1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/filemap.c 4 * 5 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 7 8 /* 9 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differently, for example) 12 */ 13 #include <linux/export.h> 14 #include <linux/compiler.h> 15 #include <linux/dax.h> 16 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 19 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 22 #include <linux/mm.h> 23 #include <linux/swap.h> 24 #include <linux/swapops.h> 25 #include <linux/mman.h> 26 #include <linux/pagemap.h> 27 #include <linux/file.h> 28 #include <linux/uio.h> 29 #include <linux/error-injection.h> 30 #include <linux/hash.h> 31 #include <linux/writeback.h> 32 #include <linux/backing-dev.h> 33 #include <linux/pagevec.h> 34 #include <linux/security.h> 35 #include <linux/cpuset.h> 36 #include <linux/hugetlb.h> 37 #include <linux/memcontrol.h> 38 #include <linux/shmem_fs.h> 39 #include <linux/rmap.h> 40 #include <linux/delayacct.h> 41 #include <linux/psi.h> 42 #include <linux/ramfs.h> 43 #include <linux/page_idle.h> 44 #include <linux/migrate.h> 45 #include <asm/pgalloc.h> 46 #include <asm/tlbflush.h> 47 #include "internal.h" 48 49 #define CREATE_TRACE_POINTS 50 #include <trace/events/filemap.h> 51 52 /* 53 * FIXME: remove all knowledge of the buffer layer from the core VM 54 */ 55 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 56 57 #include <asm/mman.h> 58 59 /* 60 * Shared mappings implemented 30.11.1994. It's not fully working yet, 61 * though. 62 * 63 * Shared mappings now work. 15.8.1995 Bruno. 64 * 65 * finished 'unifying' the page and buffer cache and SMP-threaded the 66 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 67 * 68 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 69 */ 70 71 /* 72 * Lock ordering: 73 * 74 * ->i_mmap_rwsem (truncate_pagecache) 75 * ->private_lock (__free_pte->block_dirty_folio) 76 * ->swap_lock (exclusive_swap_page, others) 77 * ->i_pages lock 78 * 79 * ->i_rwsem 80 * ->invalidate_lock (acquired by fs in truncate path) 81 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 82 * 83 * ->mmap_lock 84 * ->i_mmap_rwsem 85 * ->page_table_lock or pte_lock (various, mainly in memory.c) 86 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 87 * 88 * ->mmap_lock 89 * ->invalidate_lock (filemap_fault) 90 * ->lock_page (filemap_fault, access_process_vm) 91 * 92 * ->i_rwsem (generic_perform_write) 93 * ->mmap_lock (fault_in_readable->do_page_fault) 94 * 95 * bdi->wb.list_lock 96 * sb_lock (fs/fs-writeback.c) 97 * ->i_pages lock (__sync_single_inode) 98 * 99 * ->i_mmap_rwsem 100 * ->anon_vma.lock (vma_adjust) 101 * 102 * ->anon_vma.lock 103 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 104 * 105 * ->page_table_lock or pte_lock 106 * ->swap_lock (try_to_unmap_one) 107 * ->private_lock (try_to_unmap_one) 108 * ->i_pages lock (try_to_unmap_one) 109 * ->lruvec->lru_lock (follow_page->mark_page_accessed) 110 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page) 111 * ->private_lock (page_remove_rmap->set_page_dirty) 112 * ->i_pages lock (page_remove_rmap->set_page_dirty) 113 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 114 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 115 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) 116 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 117 * ->inode->i_lock (zap_pte_range->set_page_dirty) 118 * ->private_lock (zap_pte_range->block_dirty_folio) 119 * 120 * ->i_mmap_rwsem 121 * ->tasklist_lock (memory_failure, collect_procs_ao) 122 */ 123 124 static void page_cache_delete(struct address_space *mapping, 125 struct folio *folio, void *shadow) 126 { 127 XA_STATE(xas, &mapping->i_pages, folio->index); 128 long nr = 1; 129 130 mapping_set_update(&xas, mapping); 131 132 /* hugetlb pages are represented by a single entry in the xarray */ 133 if (!folio_test_hugetlb(folio)) { 134 xas_set_order(&xas, folio->index, folio_order(folio)); 135 nr = folio_nr_pages(folio); 136 } 137 138 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 139 140 xas_store(&xas, shadow); 141 xas_init_marks(&xas); 142 143 folio->mapping = NULL; 144 /* Leave page->index set: truncation lookup relies upon it */ 145 mapping->nrpages -= nr; 146 } 147 148 static void filemap_unaccount_folio(struct address_space *mapping, 149 struct folio *folio) 150 { 151 long nr; 152 153 VM_BUG_ON_FOLIO(folio_mapped(folio), folio); 154 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) { 155 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 156 current->comm, folio_pfn(folio)); 157 dump_page(&folio->page, "still mapped when deleted"); 158 dump_stack(); 159 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 160 161 if (mapping_exiting(mapping) && !folio_test_large(folio)) { 162 int mapcount = page_mapcount(&folio->page); 163 164 if (folio_ref_count(folio) >= mapcount + 2) { 165 /* 166 * All vmas have already been torn down, so it's 167 * a good bet that actually the page is unmapped 168 * and we'd rather not leak it: if we're wrong, 169 * another bad page check should catch it later. 170 */ 171 page_mapcount_reset(&folio->page); 172 folio_ref_sub(folio, mapcount); 173 } 174 } 175 } 176 177 /* hugetlb folios do not participate in page cache accounting. */ 178 if (folio_test_hugetlb(folio)) 179 return; 180 181 nr = folio_nr_pages(folio); 182 183 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 184 if (folio_test_swapbacked(folio)) { 185 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 186 if (folio_test_pmd_mappable(folio)) 187 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr); 188 } else if (folio_test_pmd_mappable(folio)) { 189 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr); 190 filemap_nr_thps_dec(mapping); 191 } 192 193 /* 194 * At this point folio must be either written or cleaned by 195 * truncate. Dirty folio here signals a bug and loss of 196 * unwritten data - on ordinary filesystems. 197 * 198 * But it's harmless on in-memory filesystems like tmpfs; and can 199 * occur when a driver which did get_user_pages() sets page dirty 200 * before putting it, while the inode is being finally evicted. 201 * 202 * Below fixes dirty accounting after removing the folio entirely 203 * but leaves the dirty flag set: it has no effect for truncated 204 * folio and anyway will be cleared before returning folio to 205 * buddy allocator. 206 */ 207 if (WARN_ON_ONCE(folio_test_dirty(folio) && 208 mapping_can_writeback(mapping))) 209 folio_account_cleaned(folio, inode_to_wb(mapping->host)); 210 } 211 212 /* 213 * Delete a page from the page cache and free it. Caller has to make 214 * sure the page is locked and that nobody else uses it - or that usage 215 * is safe. The caller must hold the i_pages lock. 216 */ 217 void __filemap_remove_folio(struct folio *folio, void *shadow) 218 { 219 struct address_space *mapping = folio->mapping; 220 221 trace_mm_filemap_delete_from_page_cache(folio); 222 filemap_unaccount_folio(mapping, folio); 223 page_cache_delete(mapping, folio, shadow); 224 } 225 226 void filemap_free_folio(struct address_space *mapping, struct folio *folio) 227 { 228 void (*free_folio)(struct folio *); 229 int refs = 1; 230 231 free_folio = mapping->a_ops->free_folio; 232 if (free_folio) 233 free_folio(folio); 234 235 if (folio_test_large(folio) && !folio_test_hugetlb(folio)) 236 refs = folio_nr_pages(folio); 237 folio_put_refs(folio, refs); 238 } 239 240 /** 241 * filemap_remove_folio - Remove folio from page cache. 242 * @folio: The folio. 243 * 244 * This must be called only on folios that are locked and have been 245 * verified to be in the page cache. It will never put the folio into 246 * the free list because the caller has a reference on the page. 247 */ 248 void filemap_remove_folio(struct folio *folio) 249 { 250 struct address_space *mapping = folio->mapping; 251 252 BUG_ON(!folio_test_locked(folio)); 253 spin_lock(&mapping->host->i_lock); 254 xa_lock_irq(&mapping->i_pages); 255 __filemap_remove_folio(folio, NULL); 256 xa_unlock_irq(&mapping->i_pages); 257 if (mapping_shrinkable(mapping)) 258 inode_add_lru(mapping->host); 259 spin_unlock(&mapping->host->i_lock); 260 261 filemap_free_folio(mapping, folio); 262 } 263 264 /* 265 * page_cache_delete_batch - delete several folios from page cache 266 * @mapping: the mapping to which folios belong 267 * @fbatch: batch of folios to delete 268 * 269 * The function walks over mapping->i_pages and removes folios passed in 270 * @fbatch from the mapping. The function expects @fbatch to be sorted 271 * by page index and is optimised for it to be dense. 272 * It tolerates holes in @fbatch (mapping entries at those indices are not 273 * modified). 274 * 275 * The function expects the i_pages lock to be held. 276 */ 277 static void page_cache_delete_batch(struct address_space *mapping, 278 struct folio_batch *fbatch) 279 { 280 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index); 281 long total_pages = 0; 282 int i = 0; 283 struct folio *folio; 284 285 mapping_set_update(&xas, mapping); 286 xas_for_each(&xas, folio, ULONG_MAX) { 287 if (i >= folio_batch_count(fbatch)) 288 break; 289 290 /* A swap/dax/shadow entry got inserted? Skip it. */ 291 if (xa_is_value(folio)) 292 continue; 293 /* 294 * A page got inserted in our range? Skip it. We have our 295 * pages locked so they are protected from being removed. 296 * If we see a page whose index is higher than ours, it 297 * means our page has been removed, which shouldn't be 298 * possible because we're holding the PageLock. 299 */ 300 if (folio != fbatch->folios[i]) { 301 VM_BUG_ON_FOLIO(folio->index > 302 fbatch->folios[i]->index, folio); 303 continue; 304 } 305 306 WARN_ON_ONCE(!folio_test_locked(folio)); 307 308 folio->mapping = NULL; 309 /* Leave folio->index set: truncation lookup relies on it */ 310 311 i++; 312 xas_store(&xas, NULL); 313 total_pages += folio_nr_pages(folio); 314 } 315 mapping->nrpages -= total_pages; 316 } 317 318 void delete_from_page_cache_batch(struct address_space *mapping, 319 struct folio_batch *fbatch) 320 { 321 int i; 322 323 if (!folio_batch_count(fbatch)) 324 return; 325 326 spin_lock(&mapping->host->i_lock); 327 xa_lock_irq(&mapping->i_pages); 328 for (i = 0; i < folio_batch_count(fbatch); i++) { 329 struct folio *folio = fbatch->folios[i]; 330 331 trace_mm_filemap_delete_from_page_cache(folio); 332 filemap_unaccount_folio(mapping, folio); 333 } 334 page_cache_delete_batch(mapping, fbatch); 335 xa_unlock_irq(&mapping->i_pages); 336 if (mapping_shrinkable(mapping)) 337 inode_add_lru(mapping->host); 338 spin_unlock(&mapping->host->i_lock); 339 340 for (i = 0; i < folio_batch_count(fbatch); i++) 341 filemap_free_folio(mapping, fbatch->folios[i]); 342 } 343 344 int filemap_check_errors(struct address_space *mapping) 345 { 346 int ret = 0; 347 /* Check for outstanding write errors */ 348 if (test_bit(AS_ENOSPC, &mapping->flags) && 349 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 350 ret = -ENOSPC; 351 if (test_bit(AS_EIO, &mapping->flags) && 352 test_and_clear_bit(AS_EIO, &mapping->flags)) 353 ret = -EIO; 354 return ret; 355 } 356 EXPORT_SYMBOL(filemap_check_errors); 357 358 static int filemap_check_and_keep_errors(struct address_space *mapping) 359 { 360 /* Check for outstanding write errors */ 361 if (test_bit(AS_EIO, &mapping->flags)) 362 return -EIO; 363 if (test_bit(AS_ENOSPC, &mapping->flags)) 364 return -ENOSPC; 365 return 0; 366 } 367 368 /** 369 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range 370 * @mapping: address space structure to write 371 * @wbc: the writeback_control controlling the writeout 372 * 373 * Call writepages on the mapping using the provided wbc to control the 374 * writeout. 375 * 376 * Return: %0 on success, negative error code otherwise. 377 */ 378 int filemap_fdatawrite_wbc(struct address_space *mapping, 379 struct writeback_control *wbc) 380 { 381 int ret; 382 383 if (!mapping_can_writeback(mapping) || 384 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 385 return 0; 386 387 wbc_attach_fdatawrite_inode(wbc, mapping->host); 388 ret = do_writepages(mapping, wbc); 389 wbc_detach_inode(wbc); 390 return ret; 391 } 392 EXPORT_SYMBOL(filemap_fdatawrite_wbc); 393 394 /** 395 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 396 * @mapping: address space structure to write 397 * @start: offset in bytes where the range starts 398 * @end: offset in bytes where the range ends (inclusive) 399 * @sync_mode: enable synchronous operation 400 * 401 * Start writeback against all of a mapping's dirty pages that lie 402 * within the byte offsets <start, end> inclusive. 403 * 404 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 405 * opposed to a regular memory cleansing writeback. The difference between 406 * these two operations is that if a dirty page/buffer is encountered, it must 407 * be waited upon, and not just skipped over. 408 * 409 * Return: %0 on success, negative error code otherwise. 410 */ 411 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 412 loff_t end, int sync_mode) 413 { 414 struct writeback_control wbc = { 415 .sync_mode = sync_mode, 416 .nr_to_write = LONG_MAX, 417 .range_start = start, 418 .range_end = end, 419 }; 420 421 return filemap_fdatawrite_wbc(mapping, &wbc); 422 } 423 424 static inline int __filemap_fdatawrite(struct address_space *mapping, 425 int sync_mode) 426 { 427 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 428 } 429 430 int filemap_fdatawrite(struct address_space *mapping) 431 { 432 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 433 } 434 EXPORT_SYMBOL(filemap_fdatawrite); 435 436 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 437 loff_t end) 438 { 439 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 440 } 441 EXPORT_SYMBOL(filemap_fdatawrite_range); 442 443 /** 444 * filemap_flush - mostly a non-blocking flush 445 * @mapping: target address_space 446 * 447 * This is a mostly non-blocking flush. Not suitable for data-integrity 448 * purposes - I/O may not be started against all dirty pages. 449 * 450 * Return: %0 on success, negative error code otherwise. 451 */ 452 int filemap_flush(struct address_space *mapping) 453 { 454 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 455 } 456 EXPORT_SYMBOL(filemap_flush); 457 458 /** 459 * filemap_range_has_page - check if a page exists in range. 460 * @mapping: address space within which to check 461 * @start_byte: offset in bytes where the range starts 462 * @end_byte: offset in bytes where the range ends (inclusive) 463 * 464 * Find at least one page in the range supplied, usually used to check if 465 * direct writing in this range will trigger a writeback. 466 * 467 * Return: %true if at least one page exists in the specified range, 468 * %false otherwise. 469 */ 470 bool filemap_range_has_page(struct address_space *mapping, 471 loff_t start_byte, loff_t end_byte) 472 { 473 struct page *page; 474 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 475 pgoff_t max = end_byte >> PAGE_SHIFT; 476 477 if (end_byte < start_byte) 478 return false; 479 480 rcu_read_lock(); 481 for (;;) { 482 page = xas_find(&xas, max); 483 if (xas_retry(&xas, page)) 484 continue; 485 /* Shadow entries don't count */ 486 if (xa_is_value(page)) 487 continue; 488 /* 489 * We don't need to try to pin this page; we're about to 490 * release the RCU lock anyway. It is enough to know that 491 * there was a page here recently. 