file.h> 29 #include <linux/uio.h> 30 #include <linux/error-injection.h> 31 #include <linux/hash.h> 32 #include <linux/writeback.h> 33 #include <linux/backing-dev.h> 34 #include <linux/pagevec.h> 35 #include <linux/security.h> 36 #include <linux/cpuset.h> 37 #include <linux/hugetlb.h> 38 #include <linux/memcontrol.h> 39 #include <linux/shmem_fs.h> 40 #include <linux/rmap.h> 41 #include <linux/delayacct.h> 42 #include <linux/psi.h> 43 #include <linux/ramfs.h> 44 #include <linux/page_idle.h> 45 #include <linux/migrate.h> 46 #include <linux/pipe_fs_i.h> 47 #include <linux/splice.h> 48 #include <linux/rcupdate_wait.h> 49 #include <linux/sched/mm.h> 50 #include <linux/fsnotify.h> 51 #include <asm/pgalloc.h> 52 #include <asm/tlbflush.h> 53 #include "internal.h" 54 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/filemap.h> 57 58 /* 59 * FIXME: remove all knowledge of the buffer layer from the core VM 60 */ 61 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 62 63 #include <asm/mman.h> 64 65 #include "swap.h" 66 67 /* 68 * Shared mappings implemented 30.11.1994. It's not fully working yet, 69 * though. 70 * 71 * Shared mappings now work. 15.8.1995 Bruno. 72 * 73 * finished 'unifying' the page and buffer cache and SMP-threaded the 74 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 75 * 76 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 77 */ 78 79 /* 80 * Lock ordering: 81 * 82 * ->i_mmap_rwsem (truncate_pagecache) 83 * ->private_lock (__free_pte->block_dirty_folio) 84 * ->swap_lock (exclusive_swap_page, others) 85 * ->i_pages lock 86 * 87 * ->i_rwsem 88 * ->invalidate_lock (acquired by fs in truncate path) 89 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 90 * 91 * ->mmap_lock 92 * ->i_mmap_rwsem 93 * ->page_table_lock or pte_lock (various, mainly in memory.c) 94 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 95 * 96 * ->mmap_lock 97 * ->invalidate_lock (filemap_fault) 98 * ->lock_page (filemap_fault, access_process_vm) 99 * 100 * ->i_rwsem (generic_perform_write) 101 * ->mmap_lock (fault_in_readable->do_page_fault) 102 * 103 * bdi->wb.list_lock 104 * sb_lock (fs/fs-writeback.c) 105 * ->i_pages lock (__sync_single_inode) 106 * 107 * ->i_mmap_rwsem 108 * ->anon_vma.lock (vma_merge) 109 * 110 * ->anon_vma.lock 111 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 112 * 113 * ->page_table_lock or pte_lock 114 * ->swap_lock (try_to_unmap_one) 115 * ->private_lock (try_to_unmap_one) 116 * ->i_pages lock (try_to_unmap_one) 117 * ->lruvec->lru_lock (follow_page_mask->mark_page_accessed) 118 * ->lruvec->lru_lock (check_pte_range->folio_isolate_lru) 119 * ->private_lock (folio_remove_rmap_pte->set_page_dirty) 120 * ->i_pages lock (folio_remove_rmap_pte->set_page_dirty) 121 * bdi.wb->list_lock (folio_remove_rmap_pte->set_page_dirty) 122 * ->inode->i_lock (folio_remove_rmap_pte->set_page_dirty) 123 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 124 * ->inode->i_lock (zap_pte_range->set_page_dirty) 125 * ->private_lock (zap_pte_range->block_dirty_folio) 126 */ 127 128 static void page_cache_delete(struct address_space *mapping, 129 struct folio *folio, void *shadow) 130 { 131 XA_STATE(xas, &mapping->i_pages, folio->index); 132 long nr = 1; 133 134 mapping_set_update(&xas, mapping); 135 136 xas_set_order(&xas, folio->index, folio_order(folio)); 137 nr = folio_nr_pages(folio); 138 139 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 140 141 xas_store(&xas, shadow); 142 xas_init_marks(&xas); 143 144 folio->mapping = NULL; 145 /* Leave page->index set: truncation lookup relies upon it */ 146 mapping->nrpages -= nr; 147 } 148 149 static void filemap_unaccount_folio(struct address_space *mapping, 150 struct folio *folio) 151 { 152 long nr; 153 154 VM_BUG_ON_FOLIO(folio_mapped(folio), folio); 155 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) { 156 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 157 current->comm, folio_pfn(folio)); 158 dump_page(&folio->page, "still mapped when deleted"); 159 dump_stack(); 160 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 161 162 if (mapping_exiting(mapping) && !folio_test_large(folio)) { 163 int mapcount = folio_mapcount(folio); 164 165 if (folio_ref_count(folio) >= mapcount + 2) { 166 /* 167 * All vmas have already been torn down, so it's 168 * a good bet that actually the page is unmapped 169 * and we'd rather not leak it: if we're wrong, 170 * another bad page check should catch it later. 171 */ 172 atomic_set(&folio->_mapcount, -1); 173 folio_ref_sub(folio, mapcount); 174 } 175 } 176 } 177 178 /* hugetlb folios do not participate in page cache accounting. */ 179 if (folio_test_hugetlb(folio)) 180 return; 181 182 nr = folio_nr_pages(folio); 183 184 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 185 if (folio_test_swapbacked(folio)) { 186 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 187 if (folio_test_pmd_mappable(folio)) 188 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr); 189 } else if (folio_test_pmd_mappable(folio)) { 190 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr); 191 filemap_nr_thps_dec(mapping); 192 } 193 194 /* 195 * At this point folio must be either written or cleaned by 196 * truncate. Dirty folio here signals a bug and loss of 197 * unwritten data - on ordinary filesystems. 198 * 199 * But it's harmless on in-memory filesystems like tmpfs; and can 200 * occur when a driver which did get_user_pages() sets page dirty 201 * before putting it, while the inode is being finally evicted. 202 * 203 * Below fixes dirty accounting after removing the folio entirely 204 * but leaves the dirty flag set: it has no effect for truncated 205 * folio and anyway will be cleared before returning folio to 206 * buddy allocator. 207 */ 208 if (WARN_ON_ONCE(folio_test_dirty(folio) && 209 mapping_can_writeback(mapping))) 210 folio_account_cleaned(folio, inode_to_wb(mapping->host)); 211 } 212 213 /* 214 * Delete a page from the page cache and free it. Caller has to make 215 * sure the page is locked and that nobody else uses it - or that usage 216 * is safe. The caller must hold the i_pages lock. 217 */ 218 void __filemap_remove_folio(struct folio *folio, void *shadow) 219 { 220 struct address_space *mapping = folio->mapping; 221 222 trace_mm_filemap_delete_from_page_cache(folio); 223 filemap_unaccount_folio(mapping, folio); 224 page_cache_delete(mapping, folio, shadow); 225 } 226 227 void filemap_free_folio(struct address_space *mapping, struct folio *folio) 228 { 229 void (*free_folio)(struct folio *); 230 int refs = 1; 231 232 free_folio = mapping->a_ops->free_folio; 233 if (free_folio) 234 free_folio(folio); 235 236 if (folio_test_large(folio)) 237 refs = folio_nr_pages(folio); 238 folio_put_refs(folio, refs); 239 } 240 241 /** 242 * filemap_remove_folio - Remove folio from page cache. 243 * @folio: The folio. 244 * 245 * This must be called only on folios that are locked and have been 246 * verified to be in the page cache. It will never put the folio into 247 * the free list because the caller has a reference on the page. 248 */ 249 void filemap_remove_folio(struct folio *folio) 250 { 251 struct address_space *mapping = folio->mapping; 252 253 BUG_ON(!folio_test_locked(folio)); 254 spin_lock(&mapping->host->i_lock); 255 xa_lock_irq(&mapping->i_pages); 256 __filemap_remove_folio(folio, NULL); 257 xa_unlock_irq(&mapping->i_pages); 258 if (mapping_shrinkable(mapping)) 259 inode_add_lru(mapping->host); 260 spin_unlock(&mapping->host->i_lock); 261 262 filemap_free_folio(mapping, folio); 263 } 264 265 /* 266 * page_cache_delete_batch - delete several folios from page cache 267 * @mapping: the mapping to which folios belong 268 * @fbatch: batch of folios to delete 269 * 270 * The function walks over mapping->i_pages and removes folios passed in 271 * @fbatch from the mapping. The function expects @fbatch to be sorted 272 * by page index and is optimised for it to be dense. 273 * It tolerates holes in @fbatch (mapping entries at those indices are not 274 * modified). 275 * 276 * The function expects the i_pages lock to be held. 277 */ 278 static void page_cache_delete_batch(struct address_space *mapping, 279 struct folio_batch *fbatch) 280 { 281 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index); 282 long total_pages = 0; 283 int i = 0; 284 struct folio *folio; 285 286 mapping_set_update(&xas, mapping); 287 xas_for_each(&xas, folio, ULONG_MAX) { 288 if (i >= folio_batch_count(fbatch)) 289 break; 290 291 /* A swap/dax/shadow entry got inserted? Skip it. */ 292 if (xa_is_value(folio)) 293 continue; 294 /* 295 * A page got inserted in our range? Skip it. We have our 296 * pages locked so they are protected from being removed. 297 * If we see a page whose index is higher than ours, it 298 * means our page has been removed, which shouldn't be 299 * possible because we're holding the PageLock. 300 */ 301 if (folio != fbatch->folios[i]) { 302 VM_BUG_ON_FOLIO(folio->index > 303 fbatch->folios[i]->index, folio); 304 continue; 305 } 306 307 WARN_ON_ONCE(!folio_test_locked(folio)); 308 309 folio->mapping = NULL; 310 /* Leave folio->index set: truncation lookup relies on it */ 311 312 i++; 313 xas_store(&xas, NULL); 314 total_pages += folio_nr_pages(folio); 315 } 316 mapping->nrpages -= total_pages; 317 } 318 319 void delete_from_page_cache_batch(struct address_space *mapping, 320 struct folio_batch *fbatch) 321 { 322 int i; 323 324 if (!folio_batch_count(fbatch)) 325 return; 326 327 spin_lock(&mapping->host->i_lock); 328 xa_lock_irq(&mapping->i_pages); 329 for (i = 0; i < folio_batch_count(fbatch); i++) { 330 struct folio *folio = fbatch->folios[i]; 331 332 trace_mm_filemap_delete_from_page_cache(folio); 333 filemap_unaccount_folio(mapping, folio); 334 } 335 page_cache_delete_batch(mapping, fbatch); 336 xa_unlock_irq(&mapping->i_pages); 337 if (mapping_shrinkable(mapping)) 338 inode_add_lru(mapping->host); 339 spin_unlock(&mapping->host->i_lock); 340 341 for (i = 0; i < folio_batch_count(fbatch); i++) 342 filemap_free_folio(mapping, fbatch->folios[i]); 343 } 344 345 int filemap_check_errors(struct address_space *mapping) 346 { 347 int ret = 0; 348 /* Check for outstanding write errors */ 349 if (test_bit(AS_ENOSPC, &mapping->flags) && 350 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 351 ret = -ENOSPC; 352 if (test_bit(AS_EIO, &mapping->flags) && 353 test_and_clear_bit(AS_EIO, &mapping->flags)) 354 ret = -EIO; 355 return ret; 356 } 357 EXPORT_SYMBOL(filemap_check_errors); 358 359 static int filemap_check_and_keep_errors(struct address_space *mapping) 360 { 361 /* Check for outstanding write errors */ 362 if (test_bit(AS_EIO, &mapping->flags)) 363 return -EIO; 364 if (test_bit(AS_ENOSPC, &mapping->flags)) 365 return -ENOSPC; 366 return 0; 367 } 368 369 /** 370 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range 371 * @mapping: address space structure to write 372 * @wbc: the writeback_control controlling the writeout 373 * 374 * Call writepages on the mapping using the provided wbc to control the 375 * writeout. 376 * 377 * Return: %0 on success, negative error code otherwise. 378 */ 379 int filemap_fdatawrite_wbc(struct address_space *mapping, 380 struct writeback_control *wbc) 381 { 382 int ret; 383 384 if (!mapping_can_writeback(mapping) || 385 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 386 return 0; 387 388 wbc_attach_fdatawrite_inode(wbc, mapping->host); 389 ret = do_writepages(mapping, wbc); 390 wbc_detach_inode(wbc); 391 return ret; 392 } 393 EXPORT_SYMBOL(filemap_fdatawrite_wbc); 394 395 /** 396 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 397 * @mapping: address space structure to write 398 * @start: offset in bytes where the range starts 399 * @end: offset in bytes where the range ends (inclusive) 400 * @sync_mode: enable synchronous operation 401 * 402 * Start writeback against all of a mapping's dirty pages that lie 403 * within the byte offsets <start, end> inclusive. 404 * 405 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 406 * opposed to a regular memory cleansing writeback. The difference between 407 * these two operations is that if a dirty page/buffer is encountered, it must 408 * be waited upon, and not just skipped over. 409 * 410 * Return: %0 on success, negative error code otherwise. 411 */ 412 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 413 loff_t end, int sync_mode) 414 { 415 struct writeback_control wbc = { 416 .sync_mode = sync_mode, 417 .nr_to_write = LONG_MAX, 418 .range_start = start, 419 .range_end = end, 420 }; 421 422 return filemap_fdatawrite_wbc(mapping, &wbc); 423 } 424 425 static inline int __filemap_fdatawrite(struct address_space *mapping, 426 int sync_mode) 427 { 428 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 429 } 430 431 int filemap_fdatawrite(struct address_space *mapping) 432 { 433 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 434 } 435 EXPORT_SYMBOL(filemap_fdatawrite); 436 437 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 438 loff_t end) 439 { 440 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 441 } 442 EXPORT_SYMBOL(filemap_fdatawrite_range); 443 444 /** 445 * filemap_fdatawrite_range_kick - start writeback on a range 446 * @mapping: target address_space 447 * @start: index to start writeback on 448 * @end: last (non-inclusive) index for writeback 449 * 450 * This is a non-integrity writeback helper, to start writing back folios 451 * for the indicated range. 452 * 453 * Return: %0 on success, negative error code otherwise. 454 */ 455 int filemap_fdatawrite_range_kick(struct address_space *mapping, loff_t start, 456 loff_t end) 457 { 458 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_NONE); 459 } 460 EXPORT_SYMBOL_GPL(filemap_fdatawrite_range_kick); 461 462 /** 463 * filemap_flush - mostly a non-blocking flush 464 * @mapping: target address_space 465 * 466 * This is a mostly non-blocking flush. Not suitable for data-integrity 467 * purposes - I/O may not be started against all dirty pages. 468 * 469 * Return: %0 on success, negative error code otherwise. 470 */ 471 int filemap_flush(struct address_space *mapping) 472 { 473 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 474 } 475 EXPORT_SYMBOL(filemap_flush); 476 477 /** 478 * filemap_range_has_page - check if a page exists in range. 479 * @mapping: address space within which to check 480 * @start_byte: offset in bytes where the range starts 481 * @end_byte: offset in bytes where the range ends (inclusive) 482 * 483 * Find at least one page in the range supplied, usually used to check if 484 * direct writing in this range will trigger a writeback. 485 * 486 * Return: %true if at least one page exists in the specified range, 487 * %false otherwise. 488 */ 489 bool filemap_range_has_page(struct address_space *mapping, 490 loff_t start_byte, loff_t end_byte) 491 { 492 struct folio *folio; 493 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 494 pgoff_t max = end_byte >> PAGE_SHIFT; 495 496 if (end_byte < start_byte) 497 return false; 498 499 rcu_read_lock(); 500 for (;;) { 501 folio = xas_find(&xas, max); 502 if (xas_retry(&xas, folio)) 503 continue; 504 /* Shadow entries don't count */ 505 if (xa_is_value(folio)) 506 continue; 507 /* 508 * We don't need to try to pin this page; we're about to 509 * release the RCU lock anyway. It is enough to know that 510 * there was a page here recently. 511 */ 512 break; 513 } 514 rcu_read_unlock(); 515 516 return folio != NULL; 517 } 518 EXPORT_SYMBOL(filemap_range_has_page); 519 520 static void __filemap_fdatawait_range(struct address_space *mapping, 521 loff_t start_byte, loff_t end_byte) 522 { 523 pgoff_t index = start_byte >> PAGE_SHIFT; 524 pgoff_t end = end_byte >> PAGE_SHIFT; 525 struct folio_batch fbatch; 526 unsigned nr_folios; 527 528 folio_batch_init(&fbatch); 529 530 while (index <= end) { 531 unsigned i; 532 533 nr_folios = filemap_get_folios_tag(mapping, &index, end, 534 PAGECACHE_TAG_WRITEBACK, &fbatch); 535 536 if (!nr_folios) 537 break; 538 539 for (i = 0; i < nr_folios; i++) { 540 struct folio *folio = fbatch.folios[i]; 541 542 folio_wait_writeback(folio); 543 } 544 folio_batch_release(&fbatch); 545 cond_resched(); 546 } 547 } 548 549 /** 550 * filemap_fdatawait_range - wait for writeback to complete 551 * @mapping: address space structure to wait for 552 * @start_byte: offset in bytes where the range starts 553 * @end_byte: offset in bytes where the range ends (inclusive) 554 * 555 * Walk the list of under-writeback pages of the given address space 556 * in the given range and wait for all of them. Check error status of 557 * the address space and return it. 558 * 559 * Since the error status of the address space is cleared by this function, 560 * callers are responsible for checking the return value and handling and/or 561 * reporting the error. 562 * 563 * Return: error status of the address space. 564 */ 565 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 566 loff_t end_byte) 567 { 568 __filemap_fdatawait_range(mapping, start_byte, end_byte); 569 return filemap_check_errors(mapping); 570 } 571 EXPORT_SYMBOL(filemap_fdatawait_range); 572 573 /** 574 * filemap_fdatawait_range_keep_errors - wait for writeback to complete 575 * @mapping: address space structure to wait for 576 * @start_byte: offset in bytes where the range starts 577 * @end_byte: offset in bytes where the range ends (inclusive) 578 * 579 * Walk the list of under-writeback pages of the given address space in the 580 * given range and wait for all of them. Unlike filemap_fdatawait_range(), 581 * this function does not clear error status of the address space. 582 * 583 * Use this function if callers don't handle errors themselves. Expected 584 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 585 * fsfreeze(8) 586 */ 587 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 588 loff_t start_byte, loff_t end_byte) 589 { 590 __filemap_fdatawait_range(mapping, start_byte, end_byte); 591 return filemap_check_and_keep_errors(mapping); 592 } 593 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); 594 595 /** 596 * file_fdatawait_range - wait for writeback to complete 597 * @file: file pointing to address space structure to wait for 598 * @start_byte: offset in bytes where the range starts 599 * @end_byte: offset in bytes where the range ends (inclusive) 600 * 601 * Walk the list of under-writeback pages of the address space that file 602 * refers to, in the given range and wait for all of them. Check error 603 * status of the address space vs. the file->f_wb_err cursor and return it. 604 * 605 * Since the error status of the file is advanced by this function, 606 * callers are responsible for checking the return value and handling and/or 607 * reporting the error. 