1 /* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12 #include <linux/module.h> 13 #include <linux/compiler.h> 14 #include <linux/fs.h> 15 #include <linux/uaccess.h> 16 #include <linux/aio.h> 17 #include <linux/capability.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/gfp.h> 20 #include <linux/mm.h> 21 #include <linux/swap.h> 22 #include <linux/mman.h> 23 #include <linux/pagemap.h> 24 #include <linux/file.h> 25 #include <linux/uio.h> 26 #include <linux/hash.h> 27 #include <linux/writeback.h> 28 #include <linux/backing-dev.h> 29 #include <linux/pagevec.h> 30 #include <linux/blkdev.h> 31 #include <linux/security.h> 32 #include <linux/syscalls.h> 33 #include <linux/cpuset.h> 34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */ 35 #include <linux/memcontrol.h> 36 #include <linux/mm_inline.h> /* for page_is_file_cache() */ 37 #include "internal.h" 38 39 /* 40 * FIXME: remove all knowledge of the buffer layer from the core VM 41 */ 42 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 43 44 #include <asm/mman.h> 45 46 /* 47 * Shared mappings implemented 30.11.1994. It's not fully working yet, 48 * though. 49 * 50 * Shared mappings now work. 15.8.1995 Bruno. 51 * 52 * finished 'unifying' the page and buffer cache and SMP-threaded the 53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 54 * 55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 56 */ 57 58 /* 59 * Lock ordering: 60 * 61 * ->i_mmap_lock (truncate_pagecache) 62 * ->private_lock (__free_pte->__set_page_dirty_buffers) 63 * ->swap_lock (exclusive_swap_page, others) 64 * ->mapping->tree_lock 65 * 66 * ->i_mutex 67 * ->i_mmap_lock (truncate->unmap_mapping_range) 68 * 69 * ->mmap_sem 70 * ->i_mmap_lock 71 * ->page_table_lock or pte_lock (various, mainly in memory.c) 72 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) 73 * 74 * ->mmap_sem 75 * ->lock_page (access_process_vm) 76 * 77 * ->i_mutex (generic_file_buffered_write) 78 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 79 * 80 * ->i_mutex 81 * ->i_alloc_sem (various) 82 * 83 * inode_wb_list_lock 84 * sb_lock (fs/fs-writeback.c) 85 * ->mapping->tree_lock (__sync_single_inode) 86 * 87 * ->i_mmap_lock 88 * ->anon_vma.lock (vma_adjust) 89 * 90 * ->anon_vma.lock 91 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 92 * 93 * ->page_table_lock or pte_lock 94 * ->swap_lock (try_to_unmap_one) 95 * ->private_lock (try_to_unmap_one) 96 * ->tree_lock (try_to_unmap_one) 97 * ->zone.lru_lock (follow_page->mark_page_accessed) 98 * ->zone.lru_lock (check_pte_range->isolate_lru_page) 99 * ->private_lock (page_remove_rmap->set_page_dirty) 100 * ->tree_lock (page_remove_rmap->set_page_dirty) 101 * inode_wb_list_lock (page_remove_rmap->set_page_dirty) 102 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 103 * inode_wb_list_lock (zap_pte_range->set_page_dirty) 104 * ->inode->i_lock (zap_pte_range->set_page_dirty) 105 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 106 * 107 * (code doesn't rely on that order, so you could switch it around) 108 * ->tasklist_lock (memory_failure, collect_procs_ao) 109 * ->i_mmap_lock 110 */ 111 112 /* 113 * Delete a page from the page cache and free it. Caller has to make 114 * sure the page is locked and that nobody else uses it - or that usage 115 * is safe. The caller must hold the mapping's tree_lock. 116 */ 117 void __delete_from_page_cache(struct page *page) 118 { 119 struct address_space *mapping = page->mapping; 120 121 radix_tree_delete(&mapping->page_tree, page->index); 122 page->mapping = NULL; 123 mapping->nrpages--; 124 __dec_zone_page_state(page, NR_FILE_PAGES); 125 if (PageSwapBacked(page)) 126 __dec_zone_page_state(page, NR_SHMEM); 127 BUG_ON(page_mapped(page)); 128 129 /* 130 * Some filesystems seem to re-dirty the page even after 131 * the VM has canceled the dirty bit (eg ext3 journaling). 132 * 133 * Fix it up by doing a final dirty accounting check after 134 * having removed the page entirely. 135 */ 136 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) { 137 dec_zone_page_state(page, NR_FILE_DIRTY); 138 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); 139 } 140 } 141 142 /** 143 * delete_from_page_cache - delete page from page cache 144 * @page: the page which the kernel is trying to remove from page cache 145 * 146 * This must be called only on pages that have been verified to be in the page 147 * cache and locked. It will never put the page into the free list, the caller 148 * has a reference on the page. 149 */ 150 void delete_from_page_cache(struct page *page) 151 { 152 struct address_space *mapping = page->mapping; 153 void (*freepage)(struct page *); 154 155 BUG_ON(!PageLocked(page)); 156 157 freepage = mapping->a_ops->freepage; 158 spin_lock_irq(&mapping->tree_lock); 159 __delete_from_page_cache(page); 160 spin_unlock_irq(&mapping->tree_lock); 161 mem_cgroup_uncharge_cache_page(page); 162 163 if (freepage) 164 freepage(page); 165 page_cache_release(page); 166 } 167 EXPORT_SYMBOL(delete_from_page_cache); 168 169 static int sleep_on_page(void *word) 170 { 171 io_schedule(); 172 return 0; 173 } 174 175 static int sleep_on_page_killable(void *word) 176 { 177 sleep_on_page(word); 178 return fatal_signal_pending(current) ? -EINTR : 0; 179 } 180 181 /** 182 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 183 * @mapping: address space structure to write 184 * @start: offset in bytes where the range starts 185 * @end: offset in bytes where the range ends (inclusive) 186 * @sync_mode: enable synchronous operation 187 * 188 * Start writeback against all of a mapping's dirty pages that lie 189 * within the byte offsets <start, end> inclusive. 190 * 191 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 192 * opposed to a regular memory cleansing writeback. The difference between 193 * these two operations is that if a dirty page/buffer is encountered, it must 194 * be waited upon, and not just skipped over. 195 */ 196 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 197 loff_t end, int sync_mode) 198 { 199 int ret; 200 struct writeback_control wbc = { 201 .sync_mode = sync_mode, 202 .nr_to_write = LONG_MAX, 203 .range_start = start, 204 .range_end = end, 205 }; 206 207 if (!mapping_cap_writeback_dirty(mapping)) 208 return 0; 209 210 ret = do_writepages(mapping, &wbc); 211 return ret; 212 } 213 214 static inline int __filemap_fdatawrite(struct address_space *mapping, 215 int sync_mode) 216 { 217 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 218 } 219 220 int filemap_fdatawrite(struct address_space *mapping) 221 { 222 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 223 } 224 EXPORT_SYMBOL(filemap_fdatawrite); 225 226 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 227 loff_t end) 228 { 229 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 230 } 231 EXPORT_SYMBOL(filemap_fdatawrite_range); 232 233 /** 234 * filemap_flush - mostly a non-blocking flush 235 * @mapping: target address_space 236 * 237 * This is a mostly non-blocking flush. Not suitable for data-integrity 238 * purposes - I/O may not be started against all dirty pages. 239 */ 240 int filemap_flush(struct address_space *mapping) 241 { 242 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 243 } 244 EXPORT_SYMBOL(filemap_flush); 245 246 /** 247 * filemap_fdatawait_range - wait for writeback to complete 248 * @mapping: address space structure to wait for 249 * @start_byte: offset in bytes where the range starts 250 * @end_byte: offset in bytes where the range ends (inclusive) 251 * 252 * Walk the list of under-writeback pages of the given address space 253 * in the given range and wait for all of them. 254 */ 255 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 256 loff_t end_byte) 257 { 258 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT; 259 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT; 260 struct pagevec pvec; 261 int nr_pages; 262 int ret = 0; 263 264 if (end_byte < start_byte) 265 return 0; 266 267 pagevec_init(&pvec, 0); 268 while ((index <= end) && 269 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 270 PAGECACHE_TAG_WRITEBACK, 271 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { 272 unsigned i; 273 274 for (i = 0; i < nr_pages; i++) { 275 struct page *page = pvec.pages[i]; 276 277 /* until radix tree lookup accepts end_index */ 278 if (page->index > end) 279 continue; 280 281 wait_on_page_writeback(page); 282 if (TestClearPageError(page)) 283 ret = -EIO; 284 } 285 pagevec_release(&pvec); 286 cond_resched(); 287 } 288 289 /* Check for outstanding write errors */ 290 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 291 ret = -ENOSPC; 292 if (test_and_clear_bit(AS_EIO, &mapping->flags)) 293 ret = -EIO; 294 295 return ret; 296 } 297 EXPORT_SYMBOL(filemap_fdatawait_range); 298 299 /** 300 * filemap_fdatawait - wait for all under-writeback pages to complete 301 * @mapping: address space structure to wait for 302 * 303 * Walk the list of under-writeback pages of the given address space 304 * and wait for all of them. 305 */ 306 int filemap_fdatawait(struct address_space *mapping) 307 { 308 loff_t i_size = i_size_read(mapping->host); 309 310 if (i_size == 0) 311 return 0; 312 313 return filemap_fdatawait_range(mapping, 0, i_size - 1); 314 } 315 EXPORT_SYMBOL(filemap_fdatawait); 316 317 int filemap_write_and_wait(struct address_space *mapping) 318 { 319 int err = 0; 320 321 if (mapping->nrpages) { 322 err = filemap_fdatawrite(mapping); 323 /* 324 * Even if the above returned error, the pages may be 325 * written partially (e.g. -ENOSPC), so we wait for it. 326 * But the -EIO is special case, it may indicate the worst 327 * thing (e.g. bug) happened, so we avoid waiting for it. 328 */ 329 if (err != -EIO) { 330 int err2 = filemap_fdatawait(mapping); 331 if (!err) 332 err = err2; 333 } 334 } 335 return err; 336 } 337 EXPORT_SYMBOL(filemap_write_and_wait); 338 339 /** 340 * filemap_write_and_wait_range - write out & wait on a file range 341 * @mapping: the address_space for the pages 342 * @lstart: offset in bytes where the range starts 343 * @lend: offset in bytes where the range ends (inclusive) 344 * 345 * Write out and wait upon file offsets lstart->lend, inclusive. 