492 */ 493 break; 494 } 495 rcu_read_unlock(); 496 497 return page != NULL; 498 } 499 EXPORT_SYMBOL(filemap_range_has_page); 500 501 static void __filemap_fdatawait_range(struct address_space *mapping, 502 loff_t start_byte, loff_t end_byte) 503 { 504 pgoff_t index = start_byte >> PAGE_SHIFT; 505 pgoff_t end = end_byte >> PAGE_SHIFT; 506 struct pagevec pvec; 507 int nr_pages; 508 509 if (end_byte < start_byte) 510 return; 511 512 pagevec_init(&pvec); 513 while (index <= end) { 514 unsigned i; 515 516 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, 517 end, PAGECACHE_TAG_WRITEBACK); 518 if (!nr_pages) 519 break; 520 521 for (i = 0; i < nr_pages; i++) { 522 struct page *page = pvec.pages[i]; 523 524 wait_on_page_writeback(page); 525 ClearPageError(page); 526 } 527 pagevec_release(&pvec); 528 cond_resched(); 529 } 530 } 531 532 /** 533 * filemap_fdatawait_range - wait for writeback to complete 534 * @mapping: address space structure to wait for 535 * @start_byte: offset in bytes where the range starts 536 * @end_byte: offset in bytes where the range ends (inclusive) 537 * 538 * Walk the list of under-writeback pages of the given address space 539 * in the given range and wait for all of them. Check error status of 540 * the address space and return it. 541 * 542 * Since the error status of the address space is cleared by this function, 543 * callers are responsible for checking the return value and handling and/or 544 * reporting the error. 545 * 546 * Return: error status of the address space. 547 */ 548 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 549 loff_t end_byte) 550 { 551 __filemap_fdatawait_range(mapping, start_byte, end_byte); 552 return filemap_check_errors(mapping); 553 } 554 EXPORT_SYMBOL(filemap_fdatawait_range); 555 556 /** 557 * filemap_fdatawait_range_keep_errors - wait for writeback to complete 558 * @mapping: address space structure to wait for 559 * @start_byte: offset in bytes where the range starts 560 * @end_byte: offset in bytes where the range ends (inclusive) 561 * 562 * Walk the list of under-writeback pages of the given address space in the 563 * given range and wait for all of them. Unlike filemap_fdatawait_range(), 564 * this function does not clear error status of the address space. 565 * 566 * Use this function if callers don't handle errors themselves. Expected 567 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 568 * fsfreeze(8) 569 */ 570 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 571 loff_t start_byte, loff_t end_byte) 572 { 573 __filemap_fdatawait_range(mapping, start_byte, end_byte); 574 return filemap_check_and_keep_errors(mapping); 575 } 576 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); 577 578 /** 579 * file_fdatawait_range - wait for writeback to complete 580 * @file: file pointing to address space structure to wait for 581 * @start_byte: offset in bytes where the range starts 582 * @end_byte: offset in bytes where the range ends (inclusive) 583 * 584 * Walk the list of under-writeback pages of the address space that file 585 * refers to, in the given range and wait for all of them. Check error 586 * status of the address space vs. the file->f_wb_err cursor and return it. 587 * 588 * Since the error status of the file is advanced by this function, 589 * callers are responsible for checking the return value and handling and/or 590 * reporting the error. 591 * 592 * Return: error status of the address space vs. the file->f_wb_err cursor. 593 */ 594 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 595 { 596 struct address_space *mapping = file->f_mapping; 597 598 __filemap_fdatawait_range(mapping, start_byte, end_byte); 599 return file_check_and_advance_wb_err(file); 600 } 601 EXPORT_SYMBOL(file_fdatawait_range); 602 603 /** 604 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 605 * @mapping: address space structure to wait for 606 * 607 * Walk the list of under-writeback pages of the given address space 608 * and wait for all of them. Unlike filemap_fdatawait(), this function 609 * does not clear error status of the address space. 610 * 611 * Use this function if callers don't handle errors themselves. Expected 612 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 613 * fsfreeze(8) 614 * 615 * Return: error status of the address space. 616 */ 617 int filemap_fdatawait_keep_errors(struct address_space *mapping) 618 { 619 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 620 return filemap_check_and_keep_errors(mapping); 621 } 622 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 623 624 /* Returns true if writeback might be needed or already in progress. */ 625 static bool mapping_needs_writeback(struct address_space *mapping) 626 { 627 return mapping->nrpages; 628 } 629 630 bool filemap_range_has_writeback(struct address_space *mapping, 631 loff_t start_byte, loff_t end_byte) 632 { 633 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 634 pgoff_t max = end_byte >> PAGE_SHIFT; 635 struct page *page; 636 637 if (end_byte < start_byte) 638 return false; 639 640 rcu_read_lock(); 641 xas_for_each(&xas, page, max) { 642 if (xas_retry(&xas, page)) 643 continue; 644 if (xa_is_value(page)) 645 continue; 646 if (PageDirty(page) || PageLocked(page) || PageWriteback(page)) 647 break; 648 } 649 rcu_read_unlock(); 650 return page != NULL; 651 } 652 EXPORT_SYMBOL_GPL(filemap_range_has_writeback); 653 654 /** 655 * filemap_write_and_wait_range - write out & wait on a file range 656 * @mapping: the address_space for the pages 657 * @lstart: offset in bytes where the range starts 658 * @lend: offset in bytes where the range ends (inclusive) 659 * 660 * Write out and wait upon file offsets lstart->lend, inclusive. 661 * 662 * Note that @lend is inclusive (describes the last byte to be written) so 663 * that this function can be used to write to the very end-of-file (end = -1). 664 * 665 * Return: error status of the address space. 666 */ 667 int filemap_write_and_wait_range(struct address_space *mapping, 668 loff_t lstart, loff_t lend) 669 { 670 int err = 0, err2; 671 672 if (mapping_needs_writeback(mapping)) { 673 err = __filemap_fdatawrite_range(mapping, lstart, lend, 674 WB_SYNC_ALL); 675 /* 676 * Even if the above returned error, the pages may be 677 * written partially (e.g. -ENOSPC), so we wait for it. 678 * But the -EIO is special case, it may indicate the worst 679 * thing (e.g. bug) happened, so we avoid waiting for it. 680 */ 681 if (err != -EIO) 682 __filemap_fdatawait_range(mapping, lstart, lend); 683 } 684 err2 = filemap_check_errors(mapping); 685 if (!err) 686 err = err2; 687 return err; 688 } 689 EXPORT_SYMBOL(filemap_write_and_wait_range); 690 691 void __filemap_set_wb_err(struct address_space *mapping, int err) 692 { 693 errseq_t eseq = errseq_set(&mapping->wb_err, err); 694 695 trace_filemap_set_wb_err(mapping, eseq); 696 } 697 EXPORT_SYMBOL(__filemap_set_wb_err); 698 699 /** 700 * file_check_and_advance_wb_err - report wb error (if any) that was previously 701 * and advance wb_err to current one 702 * @file: struct file on which the error is being reported 703 * 704 * When userland calls fsync (or something like nfsd does the equivalent), we 705 * want to report any writeback errors that occurred since the last fsync (or 706 * since the file was opened if there haven't been any). 707 * 708 * Grab the wb_err from the mapping. If it matches what we have in the file, 709 * then just quickly return 0. The file is all caught up. 710 * 711 * If it doesn't match, then take the mapping value, set the "seen" flag in 712 * it and try to swap it into place. If it works, or another task beat us 713 * to it with the new value, then update the f_wb_err and return the error 714 * portion. The error at this point must be reported via proper channels 715 * (a'la fsync, or NFS COMMIT operation, etc.). 716 * 717 * While we handle mapping->wb_err with atomic operations, the f_wb_err 718 * value is protected by the f_lock since we must ensure that it reflects 719 * the latest value swapped in for this file descriptor. 720 * 721 * Return: %0 on success, negative error code otherwise. 722 */ 723 int file_check_and_advance_wb_err(struct file *file) 724 { 725 int err = 0; 726 errseq_t old = READ_ONCE(file->f_wb_err); 727 struct address_space *mapping = file->f_mapping; 728 729 /* Locklessly handle the common case where nothing has changed */ 730 if (errseq_check(&mapping->wb_err, old)) { 731 /* Something changed, must use slow path */ 732 spin_lock(&file->f_lock); 733 old = file->f_wb_err; 734 err = errseq_check_and_advance(&mapping->wb_err, 735 &file->f_wb_err); 736 trace_file_check_and_advance_wb_err(file, old); 737 spin_unlock(&file->f_lock); 738 } 739 740 /* 741 * We're mostly using this function as a drop in replacement for 742 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 743 * that the legacy code would have had on these flags. 744 */ 745 clear_bit(AS_EIO, &mapping->flags); 746 clear_bit(AS_ENOSPC, &mapping->flags); 747 return err; 748 } 749 EXPORT_SYMBOL(file_check_and_advance_wb_err); 750 751 /** 752 * file_write_and_wait_range - write out & wait on a file range 753 * @file: file pointing to address_space with pages 754 * @lstart: offset in bytes where the range starts 755 * @lend: offset in bytes where the range ends (inclusive) 756 * 757 * Write out and wait upon file offsets lstart->lend, inclusive. 758 * 759 * Note that @lend is inclusive (describes the last byte to be written) so 760 * that this function can be used to write to the very end-of-file (end = -1). 761 * 762 * After writing out and waiting on the data, we check and advance the 763 * f_wb_err cursor to the latest value, and return any errors detected there. 764 * 765 * Return: %0 on success, negative error code otherwise. 766 */ 767 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 768 { 769 int err = 0, err2; 770 struct address_space *mapping = file->f_mapping; 771 772 if (mapping_needs_writeback(mapping)) { 773 err = __filemap_fdatawrite_range(mapping, lstart, lend, 774 WB_SYNC_ALL); 775 /* See comment of filemap_write_and_wait() */ 776 if (err != -EIO) 777 __filemap_fdatawait_range(mapping, lstart, lend); 778 } 779 err2 = file_check_and_advance_wb_err(file); 780 if (!err) 781 err = err2; 782 return err; 783 } 784 EXPORT_SYMBOL(file_write_and_wait_range); 785 786 /** 787 * replace_page_cache_page - replace a pagecache page with a new one 788 * @old: page to be replaced 789 * @new: page to replace with 790 * 791 * This function replaces a page in the pagecache with a new one. On 792 * success it acquires the pagecache reference for the new page and 793 * drops it for the old page. Both the old and new pages must be 794 * locked. This function does not add the new page to the LRU, the 795 * caller must do that. 796 * 797 * The remove + add is atomic. This function cannot fail. 798 */ 799 void replace_page_cache_page(struct page *old, struct page *new) 800 { 801 struct folio *fold = page_folio(old); 802 struct folio *fnew = page_folio(new); 803 struct address_space *mapping = old->mapping; 804 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio; 805 pgoff_t offset = old->index; 806 XA_STATE(xas, &mapping->i_pages, offset); 807 808 VM_BUG_ON_PAGE(!PageLocked(old), old); 809 VM_BUG_ON_PAGE(!PageLocked(new), new); 810 VM_BUG_ON_PAGE(new->mapping, new); 811 812 get_page(new); 813 new->mapping = mapping; 814 new->index = offset; 815 816 mem_cgroup_migrate(fold, fnew); 817 818 xas_lock_irq(&xas); 819 xas_store(&xas, new); 820 821 old->mapping = NULL; 822 /* hugetlb pages do not participate in page cache accounting. */ 823 if (!PageHuge(old)) 824 __dec_lruvec_page_state(old, NR_FILE_PAGES); 825 if (!PageHuge(new)) 826 __inc_lruvec_page_state(new, NR_FILE_PAGES); 827 if (PageSwapBacked(old)) 828 __dec_lruvec_page_state(old, NR_SHMEM); 829 if (PageSwapBacked(new)) 830 __inc_lruvec_page_state(new, NR_SHMEM); 831 xas_unlock_irq(&xas); 832 if (free_folio) 833 free_folio(fold); 834 folio_put(fold); 835 } 836 EXPORT_SYMBOL_GPL(replace_page_cache_page); 837 838 noinline int __filemap_add_folio(struct address_space *mapping, 839 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp) 840 { 841 XA_STATE(xas, &mapping->i_pages, index); 842 int huge = folio_test_hugetlb(folio); 843 bool charged = false; 844 long nr = 1; 845 846 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 847 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio); 848 mapping_set_update(&xas, mapping); 849 850 if (!huge) { 851 int error = mem_cgroup_charge(folio, NULL, gfp); 852 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio); 853 if (error) 854 return error; 855 charged = true; 856 xas_set_order(&xas, index, folio_order(folio)); 857 nr = folio_nr_pages(folio); 858 } 859 860 gfp &= GFP_RECLAIM_MASK; 861 folio_ref_add(folio, nr); 862 folio->mapping = mapping; 863 folio->index = xas.xa_index; 864 865 do { 866 unsigned int order = xa_get_order(xas.xa, xas.xa_index); 867 void *entry, *old = NULL; 868 869 if (order > folio_order(folio)) 870 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index), 871 order, gfp); 872 xas_lock_irq(&xas); 873 xas_for_each_conflict(&xas, entry) { 874 old = entry; 875 if (!xa_is_value(entry)) { 876 xas_set_err(&xas, -EEXIST); 877 goto unlock; 878 } 879 } 880 881 if (old) { 882 if (shadowp) 883 *shadowp = old; 884 /* entry may have been split before we acquired lock */ 885 order = xa_get_order(xas.xa, xas.xa_index); 886 if (order > folio_order(folio)) { 887 /* How to handle large swap entries? */ 888 BUG_ON(shmem_mapping(mapping)); 889 xas_split(&xas, old, order); 890 xas_reset(&xas); 891 } 892 } 893 894 xas_store(&xas, folio); 895 if (xas_error(&xas)) 896 goto unlock; 897 898 mapping->nrpages += nr; 899 900 /* hugetlb pages do not participate in page cache accounting */ 901 if (!huge) { 902 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 903 if (folio_test_pmd_mappable(folio)) 904 __lruvec_stat_mod_folio(folio, 905 NR_FILE_THPS, nr); 906 } 907 unlock: 908 xas_unlock_irq(&xas); 909 } while (xas_nomem(&xas, gfp)); 910 911 if (xas_error(&xas)) 912 goto error; 913 914 trace_mm_filemap_add_to_page_cache(folio); 915 return 0; 916 error: 917 if (charged) 918 mem_cgroup_uncharge(folio); 919 folio->mapping = NULL; 920 /* Leave page->index set: truncation relies upon it */ 921 folio_put_refs(folio, nr); 922 return xas_error(&xas); 923 } 924 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO); 925 926 int filemap_add_folio(struct address_space *mapping, struct folio *folio, 927 pgoff_t index, gfp_t gfp) 928 { 929 void *shadow = NULL; 930 int ret; 931 932 __folio_set_locked(folio); 933 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow); 934 if (unlikely(ret)) 935 __folio_clear_locked(folio); 936 else { 937 /* 938 * The folio might have been evicted from cache only 939 * recently, in which case it should be activated like 940 * any other repeatedly accessed folio. 941 * The exception is folios getting rewritten; evicting other 942 * data from the working set, only to cache data that will 943 * get overwritten with something else, is a waste of memory. 944 */ 945 WARN_ON_ONCE(folio_test_active(folio)); 946 if (!