608 * 609 * Return: error status of the address space vs. the file->f_wb_err cursor. 610 */ 611 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 612 { 613 struct address_space *mapping = file->f_mapping; 614 615 __filemap_fdatawait_range(mapping, start_byte, end_byte); 616 return file_check_and_advance_wb_err(file); 617 } 618 EXPORT_SYMBOL(file_fdatawait_range); 619 620 /** 621 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 622 * @mapping: address space structure to wait for 623 * 624 * Walk the list of under-writeback pages of the given address space 625 * and wait for all of them. Unlike filemap_fdatawait(), this function 626 * does not clear error status of the address space. 627 * 628 * Use this function if callers don't handle errors themselves. Expected 629 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 630 * fsfreeze(8) 631 * 632 * Return: error status of the address space. 633 */ 634 int filemap_fdatawait_keep_errors(struct address_space *mapping) 635 { 636 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 637 return filemap_check_and_keep_errors(mapping); 638 } 639 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 640 641 /* Returns true if writeback might be needed or already in progress. */ 642 static bool mapping_needs_writeback(struct address_space *mapping) 643 { 644 return mapping->nrpages; 645 } 646 647 bool filemap_range_has_writeback(struct address_space *mapping, 648 loff_t start_byte, loff_t end_byte) 649 { 650 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 651 pgoff_t max = end_byte >> PAGE_SHIFT; 652 struct folio *folio; 653 654 if (end_byte < start_byte) 655 return false; 656 657 rcu_read_lock(); 658 xas_for_each(&xas, folio, max) { 659 if (xas_retry(&xas, folio)) 660 continue; 661 if (xa_is_value(folio)) 662 continue; 663 if (folio_test_dirty(folio) || folio_test_locked(folio) || 664 folio_test_writeback(folio)) 665 break; 666 } 667 rcu_read_unlock(); 668 return folio != NULL; 669 } 670 EXPORT_SYMBOL_GPL(filemap_range_has_writeback); 671 672 /** 673 * filemap_write_and_wait_range - write out & wait on a file range 674 * @mapping: the address_space for the pages 675 * @lstart: offset in bytes where the range starts 676 * @lend: offset in bytes where the range ends (inclusive) 677 * 678 * Write out and wait upon file offsets lstart->lend, inclusive. 679 * 680 * Note that @lend is inclusive (describes the last byte to be written) so 681 * that this function can be used to write to the very end-of-file (end = -1). 682 * 683 * Return: error status of the address space. 684 */ 685 int filemap_write_and_wait_range(struct address_space *mapping, 686 loff_t lstart, loff_t lend) 687 { 688 int err = 0, err2; 689 690 if (lend < lstart) 691 return 0; 692 693 if (mapping_needs_writeback(mapping)) { 694 err = __filemap_fdatawrite_range(mapping, lstart, lend, 695 WB_SYNC_ALL); 696 /* 697 * Even if the above returned error, the pages may be 698 * written partially (e.g. -ENOSPC), so we wait for it. 699 * But the -EIO is special case, it may indicate the worst 700 * thing (e.g. bug) happened, so we avoid waiting for it. 701 */ 702 if (err != -EIO) 703 __filemap_fdatawait_range(mapping, lstart, lend); 704 } 705 err2 = filemap_check_errors(mapping); 706 if (!err) 707 err = err2; 708 return err; 709 } 710 EXPORT_SYMBOL(filemap_write_and_wait_range); 711 712 void __filemap_set_wb_err(struct address_space *mapping, int err) 713 { 714 errseq_t eseq = errseq_set(&mapping->wb_err, err); 715 716 trace_filemap_set_wb_err(mapping, eseq); 717 } 718 EXPORT_SYMBOL(__filemap_set_wb_err); 719 720 /** 721 * file_check_and_advance_wb_err - report wb error (if any) that was previously 722 * and advance wb_err to current one 723 * @file: struct file on which the error is being reported 724 * 725 * When userland calls fsync (or something like nfsd does the equivalent), we 726 * want to report any writeback errors that occurred since the last fsync (or 727 * since the file was opened if there haven't been any). 728 * 729 * Grab the wb_err from the mapping. If it matches what we have in the file, 730 * then just quickly return 0. The file is all caught up. 731 * 732 * If it doesn't match, then take the mapping value, set the "seen" flag in 733 * it and try to swap it into place. If it works, or another task beat us 734 * to it with the new value, then update the f_wb_err and return the error 735 * portion. The error at this point must be reported via proper channels 736 * (a'la fsync, or NFS COMMIT operation, etc.). 737 * 738 * While we handle mapping->wb_err with atomic operations, the f_wb_err 739 * value is protected by the f_lock since we must ensure that it reflects 740 * the latest value swapped in for this file descriptor. 741 * 742 * Return: %0 on success, negative error code otherwise. 743 */ 744 int file_check_and_advance_wb_err(struct file *file) 745 { 746 int err = 0; 747 errseq_t old = READ_ONCE(file->f_wb_err); 748 struct address_space *mapping = file->f_mapping; 749 750 /* Locklessly handle the common case where nothing has changed */ 751 if (errseq_check(&mapping->wb_err, old)) { 752 /* Something changed, must use slow path */ 753 spin_lock(&file->f_lock); 754 old = file->f_wb_err; 755 err = errseq_check_and_advance(&mapping->wb_err, 756 &file->f_wb_err); 757 trace_file_check_and_advance_wb_err(file, old); 758 spin_unlock(&file->f_lock); 759 } 760 761 /* 762 * We're mostly using this function as a drop in replacement for 763 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 764 * that the legacy code would have had on these flags. 765 */ 766 clear_bit(AS_EIO, &mapping->flags); 767 clear_bit(AS_ENOSPC, &mapping->flags); 768 return err; 769 } 770 EXPORT_SYMBOL(file_check_and_advance_wb_err); 771 772 /** 773 * file_write_and_wait_range - write out & wait on a file range 774 * @file: file pointing to address_space with pages 775 * @lstart: offset in bytes where the range starts 776 * @lend: offset in bytes where the range ends (inclusive) 777 * 778 * Write out and wait upon file offsets lstart->lend, inclusive. 779 * 780 * Note that @lend is inclusive (describes the last byte to be written) so 781 * that this function can be used to write to the very end-of-file (end = -1). 782 * 783 * After writing out and waiting on the data, we check and advance the 784 * f_wb_err cursor to the latest value, and return any errors detected there. 785 * 786 * Return: %0 on success, negative error code otherwise. 787 */ 788 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 789 { 790 int err = 0, err2; 791 struct address_space *mapping = file->f_mapping; 792 793 if (lend < lstart) 794 return 0; 795 796 if (mapping_needs_writeback(mapping)) { 797 err = __filemap_fdatawrite_range(mapping, lstart, lend, 798 WB_SYNC_ALL); 799 /* See comment of filemap_write_and_wait() */ 800 if (err != -EIO) 801 __filemap_fdatawait_range(mapping, lstart, lend); 802 } 803 err2 = file_check_and_advance_wb_err(file); 804 if (!err) 805 err = err2; 806 return err; 807 } 808 EXPORT_SYMBOL(file_write_and_wait_range); 809 810 /** 811 * replace_page_cache_folio - replace a pagecache folio with a new one 812 * @old: folio to be replaced 813 * @new: folio to replace with 814 * 815 * This function replaces a folio in the pagecache with a new one. On 816 * success it acquires the pagecache reference for the new folio and 817 * drops it for the old folio. Both the old and new folios must be 818 * locked. This function does not add the new folio to the LRU, the 819 * caller must do that. 820 * 821 * The remove + add is atomic. This function cannot fail. 822 */ 823 void replace_page_cache_folio(struct folio *old, struct folio *new) 824 { 825 struct address_space *mapping = old->mapping; 826 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio; 827 pgoff_t offset = old->index; 828 XA_STATE(xas, &mapping->i_pages, offset); 829 830 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 831 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 832 VM_BUG_ON_FOLIO(new->mapping, new); 833 834 folio_get(new); 835 new->mapping = mapping; 836 new->index = offset; 837 838 mem_cgroup_replace_folio(old, new); 839 840 xas_lock_irq(&xas); 841 xas_store(&xas, new); 842 843 old->mapping = NULL; 844 /* hugetlb pages do not participate in page cache accounting. */ 845 if (!folio_test_hugetlb(old)) 846 __lruvec_stat_sub_folio(old, NR_FILE_PAGES); 847 if (!folio_test_hugetlb(new)) 848 __lruvec_stat_add_folio(new, NR_FILE_PAGES); 849 if (folio_test_swapbacked(old)) 850 __lruvec_stat_sub_folio(old, NR_SHMEM); 851 if (folio_test_swapbacked(new)) 852 __lruvec_stat_add_folio(new, NR_SHMEM); 853 xas_unlock_irq(&xas); 854 if (free_folio) 855 free_folio(old); 856 folio_put(old); 857 } 858 EXPORT_SYMBOL_GPL(replace_page_cache_folio); 859 860 noinline int __filemap_add_folio(struct address_space *mapping, 861 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp) 862 { 863 XA_STATE(xas, &mapping->i_pages, index); 864 void *alloced_shadow = NULL; 865 int alloced_order = 0; 866 bool huge; 867 long nr; 868 869 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 870 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio); 871 VM_BUG_ON_FOLIO(folio_order(folio) < mapping_min_folio_order(mapping), 872 folio); 873 mapping_set_update(&xas, mapping); 874 875 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio); 876 xas_set_order(&xas, index, folio_order(folio)); 877 huge = folio_test_hugetlb(folio); 878 nr = folio_nr_pages(folio); 879 880 gfp &= GFP_RECLAIM_MASK; 881 folio_ref_add(folio, nr); 882 folio->mapping = mapping; 883 folio->index = xas.xa_index; 884 885 for (;;) { 886 int order = -1, split_order = 0; 887 void *entry, *old = NULL; 888 889 xas_lock_irq(&xas); 890 xas_for_each_conflict(&xas, entry) { 891 old = entry; 892 if (!xa_is_value(entry)) { 893 xas_set_err(&xas, -EEXIST); 894 goto unlock; 895 } 896 /* 897 * If a larger entry exists, 898 * it will be the first and only entry iterated. 899 */ 900 if (order == -1) 901 order = xas_get_order(&xas); 902 } 903 904 /* entry may have changed before we re-acquire the lock */ 905 if (alloced_order && (old != alloced_shadow || order != alloced_order)) { 906 xas_destroy(&xas); 907 alloced_order = 0; 908 } 909 910 if (old) { 911 if (order > 0 && order > folio_order(folio)) { 912 /* How to handle large swap entries? */ 913 BUG_ON(shmem_mapping(mapping)); 914 if (!alloced_order) { 915 split_order = order; 916 goto unlock; 917 } 918 xas_split(&xas, old, order); 919 xas_reset(&xas); 920 } 921 if (shadowp) 922 *shadowp = old; 923 } 924 925 xas_store(&xas, folio); 926 if (xas_error(&xas)) 927 goto unlock; 928 929 mapping->nrpages += nr; 930 931 /* hugetlb pages do not participate in page cache accounting */ 932 if (!huge) { 933 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 934 if (folio_test_pmd_mappable(folio)) 935 __lruvec_stat_mod_folio(folio, 936 NR_FILE_THPS, nr); 937 } 938 939 unlock: 940 xas_unlock_irq(&xas); 941 942 /* split needed, alloc here and retry. */ 943 if (split_order) { 944 xas_split_alloc(&xas, old, split_order, gfp); 945 if (xas_error(&xas)) 946 goto error; 947 alloced_shadow = old; 948 alloced_order = split_order; 949 xas_reset(&xas); 950 continue; 951 } 952 953 if (!xas_nomem(&xas, gfp)) 954 break; 955 } 956 957 if (xas_error(&xas)) 958 goto error; 959 960 trace_mm_filemap_add_to_page_cache(folio); 961 return 0; 962 error: 963 folio->mapping = NULL; 964 /* Leave page->index set: truncation relies upon it */ 965 folio_put_refs(folio, nr); 966 return xas_error(&xas); 967 } 968 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO); 969 970 int filemap_add_folio(struct address_space *mapping, struct folio *folio, 971 pgoff_t index, gfp_t gfp) 972 { 973 void *shadow = NULL; 974 int ret; 975 976 ret = mem_cgroup_charge(folio, NULL, gfp); 977 if (ret) 978 return ret; 979 980 __folio_set_locked(folio); 981 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow); 982 if (unlikely(ret)) { 983 mem_cgroup_uncharge(folio); 984 __folio_clear_locked(folio); 985 } else { 986 /* 987 * The folio might have been evicted from cache only 988 * recently, in which case it should be activated like 989 * any other repeatedly accessed folio. 990 * The exception is folios getting rewritten; evicting other 991 * data from the working set, only to cache data that will 992 * get overwritten with something else, is a waste of memory. 993 */ 994 WARN_ON_ONCE(folio_test_active(folio)); 995 if (!(gfp & __GFP_WRITE) && shadow) 996 workingset_refault(folio, shadow); 997 folio_add_lru(folio); 998 } 999 return ret; 1000 } 1001 EXPORT_SYMBOL_GPL(filemap_add_folio); 1002 1003 #ifdef CONFIG_NUMA 1004 struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order) 1005 { 1006 int n; 1007 struct folio *folio; 1008 1009 if (cpuset_do_page_mem_spread()) { 1010 unsigned int cpuset_mems_cookie; 1011 do { 1012 cpuset_mems_cookie = read_mems_allowed_begin(); 1013 n = cpuset_mem_spread_node(); 1014 folio = __folio_alloc_node_noprof(gfp, order, n); 1015 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie)); 1016 1017 return folio; 1018 } 1019 return folio_alloc_noprof(gfp, order); 1020 } 1021 EXPORT_SYMBOL(filemap_alloc_folio_noprof); 1022 #endif 1023 1024 /* 1025 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings 1026 * 1027 * Lock exclusively invalidate_lock of any passed mapping that is not NULL. 1028 * 1029 * @mapping1: the first mapping to lock 1030 * @mapping2: the second mapping to lock 1031 */ 1032 void filemap_invalidate_lock_two(struct address_space *mapping1, 1033 struct address_space *mapping2) 1034 { 1035 if (mapping1 > mapping2) 1036 swap(mapping1, mapping2); 1037 if (mapping1) 1038 down_write(&mapping1->invalidate_lock); 1039 if (mapping2 && mapping1 != mapping2) 1040 down_write_nested(&mapping2->invalidate_lock, 1); 1041 } 1042 EXPORT_SYMBOL(filemap_invalidate_lock_two); 1043 1044 /* 1045 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings 1046 * 1047 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL. 1048 * 1049 * @mapping1: the first mapping to unlock 1050 * @mapping2: the second mapping to unlock 1051 */ 1052 void filemap_invalidate_unlock_two(struct address_space *mapping1, 1053 struct address_space *mapping2) 1054 { 1055 if (mapping1) 1056 up_write(&mapping1->invalidate_lock); 1057 if (mapping2 && mapping1 != mapping2) 1058 up_write(&mapping2->invalidate_lock); 1059 } 1060 EXPORT_SYMBOL(filemap_invalidate_unlock_two); 1061 1062 /* 1063 * In order to wait for pages to become available there must be 1064 * waitqueues associated with pages. By using a hash table of 1065 * waitqueues where the bucket discipline is to maintain all 1066 * waiters on the same queue and wake all when any of the pages 1067 * become available, and for the woken contexts to check to be 1068 * sure the appropriate page became available, this saves space 1069 * at a cost of "thundering herd" phenomena during rare hash 1070 * collisions. 1071 */ 1072 #define PAGE_WAIT_TABLE_BITS 8 1073 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 1074 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 1075 1076 static wait_queue_head_t *folio_waitqueue(struct folio *folio) 1077 { 1078 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)]; 1079 } 1080 1081 void __init pagecache_init(void) 1082 { 1083 int i; 1084 1085 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 1086 init_waitqueue_head(&folio_wait_table[i]); 1087 1088 page_writeback_init(); 1089 } 1090 1091 /* 1092 * The page wait code treats the "wait->flags" somewhat unusually, because 1093 * we have multiple different kinds of waits, not just the usual "exclusive" 1094 * one. 1095 * 1096 * We have: 1097 * 1098 * (a) no special bits set: 1099 * 1100 * We're just waiting for the bit to be released, and when a waker 1101 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up, 1102 * and remove it from the wait queue. 1103 * 1104 * Simple and straightforward. 1105 * 1106 * (b) WQ_FLAG_EXCLUSIVE: 1107 * 1108 * The waiter is waiting to get the lock, and only one waiter should 1109 * be woken up to avoid any thundering herd behavior. We'll set the 1110 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue. 1111 * 1112 * This is the traditional exclusive wait. 1113 * 1114 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM: 1115 * 1116 * The waiter is waiting to get the bit, and additionally wants the 1117 * lock to be transferred to it for fair lock behavior. If the lock 1118 * cannot be taken, we stop walking the wait queue without waking 1119 * the waiter. 1120 * 1121 * This is the "fair lock handoff" case, and in addition to setting 1122 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see 1123 * that it now has the lock. 1124 */ 1125 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 1126 { 1127 unsigned int flags; 1128 struct wait_page_key *key = arg; 1129 struct wait_page_queue *wait_page 1130 = container_of(wait, struct wait_page_queue, wait); 1131 1132 if (!wake_page_match(wait_page, key)) 1133 return 0; 1134 1135 /* 1136 * If it's a lock handoff wait, we get the bit for it, and 1137 * stop walking (and do not wake it up) if we can't. 1138 */ 1139 flags = wait->flags; 1140 if (flags & WQ_FLAG_EXCLUSIVE) { 1141 if (test_bit(key->bit_nr, &key->folio->flags)) 1142 return -1; 1143 if (flags & WQ_FLAG_CUSTOM) { 1144 if (test_and_set_bit(key->bit_nr, &key->folio->flags)) 1145 return -1; 1146 flags |= WQ_FLAG_DONE; 1147 } 1148 } 1149 1150 /* 1151 * We are holding the wait-queue lock, but the waiter that 1152 * is waiting for this will be checking the flags without 1153 * any locking. 1154 * 1155 * So update the flags atomically, and wake up the waiter 1156 * afterwards to avoid any races. This store-release pairs 1157 * with the load-acquire in folio_wait_bit_common(). 