346 * 347 * Note that `lend' is inclusive (describes the last byte to be written) so 348 * that this function can be used to write to the very end-of-file (end = -1). 349 */ 350 int filemap_write_and_wait_range(struct address_space *mapping, 351 loff_t lstart, loff_t lend) 352 { 353 int err = 0; 354 355 if (mapping->nrpages) { 356 err = __filemap_fdatawrite_range(mapping, lstart, lend, 357 WB_SYNC_ALL); 358 /* See comment of filemap_write_and_wait() */ 359 if (err != -EIO) { 360 int err2 = filemap_fdatawait_range(mapping, 361 lstart, lend); 362 if (!err) 363 err = err2; 364 } 365 } 366 return err; 367 } 368 EXPORT_SYMBOL(filemap_write_and_wait_range); 369 370 /** 371 * replace_page_cache_page - replace a pagecache page with a new one 372 * @old: page to be replaced 373 * @new: page to replace with 374 * @gfp_mask: allocation mode 375 * 376 * This function replaces a page in the pagecache with a new one. On 377 * success it acquires the pagecache reference for the new page and 378 * drops it for the old page. Both the old and new pages must be 379 * locked. This function does not add the new page to the LRU, the 380 * caller must do that. 381 * 382 * The remove + add is atomic. The only way this function can fail is 383 * memory allocation failure. 384 */ 385 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) 386 { 387 int error; 388 struct mem_cgroup *memcg = NULL; 389 390 VM_BUG_ON(!PageLocked(old)); 391 VM_BUG_ON(!PageLocked(new)); 392 VM_BUG_ON(new->mapping); 393 394 /* 395 * This is not page migration, but prepare_migration and 396 * end_migration does enough work for charge replacement. 397 * 398 * In the longer term we probably want a specialized function 399 * for moving the charge from old to new in a more efficient 400 * manner. 401 */ 402 error = mem_cgroup_prepare_migration(old, new, &memcg, gfp_mask); 403 if (error) 404 return error; 405 406 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 407 if (!error) { 408 struct address_space *mapping = old->mapping; 409 void (*freepage)(struct page *); 410 411 pgoff_t offset = old->index; 412 freepage = mapping->a_ops->freepage; 413 414 page_cache_get(new); 415 new->mapping = mapping; 416 new->index = offset; 417 418 spin_lock_irq(&mapping->tree_lock); 419 __delete_from_page_cache(old); 420 error = radix_tree_insert(&mapping->page_tree, offset, new); 421 BUG_ON(error); 422 mapping->nrpages++; 423 __inc_zone_page_state(new, NR_FILE_PAGES); 424 if (PageSwapBacked(new)) 425 __inc_zone_page_state(new, NR_SHMEM); 426 spin_unlock_irq(&mapping->tree_lock); 427 radix_tree_preload_end(); 428 if (freepage) 429 freepage(old); 430 page_cache_release(old); 431 mem_cgroup_end_migration(memcg, old, new, true); 432 } else { 433 mem_cgroup_end_migration(memcg, old, new, false); 434 } 435 436 return error; 437 } 438 EXPORT_SYMBOL_GPL(replace_page_cache_page); 439 440 /** 441 * add_to_page_cache_locked - add a locked page to the pagecache 442 * @page: page to add 443 * @mapping: the page's address_space 444 * @offset: page index 445 * @gfp_mask: page allocation mode 446 * 447 * This function is used to add a page to the pagecache. It must be locked. 448 * This function does not add the page to the LRU. The caller must do that. 449 */ 450 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 451 pgoff_t offset, gfp_t gfp_mask) 452 { 453 int error; 454 455 VM_BUG_ON(!PageLocked(page)); 456 457 error = mem_cgroup_cache_charge(page, current->mm, 458 gfp_mask & GFP_RECLAIM_MASK); 459 if (error) 460 goto out; 461 462 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 463 if (error == 0) { 464 page_cache_get(page); 465 page->mapping = mapping; 466 page->index = offset; 467 468 spin_lock_irq(&mapping->tree_lock); 469 error = radix_tree_insert(&mapping->page_tree, offset, page); 470 if (likely(!error)) { 471 mapping->nrpages++; 472 __inc_zone_page_state(page, NR_FILE_PAGES); 473 if (PageSwapBacked(page)) 474 __inc_zone_page_state(page, NR_SHMEM); 475 spin_unlock_irq(&mapping->tree_lock); 476 } else { 477 page->mapping = NULL; 478 spin_unlock_irq(&mapping->tree_lock); 479 mem_cgroup_uncharge_cache_page(page); 480 page_cache_release(page); 481 } 482 radix_tree_preload_end(); 483 } else 484 mem_cgroup_uncharge_cache_page(page); 485 out: 486 return error; 487 } 488 EXPORT_SYMBOL(add_to_page_cache_locked); 489 490 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 491 pgoff_t offset, gfp_t gfp_mask) 492 { 493 int ret; 494 495 /* 496 * Splice_read and readahead add shmem/tmpfs pages into the page cache 497 * before shmem_readpage has a chance to mark them as SwapBacked: they 498 * need to go on the anon lru below, and mem_cgroup_cache_charge 499 * (called in add_to_page_cache) needs to know where they're going too. 500 */ 501 if (mapping_cap_swap_backed(mapping)) 502 SetPageSwapBacked(page); 503 504 ret = add_to_page_cache(page, mapping, offset, gfp_mask); 505 if (ret == 0) { 506 if (page_is_file_cache(page)) 507 lru_cache_add_file(page); 508 else 509 lru_cache_add_anon(page); 510 } 511 return ret; 512 } 513 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 514 515 #ifdef CONFIG_NUMA 516 struct page *__page_cache_alloc(gfp_t gfp) 517 { 518 int n; 519 struct page *page; 520 521 if (cpuset_do_page_mem_spread()) { 522 get_mems_allowed(); 523 n = cpuset_mem_spread_node(); 524 page = alloc_pages_exact_node(n, gfp, 0); 525 put_mems_allowed(); 526 return page; 527 } 528 return alloc_pages(gfp, 0); 529 } 530 EXPORT_SYMBOL(__page_cache_alloc); 531 #endif 532 533 /* 534 * In order to wait for pages to become available there must be 535 * waitqueues associated with pages. By using a hash table of 536 * waitqueues where the bucket discipline is to maintain all 537 * waiters on the same queue and wake all when any of the pages 538 * become available, and for the woken contexts to check to be 539 * sure the appropriate page became available, this saves space 540 * at a cost of "thundering herd" phenomena during rare hash 541 * collisions. 542 */ 543 static wait_queue_head_t *page_waitqueue(struct page *page) 544 { 545 const struct zone *zone = page_zone(page); 546 547 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)]; 548 } 549 550 static inline void wake_up_page(struct page *page, int bit) 551 { 552 __wake_up_bit(page_waitqueue(page), &page->flags, bit); 553 } 554 555 void wait_on_page_bit(struct page *page, int bit_nr) 556 { 557 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 558 559 if (test_bit(bit_nr, &page->flags)) 560 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page, 561 TASK_UNINTERRUPTIBLE); 562 } 563 EXPORT_SYMBOL(wait_on_page_bit); 564 565 /** 566 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 567 * @page: Page defining the wait queue of interest 568 * @waiter: Waiter to add to the queue 569 * 570 * Add an arbitrary @waiter to the wait queue for the nominated @page. 571 */ 572 void add_page_wait_queue(struct page *page, wait_queue_t *waiter) 573 { 574 wait_queue_head_t *q = page_waitqueue(page); 575 unsigned long flags; 576 577 spin_lock_irqsave(&q->lock, flags); 578 __add_wait_queue(q, waiter); 579 spin_unlock_irqrestore(&q->lock, flags); 580 } 581 EXPORT_SYMBOL_GPL(add_page_wait_queue); 582 583 /** 584 * unlock_page - unlock a locked page 585 * @page: the page 586 * 587 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 588 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 589 * mechananism between PageLocked pages and PageWriteback pages is shared. 590 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 591 * 592 * The mb is necessary to enforce ordering between the clear_bit and the read 593 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()). 594 */ 595 void unlock_page(struct page *page) 596 { 597 VM_BUG_ON(!PageLocked(page)); 598 clear_bit_unlock(PG_locked, &page->flags); 599 smp_mb__after_clear_bit(); 600 wake_up_page(page, PG_locked); 601 } 602 EXPORT_SYMBOL(unlock_page); 603 604 /** 605 * end_page_writeback - end writeback against a page 606 * @page: the page 607 */ 608 void end_page_writeback(struct page *page) 609 { 610 if (TestClearPageReclaim(page)) 611 rotate_reclaimable_page(page); 612 613 if (!test_clear_page_writeback(page)) 614 BUG(); 615 616 smp_mb__after_clear_bit(); 617 wake_up_page(page, PG_writeback); 618 } 619 EXPORT_SYMBOL(end_page_writeback); 620 621 /** 622 * __lock_page - get a lock on the page, assuming we need to sleep to get it 623 * @page: the page to lock 624 */ 625 void __lock_page(struct page *page) 626 { 627 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 628 629 __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page, 630 TASK_UNINTERRUPTIBLE); 631 } 632 EXPORT_SYMBOL(__lock_page); 633 634 int __lock_page_killable(struct page *page) 635 { 636 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 637 638 return __wait_on_bit_lock(page_waitqueue(page), &wait, 639 sleep_on_page_killable, TASK_KILLABLE); 640 } 641 EXPORT_SYMBOL_GPL(__lock_page_killable); 642 643 int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 644 unsigned int flags) 645 { 646 if (!