1 /* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12 #include <linux/export.h> 13 #include <linux/compiler.h> 14 #include <linux/fs.h> 15 #include <linux/uaccess.h> 16 #include <linux/capability.h> 17 #include <linux/kernel_stat.h> 18 #include <linux/gfp.h> 19 #include <linux/mm.h> 20 #include <linux/swap.h> 21 #include <linux/mman.h> 22 #include <linux/pagemap.h> 23 #include <linux/file.h> 24 #include <linux/uio.h> 25 #include <linux/hash.h> 26 #include <linux/writeback.h> 27 #include <linux/backing-dev.h> 28 #include <linux/pagevec.h> 29 #include <linux/blkdev.h> 30 #include <linux/security.h> 31 #include <linux/cpuset.h> 32 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */ 33 #include <linux/hugetlb.h> 34 #include <linux/memcontrol.h> 35 #include <linux/cleancache.h> 36 #include <linux/rmap.h> 37 #include "internal.h" 38 39 #define CREATE_TRACE_POINTS 40 #include <trace/events/filemap.h> 41 42 /* 43 * FIXME: remove all knowledge of the buffer layer from the core VM 44 */ 45 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 46 47 #include <asm/mman.h> 48 49 /* 50 * Shared mappings implemented 30.11.1994. It's not fully working yet, 51 * though. 52 * 53 * Shared mappings now work. 15.8.1995 Bruno. 54 * 55 * finished 'unifying' the page and buffer cache and SMP-threaded the 56 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 57 * 58 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 59 */ 60 61 /* 62 * Lock ordering: 63 * 64 * ->i_mmap_rwsem (truncate_pagecache) 65 * ->private_lock (__free_pte->__set_page_dirty_buffers) 66 * ->swap_lock (exclusive_swap_page, others) 67 * ->mapping->tree_lock 68 * 69 * ->i_mutex 70 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 71 * 72 * ->mmap_sem 73 * ->i_mmap_rwsem 74 * ->page_table_lock or pte_lock (various, mainly in memory.c) 75 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) 76 * 77 * ->mmap_sem 78 * ->lock_page (access_process_vm) 79 * 80 * ->i_mutex (generic_perform_write) 81 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 82 * 83 * bdi->wb.list_lock 84 * sb_lock (fs/fs-writeback.c) 85 * ->mapping->tree_lock (__sync_single_inode) 86 * 87 * ->i_mmap_rwsem 88 * ->anon_vma.lock (vma_adjust) 89 * 90 * ->anon_vma.lock 91 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 92 * 93 * ->page_table_lock or pte_lock 94 * ->swap_lock (try_to_unmap_one) 95 * ->private_lock (try_to_unmap_one) 96 * ->tree_lock (try_to_unmap_one) 97 * ->zone.lru_lock (follow_page->mark_page_accessed) 98 * ->zone.lru_lock (check_pte_range->isolate_lru_page) 99 * ->private_lock (page_remove_rmap->set_page_dirty) 100 * ->tree_lock (page_remove_rmap->set_page_dirty) 101 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 102 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 103 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 104 * ->inode->i_lock (zap_pte_range->set_page_dirty) 105 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 106 * 107 * ->i_mmap_rwsem 108 * ->tasklist_lock (memory_failure, collect_procs_ao) 109 */ 110 111 static void page_cache_tree_delete(struct address_space *mapping, 112 struct page *page, void *shadow) 113 { 114 struct radix_tree_node *node; 115 unsigned long index; 116 unsigned int offset; 117 unsigned int tag; 118 void **slot; 119 120 VM_BUG_ON(!PageLocked(page)); 121 122 __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot); 123 124 if (shadow) { 125 mapping->nrshadows++; 126 /* 127 * Make sure the nrshadows update is committed before 128 * the nrpages update so that final truncate racing 129 * with reclaim does not see both counters 0 at the 130 * same time and miss a shadow entry. 131 */ 132 smp_wmb(); 133 } 134 mapping->nrpages--; 135 136 if (!node) { 137 /* Clear direct pointer tags in root node */ 138 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK; 139 radix_tree_replace_slot(slot, shadow); 140 return; 141 } 142 143 /* Clear tree tags for the removed page */ 144 index = page->index; 145 offset = index & RADIX_TREE_MAP_MASK; 146 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) { 147 if (test_bit(offset, node->tags[tag])) 148 radix_tree_tag_clear(&mapping->page_tree, index, tag); 149 } 150 151 /* Delete page, swap shadow entry */ 152 radix_tree_replace_slot(slot, shadow); 153 workingset_node_pages_dec(node); 154 if (shadow) 155 workingset_node_shadows_inc(node); 156 else 157 if (__radix_tree_delete_node(&mapping->page_tree, node)) 158 return; 159 160 /* 161 * Track node that only contains shadow entries. 162 * 163 * Avoid acquiring the list_lru lock if already tracked. The 164 * list_empty() test is safe as node->private_list is 165 * protected by mapping->tree_lock. 166 */ 167 if (!workingset_node_pages(node) && 168 list_empty(&node->private_list)) { 169 node->private_data = mapping; 170 list_lru_add(&workingset_shadow_nodes, &node->private_list); 171 } 172 } 173 174 /* 175 * Delete a page from the page cache and free it. Caller has to make 176 * sure the page is locked and that nobody else uses it - or that usage 177 * is safe. The caller must hold the mapping's tree_lock. 178 */ 179 void __delete_from_page_cache(struct page *page, void *shadow) 180 { 181 struct address_space *mapping = page->mapping; 182 183 trace_mm_filemap_delete_from_page_cache(page); 184 /* 185 * if we're uptodate, flush out into the cleancache, otherwise 186 * invalidate any existing cleancache entries. We can't leave 187 * stale data around in the cleancache once our page is gone 188 */ 189 if (PageUptodate(page) && PageMappedToDisk(page)) 190 cleancache_put_page(page); 191 else 192 cleancache_invalidate_page(mapping, page); 193 194 page_cache_tree_delete(mapping, page, shadow); 195 196 page->mapping = NULL; 197 /* Leave page->index set: truncation lookup relies upon it */ 198 199 __dec_zone_page_state(page, NR_FILE_PAGES); 200 if (PageSwapBacked(page)) 201 __dec_zone_page_state(page, NR_SHMEM); 202 BUG_ON(page_mapped(page)); 203 204 /* 205 * At this point page must be either written or cleaned by truncate. 206 * Dirty page here signals a bug and loss of unwritten data. 207 * 208 * This fixes dirty accounting after removing the page entirely but 209 * leaves PageDirty set: it has no effect for truncated page and 210 * anyway will be cleared before returning page into buddy allocator. 211 */ 212 if (WARN_ON_ONCE(PageDirty(page))) 213 account_page_cleaned(page, mapping); 214 } 215 216 /** 217 * delete_from_page_cache - delete page from page cache 218 * @page: the page which the kernel is trying to remove from page cache 219 * 220 * This must be called only on pages that have been verified to be in the page 221 * cache and locked. It will never put the page into the free list, the caller 222 * has a reference on the page. 223 */ 224 void delete_from_page_cache(struct page *page) 225 { 226 struct address_space *mapping = page->mapping; 227 void (*freepage)(struct page *); 228 229 BUG_ON(!PageLocked(page)); 230 231 freepage = mapping->a_ops->freepage; 232 spin_lock_irq(&mapping->tree_lock); 233 __delete_from_page_cache(page, NULL); 234 spin_unlock_irq(&mapping->tree_lock); 235 236 if (freepage) 237 freepage(page); 238 page_cache_release(page); 239 } 240 EXPORT_SYMBOL(delete_from_page_cache); 241 242 static int filemap_check_errors(struct address_space *mapping) 243 { 244 int ret = 0; 245 /* Check for outstanding write errors */ 246 if (test_bit(AS_ENOSPC, &mapping->flags) && 247 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 248 ret = -ENOSPC; 249 if (test_bit(AS_EIO, &mapping->flags) && 250 test_and_clear_bit(AS_EIO, &mapping->flags)) 251 ret = -EIO; 252 return ret; 253 } 254 255 /** 256 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 257 * @mapping: address space structure to write 258 * @start: offset in bytes where the range starts 259 * @end: offset in bytes where the range ends (inclusive) 260 * @sync_mode: enable synchronous operation 261 * 262 * Start writeback against all of a mapping's dirty pages that lie 263 * within the byte offsets <start, end> inclusive. 264 * 265 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 266 * opposed to a regular memory cleansing writeback. The difference between 267 * these two operations is that if a dirty page/buffer is encountered, it must 268 * be waited upon, and not just skipped over. 269 */ 270 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 271 loff_t end, int sync_mode) 272 { 273 int ret; 274 struct writeback_control wbc = { 275 .sync_mode = sync_mode, 276 .nr_to_write = LONG_MAX, 277 .range_start = start, 278 .range_end = end, 279 }; 280 281 if (!mapping_cap_writeback_dirty(mapping)) 282 return 0; 283 284 ret = do_writepages(mapping, &wbc); 285 return ret; 286 } 287 288 static inline int __filemap_fdatawrite(struct address_space *mapping, 289 int sync_mode) 290 { 291 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 292 } 293 294 int filemap_fdatawrite(struct address_space *mapping) 295 { 296 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 297 } 298 EXPORT_SYMBOL(filemap_fdatawrite); 299 300 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 301 loff_t end) 302 { 303 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 304 } 305 EXPORT_SYMBOL(filemap_fdatawrite_range); 306 307 /** 308 * filemap_flush - mostly a non-blocking flush 309 * @mapping: target address_space 310 * 311 * This is a mostly non-blocking flush. Not suitable for data-integrity 312 * purposes - I/O may not be started against all dirty pages. 