1158 */ 1159 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN); 1160 wake_up_state(wait->private, mode); 1161 1162 /* 1163 * Ok, we have successfully done what we're waiting for, 1164 * and we can unconditionally remove the wait entry. 1165 * 1166 * Note that this pairs with the "finish_wait()" in the 1167 * waiter, and has to be the absolute last thing we do. 1168 * After this list_del_init(&wait->entry) the wait entry 1169 * might be de-allocated and the process might even have 1170 * exited. 1171 */ 1172 list_del_init_careful(&wait->entry); 1173 return (flags & WQ_FLAG_EXCLUSIVE) != 0; 1174 } 1175 1176 static void folio_wake_bit(struct folio *folio, int bit_nr) 1177 { 1178 wait_queue_head_t *q = folio_waitqueue(folio); 1179 struct wait_page_key key; 1180 unsigned long flags; 1181 1182 key.folio = folio; 1183 key.bit_nr = bit_nr; 1184 key.page_match = 0; 1185 1186 spin_lock_irqsave(&q->lock, flags); 1187 __wake_up_locked_key(q, TASK_NORMAL, &key); 1188 1189 /* 1190 * It's possible to miss clearing waiters here, when we woke our page 1191 * waiters, but the hashed waitqueue has waiters for other pages on it. 1192 * That's okay, it's a rare case. The next waker will clear it. 1193 * 1194 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE, 1195 * other), the flag may be cleared in the course of freeing the page; 1196 * but that is not required for correctness. 1197 */ 1198 if (!waitqueue_active(q) || !key.page_match) 1199 folio_clear_waiters(folio); 1200 1201 spin_unlock_irqrestore(&q->lock, flags); 1202 } 1203 1204 /* 1205 * A choice of three behaviors for folio_wait_bit_common(): 1206 */ 1207 enum behavior { 1208 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1209 * __folio_lock() waiting on then setting PG_locked. 1210 */ 1211 SHARED, /* Hold ref to page and check the bit when woken, like 1212 * folio_wait_writeback() waiting on PG_writeback. 1213 */ 1214 DROP, /* Drop ref to page before wait, no check when woken, 1215 * like folio_put_wait_locked() on PG_locked. 1216 */ 1217 }; 1218 1219 /* 1220 * Attempt to check (or get) the folio flag, and mark us done 1221 * if successful. 1222 */ 1223 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr, 1224 struct wait_queue_entry *wait) 1225 { 1226 if (wait->flags & WQ_FLAG_EXCLUSIVE) { 1227 if (test_and_set_bit(bit_nr, &folio->flags)) 1228 return false; 1229 } else if (test_bit(bit_nr, &folio->flags)) 1230 return false; 1231 1232 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE; 1233 return true; 1234 } 1235 1236 /* How many times do we accept lock stealing from under a waiter? */ 1237 int sysctl_page_lock_unfairness = 5; 1238 1239 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr, 1240 int state, enum behavior behavior) 1241 { 1242 wait_queue_head_t *q = folio_waitqueue(folio); 1243 int unfairness = sysctl_page_lock_unfairness; 1244 struct wait_page_queue wait_page; 1245 wait_queue_entry_t *wait = &wait_page.wait; 1246 bool thrashing = false; 1247 unsigned long pflags; 1248 bool in_thrashing; 1249 1250 if (bit_nr == PG_locked && 1251 !folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1252 delayacct_thrashing_start(&in_thrashing); 1253 psi_memstall_enter(&pflags); 1254 thrashing = true; 1255 } 1256 1257 init_wait(wait); 1258 wait->func = wake_page_function; 1259 wait_page.folio = folio; 1260 wait_page.bit_nr = bit_nr; 1261 1262 repeat: 1263 wait->flags = 0; 1264 if (behavior == EXCLUSIVE) { 1265 wait->flags = WQ_FLAG_EXCLUSIVE; 1266 if (--unfairness < 0) 1267 wait->flags |= WQ_FLAG_CUSTOM; 1268 } 1269 1270 /* 1271 * Do one last check whether we can get the 1272 * page bit synchronously. 1273 * 1274 * Do the folio_set_waiters() marking before that 1275 * to let any waker we _just_ missed know they 1276 * need to wake us up (otherwise they'll never 1277 * even go to the slow case that looks at the 1278 * page queue), and add ourselves to the wait 1279 * queue if we need to sleep. 1280 * 1281 * This part needs to be done under the queue 1282 * lock to avoid races. 1283 */ 1284 spin_lock_irq(&q->lock); 1285 folio_set_waiters(folio); 1286 if (!folio_trylock_flag(folio, bit_nr, wait)) 1287 __add_wait_queue_entry_tail(q, wait); 1288 spin_unlock_irq(&q->lock); 1289 1290 /* 1291 * From now on, all the logic will be based on 1292 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to 1293 * see whether the page bit testing has already 1294 * been done by the wake function. 1295 * 1296 * We can drop our reference to the folio. 1297 */ 1298 if (behavior == DROP) 1299 folio_put(folio); 1300 1301 /* 1302 * Note that until the "finish_wait()", or until 1303 * we see the WQ_FLAG_WOKEN flag, we need to 1304 * be very careful with the 'wait->flags', because 1305 * we may race with a waker that sets them. 1306 */ 1307 for (;;) { 1308 unsigned int flags; 1309 1310 set_current_state(state); 1311 1312 /* Loop until we've been woken or interrupted */ 1313 flags = smp_load_acquire(&wait->flags); 1314 if (!(flags & WQ_FLAG_WOKEN)) { 1315 if (signal_pending_state(state, current)) 1316 break; 1317 1318 io_schedule(); 1319 continue; 1320 } 1321 1322 /* If we were non-exclusive, we're done */ 1323 if (behavior != EXCLUSIVE) 1324 break; 1325 1326 /* If the waker got the lock for us, we're done */ 1327 if (flags & WQ_FLAG_DONE) 1328 break; 1329 1330 /* 1331 * Otherwise, if we're getting the lock, we need to 1332 * try to get it ourselves. 1333 * 1334 * And if that fails, we'll have to retry this all. 1335 */ 1336 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0)))) 1337 goto repeat; 1338 1339 wait->flags |= WQ_FLAG_DONE; 1340 break; 1341 } 1342 1343 /* 1344 * If a signal happened, this 'finish_wait()' may remove the last 1345 * waiter from the wait-queues, but the folio waiters bit will remain 1346 * set. That's ok. The next wakeup will take care of it, and trying 1347 * to do it here would be difficult and prone to races. 1348 */ 1349 finish_wait(q, wait); 1350 1351 if (thrashing) { 1352 delayacct_thrashing_end(&in_thrashing); 1353 psi_memstall_leave(&pflags); 1354 } 1355 1356 /* 1357 * NOTE! The wait->flags weren't stable until we've done the 1358 * 'finish_wait()', and we could have exited the loop above due 1359 * to a signal, and had a wakeup event happen after the signal 1360 * test but before the 'finish_wait()'. 1361 * 1362 * So only after the finish_wait() can we reliably determine 1363 * if we got woken up or not, so we can now figure out the final 1364 * return value based on that state without races. 1365 * 1366 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive 1367 * waiter, but an exclusive one requires WQ_FLAG_DONE. 1368 */ 1369 if (behavior == EXCLUSIVE) 1370 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR; 1371 1372 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR; 1373 } 1374 1375 #ifdef CONFIG_MIGRATION 1376 /** 1377 * migration_entry_wait_on_locked - Wait for a migration entry to be removed 1378 * @entry: migration swap entry. 1379 * @ptl: already locked ptl. This function will drop the lock. 1380 * 1381 * Wait for a migration entry referencing the given page to be removed. This is 1382 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except 1383 * this can be called without taking a reference on the page. Instead this 1384 * should be called while holding the ptl for the migration entry referencing 1385 * the page. 1386 * 1387 * Returns after unlocking the ptl. 1388 * 1389 * This follows the same logic as folio_wait_bit_common() so see the comments 1390 * there. 1391 */ 1392 void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl) 1393 __releases(ptl) 1394 { 1395 struct wait_page_queue wait_page; 1396 wait_queue_entry_t *wait = &wait_page.wait; 1397 bool thrashing = false; 1398 unsigned long pflags; 1399 bool in_thrashing; 1400 wait_queue_head_t *q; 1401 struct folio *folio = pfn_swap_entry_folio(entry); 1402 1403 q = folio_waitqueue(folio); 1404 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1405 delayacct_thrashing_start(&in_thrashing); 1406 psi_memstall_enter(&pflags); 1407 thrashing = true; 1408 } 1409 1410 init_wait(wait); 1411 wait->func = wake_page_function; 1412 wait_page.folio = folio; 1413 wait_page.bit_nr = PG_locked; 1414 wait->flags = 0; 1415 1416 spin_lock_irq(&q->lock); 1417 folio_set_waiters(folio); 1418 if (!folio_trylock_flag(folio, PG_locked, wait)) 1419 __add_wait_queue_entry_tail(q, wait); 1420 spin_unlock_irq(&q->lock); 1421 1422 /* 1423 * If a migration entry exists for the page the migration path must hold 1424 * a valid reference to the page, and it must take the ptl to remove the 1425 * migration entry. So the page is valid until the ptl is dropped. 1426 */ 1427 spin_unlock(ptl); 1428 1429 for (;;) { 1430 unsigned int flags; 1431 1432 set_current_state(TASK_UNINTERRUPTIBLE); 1433 1434 /* Loop until we've been woken or interrupted */ 1435 flags = smp_load_acquire(&wait->flags); 1436 if (!(flags & WQ_FLAG_WOKEN)) { 1437 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current)) 1438 break; 1439 1440 io_schedule(); 1441 continue; 1442 } 1443 break; 1444 } 1445 1446 finish_wait(q, wait); 1447 1448 if (thrashing) { 1449 delayacct_thrashing_end(&in_thrashing); 1450 psi_memstall_leave(&pflags); 1451 } 1452 } 1453 #endif 1454 1455 void folio_wait_bit(struct folio *folio, int bit_nr) 1456 { 1457 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1458 } 1459 EXPORT_SYMBOL(folio_wait_bit); 1460 1461 int folio_wait_bit_killable(struct folio *folio, int bit_nr) 1462 { 1463 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED); 1464 } 1465 EXPORT_SYMBOL(folio_wait_bit_killable); 1466 1467 /** 1468 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked 1469 * @folio: The folio to wait for. 1470 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc). 1471 * 1472 * The caller should hold a reference on @folio. They expect the page to 1473 * become unlocked relatively soon, but do not wish to hold up migration 1474 * (for example) by holding the reference while waiting for the folio to 1475 * come unlocked. After this function returns, the caller should not 1476 * dereference @folio. 1477 * 1478 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal. 1479 */ 1480 static int folio_put_wait_locked(struct folio *folio, int state) 1481 { 1482 return folio_wait_bit_common(folio, PG_locked, state, DROP); 1483 } 1484 1485 /** 1486 * folio_unlock - Unlock a locked folio. 1487 * @folio: The folio. 1488 * 1489 * Unlocks the folio and wakes up any thread sleeping on the page lock. 1490 * 1491 * Context: May be called from interrupt or process context. May not be 1492 * called from NMI context. 1493 */ 1494 void folio_unlock(struct folio *folio) 1495 { 1496 /* Bit 7 allows x86 to check the byte's sign bit */ 1497 BUILD_BUG_ON(PG_waiters != 7); 1498 BUILD_BUG_ON(PG_locked > 7); 1499 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1500 if (folio_xor_flags_has_waiters(folio, 1 << PG_locked)) 1501 folio_wake_bit(folio, PG_locked); 1502 } 1503 EXPORT_SYMBOL(folio_unlock); 1504 1505 /** 1506 * folio_end_read - End read on a folio. 1507 * @folio: The folio. 1508 * @success: True if all reads completed successfully. 1509 * 1510 * When all reads against a folio have completed, filesystems should 1511 * call this function to let the pagecache know that no more reads 1512 * are outstanding. This will unlock the folio and wake up any thread 1513 * sleeping on the lock. The folio will also be marked uptodate if all 1514 * reads succeeded. 1515 * 1516 * Context: May be called from interrupt or process context. May not be 1517 * called from NMI context. 1518 */ 1519 void folio_end_read(struct folio *folio, bool success) 1520 { 1521 unsigned long mask = 1 << PG_locked; 1522 1523 /* Must be in bottom byte for x86 to work */ 1524 BUILD_BUG_ON(PG_uptodate > 7); 1525 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1526 VM_BUG_ON_FOLIO(success && folio_test_uptodate(folio), folio); 1527 1528 if (likely(success)) 1529 mask |= 1 << PG_uptodate; 1530 if (folio_xor_flags_has_waiters(folio, mask)) 1531 folio_wake_bit(folio, PG_locked); 1532 } 1533 EXPORT_SYMBOL(folio_end_read); 1534 1535 /** 1536 * folio_end_private_2 - Clear PG_private_2 and wake any waiters. 1537 * @folio: The folio. 1538 * 1539 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for 1540 * it. The folio reference held for PG_private_2 being set is released. 1541 * 1542 * This is, for example, used when a netfs folio is being written to a local 1543 * disk cache, thereby allowing writes to the cache for the same folio to be 1544 * serialised. 1545 */ 1546 void folio_end_private_2(struct folio *folio) 1547 { 1548 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio); 1549 clear_bit_unlock(PG_private_2, folio_flags(folio, 0)); 1550 folio_wake_bit(folio, PG_private_2); 1551 folio_put(folio); 1552 } 1553 EXPORT_SYMBOL(folio_end_private_2); 1554 1555 /** 1556 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio. 1557 * @folio: The folio to wait on. 1558 * 1559 * Wait for PG_private_2 to be cleared on a folio. 1560 */ 1561 void folio_wait_private_2(struct folio *folio) 1562 { 1563 while (folio_test_private_2(folio)) 1564 folio_wait_bit(folio, PG_private_2); 1565 } 1566 EXPORT_SYMBOL(folio_wait_private_2); 1567 1568 /** 1569 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio. 1570 * @folio: The folio to wait on. 1571 * 1572 * Wait for PG_private_2 to be cleared on a folio or until a fatal signal is 1573 * received by the calling task. 1574 * 1575 * Return: 1576 * - 0 if successful. 1577 * - -EINTR if a fatal signal was encountered. 1578 */ 1579 int folio_wait_private_2_killable(struct folio *folio) 1580 { 1581 int ret = 0; 1582 1583 while (folio_test_private_2(folio)) { 1584 ret = folio_wait_bit_killable(folio, PG_private_2); 1585 if (ret < 0) 1586 break; 1587 } 1588 1589 return ret; 1590 } 1591 EXPORT_SYMBOL(folio_wait_private_2_killable); 1592 1593 /* 1594 * If folio was marked as dropbehind, then pages should be dropped when writeback 1595 * completes. Do that now. If we fail, it's likely because of a big folio - 1596 * just reset dropbehind for that case and latter completions should invalidate. 1597 */ 1598 static void folio_end_dropbehind_write(struct folio *folio) 1599 { 1600 /* 1601 * Hitting !in_task() should not happen off RWF_DONTCACHE writeback, 1602 * but can happen if normal writeback just happens to find dirty folios 1603 * that were created as part of uncached writeback, and that writeback 1604 * would otherwise not need non-IRQ handling. Just skip the 1605 * invalidation in that case. 1606 */ 1607 if (in_task() && folio_trylock(folio)) { 1608 if (folio->mapping) 1609 folio_unmap_invalidate(folio->mapping, folio, 0); 1610 folio_unlock(folio); 1611 } 1612 } 1613 1614 /** 1615 * folio_end_writeback - End writeback against a folio. 1616 * @folio: The folio. 1617 * 1618 * The folio must actually be under writeback. 1619 * 1620 * Context: May be called from process or interrupt context. 1621 */ 1622 void folio_end_writeback(struct folio *folio) 1623 { 1624 bool folio_dropbehind = false; 1625 1626 VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio); 1627 1628 /* 1629 * folio_test_clear_reclaim() could be used here but it is an 1630 * atomic operation and overkill in this particular case. Failing 1631 * to shuffle a folio marked for immediate reclaim is too mild 1632 * a gain to justify taking an atomic operation penalty at the 1633 * end of every folio writeback. 1634 */ 1635 if (folio_test_reclaim(folio)) { 1636 folio_clear_reclaim(folio); 1637 folio_rotate_reclaimable(folio); 1638 } 1639 1640 /* 1641 * Writeback does not hold a folio reference of its own, relying 1642 * on truncation to wait for the clearing of PG_writeback. 1643 * But here we must make sure that the folio is not freed and 1644 * reused before the folio_wake_bit(). 1645 */ 1646 folio_get(folio); 1647 if (!folio_test_dirty(folio)) 1648 folio_dropbehind = folio_test_clear_dropbehind(folio); 1649 if (__folio_end_writeback(folio)) 1650 folio_wake_bit(folio, PG_writeback); 1651 acct_reclaim_writeback(folio); 1652 1653 if (folio_dropbehind) 1654 folio_end_dropbehind_write(folio); 1655 folio_put(folio); 1656 } 1657 EXPORT_SYMBOL(folio_end_writeback); 1658 1659 /** 1660 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it. 1661 * @folio: The folio to lock 1662 */ 1663 void __folio_lock(struct folio *folio) 1664 { 1665 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE, 1666 EXCLUSIVE); 1667 } 1668 EXPORT_SYMBOL(__folio_lock); 1669 1670 int __folio_lock_killable(struct folio *folio) 1671 { 1672 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE, 1673 EXCLUSIVE); 1674 } 1675 EXPORT_SYMBOL_GPL(__folio_lock_killable); 1676 1677 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait) 1678 { 1679 struct wait_queue_head *q = folio_waitqueue(folio); 1680 int ret; 1681 1682 wait->folio = folio; 1683 wait->bit_nr = PG_locked; 1684 1685 spin_lock_irq(&q->lock); 1686 __add_wait_queue_entry_tail(q, &wait->wait); 1687 folio_set_waiters(folio); 1688 ret = !folio_trylock(folio); 1689 /* 1690 * If we were successful now, we know we're still on the 1691 * waitqueue as we're still under the lock. This means it's 1692 * safe to remove and return success, we know the callback 1693 * isn't going to trigger. 1694 */ 1695 if (!ret) 1696 __remove_wait_queue(q, &wait->wait); 1697 else 1698 ret = -EIOCBQUEUED; 1699 spin_unlock_irq(&q->lock); 1700 return ret; 1701 } 1702 1703 /* 1704 * Return values: 1705 * 0 - folio is locked. 1706 * non-zero - folio is not locked. 1707 * mmap_lock or per-VMA lock has been released (mmap_read_unlock() or 1708 * vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and 1709 * FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held. 1710 * 1711 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0 1712 * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed. 1713 */ 1714 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf) 1715 { 1716 unsigned int flags = vmf->flags; 1717 1718 if (fault_flag_allow_retry_first(flags)) { 1719 /* 1720 * CAUTION! In this case, mmap_lock/per-VMA lock is not 1721 * released even though returning VM_FAULT_RETRY. 