(flags & FAULT_FLAG_ALLOW_RETRY)) { 647 __lock_page(page); 648 return 1; 649 } else { 650 if (!(flags & FAULT_FLAG_RETRY_NOWAIT)) { 651 up_read(&mm->mmap_sem); 652 wait_on_page_locked(page); 653 } 654 return 0; 655 } 656 } 657 658 /** 659 * find_get_page - find and get a page reference 660 * @mapping: the address_space to search 661 * @offset: the page index 662 * 663 * Is there a pagecache struct page at the given (mapping, offset) tuple? 664 * If yes, increment its refcount and return it; if no, return NULL. 665 */ 666 struct page *find_get_page(struct address_space *mapping, pgoff_t offset) 667 { 668 void **pagep; 669 struct page *page; 670 671 rcu_read_lock(); 672 repeat: 673 page = NULL; 674 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset); 675 if (pagep) { 676 page = radix_tree_deref_slot(pagep); 677 if (unlikely(!page)) 678 goto out; 679 if (radix_tree_deref_retry(page)) 680 goto repeat; 681 682 if (!page_cache_get_speculative(page)) 683 goto repeat; 684 685 /* 686 * Has the page moved? 687 * This is part of the lockless pagecache protocol. See 688 * include/linux/pagemap.h for details. 689 */ 690 if (unlikely(page != *pagep)) { 691 page_cache_release(page); 692 goto repeat; 693 } 694 } 695 out: 696 rcu_read_unlock(); 697 698 return page; 699 } 700 EXPORT_SYMBOL(find_get_page); 701 702 /** 703 * find_lock_page - locate, pin and lock a pagecache page 704 * @mapping: the address_space to search 705 * @offset: the page index 706 * 707 * Locates the desired pagecache page, locks it, increments its reference 708 * count and returns its address. 709 * 710 * Returns zero if the page was not present. find_lock_page() may sleep. 711 */ 712 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset) 713 { 714 struct page *page; 715 716 repeat: 717 page = find_get_page(mapping, offset); 718 if (page) { 719 lock_page(page); 720 /* Has the page been truncated? */ 721 if (unlikely(page->mapping != mapping)) { 722 unlock_page(page); 723 page_cache_release(page); 724 goto repeat; 725 } 726 VM_BUG_ON(page->index != offset); 727 } 728 return page; 729 } 730 EXPORT_SYMBOL(find_lock_page); 731 732 /** 733 * find_or_create_page - locate or add a pagecache page 734 * @mapping: the page's address_space 735 * @index: the page's index into the mapping 736 * @gfp_mask: page allocation mode 737 * 738 * Locates a page in the pagecache. If the page is not present, a new page 739 * is allocated using @gfp_mask and is added to the pagecache and to the VM's 740 * LRU list. The returned page is locked and has its reference count 741 * incremented. 742 * 743 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic 744 * allocation! 745 * 746 * find_or_create_page() returns the desired page's address, or zero on 747 * memory exhaustion. 748 */ 749 struct page *find_or_create_page(struct address_space *mapping, 750 pgoff_t index, gfp_t gfp_mask) 751 { 752 struct page *page; 753 int err; 754 repeat: 755 page = find_lock_page(mapping, index); 756 if (!page) { 757 page = __page_cache_alloc(gfp_mask); 758 if (!page) 759 return NULL; 760 /* 761 * We want a regular kernel memory (not highmem or DMA etc) 762 * allocation for the radix tree nodes, but we need to honour 763 * the context-specific requirements the caller has asked for. 764 * GFP_RECLAIM_MASK collects those requirements. 765 */ 766 err = add_to_page_cache_lru(page, mapping, index, 767 (gfp_mask & GFP_RECLAIM_MASK)); 768 if (unlikely(err)) { 769 page_cache_release(page); 770 page = NULL; 771 if (err == -EEXIST) 772 goto repeat; 773 } 774 } 775 return page; 776 } 777 EXPORT_SYMBOL(find_or_create_page); 778 779 /** 780 * find_get_pages - gang pagecache lookup 781 * @mapping: The address_space to search 782 * @start: The starting page index 783 * @nr_pages: The maximum number of pages 784 * @pages: Where the resulting pages are placed 785 * 786 * find_get_pages() will search for and return a group of up to 787 * @nr_pages pages in the mapping. The pages are placed at @pages. 788 * find_get_pages() takes a reference against the returned pages. 789 * 790 * The search returns a group of mapping-contiguous pages with ascending 791 * indexes. There may be holes in the indices due to not-present pages. 792 * 793 * find_get_pages() returns the number of pages which were found. 794 */ 795 unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 796 unsigned int nr_pages, struct page **pages) 797 { 798 unsigned int i; 799 unsigned int ret; 800 unsigned int nr_found; 801 802 rcu_read_lock(); 803 restart: 804 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree, 805 (void ***)pages, start, nr_pages); 806 ret = 0; 807 for (i = 0; i < nr_found; i++) { 808 struct page *page; 809 repeat: 810 page = radix_tree_deref_slot((void **)pages[i]); 811 if (unlikely(!page)) 812 continue; 813 814 /* 815 * This can only trigger when the entry at index 0 moves out 816 * of or back to the root: none yet gotten, safe to restart. 817 */ 818 if (radix_tree_deref_retry(page)) { 819 WARN_ON(start | i); 820 goto restart; 821 } 822 823 if (!page_cache_get_speculative(page)) 824 goto repeat; 825 826 /* Has the page moved? */ 827 if (unlikely(page != *((void **)pages[i]))) { 828 page_cache_release(page); 829 goto repeat; 830 } 831 832 pages[ret] = page; 833 ret++; 834 } 835 836 /* 837 * If all entries were removed before we could secure them, 838 * try again, because callers stop trying once 0 is returned. 839 */ 840 if (unlikely(!ret && nr_found)) 841 goto restart; 842 rcu_read_unlock(); 843 return ret; 844 } 845 846 /** 847 * find_get_pages_contig - gang contiguous pagecache lookup 848 * @mapping: The address_space to search 849 * @index: The starting page index 850 * @nr_pages: The maximum number of pages 851 * @pages: Where the resulting pages are placed 852 * 853 * find_get_pages_contig() works exactly like find_get_pages(), except 854 * that the returned number of pages are guaranteed to be contiguous. 855 * 856 * find_get_pages_contig() returns the number of pages which were found. 857 */ 858 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 859 unsigned int nr_pages, struct page **pages) 860 { 861 unsigned int i; 862 unsigned int ret; 863 unsigned int nr_found; 864 865 rcu_read_lock(); 866 restart: 867 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree, 868 (void ***)pages, index, nr_pages); 869 ret = 0; 870 for (i = 0; i < nr_found; i++) { 871 struct page *page; 872 repeat: 873 page = radix_tree_deref_slot((void **)pages[i]); 874 if (unlikely(!page)) 875 continue; 876 877 /* 878 * This can only trigger when the entry at index 0 moves out 879 * of or back to the root: none yet gotten, safe to restart. 880 */ 881 if (radix_tree_deref_retry(page)) 882 goto restart; 883 884 if (!page_cache_get_speculative(page)) 885 goto repeat; 886 887 /* Has the page moved? */ 888 if (unlikely(page != *((void **)pages[i]))) { 889 page_cache_release(page); 890 goto repeat; 891 } 892 893 /* 894 * must check mapping and index after taking the ref. 895 * otherwise we can get both false positives and false 896 * negatives, which is just confusing to the caller. 897 */ 898 if (page->mapping == NULL || page->index != index) { 899 page_cache_release(page); 900 break; 901 } 902 903 pages[ret] = page; 904 ret++; 905 index++; 906 } 907 rcu_read_unlock(); 908 return ret; 909 } 910 EXPORT_SYMBOL(find_get_pages_contig); 911 912 /** 913 * find_get_pages_tag - find and return pages that match @tag 914 * @mapping: the address_space to search 915 * @index: the starting page index 916 * @tag: the tag index 917 * @nr_pages: the maximum number of pages 918 * @pages: where the resulting pages are placed 919 * 920 * Like find_get_pages, except we only return pages which are tagged with 921 * @tag. We update @index to index the next page for the traversal. 922 */ 923 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 924 int tag, unsigned int nr_pages, struct page **pages) 925 { 926 unsigned int i; 927 unsigned int ret; 928 unsigned int nr_found; 929 930 rcu_read_lock(); 931 restart: 932 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree, 933 (void ***)pages, *index, nr_pages, tag); 934 ret = 0; 935 for (i = 0; i < nr_found; i++) { 936 struct page *page; 937 repeat: 938 page = radix_tree_deref_slot((void **)pages[i]); 939 if (unlikely(!page)) 940 continue; 941 942 /* 943 * This can only trigger when the entry at index 0 moves out 944 * of or back to the root: none yet gotten, safe to restart. 945 */ 946 if (radix_tree_deref_retry(page)) 947 goto restart; 948 949 if (!page_cache_get_speculative(page)) 950 goto repeat; 951 952 /* Has the page moved? */ 953 if (unlikely(page != *((void **)pages[i]))) { 954 page_cache_release(page); 955 goto repeat; 956 } 957 958 pages[ret] = page; 959 ret++; 960 } 961 962 /* 963 * If all entries were removed before we could secure them, 964 * try again, because callers stop trying once 0 is returned. 965 */ 966 if (unlikely(!ret && nr_found)) 967 goto restart; 968 rcu_read_unlock(); 969 970 if (ret) 971 *index = pages[ret - 1]->index + 1; 972 973 return ret; 974 } 975 EXPORT_SYMBOL(find_get_pages_tag); 976 977 /** 978 * grab_cache_page_nowait - returns locked page at given index in given cache 979 * @mapping: target address_space 980 * @index: the page index 981 * 982 * Same as grab_cache_page(), but do not wait if the page is unavailable. 