1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/filemap.c 4 * 5 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 7 8 /* 9 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differently, for example) 12 */ 13 #include <linux/export.h> 14 #include <linux/compiler.h> 15 #include <linux/dax.h> 16 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 19 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 22 #include <linux/mm.h> 23 #include <linux/swap.h> 24 #include <linux/swapops.h> 25 #include <linux/syscalls.h> 26 #include <linux/mman.h> 27 #include <linux/pagemap.h> 28 #include <linux/file.h> 29 #include <linux/uio.h> 30 #include <linux/error-injection.h> 31 #include <linux/hash.h> 32 #include <linux/writeback.h> 33 #include <linux/backing-dev.h> 34 #include <linux/pagevec.h> 35 #include <linux/security.h> 36 #include <linux/cpuset.h> 37 #include <linux/hugetlb.h> 38 #include <linux/memcontrol.h> 39 #include <linux/shmem_fs.h> 40 #include <linux/rmap.h> 41 #include <linux/delayacct.h> 42 #include <linux/psi.h> 43 #include <linux/ramfs.h> 44 #include <linux/page_idle.h> 45 #include <linux/migrate.h> 46 #include <linux/pipe_fs_i.h> 47 #include <linux/splice.h> 48 #include <linux/rcupdate_wait.h> 49 #include <linux/sched/mm.h> 50 #include <linux/sysctl.h> 51 #include <asm/pgalloc.h> 52 #include <asm/tlbflush.h> 53 #include "internal.h" 54 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/filemap.h> 57 58 /* 59 * FIXME: remove all knowledge of the buffer layer from the core VM 60 */ 61 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 62 63 #include <asm/mman.h> 64 65 #include "swap.h" 66 67 /* 68 * Shared mappings implemented 30.11.1994. It's not fully working yet, 69 * though. 70 * 71 * Shared mappings now work. 15.8.1995 Bruno. 72 * 73 * finished 'unifying' the page and buffer cache and SMP-threaded the 74 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 75 * 76 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 77 */ 78 79 /* 80 * Lock ordering: 81 * 82 * ->i_mmap_rwsem (truncate_pagecache) 83 * ->private_lock (__free_pte->block_dirty_folio) 84 * ->swap_lock (exclusive_swap_page, others) 85 * ->i_pages lock 86 * 87 * ->i_rwsem 88 * ->invalidate_lock (acquired by fs in truncate path) 89 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 90 * 91 * ->mmap_lock 92 * ->i_mmap_rwsem 93 * ->page_table_lock or pte_lock (various, mainly in memory.c) 94 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 95 * 96 * ->mmap_lock 97 * ->invalidate_lock (filemap_fault) 98 * ->lock_page (filemap_fault, access_process_vm) 99 * 100 * ->i_rwsem (generic_perform_write) 101 * ->mmap_lock (fault_in_readable->do_page_fault) 102 * 103 * bdi->wb.list_lock 104 * sb_lock (fs/fs-writeback.c) 105 * ->i_pages lock (__sync_single_inode) 106 * 107 * ->i_mmap_rwsem 108 * ->anon_vma.lock (vma_merge) 109 * 110 * ->anon_vma.lock 111 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 112 * 113 * ->page_table_lock or pte_lock 114 * ->swap_lock (try_to_unmap_one) 115 * ->private_lock (try_to_unmap_one) 116 * ->i_pages lock (try_to_unmap_one) 117 * ->lruvec->lru_lock (follow_page_mask->mark_page_accessed) 118 * ->lruvec->lru_lock (check_pte_range->folio_isolate_lru) 119 * ->private_lock (folio_remove_rmap_pte->set_page_dirty) 120 * ->i_pages lock (folio_remove_rmap_pte->set_page_dirty) 121 * bdi.wb->list_lock (folio_remove_rmap_pte->set_page_dirty) 122 * ->inode->i_lock (folio_remove_rmap_pte->set_page_dirty) 123 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 124 * ->inode->i_lock (zap_pte_range->set_page_dirty) 125 * ->private_lock (zap_pte_range->block_dirty_folio) 126 */ 127 128 static void page_cache_delete(struct address_space *mapping, 129 struct folio *folio, void *shadow) 130 { 131 XA_STATE(xas, &mapping->i_pages, folio->index); 132 long nr = 1; 133 134 mapping_set_update(&xas, mapping); 135 136 xas_set_order(&xas, folio->index, folio_order(folio)); 137 nr = folio_nr_pages(folio); 138 139 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 140 141 xas_store(&xas, shadow); 142 xas_init_marks(&xas); 143 144 folio->mapping = NULL; 145 /* Leave folio->index set: truncation lookup relies upon it */ 146 mapping->nrpages -= nr; 147 } 148 149 static void filemap_unaccount_folio(struct