(gfp & __GFP_WRITE) && shadow) 947 workingset_refault(folio, shadow); 948 folio_add_lru(folio); 949 } 950 return ret; 951 } 952 EXPORT_SYMBOL_GPL(filemap_add_folio); 953 954 #ifdef CONFIG_NUMA 955 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order) 956 { 957 int n; 958 struct folio *folio; 959 960 if (cpuset_do_page_mem_spread()) { 961 unsigned int cpuset_mems_cookie; 962 do { 963 cpuset_mems_cookie = read_mems_allowed_begin(); 964 n = cpuset_mem_spread_node(); 965 folio = __folio_alloc_node(gfp, order, n); 966 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie)); 967 968 return folio; 969 } 970 return folio_alloc(gfp, order); 971 } 972 EXPORT_SYMBOL(filemap_alloc_folio); 973 #endif 974 975 /* 976 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings 977 * 978 * Lock exclusively invalidate_lock of any passed mapping that is not NULL. 979 * 980 * @mapping1: the first mapping to lock 981 * @mapping2: the second mapping to lock 982 */ 983 void filemap_invalidate_lock_two(struct address_space *mapping1, 984 struct address_space *mapping2) 985 { 986 if (mapping1 > mapping2) 987 swap(mapping1, mapping2); 988 if (mapping1) 989 down_write(&mapping1->invalidate_lock); 990 if (mapping2 && mapping1 != mapping2) 991 down_write_nested(&mapping2->invalidate_lock, 1); 992 } 993 EXPORT_SYMBOL(filemap_invalidate_lock_two); 994 995 /* 996 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings 997 * 998 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL. 999 * 1000 * @mapping1: the first mapping to unlock 1001 * @mapping2: the second mapping to unlock 1002 */ 1003 void filemap_invalidate_unlock_two(struct address_space *mapping1, 1004 struct address_space *mapping2) 1005 { 1006 if (mapping1) 1007 up_write(&mapping1->invalidate_lock); 1008 if (mapping2 && mapping1 != mapping2) 1009 up_write(&mapping2->invalidate_lock); 1010 } 1011 EXPORT_SYMBOL(filemap_invalidate_unlock_two); 1012 1013 /* 1014 * In order to wait for pages to become available there must be 1015 * waitqueues associated with pages. By using a hash table of 1016 * waitqueues where the bucket discipline is to maintain all 1017 * waiters on the same queue and wake all when any of the pages 1018 * become available, and for the woken contexts to check to be 1019 * sure the appropriate page became available, this saves space 1020 * at a cost of "thundering herd" phenomena during rare hash 1021 * collisions. 1022 */ 1023 #define PAGE_WAIT_TABLE_BITS 8 1024 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 1025 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 1026 1027 static wait_queue_head_t *folio_waitqueue(struct folio *folio) 1028 { 1029 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)]; 1030 } 1031 1032 void __init pagecache_init(void) 1033 { 1034 int i; 1035 1036 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 1037 init_waitqueue_head(&folio_wait_table[i]); 1038 1039 page_writeback_init(); 1040 } 1041 1042 /* 1043 * The page wait code treats the "wait->flags" somewhat unusually, because 1044 * we have multiple different kinds of waits, not just the usual "exclusive" 1045 * one. 1046 * 1047 * We have: 1048 * 1049 * (a) no special bits set: 1050 * 1051 * We're just waiting for the bit to be released, and when a waker 1052 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up, 1053 * and remove it from the wait queue. 1054 * 1055 * Simple and straightforward. 1056 * 1057 * (b) WQ_FLAG_EXCLUSIVE: 1058 * 1059 * The waiter is waiting to get the lock, and only one waiter should 1060 * be woken up to avoid any thundering herd behavior. We'll set the 1061 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue. 1062 * 1063 * This is the traditional exclusive wait. 1064 * 1065 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM: 1066 * 1067 * The waiter is waiting to get the bit, and additionally wants the 1068 * lock to be transferred to it for fair lock behavior. If the lock 1069 * cannot be taken, we stop walking the wait queue without waking 1070 * the waiter. 1071 * 1072 * This is the "fair lock handoff" case, and in addition to setting 1073 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see 1074 * that it now has the lock. 1075 */ 1076 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 1077 { 1078 unsigned int flags; 1079 struct wait_page_key *key = arg; 1080 struct wait_page_queue *wait_page 1081 = container_of(wait, struct wait_page_queue, wait); 1082 1083 if (!wake_page_match(wait_page, key)) 1084 return 0; 1085 1086 /* 1087 * If it's a lock handoff wait, we get the bit for it, and 1088 * stop walking (and do not wake it up) if we can't. 1089 */ 1090 flags = wait->flags; 1091 if (flags & WQ_FLAG_EXCLUSIVE) { 1092 if (test_bit(key->bit_nr, &key->folio->flags)) 1093 return -1; 1094 if (flags & WQ_FLAG_CUSTOM) { 1095 if (test_and_set_bit(key->bit_nr, &key->folio->flags)) 1096 return -1; 1097 flags |= WQ_FLAG_DONE; 1098 } 1099 } 1100 1101 /* 1102 * We are holding the wait-queue lock, but the waiter that 1103 * is waiting for this will be checking the flags without 1104 * any locking. 1105 * 1106 * So update the flags atomically, and wake up the waiter 1107 * afterwards to avoid any races. This store-release pairs 1108 * with the load-acquire in folio_wait_bit_common(). 1109 */ 1110 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN); 1111 wake_up_state(wait->private, mode); 1112 1113 /* 1114 * Ok, we have successfully done what we're waiting for, 1115 * and we can unconditionally remove the wait entry. 1116 * 1117 * Note that this pairs with the "finish_wait()" in the 1118 * waiter, and has to be the absolute last thing we do. 1119 * After this list_del_init(&wait->entry) the wait entry 1120 * might be de-allocated and the process might even have 1121 * exited. 1122 */ 1123 list_del_init_careful(&wait->entry); 1124 return (flags & WQ_FLAG_EXCLUSIVE) != 0; 1125 } 1126 1127 static void folio_wake_bit(struct folio *folio, int bit_nr) 1128 { 1129 wait_queue_head_t *q = folio_waitqueue(folio); 1130 struct wait_page_key key; 1131 unsigned long flags; 1132 wait_queue_entry_t bookmark; 1133 1134 key.folio = folio; 1135 key.bit_nr = bit_nr; 1136 key.page_match = 0; 1137 1138 bookmark.flags = 0; 1139 bookmark.private = NULL; 1140 bookmark.func = NULL; 1141 INIT_LIST_HEAD(&bookmark.entry); 1142 1143 spin_lock_irqsave(&q->lock, flags); 1144 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1145 1146 while (bookmark.flags & WQ_FLAG_BOOKMARK) { 1147 /* 1148 * Take a breather from holding the lock, 1149 * allow pages that finish wake up asynchronously 1150 * to acquire the lock and remove themselves 1151 * from wait queue 1152 */ 1153 spin_unlock_irqrestore(&q->lock, flags); 1154 cpu_relax(); 1155 spin_lock_irqsave(&q->lock, flags); 1156 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1157 } 1158 1159 /* 1160 * It's possible to miss clearing waiters here, when we woke our page 1161 * waiters, but the hashed waitqueue has waiters for other pages on it. 1162 * That's okay, it's a rare case. The next waker will clear it. 1163 * 1164 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE, 1165 * other), the flag may be cleared in the course of freeing the page; 1166 * but that is not required for correctness. 1167 */ 1168 if (!waitqueue_active(q) || !key.page_match) 1169 folio_clear_waiters(folio); 1170 1171 spin_unlock_irqrestore(&q->lock, flags); 1172 } 1173 1174 static void folio_wake(struct folio *folio, int bit) 1175 { 1176 if (!folio_test_waiters(folio)) 1177 return; 1178 folio_wake_bit(folio, bit); 1179 } 1180 1181 /* 1182 * A choice of three behaviors for folio_wait_bit_common(): 1183 */ 1184 enum behavior { 1185 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1186 * __folio_lock() waiting on then setting PG_locked. 1187 */ 1188 SHARED, /* Hold ref to page and check the bit when woken, like 1189 * folio_wait_writeback() waiting on PG_writeback. 1190 */ 1191 DROP, /* Drop ref to page before wait, no check when woken, 1192 * like folio_put_wait_locked() on PG_locked. 1193 */ 1194 }; 1195 1196 /* 1197 * Attempt to check (or get) the folio flag, and mark us done 1198 * if successful. 1199 */ 1200 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr, 1201 struct wait_queue_entry *wait) 1202 { 1203 if (wait->flags & WQ_FLAG_EXCLUSIVE) { 1204 if (test_and_set_bit(bit_nr, &folio->flags)) 1205 return false; 1206 } else if (test_bit(bit_nr, &folio->flags)) 1207 return false; 1208 1209 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE; 1210 return true; 1211 } 1212 1213 /* How many times do we accept lock stealing from under a waiter? */ 1214 int sysctl_page_lock_unfairness = 5; 1215 1216 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr, 1217 int state, enum behavior behavior) 1218 { 1219 wait_queue_head_t *q = folio_waitqueue(folio); 1220 int unfairness = sysctl_page_lock_unfairness; 1221 struct wait_page_queue wait_page; 1222 wait_queue_entry_t *wait = &wait_page.wait; 1223 bool thrashing = false; 1224 bool delayacct = false; 1225 unsigned long pflags; 1226 1227 if (bit_nr == PG_locked && 1228 !folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1229 if (!folio_test_swapbacked(folio)) { 1230 delayacct_thrashing_start(); 1231 delayacct = true; 1232 } 1233 psi_memstall_enter(&pflags); 1234 thrashing = true; 1235 } 1236 1237 init_wait(wait); 1238 wait->func = wake_page_function; 1239 wait_page.folio = folio; 1240 wait_page.bit_nr = bit_nr; 1241 1242 repeat: 1243 wait->flags = 0; 1244 if (behavior == EXCLUSIVE) { 1245 wait->flags = WQ_FLAG_EXCLUSIVE; 1246 if (--unfairness < 0) 1247 wait->flags |= WQ_FLAG_CUSTOM; 1248 } 1249 1250 /* 1251 * Do one last check whether we can get the 1252 * page bit synchronously. 1253 * 1254 * Do the folio_set_waiters() marking before that 1255 * to let any waker we _just_ missed know they 1256 * need to wake us up (otherwise they'll never 1257 * even go to the slow case that looks at the 1258 * page queue), and add ourselves to the wait 1259 * queue if we need to sleep. 1260 * 1261 * This part needs to be done under the queue 1262 * lock to avoid races. 1263 */ 1264 spin_lock_irq(&q->lock); 1265 folio_set_waiters(folio); 1266 if (!folio_trylock_flag(folio, bit_nr, wait)) 1267 __add_wait_queue_entry_tail(q, wait); 1268 spin_unlock_irq(&q->lock); 1269 1270 /* 1271 * From now on, all the logic will be based on 1272 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to 1273 * see whether the page bit testing has already 1274 * been done by the wake function. 1275 * 1276 * We can drop our reference to the folio. 1277 */ 1278 if (behavior == DROP) 1279 folio_put(folio); 1280 1281 /* 1282 * Note that until the "finish_wait()", or until 1283 * we see the WQ_FLAG_WOKEN flag, we need to 1284 * be very careful with the 'wait->flags', because 1285 * we may race with a waker that sets them. 1286 */ 1287 for (;;) { 1288 unsigned int flags; 1289 1290 set_current_state(state); 1291 1292 /* Loop until we've been woken or interrupted */ 1293 flags = smp_load_acquire(&wait->flags); 1294 if (!(flags & WQ_FLAG_WOKEN)) { 1295 if (signal_pending_state(state, current)) 1296 break; 1297 1298 io_schedule(); 1299 continue; 1300 } 1301 1302 /* If we were non-exclusive, we're done */ 1303 if (behavior != EXCLUSIVE) 1304 break; 1305 1306 /* If the waker got the lock for us, we're done */ 1307 if (flags & WQ_FLAG_DONE) 1308 break; 1309 1310 /* 1311 * Otherwise, if we're getting the lock, we need to 1312 * try to get it ourselves. 1313 * 1314 * And if that fails, we'll have to retry this all. 1315 */ 1316 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0)))) 1317 goto repeat; 1318 1319 wait->flags |= WQ_FLAG_DONE; 1320 break; 1321 } 1322 1323 /* 1324 * If a signal happened, this 'finish_wait()' may remove the last 1325 * waiter from the wait-queues, but the folio waiters bit will remain 1326 * set. That's ok. The next wakeup will take care of it, and trying 1327 * to do it here would be difficult and prone to races. 1328 */ 1329 finish_wait(q, wait); 1330 1331 if (thrashing) { 1332 if (delayacct) 1333 delayacct_thrashing_end(); 1334 psi_memstall_leave(&pflags); 1335 } 1336 1337 /* 1338 * NOTE! The wait->flags weren't stable until we've done the 1339 * 'finish_wait()', and we could have exited the loop above due 1340 * to a signal, and had a wakeup event happen after the signal 1341 * test but before the 'finish_wait()'. 1342 * 1343 * So only after the finish_wait() can we reliably determine 1344 * if we got woken up or not, so we can now figure out the final 1345 * return value based on that state without races. 1346 * 1347 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive 1348 * waiter, but an exclusive one requires WQ_FLAG_DONE. 1349 */ 1350 if (behavior == EXCLUSIVE) 1351 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR; 1352 1353 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR; 1354 } 1355 1356 #ifdef CONFIG_MIGRATION 1357 /** 1358 * migration_entry_wait_on_locked - Wait for a migration entry to be removed 1359 * @entry: migration swap entry. 1360 * @ptep: mapped pte pointer. Will return with the ptep unmapped. Only required 1361 * for pte entries, pass NULL for pmd entries. 1362 * @ptl: already locked ptl. This function will drop the lock. 1363 * 1364 * Wait for a migration entry referencing the given page to be removed. This is 1365 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except 1366 * this can be called without taking a reference on the page. Instead this 1367 * should be called while holding the ptl for the migration entry referencing 1368 * the page. 1369 * 1370 * Returns after unmapping and unlocking the pte/ptl with pte_unmap_unlock(). 1371 * 1372 * This follows the same logic as folio_wait_bit_common() so see the comments 1373 * there. 1374 */ 1375 void migration_entry_wait_on_locked(swp_entry_t entry, pte_t *ptep, 1376 spinlock_t *ptl) 1377 { 1378 struct wait_page_queue wait_page; 1379 wait_queue_entry_t *wait = &wait_page.wait; 1380 bool thrashing = false; 1381 bool delayacct = false; 1382 unsigned long pflags; 1383 wait_queue_head_t *q; 1384 struct folio *folio = page_folio(pfn_swap_entry_to_page(entry)); 1385 1386 q = folio_waitqueue(folio); 1387 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1388 if (!folio_test_swapbacked(folio)) { 1389 delayacct_thrashing_start(); 1390 delayacct = true; 1391 } 1392 psi_memstall_enter(&pflags); 1393 thrashing = true; 1394 } 1395 1396 init_wait(wait); 1397 wait->func = wake_page_function; 1398 wait_page.folio = folio; 1399 wait_page.bit_nr = PG_locked; 1400 wait->flags = 0; 1401 1402 spin_lock_irq(&q->lock); 1403 folio_set_waiters(folio); 1404 if (!folio_trylock_flag(folio, PG_locked, wait)) 1405 __add_wait_queue_entry_tail(q, wait); 1406 spin_unlock_irq(&q->lock); 1407 1408 /* 1409 * If a migration entry exists for the page the migration path must hold 1410 * a valid reference to the page, and it must take the ptl to remove the 1411 * migration entry. So the page is valid until the ptl is dropped. 1412 */ 1413 if (ptep) 1414 pte_unmap_unlock(ptep, ptl); 1415 else 1416 spin_unlock(ptl); 1417 1418 for (;;) { 1419 unsigned int flags; 1420 1421 set_current_state(TASK_UNINTERRUPTIBLE); 1422 1423 /* Loop until we've been woken or interrupted */ 1424 flags = smp_load_acquire(&wait->flags); 1425 if (!(flags & WQ_FLAG_WOKEN)) { 1426 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current)) 1427 break; 1428 1429 io_schedule(); 1430 continue; 1431 } 1432 break; 1433 } 1434 1435 finish_wait(q, wait); 1436 1437 if (thrashing) { 1438 if (delayacct) 1439 delayacct_thrashing_end(); 1440 psi_memstall_leave(&pflags); 1441 } 1442 } 1443 #endif 1444 1445 void folio_wait_bit(struct folio *folio, int bit_nr) 1446 { 1447 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1448 } 1449 EXPORT_SYMBOL(folio_wait_bit); 1450 1451 int folio_wait_bit_killable(struct folio *folio, int bit_nr) 1452 { 1453 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED); 1454 } 1455 EXPORT_SYMBOL(folio_wait_bit_killable); 1456 1457 /** 1458 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked 1459 * @folio: The folio to wait for. 1460 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc). 