983 * This is intended for speculative data generators, where the data can 984 * be regenerated if the page couldn't be grabbed. This routine should 985 * be safe to call while holding the lock for another page. 986 * 987 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 988 * and deadlock against the caller's locked page. 989 */ 990 struct page * 991 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index) 992 { 993 struct page *page = find_get_page(mapping, index); 994 995 if (page) { 996 if (trylock_page(page)) 997 return page; 998 page_cache_release(page); 999 return NULL; 1000 } 1001 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS); 1002 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) { 1003 page_cache_release(page); 1004 page = NULL; 1005 } 1006 return page; 1007 } 1008 EXPORT_SYMBOL(grab_cache_page_nowait); 1009 1010 /* 1011 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 1012 * a _large_ part of the i/o request. Imagine the worst scenario: 1013 * 1014 * ---R__________________________________________B__________ 1015 * ^ reading here ^ bad block(assume 4k) 1016 * 1017 * read(R) => miss => readahead(R...B) => media error => frustrating retries 1018 * => failing the whole request => read(R) => read(R+1) => 1019 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 1020 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 1021 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 1022 * 1023 * It is going insane. Fix it by quickly scaling down the readahead size. 1024 */ 1025 static void shrink_readahead_size_eio(struct file *filp, 1026 struct file_ra_state *ra) 1027 { 1028 ra->ra_pages /= 4; 1029 } 1030 1031 /** 1032 * do_generic_file_read - generic file read routine 1033 * @filp: the file to read 1034 * @ppos: current file position 1035 * @desc: read_descriptor 1036 * @actor: read method 1037 * 1038 * This is a generic file read routine, and uses the 1039 * mapping->a_ops->readpage() function for the actual low-level stuff. 1040 * 1041 * This is really ugly. But the goto's actually try to clarify some 1042 * of the logic when it comes to error handling etc. 1043 */ 1044 static void do_generic_file_read(struct file *filp, loff_t *ppos, 1045 read_descriptor_t *desc, read_actor_t actor) 1046 { 1047 struct address_space *mapping = filp->f_mapping; 1048 struct inode *inode = mapping->host; 1049 struct file_ra_state *ra = &filp->f_ra; 1050 pgoff_t index; 1051 pgoff_t last_index; 1052 pgoff_t prev_index; 1053 unsigned long offset; /* offset into pagecache page */ 1054 unsigned int prev_offset; 1055 int error; 1056 1057 index = *ppos >> PAGE_CACHE_SHIFT; 1058 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT; 1059 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1); 1060 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; 1061 offset = *ppos & ~PAGE_CACHE_MASK; 1062 1063 for (;;) { 1064 struct page *page; 1065 pgoff_t end_index; 1066 loff_t isize; 1067 unsigned long nr, ret; 1068 1069 cond_resched(); 1070 find_page: 1071 page = find_get_page(mapping, index); 1072 if (!page) { 1073 page_cache_sync_readahead(mapping, 1074 ra, filp, 1075 index, last_index - index); 1076 page = find_get_page(mapping, index); 1077 if (unlikely(page == NULL)) 1078 goto no_cached_page; 1079 } 1080 if (PageReadahead(page)) { 1081 page_cache_async_readahead(mapping, 1082 ra, filp, page, 1083 index, last_index - index); 1084 } 1085 if (!PageUptodate(page)) { 1086 if (inode->i_blkbits == PAGE_CACHE_SHIFT || 1087 !mapping->a_ops->is_partially_uptodate) 1088 goto page_not_up_to_date; 1089 if (!trylock_page(page)) 1090 goto page_not_up_to_date; 1091 /* Did it get truncated before we got the lock? */ 1092 if (!page->mapping) 1093 goto page_not_up_to_date_locked; 1094 if (!mapping->a_ops->is_partially_uptodate(page, 1095 desc, offset)) 1096 goto page_not_up_to_date_locked; 1097 unlock_page(page); 1098 } 1099 page_ok: 1100 /* 1101 * i_size must be checked after we know the page is Uptodate. 1102 * 1103 * Checking i_size after the check allows us to calculate 1104 * the correct value for "nr", which means the zero-filled 1105 * part of the page is not copied back to userspace (unless 1106 * another truncate extends the file - this is desired though). 1107 */ 1108 1109 isize = i_size_read(inode); 1110 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1111 if (unlikely(!isize || index > end_index)) { 1112 page_cache_release(page); 1113 goto out; 1114 } 1115 1116 /* nr is the maximum number of bytes to copy from this page */ 1117 nr = PAGE_CACHE_SIZE; 1118 if (index == end_index) { 1119 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 1120 if (nr <= offset) { 1121 page_cache_release(page); 1122 goto out; 1123 } 1124 } 1125 nr = nr - offset; 1126 1127 /* If users can be writing to this page using arbitrary 1128 * virtual addresses, take care about potential aliasing 1129 * before reading the page on the kernel side. 1130 */ 1131 if (mapping_writably_mapped(mapping)) 1132 flush_dcache_page(page); 1133 1134 /* 1135 * When a sequential read accesses a page several times, 1136 * only mark it as accessed the first time. 1137 */ 1138 if (prev_index != index || offset != prev_offset) 1139 mark_page_accessed(page); 1140 prev_index = index; 1141 1142 /* 1143 * Ok, we have the page, and it's up-to-date, so 1144 * now we can copy it to user space... 1145 * 1146 * The actor routine returns how many bytes were actually used.. 1147 * NOTE! This may not be the same as how much of a user buffer 1148 * we filled up (we may be padding etc), so we can only update 1149 * "pos" here (the actor routine has to update the user buffer 1150 * pointers and the remaining count). 1151 */ 1152 ret = actor(desc, page, offset, nr); 1153 offset += ret; 1154 index += offset >> PAGE_CACHE_SHIFT; 1155 offset &= ~PAGE_CACHE_MASK; 1156 prev_offset = offset; 1157 1158 page_cache_release(page); 1159 if (ret == nr && desc->count) 1160 continue; 1161 goto out; 1162 1163 page_not_up_to_date: 1164 /* Get exclusive access to the page ... */ 1165 error = lock_page_killable(page); 1166 if (unlikely(error)) 1167 goto readpage_error; 1168 1169 page_not_up_to_date_locked: 1170 /* Did it get truncated before we got the lock? */ 1171 if (!page->mapping) { 1172 unlock_page(page); 1173 page_cache_release(page); 1174 continue; 1175 } 1176 1177 /* Did somebody else fill it already? */ 1178 if (PageUptodate(page)) { 1179 unlock_page(page); 1180 goto page_ok; 1181 } 1182 1183 readpage: 1184 /* 1185 * A previous I/O error may have been due to temporary 1186 * failures, eg. multipath errors. 1187 * PG_error will be set again if readpage fails. 1188 */ 1189 ClearPageError(page); 1190 /* Start the actual read. The read will unlock the page. */ 1191 error = mapping->a_ops->readpage(filp, page); 1192 1193 if (unlikely(error)) { 1194 if (error == AOP_TRUNCATED_PAGE) { 1195 page_cache_release(page); 1196 goto find_page; 1197 } 1198 goto readpage_error; 1199 } 1200 1201 if (!PageUptodate(page)) { 1202 error = lock_page_killable(page); 1203 if (unlikely(error)) 1204 goto readpage_error; 1205 if (!PageUptodate(page)) { 1206 if (page->mapping == NULL) { 1207 /* 1208 * invalidate_mapping_pages got it 1209 */ 1210 unlock_page(page); 1211 page_cache_release(page); 1212 goto find_page; 1213 } 1214 unlock_page(page); 1215 shrink_readahead_size_eio(filp, ra); 1216 error = -EIO; 1217 goto readpage_error; 1218 } 1219 unlock_page(page); 1220 } 1221 1222 goto page_ok; 1223 1224 readpage_error: 1225 /* UHHUH! A synchronous read error occurred. Report it */ 1226 desc->error = error; 1227 page_cache_release(page); 1228 goto out; 1229 1230 no_cached_page: 1231 /* 1232 * Ok, it wasn't cached, so we need to create a new 1233 * page.. 1234 */ 1235 page = page_cache_alloc_cold(mapping); 1236 if (!page) { 1237 desc->error = -ENOMEM; 1238 goto out; 1239 } 1240 error = add_to_page_cache_lru(page, mapping, 1241 index, GFP_KERNEL); 1242 if (error) { 1243 page_cache_release(page); 1244 if (error == -EEXIST) 1245 goto find_page; 1246 desc->error = error; 1247 goto out; 1248 } 1249 goto readpage; 1250 } 1251 1252 out: 1253 ra->prev_pos = prev_index; 1254 ra->prev_pos <<= PAGE_CACHE_SHIFT; 1255 ra->prev_pos |= prev_offset; 1256 1257 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset; 1258 file_accessed(filp); 1259 } 1260 1261 int file_read_actor(read_descriptor_t *desc, struct page *page, 1262 unsigned long offset, unsigned long size) 1263 { 1264 char *kaddr; 1265 unsigned long left, count = desc->count; 1266 1267 if (size > count) 1268 size = count; 1269 1270 /* 1271 * Faults on the destination of a read are common, so do it before 1272 * taking the kmap. 1273 */ 1274 if (!fault_in_pages_writeable(desc->arg.buf, size)) { 1275 kaddr = kmap_atomic(page, KM_USER0); 1276 left = __copy_to_user_inatomic(desc->arg.buf, 1277 kaddr + offset, size); 1278 kunmap_atomic(kaddr, KM_USER0); 1279 if (left == 0) 1280 goto success; 1281 } 1282 1283 /* Do it the slow way */ 1284 kaddr = kmap(page); 1285 left = __copy_to_user(desc->arg.buf, kaddr + offset, size); 1286 kunmap(page); 1287 1288 if (left) { 1289 size -= left; 1290 desc->error = -EFAULT; 1291 } 1292 success: 1293 desc->count = count - size; 1294 desc->written += size; 1295 desc->arg.buf += size; 1296 return size; 1297 } 1298 1299 /* 1300 * Performs necessary checks before doing a write 1301 * @iov: io vector request 1302 * @nr_segs: number of segments in the iovec 1303 * @count: number of bytes to write 1304 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE 1305 * 1306 * Adjust number of segments and amount of bytes to write (nr_segs should be 1307 * properly initialized first). Returns appropriate error code that caller 1308 * should return or zero in case that write should be allowed. 