address_space *mapping, 150 struct folio *folio) 151 { 152 long nr; 153 154 VM_BUG_ON_FOLIO(folio_mapped(folio), folio); 155 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) { 156 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 157 current->comm, folio_pfn(folio)); 158 dump_page(&folio->page, "still mapped when deleted"); 159 dump_stack(); 160 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 161 162 if (mapping_exiting(mapping) && !folio_test_large(folio)) { 163 int mapcount = folio_mapcount(folio); 164 165 if (folio_ref_count(folio) >= mapcount + 2) { 166 /* 167 * All vmas have already been torn down, so it's 168 * a good bet that actually the page is unmapped 169 * and we'd rather not leak it: if we're wrong, 170 * another bad page check should catch it later. 171 */ 172 atomic_set(&folio->_mapcount, -1); 173 folio_ref_sub(folio, mapcount); 174 } 175 } 176 } 177 178 /* hugetlb folios do not participate in page cache accounting. */ 179 if (folio_test_hugetlb(folio)) 180 return; 181 182 nr = folio_nr_pages(folio); 183 184 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 185 if (folio_test_swapbacked(folio)) { 186 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 187 if (folio_test_pmd_mappable(folio)) 188 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr); 189 } else if (folio_test_pmd_mappable(folio)) { 190 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr); 191 filemap_nr_thps_dec(mapping); 192 } 193 if (test_bit(AS_KERNEL_FILE, &folio->mapping->flags)) 194 mod_node_page_state(folio_pgdat(folio), 195 NR_KERNEL_FILE_PAGES, -nr); 196 197 /* 198 * At this point folio must be either written or cleaned by 199 * truncate. Dirty folio here signals a bug and loss of 200 * unwritten data - on ordinary filesystems. 201 * 202 * But it's harmless on in-memory filesystems like tmpfs; and can 203 * occur when a driver which did get_user_pages() sets page dirty 204 * before putting it, while the inode is being finally evicted. 205 * 206 * Below fixes dirty accounting after removing the folio entirely 207 * but leaves the dirty flag set: it has no effect for truncated 208 * folio and anyway will be cleared before returning folio to 209 * buddy allocator. 210 */ 211 if (WARN_ON_ONCE(folio_test_dirty(folio) && 212 mapping_can_writeback(mapping))) 213 folio_account_cleaned(folio, inode_to_wb(mapping->host)); 214 } 215 216 /* 217 * Delete a page from the page cache and free it. Caller has to make 218 * sure the page is locked and that nobody else uses it - or that usage 219 * is safe. The caller must hold the i_pages lock. 220 */ 221 void __filemap_remove_folio(struct folio *folio, void *shadow) 222 { 223 struct address_space *mapping = folio->mapping; 224 225 trace_mm_filemap_delete_from_page_cache(folio); 226 filemap_unaccount_folio(mapping, folio); 227 page_cache_delete(mapping, folio, shadow); 228 } 229 230 void filemap_free_folio(struct address_space *mapping, struct folio *folio) 231 { 232 void (*free_folio)(struct folio *); 233 234 free_folio = mapping->a_ops->free_folio; 235 if (free_folio) 236 free_folio(folio); 237 238 folio_put_refs(folio, folio_nr_pages(folio)); 239 } 240 241 /** 242 * filemap_remove_folio - Remove folio from page cache. 243 * @folio: The folio. 244 * 245 * This must be called only on folios that are locked and have been 246 * verified to be in the page cache. It will never put the folio into 247 * the free list because the caller has a reference on the page. 248 */ 249 void filemap_remove_folio(struct folio *folio) 250 { 251 struct address_space *mapping = folio->mapping; 252 253 BUG_ON(!folio_test_locked(folio)); 254 spin_lock(&mapping->host->i_lock); 255 xa_lock_irq(&mapping->i_pages); 256 __filemap_remove_folio(folio, NULL); 257 xa_unlock_irq(&mapping->i_pages); 258 if (mapping_shrinkable(mapping)) 259 inode_lru_list_add(mapping->host); 260 spin_unlock(&mapping->host->i_lock); 261 262 filemap_free_folio(mapping, folio); 263 } 264 265 /* 266 * page_cache_delete_batch - delete several folios from page cache 267 * @mapping: the mapping to which folios belong 268 * @fbatch: batch of folios to delete 269 * 270 * The function walks over mapping->i_pages and removes folios passed in 271 * @fbatch from the mapping. The function expects @fbatch to be sorted 272 * by page index and is optimised for it to be dense. 