1722 */ 1723 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1724 return VM_FAULT_RETRY; 1725 1726 release_fault_lock(vmf); 1727 if (flags & FAULT_FLAG_KILLABLE) 1728 folio_wait_locked_killable(folio); 1729 else 1730 folio_wait_locked(folio); 1731 return VM_FAULT_RETRY; 1732 } 1733 if (flags & FAULT_FLAG_KILLABLE) { 1734 bool ret; 1735 1736 ret = __folio_lock_killable(folio); 1737 if (ret) { 1738 release_fault_lock(vmf); 1739 return VM_FAULT_RETRY; 1740 } 1741 } else { 1742 __folio_lock(folio); 1743 } 1744 1745 return 0; 1746 } 1747 1748 /** 1749 * page_cache_next_miss() - Find the next gap in the page cache. 1750 * @mapping: Mapping. 1751 * @index: Index. 1752 * @max_scan: Maximum range to search. 1753 * 1754 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1755 * gap with the lowest index. 1756 * 1757 * This function may be called under the rcu_read_lock. However, this will 1758 * not atomically search a snapshot of the cache at a single point in time. 1759 * For example, if a gap is created at index 5, then subsequently a gap is 1760 * created at index 10, page_cache_next_miss covering both indices may 1761 * return 10 if called under the rcu_read_lock. 1762 * 1763 * Return: The index of the gap if found, otherwise an index outside the 1764 * range specified (in which case 'return - index >= max_scan' will be true). 1765 * In the rare case of index wrap-around, 0 will be returned. 1766 */ 1767 pgoff_t page_cache_next_miss(struct address_space *mapping, 1768 pgoff_t index, unsigned long max_scan) 1769 { 1770 XA_STATE(xas, &mapping->i_pages, index); 1771 1772 while (max_scan--) { 1773 void *entry = xas_next(&xas); 1774 if (!entry || xa_is_value(entry)) 1775 return xas.xa_index; 1776 if (xas.xa_index == 0) 1777 return 0; 1778 } 1779 1780 return index + max_scan; 1781 } 1782 EXPORT_SYMBOL(page_cache_next_miss); 1783 1784 /** 1785 * page_cache_prev_miss() - Find the previous gap in the page cache. 1786 * @mapping: Mapping. 1787 * @index: Index. 1788 * @max_scan: Maximum range to search. 1789 * 1790 * Search the range [max(index - max_scan + 1, 0), index] for the 1791 * gap with the highest index. 1792 * 1793 * This function may be called under the rcu_read_lock. However, this will 1794 * not atomically search a snapshot of the cache at a single point in time. 1795 * For example, if a gap is created at index 10, then subsequently a gap is 1796 * created at index 5, page_cache_prev_miss() covering both indices may 1797 * return 5 if called under the rcu_read_lock. 1798 * 1799 * Return: The index of the gap if found, otherwise an index outside the 1800 * range specified (in which case 'index - return >= max_scan' will be true). 1801 * In the rare case of wrap-around, ULONG_MAX will be returned. 1802 */ 1803 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1804 pgoff_t index, unsigned long max_scan) 1805 { 1806 XA_STATE(xas, &mapping->i_pages, index); 1807 1808 while (max_scan--) { 1809 void *entry = xas_prev(&xas); 1810 if (!entry || xa_is_value(entry)) 1811 break; 1812 if (xas.xa_index == ULONG_MAX) 1813 break; 1814 } 1815 1816 return xas.xa_index; 1817 } 1818 EXPORT_SYMBOL(page_cache_prev_miss); 1819 1820 /* 1821 * Lockless page cache protocol: 1822 * On the lookup side: 1823 * 1. Load the folio from i_pages 1824 * 2. Increment the refcount if it's not zero 1825 * 3. If the folio is not found by xas_reload(), put the refcount and retry 1826 * 1827 * On the removal side: 1828 * A. Freeze the page (by zeroing the refcount if nobody else has a reference) 1829 * B. Remove the page from i_pages 1830 * C. Return the page to the page allocator 1831 * 1832 * This means that any page may have its reference count temporarily 1833 * increased by a speculative page cache (or GUP-fast) lookup as it can 1834 * be allocated by another user before the RCU grace period expires. 1835 * Because the refcount temporarily acquired here may end up being the 1836 * last refcount on the page, any page allocation must be freeable by 1837 * folio_put(). 1838 */ 1839 1840 /* 1841 * filemap_get_entry - Get a page cache entry. 1842 * @mapping: the address_space to search 1843 * @index: The page cache index. 1844 * 1845 * Looks up the page cache entry at @mapping & @index. If it is a folio, 1846 * it is returned with an increased refcount. If it is a shadow entry 1847 * of a previously evicted folio, or a swap entry from shmem/tmpfs, 1848 * it is returned without further action. 1849 * 1850 * Return: The folio, swap or shadow entry, %NULL if nothing is found. 1851 */ 1852 void *filemap_get_entry(struct address_space *mapping, pgoff_t index) 1853 { 1854 XA_STATE(xas, &mapping->i_pages, index); 1855 struct folio *folio; 1856 1857 rcu_read_lock(); 1858 repeat: 1859 xas_reset(&xas); 1860 folio = xas_load(&xas); 1861 if (xas_retry(&xas, folio)) 1862 goto repeat; 1863 /* 1864 * A shadow entry of a recently evicted page, or a swap entry from 1865 * shmem/tmpfs. Return it without attempting to raise page count. 1866 */ 1867 if (!folio || xa_is_value(folio)) 1868 goto out; 1869 1870 if (!folio_try_get(folio)) 1871 goto repeat; 1872 1873 if (unlikely(folio != xas_reload(&xas))) { 1874 folio_put(folio); 1875 goto repeat; 1876 } 1877 out: 1878 rcu_read_unlock(); 1879 1880 return folio; 1881 } 1882 1883 /** 1884 * __filemap_get_folio - Find and get a reference to a folio. 1885 * @mapping: The address_space to search. 1886 * @index: The page index. 1887 * @fgp_flags: %FGP flags modify how the folio is returned. 1888 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified. 1889 * 1890 * Looks up the page cache entry at @mapping & @index. 1891 * 1892 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even 1893 * if the %GFP flags specified for %FGP_CREAT are atomic. 1894 * 1895 * If this function returns a folio, it is returned with an increased refcount. 1896 * 1897 * Return: The found folio or an ERR_PTR() otherwise. 1898 */ 1899 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index, 1900 fgf_t fgp_flags, gfp_t gfp) 1901 { 1902 struct folio *folio; 1903 1904 repeat: 1905 folio = filemap_get_entry(mapping, index); 1906 if (xa_is_value(folio)) 1907 folio = NULL; 1908 if (!folio) 1909 goto no_page; 1910 1911 if (fgp_flags & FGP_LOCK) { 1912 if (fgp_flags & FGP_NOWAIT) { 1913 if (!folio_trylock(folio)) { 1914 folio_put(folio); 1915 return ERR_PTR(-EAGAIN); 1916 } 1917 } else { 1918 folio_lock(folio); 1919 } 1920 1921 /* Has the page been truncated? */ 1922 if (unlikely(folio->mapping != mapping)) { 1923 folio_unlock(folio); 1924 folio_put(folio); 1925 goto repeat; 1926 } 1927 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 1928 } 1929 1930 if (fgp_flags & FGP_ACCESSED) 1931 folio_mark_accessed(folio); 1932 else if (fgp_flags & FGP_WRITE) { 1933 /* Clear idle flag for buffer write */ 1934 if (folio_test_idle(folio)) 1935 folio_clear_idle(folio); 1936 } 1937 1938 if (fgp_flags & FGP_STABLE) 1939 folio_wait_stable(folio); 1940 no_page: 1941 if (!folio && (fgp_flags & FGP_CREAT)) { 1942 unsigned int min_order = mapping_min_folio_order(mapping); 1943 unsigned int order = max(min_order, FGF_GET_ORDER(fgp_flags)); 1944 int err; 1945 index = mapping_align_index(mapping, index); 1946 1947 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping)) 1948 gfp |= __GFP_WRITE; 1949 if (fgp_flags & FGP_NOFS) 1950 gfp &= ~__GFP_FS; 1951 if (fgp_flags & FGP_NOWAIT) { 1952 gfp &= ~GFP_KERNEL; 1953 gfp |= GFP_NOWAIT | __GFP_NOWARN; 1954 } 1955 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 1956 fgp_flags |= FGP_LOCK; 1957 1958 if (order > mapping_max_folio_order(mapping)) 1959 order = mapping_max_folio_order(mapping); 1960 /* If we're not aligned, allocate a smaller folio */ 1961 if (index & ((1UL << order) - 1)) 1962 order = __ffs(index); 1963 1964 do { 1965 gfp_t alloc_gfp = gfp; 1966 1967 err = -ENOMEM; 1968 if (order > min_order) 1969 alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN; 1970 folio = filemap_alloc_folio(alloc_gfp, order); 1971 if (!folio) 1972 continue; 1973 1974 /* Init accessed so avoid atomic mark_page_accessed later */ 1975 if (fgp_flags & FGP_ACCESSED) 1976 __folio_set_referenced(folio); 1977 if (fgp_flags & FGP_DONTCACHE) 1978 __folio_set_dropbehind(folio); 1979 1980 err = filemap_add_folio(mapping, folio, index, gfp); 1981 if (!err) 1982 break; 1983 folio_put(folio); 1984 folio = NULL; 1985 } while (order-- > min_order); 1986 1987 if (err == -EEXIST) 1988 goto repeat; 1989 if (err) 1990 return ERR_PTR(err); 1991 /* 1992 * filemap_add_folio locks the page, and for mmap 1993 * we expect an unlocked page. 1994 */ 1995 if (folio && (fgp_flags & FGP_FOR_MMAP)) 1996 folio_unlock(folio); 1997 } 1998 1999 if (!folio) 2000 return ERR_PTR(-ENOENT); 2001 /* not an uncached lookup, clear uncached if set */ 2002 if (folio_test_dropbehind(folio) && !(fgp_flags & FGP_DONTCACHE)) 2003 folio_clear_dropbehind(folio); 2004 return folio; 2005 } 2006 EXPORT_SYMBOL(__filemap_get_folio); 2007 2008 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max, 2009 xa_mark_t mark) 2010 { 2011 struct folio *folio; 2012 2013 retry: 2014 if (mark == XA_PRESENT) 2015 folio = xas_find(xas, max); 2016 else 2017 folio = xas_find_marked(xas, max, mark); 2018 2019 if (xas_retry(xas, folio)) 2020 goto retry; 2021 /* 2022 * A shadow entry of a recently evicted page, a swap 2023 * entry from shmem/tmpfs or a DAX entry. Return it 2024 * without attempting to raise page count. 2025 */ 2026 if (!folio || xa_is_value(folio)) 2027 return folio; 2028 2029 if (!folio_try_get(folio)) 2030 goto reset; 2031 2032 if (unlikely(folio != xas_reload(xas))) { 2033 folio_put(folio); 2034 goto reset; 2035 } 2036 2037 return folio; 2038 reset: 2039 xas_reset(xas); 2040 goto retry; 2041 } 2042 2043 /** 2044 * find_get_entries - gang pagecache lookup 2045 * @mapping: The address_space to search 2046 * @start: The starting page cache index 2047 * @end: The final page index (inclusive). 2048 * @fbatch: Where the resulting entries are placed. 2049 * @indices: The cache indices corresponding to the entries in @entries 2050 * 2051 * find_get_entries() will search for and return a batch of entries in 2052 * the mapping. The entries are placed in @fbatch. find_get_entries() 2053 * takes a reference on any actual folios it returns. 2054 * 2055 * The entries have ascending indexes. The indices may not be consecutive 2056 * due to not-present entries or large folios. 2057 * 2058 * Any shadow entries of evicted folios, or swap entries from 2059 * shmem/tmpfs, are included in the returned array. 2060 * 2061 * Return: The number of entries which were found. 2062 */ 2063 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start, 2064 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2065 { 2066 XA_STATE(xas, &mapping->i_pages, *start); 2067 struct folio *folio; 2068 2069 rcu_read_lock(); 2070 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) { 2071 indices[fbatch->nr] = xas.xa_index; 2072 if (!folio_batch_add(fbatch, folio)) 2073 break; 2074 } 2075 2076 if (folio_batch_count(fbatch)) { 2077 unsigned long nr; 2078 int idx = folio_batch_count(fbatch) - 1; 2079 2080 folio = fbatch->folios[idx]; 2081 if (!xa_is_value(folio)) 2082 nr = folio_nr_pages(folio); 2083 else 2084 nr = 1 << xa_get_order(&mapping->i_pages, indices[idx]); 2085 *start = round_down(indices[idx] + nr, nr); 2086 } 2087 rcu_read_unlock(); 2088 2089 return folio_batch_count(fbatch); 2090 } 2091 2092 /** 2093 * find_lock_entries - Find a batch of pagecache entries. 2094 * @mapping: The address_space to search. 2095 * @start: The starting page cache index. 2096 * @end: The final page index (inclusive). 2097 * @fbatch: Where the resulting entries are placed. 2098 * @indices: The cache indices of the entries in @fbatch. 2099 * 2100 * find_lock_entries() will return a batch of entries from @mapping. 2101 * Swap, shadow and DAX entries are included. Folios are returned 2102 * locked and with an incremented refcount. Folios which are locked 2103 * by somebody else or under writeback are skipped. Folios which are 2104 * partially outside the range are not returned. 2105 * 2106 * The entries have ascending indexes. The indices may not be consecutive 2107 * due to not-present entries, large folios, folios which could not be 2108 * locked or folios under writeback. 2109 * 2110 * Return: The number of entries which were found. 2111 */ 2112 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start, 2113 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2114 { 2115 XA_STATE(xas, &mapping->i_pages, *start); 2116 struct folio *folio; 2117 2118 rcu_read_lock(); 2119 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) { 2120 unsigned long base; 2121 unsigned long nr; 2122 2123 if (!xa_is_value(folio)) { 2124 nr = folio_nr_pages(folio); 2125 base = folio->index; 2126 /* Omit large folio which begins before the start */ 2127 if (base < *start) 2128 goto put; 2129 /* Omit large folio which extends beyond the end */ 2130 if (base + nr - 1 > end) 2131 goto put; 2132 if (!folio_trylock(folio)) 2133 goto put; 2134 if (folio->mapping != mapping || 2135 folio_test_writeback(folio)) 2136 goto unlock; 2137 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index), 2138 folio); 2139 } else { 2140 nr = 1 << xas_get_order(&xas); 2141 base = xas.xa_index & ~(nr - 1); 2142 /* Omit order>0 value which begins before the start */ 2143 if (base < *start) 2144 continue; 2145 /* Omit order>0 value which extends beyond the end */ 2146 if (base + nr - 1 > end) 2147 break; 2148 } 2149 2150 /* Update start now so that last update is correct on return */ 2151 *start = base + nr; 2152 indices[fbatch->nr] = xas.xa_index; 2153 if (!folio_batch_add(fbatch, folio)) 2154 break; 2155 continue; 2156 unlock: 2157 folio_unlock(folio); 2158 put: 2159 folio_put(folio); 2160 } 2161 rcu_read_unlock(); 2162 2163 return folio_batch_count(fbatch); 2164 } 2165 2166 /** 2167 * filemap_get_folios - Get a batch of folios 2168 * @mapping: The address_space to search 2169 * @start: The starting page index 2170 * @end: The final page index (inclusive) 2171 * @fbatch: The batch to fill. 2172 * 2173 * Search for and return a batch of folios in the mapping starting at 2174 * index @start and up to index @end (inclusive). The folios are returned 2175 * in @fbatch with an elevated reference count. 2176 * 2177 * Return: The number of folios which were found. 2178 * We also update @start to index the next folio for the traversal. 2179 */ 2180 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start, 2181 pgoff_t end, struct folio_batch *fbatch) 2182 { 2183 return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch); 2184 } 2185 EXPORT_SYMBOL(filemap_get_folios); 2186 2187 /** 2188 * filemap_get_folios_contig - Get a batch of contiguous folios 2189 * @mapping: The address_space to search 2190 * @start: The starting page index 2191 * @end: The final page index (inclusive) 2192 * @fbatch: The batch to fill 2193 * 2194 * filemap_get_folios_contig() works exactly like filemap_get_folios(), 2195 * except the returned folios are guaranteed to be contiguous. This may 2196 * not return all contiguous folios if the batch gets filled up. 2197 * 2198 * Return: The number of folios found. 2199 * Also update @start to be positioned for traversal of the next folio. 2200 */ 2201 2202 unsigned filemap_get_folios_contig(struct address_space *mapping, 2203 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch) 2204 { 2205 XA_STATE(xas, &mapping->i_pages, *start); 2206 unsigned long nr; 2207 struct folio *folio; 2208 2209 rcu_read_lock(); 2210 2211 for (folio = xas_load(&xas); folio && xas.xa_index <= end; 2212 folio = xas_next(&xas)) { 2213 if (xas_retry(&xas, folio)) 2214 continue; 2215 /* 2216 * If the entry has been swapped out, we can stop looking. 2217 * No current caller is looking for DAX entries. 2218 */ 2219 if (xa_is_value(folio)) 2220 goto update_start; 2221 2222 /* If we landed in the middle of a THP, continue at its end. */ 2223 if (xa_is_sibling(folio)) 2224 goto update_start; 2225 2226 if (!folio_try_get(folio)) 2227 goto retry; 2228 2229 if (unlikely(folio != xas_reload(&xas))) 2230 goto put_folio; 2231 2232 if (!folio_batch_add(fbatch, folio)) { 2233 nr = folio_nr_pages(folio); 2234 *start = folio->index + nr; 2235 goto out; 2236 } 2237 continue; 2238 put_folio: 2239 folio_put(folio); 2240 2241 retry: 2242 xas_reset(&xas); 2243 } 2244 2245 update_start: 2246 nr = folio_batch_count(fbatch); 2247 2248 if (nr) { 2249 folio = fbatch->folios[nr - 1]; 2250 *start = folio_next_index(folio); 2251 } 2252 out: 2253 rcu_read_unlock(); 2254 return folio_batch_count(fbatch); 2255 } 2256 EXPORT_SYMBOL(filemap_get_folios_contig); 2257 2258 /** 2259 * filemap_get_folios_tag - Get a batch of folios matching @tag 2260 * @mapping: The address_space to search 2261 * @start: The starting page index 2262 * @end: The final page index (inclusive) 2263 * @tag: The tag index 2264 * @fbatch: The batch to fill 2265 * 2266 * The first folio may start before @start; if it does, it will contain 2267 * @start. The final folio may extend beyond @end; if it does, it will 2268 * contain @end. The folios have ascending indices. There may be gaps 2269 * between the folios if there are indices which have no folio in the 2270 * page cache. If folios are added to or removed from the page cache 2271 * while this is running, they may or may not be found by this call. 2272 * Only returns folios that are tagged with @tag. 2273 * 2274 * Return: The number of folios found. 2275 * Also update @start to index the next folio for traversal. 2276 */ 2277 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start, 2278 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch) 2279 { 2280 XA_STATE(xas, &mapping->i_pages, *start); 2281 struct folio *folio; 2282 2283 rcu_read_lock(); 2284 while ((folio = find_get_entry(&xas, end, tag)) != NULL) { 2285 /* 2286 * Shadow entries should never be tagged, but this iteration 2287 * is lockless so there is a window for page reclaim to evict 2288 * a page we saw tagged. Skip over it. 2289 */ 2290 if (xa_is_value(folio)) 2291 continue; 2292 if (!folio_batch_add(fbatch, folio)) { 2293 unsigned long nr = folio_nr_pages(folio); 2294 *start = folio->index + nr; 2295 goto out; 2296 } 2297 } 2298 /* 2299 * We come here when there is no page beyond @end. We take care to not 2300 * overflow the index @start as it confuses some of the callers. This 2301 * breaks the iteration when there is a page at index -1 but that is 2302 * already broke anyway. 