313 */ 314 int filemap_flush(struct address_space *mapping) 315 { 316 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 317 } 318 EXPORT_SYMBOL(filemap_flush); 319 320 /** 321 * filemap_fdatawait_range - wait for writeback to complete 322 * @mapping: address space structure to wait for 323 * @start_byte: offset in bytes where the range starts 324 * @end_byte: offset in bytes where the range ends (inclusive) 325 * 326 * Walk the list of under-writeback pages of the given address space 327 * in the given range and wait for all of them. 328 */ 329 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 330 loff_t end_byte) 331 { 332 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT; 333 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT; 334 struct pagevec pvec; 335 int nr_pages; 336 int ret2, ret = 0; 337 338 if (end_byte < start_byte) 339 goto out; 340 341 pagevec_init(&pvec, 0); 342 while ((index <= end) && 343 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 344 PAGECACHE_TAG_WRITEBACK, 345 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { 346 unsigned i; 347 348 for (i = 0; i < nr_pages; i++) { 349 struct page *page = pvec.pages[i]; 350 351 /* until radix tree lookup accepts end_index */ 352 if (page->index > end) 353 continue; 354 355 wait_on_page_writeback(page); 356 if (TestClearPageError(page)) 357 ret = -EIO; 358 } 359 pagevec_release(&pvec); 360 cond_resched(); 361 } 362 out: 363 ret2 = filemap_check_errors(mapping); 364 if (!ret) 365 ret = ret2; 366 367 return ret; 368 } 369 EXPORT_SYMBOL(filemap_fdatawait_range); 370 371 /** 372 * filemap_fdatawait - wait for all under-writeback pages to complete 373 * @mapping: address space structure to wait for 374 * 375 * Walk the list of under-writeback pages of the given address space 376 * and wait for all of them. 377 */ 378 int filemap_fdatawait(struct address_space *mapping) 379 { 380 loff_t i_size = i_size_read(mapping->host); 381 382 if (i_size == 0) 383 return 0; 384 385 return filemap_fdatawait_range(mapping, 0, i_size - 1); 386 } 387 EXPORT_SYMBOL(filemap_fdatawait); 388 389 int filemap_write_and_wait(struct address_space *mapping) 390 { 391 int err = 0; 392 393 if (mapping->nrpages) { 394 err = filemap_fdatawrite(mapping); 395 /* 396 * Even if the above returned error, the pages may be 397 * written partially (e.g. -ENOSPC), so we wait for it. 398 * But the -EIO is special case, it may indicate the worst 399 * thing (e.g. bug) happened, so we avoid waiting for it. 400 */ 401 if (err != -EIO) { 402 int err2 = filemap_fdatawait(mapping); 403 if (!err) 404 err = err2; 405 } 406 } else { 407 err = filemap_check_errors(mapping); 408 } 409 return err; 410 } 411 EXPORT_SYMBOL(filemap_write_and_wait); 412 413 /** 414 * filemap_write_and_wait_range - write out & wait on a file range 415 * @mapping: the address_space for the pages 416 * @lstart: offset in bytes where the range starts 417 * @lend: offset in bytes where the range ends (inclusive) 418 * 419 * Write out and wait upon file offsets lstart->lend, inclusive. 420 * 421 * Note that `lend' is inclusive (describes the last byte to be written) so 422 * that this function can be used to write to the very end-of-file (end = -1). 423 */ 424 int filemap_write_and_wait_range(struct address_space *mapping, 425 loff_t lstart, loff_t lend) 426 { 427 int err = 0; 428 429 if (mapping->nrpages) { 430 err = __filemap_fdatawrite_range(mapping, lstart, lend, 431 WB_SYNC_ALL); 432 /* See comment of filemap_write_and_wait() */ 433 if (err != -EIO) { 434 int err2 = filemap_fdatawait_range(mapping, 435 lstart, lend); 436 if (!err) 437 err = err2; 438 } 439 } else { 440 err = filemap_check_errors(mapping); 441 } 442 return err; 443 } 444 EXPORT_SYMBOL(filemap_write_and_wait_range); 445 446 /** 447 * replace_page_cache_page - replace a pagecache page with a new one 448 * @old: page to be replaced 449 * @new: page to replace with 450 * @gfp_mask: allocation mode 451 * 452 * This function replaces a page in the pagecache with a new one. On 453 * success it acquires the pagecache reference for the new page and 454 * drops it for the old page. Both the old and new pages must be 455 * locked. This function does not add the new page to the LRU, the 456 * caller must do that. 457 * 458 * The remove + add is atomic. The only way this function can fail is 459 * memory allocation failure. 460 */ 461 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) 462 { 463 int error; 464 465 VM_BUG_ON_PAGE(!PageLocked(old), old); 466 VM_BUG_ON_PAGE(!PageLocked(new), new); 467 VM_BUG_ON_PAGE(new->mapping, new); 468 469 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 470 if (!error) { 471 struct address_space *mapping = old->mapping; 472 void (*freepage)(struct page *); 473 474 pgoff_t offset = old->index; 475 freepage = mapping->a_ops->freepage; 476 477 page_cache_get(new); 478 new->mapping = mapping; 479 new->index = offset; 480 481 spin_lock_irq(&mapping->tree_lock); 482 __delete_from_page_cache(old, NULL); 483 error = radix_tree_insert(&mapping->page_tree, offset, new); 484 BUG_ON(error); 485 mapping->nrpages++; 486 __inc_zone_page_state(new, NR_FILE_PAGES); 487 if (PageSwapBacked(new)) 488 __inc_zone_page_state(new, NR_SHMEM); 489 spin_unlock_irq(&mapping->tree_lock); 490 mem_cgroup_migrate(old, new, true); 491 radix_tree_preload_end(); 492 if (freepage) 493 freepage(old); 494 page_cache_release(old); 495 } 496 497 return error; 498 } 499 EXPORT_SYMBOL_GPL(replace_page_cache_page); 500 501 static int page_cache_tree_insert(struct address_space *mapping, 502 struct page *page, void **shadowp) 503 { 504 struct radix_tree_node *node; 505 void **slot; 506 int error; 507 508 error = __radix_tree_create(&mapping->page_tree, page->index, 509 &node, &slot); 510 if (error) 511 return error; 512 if (*slot) { 513 void *p; 514 515 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock); 516 if (!radix_tree_exceptional_entry(p)) 517 return -EEXIST; 518 if (shadowp) 519 *shadowp = p; 520 mapping->nrshadows--; 521 if (node) 522 workingset_node_shadows_dec(node); 523 } 524 radix_tree_replace_slot(slot, page); 525 mapping->nrpages++; 526 if (node) { 527 workingset_node_pages_inc(node); 528 /* 529 * Don't track node that contains actual pages. 530 * 531 * Avoid acquiring the list_lru lock if already 532 * untracked. The list_empty() test is safe as 533 * node->private_list is protected by 534 * mapping->tree_lock. 535 */ 536 if (!list_empty(&node->private_list)) 537 list_lru_del(&workingset_shadow_nodes, 538 &node->private_list); 539 } 540 return 0; 541 } 542 543 static int __add_to_page_cache_locked(struct page *page, 544 struct address_space *mapping, 545 pgoff_t offset, gfp_t gfp_mask, 546 void **shadowp) 547 { 548 int huge = PageHuge(page); 549 struct mem_cgroup *memcg; 550 int error; 551 552 VM_BUG_ON_PAGE(!PageLocked(page), page); 553 VM_BUG_ON_PAGE(PageSwapBacked(page), page); 554 555 if (!huge) { 556 error = mem_cgroup_try_charge(page, current->mm, 557 gfp_mask, &memcg); 558 if (error) 559 return error; 560 } 561 562 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM); 563 if (error) { 564 if (!huge) 565 mem_cgroup_cancel_charge(page, memcg); 566 return error; 567 } 568 569 page_cache_get(page); 570 page->mapping = mapping; 571 page->index = offset; 572 573 spin_lock_irq(&mapping->tree_lock); 574 error = page_cache_tree_insert(mapping, page, shadowp); 575 radix_tree_preload_end(); 576 if (unlikely(error)) 577 goto err_insert; 578 __inc_zone_page_state(page, NR_FILE_PAGES); 579 spin_unlock_irq(&mapping->tree_lock); 580 if (!huge) 581 mem_cgroup_commit_charge(page, memcg, false); 582 trace_mm_filemap_add_to_page_cache(page); 583 return 0; 584 err_insert: 585 page->mapping = NULL; 586 /* Leave page->index set: truncation relies upon it */ 587 spin_unlock_irq(&mapping->tree_lock); 588 if (!huge) 589 mem_cgroup_cancel_charge(page, memcg); 590 page_cache_release(page); 591 return error; 592 } 593 594 /** 595 * add_to_page_cache_locked - add a locked page to the pagecache 596 * @page: page to add 597 * @mapping: the page's address_space 598 * @offset: page index 599 * @gfp_mask: page allocation mode 600 * 601 * This function is used to add a page to the pagecache. It must be locked. 602 * This function does not add the page to the LRU. The caller must do that. 603 */ 604 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 605 pgoff_t offset, gfp_t gfp_mask) 606 { 607 return __add_to_page_cache_locked(page, mapping, offset, 608 gfp_mask, NULL); 609 } 610 EXPORT_SYMBOL(add_to_page_cache_locked); 611 612 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 613 pgoff_t offset, gfp_t gfp_mask) 614 { 615 void *shadow = NULL; 616 int ret; 617 618 __set_page_locked(page); 619 ret = __add_to_page_cache_locked(page, mapping, offset, 620 gfp_mask, &shadow); 621 if (unlikely(ret)) 622 __clear_page_locked(page); 623 else { 624 /* 625 * The page might have been evicted from cache only 626 * recently, in which case it should be activated like 627 * any other repeatedly accessed page. 628 */ 629 if (shadow && workingset_refault(shadow)) { 630 SetPageActive(page); 631 workingset_activation(page); 632 } else 633 ClearPageActive(page); 634 lru_cache_add(page); 635 } 636 return ret; 637 } 638 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 639 640 #ifdef CONFIG_NUMA 641 struct page *__page_cache_alloc(gfp_t gfp) 642 { 643 int n; 644 struct page *page; 645 646 if (cpuset_do_page_mem_spread()) { 647 unsigned int cpuset_mems_cookie; 648 do { 649 cpuset_mems_cookie = read_mems_allowed_begin(); 650 n = cpuset_mem_spread_node(); 651 page = alloc_pages_exact_node(n, gfp, 0); 652 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie)); 653 654 return page; 655 } 656 return alloc_pages(gfp, 0); 657 } 658 EXPORT_SYMBOL(__page_cache_alloc); 659 #endif 660 661 /* 662 * In order to wait for pages to become available there must be 663 * waitqueues associated with pages. By using a hash table of 664 * waitqueues where the bucket discipline is to maintain all 665 * waiters on the same queue and wake all when any of the pages 666 * become available, and for the woken contexts to check to be 667 * sure the appropriate page became available, this saves space 668 * at a cost of "thundering herd" phenomena during rare hash 669 * collisions. 