1461 * 1462 * The caller should hold a reference on @folio. They expect the page to 1463 * become unlocked relatively soon, but do not wish to hold up migration 1464 * (for example) by holding the reference while waiting for the folio to 1465 * come unlocked. After this function returns, the caller should not 1466 * dereference @folio. 1467 * 1468 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal. 1469 */ 1470 int folio_put_wait_locked(struct folio *folio, int state) 1471 { 1472 return folio_wait_bit_common(folio, PG_locked, state, DROP); 1473 } 1474 1475 /** 1476 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue 1477 * @folio: Folio defining the wait queue of interest 1478 * @waiter: Waiter to add to the queue 1479 * 1480 * Add an arbitrary @waiter to the wait queue for the nominated @folio. 1481 */ 1482 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter) 1483 { 1484 wait_queue_head_t *q = folio_waitqueue(folio); 1485 unsigned long flags; 1486 1487 spin_lock_irqsave(&q->lock, flags); 1488 __add_wait_queue_entry_tail(q, waiter); 1489 folio_set_waiters(folio); 1490 spin_unlock_irqrestore(&q->lock, flags); 1491 } 1492 EXPORT_SYMBOL_GPL(folio_add_wait_queue); 1493 1494 #ifndef clear_bit_unlock_is_negative_byte 1495 1496 /* 1497 * PG_waiters is the high bit in the same byte as PG_lock. 1498 * 1499 * On x86 (and on many other architectures), we can clear PG_lock and 1500 * test the sign bit at the same time. But if the architecture does 1501 * not support that special operation, we just do this all by hand 1502 * instead. 1503 * 1504 * The read of PG_waiters has to be after (or concurrently with) PG_locked 1505 * being cleared, but a memory barrier should be unnecessary since it is 1506 * in the same byte as PG_locked. 1507 */ 1508 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) 1509 { 1510 clear_bit_unlock(nr, mem); 1511 /* smp_mb__after_atomic(); */ 1512 return test_bit(PG_waiters, mem); 1513 } 1514 1515 #endif 1516 1517 /** 1518 * folio_unlock - Unlock a locked folio. 1519 * @folio: The folio. 1520 * 1521 * Unlocks the folio and wakes up any thread sleeping on the page lock. 1522 * 1523 * Context: May be called from interrupt or process context. May not be 1524 * called from NMI context. 1525 */ 1526 void folio_unlock(struct folio *folio) 1527 { 1528 /* Bit 7 allows x86 to check the byte's sign bit */ 1529 BUILD_BUG_ON(PG_waiters != 7); 1530 BUILD_BUG_ON(PG_locked > 7); 1531 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1532 if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0))) 1533 folio_wake_bit(folio, PG_locked); 1534 } 1535 EXPORT_SYMBOL(folio_unlock); 1536 1537 /** 1538 * folio_end_private_2 - Clear PG_private_2 and wake any waiters. 1539 * @folio: The folio. 1540 * 1541 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for 1542 * it. The folio reference held for PG_private_2 being set is released. 1543 * 1544 * This is, for example, used when a netfs folio is being written to a local 1545 * disk cache, thereby allowing writes to the cache for the same folio to be 1546 * serialised. 1547 */ 1548 void folio_end_private_2(struct folio *folio) 1549 { 1550 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio); 1551 clear_bit_unlock(PG_private_2, folio_flags(folio, 0)); 1552 folio_wake_bit(folio, PG_private_2); 1553 folio_put(folio); 1554 } 1555 EXPORT_SYMBOL(folio_end_private_2); 1556 1557 /** 1558 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio. 1559 * @folio: The folio to wait on. 1560 * 1561 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio. 1562 */ 1563 void folio_wait_private_2(struct folio *folio) 1564 { 1565 while (folio_test_private_2(folio)) 1566 folio_wait_bit(folio, PG_private_2); 1567 } 1568 EXPORT_SYMBOL(folio_wait_private_2); 1569 1570 /** 1571 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio. 1572 * @folio: The folio to wait on. 1573 * 1574 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a 1575 * fatal signal is received by the calling task. 1576 * 1577 * Return: 1578 * - 0 if successful. 1579 * - -EINTR if a fatal signal was encountered. 1580 */ 1581 int folio_wait_private_2_killable(struct folio *folio) 1582 { 1583 int ret = 0; 1584 1585 while (folio_test_private_2(folio)) { 1586 ret = folio_wait_bit_killable(folio, PG_private_2); 1587 if (ret < 0) 1588 break; 1589 } 1590 1591 return ret; 1592 } 1593 EXPORT_SYMBOL(folio_wait_private_2_killable); 1594 1595 /** 1596 * folio_end_writeback - End writeback against a folio. 1597 * @folio: The folio. 1598 */ 1599 void folio_end_writeback(struct folio *folio) 1600 { 1601 /* 1602 * folio_test_clear_reclaim() could be used here but it is an 1603 * atomic operation and overkill in this particular case. Failing 1604 * to shuffle a folio marked for immediate reclaim is too mild 1605 * a gain to justify taking an atomic operation penalty at the 1606 * end of every folio writeback. 1607 */ 1608 if (folio_test_reclaim(folio)) { 1609 folio_clear_reclaim(folio); 1610 folio_rotate_reclaimable(folio); 1611 } 1612 1613 /* 1614 * Writeback does not hold a folio reference of its own, relying 1615 * on truncation to wait for the clearing of PG_writeback. 1616 * But here we must make sure that the folio is not freed and 1617 * reused before the folio_wake(). 1618 */ 1619 folio_get(folio); 1620 if (!__folio_end_writeback(folio)) 1621 BUG(); 1622 1623 smp_mb__after_atomic(); 1624 folio_wake(folio, PG_writeback); 1625 acct_reclaim_writeback(folio); 1626 folio_put(folio); 1627 } 1628 EXPORT_SYMBOL(folio_end_writeback); 1629 1630 /* 1631 * After completing I/O on a page, call this routine to update the page 1632 * flags appropriately 1633 */ 1634 void page_endio(struct page *page, bool is_write, int err) 1635 { 1636 if (!is_write) { 1637 if (!err) { 1638 SetPageUptodate(page); 1639 } else { 1640 ClearPageUptodate(page); 1641 SetPageError(page); 1642 } 1643 unlock_page(page); 1644 } else { 1645 if (err) { 1646 struct address_space *mapping; 1647 1648 SetPageError(page); 1649 mapping = page_mapping(page); 1650 if (mapping) 1651 mapping_set_error(mapping, err); 1652 } 1653 end_page_writeback(page); 1654 } 1655 } 1656 EXPORT_SYMBOL_GPL(page_endio); 1657 1658 /** 1659 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it. 1660 * @folio: The folio to lock 1661 */ 1662 void __folio_lock(struct folio *folio) 1663 { 1664 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE, 1665 EXCLUSIVE); 1666 } 1667 EXPORT_SYMBOL(__folio_lock); 1668 1669 int __folio_lock_killable(struct folio *folio) 1670 { 1671 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE, 1672 EXCLUSIVE); 1673 } 1674 EXPORT_SYMBOL_GPL(__folio_lock_killable); 1675 1676 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait) 1677 { 1678 struct wait_queue_head *q = folio_waitqueue(folio); 1679 int ret = 0; 1680 1681 wait->folio = folio; 1682 wait->bit_nr = PG_locked; 1683 1684 spin_lock_irq(&q->lock); 1685 __add_wait_queue_entry_tail(q, &wait->wait); 1686 folio_set_waiters(folio); 1687 ret = !folio_trylock(folio); 1688 /* 1689 * If we were successful now, we know we're still on the 1690 * waitqueue as we're still under the lock. This means it's 1691 * safe to remove and return success, we know the callback 1692 * isn't going to trigger. 1693 */ 1694 if (!ret) 1695 __remove_wait_queue(q, &wait->wait); 1696 else 1697 ret = -EIOCBQUEUED; 1698 spin_unlock_irq(&q->lock); 1699 return ret; 1700 } 1701 1702 /* 1703 * Return values: 1704 * true - folio is locked; mmap_lock is still held. 1705 * false - folio is not locked. 1706 * mmap_lock has been released (mmap_read_unlock(), unless flags had both 1707 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 1708 * which case mmap_lock is still held. 1709 * 1710 * If neither ALLOW_RETRY nor KILLABLE are set, will always return true 1711 * with the folio locked and the mmap_lock unperturbed. 1712 */ 1713 bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm, 1714 unsigned int flags) 1715 { 1716 if (fault_flag_allow_retry_first(flags)) { 1717 /* 1718 * CAUTION! In this case, mmap_lock is not released 1719 * even though return 0. 1720 */ 1721 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1722 return false; 1723 1724 mmap_read_unlock(mm); 1725 if (flags & FAULT_FLAG_KILLABLE) 1726 folio_wait_locked_killable(folio); 1727 else 1728 folio_wait_locked(folio); 1729 return false; 1730 } 1731 if (flags & FAULT_FLAG_KILLABLE) { 1732 bool ret; 1733 1734 ret = __folio_lock_killable(folio); 1735 if (ret) { 1736 mmap_read_unlock(mm); 1737 return false; 1738 } 1739 } else { 1740 __folio_lock(folio); 1741 } 1742 1743 return true; 1744 } 1745 1746 /** 1747 * page_cache_next_miss() - Find the next gap in the page cache. 1748 * @mapping: Mapping. 1749 * @index: Index. 1750 * @max_scan: Maximum range to search. 1751 * 1752 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1753 * gap with the lowest index. 1754 * 1755 * This function may be called under the rcu_read_lock. However, this will 1756 * not atomically search a snapshot of the cache at a single point in time. 1757 * For example, if a gap is created at index 5, then subsequently a gap is 1758 * created at index 10, page_cache_next_miss covering both indices may 1759 * return 10 if called under the rcu_read_lock. 1760 * 1761 * Return: The index of the gap if found, otherwise an index outside the 1762 * range specified (in which case 'return - index >= max_scan' will be true). 1763 * In the rare case of index wrap-around, 0 will be returned. 1764 */ 1765 pgoff_t page_cache_next_miss(struct address_space *mapping, 1766 pgoff_t index, unsigned long max_scan) 1767 { 1768 XA_STATE(xas, &mapping->i_pages, index); 1769 1770 while (max_scan--) { 1771 void *entry = xas_next(&xas); 1772 if (!entry || xa_is_value(entry)) 1773 break; 1774 if (xas.xa_index == 0) 1775 break; 1776 } 1777 1778 return xas.xa_index; 1779 } 1780 EXPORT_SYMBOL(page_cache_next_miss); 1781 1782 /** 1783 * page_cache_prev_miss() - Find the previous gap in the page cache. 1784 * @mapping: Mapping. 1785 * @index: Index. 1786 * @max_scan: Maximum range to search. 1787 * 1788 * Search the range [max(index - max_scan + 1, 0), index] for the 1789 * gap with the highest index. 1790 * 1791 * This function may be called under the rcu_read_lock. However, this will 1792 * not atomically search a snapshot of the cache at a single point in time. 1793 * For example, if a gap is created at index 10, then subsequently a gap is 1794 * created at index 5, page_cache_prev_miss() covering both indices may 1795 * return 5 if called under the rcu_read_lock. 1796 * 1797 * Return: The index of the gap if found, otherwise an index outside the 1798 * range specified (in which case 'index - return >= max_scan' will be true). 1799 * In the rare case of wrap-around, ULONG_MAX will be returned. 1800 */ 1801 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1802 pgoff_t index, unsigned long max_scan) 1803 { 1804 XA_STATE(xas, &mapping->i_pages, index); 1805 1806 while (max_scan--) { 1807 void *entry = xas_prev(&xas); 1808 if (!entry || xa_is_value(entry)) 1809 break; 1810 if (xas.xa_index == ULONG_MAX) 1811 break; 1812 } 1813 1814 return xas.xa_index; 1815 } 1816 EXPORT_SYMBOL(page_cache_prev_miss); 1817 1818 /* 1819 * Lockless page cache protocol: 1820 * On the lookup side: 1821 * 1. Load the folio from i_pages 1822 * 2. Increment the refcount if it's not zero 1823 * 3. If the folio is not found by xas_reload(), put the refcount and retry 1824 * 1825 * On the removal side: 1826 * A. Freeze the page (by zeroing the refcount if nobody else has a reference) 1827 * B. Remove the page from i_pages 1828 * C. Return the page to the page allocator 1829 * 1830 * This means that any page may have its reference count temporarily 1831 * increased by a speculative page cache (or fast GUP) lookup as it can 1832 * be allocated by another user before the RCU grace period expires. 1833 * Because the refcount temporarily acquired here may end up being the 1834 * last refcount on the page, any page allocation must be freeable by 1835 * folio_put(). 1836 */ 1837 1838 /* 1839 * mapping_get_entry - Get a page cache entry. 1840 * @mapping: the address_space to search 1841 * @index: The page cache index. 1842 * 1843 * Looks up the page cache entry at @mapping & @index. If it is a folio, 1844 * it is returned with an increased refcount. If it is a shadow entry 1845 * of a previously evicted folio, or a swap entry from shmem/tmpfs, 1846 * it is returned without further action. 1847 * 1848 * Return: The folio, swap or shadow entry, %NULL if nothing is found. 1849 */ 1850 static void *mapping_get_entry(struct address_space *mapping, pgoff_t index) 1851 { 1852 XA_STATE(xas, &mapping->i_pages, index); 1853 struct folio *folio; 1854 1855 rcu_read_lock(); 1856 repeat: 1857 xas_reset(&xas); 1858 folio = xas_load(&xas); 1859 if (xas_retry(&xas, folio)) 1860 goto repeat; 1861 /* 1862 * A shadow entry of a recently evicted page, or a swap entry from 1863 * shmem/tmpfs. Return it without attempting to raise page count. 1864 */ 1865 if (!folio || xa_is_value(folio)) 1866 goto out; 1867 1868 if (!folio_try_get_rcu(folio)) 1869 goto repeat; 1870 1871 if (unlikely(folio != xas_reload(&xas))) { 1872 folio_put(folio); 1873 goto repeat; 1874 } 1875 out: 1876 rcu_read_unlock(); 1877 1878 return folio; 1879 } 1880 1881 /** 1882 * __filemap_get_folio - Find and get a reference to a folio. 1883 * @mapping: The address_space to search. 1884 * @index: The page index. 1885 * @fgp_flags: %FGP flags modify how the folio is returned. 1886 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified. 1887 * 1888 * Looks up the page cache entry at @mapping & @index. 1889 * 1890 * @fgp_flags can be zero or more of these flags: 1891 * 1892 * * %FGP_ACCESSED - The folio will be marked accessed. 1893 * * %FGP_LOCK - The folio is returned locked. 1894 * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it 1895 * instead of allocating a new folio to replace it. 1896 * * %FGP_CREAT - If no page is present then a new page is allocated using 1897 * @gfp and added to the page cache and the VM's LRU list. 1898 * The page is returned locked and with an increased refcount. 1899 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the 1900 * page is already in cache. If the page was allocated, unlock it before 1901 * returning so the caller can do the same dance. 1902 * * %FGP_WRITE - The page will be written to by the caller. 1903 * * %FGP_NOFS - __GFP_FS will get cleared in gfp. 1904 * * %FGP_NOWAIT - Don't get blocked by page lock. 1905 * * %FGP_STABLE - Wait for the folio to be stable (finished writeback) 1906 * 1907 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even 1908 * if the %GFP flags specified for %FGP_CREAT are atomic. 1909 * 1910 * If there is a page cache page, it is returned with an increased refcount. 1911 * 1912 * Return: The found folio or %NULL otherwise. 