2303 */ 2304 if (end == (pgoff_t)-1) 2305 *start = (pgoff_t)-1; 2306 else 2307 *start = end + 1; 2308 out: 2309 rcu_read_unlock(); 2310 2311 return folio_batch_count(fbatch); 2312 } 2313 EXPORT_SYMBOL(filemap_get_folios_tag); 2314 2315 /* 2316 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 2317 * a _large_ part of the i/o request. Imagine the worst scenario: 2318 * 2319 * ---R__________________________________________B__________ 2320 * ^ reading here ^ bad block(assume 4k) 2321 * 2322 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2323 * => failing the whole request => read(R) => read(R+1) => 2324 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2325 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2326 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2327 * 2328 * It is going insane. Fix it by quickly scaling down the readahead size. 2329 */ 2330 static void shrink_readahead_size_eio(struct file_ra_state *ra) 2331 { 2332 ra->ra_pages /= 4; 2333 } 2334 2335 /* 2336 * filemap_get_read_batch - Get a batch of folios for read 2337 * 2338 * Get a batch of folios which represent a contiguous range of bytes in 2339 * the file. No exceptional entries will be returned. If @index is in 2340 * the middle of a folio, the entire folio will be returned. The last 2341 * folio in the batch may have the readahead flag set or the uptodate flag 2342 * clear so that the caller can take the appropriate action. 2343 */ 2344 static void filemap_get_read_batch(struct address_space *mapping, 2345 pgoff_t index, pgoff_t max, struct folio_batch *fbatch) 2346 { 2347 XA_STATE(xas, &mapping->i_pages, index); 2348 struct folio *folio; 2349 2350 rcu_read_lock(); 2351 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) { 2352 if (xas_retry(&xas, folio)) 2353 continue; 2354 if (xas.xa_index > max || xa_is_value(folio)) 2355 break; 2356 if (xa_is_sibling(folio)) 2357 break; 2358 if (!folio_try_get(folio)) 2359 goto retry; 2360 2361 if (unlikely(folio != xas_reload(&xas))) 2362 goto put_folio; 2363 2364 if (!folio_batch_add(fbatch, folio)) 2365 break; 2366 if (!folio_test_uptodate(folio)) 2367 break; 2368 if (folio_test_readahead(folio)) 2369 break; 2370 xas_advance(&xas, folio_next_index(folio) - 1); 2371 continue; 2372 put_folio: 2373 folio_put(folio); 2374 retry: 2375 xas_reset(&xas); 2376 } 2377 rcu_read_unlock(); 2378 } 2379 2380 static int filemap_read_folio(struct file *file, filler_t filler, 2381 struct folio *folio) 2382 { 2383 bool workingset = folio_test_workingset(folio); 2384 unsigned long pflags; 2385 int error; 2386 2387 /* Start the actual read. The read will unlock the page. */ 2388 if (unlikely(workingset)) 2389 psi_memstall_enter(&pflags); 2390 error = filler(file, folio); 2391 if (unlikely(workingset)) 2392 psi_memstall_leave(&pflags); 2393 if (error) 2394 return error; 2395 2396 error = folio_wait_locked_killable(folio); 2397 if (error) 2398 return error; 2399 if (folio_test_uptodate(folio)) 2400 return 0; 2401 if (file) 2402 shrink_readahead_size_eio(&file->f_ra); 2403 return -EIO; 2404 } 2405 2406 static bool filemap_range_uptodate(struct address_space *mapping, 2407 loff_t pos, size_t count, struct folio *folio, 2408 bool need_uptodate) 2409 { 2410 if (folio_test_uptodate(folio)) 2411 return true; 2412 /* pipes can't handle partially uptodate pages */ 2413 if (need_uptodate) 2414 return false; 2415 if (!mapping->a_ops->is_partially_uptodate) 2416 return false; 2417 if (mapping->host->i_blkbits >= folio_shift(folio)) 2418 return false; 2419 2420 if (folio_pos(folio) > pos) { 2421 count -= folio_pos(folio) - pos; 2422 pos = 0; 2423 } else { 2424 pos -= folio_pos(folio); 2425 } 2426 2427 return mapping->a_ops->is_partially_uptodate(folio, pos, count); 2428 } 2429 2430 static int filemap_update_page(struct kiocb *iocb, 2431 struct address_space *mapping, size_t count, 2432 struct folio *folio, bool need_uptodate) 2433 { 2434 int error; 2435 2436 if (iocb->ki_flags & IOCB_NOWAIT) { 2437 if (!filemap_invalidate_trylock_shared(mapping)) 2438 return -EAGAIN; 2439 } else { 2440 filemap_invalidate_lock_shared(mapping); 2441 } 2442 2443 if (!folio_trylock(folio)) { 2444 error = -EAGAIN; 2445 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) 2446 goto unlock_mapping; 2447 if (!(iocb->ki_flags & IOCB_WAITQ)) { 2448 filemap_invalidate_unlock_shared(mapping); 2449 /* 2450 * This is where we usually end up waiting for a 2451 * previously submitted readahead to finish. 2452 */ 2453 folio_put_wait_locked(folio, TASK_KILLABLE); 2454 return AOP_TRUNCATED_PAGE; 2455 } 2456 error = __folio_lock_async(folio, iocb->ki_waitq); 2457 if (error) 2458 goto unlock_mapping; 2459 } 2460 2461 error = AOP_TRUNCATED_PAGE; 2462 if (!folio->mapping) 2463 goto unlock; 2464 2465 error = 0; 2466 if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio, 2467 need_uptodate)) 2468 goto unlock; 2469 2470 error = -EAGAIN; 2471 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ)) 2472 goto unlock; 2473 2474 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio, 2475 folio); 2476 goto unlock_mapping; 2477 unlock: 2478 folio_unlock(folio); 2479 unlock_mapping: 2480 filemap_invalidate_unlock_shared(mapping); 2481 if (error == AOP_TRUNCATED_PAGE) 2482 folio_put(folio); 2483 return error; 2484 } 2485 2486 static int filemap_create_folio(struct kiocb *iocb, struct folio_batch *fbatch) 2487 { 2488 struct address_space *mapping = iocb->ki_filp->f_mapping; 2489 struct folio *folio; 2490 int error; 2491 unsigned int min_order = mapping_min_folio_order(mapping); 2492 pgoff_t index; 2493 2494 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ)) 2495 return -EAGAIN; 2496 2497 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), min_order); 2498 if (!folio) 2499 return -ENOMEM; 2500 if (iocb->ki_flags & IOCB_DONTCACHE) 2501 __folio_set_dropbehind(folio); 2502 2503 /* 2504 * Protect against truncate / hole punch. Grabbing invalidate_lock 2505 * here assures we cannot instantiate and bring uptodate new 2506 * pagecache folios after evicting page cache during truncate 2507 * and before actually freeing blocks. Note that we could 2508 * release invalidate_lock after inserting the folio into 2509 * the page cache as the locked folio would then be enough to 2510 * synchronize with hole punching. But there are code paths 2511 * such as filemap_update_page() filling in partially uptodate 2512 * pages or ->readahead() that need to hold invalidate_lock 2513 * while mapping blocks for IO so let's hold the lock here as 2514 * well to keep locking rules simple. 2515 */ 2516 filemap_invalidate_lock_shared(mapping); 2517 index = (iocb->ki_pos >> (PAGE_SHIFT + min_order)) << min_order; 2518 error = filemap_add_folio(mapping, folio, index, 2519 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2520 if (error == -EEXIST) 2521 error = AOP_TRUNCATED_PAGE; 2522 if (error) 2523 goto error; 2524 2525 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio, 2526 folio); 2527 if (error) 2528 goto error; 2529 2530 filemap_invalidate_unlock_shared(mapping); 2531 folio_batch_add(fbatch, folio); 2532 return 0; 2533 error: 2534 filemap_invalidate_unlock_shared(mapping); 2535 folio_put(folio); 2536 return error; 2537 } 2538 2539 static int filemap_readahead(struct kiocb *iocb, struct file *file, 2540 struct address_space *mapping, struct folio *folio, 2541 pgoff_t last_index) 2542 { 2543 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index); 2544 2545 if (iocb->ki_flags & IOCB_NOIO) 2546 return -EAGAIN; 2547 if (iocb->ki_flags & IOCB_DONTCACHE) 2548 ractl.dropbehind = 1; 2549 page_cache_async_ra(&ractl, folio, last_index - folio->index); 2550 return 0; 2551 } 2552 2553 static int filemap_get_pages(struct kiocb *iocb, size_t count, 2554 struct folio_batch *fbatch, bool need_uptodate) 2555 { 2556 struct file *filp = iocb->ki_filp; 2557 struct address_space *mapping = filp->f_mapping; 2558 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT; 2559 pgoff_t last_index; 2560 struct folio *folio; 2561 unsigned int flags; 2562 int err = 0; 2563 2564 /* "last_index" is the index of the page beyond the end of the read */ 2565 last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE); 2566 retry: 2567 if (fatal_signal_pending(current)) 2568 return -EINTR; 2569 2570 filemap_get_read_batch(mapping, index, last_index - 1, fbatch); 2571 if (!folio_batch_count(fbatch)) { 2572 DEFINE_READAHEAD(ractl, filp, &filp->f_ra, mapping, index); 2573 2574 if (iocb->ki_flags & IOCB_NOIO) 2575 return -EAGAIN; 2576 if (iocb->ki_flags & IOCB_NOWAIT) 2577 flags = memalloc_noio_save(); 2578 if (iocb->ki_flags & IOCB_DONTCACHE) 2579 ractl.dropbehind = 1; 2580 page_cache_sync_ra(&ractl, last_index - index); 2581 if (iocb->ki_flags & IOCB_NOWAIT) 2582 memalloc_noio_restore(flags); 2583 filemap_get_read_batch(mapping, index, last_index - 1, fbatch); 2584 } 2585 if (!folio_batch_count(fbatch)) { 2586 err = filemap_create_folio(iocb, fbatch); 2587 if (err == AOP_TRUNCATED_PAGE) 2588 goto retry; 2589 return err; 2590 } 2591 2592 folio = fbatch->folios[folio_batch_count(fbatch) - 1]; 2593 if (folio_test_readahead(folio)) { 2594 err = filemap_readahead(iocb, filp, mapping, folio, last_index); 2595 if (err) 2596 goto err; 2597 } 2598 if (!folio_test_uptodate(folio)) { 2599 if ((iocb->ki_flags & IOCB_WAITQ) && 2600 folio_batch_count(fbatch) > 1) 2601 iocb->ki_flags |= IOCB_NOWAIT; 2602 err = filemap_update_page(iocb, mapping, count, folio, 2603 need_uptodate); 2604 if (err) 2605 goto err; 2606 } 2607 2608 trace_mm_filemap_get_pages(mapping, index, last_index - 1); 2609 return 0; 2610 err: 2611 if (err < 0) 2612 folio_put(folio); 2613 if (likely(--fbatch->nr)) 2614 return 0; 2615 if (err == AOP_TRUNCATED_PAGE) 2616 goto retry; 2617 return err; 2618 } 2619 2620 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio) 2621 { 2622 unsigned int shift = folio_shift(folio); 2623 2624 return (pos1 >> shift == pos2 >> shift); 2625 } 2626 2627 static void filemap_end_dropbehind_read(struct address_space *mapping, 2628 struct folio *folio) 2629 { 2630 if (!folio_test_dropbehind(folio)) 2631 return; 2632 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 2633 return; 2634 if (folio_trylock(folio)) { 2635 if (folio_test_clear_dropbehind(folio)) 2636 folio_unmap_invalidate(mapping, folio, 0); 2637 folio_unlock(folio); 2638 } 2639 } 2640 2641 /** 2642 * filemap_read - Read data from the page cache. 2643 * @iocb: The iocb to read. 2644 * @iter: Destination for the data. 2645 * @already_read: Number of bytes already read by the caller. 2646 * 2647 * Copies data from the page cache. If the data is not currently present, 2648 * uses the readahead and read_folio address_space operations to fetch it. 2649 * 2650 * Return: Total number of bytes copied, including those already read by 2651 * the caller. If an error happens before any bytes are copied, returns 2652 * a negative error number. 2653 */ 2654 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter, 2655 ssize_t already_read) 2656 { 2657 struct file *filp = iocb->ki_filp; 2658 struct file_ra_state *ra = &filp->f_ra; 2659 struct address_space *mapping = filp->f_mapping; 2660 struct inode *inode = mapping->host; 2661 struct folio_batch fbatch; 2662 int i, error = 0; 2663 bool writably_mapped; 2664 loff_t isize, end_offset; 2665 loff_t last_pos = ra->prev_pos; 2666 2667 if (unlikely(iocb->ki_pos < 0)) 2668 return -EINVAL; 2669 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes)) 2670 return 0; 2671 if (unlikely(!iov_iter_count(iter))) 2672 return 0; 2673 2674 iov_iter_truncate(iter, inode->i_sb->s_maxbytes - iocb->ki_pos); 2675 folio_batch_init(&fbatch); 2676 2677 do { 2678 cond_resched(); 2679 2680 /* 2681 * If we've already successfully copied some data, then we 2682 * can no longer safely return -EIOCBQUEUED. Hence mark 2683 * an async read NOWAIT at that point. 2684 */ 2685 if ((iocb->ki_flags & IOCB_WAITQ) && already_read) 2686 iocb->ki_flags |= IOCB_NOWAIT; 2687 2688 if (unlikely(iocb->ki_pos >= i_size_read(inode))) 2689 break; 2690 2691 error = filemap_get_pages(iocb, iter->count, &fbatch, false); 2692 if (error < 0) 2693 break; 2694 2695 /* 2696 * i_size must be checked after we know the pages are Uptodate. 2697 * 2698 * Checking i_size after the check allows us to calculate 2699 * the correct value for "nr", which means the zero-filled 2700 * part of the page is not copied back to userspace (unless 2701 * another truncate extends the file - this is desired though). 2702 */ 2703 isize = i_size_read(inode); 2704 if (unlikely(iocb->ki_pos >= isize)) 2705 goto put_folios; 2706 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count); 2707 2708 /* 2709 * Once we start copying data, we don't want to be touching any 2710 * cachelines that might be contended: 2711 */ 2712 writably_mapped = mapping_writably_mapped(mapping); 2713 2714 /* 2715 * When a read accesses the same folio several times, only 2716 * mark it as accessed the first time. 2717 */ 2718 if (!pos_same_folio(iocb->ki_pos, last_pos - 1, 2719 fbatch.folios[0])) 2720 folio_mark_accessed(fbatch.folios[0]); 2721 2722 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2723 struct folio *folio = fbatch.folios[i]; 2724 size_t fsize = folio_size(folio); 2725 size_t offset = iocb->ki_pos & (fsize - 1); 2726 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos, 2727 fsize - offset); 2728 size_t copied; 2729 2730 if (end_offset < folio_pos(folio)) 2731 break; 2732 if (i > 0) 2733 folio_mark_accessed(folio); 2734 /* 2735 * If users can be writing to this folio using arbitrary 2736 * virtual addresses, take care of potential aliasing 2737 * before reading the folio on the kernel side. 2738 */ 2739 if (writably_mapped) 2740 flush_dcache_folio(folio); 2741 2742 copied = copy_folio_to_iter(folio, offset, bytes, iter); 2743 2744 already_read += copied; 2745 iocb->ki_pos += copied; 2746 last_pos = iocb->ki_pos; 2747 2748 if (copied < bytes) { 2749 error = -EFAULT; 2750 break; 2751 } 2752 } 2753 put_folios: 2754 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2755 struct folio *folio = fbatch.folios[i]; 2756 2757 filemap_end_dropbehind_read(mapping, folio); 2758 folio_put(folio); 2759 } 2760 folio_batch_init(&fbatch); 2761 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error); 2762 2763 file_accessed(filp); 2764 ra->prev_pos = last_pos; 2765 return already_read ? already_read : error; 2766 } 2767 EXPORT_SYMBOL_GPL(filemap_read); 2768 2769 int kiocb_write_and_wait(struct kiocb *iocb, size_t count) 2770 { 2771 struct address_space *mapping = iocb->ki_filp->f_mapping; 2772 loff_t pos = iocb->ki_pos; 2773 loff_t end = pos + count - 1; 2774 2775 if (iocb->ki_flags & IOCB_NOWAIT) { 2776 if (filemap_range_needs_writeback(mapping, pos, end)) 2777 return -EAGAIN; 2778 return 0; 2779 } 2780 2781 return filemap_write_and_wait_range(mapping, pos, end); 2782 } 2783 EXPORT_SYMBOL_GPL(kiocb_write_and_wait); 2784 2785 int filemap_invalidate_pages(struct address_space *mapping, 2786 loff_t pos, loff_t end, bool nowait) 2787 { 2788 int ret; 2789 2790 if (nowait) { 2791 /* we could block if there are any pages in the range */ 2792 if (filemap_range_has_page(mapping, pos, end)) 2793 return -EAGAIN; 2794 } else { 2795 ret = filemap_write_and_wait_range(mapping, pos, end); 2796 if (ret) 2797 return ret; 2798 } 2799 2800 /* 2801 * After a write we want buffered reads to be sure to go to disk to get 2802 * the new data. We invalidate clean cached page from the region we're 2803 * about to write. We do this *before* the write so that we can return 2804 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2805 */ 2806 return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, 2807 end >> PAGE_SHIFT); 2808 } 2809 2810 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count) 2811 { 2812 struct address_space *mapping = iocb->ki_filp->f_mapping; 2813 2814 return filemap_invalidate_pages(mapping, iocb->ki_pos, 2815 iocb->ki_pos + count - 1, 2816 iocb->ki_flags & IOCB_NOWAIT); 2817 } 2818 EXPORT_SYMBOL_GPL(kiocb_invalidate_pages); 2819 2820 /** 2821 * generic_file_read_iter - generic filesystem read routine 2822 * @iocb: kernel I/O control block 2823 * @iter: destination for the data read 2824 * 2825 * This is the "read_iter()" routine for all filesystems 2826 * that can use the page cache directly. 2827 * 2828 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall 2829 * be returned when no data can be read without waiting for I/O requests 2830 * to complete; it doesn't prevent readahead. 2831 * 2832 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O 2833 * requests shall be made for the read or for readahead. When no data 2834 * can be read, -EAGAIN shall be returned. When readahead would be 2835 * triggered, a partial, possibly empty read shall be returned. 2836 * 2837 * Return: 2838 * * number of bytes copied, even for partial reads 2839 * * negative error code (or 0 if IOCB_NOIO) if nothing was read 2840 */ 2841 ssize_t 2842 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2843 { 2844 size_t count = iov_iter_count(iter); 2845 ssize_t retval = 0; 2846 2847 if (!count) 2848 return 0; /* skip atime */ 2849 2850 if (iocb->ki_flags & IOCB_DIRECT) { 2851 struct file *file = iocb->ki_filp; 2852 struct address_space *mapping = file->f_mapping; 2853 struct inode *inode = mapping->host; 2854 2855 retval = kiocb_write_and_wait(iocb, count); 2856 if (retval < 0) 2857 return retval; 2858 file_accessed(file); 2859 2860 retval = mapping->a_ops->direct_IO(iocb, iter); 2861 if (retval >= 0) { 2862 iocb->ki_pos += retval; 2863 count -= retval; 2864 } 2865 if (retval != -EIOCBQUEUED) 2866 iov_iter_revert(iter, count - iov_iter_count(iter)); 2867 2868 /* 2869 * Btrfs can have a short DIO read if we encounter 2870 * compressed extents, so if there was an error, or if 2871 * we've already read everything we wanted to, or if 2872 * there was a short read because we hit EOF, go ahead 2873 * and return. Otherwise fallthrough to buffered io for 2874 * the rest of the read. Buffered reads will not work for 2875 * DAX files, so don't bother trying. 