670 */ 671 wait_queue_head_t *page_waitqueue(struct page *page) 672 { 673 const struct zone *zone = page_zone(page); 674 675 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)]; 676 } 677 EXPORT_SYMBOL(page_waitqueue); 678 679 void wait_on_page_bit(struct page *page, int bit_nr) 680 { 681 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 682 683 if (test_bit(bit_nr, &page->flags)) 684 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io, 685 TASK_UNINTERRUPTIBLE); 686 } 687 EXPORT_SYMBOL(wait_on_page_bit); 688 689 int wait_on_page_bit_killable(struct page *page, int bit_nr) 690 { 691 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 692 693 if (!test_bit(bit_nr, &page->flags)) 694 return 0; 695 696 return __wait_on_bit(page_waitqueue(page), &wait, 697 bit_wait_io, TASK_KILLABLE); 698 } 699 700 int wait_on_page_bit_killable_timeout(struct page *page, 701 int bit_nr, unsigned long timeout) 702 { 703 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 704 705 wait.key.timeout = jiffies + timeout; 706 if (!test_bit(bit_nr, &page->flags)) 707 return 0; 708 return __wait_on_bit(page_waitqueue(page), &wait, 709 bit_wait_io_timeout, TASK_KILLABLE); 710 } 711 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout); 712 713 /** 714 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 715 * @page: Page defining the wait queue of interest 716 * @waiter: Waiter to add to the queue 717 * 718 * Add an arbitrary @waiter to the wait queue for the nominated @page. 719 */ 720 void add_page_wait_queue(struct page *page, wait_queue_t *waiter) 721 { 722 wait_queue_head_t *q = page_waitqueue(page); 723 unsigned long flags; 724 725 spin_lock_irqsave(&q->lock, flags); 726 __add_wait_queue(q, waiter); 727 spin_unlock_irqrestore(&q->lock, flags); 728 } 729 EXPORT_SYMBOL_GPL(add_page_wait_queue); 730 731 /** 732 * unlock_page - unlock a locked page 733 * @page: the page 734 * 735 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 736 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 737 * mechanism between PageLocked pages and PageWriteback pages is shared. 738 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 739 * 740 * The mb is necessary to enforce ordering between the clear_bit and the read 741 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()). 742 */ 743 void unlock_page(struct page *page) 744 { 745 VM_BUG_ON_PAGE(!PageLocked(page), page); 746 clear_bit_unlock(PG_locked, &page->flags); 747 smp_mb__after_atomic(); 748 wake_up_page(page, PG_locked); 749 } 750 EXPORT_SYMBOL(unlock_page); 751 752 /** 753 * end_page_writeback - end writeback against a page 754 * @page: the page 755 */ 756 void end_page_writeback(struct page *page) 757 { 758 /* 759 * TestClearPageReclaim could be used here but it is an atomic 760 * operation and overkill in this particular case. Failing to 761 * shuffle a page marked for immediate reclaim is too mild to 762 * justify taking an atomic operation penalty at the end of 763 * ever page writeback. 764 */ 765 if (PageReclaim(page)) { 766 ClearPageReclaim(page); 767 rotate_reclaimable_page(page); 768 } 769 770 if (!test_clear_page_writeback(page)) 771 BUG(); 772 773 smp_mb__after_atomic(); 774 wake_up_page(page, PG_writeback); 775 } 776 EXPORT_SYMBOL(end_page_writeback); 777 778 /* 779 * After completing I/O on a page, call this routine to update the page 780 * flags appropriately 781 */ 782 void page_endio(struct page *page, int rw, int err) 783 { 784 if (rw == READ) { 785 if (!err) { 786 SetPageUptodate(page); 787 } else { 788 ClearPageUptodate(page); 789 SetPageError(page); 790 } 791 unlock_page(page); 792 } else { /* rw == WRITE */ 793 if (err) { 794 SetPageError(page); 795 if (page->mapping) 796 mapping_set_error(page->mapping, err); 797 } 798 end_page_writeback(page); 799 } 800 } 801 EXPORT_SYMBOL_GPL(page_endio); 802 803 /** 804 * __lock_page - get a lock on the page, assuming we need to sleep to get it 805 * @page: the page to lock 806 */ 807 void __lock_page(struct page *page) 808 { 809 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 810 811 __wait_on_bit_lock(page_waitqueue(page), &wait, bit_wait_io, 812 TASK_UNINTERRUPTIBLE); 813 } 814 EXPORT_SYMBOL(__lock_page); 815 816 int __lock_page_killable(struct page *page) 817 { 818 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 819 820 return __wait_on_bit_lock(page_waitqueue(page), &wait, 821 bit_wait_io, TASK_KILLABLE); 822 } 823 EXPORT_SYMBOL_GPL(__lock_page_killable); 824 825 /* 826 * Return values: 827 * 1 - page is locked; mmap_sem is still held. 828 * 0 - page is not locked. 829 * mmap_sem has been released (up_read()), unless flags had both 830 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 831 * which case mmap_sem is still held. 832 * 833 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1 834 * with the page locked and the mmap_sem unperturbed. 835 */ 836 int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 837 unsigned int flags) 838 { 839 if (flags & FAULT_FLAG_ALLOW_RETRY) { 840 /* 841 * CAUTION! In this case, mmap_sem is not released 842 * even though return 0. 843 */ 844 if (flags & FAULT_FLAG_RETRY_NOWAIT) 845 return 0; 846 847 up_read(&mm->mmap_sem); 848 if (flags & FAULT_FLAG_KILLABLE) 849 wait_on_page_locked_killable(page); 850 else 851 wait_on_page_locked(page); 852 return 0; 853 } else { 854 if (flags & FAULT_FLAG_KILLABLE) { 855 int ret; 856 857 ret = __lock_page_killable(page); 858 if (ret) { 859 up_read(&mm->mmap_sem); 860 return 0; 861 } 862 } else 863 __lock_page(page); 864 return 1; 865 } 866 } 867 868 /** 869 * page_cache_next_hole - find the next hole (not-present entry) 870 * @mapping: mapping 871 * @index: index 872 * @max_scan: maximum range to search 873 * 874 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the 875 * lowest indexed hole. 876 * 877 * Returns: the index of the hole if found, otherwise returns an index 878 * outside of the set specified (in which case 'return - index >= 879 * max_scan' will be true). In rare cases of index wrap-around, 0 will 880 * be returned. 881 * 882 * page_cache_next_hole may be called under rcu_read_lock. However, 883 * like radix_tree_gang_lookup, this will not atomically search a 884 * snapshot of the tree at a single point in time. For example, if a 885 * hole is created at index 5, then subsequently a hole is created at 886 * index 10, page_cache_next_hole covering both indexes may return 10 887 * if called under rcu_read_lock. 888 */ 889 pgoff_t page_cache_next_hole(struct address_space *mapping, 890 pgoff_t index, unsigned long max_scan) 891 { 892 unsigned long i; 893 894 for (i = 0; i < max_scan; i++) { 895 struct page *page; 896 897 page = radix_tree_lookup(&mapping->page_tree, index); 898 if (!page || radix_tree_exceptional_entry(page)) 899 break; 900 index++; 901 if (index == 0) 902 break; 903 } 904 905 return index; 906 } 907 EXPORT_SYMBOL(page_cache_next_hole); 908 909 /** 910 * page_cache_prev_hole - find the prev hole (not-present entry) 911 * @mapping: mapping 912 * @index: index 913 * @max_scan: maximum range to search 914 * 915 * Search backwards in the range [max(index-max_scan+1, 0), index] for 916 * the first hole. 917 * 918 * Returns: the index of the hole if found, otherwise returns an index 919 * outside of the set specified (in which case 'index - return >= 920 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX 921 * will be returned. 922 * 923 * page_cache_prev_hole may be called under rcu_read_lock. However, 924 * like radix_tree_gang_lookup, this will not atomically search a 925 * snapshot of the tree at a single point in time. For example, if a 926 * hole is created at index 10, then subsequently a hole is created at 927 * index 5, page_cache_prev_hole covering both indexes may return 5 if 928 * called under rcu_read_lock. 929 */ 930 pgoff_t page_cache_prev_hole(struct address_space *mapping, 931 pgoff_t index, unsigned long max_scan) 932 { 933 unsigned long i; 934 935 for (i = 0; i < max_scan; i++) { 936 struct page *page; 937 938 page = radix_tree_lookup(&mapping->page_tree, index); 939 if (!page || radix_tree_exceptional_entry(page)) 940 break; 941 index--; 942 if (index == ULONG_MAX) 943 break; 944 } 945 946 return index; 947 } 948 EXPORT_SYMBOL(page_cache_prev_hole); 949 950 /** 951 * find_get_entry - find and get a page cache entry 952 * @mapping: the address_space to search 953 * @offset: the page cache index 954 * 955 * Looks up the page cache slot at @mapping & @offset. If there is a 956 * page cache page, it is returned with an increased refcount. 957 * 958 * If the slot holds a shadow entry of a previously evicted page, or a 959 * swap entry from shmem/tmpfs, it is returned. 960 * 961 * Otherwise, %NULL is returned. 962 */ 963 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset) 964 { 965 void **pagep; 966 struct page *page; 967 968 rcu_read_lock(); 969 repeat: 970 page = NULL; 971 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset); 972 if (pagep) { 973 page = radix_tree_deref_slot(pagep); 974 if (unlikely(!page)) 975 goto out; 976 if (radix_tree_exception(page)) { 977 if (radix_tree_deref_retry(page)) 978 goto repeat; 979 /* 980 * A shadow entry of a recently evicted page, 981 * or a swap entry from shmem/tmpfs. Return 982 * it without attempting to raise page count. 983 */ 984 goto out; 985 } 986 if (!page_cache_get_speculative(page)) 987 goto repeat; 988 989 /* 990 * Has the page moved? 991 * This is part of the lockless pagecache protocol. See 992 * include/linux/pagemap.h for details. 