1309 */ 1310 int generic_segment_checks(const struct iovec *iov, 1311 unsigned long *nr_segs, size_t *count, int access_flags) 1312 { 1313 unsigned long seg; 1314 size_t cnt = 0; 1315 for (seg = 0; seg < *nr_segs; seg++) { 1316 const struct iovec *iv = &iov[seg]; 1317 1318 /* 1319 * If any segment has a negative length, or the cumulative 1320 * length ever wraps negative then return -EINVAL. 1321 */ 1322 cnt += iv->iov_len; 1323 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0)) 1324 return -EINVAL; 1325 if (access_ok(access_flags, iv->iov_base, iv->iov_len)) 1326 continue; 1327 if (seg == 0) 1328 return -EFAULT; 1329 *nr_segs = seg; 1330 cnt -= iv->iov_len; /* This segment is no good */ 1331 break; 1332 } 1333 *count = cnt; 1334 return 0; 1335 } 1336 EXPORT_SYMBOL(generic_segment_checks); 1337 1338 /** 1339 * generic_file_aio_read - generic filesystem read routine 1340 * @iocb: kernel I/O control block 1341 * @iov: io vector request 1342 * @nr_segs: number of segments in the iovec 1343 * @pos: current file position 1344 * 1345 * This is the "read()" routine for all filesystems 1346 * that can use the page cache directly. 1347 */ 1348 ssize_t 1349 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov, 1350 unsigned long nr_segs, loff_t pos) 1351 { 1352 struct file *filp = iocb->ki_filp; 1353 ssize_t retval; 1354 unsigned long seg = 0; 1355 size_t count; 1356 loff_t *ppos = &iocb->ki_pos; 1357 struct blk_plug plug; 1358 1359 count = 0; 1360 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE); 1361 if (retval) 1362 return retval; 1363 1364 blk_start_plug(&plug); 1365 1366 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 1367 if (filp->f_flags & O_DIRECT) { 1368 loff_t size; 1369 struct address_space *mapping; 1370 struct inode *inode; 1371 1372 mapping = filp->f_mapping; 1373 inode = mapping->host; 1374 if (!count) 1375 goto out; /* skip atime */ 1376 size = i_size_read(inode); 1377 if (pos < size) { 1378 retval = filemap_write_and_wait_range(mapping, pos, 1379 pos + iov_length(iov, nr_segs) - 1); 1380 if (!retval) { 1381 retval = mapping->a_ops->direct_IO(READ, iocb, 1382 iov, pos, nr_segs); 1383 } 1384 if (retval > 0) { 1385 *ppos = pos + retval; 1386 count -= retval; 1387 } 1388 1389 /* 1390 * Btrfs can have a short DIO read if we encounter 1391 * compressed extents, so if there was an error, or if 1392 * we've already read everything we wanted to, or if 1393 * there was a short read because we hit EOF, go ahead 1394 * and return. Otherwise fallthrough to buffered io for 1395 * the rest of the read. 1396 */ 1397 if (retval < 0 || !count || *ppos >= size) { 1398 file_accessed(filp); 1399 goto out; 1400 } 1401 } 1402 } 1403 1404 count = retval; 1405 for (seg = 0; seg < nr_segs; seg++) { 1406 read_descriptor_t desc; 1407 loff_t offset = 0; 1408 1409 /* 1410 * If we did a short DIO read we need to skip the section of the 1411 * iov that we've already read data into. 1412 */ 1413 if (count) { 1414 if (count > iov[seg].iov_len) { 1415 count -= iov[seg].iov_len; 1416 continue; 1417 } 1418 offset = count; 1419 count = 0; 1420 } 1421 1422 desc.written = 0; 1423 desc.arg.buf = iov[seg].iov_base + offset; 1424 desc.count = iov[seg].iov_len - offset; 1425 if (desc.count == 0) 1426 continue; 1427 desc.error = 0; 1428 do_generic_file_read(filp, ppos, &desc, file_read_actor); 1429 retval += desc.written; 1430 if (desc.error) { 1431 retval = retval ?: desc.error; 1432 break; 1433 } 1434 if (desc.count > 0) 1435 break; 1436 } 1437 out: 1438 blk_finish_plug(&plug); 1439 return retval; 1440 } 1441 EXPORT_SYMBOL(generic_file_aio_read); 1442 1443 static ssize_t 1444 do_readahead(struct address_space *mapping, struct file *filp, 1445 pgoff_t index, unsigned long nr) 1446 { 1447 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage) 1448 return -EINVAL; 1449 1450 force_page_cache_readahead(mapping, filp, index, nr); 1451 return 0; 1452 } 1453 1454 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count) 1455 { 1456 ssize_t ret; 1457 struct file *file; 1458 1459 ret = -EBADF; 1460 file = fget(fd); 1461 if (file) { 1462 if (file->f_mode & FMODE_READ) { 1463 struct address_space *mapping = file->f_mapping; 1464 pgoff_t start = offset >> PAGE_CACHE_SHIFT; 1465 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT; 1466 unsigned long len = end - start + 1; 1467 ret = do_readahead(mapping, file, start, len); 1468 } 1469 fput(file); 1470 } 1471 return ret; 1472 } 1473 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS 1474 asmlinkage long SyS_readahead(long fd, loff_t offset, long count) 1475 { 1476 return SYSC_readahead((int) fd, offset, (size_t) count); 1477 } 1478 SYSCALL_ALIAS(sys_readahead, SyS_readahead); 1479 #endif 1480 1481 #ifdef CONFIG_MMU 1482 /** 1483 * page_cache_read - adds requested page to the page cache if not already there 1484 * @file: file to read 1485 * @offset: page index 1486 * 1487 * This adds the requested page to the page cache if it isn't already there, 1488 * and schedules an I/O to read in its contents from disk. 1489 */ 1490 static int page_cache_read(struct file *file, pgoff_t offset) 1491 { 1492 struct address_space *mapping = file->f_mapping; 1493 struct page *page; 1494 int ret; 1495 1496 do { 1497 page = page_cache_alloc_cold(mapping); 1498 if (!page) 1499 return -ENOMEM; 1500 1501 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL); 1502 if (ret == 0) 1503 ret = mapping->a_ops->readpage(file, page); 1504 else if (ret == -EEXIST) 1505 ret = 0; /* losing race to add is OK */ 1506 1507 page_cache_release(page); 1508 1509 } while (ret == AOP_TRUNCATED_PAGE); 1510 1511 return ret; 1512 } 1513 1514 #define MMAP_LOTSAMISS (100) 1515 1516 /* 1517 * Synchronous readahead happens when we don't even find 1518 * a page in the page cache at all. 1519 */ 1520 static void do_sync_mmap_readahead(struct vm_area_struct *vma, 1521 struct file_ra_state *ra, 1522 struct file *file, 1523 pgoff_t offset) 1524 { 1525 unsigned long ra_pages; 1526 struct address_space *mapping = file->f_mapping; 1527 1528 /* If we don't want any read-ahead, don't bother */ 1529 if (VM_RandomReadHint(vma)) 1530 return; 1531 1532 if (VM_SequentialReadHint(vma) || 1533 offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) { 1534 page_cache_sync_readahead(mapping, ra, file, offset, 1535 ra->ra_pages); 1536 return; 1537 } 1538 1539 if (ra->mmap_miss < INT_MAX) 1540 ra->mmap_miss++; 1541 1542 /* 1543 * Do we miss much more than hit in this file? If so, 1544 * stop bothering with read-ahead. It will only hurt. 1545 */ 1546 if (ra->mmap_miss > MMAP_LOTSAMISS) 1547 return; 1548 1549 /* 1550 * mmap read-around 1551 */ 1552 ra_pages = max_sane_readahead(ra->ra_pages); 1553 if (ra_pages) { 1554 ra->start = max_t(long, 0, offset - ra_pages/2); 1555 ra->size = ra_pages; 1556 ra->async_size = 0; 1557 ra_submit(ra, mapping, file); 1558 } 1559 } 1560 1561 /* 1562 * Asynchronous readahead happens when we find the page and PG_readahead, 1563 * so we want to possibly extend the readahead further.. 1564 */ 1565 static void do_async_mmap_readahead(struct vm_area_struct *vma, 1566 struct file_ra_state *ra, 1567 struct file *file, 1568 struct page *page, 1569 pgoff_t offset) 1570 { 1571 struct address_space *mapping = file->f_mapping; 1572 1573 /* If we don't want any read-ahead, don't bother */ 1574 if (VM_RandomReadHint(vma)) 1575 return; 1576 if (ra->mmap_miss > 0) 1577 ra->mmap_miss--; 1578 if (PageReadahead(page)) 1579 page_cache_async_readahead(mapping, ra, file, 1580 page, offset, ra->ra_pages); 1581 } 1582 1583 /** 1584 * filemap_fault - read in file data for page fault handling 1585 * @vma: vma in which the fault was taken 1586 * @vmf: struct vm_fault containing details of the fault 1587 * 1588 * filemap_fault() is invoked via the vma operations vector for a 1589 * mapped memory region to read in file data during a page fault. 1590 * 1591 * The goto's are kind of ugly, but this streamlines the normal case of having 1592 * it in the page cache, and handles the special cases reasonably without 1593 * having a lot of duplicated code. 1594 */ 1595 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1596 { 1597 int error; 1598 struct file *file = vma->vm_file; 1599 struct address_space *mapping = file->f_mapping; 1600 struct file_ra_state *ra = &file->f_ra; 1601 struct inode *inode = mapping->host; 1602 pgoff_t offset = vmf->pgoff; 1603 struct page *page; 1604 pgoff_t size; 1605 int ret = 0; 1606 1607 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1608 if (offset >= size) 1609 return VM_FAULT_SIGBUS; 1610 1611 /* 1612 * Do we have something in the page cache already? 1613 */ 1614 page = find_get_page(mapping, offset); 1615 if (likely(page)) { 1616 /* 1617 * We found the page, so try async readahead before 1618 * waiting for the lock. 1619 */ 1620 do_async_mmap_readahead(vma, ra, file, page, offset); 1621 } else { 1622 /* No page in the page cache at all */ 1623 do_sync_mmap_readahead(vma, ra, file, offset); 1624 count_vm_event(PGMAJFAULT); 1625 ret = VM_FAULT_MAJOR; 1626 retry_find: 1627 page = find_get_page(mapping, offset); 1628 if (!page) 1629 goto no_cached_page; 1630 } 1631 1632 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) { 1633 page_cache_release(page); 1634 return ret | VM_FAULT_RETRY; 1635 } 1636 1637 /* Did it get truncated? */ 1638 if (unlikely(page->mapping != mapping)) { 1639 unlock_page(page); 1640 put_page(page); 1641 goto retry_find; 1642 } 1643 VM_BUG_ON(page->index != offset); 1644 1645 /* 1646 * We have a locked page in the page cache, now we need to check 1647 * that it's up-to-date. If not, it is going to be due to an error. 