1913 */ 1914 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index, 1915 int fgp_flags, gfp_t gfp) 1916 { 1917 struct folio *folio; 1918 1919 repeat: 1920 folio = mapping_get_entry(mapping, index); 1921 if (xa_is_value(folio)) { 1922 if (fgp_flags & FGP_ENTRY) 1923 return folio; 1924 folio = NULL; 1925 } 1926 if (!folio) 1927 goto no_page; 1928 1929 if (fgp_flags & FGP_LOCK) { 1930 if (fgp_flags & FGP_NOWAIT) { 1931 if (!folio_trylock(folio)) { 1932 folio_put(folio); 1933 return NULL; 1934 } 1935 } else { 1936 folio_lock(folio); 1937 } 1938 1939 /* Has the page been truncated? */ 1940 if (unlikely(folio->mapping != mapping)) { 1941 folio_unlock(folio); 1942 folio_put(folio); 1943 goto repeat; 1944 } 1945 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 1946 } 1947 1948 if (fgp_flags & FGP_ACCESSED) 1949 folio_mark_accessed(folio); 1950 else if (fgp_flags & FGP_WRITE) { 1951 /* Clear idle flag for buffer write */ 1952 if (folio_test_idle(folio)) 1953 folio_clear_idle(folio); 1954 } 1955 1956 if (fgp_flags & FGP_STABLE) 1957 folio_wait_stable(folio); 1958 no_page: 1959 if (!folio && (fgp_flags & FGP_CREAT)) { 1960 int err; 1961 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping)) 1962 gfp |= __GFP_WRITE; 1963 if (fgp_flags & FGP_NOFS) 1964 gfp &= ~__GFP_FS; 1965 if (fgp_flags & FGP_NOWAIT) { 1966 gfp &= ~GFP_KERNEL; 1967 gfp |= GFP_NOWAIT | __GFP_NOWARN; 1968 } 1969 1970 folio = filemap_alloc_folio(gfp, 0); 1971 if (!folio) 1972 return NULL; 1973 1974 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 1975 fgp_flags |= FGP_LOCK; 1976 1977 /* Init accessed so avoid atomic mark_page_accessed later */ 1978 if (fgp_flags & FGP_ACCESSED) 1979 __folio_set_referenced(folio); 1980 1981 err = filemap_add_folio(mapping, folio, index, gfp); 1982 if (unlikely(err)) { 1983 folio_put(folio); 1984 folio = NULL; 1985 if (err == -EEXIST) 1986 goto repeat; 1987 } 1988 1989 /* 1990 * filemap_add_folio locks the page, and for mmap 1991 * we expect an unlocked page. 1992 */ 1993 if (folio && (fgp_flags & FGP_FOR_MMAP)) 1994 folio_unlock(folio); 1995 } 1996 1997 return folio; 1998 } 1999 EXPORT_SYMBOL(__filemap_get_folio); 2000 2001 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max, 2002 xa_mark_t mark) 2003 { 2004 struct folio *folio; 2005 2006 retry: 2007 if (mark == XA_PRESENT) 2008 folio = xas_find(xas, max); 2009 else 2010 folio = xas_find_marked(xas, max, mark); 2011 2012 if (xas_retry(xas, folio)) 2013 goto retry; 2014 /* 2015 * A shadow entry of a recently evicted page, a swap 2016 * entry from shmem/tmpfs or a DAX entry. Return it 2017 * without attempting to raise page count. 2018 */ 2019 if (!folio || xa_is_value(folio)) 2020 return folio; 2021 2022 if (!folio_try_get_rcu(folio)) 2023 goto reset; 2024 2025 if (unlikely(folio != xas_reload(xas))) { 2026 folio_put(folio); 2027 goto reset; 2028 } 2029 2030 return folio; 2031 reset: 2032 xas_reset(xas); 2033 goto retry; 2034 } 2035 2036 /** 2037 * find_get_entries - gang pagecache lookup 2038 * @mapping: The address_space to search 2039 * @start: The starting page cache index 2040 * @end: The final page index (inclusive). 2041 * @fbatch: Where the resulting entries are placed. 2042 * @indices: The cache indices corresponding to the entries in @entries 2043 * 2044 * find_get_entries() will search for and return a batch of entries in 2045 * the mapping. The entries are placed in @fbatch. find_get_entries() 2046 * takes a reference on any actual folios it returns. 2047 * 2048 * The entries have ascending indexes. The indices may not be consecutive 2049 * due to not-present entries or large folios. 2050 * 2051 * Any shadow entries of evicted folios, or swap entries from 2052 * shmem/tmpfs, are included in the returned array. 2053 * 2054 * Return: The number of entries which were found. 2055 */ 2056 unsigned find_get_entries(struct address_space *mapping, pgoff_t start, 2057 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2058 { 2059 XA_STATE(xas, &mapping->i_pages, start); 2060 struct folio *folio; 2061 2062 rcu_read_lock(); 2063 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) { 2064 indices[fbatch->nr] = xas.xa_index; 2065 if (!folio_batch_add(fbatch, folio)) 2066 break; 2067 } 2068 rcu_read_unlock(); 2069 2070 return folio_batch_count(fbatch); 2071 } 2072 2073 /** 2074 * find_lock_entries - Find a batch of pagecache entries. 2075 * @mapping: The address_space to search. 2076 * @start: The starting page cache index. 2077 * @end: The final page index (inclusive). 2078 * @fbatch: Where the resulting entries are placed. 2079 * @indices: The cache indices of the entries in @fbatch. 2080 * 2081 * find_lock_entries() will return a batch of entries from @mapping. 2082 * Swap, shadow and DAX entries are included. Folios are returned 2083 * locked and with an incremented refcount. Folios which are locked 2084 * by somebody else or under writeback are skipped. Folios which are 2085 * partially outside the range are not returned. 2086 * 2087 * The entries have ascending indexes. The indices may not be consecutive 2088 * due to not-present entries, large folios, folios which could not be 2089 * locked or folios under writeback. 2090 * 2091 * Return: The number of entries which were found. 2092 */ 2093 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start, 2094 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2095 { 2096 XA_STATE(xas, &mapping->i_pages, start); 2097 struct folio *folio; 2098 2099 rcu_read_lock(); 2100 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) { 2101 if (!xa_is_value(folio)) { 2102 if (folio->index < start) 2103 goto put; 2104 if (folio->index + folio_nr_pages(folio) - 1 > end) 2105 goto put; 2106 if (!folio_trylock(folio)) 2107 goto put; 2108 if (folio->mapping != mapping || 2109 folio_test_writeback(folio)) 2110 goto unlock; 2111 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index), 2112 folio); 2113 } 2114 indices[fbatch->nr] = xas.xa_index; 2115 if (!folio_batch_add(fbatch, folio)) 2116 break; 2117 continue; 2118 unlock: 2119 folio_unlock(folio); 2120 put: 2121 folio_put(folio); 2122 } 2123 rcu_read_unlock(); 2124 2125 return folio_batch_count(fbatch); 2126 } 2127 2128 /** 2129 * filemap_get_folios - Get a batch of folios 2130 * @mapping: The address_space to search 2131 * @start: The starting page index 2132 * @end: The final page index (inclusive) 2133 * @fbatch: The batch to fill. 2134 * 2135 * Search for and return a batch of folios in the mapping starting at 2136 * index @start and up to index @end (inclusive). The folios are returned 2137 * in @fbatch with an elevated reference count. 2138 * 2139 * The first folio may start before @start; if it does, it will contain 2140 * @start. The final folio may extend beyond @end; if it does, it will 2141 * contain @end. The folios have ascending indices. There may be gaps 2142 * between the folios if there are indices which have no folio in the 2143 * page cache. If folios are added to or removed from the page cache 2144 * while this is running, they may or may not be found by this call. 2145 * 2146 * Return: The number of folios which were found. 2147 * We also update @start to index the next folio for the traversal. 2148 */ 2149 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start, 2150 pgoff_t end, struct folio_batch *fbatch) 2151 { 2152 XA_STATE(xas, &mapping->i_pages, *start); 2153 struct folio *folio; 2154 2155 rcu_read_lock(); 2156 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) { 2157 /* Skip over shadow, swap and DAX entries */ 2158 if (xa_is_value(folio)) 2159 continue; 2160 if (!folio_batch_add(fbatch, folio)) { 2161 unsigned long nr = folio_nr_pages(folio); 2162 2163 if (folio_test_hugetlb(folio)) 2164 nr = 1; 2165 *start = folio->index + nr; 2166 goto out; 2167 } 2168 } 2169 2170 /* 2171 * We come here when there is no page beyond @end. We take care to not 2172 * overflow the index @start as it confuses some of the callers. This 2173 * breaks the iteration when there is a page at index -1 but that is 2174 * already broken anyway. 2175 */ 2176 if (end == (pgoff_t)-1) 2177 *start = (pgoff_t)-1; 2178 else 2179 *start = end + 1; 2180 out: 2181 rcu_read_unlock(); 2182 2183 return folio_batch_count(fbatch); 2184 } 2185 EXPORT_SYMBOL(filemap_get_folios); 2186 2187 static inline 2188 bool folio_more_pages(struct folio *folio, pgoff_t index, pgoff_t max) 2189 { 2190 if (!folio_test_large(folio) || folio_test_hugetlb(folio)) 2191 return false; 2192 if (index >= max) 2193 return false; 2194 return index < folio->index + folio_nr_pages(folio) - 1; 2195 } 2196 2197 /** 2198 * find_get_pages_contig - gang contiguous pagecache lookup 2199 * @mapping: The address_space to search 2200 * @index: The starting page index 2201 * @nr_pages: The maximum number of pages 2202 * @pages: Where the resulting pages are placed 2203 * 2204 * find_get_pages_contig() works exactly like find_get_pages_range(), 2205 * except that the returned number of pages are guaranteed to be 2206 * contiguous. 2207 * 2208 * Return: the number of pages which were found. 2209 */ 2210 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 2211 unsigned int nr_pages, struct page **pages) 2212 { 2213 XA_STATE(xas, &mapping->i_pages, index); 2214 struct folio *folio; 2215 unsigned int ret = 0; 2216 2217 if (unlikely(!nr_pages)) 2218 return 0; 2219 2220 rcu_read_lock(); 2221 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) { 2222 if (xas_retry(&xas, folio)) 2223 continue; 2224 /* 2225 * If the entry has been swapped out, we can stop looking. 2226 * No current caller is looking for DAX entries. 2227 */ 2228 if (xa_is_value(folio)) 2229 break; 2230 2231 if (!folio_try_get_rcu(folio)) 2232 goto retry; 2233 2234 if (unlikely(folio != xas_reload(&xas))) 2235 goto put_page; 2236 2237 again: 2238 pages[ret] = folio_file_page(folio, xas.xa_index); 2239 if (++ret == nr_pages) 2240 break; 2241 if (folio_more_pages(folio, xas.xa_index, ULONG_MAX)) { 2242 xas.xa_index++; 2243 folio_ref_inc(folio); 2244 goto again; 2245 } 2246 continue; 2247 put_page: 2248 folio_put(folio); 2249 retry: 2250 xas_reset(&xas); 2251 } 2252 rcu_read_unlock(); 2253 return ret; 2254 } 2255 EXPORT_SYMBOL(find_get_pages_contig); 2256 2257 /** 2258 * find_get_pages_range_tag - Find and return head pages matching @tag. 2259 * @mapping: the address_space to search 2260 * @index: the starting page index 2261 * @end: The final page index (inclusive) 2262 * @tag: the tag index 2263 * @nr_pages: the maximum number of pages 2264 * @pages: where the resulting pages are placed 2265 * 2266 * Like find_get_pages_range(), except we only return head pages which are 2267 * tagged with @tag. @index is updated to the index immediately after the 2268 * last page we return, ready for the next iteration. 2269 * 2270 * Return: the number of pages which were found. 2271 */ 2272 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, 2273 pgoff_t end, xa_mark_t tag, unsigned int nr_pages, 2274 struct page **pages) 2275 { 2276 XA_STATE(xas, &mapping->i_pages, *index); 2277 struct folio *folio; 2278 unsigned ret = 0; 2279 2280 if (unlikely(!nr_pages)) 2281 return 0; 2282 2283 rcu_read_lock(); 2284 while ((folio = find_get_entry(&xas, end, tag))) { 2285 /* 2286 * Shadow entries should never be tagged, but this iteration 2287 * is lockless so there is a window for page reclaim to evict 2288 * a page we saw tagged. Skip over it. 2289 */ 2290 if (xa_is_value(folio)) 2291 continue; 2292 2293 pages[ret] = &folio->page; 2294 if (++ret == nr_pages) { 2295 *index = folio->index + folio_nr_pages(folio); 2296 goto out; 2297 } 2298 } 2299 2300 /* 2301 * We come here when we got to @end. We take care to not overflow the 2302 * index @index as it confuses some of the callers. This breaks the 2303 * iteration when there is a page at index -1 but that is already 2304 * broken anyway. 2305 */ 2306 if (end == (pgoff_t)-1) 2307 *index = (pgoff_t)-1; 2308 else 2309 *index = end + 1; 2310 out: 2311 rcu_read_unlock(); 2312 2313 return ret; 2314 } 2315 EXPORT_SYMBOL(find_get_pages_range_tag); 2316 2317 /* 2318 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 2319 * a _large_ part of the i/o request. Imagine the worst scenario: 2320 * 2321 * ---R__________________________________________B__________ 2322 * ^ reading here ^ bad block(assume 4k) 2323 * 2324 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2325 * => failing the whole request => read(R) => read(R+1) => 2326 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2327 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2328 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2329 * 2330 * It is going insane. Fix it by quickly scaling down the readahead size. 2331 */ 2332 static void shrink_readahead_size_eio(struct file_ra_state *ra) 2333 { 2334 ra->ra_pages /= 4; 2335 } 2336 2337 /* 2338 * filemap_get_read_batch - Get a batch of folios for read 2339 * 2340 * Get a batch of folios which represent a contiguous range of bytes in 2341 * the file. No exceptional entries will be returned. If @index is in 2342 * the middle of a folio, the entire folio will be returned. The last 2343 * folio in the batch may have the readahead flag set or the uptodate flag 2344 * clear so that the caller can take the appropriate action. 2345 */ 2346 static void filemap_get_read_batch(struct address_space *mapping, 2347 pgoff_t index, pgoff_t max, struct folio_batch *fbatch) 2348 { 2349 XA_STATE(xas, &mapping->i_pages, index); 2350 struct folio *folio; 2351 2352 rcu_read_lock(); 2353 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) { 2354 if (xas_retry(&xas, folio)) 2355 continue; 2356 if (xas.xa_index > max || xa_is_value(folio)) 2357 break; 2358 if (xa_is_sibling(folio)) 2359 break; 2360 if (!folio_try_get_rcu(folio)) 2361 goto retry; 2362 2363 if (unlikely(folio != xas_reload(&xas))) 2364 goto put_folio; 2365 2366 if (!folio_batch_add(fbatch, folio)) 2367 break; 2368 if (!folio_test_uptodate(folio)) 2369 break; 2370 if (folio_test_readahead(folio)) 2371 break; 2372 xas_advance(&xas, folio->index + folio_nr_pages(folio) - 1); 2373 continue; 2374 put_folio: 2375 folio_put(folio); 2376 retry: 2377 xas_reset(&xas); 2378 } 2379 rcu_read_unlock(); 2380 } 2381 2382 static int filemap_read_folio(struct file *file, filler_t filler, 2383 struct folio *folio) 2384 { 2385 bool workingset = folio_test_workingset(folio); 2386 unsigned long pflags; 2387 int error; 2388 2389 /* 2390 * A previous I/O error may have been due to temporary failures, 2391 * eg. multipath errors. PG_error will be set again if read_folio 2392 * fails. 2393 */ 2394 folio_clear_error(folio); 2395 2396 /* Start the actual read. The read will unlock the page. */ 2397 if (unlikely(workingset)) 2398 psi_memstall_enter(&pflags); 2399 error = filler(file, folio); 2400 if (unlikely(workingset)) 2401 psi_memstall_leave(&pflags); 2402 if (error) 2403 return error; 2404 2405 error = folio_wait_locked_killable(folio); 2406 if (error) 2407 return error; 2408 if (folio_test_uptodate(folio)) 2409 return 0; 2410 if (file) 2411 shrink_readahead_size_eio(&file->f_ra); 2412 return -EIO; 2413 } 2414 2415 static bool filemap_range_uptodate(struct address_space *mapping, 2416 loff_t pos, struct iov_iter *iter, struct folio *folio) 2417 { 2418 int count; 2419 2420 if (folio_test_uptodate(folio)) 2421 return true; 2422 /* pipes can't handle partially uptodate pages */ 2423 if (iov_iter_is_pipe(iter)) 2424 return false; 2425 if (!mapping->a_ops->is_partially_uptodate) 2426 return false; 2427 if (mapping->host->i_blkbits >= folio_shift(folio)) 2428 return false; 2429 2430 count = iter->count; 2431 if (folio_pos(folio) > pos) { 2432 count -= folio_pos(folio) - pos; 2433 pos = 0; 2434 } else { 2435 pos -= folio_pos(folio); 2436 } 2437 2438 return mapping->a_ops->is_partially_uptodate(folio, pos, count); 2439 } 2440 2441 static int filemap_update_page(struct kiocb *iocb, 2442 struct address_space *mapping, struct iov_iter *iter, 2443 struct folio *folio) 2444 { 2445 int error; 2446 2447 if (iocb->ki_flags & IOCB_NOWAIT) { 2448 if (!filemap_invalidate_trylock_shared(mapping)) 2449 return -EAGAIN; 2450 } else { 2451 filemap_invalidate_lock_shared(mapping); 2452 } 2453 2454 if (!folio_trylock(folio)) { 2455 error = -EAGAIN; 2456 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) 2457 goto unlock_mapping; 2458 if (!