993 */ 994 if (unlikely(page != *pagep)) { 995 page_cache_release(page); 996 goto repeat; 997 } 998 } 999 out: 1000 rcu_read_unlock(); 1001 1002 return page; 1003 } 1004 EXPORT_SYMBOL(find_get_entry); 1005 1006 /** 1007 * find_lock_entry - locate, pin and lock a page cache entry 1008 * @mapping: the address_space to search 1009 * @offset: the page cache index 1010 * 1011 * Looks up the page cache slot at @mapping & @offset. If there is a 1012 * page cache page, it is returned locked and with an increased 1013 * refcount. 1014 * 1015 * If the slot holds a shadow entry of a previously evicted page, or a 1016 * swap entry from shmem/tmpfs, it is returned. 1017 * 1018 * Otherwise, %NULL is returned. 1019 * 1020 * find_lock_entry() may sleep. 1021 */ 1022 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset) 1023 { 1024 struct page *page; 1025 1026 repeat: 1027 page = find_get_entry(mapping, offset); 1028 if (page && !radix_tree_exception(page)) { 1029 lock_page(page); 1030 /* Has the page been truncated? */ 1031 if (unlikely(page->mapping != mapping)) { 1032 unlock_page(page); 1033 page_cache_release(page); 1034 goto repeat; 1035 } 1036 VM_BUG_ON_PAGE(page->index != offset, page); 1037 } 1038 return page; 1039 } 1040 EXPORT_SYMBOL(find_lock_entry); 1041 1042 /** 1043 * pagecache_get_page - find and get a page reference 1044 * @mapping: the address_space to search 1045 * @offset: the page index 1046 * @fgp_flags: PCG flags 1047 * @gfp_mask: gfp mask to use for the page cache data page allocation 1048 * 1049 * Looks up the page cache slot at @mapping & @offset. 1050 * 1051 * PCG flags modify how the page is returned. 1052 * 1053 * FGP_ACCESSED: the page will be marked accessed 1054 * FGP_LOCK: Page is return locked 1055 * FGP_CREAT: If page is not present then a new page is allocated using 1056 * @gfp_mask and added to the page cache and the VM's LRU 1057 * list. The page is returned locked and with an increased 1058 * refcount. Otherwise, %NULL is returned. 1059 * 1060 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even 1061 * if the GFP flags specified for FGP_CREAT are atomic. 1062 * 1063 * If there is a page cache page, it is returned with an increased refcount. 1064 */ 1065 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, 1066 int fgp_flags, gfp_t gfp_mask) 1067 { 1068 struct page *page; 1069 1070 repeat: 1071 page = find_get_entry(mapping, offset); 1072 if (radix_tree_exceptional_entry(page)) 1073 page = NULL; 1074 if (!page) 1075 goto no_page; 1076 1077 if (fgp_flags & FGP_LOCK) { 1078 if (fgp_flags & FGP_NOWAIT) { 1079 if (!trylock_page(page)) { 1080 page_cache_release(page); 1081 return NULL; 1082 } 1083 } else { 1084 lock_page(page); 1085 } 1086 1087 /* Has the page been truncated? */ 1088 if (unlikely(page->mapping != mapping)) { 1089 unlock_page(page); 1090 page_cache_release(page); 1091 goto repeat; 1092 } 1093 VM_BUG_ON_PAGE(page->index != offset, page); 1094 } 1095 1096 if (page && (fgp_flags & FGP_ACCESSED)) 1097 mark_page_accessed(page); 1098 1099 no_page: 1100 if (!page && (fgp_flags & FGP_CREAT)) { 1101 int err; 1102 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping)) 1103 gfp_mask |= __GFP_WRITE; 1104 if (fgp_flags & FGP_NOFS) 1105 gfp_mask &= ~__GFP_FS; 1106 1107 page = __page_cache_alloc(gfp_mask); 1108 if (!page) 1109 return NULL; 1110 1111 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK))) 1112 fgp_flags |= FGP_LOCK; 1113 1114 /* Init accessed so avoid atomic mark_page_accessed later */ 1115 if (fgp_flags & FGP_ACCESSED) 1116 __SetPageReferenced(page); 1117 1118 err = add_to_page_cache_lru(page, mapping, offset, 1119 gfp_mask & GFP_RECLAIM_MASK); 1120 if (unlikely(err)) { 1121 page_cache_release(page); 1122 page = NULL; 1123 if (err == -EEXIST) 1124 goto repeat; 1125 } 1126 } 1127 1128 return page; 1129 } 1130 EXPORT_SYMBOL(pagecache_get_page); 1131 1132 /** 1133 * find_get_entries - gang pagecache lookup 1134 * @mapping: The address_space to search 1135 * @start: The starting page cache index 1136 * @nr_entries: The maximum number of entries 1137 * @entries: Where the resulting entries are placed 1138 * @indices: The cache indices corresponding to the entries in @entries 1139 * 1140 * find_get_entries() will search for and return a group of up to 1141 * @nr_entries entries in the mapping. The entries are placed at 1142 * @entries. find_get_entries() takes a reference against any actual 1143 * pages it returns. 1144 * 1145 * The search returns a group of mapping-contiguous page cache entries 1146 * with ascending indexes. There may be holes in the indices due to 1147 * not-present pages. 1148 * 1149 * Any shadow entries of evicted pages, or swap entries from 1150 * shmem/tmpfs, are included in the returned array. 1151 * 1152 * find_get_entries() returns the number of pages and shadow entries 1153 * which were found. 1154 */ 1155 unsigned find_get_entries(struct address_space *mapping, 1156 pgoff_t start, unsigned int nr_entries, 1157 struct page **entries, pgoff_t *indices) 1158 { 1159 void **slot; 1160 unsigned int ret = 0; 1161 struct radix_tree_iter iter; 1162 1163 if (!nr_entries) 1164 return 0; 1165 1166 rcu_read_lock(); 1167 restart: 1168 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 1169 struct page *page; 1170 repeat: 1171 page = radix_tree_deref_slot(slot); 1172 if (unlikely(!page)) 1173 continue; 1174 if (radix_tree_exception(page)) { 1175 if (radix_tree_deref_retry(page)) 1176 goto restart; 1177 /* 1178 * A shadow entry of a recently evicted page, 1179 * or a swap entry from shmem/tmpfs. Return 1180 * it without attempting to raise page count. 1181 */ 1182 goto export; 1183 } 1184 if (!page_cache_get_speculative(page)) 1185 goto repeat; 1186 1187 /* Has the page moved? */ 1188 if (unlikely(page != *slot)) { 1189 page_cache_release(page); 1190 goto repeat; 1191 } 1192 export: 1193 indices[ret] = iter.index; 1194 entries[ret] = page; 1195 if (++ret == nr_entries) 1196 break; 1197 } 1198 rcu_read_unlock(); 1199 return ret; 1200 } 1201 1202 /** 1203 * find_get_pages - gang pagecache lookup 1204 * @mapping: The address_space to search 1205 * @start: The starting page index 1206 * @nr_pages: The maximum number of pages 1207 * @pages: Where the resulting pages are placed 1208 * 1209 * find_get_pages() will search for and return a group of up to 1210 * @nr_pages pages in the mapping. The pages are placed at @pages. 1211 * find_get_pages() takes a reference against the returned pages. 1212 * 1213 * The search returns a group of mapping-contiguous pages with ascending 1214 * indexes. There may be holes in the indices due to not-present pages. 1215 * 1216 * find_get_pages() returns the number of pages which were found. 1217 */ 1218 unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 1219 unsigned int nr_pages, struct page **pages) 1220 { 1221 struct radix_tree_iter iter; 1222 void **slot; 1223 unsigned ret = 0; 1224 1225 if (unlikely(!nr_pages)) 1226 return 0; 1227 1228 rcu_read_lock(); 1229 restart: 1230 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 1231 struct page *page; 1232 repeat: 1233 page = radix_tree_deref_slot(slot); 1234 if (unlikely(!page)) 1235 continue; 1236 1237 if (radix_tree_exception(page)) { 1238 if (radix_tree_deref_retry(page)) { 1239 /* 1240 * Transient condition which can only trigger 1241 * when entry at index 0 moves out of or back 1242 * to root: none yet gotten, safe to restart. 1243 */ 1244 WARN_ON(iter.index); 1245 goto restart; 1246 } 1247 /* 1248 * A shadow entry of a recently evicted page, 1249 * or a swap entry from shmem/tmpfs. Skip 1250 * over it. 1251 */ 1252 continue; 1253 } 1254 1255 if (!page_cache_get_speculative(page)) 1256 goto repeat; 1257 1258 /* Has the page moved? */ 1259 if (unlikely(page != *slot)) { 1260 page_cache_release(page); 1261 goto repeat; 1262 } 1263 1264 pages[ret] = page; 1265 if (++ret == nr_pages) 1266 break; 1267 } 1268 1269 rcu_read_unlock(); 1270 return ret; 1271 } 1272 1273 /** 1274 * find_get_pages_contig - gang contiguous pagecache lookup 1275 * @mapping: The address_space to search 1276 * @index: The starting page index 1277 * @nr_pages: The maximum number of pages 1278 * @pages: Where the resulting pages are placed 1279 * 1280 * find_get_pages_contig() works exactly like find_get_pages(), except 1281 * that the returned number of pages are guaranteed to be contiguous. 1282 * 1283 * find_get_pages_contig() returns the number of pages which were found. 1284 */ 1285 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 1286 unsigned int nr_pages, struct page **pages) 1287 { 1288 struct radix_tree_iter iter; 1289 void **slot; 1290 unsigned int ret = 0; 1291 1292 if (unlikely(!nr_pages)) 1293 return 0; 1294 1295 rcu_read_lock(); 1296 restart: 1297 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) { 1298 struct page *page; 1299 repeat: 1300 page = radix_tree_deref_slot(slot); 1301 /* The hole, there no reason to continue */ 1302 if (unlikely(!page)) 1303 break; 1304 1305 if (radix_tree_exception(page)) { 1306 if (radix_tree_deref_retry(page)) { 1307 /* 1308 * Transient condition which can only trigger 1309 * when entry at index 0 moves out of or back 1310 * to root: none yet gotten, safe to restart. 1311 */ 1312 goto restart; 1313 } 1314 /* 1315 * A shadow entry of a recently evicted page, 1316 * or a swap entry from shmem/tmpfs. Stop 1317 * looking for contiguous pages. 1318 */ 1319 break; 1320 } 1321 1322 if (!page_cache_get_speculative(page)) 1323 goto repeat; 1324 1325 /* Has the page moved? */ 1326 if (unlikely(page != *slot)) { 1327 page_cache_release(page); 1328 goto repeat; 1329 } 1330 1331 /* 1332 * must check mapping and index after taking the ref. 1333 * otherwise we can get both false positives and false 1334 * negatives, which is just confusing to the caller. 