1648 */ 1649 if (unlikely(!PageUptodate(page))) 1650 goto page_not_uptodate; 1651 1652 /* 1653 * Found the page and have a reference on it. 1654 * We must recheck i_size under page lock. 1655 */ 1656 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1657 if (unlikely(offset >= size)) { 1658 unlock_page(page); 1659 page_cache_release(page); 1660 return VM_FAULT_SIGBUS; 1661 } 1662 1663 ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT; 1664 vmf->page = page; 1665 return ret | VM_FAULT_LOCKED; 1666 1667 no_cached_page: 1668 /* 1669 * We're only likely to ever get here if MADV_RANDOM is in 1670 * effect. 1671 */ 1672 error = page_cache_read(file, offset); 1673 1674 /* 1675 * The page we want has now been added to the page cache. 1676 * In the unlikely event that someone removed it in the 1677 * meantime, we'll just come back here and read it again. 1678 */ 1679 if (error >= 0) 1680 goto retry_find; 1681 1682 /* 1683 * An error return from page_cache_read can result if the 1684 * system is low on memory, or a problem occurs while trying 1685 * to schedule I/O. 1686 */ 1687 if (error == -ENOMEM) 1688 return VM_FAULT_OOM; 1689 return VM_FAULT_SIGBUS; 1690 1691 page_not_uptodate: 1692 /* 1693 * Umm, take care of errors if the page isn't up-to-date. 1694 * Try to re-read it _once_. We do this synchronously, 1695 * because there really aren't any performance issues here 1696 * and we need to check for errors. 1697 */ 1698 ClearPageError(page); 1699 error = mapping->a_ops->readpage(file, page); 1700 if (!error) { 1701 wait_on_page_locked(page); 1702 if (!PageUptodate(page)) 1703 error = -EIO; 1704 } 1705 page_cache_release(page); 1706 1707 if (!error || error == AOP_TRUNCATED_PAGE) 1708 goto retry_find; 1709 1710 /* Things didn't work out. Return zero to tell the mm layer so. */ 1711 shrink_readahead_size_eio(file, ra); 1712 return VM_FAULT_SIGBUS; 1713 } 1714 EXPORT_SYMBOL(filemap_fault); 1715 1716 const struct vm_operations_struct generic_file_vm_ops = { 1717 .fault = filemap_fault, 1718 }; 1719 1720 /* This is used for a general mmap of a disk file */ 1721 1722 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1723 { 1724 struct address_space *mapping = file->f_mapping; 1725 1726 if (!mapping->a_ops->readpage) 1727 return -ENOEXEC; 1728 file_accessed(file); 1729 vma->vm_ops = &generic_file_vm_ops; 1730 vma->vm_flags |= VM_CAN_NONLINEAR; 1731 return 0; 1732 } 1733 1734 /* 1735 * This is for filesystems which do not implement ->writepage. 1736 */ 1737 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 1738 { 1739 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 1740 return -EINVAL; 1741 return generic_file_mmap(file, vma); 1742 } 1743 #else 1744 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1745 { 1746 return -ENOSYS; 1747 } 1748 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 1749 { 1750 return -ENOSYS; 1751 } 1752 #endif /* CONFIG_MMU */ 1753 1754 EXPORT_SYMBOL(generic_file_mmap); 1755 EXPORT_SYMBOL(generic_file_readonly_mmap); 1756 1757 static struct page *__read_cache_page(struct address_space *mapping, 1758 pgoff_t index, 1759 int (*filler)(void *,struct page*), 1760 void *data, 1761 gfp_t gfp) 1762 { 1763 struct page *page; 1764 int err; 1765 repeat: 1766 page = find_get_page(mapping, index); 1767 if (!page) { 1768 page = __page_cache_alloc(gfp | __GFP_COLD); 1769 if (!page) 1770 return ERR_PTR(-ENOMEM); 1771 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL); 1772 if (unlikely(err)) { 1773 page_cache_release(page); 1774 if (err == -EEXIST) 1775 goto repeat; 1776 /* Presumably ENOMEM for radix tree node */ 1777 return ERR_PTR(err); 1778 } 1779 err = filler(data, page); 1780 if (err < 0) { 1781 page_cache_release(page); 1782 page = ERR_PTR(err); 1783 } 1784 } 1785 return page; 1786 } 1787 1788 static struct page *do_read_cache_page(struct address_space *mapping, 1789 pgoff_t index, 1790 int (*filler)(void *,struct page*), 1791 void *data, 1792 gfp_t gfp) 1793 1794 { 1795 struct page *page; 1796 int err; 1797 1798 retry: 1799 page = __read_cache_page(mapping, index, filler, data, gfp); 1800 if (IS_ERR(page)) 1801 return page; 1802 if (PageUptodate(page)) 1803 goto out; 1804 1805 lock_page(page); 1806 if (!page->mapping) { 1807 unlock_page(page); 1808 page_cache_release(page); 1809 goto retry; 1810 } 1811 if (PageUptodate(page)) { 1812 unlock_page(page); 1813 goto out; 1814 } 1815 err = filler(data, page); 1816 if (err < 0) { 1817 page_cache_release(page); 1818 return ERR_PTR(err); 1819 } 1820 out: 1821 mark_page_accessed(page); 1822 return page; 1823 } 1824 1825 /** 1826 * read_cache_page_async - read into page cache, fill it if needed 1827 * @mapping: the page's address_space 1828 * @index: the page index 1829 * @filler: function to perform the read 1830 * @data: destination for read data 1831 * 1832 * Same as read_cache_page, but don't wait for page to become unlocked 1833 * after submitting it to the filler. 1834 * 1835 * Read into the page cache. If a page already exists, and PageUptodate() is 1836 * not set, try to fill the page but don't wait for it to become unlocked. 1837 * 1838 * If the page does not get brought uptodate, return -EIO. 1839 */ 1840 struct page *read_cache_page_async(struct address_space *mapping, 1841 pgoff_t index, 1842 int (*filler)(void *,struct page*), 1843 void *data) 1844 { 1845 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping)); 1846 } 1847 EXPORT_SYMBOL(read_cache_page_async); 1848 1849 static struct page *wait_on_page_read(struct page *page) 1850 { 1851 if (!IS_ERR(page)) { 1852 wait_on_page_locked(page); 1853 if (!PageUptodate(page)) { 1854 page_cache_release(page); 1855 page = ERR_PTR(-EIO); 1856 } 1857 } 1858 return page; 1859 } 1860 1861 /** 1862 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 1863 * @mapping: the page's address_space 1864 * @index: the page index 1865 * @gfp: the page allocator flags to use if allocating 1866 * 1867 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 1868 * any new page allocations done using the specified allocation flags. Note 1869 * that the Radix tree operations will still use GFP_KERNEL, so you can't 1870 * expect to do this atomically or anything like that - but you can pass in 1871 * other page requirements. 1872 * 1873 * If the page does not get brought uptodate, return -EIO. 1874 */ 1875 struct page *read_cache_page_gfp(struct address_space *mapping, 1876 pgoff_t index, 1877 gfp_t gfp) 1878 { 1879 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 1880 1881 return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp)); 1882 } 1883 EXPORT_SYMBOL(read_cache_page_gfp); 1884 1885 /** 1886 * read_cache_page - read into page cache, fill it if needed 1887 * @mapping: the page's address_space 1888 * @index: the page index 1889 * @filler: function to perform the read 1890 * @data: destination for read data 1891 * 1892 * Read into the page cache. If a page already exists, and PageUptodate() is 1893 * not set, try to fill the page then wait for it to become unlocked. 1894 * 1895 * If the page does not get brought uptodate, return -EIO. 1896 */ 1897 struct page *read_cache_page(struct address_space *mapping, 1898 pgoff_t index, 1899 int (*filler)(void *,struct page*), 1900 void *data) 1901 { 1902 return wait_on_page_read(read_cache_page_async(mapping, index, filler, data)); 1903 } 1904 EXPORT_SYMBOL(read_cache_page); 1905 1906 /* 1907 * The logic we want is 1908 * 1909 * if suid or (sgid and xgrp) 1910 * remove privs 1911 */ 1912 int should_remove_suid(struct dentry *dentry) 1913 { 1914 mode_t mode = dentry->d_inode->i_mode; 1915 int kill = 0; 1916 1917 /* suid always must be killed */ 1918 if (unlikely(mode & S_ISUID)) 1919 kill = ATTR_KILL_SUID; 1920 1921 /* 1922 * sgid without any exec bits is just a mandatory locking mark; leave 1923 * it alone. If some exec bits are set, it's a real sgid; kill it. 1924 */ 1925 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1926 kill |= ATTR_KILL_SGID; 1927 1928 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode))) 1929 return kill; 1930 1931 return 0; 1932 } 1933 EXPORT_SYMBOL(should_remove_suid); 1934 1935 static int __remove_suid(struct dentry *dentry, int kill) 1936 { 1937 struct iattr newattrs; 1938 1939 newattrs.ia_valid = ATTR_FORCE | kill; 1940 return notify_change(dentry, &newattrs); 1941 } 1942 1943 int file_remove_suid(struct file *file) 1944 { 1945 struct dentry *dentry = file->f_path.dentry; 1946 int killsuid = should_remove_suid(dentry); 1947 int killpriv = security_inode_need_killpriv(dentry); 1948 int error = 0; 1949 1950 if (killpriv < 0) 1951 return killpriv; 1952 if (killpriv) 1953 error = security_inode_killpriv(dentry); 1954 if (!error && killsuid) 1955 error = __remove_suid(dentry, killsuid); 1956 1957 return error; 1958 } 1959 EXPORT_SYMBOL(file_remove_suid); 1960 1961 static size_t __iovec_copy_from_user_inatomic(char *vaddr, 1962 const struct iovec *iov, size_t base, size_t bytes) 1963 { 1964 size_t copied = 0, left = 0; 1965 1966 while (bytes) { 1967 char __user *buf = iov->iov_base + base; 1968 int copy = min(bytes, iov->iov_len - base); 1969 1970 base = 0; 1971 left = __copy_from_user_inatomic(vaddr, buf, copy); 1972 copied += copy; 1973 bytes -= copy; 1974 vaddr += copy; 1975 iov++; 1976 1977 if (unlikely(left)) 1978 break; 1979 } 1980 return copied - left; 1981 } 1982 1983 /* 1984 * Copy as much as we can into the page and return the number of bytes which 1985 * were successfully copied. If a fault is encountered then return the number of 1986 * bytes which were copied. 