(iocb->ki_flags & IOCB_WAITQ)) { 2459 filemap_invalidate_unlock_shared(mapping); 2460 /* 2461 * This is where we usually end up waiting for a 2462 * previously submitted readahead to finish. 2463 */ 2464 folio_put_wait_locked(folio, TASK_KILLABLE); 2465 return AOP_TRUNCATED_PAGE; 2466 } 2467 error = __folio_lock_async(folio, iocb->ki_waitq); 2468 if (error) 2469 goto unlock_mapping; 2470 } 2471 2472 error = AOP_TRUNCATED_PAGE; 2473 if (!folio->mapping) 2474 goto unlock; 2475 2476 error = 0; 2477 if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, folio)) 2478 goto unlock; 2479 2480 error = -EAGAIN; 2481 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ)) 2482 goto unlock; 2483 2484 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio, 2485 folio); 2486 goto unlock_mapping; 2487 unlock: 2488 folio_unlock(folio); 2489 unlock_mapping: 2490 filemap_invalidate_unlock_shared(mapping); 2491 if (error == AOP_TRUNCATED_PAGE) 2492 folio_put(folio); 2493 return error; 2494 } 2495 2496 static int filemap_create_folio(struct file *file, 2497 struct address_space *mapping, pgoff_t index, 2498 struct folio_batch *fbatch) 2499 { 2500 struct folio *folio; 2501 int error; 2502 2503 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0); 2504 if (!folio) 2505 return -ENOMEM; 2506 2507 /* 2508 * Protect against truncate / hole punch. Grabbing invalidate_lock 2509 * here assures we cannot instantiate and bring uptodate new 2510 * pagecache folios after evicting page cache during truncate 2511 * and before actually freeing blocks. Note that we could 2512 * release invalidate_lock after inserting the folio into 2513 * the page cache as the locked folio would then be enough to 2514 * synchronize with hole punching. But there are code paths 2515 * such as filemap_update_page() filling in partially uptodate 2516 * pages or ->readahead() that need to hold invalidate_lock 2517 * while mapping blocks for IO so let's hold the lock here as 2518 * well to keep locking rules simple. 2519 */ 2520 filemap_invalidate_lock_shared(mapping); 2521 error = filemap_add_folio(mapping, folio, index, 2522 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2523 if (error == -EEXIST) 2524 error = AOP_TRUNCATED_PAGE; 2525 if (error) 2526 goto error; 2527 2528 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio); 2529 if (error) 2530 goto error; 2531 2532 filemap_invalidate_unlock_shared(mapping); 2533 folio_batch_add(fbatch, folio); 2534 return 0; 2535 error: 2536 filemap_invalidate_unlock_shared(mapping); 2537 folio_put(folio); 2538 return error; 2539 } 2540 2541 static int filemap_readahead(struct kiocb *iocb, struct file *file, 2542 struct address_space *mapping, struct folio *folio, 2543 pgoff_t last_index) 2544 { 2545 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index); 2546 2547 if (iocb->ki_flags & IOCB_NOIO) 2548 return -EAGAIN; 2549 page_cache_async_ra(&ractl, folio, last_index - folio->index); 2550 return 0; 2551 } 2552 2553 static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter, 2554 struct folio_batch *fbatch) 2555 { 2556 struct file *filp = iocb->ki_filp; 2557 struct address_space *mapping = filp->f_mapping; 2558 struct file_ra_state *ra = &filp->f_ra; 2559 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT; 2560 pgoff_t last_index; 2561 struct folio *folio; 2562 int err = 0; 2563 2564 last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE); 2565 retry: 2566 if (fatal_signal_pending(current)) 2567 return -EINTR; 2568 2569 filemap_get_read_batch(mapping, index, last_index, fbatch); 2570 if (!folio_batch_count(fbatch)) { 2571 if (iocb->ki_flags & IOCB_NOIO) 2572 return -EAGAIN; 2573 page_cache_sync_readahead(mapping, ra, filp, index, 2574 last_index - index); 2575 filemap_get_read_batch(mapping, index, last_index, fbatch); 2576 } 2577 if (!folio_batch_count(fbatch)) { 2578 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ)) 2579 return -EAGAIN; 2580 err = filemap_create_folio(filp, mapping, 2581 iocb->ki_pos >> PAGE_SHIFT, fbatch); 2582 if (err == AOP_TRUNCATED_PAGE) 2583 goto retry; 2584 return err; 2585 } 2586 2587 folio = fbatch->folios[folio_batch_count(fbatch) - 1]; 2588 if (folio_test_readahead(folio)) { 2589 err = filemap_readahead(iocb, filp, mapping, folio, last_index); 2590 if (err) 2591 goto err; 2592 } 2593 if (!folio_test_uptodate(folio)) { 2594 if ((iocb->ki_flags & IOCB_WAITQ) && 2595 folio_batch_count(fbatch) > 1) 2596 iocb->ki_flags |= IOCB_NOWAIT; 2597 err = filemap_update_page(iocb, mapping, iter, folio); 2598 if (err) 2599 goto err; 2600 } 2601 2602 return 0; 2603 err: 2604 if (err < 0) 2605 folio_put(folio); 2606 if (likely(--fbatch->nr)) 2607 return 0; 2608 if (err == AOP_TRUNCATED_PAGE) 2609 goto retry; 2610 return err; 2611 } 2612 2613 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio) 2614 { 2615 unsigned int shift = folio_shift(folio); 2616 2617 return (pos1 >> shift == pos2 >> shift); 2618 } 2619 2620 /** 2621 * filemap_read - Read data from the page cache. 2622 * @iocb: The iocb to read. 2623 * @iter: Destination for the data. 2624 * @already_read: Number of bytes already read by the caller. 2625 * 2626 * Copies data from the page cache. If the data is not currently present, 2627 * uses the readahead and read_folio address_space operations to fetch it. 2628 * 2629 * Return: Total number of bytes copied, including those already read by 2630 * the caller. If an error happens before any bytes are copied, returns 2631 * a negative error number. 2632 */ 2633 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter, 2634 ssize_t already_read) 2635 { 2636 struct file *filp = iocb->ki_filp; 2637 struct file_ra_state *ra = &filp->f_ra; 2638 struct address_space *mapping = filp->f_mapping; 2639 struct inode *inode = mapping->host; 2640 struct folio_batch fbatch; 2641 int i, error = 0; 2642 bool writably_mapped; 2643 loff_t isize, end_offset; 2644 2645 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes)) 2646 return 0; 2647 if (unlikely(!iov_iter_count(iter))) 2648 return 0; 2649 2650 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 2651 folio_batch_init(&fbatch); 2652 2653 do { 2654 cond_resched(); 2655 2656 /* 2657 * If we've already successfully copied some data, then we 2658 * can no longer safely return -EIOCBQUEUED. Hence mark 2659 * an async read NOWAIT at that point. 2660 */ 2661 if ((iocb->ki_flags & IOCB_WAITQ) && already_read) 2662 iocb->ki_flags |= IOCB_NOWAIT; 2663 2664 if (unlikely(iocb->ki_pos >= i_size_read(inode))) 2665 break; 2666 2667 error = filemap_get_pages(iocb, iter, &fbatch); 2668 if (error < 0) 2669 break; 2670 2671 /* 2672 * i_size must be checked after we know the pages are Uptodate. 2673 * 2674 * Checking i_size after the check allows us to calculate 2675 * the correct value for "nr", which means the zero-filled 2676 * part of the page is not copied back to userspace (unless 2677 * another truncate extends the file - this is desired though). 2678 */ 2679 isize = i_size_read(inode); 2680 if (unlikely(iocb->ki_pos >= isize)) 2681 goto put_folios; 2682 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count); 2683 2684 /* 2685 * Once we start copying data, we don't want to be touching any 2686 * cachelines that might be contended: 2687 */ 2688 writably_mapped = mapping_writably_mapped(mapping); 2689 2690 /* 2691 * When a read accesses the same folio several times, only 2692 * mark it as accessed the first time. 2693 */ 2694 if (!pos_same_folio(iocb->ki_pos, ra->prev_pos - 1, 2695 fbatch.folios[0])) 2696 folio_mark_accessed(fbatch.folios[0]); 2697 2698 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2699 struct folio *folio = fbatch.folios[i]; 2700 size_t fsize = folio_size(folio); 2701 size_t offset = iocb->ki_pos & (fsize - 1); 2702 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos, 2703 fsize - offset); 2704 size_t copied; 2705 2706 if (end_offset < folio_pos(folio)) 2707 break; 2708 if (i > 0) 2709 folio_mark_accessed(folio); 2710 /* 2711 * If users can be writing to this folio using arbitrary 2712 * virtual addresses, take care of potential aliasing 2713 * before reading the folio on the kernel side. 2714 */ 2715 if (writably_mapped) 2716 flush_dcache_folio(folio); 2717 2718 copied = copy_folio_to_iter(folio, offset, bytes, iter); 2719 2720 already_read += copied; 2721 iocb->ki_pos += copied; 2722 ra->prev_pos = iocb->ki_pos; 2723 2724 if (copied < bytes) { 2725 error = -EFAULT; 2726 break; 2727 } 2728 } 2729 put_folios: 2730 for (i = 0; i < folio_batch_count(&fbatch); i++) 2731 folio_put(fbatch.folios[i]); 2732 folio_batch_init(&fbatch); 2733 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error); 2734 2735 file_accessed(filp); 2736 2737 return already_read ? already_read : error; 2738 } 2739 EXPORT_SYMBOL_GPL(filemap_read); 2740 2741 /** 2742 * generic_file_read_iter - generic filesystem read routine 2743 * @iocb: kernel I/O control block 2744 * @iter: destination for the data read 2745 * 2746 * This is the "read_iter()" routine for all filesystems 2747 * that can use the page cache directly. 2748 * 2749 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall 2750 * be returned when no data can be read without waiting for I/O requests 2751 * to complete; it doesn't prevent readahead. 2752 * 2753 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O 2754 * requests shall be made for the read or for readahead. When no data 2755 * can be read, -EAGAIN shall be returned. When readahead would be 2756 * triggered, a partial, possibly empty read shall be returned. 2757 * 2758 * Return: 2759 * * number of bytes copied, even for partial reads 2760 * * negative error code (or 0 if IOCB_NOIO) if nothing was read 2761 */ 2762 ssize_t 2763 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2764 { 2765 size_t count = iov_iter_count(iter); 2766 ssize_t retval = 0; 2767 2768 if (!count) 2769 return 0; /* skip atime */ 2770 2771 if (iocb->ki_flags & IOCB_DIRECT) { 2772 struct file *file = iocb->ki_filp; 2773 struct address_space *mapping = file->f_mapping; 2774 struct inode *inode = mapping->host; 2775 2776 if (iocb->ki_flags & IOCB_NOWAIT) { 2777 if (filemap_range_needs_writeback(mapping, iocb->ki_pos, 2778 iocb->ki_pos + count - 1)) 2779 return -EAGAIN; 2780 } else { 2781 retval = filemap_write_and_wait_range(mapping, 2782 iocb->ki_pos, 2783 iocb->ki_pos + count - 1); 2784 if (retval < 0) 2785 return retval; 2786 } 2787 2788 file_accessed(file); 2789 2790 retval = mapping->a_ops->direct_IO(iocb, iter); 2791 if (retval >= 0) { 2792 iocb->ki_pos += retval; 2793 count -= retval; 2794 } 2795 if (retval != -EIOCBQUEUED) 2796 iov_iter_revert(iter, count - iov_iter_count(iter)); 2797 2798 /* 2799 * Btrfs can have a short DIO read if we encounter 2800 * compressed extents, so if there was an error, or if 2801 * we've already read everything we wanted to, or if 2802 * there was a short read because we hit EOF, go ahead 2803 * and return. Otherwise fallthrough to buffered io for 2804 * the rest of the read. Buffered reads will not work for 2805 * DAX files, so don't bother trying. 2806 */ 2807 if (retval < 0 || !count || IS_DAX(inode)) 2808 return retval; 2809 if (iocb->ki_pos >= i_size_read(inode)) 2810 return retval; 2811 } 2812 2813 return filemap_read(iocb, iter, retval); 2814 } 2815 EXPORT_SYMBOL(generic_file_read_iter); 2816 2817 static inline loff_t folio_seek_hole_data(struct xa_state *xas, 2818 struct address_space *mapping, struct folio *folio, 2819 loff_t start, loff_t end, bool seek_data) 2820 { 2821 const struct address_space_operations *ops = mapping->a_ops; 2822 size_t offset, bsz = i_blocksize(mapping->host); 2823 2824 if (xa_is_value(folio) || folio_test_uptodate(folio)) 2825 return seek_data ? start : end; 2826 if (!ops->is_partially_uptodate) 2827 return seek_data ? end : start; 2828 2829 xas_pause(xas); 2830 rcu_read_unlock(); 2831 folio_lock(folio); 2832 if (unlikely(folio->mapping != mapping)) 2833 goto unlock; 2834 2835 offset = offset_in_folio(folio, start) & ~(bsz - 1); 2836 2837 do { 2838 if (ops->is_partially_uptodate(folio, offset, bsz) == 2839 seek_data) 2840 break; 2841 start = (start + bsz) & ~(bsz - 1); 2842 offset += bsz; 2843 } while (offset < folio_size(folio)); 2844 unlock: 2845 folio_unlock(folio); 2846 rcu_read_lock(); 2847 return start; 2848 } 2849 2850 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio) 2851 { 2852 if (xa_is_value(folio)) 2853 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index); 2854 return folio_size(folio); 2855 } 2856 2857 /** 2858 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache. 2859 * @mapping: Address space to search. 2860 * @start: First byte to consider. 2861 * @end: Limit of search (exclusive). 2862 * @whence: Either SEEK_HOLE or SEEK_DATA. 2863 * 2864 * If the page cache knows which blocks contain holes and which blocks 2865 * contain data, your filesystem can use this function to implement 2866 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are 2867 * entirely memory-based such as tmpfs, and filesystems which support 2868 * unwritten extents. 2869 * 2870 * Return: The requested offset on success, or -ENXIO if @whence specifies 2871 * SEEK_DATA and there is no data after @start. There is an implicit hole 2872 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start 2873 * and @end contain data. 2874 */ 2875 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start, 2876 loff_t end, int whence) 2877 { 2878 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT); 2879 pgoff_t max = (end - 1) >> PAGE_SHIFT; 2880 bool seek_data = (whence == SEEK_DATA); 2881 struct folio *folio; 2882 2883 if (end <= start) 2884 return -ENXIO; 2885 2886 rcu_read_lock(); 2887 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) { 2888 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT; 2889 size_t seek_size; 2890 2891 if (start < pos) { 2892 if (!seek_data) 2893 goto unlock; 2894 start = pos; 2895 } 2896 2897 seek_size = seek_folio_size(&xas, folio); 2898 pos = round_up((u64)pos + 1, seek_size); 2899 start = folio_seek_hole_data(&xas, mapping, folio, start, pos, 2900 seek_data); 2901 if (start < pos) 2902 goto unlock; 2903 if (start >= end) 2904 break; 2905 if (seek_size > PAGE_SIZE) 2906 xas_set(&xas, pos >> PAGE_SHIFT); 2907 if (!xa_is_value(folio)) 2908 folio_put(folio); 2909 } 2910 if (seek_data) 2911 start = -ENXIO; 2912 unlock: 2913 rcu_read_unlock(); 2914 if (folio && !xa_is_value(folio)) 2915 folio_put(folio); 2916 if (start > end) 2917 return end; 2918 return start; 2919 } 2920 2921 #ifdef CONFIG_MMU 2922 #define MMAP_LOTSAMISS (100) 2923 /* 2924 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock 2925 * @vmf - the vm_fault for this fault. 2926 * @folio - the folio to lock. 2927 * @fpin - the pointer to the file we may pin (or is already pinned). 2928 * 2929 * This works similar to lock_folio_or_retry in that it can drop the 2930 * mmap_lock. It differs in that it actually returns the folio locked 2931 * if it returns 1 and 0 if it couldn't lock the folio. If we did have 2932 * to drop the mmap_lock then fpin will point to the pinned file and 2933 * needs to be fput()'ed at a later point. 