1335 */ 1336 if (page->mapping == NULL || page->index != iter.index) { 1337 page_cache_release(page); 1338 break; 1339 } 1340 1341 pages[ret] = page; 1342 if (++ret == nr_pages) 1343 break; 1344 } 1345 rcu_read_unlock(); 1346 return ret; 1347 } 1348 EXPORT_SYMBOL(find_get_pages_contig); 1349 1350 /** 1351 * find_get_pages_tag - find and return pages that match @tag 1352 * @mapping: the address_space to search 1353 * @index: the starting page index 1354 * @tag: the tag index 1355 * @nr_pages: the maximum number of pages 1356 * @pages: where the resulting pages are placed 1357 * 1358 * Like find_get_pages, except we only return pages which are tagged with 1359 * @tag. We update @index to index the next page for the traversal. 1360 */ 1361 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 1362 int tag, unsigned int nr_pages, struct page **pages) 1363 { 1364 struct radix_tree_iter iter; 1365 void **slot; 1366 unsigned ret = 0; 1367 1368 if (unlikely(!nr_pages)) 1369 return 0; 1370 1371 rcu_read_lock(); 1372 restart: 1373 radix_tree_for_each_tagged(slot, &mapping->page_tree, 1374 &iter, *index, tag) { 1375 struct page *page; 1376 repeat: 1377 page = radix_tree_deref_slot(slot); 1378 if (unlikely(!page)) 1379 continue; 1380 1381 if (radix_tree_exception(page)) { 1382 if (radix_tree_deref_retry(page)) { 1383 /* 1384 * Transient condition which can only trigger 1385 * when entry at index 0 moves out of or back 1386 * to root: none yet gotten, safe to restart. 1387 */ 1388 goto restart; 1389 } 1390 /* 1391 * A shadow entry of a recently evicted page. 1392 * 1393 * Those entries should never be tagged, but 1394 * this tree walk is lockless and the tags are 1395 * looked up in bulk, one radix tree node at a 1396 * time, so there is a sizable window for page 1397 * reclaim to evict a page we saw tagged. 1398 * 1399 * Skip over it. 1400 */ 1401 continue; 1402 } 1403 1404 if (!page_cache_get_speculative(page)) 1405 goto repeat; 1406 1407 /* Has the page moved? */ 1408 if (unlikely(page != *slot)) { 1409 page_cache_release(page); 1410 goto repeat; 1411 } 1412 1413 pages[ret] = page; 1414 if (++ret == nr_pages) 1415 break; 1416 } 1417 1418 rcu_read_unlock(); 1419 1420 if (ret) 1421 *index = pages[ret - 1]->index + 1; 1422 1423 return ret; 1424 } 1425 EXPORT_SYMBOL(find_get_pages_tag); 1426 1427 /* 1428 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 1429 * a _large_ part of the i/o request. Imagine the worst scenario: 1430 * 1431 * ---R__________________________________________B__________ 1432 * ^ reading here ^ bad block(assume 4k) 1433 * 1434 * read(R) => miss => readahead(R...B) => media error => frustrating retries 1435 * => failing the whole request => read(R) => read(R+1) => 1436 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 1437 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 1438 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 1439 * 1440 * It is going insane. Fix it by quickly scaling down the readahead size. 1441 */ 1442 static void shrink_readahead_size_eio(struct file *filp, 1443 struct file_ra_state *ra) 1444 { 1445 ra->ra_pages /= 4; 1446 } 1447 1448 /** 1449 * do_generic_file_read - generic file read routine 1450 * @filp: the file to read 1451 * @ppos: current file position 1452 * @iter: data destination 1453 * @written: already copied 1454 * 1455 * This is a generic file read routine, and uses the 1456 * mapping->a_ops->readpage() function for the actual low-level stuff. 1457 * 1458 * This is really ugly. But the goto's actually try to clarify some 1459 * of the logic when it comes to error handling etc. 1460 */ 1461 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos, 1462 struct iov_iter *iter, ssize_t written) 1463 { 1464 struct address_space *mapping = filp->f_mapping; 1465 struct inode *inode = mapping->host; 1466 struct file_ra_state *ra = &filp->f_ra; 1467 pgoff_t index; 1468 pgoff_t last_index; 1469 pgoff_t prev_index; 1470 unsigned long offset; /* offset into pagecache page */ 1471 unsigned int prev_offset; 1472 int error = 0; 1473 1474 index = *ppos >> PAGE_CACHE_SHIFT; 1475 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT; 1476 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1); 1477 last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; 1478 offset = *ppos & ~PAGE_CACHE_MASK; 1479 1480 for (;;) { 1481 struct page *page; 1482 pgoff_t end_index; 1483 loff_t isize; 1484 unsigned long nr, ret; 1485 1486 cond_resched(); 1487 find_page: 1488 page = find_get_page(mapping, index); 1489 if (!page) { 1490 page_cache_sync_readahead(mapping, 1491 ra, filp, 1492 index, last_index - index); 1493 page = find_get_page(mapping, index); 1494 if (unlikely(page == NULL)) 1495 goto no_cached_page; 1496 } 1497 if (PageReadahead(page)) { 1498 page_cache_async_readahead(mapping, 1499 ra, filp, page, 1500 index, last_index - index); 1501 } 1502 if (!PageUptodate(page)) { 1503 if (inode->i_blkbits == PAGE_CACHE_SHIFT || 1504 !mapping->a_ops->is_partially_uptodate) 1505 goto page_not_up_to_date; 1506 if (!trylock_page(page)) 1507 goto page_not_up_to_date; 1508 /* Did it get truncated before we got the lock? */ 1509 if (!page->mapping) 1510 goto page_not_up_to_date_locked; 1511 if (!mapping->a_ops->is_partially_uptodate(page, 1512 offset, iter->count)) 1513 goto page_not_up_to_date_locked; 1514 unlock_page(page); 1515 } 1516 page_ok: 1517 /* 1518 * i_size must be checked after we know the page is Uptodate. 1519 * 1520 * Checking i_size after the check allows us to calculate 1521 * the correct value for "nr", which means the zero-filled 1522 * part of the page is not copied back to userspace (unless 1523 * another truncate extends the file - this is desired though). 1524 */ 1525 1526 isize = i_size_read(inode); 1527 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1528 if (unlikely(!isize || index > end_index)) { 1529 page_cache_release(page); 1530 goto out; 1531 } 1532 1533 /* nr is the maximum number of bytes to copy from this page */ 1534 nr = PAGE_CACHE_SIZE; 1535 if (index == end_index) { 1536 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 1537 if (nr <= offset) { 1538 page_cache_release(page); 1539 goto out; 1540 } 1541 } 1542 nr = nr - offset; 1543 1544 /* If users can be writing to this page using arbitrary 1545 * virtual addresses, take care about potential aliasing 1546 * before reading the page on the kernel side. 1547 */ 1548 if (mapping_writably_mapped(mapping)) 1549 flush_dcache_page(page); 1550 1551 /* 1552 * When a sequential read accesses a page several times, 1553 * only mark it as accessed the first time. 1554 */ 1555 if (prev_index != index || offset != prev_offset) 1556 mark_page_accessed(page); 1557 prev_index = index; 1558 1559 /* 1560 * Ok, we have the page, and it's up-to-date, so 1561 * now we can copy it to user space... 1562 */ 1563 1564 ret = copy_page_to_iter(page, offset, nr, iter); 1565 offset += ret; 1566 index += offset >> PAGE_CACHE_SHIFT; 1567 offset &= ~PAGE_CACHE_MASK; 1568 prev_offset = offset; 1569 1570 page_cache_release(page); 1571 written += ret; 1572 if (!iov_iter_count(iter)) 1573 goto out; 1574 if (ret < nr) { 1575 error = -EFAULT; 1576 goto out; 1577 } 1578 continue; 1579 1580 page_not_up_to_date: 1581 /* Get exclusive access to the page ... */ 1582 error = lock_page_killable(page); 1583 if (unlikely(error)) 1584 goto readpage_error; 1585 1586 page_not_up_to_date_locked: 1587 /* Did it get truncated before we got the lock? */ 1588 if (!page->mapping) { 1589 unlock_page(page); 1590 page_cache_release(page); 1591 continue; 1592 } 1593 1594 /* Did somebody else fill it already? */ 1595 if (PageUptodate(page)) { 1596 unlock_page(page); 1597 goto page_ok; 1598 } 1599 1600 readpage: 1601 /* 1602 * A previous I/O error may have been due to temporary 1603 * failures, eg. multipath errors. 1604 * PG_error will be set again if readpage fails. 1605 */ 1606 ClearPageError(page); 1607 /* Start the actual read. The read will unlock the page. */ 1608 error = mapping->a_ops->readpage(filp, page); 1609 1610 if (unlikely(error)) { 1611 if (error == AOP_TRUNCATED_PAGE) { 1612 page_cache_release(page); 1613 error = 0; 1614 goto find_page; 1615 } 1616 goto readpage_error; 1617 } 1618 1619 if (!PageUptodate(page)) { 1620 error = lock_page_killable(page); 1621 if (unlikely(error)) 1622 goto readpage_error; 1623 if (!PageUptodate(page)) { 1624 if (page->mapping == NULL) { 1625 /* 1626 * invalidate_mapping_pages got it 1627 */ 1628 unlock_page(page); 1629 page_cache_release(page); 1630 goto find_page; 1631 } 1632 unlock_page(page); 1633 shrink_readahead_size_eio(filp, ra); 1634 error = -EIO; 1635 goto readpage_error; 1636 } 1637 unlock_page(page); 1638 } 1639 1640 goto page_ok; 1641 1642 readpage_error: 1643 /* UHHUH! A synchronous read error occurred. Report it */ 1644 page_cache_release(page); 1645 goto out; 1646 1647 no_cached_page: 1648 /* 1649 * Ok, it wasn't cached, so we need to create a new 1650 * page.. 1651 */ 1652 page = page_cache_alloc_cold(mapping); 1653 if (!page) { 1654 error = -ENOMEM; 1655 goto out; 1656 } 1657 error = add_to_page_cache_lru(page, mapping, 1658 index, GFP_KERNEL); 1659 if (error) { 1660 page_cache_release(page); 1661 if (error == -EEXIST) { 1662 error = 0; 1663 goto find_page; 1664 } 1665 goto out; 1666 } 1667 goto readpage; 1668 } 1669 1670 out: 1671 ra->prev_pos = prev_index; 1672 ra->prev_pos <<= PAGE_CACHE_SHIFT; 1673 ra->prev_pos |= prev_offset; 1674 1675 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset; 1676 file_accessed(filp); 1677 return written ? written : error; 1678 } 1679 1680 /** 1681 * generic_file_read_iter - generic filesystem read routine 1682 * @iocb: kernel I/O control block 1683 * @iter: destination for the data read 1684 * 1685 * This is the "read_iter()" routine for all filesystems 1686 * that can use the page cache directly. 