1987 */ 1988 size_t iov_iter_copy_from_user_atomic(struct page *page, 1989 struct iov_iter *i, unsigned long offset, size_t bytes) 1990 { 1991 char *kaddr; 1992 size_t copied; 1993 1994 BUG_ON(!in_atomic()); 1995 kaddr = kmap_atomic(page, KM_USER0); 1996 if (likely(i->nr_segs == 1)) { 1997 int left; 1998 char __user *buf = i->iov->iov_base + i->iov_offset; 1999 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes); 2000 copied = bytes - left; 2001 } else { 2002 copied = __iovec_copy_from_user_inatomic(kaddr + offset, 2003 i->iov, i->iov_offset, bytes); 2004 } 2005 kunmap_atomic(kaddr, KM_USER0); 2006 2007 return copied; 2008 } 2009 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic); 2010 2011 /* 2012 * This has the same sideeffects and return value as 2013 * iov_iter_copy_from_user_atomic(). 2014 * The difference is that it attempts to resolve faults. 2015 * Page must not be locked. 2016 */ 2017 size_t iov_iter_copy_from_user(struct page *page, 2018 struct iov_iter *i, unsigned long offset, size_t bytes) 2019 { 2020 char *kaddr; 2021 size_t copied; 2022 2023 kaddr = kmap(page); 2024 if (likely(i->nr_segs == 1)) { 2025 int left; 2026 char __user *buf = i->iov->iov_base + i->iov_offset; 2027 left = __copy_from_user(kaddr + offset, buf, bytes); 2028 copied = bytes - left; 2029 } else { 2030 copied = __iovec_copy_from_user_inatomic(kaddr + offset, 2031 i->iov, i->iov_offset, bytes); 2032 } 2033 kunmap(page); 2034 return copied; 2035 } 2036 EXPORT_SYMBOL(iov_iter_copy_from_user); 2037 2038 void iov_iter_advance(struct iov_iter *i, size_t bytes) 2039 { 2040 BUG_ON(i->count < bytes); 2041 2042 if (likely(i->nr_segs == 1)) { 2043 i->iov_offset += bytes; 2044 i->count -= bytes; 2045 } else { 2046 const struct iovec *iov = i->iov; 2047 size_t base = i->iov_offset; 2048 2049 /* 2050 * The !iov->iov_len check ensures we skip over unlikely 2051 * zero-length segments (without overruning the iovec). 2052 */ 2053 while (bytes || unlikely(i->count && !iov->iov_len)) { 2054 int copy; 2055 2056 copy = min(bytes, iov->iov_len - base); 2057 BUG_ON(!i->count || i->count < copy); 2058 i->count -= copy; 2059 bytes -= copy; 2060 base += copy; 2061 if (iov->iov_len == base) { 2062 iov++; 2063 base = 0; 2064 } 2065 } 2066 i->iov = iov; 2067 i->iov_offset = base; 2068 } 2069 } 2070 EXPORT_SYMBOL(iov_iter_advance); 2071 2072 /* 2073 * Fault in the first iovec of the given iov_iter, to a maximum length 2074 * of bytes. Returns 0 on success, or non-zero if the memory could not be 2075 * accessed (ie. because it is an invalid address). 2076 * 2077 * writev-intensive code may want this to prefault several iovecs -- that 2078 * would be possible (callers must not rely on the fact that _only_ the 2079 * first iovec will be faulted with the current implementation). 2080 */ 2081 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes) 2082 { 2083 char __user *buf = i->iov->iov_base + i->iov_offset; 2084 bytes = min(bytes, i->iov->iov_len - i->iov_offset); 2085 return fault_in_pages_readable(buf, bytes); 2086 } 2087 EXPORT_SYMBOL(iov_iter_fault_in_readable); 2088 2089 /* 2090 * Return the count of just the current iov_iter segment. 2091 */ 2092 size_t iov_iter_single_seg_count(struct iov_iter *i) 2093 { 2094 const struct iovec *iov = i->iov; 2095 if (i->nr_segs == 1) 2096 return i->count; 2097 else 2098 return min(i->count, iov->iov_len - i->iov_offset); 2099 } 2100 EXPORT_SYMBOL(iov_iter_single_seg_count); 2101 2102 /* 2103 * Performs necessary checks before doing a write 2104 * 2105 * Can adjust writing position or amount of bytes to write. 2106 * Returns appropriate error code that caller should return or 2107 * zero in case that write should be allowed. 2108 */ 2109 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk) 2110 { 2111 struct inode *inode = file->f_mapping->host; 2112 unsigned long limit = rlimit(RLIMIT_FSIZE); 2113 2114 if (unlikely(*pos < 0)) 2115 return -EINVAL; 2116 2117 if (!isblk) { 2118 /* FIXME: this is for backwards compatibility with 2.4 */ 2119 if (file->f_flags & O_APPEND) 2120 *pos = i_size_read(inode); 2121 2122 if (limit != RLIM_INFINITY) { 2123 if (*pos >= limit) { 2124 send_sig(SIGXFSZ, current, 0); 2125 return -EFBIG; 2126 } 2127 if (*count > limit - (typeof(limit))*pos) { 2128 *count = limit - (typeof(limit))*pos; 2129 } 2130 } 2131 } 2132 2133 /* 2134 * LFS rule 2135 */ 2136 if (unlikely(*pos + *count > MAX_NON_LFS && 2137 !(file->f_flags & O_LARGEFILE))) { 2138 if (*pos >= MAX_NON_LFS) { 2139 return -EFBIG; 2140 } 2141 if (*count > MAX_NON_LFS - (unsigned long)*pos) { 2142 *count = MAX_NON_LFS - (unsigned long)*pos; 2143 } 2144 } 2145 2146 /* 2147 * Are we about to exceed the fs block limit ? 2148 * 2149 * If we have written data it becomes a short write. If we have 2150 * exceeded without writing data we send a signal and return EFBIG. 2151 * Linus frestrict idea will clean these up nicely.. 2152 */ 2153 if (likely(!isblk)) { 2154 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) { 2155 if (*count || *pos > inode->i_sb->s_maxbytes) { 2156 return -EFBIG; 2157 } 2158 /* zero-length writes at ->s_maxbytes are OK */ 2159 } 2160 2161 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes)) 2162 *count = inode->i_sb->s_maxbytes - *pos; 2163 } else { 2164 #ifdef CONFIG_BLOCK 2165 loff_t isize; 2166 if (bdev_read_only(I_BDEV(inode))) 2167 return -EPERM; 2168 isize = i_size_read(inode); 2169 if (*pos >= isize) { 2170 if (*count || *pos > isize) 2171 return -ENOSPC; 2172 } 2173 2174 if (*pos + *count > isize) 2175 *count = isize - *pos; 2176 #else 2177 return -EPERM; 2178 #endif 2179 } 2180 return 0; 2181 } 2182 EXPORT_SYMBOL(generic_write_checks); 2183 2184 int pagecache_write_begin(struct file *file, struct address_space *mapping, 2185 loff_t pos, unsigned len, unsigned flags, 2186 struct page **pagep, void **fsdata) 2187 { 2188 const struct address_space_operations *aops = mapping->a_ops; 2189 2190 return aops->write_begin(file, mapping, pos, len, flags, 2191 pagep, fsdata); 2192 } 2193 EXPORT_SYMBOL(pagecache_write_begin); 2194 2195 int pagecache_write_end(struct file *file, struct address_space *mapping, 2196 loff_t pos, unsigned len, unsigned copied, 2197 struct page *page, void *fsdata) 2198 { 2199 const struct address_space_operations *aops = mapping->a_ops; 2200 2201 mark_page_accessed(page); 2202 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 2203 } 2204 EXPORT_SYMBOL(pagecache_write_end); 2205 2206 ssize_t 2207 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov, 2208 unsigned long *nr_segs, loff_t pos, loff_t *ppos, 2209 size_t count, size_t ocount) 2210 { 2211 struct file *file = iocb->ki_filp; 2212 struct address_space *mapping = file->f_mapping; 2213 struct inode *inode = mapping->host; 2214 ssize_t written; 2215 size_t write_len; 2216 pgoff_t end; 2217 2218 if (count != ocount) 2219 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count); 2220 2221 write_len = iov_length(iov, *nr_segs); 2222 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT; 2223 2224 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1); 2225 if (written) 2226 goto out; 2227 2228 /* 2229 * After a write we want buffered reads to be sure to go to disk to get 2230 * the new data. We invalidate clean cached page from the region we're 2231 * about to write. We do this *before* the write so that we can return 2232 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2233 */ 2234 if (mapping->nrpages) { 2235 written = invalidate_inode_pages2_range(mapping, 2236 pos >> PAGE_CACHE_SHIFT, end); 2237 /* 2238 * If a page can not be invalidated, return 0 to fall back 2239 * to buffered write. 2240 */ 2241 if (written) { 2242 if (written == -EBUSY) 2243 return 0; 2244 goto out; 2245 } 2246 } 2247 2248 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs); 2249 2250 /* 2251 * Finally, try again to invalidate clean pages which might have been 2252 * cached by non-direct readahead, or faulted in by get_user_pages() 2253 * if the source of the write was an mmap'ed region of the file 2254 * we're writing. Either one is a pretty crazy thing to do, 2255 * so we don't support it 100%. If this invalidation 2256 * fails, tough, the write still worked... 2257 */ 2258 if (mapping->nrpages) { 2259 invalidate_inode_pages2_range(mapping, 2260 pos >> PAGE_CACHE_SHIFT, end); 2261 } 2262 2263 if (written > 0) { 2264 pos += written; 2265 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 2266 i_size_write(inode, pos); 2267 mark_inode_dirty(inode); 2268 } 2269 *ppos = pos; 2270 } 2271 out: 2272 return written; 2273 } 2274 EXPORT_SYMBOL(generic_file_direct_write); 2275 2276 /* 2277 * Find or create a page at the given pagecache position. Return the locked 2278 * page. This function is specifically for buffered writes. 