2934 */ 2935 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio, 2936 struct file **fpin) 2937 { 2938 if (folio_trylock(folio)) 2939 return 1; 2940 2941 /* 2942 * NOTE! This will make us return with VM_FAULT_RETRY, but with 2943 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT 2944 * is supposed to work. We have way too many special cases.. 2945 */ 2946 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 2947 return 0; 2948 2949 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 2950 if (vmf->flags & FAULT_FLAG_KILLABLE) { 2951 if (__folio_lock_killable(folio)) { 2952 /* 2953 * We didn't have the right flags to drop the mmap_lock, 2954 * but all fault_handlers only check for fatal signals 2955 * if we return VM_FAULT_RETRY, so we need to drop the 2956 * mmap_lock here and return 0 if we don't have a fpin. 2957 */ 2958 if (*fpin == NULL) 2959 mmap_read_unlock(vmf->vma->vm_mm); 2960 return 0; 2961 } 2962 } else 2963 __folio_lock(folio); 2964 2965 return 1; 2966 } 2967 2968 /* 2969 * Synchronous readahead happens when we don't even find a page in the page 2970 * cache at all. We don't want to perform IO under the mmap sem, so if we have 2971 * to drop the mmap sem we return the file that was pinned in order for us to do 2972 * that. If we didn't pin a file then we return NULL. The file that is 2973 * returned needs to be fput()'ed when we're done with it. 2974 */ 2975 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 2976 { 2977 struct file *file = vmf->vma->vm_file; 2978 struct file_ra_state *ra = &file->f_ra; 2979 struct address_space *mapping = file->f_mapping; 2980 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff); 2981 struct file *fpin = NULL; 2982 unsigned long vm_flags = vmf->vma->vm_flags; 2983 unsigned int mmap_miss; 2984 2985 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2986 /* Use the readahead code, even if readahead is disabled */ 2987 if (vm_flags & VM_HUGEPAGE) { 2988 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2989 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1); 2990 ra->size = HPAGE_PMD_NR; 2991 /* 2992 * Fetch two PMD folios, so we get the chance to actually 2993 * readahead, unless we've been told not to. 2994 */ 2995 if (!(vm_flags & VM_RAND_READ)) 2996 ra->size *= 2; 2997 ra->async_size = HPAGE_PMD_NR; 2998 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER); 2999 return fpin; 3000 } 3001 #endif 3002 3003 /* If we don't want any read-ahead, don't bother */ 3004 if (vm_flags & VM_RAND_READ) 3005 return fpin; 3006 if (!ra->ra_pages) 3007 return fpin; 3008 3009 if (vm_flags & VM_SEQ_READ) { 3010 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3011 page_cache_sync_ra(&ractl, ra->ra_pages); 3012 return fpin; 3013 } 3014 3015 /* Avoid banging the cache line if not needed */ 3016 mmap_miss = READ_ONCE(ra->mmap_miss); 3017 if (mmap_miss < MMAP_LOTSAMISS * 10) 3018 WRITE_ONCE(ra->mmap_miss, ++mmap_miss); 3019 3020 /* 3021 * Do we miss much more than hit in this file? If so, 3022 * stop bothering with read-ahead. It will only hurt. 3023 */ 3024 if (mmap_miss > MMAP_LOTSAMISS) 3025 return fpin; 3026 3027 /* 3028 * mmap read-around 3029 */ 3030 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3031 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2); 3032 ra->size = ra->ra_pages; 3033 ra->async_size = ra->ra_pages / 4; 3034 ractl._index = ra->start; 3035 page_cache_ra_order(&ractl, ra, 0); 3036 return fpin; 3037 } 3038 3039 /* 3040 * Asynchronous readahead happens when we find the page and PG_readahead, 3041 * so we want to possibly extend the readahead further. We return the file that 3042 * was pinned if we have to drop the mmap_lock in order to do IO. 3043 */ 3044 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 3045 struct folio *folio) 3046 { 3047 struct file *file = vmf->vma->vm_file; 3048 struct file_ra_state *ra = &file->f_ra; 3049 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff); 3050 struct file *fpin = NULL; 3051 unsigned int mmap_miss; 3052 3053 /* If we don't want any read-ahead, don't bother */ 3054 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages) 3055 return fpin; 3056 3057 mmap_miss = READ_ONCE(ra->mmap_miss); 3058 if (mmap_miss) 3059 WRITE_ONCE(ra->mmap_miss, --mmap_miss); 3060 3061 if (folio_test_readahead(folio)) { 3062 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3063 page_cache_async_ra(&ractl, folio, ra->ra_pages); 3064 } 3065 return fpin; 3066 } 3067 3068 /** 3069 * filemap_fault - read in file data for page fault handling 3070 * @vmf: struct vm_fault containing details of the fault 3071 * 3072 * filemap_fault() is invoked via the vma operations vector for a 3073 * mapped memory region to read in file data during a page fault. 3074 * 3075 * The goto's are kind of ugly, but this streamlines the normal case of having 3076 * it in the page cache, and handles the special cases reasonably without 3077 * having a lot of duplicated code. 3078 * 3079 * vma->vm_mm->mmap_lock must be held on entry. 3080 * 3081 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock 3082 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap(). 3083 * 3084 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock 3085 * has not been released. 3086 * 3087 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 3088 * 3089 * Return: bitwise-OR of %VM_FAULT_ codes. 3090 */ 3091 vm_fault_t filemap_fault(struct vm_fault *vmf) 3092 { 3093 int error; 3094 struct file *file = vmf->vma->vm_file; 3095 struct file *fpin = NULL; 3096 struct address_space *mapping = file->f_mapping; 3097 struct inode *inode = mapping->host; 3098 pgoff_t max_idx, index = vmf->pgoff; 3099 struct folio *folio; 3100 vm_fault_t ret = 0; 3101 bool mapping_locked = false; 3102 3103 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3104 if (unlikely(index >= max_idx)) 3105 return VM_FAULT_SIGBUS; 3106 3107 /* 3108 * Do we have something in the page cache already? 3109 */ 3110 folio = filemap_get_folio(mapping, index); 3111 if (likely(folio)) { 3112 /* 3113 * We found the page, so try async readahead before waiting for 3114 * the lock. 3115 */ 3116 if (!(vmf->flags & FAULT_FLAG_TRIED)) 3117 fpin = do_async_mmap_readahead(vmf, folio); 3118 if (unlikely(!folio_test_uptodate(folio))) { 3119 filemap_invalidate_lock_shared(mapping); 3120 mapping_locked = true; 3121 } 3122 } else { 3123 /* No page in the page cache at all */ 3124 count_vm_event(PGMAJFAULT); 3125 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 3126 ret = VM_FAULT_MAJOR; 3127 fpin = do_sync_mmap_readahead(vmf); 3128 retry_find: 3129 /* 3130 * See comment in filemap_create_folio() why we need 3131 * invalidate_lock 3132 */ 3133 if (!mapping_locked) { 3134 filemap_invalidate_lock_shared(mapping); 3135 mapping_locked = true; 3136 } 3137 folio = __filemap_get_folio(mapping, index, 3138 FGP_CREAT|FGP_FOR_MMAP, 3139 vmf->gfp_mask); 3140 if (!folio) { 3141 if (fpin) 3142 goto out_retry; 3143 filemap_invalidate_unlock_shared(mapping); 3144 return VM_FAULT_OOM; 3145 } 3146 } 3147 3148 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin)) 3149 goto out_retry; 3150 3151 /* Did it get truncated? */ 3152 if (unlikely(folio->mapping != mapping)) { 3153 folio_unlock(folio); 3154 folio_put(folio); 3155 goto retry_find; 3156 } 3157 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 3158 3159 /* 3160 * We have a locked page in the page cache, now we need to check 3161 * that it's up-to-date. If not, it is going to be due to an error. 3162 */ 3163 if (unlikely(!folio_test_uptodate(folio))) { 3164 /* 3165 * The page was in cache and uptodate and now it is not. 3166 * Strange but possible since we didn't hold the page lock all 3167 * the time. Let's drop everything get the invalidate lock and 3168 * try again. 3169 */ 3170 if (!mapping_locked) { 3171 folio_unlock(folio); 3172 folio_put(folio); 3173 goto retry_find; 3174 } 3175 goto page_not_uptodate; 3176 } 3177 3178 /* 3179 * We've made it this far and we had to drop our mmap_lock, now is the 3180 * time to return to the upper layer and have it re-find the vma and 3181 * redo the fault. 3182 */ 3183 if (fpin) { 3184 folio_unlock(folio); 3185 goto out_retry; 3186 } 3187 if (mapping_locked) 3188 filemap_invalidate_unlock_shared(mapping); 3189 3190 /* 3191 * Found the page and have a reference on it. 3192 * We must recheck i_size under page lock. 3193 */ 3194 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3195 if (unlikely(index >= max_idx)) { 3196 folio_unlock(folio); 3197 folio_put(folio); 3198 return VM_FAULT_SIGBUS; 3199 } 3200 3201 vmf->page = folio_file_page(folio, index); 3202 return ret | VM_FAULT_LOCKED; 3203 3204 page_not_uptodate: 3205 /* 3206 * Umm, take care of errors if the page isn't up-to-date. 3207 * Try to re-read it _once_. We do this synchronously, 3208 * because there really aren't any performance issues here 3209 * and we need to check for errors. 3210 */ 3211 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3212 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio); 3213 if (fpin) 3214 goto out_retry; 3215 folio_put(folio); 3216 3217 if (!error || error == AOP_TRUNCATED_PAGE) 3218 goto retry_find; 3219 filemap_invalidate_unlock_shared(mapping); 3220 3221 return VM_FAULT_SIGBUS; 3222 3223 out_retry: 3224 /* 3225 * We dropped the mmap_lock, we need to return to the fault handler to 3226 * re-find the vma and come back and find our hopefully still populated 3227 * page. 3228 */ 3229 if (folio) 3230 folio_put(folio); 3231 if (mapping_locked) 3232 filemap_invalidate_unlock_shared(mapping); 3233 if (fpin) 3234 fput(fpin); 3235 return ret | VM_FAULT_RETRY; 3236 } 3237 EXPORT_SYMBOL(filemap_fault); 3238 3239 static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page) 3240 { 3241 struct mm_struct *mm = vmf->vma->vm_mm; 3242 3243 /* Huge page is mapped? No need to proceed. */ 3244 if (pmd_trans_huge(*vmf->pmd)) { 3245 unlock_page(page); 3246 put_page(page); 3247 return true; 3248 } 3249 3250 if (pmd_none(*vmf->pmd) && PageTransHuge(page)) { 3251 vm_fault_t ret = do_set_pmd(vmf, page); 3252 if (!ret) { 3253 /* The page is mapped successfully, reference consumed. */ 3254 unlock_page(page); 3255 return true; 3256 } 3257 } 3258 3259 if (pmd_none(*vmf->pmd)) 3260 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte); 3261 3262 /* See comment in handle_pte_fault() */ 3263 if (pmd_devmap_trans_unstable(vmf->pmd)) { 3264 unlock_page(page); 3265 put_page(page); 3266 return true; 3267 } 3268 3269 return false; 3270 } 3271 3272 static struct folio *next_uptodate_page(struct folio *folio, 3273 struct address_space *mapping, 3274 struct xa_state *xas, pgoff_t end_pgoff) 3275 { 3276 unsigned long max_idx; 3277 3278 do { 3279 if (!folio) 3280 return NULL; 3281 if (xas_retry(xas, folio)) 3282 continue; 3283 if (xa_is_value(folio)) 3284 continue; 3285 if (folio_test_locked(folio)) 3286 continue; 3287 if (!folio_try_get_rcu(folio)) 3288 continue; 3289 /* Has the page moved or been split? */ 3290 if (unlikely(folio != xas_reload(xas))) 3291 goto skip; 3292 if (!folio_test_uptodate(folio) || folio_test_readahead(folio)) 3293 goto skip; 3294 if (!folio_trylock(folio)) 3295 goto skip; 3296 if (folio->mapping != mapping) 3297 goto unlock; 3298 if (!folio_test_uptodate(folio)) 3299 goto unlock; 3300 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3301 if (xas->xa_index >= max_idx) 3302 goto unlock; 3303 return folio; 3304 unlock: 3305 folio_unlock(folio); 3306 skip: 3307 folio_put(folio); 3308 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL); 3309 3310 return NULL; 3311 } 3312 3313 static inline struct folio *first_map_page(struct address_space *mapping, 3314 struct xa_state *xas, 3315 pgoff_t end_pgoff) 3316 { 3317 return next_uptodate_page(xas_find(xas, end_pgoff), 3318 mapping, xas, end_pgoff); 3319 } 3320 3321 static inline struct folio *next_map_page(struct address_space *mapping, 3322 struct xa_state *xas, 3323 pgoff_t end_pgoff) 3324 { 3325 return next_uptodate_page(xas_next_entry(xas, end_pgoff), 3326 mapping, xas, end_pgoff); 3327 } 3328 3329 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3330 pgoff_t start_pgoff, pgoff_t end_pgoff) 3331 { 3332 struct vm_area_struct *vma = vmf->vma; 3333 struct file *file = vma->vm_file; 3334 struct address_space *mapping = file->f_mapping; 3335 pgoff_t last_pgoff = start_pgoff; 3336 unsigned long addr; 3337 XA_STATE(xas, &mapping->i_pages, start_pgoff); 3338 struct folio *folio; 3339 struct page *page; 3340 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss); 3341 vm_fault_t ret = 0; 3342 3343 rcu_read_lock(); 3344 folio = first_map_page(mapping, &xas, end_pgoff); 3345 if (!folio) 3346 goto out; 3347 3348 if (filemap_map_pmd(vmf, &folio->page)) { 3349 ret = VM_FAULT_NOPAGE; 3350 goto out; 3351 } 3352 3353 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT); 3354 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 3355 do { 3356 again: 3357 page = folio_file_page(folio, xas.xa_index); 3358 if (PageHWPoison(page)) 3359 goto unlock; 3360 3361 if (mmap_miss > 0) 3362 mmap_miss--; 3363 3364 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 3365 vmf->pte += xas.xa_index - last_pgoff; 3366 last_pgoff = xas.xa_index; 3367 3368 /* 3369 * NOTE: If there're PTE markers, we'll leave them to be 3370 * handled in the specific fault path, and it'll prohibit the 3371 * fault-around logic. 3372 */ 3373 if (!pte_none(*vmf->pte)) 3374 goto unlock; 3375 3376 /* We're about to handle the fault */ 3377 if (vmf->address == addr) 3378 ret = VM_FAULT_NOPAGE; 3379 3380 do_set_pte(vmf, page, addr); 3381 /* no need to invalidate: a not-present page won't be cached */ 3382 update_mmu_cache(vma, addr, vmf->pte); 3383 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) { 3384 xas.xa_index++; 3385 folio_ref_inc(folio); 3386 goto again; 3387 } 3388 folio_unlock(folio); 3389 continue; 3390 unlock: 3391 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) { 3392 xas.xa_index++; 3393 goto again; 3394 } 3395 folio_unlock(folio); 3396 folio_put(folio); 3397 } while ((folio = next_map_page(mapping, &xas, end_pgoff)) != NULL); 3398 pte_unmap_unlock(vmf->pte, vmf->ptl); 3399 out: 3400 rcu_read_unlock(); 3401 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss); 3402 return ret; 3403 } 3404 EXPORT_SYMBOL(filemap_map_pages); 3405 3406 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3407 { 3408 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 3409 struct folio *folio = page_folio(vmf->page); 3410 vm_fault_t ret = VM_FAULT_LOCKED; 3411 3412 sb_start_pagefault(mapping->host->i_sb); 3413 file_update_time(vmf->vma->vm_file); 3414 folio_lock(folio); 3415 if (folio->mapping != mapping) { 3416 folio_unlock(folio); 3417 ret = VM_FAULT_NOPAGE; 3418 goto out; 3419 } 3420 /* 3421 * We mark the folio dirty already here so that when freeze is in 3422 * progress, we are guaranteed that writeback during freezing will 3423 * see the dirty folio and writeprotect it again. 3424 */ 3425 folio_mark_dirty(folio); 3426 folio_wait_stable(folio); 3427 out: 3428 sb_end_pagefault(mapping->host->i_sb); 3429 return ret; 3430 } 3431 3432 const struct vm_operations_struct generic_file_vm_ops = { 3433 .fault = filemap_fault, 3434 .map_pages = filemap_map_pages, 3435 .page_mkwrite = filemap_page_mkwrite, 3436 }; 3437 3438 /* This is used for a general mmap of a disk file */ 3439 3440 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3441 { 3442 struct address_space *mapping = file->f_mapping; 3443 3444 if (!mapping->a_ops->read_folio) 3445 return -ENOEXEC; 3446 file_accessed(file); 3447 vma->vm_ops = &generic_file_vm_ops; 3448 return 0; 3449 } 3450 3451 /* 3452 * This is for filesystems which do not implement ->writepage. 