2876 */ 2877 if (retval < 0 || !count || IS_DAX(inode)) 2878 return retval; 2879 if (iocb->ki_pos >= i_size_read(inode)) 2880 return retval; 2881 } 2882 2883 return filemap_read(iocb, iter, retval); 2884 } 2885 EXPORT_SYMBOL(generic_file_read_iter); 2886 2887 /* 2888 * Splice subpages from a folio into a pipe. 2889 */ 2890 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe, 2891 struct folio *folio, loff_t fpos, size_t size) 2892 { 2893 struct page *page; 2894 size_t spliced = 0, offset = offset_in_folio(folio, fpos); 2895 2896 page = folio_page(folio, offset / PAGE_SIZE); 2897 size = min(size, folio_size(folio) - offset); 2898 offset %= PAGE_SIZE; 2899 2900 while (spliced < size && 2901 !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) { 2902 struct pipe_buffer *buf = pipe_head_buf(pipe); 2903 size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced); 2904 2905 *buf = (struct pipe_buffer) { 2906 .ops = &page_cache_pipe_buf_ops, 2907 .page = page, 2908 .offset = offset, 2909 .len = part, 2910 }; 2911 folio_get(folio); 2912 pipe->head++; 2913 page++; 2914 spliced += part; 2915 offset = 0; 2916 } 2917 2918 return spliced; 2919 } 2920 2921 /** 2922 * filemap_splice_read - Splice data from a file's pagecache into a pipe 2923 * @in: The file to read from 2924 * @ppos: Pointer to the file position to read from 2925 * @pipe: The pipe to splice into 2926 * @len: The amount to splice 2927 * @flags: The SPLICE_F_* flags 2928 * 2929 * This function gets folios from a file's pagecache and splices them into the 2930 * pipe. Readahead will be called as necessary to fill more folios. This may 2931 * be used for blockdevs also. 2932 * 2933 * Return: On success, the number of bytes read will be returned and *@ppos 2934 * will be updated if appropriate; 0 will be returned if there is no more data 2935 * to be read; -EAGAIN will be returned if the pipe had no space, and some 2936 * other negative error code will be returned on error. A short read may occur 2937 * if the pipe has insufficient space, we reach the end of the data or we hit a 2938 * hole. 2939 */ 2940 ssize_t filemap_splice_read(struct file *in, loff_t *ppos, 2941 struct pipe_inode_info *pipe, 2942 size_t len, unsigned int flags) 2943 { 2944 struct folio_batch fbatch; 2945 struct kiocb iocb; 2946 size_t total_spliced = 0, used, npages; 2947 loff_t isize, end_offset; 2948 bool writably_mapped; 2949 int i, error = 0; 2950 2951 if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes)) 2952 return 0; 2953 2954 init_sync_kiocb(&iocb, in); 2955 iocb.ki_pos = *ppos; 2956 2957 /* Work out how much data we can actually add into the pipe */ 2958 used = pipe_occupancy(pipe->head, pipe->tail); 2959 npages = max_t(ssize_t, pipe->max_usage - used, 0); 2960 len = min_t(size_t, len, npages * PAGE_SIZE); 2961 2962 folio_batch_init(&fbatch); 2963 2964 do { 2965 cond_resched(); 2966 2967 if (*ppos >= i_size_read(in->f_mapping->host)) 2968 break; 2969 2970 iocb.ki_pos = *ppos; 2971 error = filemap_get_pages(&iocb, len, &fbatch, true); 2972 if (error < 0) 2973 break; 2974 2975 /* 2976 * i_size must be checked after we know the pages are Uptodate. 2977 * 2978 * Checking i_size after the check allows us to calculate 2979 * the correct value for "nr", which means the zero-filled 2980 * part of the page is not copied back to userspace (unless 2981 * another truncate extends the file - this is desired though). 2982 */ 2983 isize = i_size_read(in->f_mapping->host); 2984 if (unlikely(*ppos >= isize)) 2985 break; 2986 end_offset = min_t(loff_t, isize, *ppos + len); 2987 2988 /* 2989 * Once we start copying data, we don't want to be touching any 2990 * cachelines that might be contended: 2991 */ 2992 writably_mapped = mapping_writably_mapped(in->f_mapping); 2993 2994 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2995 struct folio *folio = fbatch.folios[i]; 2996 size_t n; 2997 2998 if (folio_pos(folio) >= end_offset) 2999 goto out; 3000 folio_mark_accessed(folio); 3001 3002 /* 3003 * If users can be writing to this folio using arbitrary 3004 * virtual addresses, take care of potential aliasing 3005 * before reading the folio on the kernel side. 3006 */ 3007 if (writably_mapped) 3008 flush_dcache_folio(folio); 3009 3010 n = min_t(loff_t, len, isize - *ppos); 3011 n = splice_folio_into_pipe(pipe, folio, *ppos, n); 3012 if (!n) 3013 goto out; 3014 len -= n; 3015 total_spliced += n; 3016 *ppos += n; 3017 in->f_ra.prev_pos = *ppos; 3018 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 3019 goto out; 3020 } 3021 3022 folio_batch_release(&fbatch); 3023 } while (len); 3024 3025 out: 3026 folio_batch_release(&fbatch); 3027 file_accessed(in); 3028 3029 return total_spliced ? total_spliced : error; 3030 } 3031 EXPORT_SYMBOL(filemap_splice_read); 3032 3033 static inline loff_t folio_seek_hole_data(struct xa_state *xas, 3034 struct address_space *mapping, struct folio *folio, 3035 loff_t start, loff_t end, bool seek_data) 3036 { 3037 const struct address_space_operations *ops = mapping->a_ops; 3038 size_t offset, bsz = i_blocksize(mapping->host); 3039 3040 if (xa_is_value(folio) || folio_test_uptodate(folio)) 3041 return seek_data ? start : end; 3042 if (!ops->is_partially_uptodate) 3043 return seek_data ? end : start; 3044 3045 xas_pause(xas); 3046 rcu_read_unlock(); 3047 folio_lock(folio); 3048 if (unlikely(folio->mapping != mapping)) 3049 goto unlock; 3050 3051 offset = offset_in_folio(folio, start) & ~(bsz - 1); 3052 3053 do { 3054 if (ops->is_partially_uptodate(folio, offset, bsz) == 3055 seek_data) 3056 break; 3057 start = (start + bsz) & ~((u64)bsz - 1); 3058 offset += bsz; 3059 } while (offset < folio_size(folio)); 3060 unlock: 3061 folio_unlock(folio); 3062 rcu_read_lock(); 3063 return start; 3064 } 3065 3066 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio) 3067 { 3068 if (xa_is_value(folio)) 3069 return PAGE_SIZE << xas_get_order(xas); 3070 return folio_size(folio); 3071 } 3072 3073 /** 3074 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache. 3075 * @mapping: Address space to search. 3076 * @start: First byte to consider. 3077 * @end: Limit of search (exclusive). 3078 * @whence: Either SEEK_HOLE or SEEK_DATA. 3079 * 3080 * If the page cache knows which blocks contain holes and which blocks 3081 * contain data, your filesystem can use this function to implement 3082 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are 3083 * entirely memory-based such as tmpfs, and filesystems which support 3084 * unwritten extents. 3085 * 3086 * Return: The requested offset on success, or -ENXIO if @whence specifies 3087 * SEEK_DATA and there is no data after @start. There is an implicit hole 3088 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start 3089 * and @end contain data. 3090 */ 3091 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start, 3092 loff_t end, int whence) 3093 { 3094 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT); 3095 pgoff_t max = (end - 1) >> PAGE_SHIFT; 3096 bool seek_data = (whence == SEEK_DATA); 3097 struct folio *folio; 3098 3099 if (end <= start) 3100 return -ENXIO; 3101 3102 rcu_read_lock(); 3103 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) { 3104 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT; 3105 size_t seek_size; 3106 3107 if (start < pos) { 3108 if (!seek_data) 3109 goto unlock; 3110 start = pos; 3111 } 3112 3113 seek_size = seek_folio_size(&xas, folio); 3114 pos = round_up((u64)pos + 1, seek_size); 3115 start = folio_seek_hole_data(&xas, mapping, folio, start, pos, 3116 seek_data); 3117 if (start < pos) 3118 goto unlock; 3119 if (start >= end) 3120 break; 3121 if (seek_size > PAGE_SIZE) 3122 xas_set(&xas, pos >> PAGE_SHIFT); 3123 if (!xa_is_value(folio)) 3124 folio_put(folio); 3125 } 3126 if (seek_data) 3127 start = -ENXIO; 3128 unlock: 3129 rcu_read_unlock(); 3130 if (folio && !xa_is_value(folio)) 3131 folio_put(folio); 3132 if (start > end) 3133 return end; 3134 return start; 3135 } 3136 3137 #ifdef CONFIG_MMU 3138 #define MMAP_LOTSAMISS (100) 3139 /* 3140 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock 3141 * @vmf - the vm_fault for this fault. 3142 * @folio - the folio to lock. 3143 * @fpin - the pointer to the file we may pin (or is already pinned). 3144 * 3145 * This works similar to lock_folio_or_retry in that it can drop the 3146 * mmap_lock. It differs in that it actually returns the folio locked 3147 * if it returns 1 and 0 if it couldn't lock the folio. If we did have 3148 * to drop the mmap_lock then fpin will point to the pinned file and 3149 * needs to be fput()'ed at a later point. 3150 */ 3151 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio, 3152 struct file **fpin) 3153 { 3154 if (folio_trylock(folio)) 3155 return 1; 3156 3157 /* 3158 * NOTE! This will make us return with VM_FAULT_RETRY, but with 3159 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT 3160 * is supposed to work. We have way too many special cases.. 3161 */ 3162 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 3163 return 0; 3164 3165 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 3166 if (vmf->flags & FAULT_FLAG_KILLABLE) { 3167 if (__folio_lock_killable(folio)) { 3168 /* 3169 * We didn't have the right flags to drop the 3170 * fault lock, but all fault_handlers only check 3171 * for fatal signals if we return VM_FAULT_RETRY, 3172 * so we need to drop the fault lock here and 3173 * return 0 if we don't have a fpin. 3174 */ 3175 if (*fpin == NULL) 3176 release_fault_lock(vmf); 3177 return 0; 3178 } 3179 } else 3180 __folio_lock(folio); 3181 3182 return 1; 3183 } 3184 3185 /* 3186 * Synchronous readahead happens when we don't even find a page in the page 3187 * cache at all. We don't want to perform IO under the mmap sem, so if we have 3188 * to drop the mmap sem we return the file that was pinned in order for us to do 3189 * that. If we didn't pin a file then we return NULL. The file that is 3190 * returned needs to be fput()'ed when we're done with it. 3191 */ 3192 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 3193 { 3194 struct file *file = vmf->vma->vm_file; 3195 struct file_ra_state *ra = &file->f_ra; 3196 struct address_space *mapping = file->f_mapping; 3197 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff); 3198 struct file *fpin = NULL; 3199 unsigned long vm_flags = vmf->vma->vm_flags; 3200 unsigned int mmap_miss; 3201 3202 /* 3203 * If we have pre-content watches we need to disable readahead to make 3204 * sure that we don't populate our mapping with 0 filled pages that we 3205 * never emitted an event for. 3206 */ 3207 if (unlikely(FMODE_FSNOTIFY_HSM(file->f_mode))) 3208 return fpin; 3209 3210 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3211 /* Use the readahead code, even if readahead is disabled */ 3212 if ((vm_flags & VM_HUGEPAGE) && HPAGE_PMD_ORDER <= MAX_PAGECACHE_ORDER) { 3213 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3214 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1); 3215 ra->size = HPAGE_PMD_NR; 3216 /* 3217 * Fetch two PMD folios, so we get the chance to actually 3218 * readahead, unless we've been told not to. 3219 */ 3220 if (!(vm_flags & VM_RAND_READ)) 3221 ra->size *= 2; 3222 ra->async_size = HPAGE_PMD_NR; 3223 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER); 3224 return fpin; 3225 } 3226 #endif 3227 3228 /* If we don't want any read-ahead, don't bother */ 3229 if (vm_flags & VM_RAND_READ) 3230 return fpin; 3231 if (!ra->ra_pages) 3232 return fpin; 3233 3234 if (vm_flags & VM_SEQ_READ) { 3235 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3236 page_cache_sync_ra(&ractl, ra->ra_pages); 3237 return fpin; 3238 } 3239 3240 /* Avoid banging the cache line if not needed */ 3241 mmap_miss = READ_ONCE(ra->mmap_miss); 3242 if (mmap_miss < MMAP_LOTSAMISS * 10) 3243 WRITE_ONCE(ra->mmap_miss, ++mmap_miss); 3244 3245 /* 3246 * Do we miss much more than hit in this file? If so, 3247 * stop bothering with read-ahead. It will only hurt. 3248 */ 3249 if (mmap_miss > MMAP_LOTSAMISS) 3250 return fpin; 3251 3252 /* 3253 * mmap read-around 3254 */ 3255 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3256 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2); 3257 ra->size = ra->ra_pages; 3258 ra->async_size = ra->ra_pages / 4; 3259 ractl._index = ra->start; 3260 page_cache_ra_order(&ractl, ra, 0); 3261 return fpin; 3262 } 3263 3264 /* 3265 * Asynchronous readahead happens when we find the page and PG_readahead, 3266 * so we want to possibly extend the readahead further. We return the file that 3267 * was pinned if we have to drop the mmap_lock in order to do IO. 3268 */ 3269 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 3270 struct folio *folio) 3271 { 3272 struct file *file = vmf->vma->vm_file; 3273 struct file_ra_state *ra = &file->f_ra; 3274 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff); 3275 struct file *fpin = NULL; 3276 unsigned int mmap_miss; 3277 3278 /* See comment in do_sync_mmap_readahead. */ 3279 if (unlikely(FMODE_FSNOTIFY_HSM(file->f_mode))) 3280 return fpin; 3281 3282 /* If we don't want any read-ahead, don't bother */ 3283 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages) 3284 return fpin; 3285 3286 mmap_miss = READ_ONCE(ra->mmap_miss); 3287 if (mmap_miss) 3288 WRITE_ONCE(ra->mmap_miss, --mmap_miss); 3289 3290 if (folio_test_readahead(folio)) { 3291 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3292 page_cache_async_ra(&ractl, folio, ra->ra_pages); 3293 } 3294 return fpin; 3295 } 3296 3297 static vm_fault_t filemap_fault_recheck_pte_none(struct vm_fault *vmf) 3298 { 3299 struct vm_area_struct *vma = vmf->vma; 3300 vm_fault_t ret = 0; 3301 pte_t *ptep; 3302 3303 /* 3304 * We might have COW'ed a pagecache folio and might now have an mlocked 3305 * anon folio mapped. The original pagecache folio is not mlocked and 3306 * might have been evicted. During a read+clear/modify/write update of 3307 * the PTE, such as done in do_numa_page()/change_pte_range(), we 3308 * temporarily clear the PTE under PT lock and might detect it here as 3309 * "none" when not holding the PT lock. 3310 * 3311 * Not rechecking the PTE under PT lock could result in an unexpected 3312 * major fault in an mlock'ed region. Recheck only for this special 3313 * scenario while holding the PT lock, to not degrade non-mlocked 3314 * scenarios. Recheck the PTE without PT lock firstly, thereby reducing 3315 * the number of times we hold PT lock. 3316 */ 3317 if (!(vma->vm_flags & VM_LOCKED)) 3318 return 0; 3319 3320 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 3321 return 0; 3322 3323 ptep = pte_offset_map_ro_nolock(vma->vm_mm, vmf->pmd, vmf->address, 3324 &vmf->ptl); 3325 if (unlikely(!ptep)) 3326 return VM_FAULT_NOPAGE; 3327 3328 if (unlikely(!pte_none(ptep_get_lockless(ptep)))) { 3329 ret = VM_FAULT_NOPAGE; 3330 } else { 3331 spin_lock(vmf->ptl); 3332 if (unlikely(!pte_none(ptep_get(ptep)))) 3333 ret = VM_FAULT_NOPAGE; 3334 spin_unlock(vmf->ptl); 3335 } 3336 pte_unmap(ptep); 3337 return ret; 3338 } 3339 3340 /** 3341 * filemap_fsnotify_fault - maybe emit a pre-content event. 3342 * @vmf: struct vm_fault containing details of the fault. 3343 * 3344 * If we have a pre-content watch on this file we will emit an event for this 3345 * range. If we return anything the fault caller should return immediately, we 3346 * will return VM_FAULT_RETRY if we had to emit an event, which will trigger the 3347 * fault again and then the fault handler will run the second time through. 3348 * 3349 * Return: a bitwise-OR of %VM_FAULT_ codes, 0 if nothing happened. 3350 */ 3351 vm_fault_t filemap_fsnotify_fault(struct vm_fault *vmf) 3352 { 3353 struct file *fpin = NULL; 3354 int mask = (vmf->flags & FAULT_FLAG_WRITE) ? MAY_WRITE : MAY_ACCESS; 3355 loff_t pos = vmf->pgoff >> PAGE_SHIFT; 3356 size_t count = PAGE_SIZE; 3357 int err; 3358 3359 /* 3360 * We already did this and now we're retrying with everything locked, 3361 * don't emit the event and continue. 3362 */ 3363 if (vmf->flags & FAULT_FLAG_TRIED) 3364 return 0; 3365 3366 /* No watches, we're done. */ 3367 if (likely(!FMODE_FSNOTIFY_HSM(vmf->vma->vm_file->f_mode))) 3368 return 0; 3369 3370 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3371 if (!fpin) 3372 return VM_FAULT_SIGBUS; 3373 3374 err = fsnotify_file_area_perm(fpin, mask, &pos, count); 3375 fput(fpin); 3376 if (err) 3377 return VM_FAULT_SIGBUS; 3378 return VM_FAULT_RETRY; 3379 } 3380 EXPORT_SYMBOL_GPL(filemap_fsnotify_fault); 3381 3382 /** 3383 * filemap_fault - read in file data for page fault handling 3384 * @vmf: struct vm_fault containing details of the fault 3385 * 3386 * filemap_fault() is invoked via the vma operations vector for a 3387 * mapped memory region to read in file data during a page fault. 3388 * 3389 * The goto's are kind of ugly, but this streamlines the normal case of having 3390 * it in the page cache, and handles the special cases reasonably without 3391 * having a lot of duplicated code. 3392 * 3393 * vma->vm_mm->mmap_lock must be held on entry. 3394 * 3395 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock 3396 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap(). 3397 * 3398 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock 3399 * has not been released. 3400 * 3401 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 3402 * 3403 * Return: bitwise-OR of %VM_FAULT_ codes. 3404 */ 3405 vm_fault_t filemap_fault(struct vm_fault *vmf) 3406 { 3407 int error; 3408 struct file *file = vmf->vma->vm_file; 3409 struct file *fpin = NULL; 3410 struct address_space *mapping = file->f_mapping; 3411 struct inode *inode = mapping->host; 3412 pgoff_t max_idx, index = vmf->pgoff; 3413 struct folio *folio; 3414 vm_fault_t ret = 0; 3415 bool mapping_locked = false; 3416 3417 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3418 if (unlikely(index >= max_idx)) 3419 return VM_FAULT_SIGBUS; 3420 3421 trace_mm_filemap_fault(mapping, index); 3422 3423 /* 3424 * Do we have something in the page cache already? 3425 */ 3426 folio = filemap_get_folio(mapping, index); 3427 if (likely(!IS_ERR(folio))) { 3428 /* 3429 * We found the page, so try async readahead before waiting for 3430 * the lock. 3431 */ 3432 if (!