273 * It tolerates holes in @fbatch (mapping entries at those indices are not 274 * modified). 275 * 276 * The function expects the i_pages lock to be held. 277 */ 278 static void page_cache_delete_batch(struct address_space *mapping, 279 struct folio_batch *fbatch) 280 { 281 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index); 282 long total_pages = 0; 283 int i = 0; 284 struct folio *folio; 285 286 mapping_set_update(&xas, mapping); 287 xas_for_each(&xas, folio, ULONG_MAX) { 288 if (i >= folio_batch_count(fbatch)) 289 break; 290 291 /* A swap/dax/shadow entry got inserted? Skip it. */ 292 if (xa_is_value(folio)) 293 continue; 294 /* 295 * A page got inserted in our range? Skip it. We have our 296 * pages locked so they are protected from being removed. 297 * If we see a page whose index is higher than ours, it 298 * means our page has been removed, which shouldn't be 299 * possible because we're holding the PageLock. 300 */ 301 if (folio != fbatch->folios[i]) { 302 VM_BUG_ON_FOLIO(folio->index > 303 fbatch->folios[i]->index, folio); 304 continue; 305 } 306 307 WARN_ON_ONCE(!folio_test_locked(folio)); 308 309 folio->mapping = NULL; 310 /* Leave folio->index set: truncation lookup relies on it */ 311 312 i++; 313 xas_store(&xas, NULL); 314 total_pages += folio_nr_pages(folio); 315 } 316 mapping->nrpages -= total_pages; 317 } 318 319 void delete_from_page_cache_batch(struct address_space *mapping, 320 struct folio_batch *fbatch) 321 { 322 int i; 323 324 if (!folio_batch_count(fbatch)) 325 return; 326 327 spin_lock(&mapping->host->i_lock); 328 xa_lock_irq(&mapping->i_pages); 329 for (i = 0; i < folio_batch_count(fbatch); i++) { 330 struct folio *folio = fbatch->folios[i]; 331 332 trace_mm_filemap_delete_from_page_cache(folio); 333 filemap_unaccount_folio(mapping, folio); 334 } 335 page_cache_delete_batch(mapping, fbatch); 336 xa_unlock_irq(&mapping->i_pages); 337 if (mapping_shrinkable(mapping)) 338 inode_lru_list_add(mapping->host); 339 spin_unlock(&mapping->host->i_lock); 340 341 for (i = 0; i < folio_batch_count(fbatch); i++) 342 filemap_free_folio(mapping, fbatch->folios[i]); 343 } 344 345 int filemap_check_errors(struct address_space *mapping) 346 { 347 int ret = 0; 348 /* Check for outstanding write errors */ 349 if (test_bit(AS_ENOSPC, &mapping->flags) && 350 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 351 ret = -ENOSPC; 352 if (test_bit(AS_EIO, &mapping->flags) && 353 test_and_clear_bit(AS_EIO, &mapping->flags)) 354 ret = -EIO; 355 return ret; 356 } 357 EXPORT_SYMBOL(filemap_check_errors); 358 359 static int filemap_check_and_keep_errors(struct address_space *mapping) 360 { 361 /* Check for outstanding write errors */ 362 if (test_bit(AS_EIO, &mapping->flags)) 363 return -EIO; 364 if (test_bit(AS_ENOSPC, &mapping->flags)) 365 return -ENOSPC; 366 return 0; 367 } 368 369 static int filemap_writeback(struct address_space *mapping, loff_t start, 370 loff_t end, enum writeback_sync_modes sync_mode, 371 long *nr_to_write) 372 { 373 struct writeback_control wbc = { 374 .sync_mode = sync_mode, 375 .nr_to_write = nr_to_write ? *nr_to_write : LONG_MAX, 376 .range_start = start, 377 .range_end = end, 378 }; 379 int ret; 380 381 if (!mapping_can_writeback(mapping) || 382 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 383 return 0; 384 385 wbc_attach_fdatawrite_inode(&wbc, mapping->host); 386 ret = do_writepages(mapping, &wbc); 387 wbc_detach_inode(&wbc); 388 389 if (!ret && nr_to_write) 390 *nr_to_write = wbc.nr_to_write; 391 return ret; 392 } 393 394 /** 395 * filemap_fdatawrite_range - start writeback on mapping dirty pages in range 396 * @mapping: address space structure to write 397 * @start: offset in bytes where the range starts 398 * @end: offset in bytes where the range ends (inclusive) 399 * 400 * Start writeback against all of a mapping's dirty pages that lie 401 * within the byte offsets <start, end> inclusive. 402 * 403 * This is a data integrity operation that waits upon dirty or in writeback 404 * pages. 405 * 406 * Return: %0 on success, negative error code otherwise. 