2279 */ 2280 struct page *grab_cache_page_write_begin(struct address_space *mapping, 2281 pgoff_t index, unsigned flags) 2282 { 2283 int status; 2284 struct page *page; 2285 gfp_t gfp_notmask = 0; 2286 if (flags & AOP_FLAG_NOFS) 2287 gfp_notmask = __GFP_FS; 2288 repeat: 2289 page = find_lock_page(mapping, index); 2290 if (page) 2291 return page; 2292 2293 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask); 2294 if (!page) 2295 return NULL; 2296 status = add_to_page_cache_lru(page, mapping, index, 2297 GFP_KERNEL & ~gfp_notmask); 2298 if (unlikely(status)) { 2299 page_cache_release(page); 2300 if (status == -EEXIST) 2301 goto repeat; 2302 return NULL; 2303 } 2304 return page; 2305 } 2306 EXPORT_SYMBOL(grab_cache_page_write_begin); 2307 2308 static ssize_t generic_perform_write(struct file *file, 2309 struct iov_iter *i, loff_t pos) 2310 { 2311 struct address_space *mapping = file->f_mapping; 2312 const struct address_space_operations *a_ops = mapping->a_ops; 2313 long status = 0; 2314 ssize_t written = 0; 2315 unsigned int flags = 0; 2316 2317 /* 2318 * Copies from kernel address space cannot fail (NFSD is a big user). 2319 */ 2320 if (segment_eq(get_fs(), KERNEL_DS)) 2321 flags |= AOP_FLAG_UNINTERRUPTIBLE; 2322 2323 do { 2324 struct page *page; 2325 unsigned long offset; /* Offset into pagecache page */ 2326 unsigned long bytes; /* Bytes to write to page */ 2327 size_t copied; /* Bytes copied from user */ 2328 void *fsdata; 2329 2330 offset = (pos & (PAGE_CACHE_SIZE - 1)); 2331 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2332 iov_iter_count(i)); 2333 2334 again: 2335 2336 /* 2337 * Bring in the user page that we will copy from _first_. 2338 * Otherwise there's a nasty deadlock on copying from the 2339 * same page as we're writing to, without it being marked 2340 * up-to-date. 2341 * 2342 * Not only is this an optimisation, but it is also required 2343 * to check that the address is actually valid, when atomic 2344 * usercopies are used, below. 2345 */ 2346 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 2347 status = -EFAULT; 2348 break; 2349 } 2350 2351 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 2352 &page, &fsdata); 2353 if (unlikely(status)) 2354 break; 2355 2356 if (mapping_writably_mapped(mapping)) 2357 flush_dcache_page(page); 2358 2359 pagefault_disable(); 2360 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 2361 pagefault_enable(); 2362 flush_dcache_page(page); 2363 2364 mark_page_accessed(page); 2365 status = a_ops->write_end(file, mapping, pos, bytes, copied, 2366 page, fsdata); 2367 if (unlikely(status < 0)) 2368 break; 2369 copied = status; 2370 2371 cond_resched(); 2372 2373 iov_iter_advance(i, copied); 2374 if (unlikely(copied == 0)) { 2375 /* 2376 * If we were unable to copy any data at all, we must 2377 * fall back to a single segment length write. 2378 * 2379 * If we didn't fallback here, we could livelock 2380 * because not all segments in the iov can be copied at 2381 * once without a pagefault. 2382 */ 2383 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2384 iov_iter_single_seg_count(i)); 2385 goto again; 2386 } 2387 pos += copied; 2388 written += copied; 2389 2390 balance_dirty_pages_ratelimited(mapping); 2391 2392 } while (iov_iter_count(i)); 2393 2394 return written ? written : status; 2395 } 2396 2397 ssize_t 2398 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov, 2399 unsigned long nr_segs, loff_t pos, loff_t *ppos, 2400 size_t count, ssize_t written) 2401 { 2402 struct file *file = iocb->ki_filp; 2403 ssize_t status; 2404 struct iov_iter i; 2405 2406 iov_iter_init(&i, iov, nr_segs, count, written); 2407 status = generic_perform_write(file, &i, pos); 2408 2409 if (likely(status >= 0)) { 2410 written += status; 2411 *ppos = pos + status; 2412 } 2413 2414 return written ? written : status; 2415 } 2416 EXPORT_SYMBOL(generic_file_buffered_write); 2417 2418 /** 2419 * __generic_file_aio_write - write data to a file 2420 * @iocb: IO state structure (file, offset, etc.) 2421 * @iov: vector with data to write 2422 * @nr_segs: number of segments in the vector 2423 * @ppos: position where to write 2424 * 2425 * This function does all the work needed for actually writing data to a 2426 * file. It does all basic checks, removes SUID from the file, updates 2427 * modification times and calls proper subroutines depending on whether we 2428 * do direct IO or a standard buffered write. 2429 * 2430 * It expects i_mutex to be grabbed unless we work on a block device or similar 2431 * object which does not need locking at all. 2432 * 2433 * This function does *not* take care of syncing data in case of O_SYNC write. 2434 * A caller has to handle it. This is mainly due to the fact that we want to 2435 * avoid syncing under i_mutex. 2436 */ 2437 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, 2438 unsigned long nr_segs, loff_t *ppos) 2439 { 2440 struct file *file = iocb->ki_filp; 2441 struct address_space * mapping = file->f_mapping; 2442 size_t ocount; /* original count */ 2443 size_t count; /* after file limit checks */ 2444 struct inode *inode = mapping->host; 2445 loff_t pos; 2446 ssize_t written; 2447 ssize_t err; 2448 2449 ocount = 0; 2450 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ); 2451 if (err) 2452 return err; 2453 2454 count = ocount; 2455 pos = *ppos; 2456 2457 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); 2458 2459 /* We can write back this queue in page reclaim */ 2460 current->backing_dev_info = mapping->backing_dev_info; 2461 written = 0; 2462 2463 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 2464 if (err) 2465 goto out; 2466 2467 if (count == 0) 2468 goto out; 2469 2470 err = file_remove_suid(file); 2471 if (err) 2472 goto out; 2473 2474 file_update_time(file); 2475 2476 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 2477 if (unlikely(file->f_flags & O_DIRECT)) { 2478 loff_t endbyte; 2479 ssize_t written_buffered; 2480 2481 written = generic_file_direct_write(iocb, iov, &nr_segs, pos, 2482 ppos, count, ocount); 2483 if (written < 0 || written == count) 2484 goto out; 2485 /* 2486 * direct-io write to a hole: fall through to buffered I/O 2487 * for completing the rest of the request. 2488 */ 2489 pos += written; 2490 count -= written; 2491 written_buffered = generic_file_buffered_write(iocb, iov, 2492 nr_segs, pos, ppos, count, 2493 written); 2494 /* 2495 * If generic_file_buffered_write() retuned a synchronous error 2496 * then we want to return the number of bytes which were 2497 * direct-written, or the error code if that was zero. Note 2498 * that this differs from normal direct-io semantics, which 2499 * will return -EFOO even if some bytes were written. 2500 */ 2501 if (written_buffered < 0) { 2502 err = written_buffered; 2503 goto out; 2504 } 2505 2506 /* 2507 * We need to ensure that the page cache pages are written to 2508 * disk and invalidated to preserve the expected O_DIRECT 2509 * semantics. 2510 */ 2511 endbyte = pos + written_buffered - written - 1; 2512 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte); 2513 if (err == 0) { 2514 written = written_buffered; 2515 invalidate_mapping_pages(mapping, 2516 pos >> PAGE_CACHE_SHIFT, 2517 endbyte >> PAGE_CACHE_SHIFT); 2518 } else { 2519 /* 2520 * We don't know how much we wrote, so just return 2521 * the number of bytes which were direct-written 2522 */ 2523 } 2524 } else { 2525 written = generic_file_buffered_write(iocb, iov, nr_segs, 2526 pos, ppos, count, written); 2527 } 2528 out: 2529 current->backing_dev_info = NULL; 2530 return written ? written : err; 2531 } 2532 EXPORT_SYMBOL(__generic_file_aio_write); 2533 2534 /** 2535 * generic_file_aio_write - write data to a file 2536 * @iocb: IO state structure 2537 * @iov: vector with data to write 2538 * @nr_segs: number of segments in the vector 2539 * @pos: position in file where to write 2540 * 2541 * This is a wrapper around __generic_file_aio_write() to be used by most 2542 * filesystems. It takes care of syncing the file in case of O_SYNC file 2543 * and acquires i_mutex as needed. 2544 */ 2545 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, 2546 unsigned long nr_segs, loff_t pos) 2547 { 2548 struct file *file = iocb->ki_filp; 2549 struct inode *inode = file->f_mapping->host; 2550 struct blk_plug plug; 2551 ssize_t ret; 2552 2553 BUG_ON(iocb->ki_pos != pos); 2554 2555 mutex_lock(&inode->i_mutex); 2556 blk_start_plug(&plug); 2557 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos); 2558 mutex_unlock(&inode->i_mutex); 2559 2560 if (ret > 0 || ret == -EIOCBQUEUED) { 2561 ssize_t err; 2562 2563 err = generic_write_sync(file, pos, ret); 2564 if (err < 0 && ret > 0) 2565 ret = err; 2566 } 2567 blk_finish_plug(&plug); 2568 return ret; 2569 } 2570 EXPORT_SYMBOL(generic_file_aio_write); 2571 2572 /** 2573 * try_to_release_page() - release old fs-specific metadata on a page 2574 * 2575 * @page: the page which the kernel is trying to free 2576 * @gfp_mask: memory allocation flags (and I/O mode) 2577 * 2578 * The address_space is to try to release any data against the page 2579 * (presumably at page->private). If the release was successful, return `1'. 2580 * Otherwise return zero. 2581 * 2582 * This may also be called if PG_fscache is set on a page, indicating that the 2583 * page is known to the local caching routines. 2584 * 2585 * The @gfp_mask argument specifies whether I/O may be performed to release 2586 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS). 2587 * 2588 */ 2589 int try_to_release_page(struct page *page, gfp_t gfp_mask) 2590 { 2591 struct address_space * const mapping = page->mapping; 2592 2593 BUG_ON(!PageLocked(page)); 2594 if (PageWriteback(page)) 2595 return 0; 2596 2597 if (mapping && mapping->a_ops->releasepage) 2598 return mapping->a_ops->releasepage(page, gfp_mask); 2599 return try_to_free_buffers(page); 2600 } 2601 2602 EXPORT_SYMBOL(try_to_release_page); 2603