(vmf->flags & FAULT_FLAG_TRIED)) 3433 fpin = do_async_mmap_readahead(vmf, folio); 3434 if (unlikely(!folio_test_uptodate(folio))) { 3435 filemap_invalidate_lock_shared(mapping); 3436 mapping_locked = true; 3437 } 3438 } else { 3439 ret = filemap_fault_recheck_pte_none(vmf); 3440 if (unlikely(ret)) 3441 return ret; 3442 3443 /* No page in the page cache at all */ 3444 count_vm_event(PGMAJFAULT); 3445 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 3446 ret = VM_FAULT_MAJOR; 3447 fpin = do_sync_mmap_readahead(vmf); 3448 retry_find: 3449 /* 3450 * See comment in filemap_create_folio() why we need 3451 * invalidate_lock 3452 */ 3453 if (!mapping_locked) { 3454 filemap_invalidate_lock_shared(mapping); 3455 mapping_locked = true; 3456 } 3457 folio = __filemap_get_folio(mapping, index, 3458 FGP_CREAT|FGP_FOR_MMAP, 3459 vmf->gfp_mask); 3460 if (IS_ERR(folio)) { 3461 if (fpin) 3462 goto out_retry; 3463 filemap_invalidate_unlock_shared(mapping); 3464 return VM_FAULT_OOM; 3465 } 3466 } 3467 3468 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin)) 3469 goto out_retry; 3470 3471 /* Did it get truncated? */ 3472 if (unlikely(folio->mapping != mapping)) { 3473 folio_unlock(folio); 3474 folio_put(folio); 3475 goto retry_find; 3476 } 3477 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 3478 3479 /* 3480 * We have a locked folio in the page cache, now we need to check 3481 * that it's up-to-date. If not, it is going to be due to an error, 3482 * or because readahead was otherwise unable to retrieve it. 3483 */ 3484 if (unlikely(!folio_test_uptodate(folio))) { 3485 /* 3486 * If this is a precontent file we have can now emit an event to 3487 * try and populate the folio. 3488 */ 3489 if (!(vmf->flags & FAULT_FLAG_TRIED) && 3490 unlikely(FMODE_FSNOTIFY_HSM(file->f_mode))) { 3491 loff_t pos = folio_pos(folio); 3492 size_t count = folio_size(folio); 3493 3494 /* We're NOWAIT, we have to retry. */ 3495 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) { 3496 folio_unlock(folio); 3497 goto out_retry; 3498 } 3499 3500 if (mapping_locked) 3501 filemap_invalidate_unlock_shared(mapping); 3502 mapping_locked = false; 3503 3504 folio_unlock(folio); 3505 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3506 if (!fpin) 3507 goto out_retry; 3508 3509 error = fsnotify_file_area_perm(fpin, MAY_ACCESS, &pos, 3510 count); 3511 if (error) 3512 ret = VM_FAULT_SIGBUS; 3513 goto out_retry; 3514 } 3515 3516 /* 3517 * If the invalidate lock is not held, the folio was in cache 3518 * and uptodate and now it is not. Strange but possible since we 3519 * didn't hold the page lock all the time. Let's drop 3520 * everything, get the invalidate lock and try again. 3521 */ 3522 if (!mapping_locked) { 3523 folio_unlock(folio); 3524 folio_put(folio); 3525 goto retry_find; 3526 } 3527 3528 /* 3529 * OK, the folio is really not uptodate. This can be because the 3530 * VMA has the VM_RAND_READ flag set, or because an error 3531 * arose. Let's read it in directly. 3532 */ 3533 goto page_not_uptodate; 3534 } 3535 3536 /* 3537 * We've made it this far and we had to drop our mmap_lock, now is the 3538 * time to return to the upper layer and have it re-find the vma and 3539 * redo the fault. 3540 */ 3541 if (fpin) { 3542 folio_unlock(folio); 3543 goto out_retry; 3544 } 3545 if (mapping_locked) 3546 filemap_invalidate_unlock_shared(mapping); 3547 3548 /* 3549 * Found the page and have a reference on it. 3550 * We must recheck i_size under page lock. 3551 */ 3552 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3553 if (unlikely(index >= max_idx)) { 3554 folio_unlock(folio); 3555 folio_put(folio); 3556 return VM_FAULT_SIGBUS; 3557 } 3558 3559 vmf->page = folio_file_page(folio, index); 3560 return ret | VM_FAULT_LOCKED; 3561 3562 page_not_uptodate: 3563 /* 3564 * Umm, take care of errors if the page isn't up-to-date. 3565 * Try to re-read it _once_. We do this synchronously, 3566 * because there really aren't any performance issues here 3567 * and we need to check for errors. 3568 */ 3569 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3570 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio); 3571 if (fpin) 3572 goto out_retry; 3573 folio_put(folio); 3574 3575 if (!error || error == AOP_TRUNCATED_PAGE) 3576 goto retry_find; 3577 filemap_invalidate_unlock_shared(mapping); 3578 3579 return VM_FAULT_SIGBUS; 3580 3581 out_retry: 3582 /* 3583 * We dropped the mmap_lock, we need to return to the fault handler to 3584 * re-find the vma and come back and find our hopefully still populated 3585 * page. 3586 */ 3587 if (!IS_ERR(folio)) 3588 folio_put(folio); 3589 if (mapping_locked) 3590 filemap_invalidate_unlock_shared(mapping); 3591 if (fpin) 3592 fput(fpin); 3593 return ret | VM_FAULT_RETRY; 3594 } 3595 EXPORT_SYMBOL(filemap_fault); 3596 3597 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio, 3598 pgoff_t start) 3599 { 3600 struct mm_struct *mm = vmf->vma->vm_mm; 3601 3602 /* Huge page is mapped? No need to proceed. */ 3603 if (pmd_trans_huge(*vmf->pmd)) { 3604 folio_unlock(folio); 3605 folio_put(folio); 3606 return true; 3607 } 3608 3609 if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) { 3610 struct page *page = folio_file_page(folio, start); 3611 vm_fault_t ret = do_set_pmd(vmf, page); 3612 if (!ret) { 3613 /* The page is mapped successfully, reference consumed. */ 3614 folio_unlock(folio); 3615 return true; 3616 } 3617 } 3618 3619 if (pmd_none(*vmf->pmd) && vmf->prealloc_pte) 3620 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte); 3621 3622 return false; 3623 } 3624 3625 static struct folio *next_uptodate_folio(struct xa_state *xas, 3626 struct address_space *mapping, pgoff_t end_pgoff) 3627 { 3628 struct folio *folio = xas_next_entry(xas, end_pgoff); 3629 unsigned long max_idx; 3630 3631 do { 3632 if (!folio) 3633 return NULL; 3634 if (xas_retry(xas, folio)) 3635 continue; 3636 if (xa_is_value(folio)) 3637 continue; 3638 if (!folio_try_get(folio)) 3639 continue; 3640 if (folio_test_locked(folio)) 3641 goto skip; 3642 /* Has the page moved or been split? */ 3643 if (unlikely(folio != xas_reload(xas))) 3644 goto skip; 3645 if (!folio_test_uptodate(folio) || folio_test_readahead(folio)) 3646 goto skip; 3647 if (!folio_trylock(folio)) 3648 goto skip; 3649 if (folio->mapping != mapping) 3650 goto unlock; 3651 if (!folio_test_uptodate(folio)) 3652 goto unlock; 3653 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3654 if (xas->xa_index >= max_idx) 3655 goto unlock; 3656 return folio; 3657 unlock: 3658 folio_unlock(folio); 3659 skip: 3660 folio_put(folio); 3661 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL); 3662 3663 return NULL; 3664 } 3665 3666 /* 3667 * Map page range [start_page, start_page + nr_pages) of folio. 3668 * start_page is gotten from start by folio_page(folio, start) 3669 */ 3670 static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf, 3671 struct folio *folio, unsigned long start, 3672 unsigned long addr, unsigned int nr_pages, 3673 unsigned long *rss, unsigned int *mmap_miss) 3674 { 3675 vm_fault_t ret = 0; 3676 struct page *page = folio_page(folio, start); 3677 unsigned int count = 0; 3678 pte_t *old_ptep = vmf->pte; 3679 3680 do { 3681 if (PageHWPoison(page + count)) 3682 goto skip; 3683 3684 /* 3685 * If there are too many folios that are recently evicted 3686 * in a file, they will probably continue to be evicted. 3687 * In such situation, read-ahead is only a waste of IO. 3688 * Don't decrease mmap_miss in this scenario to make sure 3689 * we can stop read-ahead. 3690 */ 3691 if (!folio_test_workingset(folio)) 3692 (*mmap_miss)++; 3693 3694 /* 3695 * NOTE: If there're PTE markers, we'll leave them to be 3696 * handled in the specific fault path, and it'll prohibit the 3697 * fault-around logic. 3698 */ 3699 if (!pte_none(ptep_get(&vmf->pte[count]))) 3700 goto skip; 3701 3702 count++; 3703 continue; 3704 skip: 3705 if (count) { 3706 set_pte_range(vmf, folio, page, count, addr); 3707 *rss += count; 3708 folio_ref_add(folio, count); 3709 if (in_range(vmf->address, addr, count * PAGE_SIZE)) 3710 ret = VM_FAULT_NOPAGE; 3711 } 3712 3713 count++; 3714 page += count; 3715 vmf->pte += count; 3716 addr += count * PAGE_SIZE; 3717 count = 0; 3718 } while (--nr_pages > 0); 3719 3720 if (count) { 3721 set_pte_range(vmf, folio, page, count, addr); 3722 *rss += count; 3723 folio_ref_add(folio, count); 3724 if (in_range(vmf->address, addr, count * PAGE_SIZE)) 3725 ret = VM_FAULT_NOPAGE; 3726 } 3727 3728 vmf->pte = old_ptep; 3729 3730 return ret; 3731 } 3732 3733 static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf, 3734 struct folio *folio, unsigned long addr, 3735 unsigned long *rss, unsigned int *mmap_miss) 3736 { 3737 vm_fault_t ret = 0; 3738 struct page *page = &folio->page; 3739 3740 if (PageHWPoison(page)) 3741 return ret; 3742 3743 /* See comment of filemap_map_folio_range() */ 3744 if (!folio_test_workingset(folio)) 3745 (*mmap_miss)++; 3746 3747 /* 3748 * NOTE: If there're PTE markers, we'll leave them to be 3749 * handled in the specific fault path, and it'll prohibit 3750 * the fault-around logic. 3751 */ 3752 if (!pte_none(ptep_get(vmf->pte))) 3753 return ret; 3754 3755 if (vmf->address == addr) 3756 ret = VM_FAULT_NOPAGE; 3757 3758 set_pte_range(vmf, folio, page, 1, addr); 3759 (*rss)++; 3760 folio_ref_inc(folio); 3761 3762 return ret; 3763 } 3764 3765 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3766 pgoff_t start_pgoff, pgoff_t end_pgoff) 3767 { 3768 struct vm_area_struct *vma = vmf->vma; 3769 struct file *file = vma->vm_file; 3770 struct address_space *mapping = file->f_mapping; 3771 pgoff_t file_end, last_pgoff = start_pgoff; 3772 unsigned long addr; 3773 XA_STATE(xas, &mapping->i_pages, start_pgoff); 3774 struct folio *folio; 3775 vm_fault_t ret = 0; 3776 unsigned long rss = 0; 3777 unsigned int nr_pages = 0, mmap_miss = 0, mmap_miss_saved, folio_type; 3778 3779 rcu_read_lock(); 3780 folio = next_uptodate_folio(&xas, mapping, end_pgoff); 3781 if (!folio) 3782 goto out; 3783 3784 if (filemap_map_pmd(vmf, folio, start_pgoff)) { 3785 ret = VM_FAULT_NOPAGE; 3786 goto out; 3787 } 3788 3789 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT); 3790 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 3791 if (!vmf->pte) { 3792 folio_unlock(folio); 3793 folio_put(folio); 3794 goto out; 3795 } 3796 3797 file_end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE) - 1; 3798 if (end_pgoff > file_end) 3799 end_pgoff = file_end; 3800 3801 folio_type = mm_counter_file(folio); 3802 do { 3803 unsigned long end; 3804 3805 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 3806 vmf->pte += xas.xa_index - last_pgoff; 3807 last_pgoff = xas.xa_index; 3808 end = folio_next_index(folio) - 1; 3809 nr_pages = min(end, end_pgoff) - xas.xa_index + 1; 3810 3811 if (!folio_test_large(folio)) 3812 ret |= filemap_map_order0_folio(vmf, 3813 folio, addr, &rss, &mmap_miss); 3814 else 3815 ret |= filemap_map_folio_range(vmf, folio, 3816 xas.xa_index - folio->index, addr, 3817 nr_pages, &rss, &mmap_miss); 3818 3819 folio_unlock(folio); 3820 folio_put(folio); 3821 } while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL); 3822 add_mm_counter(vma->vm_mm, folio_type, rss); 3823 pte_unmap_unlock(vmf->pte, vmf->ptl); 3824 trace_mm_filemap_map_pages(mapping, start_pgoff, end_pgoff); 3825 out: 3826 rcu_read_unlock(); 3827 3828 mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss); 3829 if (mmap_miss >= mmap_miss_saved) 3830 WRITE_ONCE(file->f_ra.mmap_miss, 0); 3831 else 3832 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss); 3833 3834 return ret; 3835 } 3836 EXPORT_SYMBOL(filemap_map_pages); 3837 3838 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3839 { 3840 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 3841 struct folio *folio = page_folio(vmf->page); 3842 vm_fault_t ret = VM_FAULT_LOCKED; 3843 3844 sb_start_pagefault(mapping->host->i_sb); 3845 file_update_time(vmf->vma->vm_file); 3846 folio_lock(folio); 3847 if (folio->mapping != mapping) { 3848 folio_unlock(folio); 3849 ret = VM_FAULT_NOPAGE; 3850 goto out; 3851 } 3852 /* 3853 * We mark the folio dirty already here so that when freeze is in 3854 * progress, we are guaranteed that writeback during freezing will 3855 * see the dirty folio and writeprotect it again. 3856 */ 3857 folio_mark_dirty(folio); 3858 folio_wait_stable(folio); 3859 out: 3860 sb_end_pagefault(mapping->host->i_sb); 3861 return ret; 3862 } 3863 3864 const struct vm_operations_struct generic_file_vm_ops = { 3865 .fault = filemap_fault, 3866 .map_pages = filemap_map_pages, 3867 .page_mkwrite = filemap_page_mkwrite, 3868 }; 3869 3870 /* This is used for a general mmap of a disk file */ 3871 3872 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3873 { 3874 struct address_space *mapping = file->f_mapping; 3875 3876 if (!mapping->a_ops->read_folio) 3877 return -ENOEXEC; 3878 file_accessed(file); 3879 vma->vm_ops = &generic_file_vm_ops; 3880 return 0; 3881 } 3882 3883 /* 3884 * This is for filesystems which do not implement ->writepage. 3885 */ 3886 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3887 { 3888 if (vma_is_shared_maywrite(vma)) 3889 return -EINVAL; 3890 return generic_file_mmap(file, vma); 3891 } 3892 #else 3893 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3894 { 3895 return VM_FAULT_SIGBUS; 3896 } 3897 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3898 { 3899 return -ENOSYS; 3900 } 3901 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3902 { 3903 return -ENOSYS; 3904 } 3905 #endif /* CONFIG_MMU */ 3906 3907 EXPORT_SYMBOL(filemap_page_mkwrite); 3908 EXPORT_SYMBOL(generic_file_mmap); 3909 EXPORT_SYMBOL(generic_file_readonly_mmap); 3910 3911 static struct folio *do_read_cache_folio(struct address_space *mapping, 3912 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp) 3913 { 3914 struct folio *folio; 3915 int err; 3916 3917 if (!filler) 3918 filler = mapping->a_ops->read_folio; 3919 repeat: 3920 folio = filemap_get_folio(mapping, index); 3921 if (IS_ERR(folio)) { 3922 folio = filemap_alloc_folio(gfp, 3923 mapping_min_folio_order(mapping)); 3924 if (!folio) 3925 return ERR_PTR(-ENOMEM); 3926 index = mapping_align_index(mapping, index); 3927 err = filemap_add_folio(mapping, folio, index, gfp); 3928 if (unlikely(err)) { 3929 folio_put(folio); 3930 if (err == -EEXIST) 3931 goto repeat; 3932 /* Presumably ENOMEM for xarray node */ 3933 return ERR_PTR(err); 3934 } 3935 3936 goto filler; 3937 } 3938 if (folio_test_uptodate(folio)) 3939 goto out; 3940 3941 if (!folio_trylock(folio)) { 3942 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE); 3943 goto repeat; 3944 } 3945 3946 /* Folio was truncated from mapping */ 3947 if (!folio->mapping) { 3948 folio_unlock(folio); 3949 folio_put(folio); 3950 goto repeat; 3951 } 3952 3953 /* Someone else locked and filled the page in a very small window */ 3954 if (folio_test_uptodate(folio)) { 3955 folio_unlock(folio); 3956 goto out; 3957 } 3958 3959 filler: 3960 err = filemap_read_folio(file, filler, folio); 3961 if (err) { 3962 folio_put(folio); 3963 if (err == AOP_TRUNCATED_PAGE) 3964 goto repeat; 3965 return ERR_PTR(err); 3966 } 3967 3968 out: 3969 folio_mark_accessed(folio); 3970 return folio; 3971 } 3972 3973 /** 3974 * read_cache_folio - Read into page cache, fill it if needed. 3975 * @mapping: The address_space to read from. 3976 * @index: The index to read. 3977 * @filler: Function to perform the read, or NULL to use aops->read_folio(). 3978 * @file: Passed to filler function, may be NULL if not required. 3979 * 3980 * Read one page into the page cache. If it succeeds, the folio returned 3981 * will contain @index, but it may not be the first page of the folio. 3982 * 3983 * If the filler function returns an error, it will be returned to the 3984 * caller. 3985 * 3986 * Context: May sleep. Expects mapping->invalidate_lock to be held. 3987 * Return: An uptodate folio on success, ERR_PTR() on failure. 3988 */ 3989 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index, 3990 filler_t filler, struct file *file) 3991 { 3992 return do_read_cache_folio(mapping, index, filler, file, 3993 mapping_gfp_mask(mapping)); 3994 } 3995 EXPORT_SYMBOL(read_cache_folio); 3996 3997 /** 3998 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags. 3999 * @mapping: The address_space for the folio. 4000 * @index: The index that the allocated folio will contain. 4001 * @gfp: The page allocator flags to use if allocating. 4002 * 4003 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with 4004 * any new memory allocations done using the specified allocation flags. 4005 * 4006 * The most likely error from this function is EIO, but ENOMEM is 4007 * possible and so is EINTR. If ->read_folio returns another error, 4008 * that will be returned to the caller. 4009 * 4010 * The function expects mapping->invalidate_lock to be already held. 4011 * 4012 * Return: Uptodate folio on success, ERR_PTR() on failure. 4013 */ 4014 struct folio *mapping_read_folio_gfp(struct address_space *mapping, 4015 pgoff_t index, gfp_t gfp) 4016 { 4017 return do_read_cache_folio(mapping, index, NULL, NULL, gfp); 4018 } 4019 EXPORT_SYMBOL(mapping_read_folio_gfp); 4020 4021 static struct page *do_read_cache_page(struct address_space *mapping, 4022 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp) 4023 { 4024 struct folio *folio; 4025 4026 folio = do_read_cache_folio(mapping, index, filler, file, gfp); 4027 if (IS_ERR(folio)) 4028 return &folio->page; 4029 return folio_file_page(folio, index); 4030 } 4031 4032 struct page *read_cache_page(struct address_space *mapping, 4033 pgoff_t index, filler_t *filler, struct file *file) 4034 { 4035 return do_read_cache_page(mapping, index, filler, file, 4036 mapping_gfp_mask(mapping)); 4037 } 4038 EXPORT_SYMBOL(read_cache_page); 4039 4040 /** 4041 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 4042 * @mapping: the page's address_space 4043 * @index: the page index 4044 * @gfp: the page allocator flags to use if allocating 4045 * 4046 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 4047 * any new page allocations done using the specified allocation flags. 4048 * 4049 * If the page does not get brought uptodate, return -EIO. 4050 * 4051 * The function expects mapping->invalidate_lock to be already held. 4052 * 4053 * Return: up to date page on success, ERR_PTR() on failure. 