407 */ 408 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 409 loff_t end) 410 { 411 return filemap_writeback(mapping, start, end, WB_SYNC_ALL, NULL); 412 } 413 EXPORT_SYMBOL(filemap_fdatawrite_range); 414 415 int filemap_fdatawrite(struct address_space *mapping) 416 { 417 return filemap_fdatawrite_range(mapping, 0, LLONG_MAX); 418 } 419 EXPORT_SYMBOL(filemap_fdatawrite); 420 421 /** 422 * filemap_flush_range - start writeback on a range 423 * @mapping: target address_space 424 * @start: index to start writeback on 425 * @end: last (inclusive) index for writeback 426 * 427 * This is a non-integrity writeback helper, to start writing back folios 428 * for the indicated range. 429 * 430 * Return: %0 on success, negative error code otherwise. 431 */ 432 int filemap_flush_range(struct address_space *mapping, loff_t start, 433 loff_t end) 434 { 435 return filemap_writeback(mapping, start, end, WB_SYNC_NONE, NULL); 436 } 437 EXPORT_SYMBOL_GPL(filemap_flush_range); 438 439 /** 440 * filemap_flush - mostly a non-blocking flush 441 * @mapping: target address_space 442 * 443 * This is a mostly non-blocking flush. Not suitable for data-integrity 444 * purposes - I/O may not be started against all dirty pages. 445 * 446 * Return: %0 on success, negative error code otherwise. 447 */ 448 int filemap_flush(struct address_space *mapping) 449 { 450 return filemap_flush_range(mapping, 0, LLONG_MAX); 451 } 452 EXPORT_SYMBOL(filemap_flush); 453 454 /* 455 * Start writeback on @nr_to_write pages from @mapping. No one but the existing 456 * btrfs caller should be using this. Talk to linux-mm if you think adding a 457 * new caller is a good idea. 458 */ 459 int filemap_flush_nr(struct address_space *mapping, long *nr_to_write) 460 { 461 return filemap_writeback(mapping, 0, LLONG_MAX, WB_SYNC_NONE, 462 nr_to_write); 463 } 464 EXPORT_SYMBOL_FOR_MODULES(filemap_flush_nr, "btrfs"); 465 466 /** 467 * filemap_range_has_page - check if a page exists in range. 468 * @mapping: address space within which to check 469 * @start_byte: offset in bytes where the range starts 470 * @end_byte: offset in bytes where the range ends (inclusive) 471 * 472 * Find at least one page in the range supplied, usually used to check if 473 * direct writing in this range will trigger a writeback. 474 * 475 * Return: %true if at least one page exists in the specified range, 476 * %false otherwise. 477 */ 478 bool filemap_range_has_page(struct address_space *mapping, 479 loff_t start_byte, loff_t end_byte) 480 { 481 struct folio *folio; 482 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 483 pgoff_t max = end_byte >> PAGE_SHIFT; 484 485 if (end_byte < start_byte) 486 return false; 487 488 rcu_read_lock(); 489 for (;;) { 490 folio = xas_find(&xas, max); 491 if (xas_retry(&xas, folio)) 492 continue; 493 /* Shadow entries don't count */ 494 if (xa_is_value(folio)) 495 continue; 496 /* 497 * We don't need to try to pin this page; we're about to 498 * release the RCU lock anyway. It is enough to know that 499 * there was a page here recently. 500 */ 501 break; 502 } 503 rcu_read_unlock(); 504 505 return folio != NULL; 506 } 507 EXPORT_SYMBOL(filemap_range_has_page); 508 509 static void __filemap_fdatawait_range(struct address_space *mapping, 510 loff_t start_byte, loff_t end_byte) 511 { 512 pgoff_t index = start_byte >> PAGE_SHIFT; 513 pgoff_t end = end_byte >> PAGE_SHIFT; 514 struct folio_batch fbatch; 515 unsigned nr_folios; 516 517 folio_batch_init(&fbatch); 518 519 while (index <= end) { 520 unsigned i; 521 522 nr_folios = filemap_get_folios_tag(mapping, &index, end, 523 PAGECACHE_TAG_WRITEBACK, &fbatch); 524 525 if (!nr_folios) 526 break; 527 528 for (i = 0; i < nr_folios; i++) { 529 struct folio *folio = fbatch.folios[i]; 530 531 folio_wait_writeback(folio); 532 } 533 folio_batch_release(&fbatch); 534 cond_resched(); 535 } 536 } 537 538 /** 539 * filemap_fdatawait_range - wait for writeback to complete 540 * @mapping: address space structure to wait for 541 * @start_byte: offset in bytes where the range starts 542 * @end_byte: offset in bytes where the range ends (inclusive) 543 * 544 * Walk the list of under-writeback pages of the given address space 545 * in the given range and wait for all of them. Check error status of 546 * the address space and return it. 547 * 548 * Since the error status of the address space is cleared by this function, 549 * callers are responsible for checking the return value and handling and/or 550 * reporting the error. 