1687 */ 1688 ssize_t 1689 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 1690 { 1691 struct file *file = iocb->ki_filp; 1692 ssize_t retval = 0; 1693 loff_t *ppos = &iocb->ki_pos; 1694 loff_t pos = *ppos; 1695 1696 if (iocb->ki_flags & IOCB_DIRECT) { 1697 struct address_space *mapping = file->f_mapping; 1698 struct inode *inode = mapping->host; 1699 size_t count = iov_iter_count(iter); 1700 loff_t size; 1701 1702 if (!count) 1703 goto out; /* skip atime */ 1704 size = i_size_read(inode); 1705 retval = filemap_write_and_wait_range(mapping, pos, 1706 pos + count - 1); 1707 if (!retval) { 1708 struct iov_iter data = *iter; 1709 retval = mapping->a_ops->direct_IO(iocb, &data, pos); 1710 } 1711 1712 if (retval > 0) { 1713 *ppos = pos + retval; 1714 iov_iter_advance(iter, retval); 1715 } 1716 1717 /* 1718 * Btrfs can have a short DIO read if we encounter 1719 * compressed extents, so if there was an error, or if 1720 * we've already read everything we wanted to, or if 1721 * there was a short read because we hit EOF, go ahead 1722 * and return. Otherwise fallthrough to buffered io for 1723 * the rest of the read. Buffered reads will not work for 1724 * DAX files, so don't bother trying. 1725 */ 1726 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size || 1727 IS_DAX(inode)) { 1728 file_accessed(file); 1729 goto out; 1730 } 1731 } 1732 1733 retval = do_generic_file_read(file, ppos, iter, retval); 1734 out: 1735 return retval; 1736 } 1737 EXPORT_SYMBOL(generic_file_read_iter); 1738 1739 #ifdef CONFIG_MMU 1740 /** 1741 * page_cache_read - adds requested page to the page cache if not already there 1742 * @file: file to read 1743 * @offset: page index 1744 * 1745 * This adds the requested page to the page cache if it isn't already there, 1746 * and schedules an I/O to read in its contents from disk. 1747 */ 1748 static int page_cache_read(struct file *file, pgoff_t offset) 1749 { 1750 struct address_space *mapping = file->f_mapping; 1751 struct page *page; 1752 int ret; 1753 1754 do { 1755 page = page_cache_alloc_cold(mapping); 1756 if (!page) 1757 return -ENOMEM; 1758 1759 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL); 1760 if (ret == 0) 1761 ret = mapping->a_ops->readpage(file, page); 1762 else if (ret == -EEXIST) 1763 ret = 0; /* losing race to add is OK */ 1764 1765 page_cache_release(page); 1766 1767 } while (ret == AOP_TRUNCATED_PAGE); 1768 1769 return ret; 1770 } 1771 1772 #define MMAP_LOTSAMISS (100) 1773 1774 /* 1775 * Synchronous readahead happens when we don't even find 1776 * a page in the page cache at all. 1777 */ 1778 static void do_sync_mmap_readahead(struct vm_area_struct *vma, 1779 struct file_ra_state *ra, 1780 struct file *file, 1781 pgoff_t offset) 1782 { 1783 unsigned long ra_pages; 1784 struct address_space *mapping = file->f_mapping; 1785 1786 /* If we don't want any read-ahead, don't bother */ 1787 if (vma->vm_flags & VM_RAND_READ) 1788 return; 1789 if (!ra->ra_pages) 1790 return; 1791 1792 if (vma->vm_flags & VM_SEQ_READ) { 1793 page_cache_sync_readahead(mapping, ra, file, offset, 1794 ra->ra_pages); 1795 return; 1796 } 1797 1798 /* Avoid banging the cache line if not needed */ 1799 if (ra->mmap_miss < MMAP_LOTSAMISS * 10) 1800 ra->mmap_miss++; 1801 1802 /* 1803 * Do we miss much more than hit in this file? If so, 1804 * stop bothering with read-ahead. It will only hurt. 1805 */ 1806 if (ra->mmap_miss > MMAP_LOTSAMISS) 1807 return; 1808 1809 /* 1810 * mmap read-around 1811 */ 1812 ra_pages = max_sane_readahead(ra->ra_pages); 1813 ra->start = max_t(long, 0, offset - ra_pages / 2); 1814 ra->size = ra_pages; 1815 ra->async_size = ra_pages / 4; 1816 ra_submit(ra, mapping, file); 1817 } 1818 1819 /* 1820 * Asynchronous readahead happens when we find the page and PG_readahead, 1821 * so we want to possibly extend the readahead further.. 1822 */ 1823 static void do_async_mmap_readahead(struct vm_area_struct *vma, 1824 struct file_ra_state *ra, 1825 struct file *file, 1826 struct page *page, 1827 pgoff_t offset) 1828 { 1829 struct address_space *mapping = file->f_mapping; 1830 1831 /* If we don't want any read-ahead, don't bother */ 1832 if (vma->vm_flags & VM_RAND_READ) 1833 return; 1834 if (ra->mmap_miss > 0) 1835 ra->mmap_miss--; 1836 if (PageReadahead(page)) 1837 page_cache_async_readahead(mapping, ra, file, 1838 page, offset, ra->ra_pages); 1839 } 1840 1841 /** 1842 * filemap_fault - read in file data for page fault handling 1843 * @vma: vma in which the fault was taken 1844 * @vmf: struct vm_fault containing details of the fault 1845 * 1846 * filemap_fault() is invoked via the vma operations vector for a 1847 * mapped memory region to read in file data during a page fault. 1848 * 1849 * The goto's are kind of ugly, but this streamlines the normal case of having 1850 * it in the page cache, and handles the special cases reasonably without 1851 * having a lot of duplicated code. 1852 * 1853 * vma->vm_mm->mmap_sem must be held on entry. 1854 * 1855 * If our return value has VM_FAULT_RETRY set, it's because 1856 * lock_page_or_retry() returned 0. 1857 * The mmap_sem has usually been released in this case. 1858 * See __lock_page_or_retry() for the exception. 1859 * 1860 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem 1861 * has not been released. 1862 * 1863 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 1864 */ 1865 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1866 { 1867 int error; 1868 struct file *file = vma->vm_file; 1869 struct address_space *mapping = file->f_mapping; 1870 struct file_ra_state *ra = &file->f_ra; 1871 struct inode *inode = mapping->host; 1872 pgoff_t offset = vmf->pgoff; 1873 struct page *page; 1874 loff_t size; 1875 int ret = 0; 1876 1877 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE); 1878 if (offset >= size >> PAGE_CACHE_SHIFT) 1879 return VM_FAULT_SIGBUS; 1880 1881 /* 1882 * Do we have something in the page cache already? 1883 */ 1884 page = find_get_page(mapping, offset); 1885 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { 1886 /* 1887 * We found the page, so try async readahead before 1888 * waiting for the lock. 1889 */ 1890 do_async_mmap_readahead(vma, ra, file, page, offset); 1891 } else if (!page) { 1892 /* No page in the page cache at all */ 1893 do_sync_mmap_readahead(vma, ra, file, offset); 1894 count_vm_event(PGMAJFAULT); 1895 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); 1896 ret = VM_FAULT_MAJOR; 1897 retry_find: 1898 page = find_get_page(mapping, offset); 1899 if (!page) 1900 goto no_cached_page; 1901 } 1902 1903 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) { 1904 page_cache_release(page); 1905 return ret | VM_FAULT_RETRY; 1906 } 1907 1908 /* Did it get truncated? */ 1909 if (unlikely(page->mapping != mapping)) { 1910 unlock_page(page); 1911 put_page(page); 1912 goto retry_find; 1913 } 1914 VM_BUG_ON_PAGE(page->index != offset, page); 1915 1916 /* 1917 * We have a locked page in the page cache, now we need to check 1918 * that it's up-to-date. If not, it is going to be due to an error. 1919 */ 1920 if (unlikely(!PageUptodate(page))) 1921 goto page_not_uptodate; 1922 1923 /* 1924 * Found the page and have a reference on it. 1925 * We must recheck i_size under page lock. 1926 */ 1927 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE); 1928 if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) { 1929 unlock_page(page); 1930 page_cache_release(page); 1931 return VM_FAULT_SIGBUS; 1932 } 1933 1934 vmf->page = page; 1935 return ret | VM_FAULT_LOCKED; 1936 1937 no_cached_page: 1938 /* 1939 * We're only likely to ever get here if MADV_RANDOM is in 1940 * effect. 1941 */ 1942 error = page_cache_read(file, offset); 1943 1944 /* 1945 * The page we want has now been added to the page cache. 1946 * In the unlikely event that someone removed it in the 1947 * meantime, we'll just come back here and read it again. 1948 */ 1949 if (error >= 0) 1950 goto retry_find; 1951 1952 /* 1953 * An error return from page_cache_read can result if the 1954 * system is low on memory, or a problem occurs while trying 1955 * to schedule I/O. 1956 */ 1957 if (error == -ENOMEM) 1958 return VM_FAULT_OOM; 1959 return VM_FAULT_SIGBUS; 1960 1961 page_not_uptodate: 1962 /* 1963 * Umm, take care of errors if the page isn't up-to-date. 1964 * Try to re-read it _once_. We do this synchronously, 1965 * because there really aren't any performance issues here 1966 * and we need to check for errors. 