3453 */ 3454 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3455 { 3456 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 3457 return -EINVAL; 3458 return generic_file_mmap(file, vma); 3459 } 3460 #else 3461 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3462 { 3463 return VM_FAULT_SIGBUS; 3464 } 3465 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3466 { 3467 return -ENOSYS; 3468 } 3469 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3470 { 3471 return -ENOSYS; 3472 } 3473 #endif /* CONFIG_MMU */ 3474 3475 EXPORT_SYMBOL(filemap_page_mkwrite); 3476 EXPORT_SYMBOL(generic_file_mmap); 3477 EXPORT_SYMBOL(generic_file_readonly_mmap); 3478 3479 static struct folio *do_read_cache_folio(struct address_space *mapping, 3480 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp) 3481 { 3482 struct folio *folio; 3483 int err; 3484 3485 if (!filler) 3486 filler = mapping->a_ops->read_folio; 3487 repeat: 3488 folio = filemap_get_folio(mapping, index); 3489 if (!folio) { 3490 folio = filemap_alloc_folio(gfp, 0); 3491 if (!folio) 3492 return ERR_PTR(-ENOMEM); 3493 err = filemap_add_folio(mapping, folio, index, gfp); 3494 if (unlikely(err)) { 3495 folio_put(folio); 3496 if (err == -EEXIST) 3497 goto repeat; 3498 /* Presumably ENOMEM for xarray node */ 3499 return ERR_PTR(err); 3500 } 3501 3502 goto filler; 3503 } 3504 if (folio_test_uptodate(folio)) 3505 goto out; 3506 3507 if (!folio_trylock(folio)) { 3508 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE); 3509 goto repeat; 3510 } 3511 3512 /* Folio was truncated from mapping */ 3513 if (!folio->mapping) { 3514 folio_unlock(folio); 3515 folio_put(folio); 3516 goto repeat; 3517 } 3518 3519 /* Someone else locked and filled the page in a very small window */ 3520 if (folio_test_uptodate(folio)) { 3521 folio_unlock(folio); 3522 goto out; 3523 } 3524 3525 filler: 3526 err = filemap_read_folio(file, filler, folio); 3527 if (err) { 3528 folio_put(folio); 3529 if (err == AOP_TRUNCATED_PAGE) 3530 goto repeat; 3531 return ERR_PTR(err); 3532 } 3533 3534 out: 3535 folio_mark_accessed(folio); 3536 return folio; 3537 } 3538 3539 /** 3540 * read_cache_folio - Read into page cache, fill it if needed. 3541 * @mapping: The address_space to read from. 3542 * @index: The index to read. 3543 * @filler: Function to perform the read, or NULL to use aops->read_folio(). 3544 * @file: Passed to filler function, may be NULL if not required. 3545 * 3546 * Read one page into the page cache. If it succeeds, the folio returned 3547 * will contain @index, but it may not be the first page of the folio. 3548 * 3549 * If the filler function returns an error, it will be returned to the 3550 * caller. 3551 * 3552 * Context: May sleep. Expects mapping->invalidate_lock to be held. 3553 * Return: An uptodate folio on success, ERR_PTR() on failure. 3554 */ 3555 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index, 3556 filler_t filler, struct file *file) 3557 { 3558 return do_read_cache_folio(mapping, index, filler, file, 3559 mapping_gfp_mask(mapping)); 3560 } 3561 EXPORT_SYMBOL(read_cache_folio); 3562 3563 static struct page *do_read_cache_page(struct address_space *mapping, 3564 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp) 3565 { 3566 struct folio *folio; 3567 3568 folio = do_read_cache_folio(mapping, index, filler, file, gfp); 3569 if (IS_ERR(folio)) 3570 return &folio->page; 3571 return folio_file_page(folio, index); 3572 } 3573 3574 struct page *read_cache_page(struct address_space *mapping, 3575 pgoff_t index, filler_t *filler, struct file *file) 3576 { 3577 return do_read_cache_page(mapping, index, filler, file, 3578 mapping_gfp_mask(mapping)); 3579 } 3580 EXPORT_SYMBOL(read_cache_page); 3581 3582 /** 3583 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 3584 * @mapping: the page's address_space 3585 * @index: the page index 3586 * @gfp: the page allocator flags to use if allocating 3587 * 3588 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 3589 * any new page allocations done using the specified allocation flags. 3590 * 3591 * If the page does not get brought uptodate, return -EIO. 3592 * 3593 * The function expects mapping->invalidate_lock to be already held. 3594 * 3595 * Return: up to date page on success, ERR_PTR() on failure. 3596 */ 3597 struct page *read_cache_page_gfp(struct address_space *mapping, 3598 pgoff_t index, 3599 gfp_t gfp) 3600 { 3601 return do_read_cache_page(mapping, index, NULL, NULL, gfp); 3602 } 3603 EXPORT_SYMBOL(read_cache_page_gfp); 3604 3605 /* 3606 * Warn about a page cache invalidation failure during a direct I/O write. 3607 */ 3608 void dio_warn_stale_pagecache(struct file *filp) 3609 { 3610 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 3611 char pathname[128]; 3612 char *path; 3613 3614 errseq_set(&filp->f_mapping->wb_err, -EIO); 3615 if (__ratelimit(&_rs)) { 3616 path = file_path(filp, pathname, sizeof(pathname)); 3617 if (IS_ERR(path)) 3618 path = "(unknown)"; 3619 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); 3620 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, 3621 current->comm); 3622 } 3623 } 3624 3625 ssize_t 3626 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 3627 { 3628 struct file *file = iocb->ki_filp; 3629 struct address_space *mapping = file->f_mapping; 3630 struct inode *inode = mapping->host; 3631 loff_t pos = iocb->ki_pos; 3632 ssize_t written; 3633 size_t write_len; 3634 pgoff_t end; 3635 3636 write_len = iov_iter_count(from); 3637 end = (pos + write_len - 1) >> PAGE_SHIFT; 3638 3639 if (iocb->ki_flags & IOCB_NOWAIT) { 3640 /* If there are pages to writeback, return */ 3641 if (filemap_range_has_page(file->f_mapping, pos, 3642 pos + write_len - 1)) 3643 return -EAGAIN; 3644 } else { 3645 written = filemap_write_and_wait_range(mapping, pos, 3646 pos + write_len - 1); 3647 if (written) 3648 goto out; 3649 } 3650 3651 /* 3652 * After a write we want buffered reads to be sure to go to disk to get 3653 * the new data. We invalidate clean cached page from the region we're 3654 * about to write. We do this *before* the write so that we can return 3655 * without clobbering -EIOCBQUEUED from ->direct_IO(). 3656 */ 3657 written = invalidate_inode_pages2_range(mapping, 3658 pos >> PAGE_SHIFT, end); 3659 /* 3660 * If a page can not be invalidated, return 0 to fall back 3661 * to buffered write. 3662 */ 3663 if (written) { 3664 if (written == -EBUSY) 3665 return 0; 3666 goto out; 3667 } 3668 3669 written = mapping->a_ops->direct_IO(iocb, from); 3670 3671 /* 3672 * Finally, try again to invalidate clean pages which might have been 3673 * cached by non-direct readahead, or faulted in by get_user_pages() 3674 * if the source of the write was an mmap'ed region of the file 3675 * we're writing. Either one is a pretty crazy thing to do, 3676 * so we don't support it 100%. If this invalidation 3677 * fails, tough, the write still worked... 3678 * 3679 * Most of the time we do not need this since dio_complete() will do 3680 * the invalidation for us. However there are some file systems that 3681 * do not end up with dio_complete() being called, so let's not break 3682 * them by removing it completely. 3683 * 3684 * Noticeable example is a blkdev_direct_IO(). 3685 * 3686 * Skip invalidation for async writes or if mapping has no pages. 3687 */ 3688 if (written > 0 && mapping->nrpages && 3689 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end)) 3690 dio_warn_stale_pagecache(file); 3691 3692 if (written > 0) { 3693 pos += written; 3694 write_len -= written; 3695 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 3696 i_size_write(inode, pos); 3697 mark_inode_dirty(inode); 3698 } 3699 iocb->ki_pos = pos; 3700 } 3701 if (written != -EIOCBQUEUED) 3702 iov_iter_revert(from, write_len - iov_iter_count(from)); 3703 out: 3704 return written; 3705 } 3706 EXPORT_SYMBOL(generic_file_direct_write); 3707 3708 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i) 3709 { 3710 struct file *file = iocb->ki_filp; 3711 loff_t pos = iocb->ki_pos; 3712 struct address_space *mapping = file->f_mapping; 3713 const struct address_space_operations *a_ops = mapping->a_ops; 3714 long status = 0; 3715 ssize_t written = 0; 3716 3717 do { 3718 struct page *page; 3719 unsigned long offset; /* Offset into pagecache page */ 3720 unsigned long bytes; /* Bytes to write to page */ 3721 size_t copied; /* Bytes copied from user */ 3722 void *fsdata; 3723 3724 offset = (pos & (PAGE_SIZE - 1)); 3725 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3726 iov_iter_count(i)); 3727 3728 again: 3729 /* 3730 * Bring in the user page that we will copy from _first_. 3731 * Otherwise there's a nasty deadlock on copying from the 3732 * same page as we're writing to, without it being marked 3733 * up-to-date. 3734 */ 3735 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) { 3736 status = -EFAULT; 3737 break; 3738 } 3739 3740 if (fatal_signal_pending(current)) { 3741 status = -EINTR; 3742 break; 3743 } 3744 3745 status = a_ops->write_begin(file, mapping, pos, bytes, 3746 &page, &fsdata); 3747 if (unlikely(status < 0)) 3748 break; 3749 3750 if (mapping_writably_mapped(mapping)) 3751 flush_dcache_page(page); 3752 3753 copied = copy_page_from_iter_atomic(page, offset, bytes, i); 3754 flush_dcache_page(page); 3755 3756 status = a_ops->write_end(file, mapping, pos, bytes, copied, 3757 page, fsdata); 3758 if (unlikely(status != copied)) { 3759 iov_iter_revert(i, copied - max(status, 0L)); 3760 if (unlikely(status < 0)) 3761 break; 3762 } 3763 cond_resched(); 3764 3765 if (unlikely(status == 0)) { 3766 /* 3767 * A short copy made ->write_end() reject the 3768 * thing entirely. Might be memory poisoning 3769 * halfway through, might be a race with munmap, 3770 * might be severe memory pressure. 3771 */ 3772 if (copied) 3773 bytes = copied; 3774 goto again; 3775 } 3776 pos += status; 3777 written += status; 3778 3779 balance_dirty_pages_ratelimited(mapping); 3780 } while (iov_iter_count(i)); 3781 3782 return written ? written : status; 3783 } 3784 EXPORT_SYMBOL(generic_perform_write); 3785 3786 /** 3787 * __generic_file_write_iter - write data to a file 3788 * @iocb: IO state structure (file, offset, etc.) 3789 * @from: iov_iter with data to write 3790 * 3791 * This function does all the work needed for actually writing data to a 3792 * file. It does all basic checks, removes SUID from the file, updates 3793 * modification times and calls proper subroutines depending on whether we 3794 * do direct IO or a standard buffered write. 3795 * 3796 * It expects i_rwsem to be grabbed unless we work on a block device or similar 3797 * object which does not need locking at all. 3798 * 3799 * This function does *not* take care of syncing data in case of O_SYNC write. 3800 * A caller has to handle it. This is mainly due to the fact that we want to 3801 * avoid syncing under i_rwsem. 3802 * 3803 * Return: 3804 * * number of bytes written, even for truncated writes 3805 * * negative error code if no data has been written at all 3806 */ 3807 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3808 { 3809 struct file *file = iocb->ki_filp; 3810 struct address_space *mapping = file->f_mapping; 3811 struct inode *inode = mapping->host; 3812 ssize_t written = 0; 3813 ssize_t err; 3814 ssize_t status; 3815 3816 /* We can write back this queue in page reclaim */ 3817 current->backing_dev_info = inode_to_bdi(inode); 3818 err = file_remove_privs(file); 3819 if (err) 3820 goto out; 3821 3822 err = file_update_time(file); 3823 if (err) 3824 goto out; 3825 3826 if (iocb->ki_flags & IOCB_DIRECT) { 3827 loff_t pos, endbyte; 3828 3829 written = generic_file_direct_write(iocb, from); 3830 /* 3831 * If the write stopped short of completing, fall back to 3832 * buffered writes. Some filesystems do this for writes to 3833 * holes, for example. For DAX files, a buffered write will 3834 * not succeed (even if it did, DAX does not handle dirty 3835 * page-cache pages correctly). 3836 */ 3837 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) 3838 goto out; 3839 3840 pos = iocb->ki_pos; 3841 status = generic_perform_write(iocb, from); 3842 /* 3843 * If generic_perform_write() returned a synchronous error 3844 * then we want to return the number of bytes which were 3845 * direct-written, or the error code if that was zero. Note 3846 * that this differs from normal direct-io semantics, which 3847 * will return -EFOO even if some bytes were written. 3848 */ 3849 if (unlikely(status < 0)) { 3850 err = status; 3851 goto out; 3852 } 3853 /* 3854 * We need to ensure that the page cache pages are written to 3855 * disk and invalidated to preserve the expected O_DIRECT 3856 * semantics. 3857 */ 3858 endbyte = pos + status - 1; 3859 err = filemap_write_and_wait_range(mapping, pos, endbyte); 3860 if (err == 0) { 3861 iocb->ki_pos = endbyte + 1; 3862 written += status; 3863 invalidate_mapping_pages(mapping, 3864 pos >> PAGE_SHIFT, 3865 endbyte >> PAGE_SHIFT); 3866 } else { 3867 /* 3868 * We don't know how much we wrote, so just return 3869 * the number of bytes which were direct-written 3870 */ 3871 } 3872 } else { 3873 written = generic_perform_write(iocb, from); 3874 if (likely(written > 0)) 3875 iocb->ki_pos += written; 3876 } 3877 out: 3878 current->backing_dev_info = NULL; 3879 return written ? written : err; 3880 } 3881 EXPORT_SYMBOL(__generic_file_write_iter); 3882 3883 /** 3884 * generic_file_write_iter - write data to a file 3885 * @iocb: IO state structure 3886 * @from: iov_iter with data to write 3887 * 3888 * This is a wrapper around __generic_file_write_iter() to be used by most 3889 * filesystems. It takes care of syncing the file in case of O_SYNC file 3890 * and acquires i_rwsem as needed. 3891 * Return: 3892 * * negative error code if no data has been written at all of 3893 * vfs_fsync_range() failed for a synchronous write 3894 * * number of bytes written, even for truncated writes 3895 */ 3896 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3897 { 3898 struct file *file = iocb->ki_filp; 3899 struct inode *inode = file->f_mapping->host; 3900 ssize_t ret; 3901 3902 inode_lock(inode); 3903 ret = generic_write_checks(iocb, from); 3904 if (ret > 0) 3905 ret = __generic_file_write_iter(iocb, from); 3906 inode_unlock(inode); 3907 3908 if (ret > 0) 3909 ret = generic_write_sync(iocb, ret); 3910 return ret; 3911 } 3912 EXPORT_SYMBOL(generic_file_write_iter); 3913 3914 /** 3915 * filemap_release_folio() - Release fs-specific metadata on a folio. 3916 * @folio: The folio which the kernel is trying to free. 3917 * @gfp: Memory allocation flags (and I/O mode). 3918 * 3919 * The address_space is trying to release any data attached to a folio 3920 * (presumably at folio->private). 3921 * 3922 * This will also be called if the private_2 flag is set on a page, 3923 * indicating that the folio has other metadata associated with it. 3924 * 3925 * The @gfp argument specifies whether I/O may be performed to release 3926 * this page (__GFP_IO), and whether the call may block 3927 * (__GFP_RECLAIM & __GFP_FS). 3928 * 3929 * Return: %true if the release was successful, otherwise %false. 3930 */ 3931 bool filemap_release_folio(struct folio *folio, gfp_t gfp) 3932 { 3933 struct address_space * const mapping = folio->mapping; 3934 3935 BUG_ON(!folio_test_locked(folio)); 3936 if (folio_test_writeback(folio)) 3937 return false; 3938 3939 if (mapping && mapping->a_ops->release_folio) 3940 return mapping->a_ops->release_folio(folio, gfp); 3941 return try_to_free_buffers(folio); 3942 } 3943 EXPORT_SYMBOL(filemap_release_folio); 3944