551 * 552 * Return: error status of the address space. 553 */ 554 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 555 loff_t end_byte) 556 { 557 __filemap_fdatawait_range(mapping, start_byte, end_byte); 558 return filemap_check_errors(mapping); 559 } 560 EXPORT_SYMBOL(filemap_fdatawait_range); 561 562 /** 563 * filemap_fdatawait_range_keep_errors - wait for writeback to complete 564 * @mapping: address space structure to wait for 565 * @start_byte: offset in bytes where the range starts 566 * @end_byte: offset in bytes where the range ends (inclusive) 567 * 568 * Walk the list of under-writeback pages of the given address space in the 569 * given range and wait for all of them. Unlike filemap_fdatawait_range(), 570 * this function does not clear error status of the address space. 571 * 572 * Use this function if callers don't handle errors themselves. Expected 573 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 574 * fsfreeze(8) 575 */ 576 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 577 loff_t start_byte, loff_t end_byte) 578 { 579 __filemap_fdatawait_range(mapping, start_byte, end_byte); 580 return filemap_check_and_keep_errors(mapping); 581 } 582 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); 583 584 /** 585 * file_fdatawait_range - wait for writeback to complete 586 * @file: file pointing to address space structure to wait for 587 * @start_byte: offset in bytes where the range starts 588 * @end_byte: offset in bytes where the range ends (inclusive) 589 * 590 * Walk the list of under-writeback pages of the address space that file 591 * refers to, in the given range and wait for all of them. Check error 592 * status of the address space vs. the file->f_wb_err cursor and return it. 593 * 594 * Since the error status of the file is advanced by this function, 595 * callers are responsible for checking the return value and handling and/or 596 * reporting the error. 597 * 598 * Return: error status of the address space vs. the file->f_wb_err cursor. 599 */ 600 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 601 { 602 struct address_space *mapping = file->f_mapping; 603 604 __filemap_fdatawait_range(mapping, start_byte, end_byte); 605 return file_check_and_advance_wb_err(file); 606 } 607 EXPORT_SYMBOL(file_fdatawait_range); 608 609 /** 610 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 611 * @mapping: address space structure to wait for 612 * 613 * Walk the list of under-writeback pages of the given address space 614 * and wait for all of them. Unlike filemap_fdatawait(), this function 615 * does not clear error status of the address space. 616 * 617 * Use this function if callers don't handle errors themselves. Expected 618 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 619 * fsfreeze(8) 620 * 621 * Return: error status of the address space. 622 */ 623 int filemap_fdatawait_keep_errors(struct address_space *mapping) 624 { 625 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 626 return filemap_check_and_keep_errors(mapping); 627 } 628 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 629 630 /* Returns true if writeback might be needed or already in progress. */ 631 static bool mapping_needs_writeback(struct address_space *mapping) 632 { 633 return mapping->nrpages; 634 } 635 636 bool filemap_range_has_writeback(struct address_space *mapping, 637 loff_t start_byte, loff_t end_byte) 638 { 639 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 640 pgoff_t max = end_byte >> PAGE_SHIFT; 641 struct folio *folio; 642 643 if (end_byte < start_byte) 644 return false; 645 646 rcu_read_lock(); 647 xas_for_each(&xas, folio, max) { 648 if (xas_retry(&xas, folio)) 649 continue; 650 if (xa_is_value(folio)) 651 continue; 652 if (folio_test_dirty(folio) || folio_test_locked(folio) || 653 folio_test_writeback(folio)) 654 break; 655 } 656 rcu_read_unlock(); 657 return folio != NULL; 658 } 659 EXPORT_SYMBOL_GPL(filemap_range_has_writeback); 660 661 /** 662 * filemap_write_and_wait_range - write out & wait on a file range 663 * @mapping: the address_space for the pages 664 * @lstart: offset in bytes where the range starts 665 * @lend: offset in bytes where the range ends (inclusive) 666 * 667 * Write out and wait upon file offsets lstart->lend, inclusive. 