1967 */ 1968 ClearPageError(page); 1969 error = mapping->a_ops->readpage(file, page); 1970 if (!error) { 1971 wait_on_page_locked(page); 1972 if (!PageUptodate(page)) 1973 error = -EIO; 1974 } 1975 page_cache_release(page); 1976 1977 if (!error || error == AOP_TRUNCATED_PAGE) 1978 goto retry_find; 1979 1980 /* Things didn't work out. Return zero to tell the mm layer so. */ 1981 shrink_readahead_size_eio(file, ra); 1982 return VM_FAULT_SIGBUS; 1983 } 1984 EXPORT_SYMBOL(filemap_fault); 1985 1986 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf) 1987 { 1988 struct radix_tree_iter iter; 1989 void **slot; 1990 struct file *file = vma->vm_file; 1991 struct address_space *mapping = file->f_mapping; 1992 loff_t size; 1993 struct page *page; 1994 unsigned long address = (unsigned long) vmf->virtual_address; 1995 unsigned long addr; 1996 pte_t *pte; 1997 1998 rcu_read_lock(); 1999 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) { 2000 if (iter.index > vmf->max_pgoff) 2001 break; 2002 repeat: 2003 page = radix_tree_deref_slot(slot); 2004 if (unlikely(!page)) 2005 goto next; 2006 if (radix_tree_exception(page)) { 2007 if (radix_tree_deref_retry(page)) 2008 break; 2009 else 2010 goto next; 2011 } 2012 2013 if (!page_cache_get_speculative(page)) 2014 goto repeat; 2015 2016 /* Has the page moved? */ 2017 if (unlikely(page != *slot)) { 2018 page_cache_release(page); 2019 goto repeat; 2020 } 2021 2022 if (!PageUptodate(page) || 2023 PageReadahead(page) || 2024 PageHWPoison(page)) 2025 goto skip; 2026 if (!trylock_page(page)) 2027 goto skip; 2028 2029 if (page->mapping != mapping || !PageUptodate(page)) 2030 goto unlock; 2031 2032 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE); 2033 if (page->index >= size >> PAGE_CACHE_SHIFT) 2034 goto unlock; 2035 2036 pte = vmf->pte + page->index - vmf->pgoff; 2037 if (!pte_none(*pte)) 2038 goto unlock; 2039 2040 if (file->f_ra.mmap_miss > 0) 2041 file->f_ra.mmap_miss--; 2042 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE; 2043 do_set_pte(vma, addr, page, pte, false, false); 2044 unlock_page(page); 2045 goto next; 2046 unlock: 2047 unlock_page(page); 2048 skip: 2049 page_cache_release(page); 2050 next: 2051 if (iter.index == vmf->max_pgoff) 2052 break; 2053 } 2054 rcu_read_unlock(); 2055 } 2056 EXPORT_SYMBOL(filemap_map_pages); 2057 2058 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 2059 { 2060 struct page *page = vmf->page; 2061 struct inode *inode = file_inode(vma->vm_file); 2062 int ret = VM_FAULT_LOCKED; 2063 2064 sb_start_pagefault(inode->i_sb); 2065 file_update_time(vma->vm_file); 2066 lock_page(page); 2067 if (page->mapping != inode->i_mapping) { 2068 unlock_page(page); 2069 ret = VM_FAULT_NOPAGE; 2070 goto out; 2071 } 2072 /* 2073 * We mark the page dirty already here so that when freeze is in 2074 * progress, we are guaranteed that writeback during freezing will 2075 * see the dirty page and writeprotect it again. 2076 */ 2077 set_page_dirty(page); 2078 wait_for_stable_page(page); 2079 out: 2080 sb_end_pagefault(inode->i_sb); 2081 return ret; 2082 } 2083 EXPORT_SYMBOL(filemap_page_mkwrite); 2084 2085 const struct vm_operations_struct generic_file_vm_ops = { 2086 .fault = filemap_fault, 2087 .map_pages = filemap_map_pages, 2088 .page_mkwrite = filemap_page_mkwrite, 2089 }; 2090 2091 /* This is used for a general mmap of a disk file */ 2092 2093 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2094 { 2095 struct address_space *mapping = file->f_mapping; 2096 2097 if (!mapping->a_ops->readpage) 2098 return -ENOEXEC; 2099 file_accessed(file); 2100 vma->vm_ops = &generic_file_vm_ops; 2101 return 0; 2102 } 2103 2104 /* 2105 * This is for filesystems which do not implement ->writepage. 2106 */ 2107 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 2108 { 2109 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 2110 return -EINVAL; 2111 return generic_file_mmap(file, vma); 2112 } 2113 #else 2114 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2115 { 2116 return -ENOSYS; 2117 } 2118 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 2119 { 2120 return -ENOSYS; 2121 } 2122 #endif /* CONFIG_MMU */ 2123 2124 EXPORT_SYMBOL(generic_file_mmap); 2125 EXPORT_SYMBOL(generic_file_readonly_mmap); 2126 2127 static struct page *wait_on_page_read(struct page *page) 2128 { 2129 if (!IS_ERR(page)) { 2130 wait_on_page_locked(page); 2131 if (!PageUptodate(page)) { 2132 page_cache_release(page); 2133 page = ERR_PTR(-EIO); 2134 } 2135 } 2136 return page; 2137 } 2138 2139 static struct page *__read_cache_page(struct address_space *mapping, 2140 pgoff_t index, 2141 int (*filler)(void *, struct page *), 2142 void *data, 2143 gfp_t gfp) 2144 { 2145 struct page *page; 2146 int err; 2147 repeat: 2148 page = find_get_page(mapping, index); 2149 if (!page) { 2150 page = __page_cache_alloc(gfp | __GFP_COLD); 2151 if (!page) 2152 return ERR_PTR(-ENOMEM); 2153 err = add_to_page_cache_lru(page, mapping, index, gfp); 2154 if (unlikely(err)) { 2155 page_cache_release(page); 2156 if (err == -EEXIST) 2157 goto repeat; 2158 /* Presumably ENOMEM for radix tree node */ 2159 return ERR_PTR(err); 2160 } 2161 err = filler(data, page); 2162 if (err < 0) { 2163 page_cache_release(page); 2164 page = ERR_PTR(err); 2165 } else { 2166 page = wait_on_page_read(page); 2167 } 2168 } 2169 return page; 2170 } 2171 2172 static struct page *do_read_cache_page(struct address_space *mapping, 2173 pgoff_t index, 2174 int (*filler)(void *, struct page *), 2175 void *data, 2176 gfp_t gfp) 2177 2178 { 2179 struct page *page; 2180 int err; 2181 2182 retry: 2183 page = __read_cache_page(mapping, index, filler, data, gfp); 2184 if (IS_ERR(page)) 2185 return page; 2186 if (PageUptodate(page)) 2187 goto out; 2188 2189 lock_page(page); 2190 if (!page->mapping) { 2191 unlock_page(page); 2192 page_cache_release(page); 2193 goto retry; 2194 } 2195 if (PageUptodate(page)) { 2196 unlock_page(page); 2197 goto out; 2198 } 2199 err = filler(data, page); 2200 if (err < 0) { 2201 page_cache_release(page); 2202 return ERR_PTR(err); 2203 } else { 2204 page = wait_on_page_read(page); 2205 if (IS_ERR(page)) 2206 return page; 2207 } 2208 out: 2209 mark_page_accessed(page); 2210 return page; 2211 } 2212 2213 /** 2214 * read_cache_page - read into page cache, fill it if needed 2215 * @mapping: the page's address_space 2216 * @index: the page index 2217 * @filler: function to perform the read 2218 * @data: first arg to filler(data, page) function, often left as NULL 2219 * 2220 * Read into the page cache. If a page already exists, and PageUptodate() is 2221 * not set, try to fill the page and wait for it to become unlocked. 2222 * 2223 * If the page does not get brought uptodate, return -EIO. 2224 */ 2225 struct page *read_cache_page(struct address_space *mapping, 2226 pgoff_t index, 2227 int (*filler)(void *, struct page *), 2228 void *data) 2229 { 2230 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping)); 2231 } 2232 EXPORT_SYMBOL(read_cache_page); 2233 2234 /** 2235 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 2236 * @mapping: the page's address_space 2237 * @index: the page index 2238 * @gfp: the page allocator flags to use if allocating 2239 * 2240 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 2241 * any new page allocations done using the specified allocation flags. 2242 * 2243 * If the page does not get brought uptodate, return -EIO. 2244 */ 2245 struct page *read_cache_page_gfp(struct address_space *mapping, 2246 pgoff_t index, 2247 gfp_t gfp) 2248 { 2249 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 2250 2251 return do_read_cache_page(mapping, index, filler, NULL, gfp); 2252 } 2253 EXPORT_SYMBOL(read_cache_page_gfp); 2254 2255 /* 2256 * Performs necessary checks before doing a write 2257 * 2258 * Can adjust writing position or amount of bytes to write. 2259 * Returns appropriate error code that caller should return or 2260 * zero in case that write should be allowed. 2261 */ 2262 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from) 2263 { 2264 struct file *file = iocb->ki_filp; 2265 struct inode *inode = file->f_mapping->host; 2266 unsigned long limit = rlimit(RLIMIT_FSIZE); 2267 loff_t pos; 2268 2269 if (!iov_iter_count(from)) 2270 return 0; 2271 2272 /* FIXME: this is for backwards compatibility with 2.4 */ 2273 if (iocb->ki_flags & IOCB_APPEND) 2274 iocb->ki_pos = i_size_read(inode); 2275 2276 pos = iocb->ki_pos; 2277 2278 if (limit != RLIM_INFINITY) { 2279 if (iocb->ki_pos >= limit) { 2280 send_sig(SIGXFSZ, current, 0); 2281 return -EFBIG; 2282 } 2283 iov_iter_truncate(from, limit - (unsigned long)pos); 2284 } 2285 2286 /* 2287 * LFS rule 2288 */ 2289 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS && 2290 !(file->f_flags & O_LARGEFILE))) { 2291 if (pos >= MAX_NON_LFS) 2292 return -EFBIG; 2293 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos); 2294 } 2295 2296 /* 2297 * Are we about to exceed the fs block limit ? 2298 * 2299 * If we have written data it becomes a short write. If we have 2300 * exceeded without writing data we send a signal and return EFBIG. 2301 * Linus frestrict idea will clean these up nicely.. 2302 */ 2303 if (unlikely(pos >= inode->i_sb->s_maxbytes)) 2304 return -EFBIG; 2305 2306 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos); 2307 return iov_iter_count(from); 2308 } 2309 EXPORT_SYMBOL(generic_write_checks); 2310 2311 int pagecache_write_begin(struct file *file, struct address_space *mapping, 2312 loff_t pos, unsigned len, unsigned flags, 2313 struct page **pagep, void **fsdata) 2314 { 2315 const struct address_space_operations *aops = mapping->a_ops; 2316 2317 return aops->write_begin(file, mapping, pos, len, flags, 2318 pagep, fsdata); 2319 } 2320 EXPORT_SYMBOL(pagecache_write_begin); 2321 2322 int pagecache_write_end(struct file *file, struct address_space *mapping, 2323 loff_t pos, unsigned len, unsigned copied, 2324 struct page *page, void *fsdata) 2325 { 2326 const struct address_space_operations *aops = mapping->a_ops; 2327 2328 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 2329 } 2330 EXPORT_SYMBOL(pagecache_write_end); 2331 2332 ssize_t 2333 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos) 2334 { 2335 struct file *file = iocb->ki_filp; 2336 struct address_space *mapping = file->f_mapping; 2337 struct inode *inode = mapping->host; 2338 ssize_t written; 2339 size_t write_len; 2340 pgoff_t end; 2341 struct iov_iter data; 2342 2343 write_len = iov_iter_count(from); 2344 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT; 2345 2346 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1); 2347 if (written) 2348 goto out; 2349 2350 /* 2351 * After a write we want buffered reads to be sure to go to disk to get 2352 * the new data. We invalidate clean cached page from the region we're 2353 * about to write. We do this *before* the write so that we can return 2354 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2355 */ 2356 if (mapping->nrpages) { 2357 written = invalidate_inode_pages2_range(mapping, 2358 pos >> PAGE_CACHE_SHIFT, end); 2359 /* 2360 * If a page can not be invalidated, return 0 to fall back 2361 * to buffered write. 