4054 */ 4055 struct page *read_cache_page_gfp(struct address_space *mapping, 4056 pgoff_t index, 4057 gfp_t gfp) 4058 { 4059 return do_read_cache_page(mapping, index, NULL, NULL, gfp); 4060 } 4061 EXPORT_SYMBOL(read_cache_page_gfp); 4062 4063 /* 4064 * Warn about a page cache invalidation failure during a direct I/O write. 4065 */ 4066 static void dio_warn_stale_pagecache(struct file *filp) 4067 { 4068 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 4069 char pathname[128]; 4070 char *path; 4071 4072 errseq_set(&filp->f_mapping->wb_err, -EIO); 4073 if (__ratelimit(&_rs)) { 4074 path = file_path(filp, pathname, sizeof(pathname)); 4075 if (IS_ERR(path)) 4076 path = "(unknown)"; 4077 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); 4078 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, 4079 current->comm); 4080 } 4081 } 4082 4083 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count) 4084 { 4085 struct address_space *mapping = iocb->ki_filp->f_mapping; 4086 4087 if (mapping->nrpages && 4088 invalidate_inode_pages2_range(mapping, 4089 iocb->ki_pos >> PAGE_SHIFT, 4090 (iocb->ki_pos + count - 1) >> PAGE_SHIFT)) 4091 dio_warn_stale_pagecache(iocb->ki_filp); 4092 } 4093 4094 ssize_t 4095 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 4096 { 4097 struct address_space *mapping = iocb->ki_filp->f_mapping; 4098 size_t write_len = iov_iter_count(from); 4099 ssize_t written; 4100 4101 /* 4102 * If a page can not be invalidated, return 0 to fall back 4103 * to buffered write. 4104 */ 4105 written = kiocb_invalidate_pages(iocb, write_len); 4106 if (written) { 4107 if (written == -EBUSY) 4108 return 0; 4109 return written; 4110 } 4111 4112 written = mapping->a_ops->direct_IO(iocb, from); 4113 4114 /* 4115 * Finally, try again to invalidate clean pages which might have been 4116 * cached by non-direct readahead, or faulted in by get_user_pages() 4117 * if the source of the write was an mmap'ed region of the file 4118 * we're writing. Either one is a pretty crazy thing to do, 4119 * so we don't support it 100%. If this invalidation 4120 * fails, tough, the write still worked... 4121 * 4122 * Most of the time we do not need this since dio_complete() will do 4123 * the invalidation for us. However there are some file systems that 4124 * do not end up with dio_complete() being called, so let's not break 4125 * them by removing it completely. 4126 * 4127 * Noticeable example is a blkdev_direct_IO(). 4128 * 4129 * Skip invalidation for async writes or if mapping has no pages. 4130 */ 4131 if (written > 0) { 4132 struct inode *inode = mapping->host; 4133 loff_t pos = iocb->ki_pos; 4134 4135 kiocb_invalidate_post_direct_write(iocb, written); 4136 pos += written; 4137 write_len -= written; 4138 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 4139 i_size_write(inode, pos); 4140 mark_inode_dirty(inode); 4141 } 4142 iocb->ki_pos = pos; 4143 } 4144 if (written != -EIOCBQUEUED) 4145 iov_iter_revert(from, write_len - iov_iter_count(from)); 4146 return written; 4147 } 4148 EXPORT_SYMBOL(generic_file_direct_write); 4149 4150 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i) 4151 { 4152 struct file *file = iocb->ki_filp; 4153 loff_t pos = iocb->ki_pos; 4154 struct address_space *mapping = file->f_mapping; 4155 const struct address_space_operations *a_ops = mapping->a_ops; 4156 size_t chunk = mapping_max_folio_size(mapping); 4157 long status = 0; 4158 ssize_t written = 0; 4159 4160 do { 4161 struct folio *folio; 4162 size_t offset; /* Offset into folio */ 4163 size_t bytes; /* Bytes to write to folio */ 4164 size_t copied; /* Bytes copied from user */ 4165 void *fsdata = NULL; 4166 4167 bytes = iov_iter_count(i); 4168 retry: 4169 offset = pos & (chunk - 1); 4170 bytes = min(chunk - offset, bytes); 4171 balance_dirty_pages_ratelimited(mapping); 4172 4173 /* 4174 * Bring in the user page that we will copy from _first_. 4175 * Otherwise there's a nasty deadlock on copying from the 4176 * same page as we're writing to, without it being marked 4177 * up-to-date. 4178 */ 4179 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) { 4180 status = -EFAULT; 4181 break; 4182 } 4183 4184 if (fatal_signal_pending(current)) { 4185 status = -EINTR; 4186 break; 4187 } 4188 4189 status = a_ops->write_begin(file, mapping, pos, bytes, 4190 &folio, &fsdata); 4191 if (unlikely(status < 0)) 4192 break; 4193 4194 offset = offset_in_folio(folio, pos); 4195 if (bytes > folio_size(folio) - offset) 4196 bytes = folio_size(folio) - offset; 4197 4198 if (mapping_writably_mapped(mapping)) 4199 flush_dcache_folio(folio); 4200 4201 copied = copy_folio_from_iter_atomic(folio, offset, bytes, i); 4202 flush_dcache_folio(folio); 4203 4204 status = a_ops->write_end(file, mapping, pos, bytes, copied, 4205 folio, fsdata); 4206 if (unlikely(status != copied)) { 4207 iov_iter_revert(i, copied - max(status, 0L)); 4208 if (unlikely(status < 0)) 4209 break; 4210 } 4211 cond_resched(); 4212 4213 if (unlikely(status == 0)) { 4214 /* 4215 * A short copy made ->write_end() reject the 4216 * thing entirely. Might be memory poisoning 4217 * halfway through, might be a race with munmap, 4218 * might be severe memory pressure. 4219 */ 4220 if (chunk > PAGE_SIZE) 4221 chunk /= 2; 4222 if (copied) { 4223 bytes = copied; 4224 goto retry; 4225 } 4226 } else { 4227 pos += status; 4228 written += status; 4229 } 4230 } while (iov_iter_count(i)); 4231 4232 if (!written) 4233 return status; 4234 iocb->ki_pos += written; 4235 return written; 4236 } 4237 EXPORT_SYMBOL(generic_perform_write); 4238 4239 /** 4240 * __generic_file_write_iter - write data to a file 4241 * @iocb: IO state structure (file, offset, etc.) 4242 * @from: iov_iter with data to write 4243 * 4244 * This function does all the work needed for actually writing data to a 4245 * file. It does all basic checks, removes SUID from the file, updates 4246 * modification times and calls proper subroutines depending on whether we 4247 * do direct IO or a standard buffered write. 4248 * 4249 * It expects i_rwsem to be grabbed unless we work on a block device or similar 4250 * object which does not need locking at all. 4251 * 4252 * This function does *not* take care of syncing data in case of O_SYNC write. 4253 * A caller has to handle it. This is mainly due to the fact that we want to 4254 * avoid syncing under i_rwsem. 4255 * 4256 * Return: 4257 * * number of bytes written, even for truncated writes 4258 * * negative error code if no data has been written at all 4259 */ 4260 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4261 { 4262 struct file *file = iocb->ki_filp; 4263 struct address_space *mapping = file->f_mapping; 4264 struct inode *inode = mapping->host; 4265 ssize_t ret; 4266 4267 ret = file_remove_privs(file); 4268 if (ret) 4269 return ret; 4270 4271 ret = file_update_time(file); 4272 if (ret) 4273 return ret; 4274 4275 if (iocb->ki_flags & IOCB_DIRECT) { 4276 ret = generic_file_direct_write(iocb, from); 4277 /* 4278 * If the write stopped short of completing, fall back to 4279 * buffered writes. Some filesystems do this for writes to 4280 * holes, for example. For DAX files, a buffered write will 4281 * not succeed (even if it did, DAX does not handle dirty 4282 * page-cache pages correctly). 4283 */ 4284 if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode)) 4285 return ret; 4286 return direct_write_fallback(iocb, from, ret, 4287 generic_perform_write(iocb, from)); 4288 } 4289 4290 return generic_perform_write(iocb, from); 4291 } 4292 EXPORT_SYMBOL(__generic_file_write_iter); 4293 4294 /** 4295 * generic_file_write_iter - write data to a file 4296 * @iocb: IO state structure 4297 * @from: iov_iter with data to write 4298 * 4299 * This is a wrapper around __generic_file_write_iter() to be used by most 4300 * filesystems. It takes care of syncing the file in case of O_SYNC file 4301 * and acquires i_rwsem as needed. 4302 * Return: 4303 * * negative error code if no data has been written at all of 4304 * vfs_fsync_range() failed for a synchronous write 4305 * * number of bytes written, even for truncated writes 4306 */ 4307 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4308 { 4309 struct file *file = iocb->ki_filp; 4310 struct inode *inode = file->f_mapping->host; 4311 ssize_t ret; 4312 4313 inode_lock(inode); 4314 ret = generic_write_checks(iocb, from); 4315 if (ret > 0) 4316 ret = __generic_file_write_iter(iocb, from); 4317 inode_unlock(inode); 4318 4319 if (ret > 0) 4320 ret = generic_write_sync(iocb, ret); 4321 return ret; 4322 } 4323 EXPORT_SYMBOL(generic_file_write_iter); 4324 4325 /** 4326 * filemap_release_folio() - Release fs-specific metadata on a folio. 4327 * @folio: The folio which the kernel is trying to free. 4328 * @gfp: Memory allocation flags (and I/O mode). 4329 * 4330 * The address_space is trying to release any data attached to a folio 4331 * (presumably at folio->private). 4332 * 4333 * This will also be called if the private_2 flag is set on a page, 4334 * indicating that the folio has other metadata associated with it. 4335 * 4336 * The @gfp argument specifies whether I/O may be performed to release 4337 * this page (__GFP_IO), and whether the call may block 4338 * (__GFP_RECLAIM & __GFP_FS). 4339 * 4340 * Return: %true if the release was successful, otherwise %false. 4341 */ 4342 bool filemap_release_folio(struct folio *folio, gfp_t gfp) 4343 { 4344 struct address_space * const mapping = folio->mapping; 4345 4346 BUG_ON(!folio_test_locked(folio)); 4347 if (!folio_needs_release(folio)) 4348 return true; 4349 if (folio_test_writeback(folio)) 4350 return false; 4351 4352 if (mapping && mapping->a_ops->release_folio) 4353 return mapping->a_ops->release_folio(folio, gfp); 4354 return try_to_free_buffers(folio); 4355 } 4356 EXPORT_SYMBOL(filemap_release_folio); 4357 4358 /** 4359 * filemap_invalidate_inode - Invalidate/forcibly write back a range of an inode's pagecache 4360 * @inode: The inode to flush 4361 * @flush: Set to write back rather than simply invalidate. 4362 * @start: First byte to in range. 4363 * @end: Last byte in range (inclusive), or LLONG_MAX for everything from start 4364 * onwards. 4365 * 4366 * Invalidate all the folios on an inode that contribute to the specified 4367 * range, possibly writing them back first. Whilst the operation is 4368 * undertaken, the invalidate lock is held to prevent new folios from being 4369 * installed. 4370 */ 4371 int filemap_invalidate_inode(struct inode *inode, bool flush, 4372 loff_t start, loff_t end) 4373 { 4374 struct address_space *mapping = inode->i_mapping; 4375 pgoff_t first = start >> PAGE_SHIFT; 4376 pgoff_t last = end >> PAGE_SHIFT; 4377 pgoff_t nr = end == LLONG_MAX ? ULONG_MAX : last - first + 1; 4378 4379 if (!mapping || !mapping->nrpages || end < start) 4380 goto out; 4381 4382 /* Prevent new folios from being added to the inode. */ 4383 filemap_invalidate_lock(mapping); 4384 4385 if (!mapping->nrpages) 4386 goto unlock; 4387 4388 unmap_mapping_pages(mapping, first, nr, false); 4389 4390 /* Write back the data if we're asked to. */ 4391 if (flush) { 4392 struct writeback_control wbc = { 4393 .sync_mode = WB_SYNC_ALL, 4394 .nr_to_write = LONG_MAX, 4395 .range_start = start, 4396 .range_end = end, 4397 }; 4398 4399 filemap_fdatawrite_wbc(mapping, &wbc); 4400 } 4401 4402 /* Wait for writeback to complete on all folios and discard. */ 4403 invalidate_inode_pages2_range(mapping, start / PAGE_SIZE, end / PAGE_SIZE); 4404 4405 unlock: 4406 filemap_invalidate_unlock(mapping); 4407 out: 4408 return filemap_check_errors(mapping); 4409 } 4410 EXPORT_SYMBOL_GPL(filemap_invalidate_inode); 4411 4412 #ifdef CONFIG_CACHESTAT_SYSCALL 4413 /** 4414 * filemap_cachestat() - compute the page cache statistics of a mapping 4415 * @mapping: The mapping to compute the statistics for. 4416 * @first_index: The starting page cache index. 4417 * @last_index: The final page index (inclusive). 4418 * @cs: the cachestat struct to write the result to. 4419 * 4420 * This will query the page cache statistics of a mapping in the 4421 * page range of [first_index, last_index] (inclusive). The statistics 4422 * queried include: number of dirty pages, number of pages marked for 4423 * writeback, and the number of (recently) evicted pages. 4424 */ 4425 static void filemap_cachestat(struct address_space *mapping, 4426 pgoff_t first_index, pgoff_t last_index, struct cachestat *cs) 4427 { 4428 XA_STATE(xas, &mapping->i_pages, first_index); 4429 struct folio *folio; 4430 4431 /* Flush stats (and potentially sleep) outside the RCU read section. */ 4432 mem_cgroup_flush_stats_ratelimited(NULL); 4433 4434 rcu_read_lock(); 4435 xas_for_each(&xas, folio, last_index) { 4436 int order; 4437 unsigned long nr_pages; 4438 pgoff_t folio_first_index, folio_last_index; 4439 4440 /* 4441 * Don't deref the folio. It is not pinned, and might 4442 * get freed (and reused) underneath us. 4443 * 4444 * We *could* pin it, but that would be expensive for 4445 * what should be a fast and lightweight syscall. 4446 * 4447 * Instead, derive all information of interest from 4448 * the rcu-protected xarray. 4449 */ 4450 4451 if (xas_retry(&xas, folio)) 4452 continue; 4453 4454 order = xas_get_order(&xas); 4455 nr_pages = 1 << order; 4456 folio_first_index = round_down(xas.xa_index, 1 << order); 4457 folio_last_index = folio_first_index + nr_pages - 1; 4458 4459 /* Folios might straddle the range boundaries, only count covered pages */ 4460 if (folio_first_index < first_index) 4461 nr_pages -= first_index - folio_first_index; 4462 4463 if (folio_last_index > last_index) 4464 nr_pages -= folio_last_index - last_index; 4465 4466 if (xa_is_value(folio)) { 4467 /* page is evicted */ 4468 void *shadow = (void *)folio; 4469 bool workingset; /* not used */ 4470 4471 cs->nr_evicted += nr_pages; 4472 4473 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */ 4474 if (shmem_mapping(mapping)) { 4475 /* shmem file - in swap cache */ 4476 swp_entry_t swp = radix_to_swp_entry(folio); 4477 4478 /* swapin error results in poisoned entry */ 4479 if (non_swap_entry(swp)) 4480 goto resched; 4481 4482 /* 4483 * Getting a swap entry from the shmem 4484 * inode means we beat 4485 * shmem_unuse(). rcu_read_lock() 4486 * ensures swapoff waits for us before 4487 * freeing the swapper space. However, 4488 * we can race with swapping and 4489 * invalidation, so there might not be 4490 * a shadow in the swapcache (yet). 4491 */ 4492 shadow = get_shadow_from_swap_cache(swp); 4493 if (!shadow) 4494 goto resched; 4495 } 4496 #endif 4497 if (workingset_test_recent(shadow, true, &workingset, false)) 4498 cs->nr_recently_evicted += nr_pages; 4499 4500 goto resched; 4501 } 4502 4503 /* page is in cache */ 4504 cs->nr_cache += nr_pages; 4505 4506 if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY)) 4507 cs->nr_dirty += nr_pages; 4508 4509 if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK)) 4510 cs->nr_writeback += nr_pages; 4511 4512 resched: 4513 if (need_resched()) { 4514 xas_pause(&xas); 4515 cond_resched_rcu(); 4516 } 4517 } 4518 rcu_read_unlock(); 4519 } 4520 4521 /* 4522 * See mincore: reveal pagecache information only for files 4523 * that the calling process has write access to, or could (if 4524 * tried) open for writing. 4525 */ 4526 static inline bool can_do_cachestat(struct file *f) 4527 { 4528 if (f->f_mode & FMODE_WRITE) 4529 return true; 4530 if (inode_owner_or_capable(file_mnt_idmap(f), file_inode(f))) 4531 return true; 4532 return file_permission(f, MAY_WRITE) == 0; 4533 } 4534 4535 /* 4536 * The cachestat(2) system call. 4537 * 4538 * cachestat() returns the page cache statistics of a file in the 4539 * bytes range specified by `off` and `len`: number of cached pages, 4540 * number of dirty pages, number of pages marked for writeback, 4541 * number of evicted pages, and number of recently evicted pages. 4542 * 4543 * An evicted page is a page that is previously in the page cache 4544 * but has been evicted since. A page is recently evicted if its last 4545 * eviction was recent enough that its reentry to the cache would 4546 * indicate that it is actively being used by the system, and that 4547 * there is memory pressure on the system. 4548 * 4549 * `off` and `len` must be non-negative integers. If `len` > 0, 4550 * the queried range is [`off`, `off` + `len`]. If `len` == 0, 4551 * we will query in the range from `off` to the end of the file. 4552 * 4553 * The `flags` argument is unused for now, but is included for future 4554 * extensibility. User should pass 0 (i.e no flag specified). 4555 * 4556 * Currently, hugetlbfs is not supported. 4557 * 4558 * Because the status of a page can change after cachestat() checks it 4559 * but before it returns to the application, the returned values may 4560 * contain stale information. 4561 * 4562 * return values: 4563 * zero - success 4564 * -EFAULT - cstat or cstat_range points to an illegal address 4565 * -EINVAL - invalid flags 4566 * -EBADF - invalid file descriptor 4567 * -EOPNOTSUPP - file descriptor is of a hugetlbfs file 4568 */ 4569 SYSCALL_DEFINE4(cachestat, unsigned int, fd, 4570 struct cachestat_range __user *, cstat_range, 4571 struct cachestat __user *, cstat, unsigned int, flags) 4572 { 4573 CLASS(fd, f)(fd); 4574 struct address_space *mapping; 4575 struct cachestat_range csr; 4576 struct cachestat cs; 4577 pgoff_t first_index, last_index; 4578 4579 if (fd_empty(f)) 4580 return -EBADF; 4581 4582 if (copy_from_user(&csr, cstat_range, 4583 sizeof(struct cachestat_range))) 4584 return -EFAULT; 4585 4586 /* hugetlbfs is not supported */ 4587 if (is_file_hugepages(fd_file(f))) 4588 return -EOPNOTSUPP; 4589 4590 if (!can_do_cachestat(fd_file(f))) 4591 return -EPERM; 4592 4593 if (flags != 0) 4594 return -EINVAL; 4595 4596 first_index = csr.off >> PAGE_SHIFT; 4597 last_index = 4598 csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT; 4599 memset(&cs, 0, sizeof(struct cachestat)); 4600 mapping = fd_file(f)->f_mapping; 4601 filemap_cachestat(mapping, first_index, last_index, &cs); 4602 4603 if (copy_to_user(cstat, &cs, sizeof(struct cachestat))) 4604 return -EFAULT; 4605 4606 return 0; 4607 } 4608 #endif /* CONFIG_CACHESTAT_SYSCALL */ 4609