668 * 669 * Note that @lend is inclusive (describes the last byte to be written) so 670 * that this function can be used to write to the very end-of-file (end = -1). 671 * 672 * Return: error status of the address space. 673 */ 674 int filemap_write_and_wait_range(struct address_space *mapping, 675 loff_t lstart, loff_t lend) 676 { 677 int err = 0, err2; 678 679 if (lend < lstart) 680 return 0; 681 682 if (mapping_needs_writeback(mapping)) { 683 err = filemap_fdatawrite_range(mapping, lstart, lend); 684 /* 685 * Even if the above returned error, the pages may be 686 * written partially (e.g. -ENOSPC), so we wait for it. 687 * But the -EIO is special case, it may indicate the worst 688 * thing (e.g. bug) happened, so we avoid waiting for it. 689 */ 690 if (err != -EIO) 691 __filemap_fdatawait_range(mapping, lstart, lend); 692 } 693 err2 = filemap_check_errors(mapping); 694 if (!err) 695 err = err2; 696 return err; 697 } 698 EXPORT_SYMBOL(filemap_write_and_wait_range); 699 700 void __filemap_set_wb_err(struct address_space *mapping, int err) 701 { 702 errseq_t eseq = errseq_set(&mapping->wb_err, err); 703 704 trace_filemap_set_wb_err(mapping, eseq); 705 } 706 EXPORT_SYMBOL(__filemap_set_wb_err); 707 708 /** 709 * file_check_and_advance_wb_err - report wb error (if any) that was previously 710 * and advance wb_err to current one 711 * @file: struct file on which the error is being reported 712 * 713 * When userland calls fsync (or something like nfsd does the equivalent), we 714 * want to report any writeback errors that occurred since the last fsync (or 715 * since the file was opened if there haven't been any). 716 * 717 * Grab the wb_err from the mapping. If it matches what we have in the file, 718 * then just quickly return 0. The file is all caught up. 719 * 720 * If it doesn't match, then take the mapping value, set the "seen" flag in 721 * it and try to swap it into place. If it works, or another task beat us 722 * to it with the new value, then update the f_wb_err and return the error 723 * portion. The error at this point must be reported via proper channels 724 * (a'la fsync, or NFS COMMIT operation, etc.). 725 * 726 * While we handle mapping->wb_err with atomic operations, the f_wb_err 727 * value is protected by the f_lock since we must ensure that it reflects 728 * the latest value swapped in for this file descriptor. 729 * 730 * Return: %0 on success, negative error code otherwise. 731 */ 732 int file_check_and_advance_wb_err(struct file *file) 733 { 734 int err = 0; 735 errseq_t old = READ_ONCE(file->f_wb_err); 736 struct address_space *mapping = file->f_mapping; 737 738 /* Locklessly handle the common case where nothing has changed */ 739 if (errseq_check(&mapping->wb_err, old)) { 740 /* Something changed, must use slow path */ 741 spin_lock(&file->f_lock); 742 old = file->f_wb_err; 743 err = errseq_check_and_advance(&mapping->wb_err, 744 &file->f_wb_err); 745 trace_file_check_and_advance_wb_err(file, old); 746 spin_unlock(&file->f_lock); 747 } 748 749 /* 750 * We're mostly using this function as a drop in replacement for 751 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 752 * that the legacy code would have had on these flags. 753 */ 754 clear_bit(AS_EIO, &mapping->flags); 755 clear_bit(AS_ENOSPC, &mapping->flags); 756 return err; 757 } 758 EXPORT_SYMBOL(file_check_and_advance_wb_err); 759 760 /** 761 * file_write_and_wait_range - write out & wait on a file range 762 * @file: file pointing to address_space with pages 763 * @lstart: offset in bytes where the range starts 764 * @lend: offset in bytes where the range ends (inclusive) 765 * 766 * Write out and wait upon file offsets lstart->lend, inclusive. 767 * 768 * Note that @lend is inclusive (describes the last byte to be written) so 769 * that this function can be used to write to the very end-of-file (end = -1). 770 * 771 * After writing out and waiting on the data, we check and advance the 772 * f_wb_err cursor to the latest value, and return any errors detected there. 773 * 774 * Return: %0 on success, negative error code otherwise. 