2362 */ 2363 if (written) { 2364 if (written == -EBUSY) 2365 return 0; 2366 goto out; 2367 } 2368 } 2369 2370 data = *from; 2371 written = mapping->a_ops->direct_IO(iocb, &data, pos); 2372 2373 /* 2374 * Finally, try again to invalidate clean pages which might have been 2375 * cached by non-direct readahead, or faulted in by get_user_pages() 2376 * if the source of the write was an mmap'ed region of the file 2377 * we're writing. Either one is a pretty crazy thing to do, 2378 * so we don't support it 100%. If this invalidation 2379 * fails, tough, the write still worked... 2380 */ 2381 if (mapping->nrpages) { 2382 invalidate_inode_pages2_range(mapping, 2383 pos >> PAGE_CACHE_SHIFT, end); 2384 } 2385 2386 if (written > 0) { 2387 pos += written; 2388 iov_iter_advance(from, written); 2389 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 2390 i_size_write(inode, pos); 2391 mark_inode_dirty(inode); 2392 } 2393 iocb->ki_pos = pos; 2394 } 2395 out: 2396 return written; 2397 } 2398 EXPORT_SYMBOL(generic_file_direct_write); 2399 2400 /* 2401 * Find or create a page at the given pagecache position. Return the locked 2402 * page. This function is specifically for buffered writes. 2403 */ 2404 struct page *grab_cache_page_write_begin(struct address_space *mapping, 2405 pgoff_t index, unsigned flags) 2406 { 2407 struct page *page; 2408 int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT; 2409 2410 if (flags & AOP_FLAG_NOFS) 2411 fgp_flags |= FGP_NOFS; 2412 2413 page = pagecache_get_page(mapping, index, fgp_flags, 2414 mapping_gfp_mask(mapping)); 2415 if (page) 2416 wait_for_stable_page(page); 2417 2418 return page; 2419 } 2420 EXPORT_SYMBOL(grab_cache_page_write_begin); 2421 2422 ssize_t generic_perform_write(struct file *file, 2423 struct iov_iter *i, loff_t pos) 2424 { 2425 struct address_space *mapping = file->f_mapping; 2426 const struct address_space_operations *a_ops = mapping->a_ops; 2427 long status = 0; 2428 ssize_t written = 0; 2429 unsigned int flags = 0; 2430 2431 /* 2432 * Copies from kernel address space cannot fail (NFSD is a big user). 2433 */ 2434 if (!iter_is_iovec(i)) 2435 flags |= AOP_FLAG_UNINTERRUPTIBLE; 2436 2437 do { 2438 struct page *page; 2439 unsigned long offset; /* Offset into pagecache page */ 2440 unsigned long bytes; /* Bytes to write to page */ 2441 size_t copied; /* Bytes copied from user */ 2442 void *fsdata; 2443 2444 offset = (pos & (PAGE_CACHE_SIZE - 1)); 2445 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2446 iov_iter_count(i)); 2447 2448 again: 2449 /* 2450 * Bring in the user page that we will copy from _first_. 2451 * Otherwise there's a nasty deadlock on copying from the 2452 * same page as we're writing to, without it being marked 2453 * up-to-date. 2454 * 2455 * Not only is this an optimisation, but it is also required 2456 * to check that the address is actually valid, when atomic 2457 * usercopies are used, below. 2458 */ 2459 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 2460 status = -EFAULT; 2461 break; 2462 } 2463 2464 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 2465 &page, &fsdata); 2466 if (unlikely(status < 0)) 2467 break; 2468 2469 if (mapping_writably_mapped(mapping)) 2470 flush_dcache_page(page); 2471 2472 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 2473 flush_dcache_page(page); 2474 2475 status = a_ops->write_end(file, mapping, pos, bytes, copied, 2476 page, fsdata); 2477 if (unlikely(status < 0)) 2478 break; 2479 copied = status; 2480 2481 cond_resched(); 2482 2483 iov_iter_advance(i, copied); 2484 if (unlikely(copied == 0)) { 2485 /* 2486 * If we were unable to copy any data at all, we must 2487 * fall back to a single segment length write. 2488 * 2489 * If we didn't fallback here, we could livelock 2490 * because not all segments in the iov can be copied at 2491 * once without a pagefault. 2492 */ 2493 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2494 iov_iter_single_seg_count(i)); 2495 goto again; 2496 } 2497 pos += copied; 2498 written += copied; 2499 2500 balance_dirty_pages_ratelimited(mapping); 2501 if (fatal_signal_pending(current)) { 2502 status = -EINTR; 2503 break; 2504 } 2505 } while (iov_iter_count(i)); 2506 2507 return written ? written : status; 2508 } 2509 EXPORT_SYMBOL(generic_perform_write); 2510 2511 /** 2512 * __generic_file_write_iter - write data to a file 2513 * @iocb: IO state structure (file, offset, etc.) 2514 * @from: iov_iter with data to write 2515 * 2516 * This function does all the work needed for actually writing data to a 2517 * file. It does all basic checks, removes SUID from the file, updates 2518 * modification times and calls proper subroutines depending on whether we 2519 * do direct IO or a standard buffered write. 2520 * 2521 * It expects i_mutex to be grabbed unless we work on a block device or similar 2522 * object which does not need locking at all. 2523 * 2524 * This function does *not* take care of syncing data in case of O_SYNC write. 2525 * A caller has to handle it. This is mainly due to the fact that we want to 2526 * avoid syncing under i_mutex. 2527 */ 2528 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 2529 { 2530 struct file *file = iocb->ki_filp; 2531 struct address_space * mapping = file->f_mapping; 2532 struct inode *inode = mapping->host; 2533 ssize_t written = 0; 2534 ssize_t err; 2535 ssize_t status; 2536 2537 /* We can write back this queue in page reclaim */ 2538 current->backing_dev_info = inode_to_bdi(inode); 2539 err = file_remove_suid(file); 2540 if (err) 2541 goto out; 2542 2543 err = file_update_time(file); 2544 if (err) 2545 goto out; 2546 2547 if (iocb->ki_flags & IOCB_DIRECT) { 2548 loff_t pos, endbyte; 2549 2550 written = generic_file_direct_write(iocb, from, iocb->ki_pos); 2551 /* 2552 * If the write stopped short of completing, fall back to 2553 * buffered writes. Some filesystems do this for writes to 2554 * holes, for example. For DAX files, a buffered write will 2555 * not succeed (even if it did, DAX does not handle dirty 2556 * page-cache pages correctly). 2557 */ 2558 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) 2559 goto out; 2560 2561 status = generic_perform_write(file, from, pos = iocb->ki_pos); 2562 /* 2563 * If generic_perform_write() returned a synchronous error 2564 * then we want to return the number of bytes which were 2565 * direct-written, or the error code if that was zero. Note 2566 * that this differs from normal direct-io semantics, which 2567 * will return -EFOO even if some bytes were written. 2568 */ 2569 if (unlikely(status < 0)) { 2570 err = status; 2571 goto out; 2572 } 2573 /* 2574 * We need to ensure that the page cache pages are written to 2575 * disk and invalidated to preserve the expected O_DIRECT 2576 * semantics. 2577 */ 2578 endbyte = pos + status - 1; 2579 err = filemap_write_and_wait_range(mapping, pos, endbyte); 2580 if (err == 0) { 2581 iocb->ki_pos = endbyte + 1; 2582 written += status; 2583 invalidate_mapping_pages(mapping, 2584 pos >> PAGE_CACHE_SHIFT, 2585 endbyte >> PAGE_CACHE_SHIFT); 2586 } else { 2587 /* 2588 * We don't know how much we wrote, so just return 2589 * the number of bytes which were direct-written 2590 */ 2591 } 2592 } else { 2593 written = generic_perform_write(file, from, iocb->ki_pos); 2594 if (likely(written > 0)) 2595 iocb->ki_pos += written; 2596 } 2597 out: 2598 current->backing_dev_info = NULL; 2599 return written ? written : err; 2600 } 2601 EXPORT_SYMBOL(__generic_file_write_iter); 2602 2603 /** 2604 * generic_file_write_iter - write data to a file 2605 * @iocb: IO state structure 2606 * @from: iov_iter with data to write 2607 * 2608 * This is a wrapper around __generic_file_write_iter() to be used by most 2609 * filesystems. It takes care of syncing the file in case of O_SYNC file 2610 * and acquires i_mutex as needed. 2611 */ 2612 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 2613 { 2614 struct file *file = iocb->ki_filp; 2615 struct inode *inode = file->f_mapping->host; 2616 ssize_t ret; 2617 2618 mutex_lock(&inode->i_mutex); 2619 ret = generic_write_checks(iocb, from); 2620 if (ret > 0) 2621 ret = __generic_file_write_iter(iocb, from); 2622 mutex_unlock(&inode->i_mutex); 2623 2624 if (ret > 0) { 2625 ssize_t err; 2626 2627 err = generic_write_sync(file, iocb->ki_pos - ret, ret); 2628 if (err < 0) 2629 ret = err; 2630 } 2631 return ret; 2632 } 2633 EXPORT_SYMBOL(generic_file_write_iter); 2634 2635 /** 2636 * try_to_release_page() - release old fs-specific metadata on a page 2637 * 2638 * @page: the page which the kernel is trying to free 2639 * @gfp_mask: memory allocation flags (and I/O mode) 2640 * 2641 * The address_space is to try to release any data against the page 2642 * (presumably at page->private). If the release was successful, return `1'. 2643 * Otherwise return zero. 2644 * 2645 * This may also be called if PG_fscache is set on a page, indicating that the 2646 * page is known to the local caching routines. 2647 * 2648 * The @gfp_mask argument specifies whether I/O may be performed to release 2649 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS). 2650 * 2651 */ 2652 int try_to_release_page(struct page *page, gfp_t gfp_mask) 2653 { 2654 struct address_space * const mapping = page->mapping; 2655 2656 BUG_ON(!PageLocked(page)); 2657 if (PageWriteback(page)) 2658 return 0; 2659 2660 if (mapping && mapping->a_ops->releasepage) 2661 return mapping->a_ops->releasepage(page, gfp_mask); 2662 return try_to_free_buffers(page); 2663 } 2664 2665 EXPORT_SYMBOL(try_to_release_page); 2666