775 */ 776 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 777 { 778 int err = 0, err2; 779 struct address_space *mapping = file->f_mapping; 780 781 if (lend < lstart) 782 return 0; 783 784 if (mapping_needs_writeback(mapping)) { 785 err = filemap_fdatawrite_range(mapping, lstart, lend); 786 /* See comment of filemap_write_and_wait() */ 787 if (err != -EIO) 788 __filemap_fdatawait_range(mapping, lstart, lend); 789 } 790 err2 = file_check_and_advance_wb_err(file); 791 if (!err) 792 err = err2; 793 return err; 794 } 795 EXPORT_SYMBOL(file_write_and_wait_range); 796 797 /** 798 * replace_page_cache_folio - replace a pagecache folio with a new one 799 * @old: folio to be replaced 800 * @new: folio to replace with 801 * 802 * This function replaces a folio in the pagecache with a new one. On 803 * success it acquires the pagecache reference for the new folio and 804 * drops it for the old folio. Both the old and new folios must be 805 * locked. This function does not add the new folio to the LRU, the 806 * caller must do that. 807 * 808 * The remove + add is atomic. This function cannot fail. 809 */ 810 void replace_page_cache_folio(struct folio *old, struct folio *new) 811 { 812 struct address_space *mapping = old->mapping; 813 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio; 814 pgoff_t offset = old->index; 815 XA_STATE(xas, &mapping->i_pages, offset); 816 817 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 818 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 819 VM_BUG_ON_FOLIO(new->mapping, new); 820 821 folio_get(new); 822 new->mapping = mapping; 823 new->index = offset; 824 825 mem_cgroup_replace_folio(old, new); 826 827 xas_lock_irq(&xas); 828 xas_store(&xas, new); 829 830 old->mapping = NULL; 831 /* hugetlb pages do not participate in page cache accounting. */ 832 if (!folio_test_hugetlb(old)) 833 __lruvec_stat_sub_folio(old, NR_FILE_PAGES); 834 if (!folio_test_hugetlb(new)) 835 __lruvec_stat_add_folio(new, NR_FILE_PAGES); 836 if (folio_test_swapbacked(old)) 837 __lruvec_stat_sub_folio(old, NR_SHMEM); 838 if (folio_test_swapbacked(new)) 839 __lruvec_stat_add_folio(new, NR_SHMEM); 840 xas_unlock_irq(&xas); 841 if (free_folio) 842 free_folio(old); 843 folio_put(old); 844 } 845 EXPORT_SYMBOL_GPL(replace_page_cache_folio); 846 847 noinline int __filemap_add_folio(struct address_space *mapping, 848 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp) 849 { 850 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio)); 851 bool huge; 852 long nr; 853 unsigned int forder = folio_order(folio); 854 855 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 856 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio); 857 VM_BUG_ON_FOLIO(folio_order(folio) < mapping_min_folio_order(mapping), 858 folio); 859 mapping_set_update(&xas, mapping); 860 861 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio); 862 huge = folio_test_hugetlb(folio); 863 nr = folio_nr_pages(folio); 864 865 gfp &= GFP_RECLAIM_MASK; 866 folio_ref_add(folio, nr); 867 folio->mapping = mapping; 868 folio->index = xas.xa_index; 869 870 for (;;) { 871 int order = -1; 872 void *entry, *old = NULL; 873 874 xas_lock_irq(&xas); 875 xas_for_each_conflict(&xas, entry) { 876 old = entry; 877 if (!xa_is_value(entry)) { 878 xas_set_err(&xas, -EEXIST); 879 goto unlock; 880 } 881 /* 882 * If a larger entry exists, 883 * it will be the first and only entry iterated. 884 */ 885 if (order == -1) 886 order = xas_get_order(&xas); 887 } 888 889 if (old) { 890 if (order > 0 && order > forder) { 891 unsigned int split_order = max(forder, 892 xas_try_split_min_order(order)); 893 894 /* How to handle large swap entries? */ 895 BUG_ON(shmem_mapping(mapping)); 896 897 while (order > forder) { 898 xas_set_order(&xas, index, split_order); 899 xas_try_split(&xas, old, order); 900 if (xas_error(&xas)) 901 goto unlock; 902 order = split_order; 903 split_order = 904 max(xas_try_split_min_order( 905 split_order), 906 forder); 907 } 908 xas_reset(&xas); 909 } 910 if (shadowp) 911 *shadowp = old; 912 } 913 914 xas_store(&xas, folio); 915 if (xas_error(&xas)) 916 goto unlock; 917 918 mapping->nrpages += nr; 919 920 /* hugetlb pages do not participate in page cache accounting */ 921 if (!huge) { 922 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 923 if (folio_test_pmd_mappable(folio)) 924 __lruvec_stat_mod_folio(folio, 925 NR_FILE_THPS, nr); 926 } 927 928 unlock: 929 xas_unlock_irq(&xas); 930 931 if (!xas_nomem(&xas, gfp)) 932 break; 933 } 934 935 if (xas_error(&xas)) 936 goto error; 937 938 trace_mm_filemap_add_to_page_cache(folio); 939 return 0; 940 error: 941 folio->mapping = NULL; 942 /* Leave folio->index set: truncation relies upon it */ 943 folio_put_refs(folio, nr); 944 return xas_error(&xas); 945 } 946 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO); 947 948 int filemap_add_folio(struct address_space *mapping, struct folio *folio, 949 pgoff_t index, gfp_t gfp) 950 { 951 void *shadow = NULL; 952 int ret; 953 struct mem_cgroup *tmp; 954 bool kernel_file = test_bit(AS_KERNEL_FILE, &mapping->flags); 955 956 if (kernel_file) 957 tmp = set_active_memcg(root_mem_cgroup); 958 ret = mem_cgroup_charge(folio, NULL, gfp); 959 if (kernel_file) 960 set_active_memcg(tmp); 961 if (ret) 962 return ret; 963 964 __folio_set_locked(folio); 965 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow); 966 if (unlikely(ret)) { 967 mem_cgroup_uncharge(folio); 968 __folio_clear_locked(folio); 969 } else { 970 /* 971 * The folio might have been evicted from cache only 972 * recently, in which case it should be activated like 973 * any other repeatedly accessed folio. 974 * The exception is folios getting rewritten; evicting other 975 * data from the working set, only to cache data that will 976 * get overwritten with something else, is a waste of memory. 977 */ 978 WARN_ON_ONCE(folio_test_active(folio)); 979 if (!(gfp & __GFP_WRITE) && shadow) 980 workingset_refault(folio, shadow); 981 folio_add_lru(folio); 982 if (kernel_file) 983 mod_node_page_state(folio_pgdat(folio), 984 NR_KERNEL_FILE_PAGES, 985 folio_nr_pages(folio)); 986 } 987 return ret; 988 } 989 EXPORT_SYMBOL_GPL(filemap_add_folio); 990 991 #ifdef CONFIG_NUMA 992 struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order) 993 { 994 int n; 995 struct folio *folio; 996 997 if (cpuset_do_page_mem_spread()) { 998 unsigned int cpuset_mems_cookie; 999 do { 1000 cpuset_mems_cookie = read_mems_allowed_begin(); 1001 n = cpuset_mem_spread_node(); 1002 folio = __folio_alloc_node_noprof(gfp, order, n); 1003 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie)); 1004 1005 return folio; 1006 } 1007 return folio_alloc_noprof(gfp, order); 1008 } 1009 EXPORT_SYMBOL(filemap_alloc_folio_noprof); 1010 #endif 1011 1012 /* 1013 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings 1014 * 1015 * Lock exclusively invalidate_lock of any passed mapping that is not NULL. 1016 * 1017 * @mapping1: the first mapping to lock 1018 * @mapping2: the second mapping to lock 1019 */ 1020 void filemap_invalidate_lock_two(struct address_space *mapping1, 1021 struct address_space *mapping2) 1022 { 1023 if (mapping1 > mapping2) 1024 swap(mapping1, mapping2); 1025 if (mapping1) 1026 down_write(&mapping1->invalidate_lock); 1027 if (mapping2 && mapping1 != mapping2) 1028 down_write_nested(&mapping2->invalidate_lock, 1); 1029 } 1030 EXPORT_SYMBOL(filemap_invalidate_lock_two); 1031 1032 /* 1033 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings 1034 * 1035 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL. 1036 * 1037 * @mapping1: the first mapping to unlock 1038 * @mapping2: the second mapping to unlock 1039 */ 1040 void filemap_invalidate_unlock_two(struct address_space *mapping1, 1041 struct address_space *mapping2) 1042 { 1043 if (mapping1) 1044 up_write(&mapping1->invalidate_lock); 1045 if (mapping2 && mapping1 != mapping2) 1046 up_write(&mapping2->invalidate_lock); 1047 } 1048 EXPORT_SYMBOL(filemap_invalidate_unlock_two); 1049 1050 /* 1051 * In order to wait for pages to become available there must be 1052 * waitqueues associated with pages. By using a hash table of 1053 * waitqueues where the bucket discipline is to maintain all 1054 * waiters on the same queue and wake all when any of the pages 1055 * become available, and for the woken contexts to check to be 1056 * sure the appropriate page became available, this saves space 1057 * at a cost of "thundering herd" phenomena during rare hash 1058 * collisions. 1059 */ 1060 #define PAGE_WAIT_TABLE_BITS 8 1061 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 1062 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 1063 1064 static wait_queue_head_t *folio_waitqueue(struct folio *folio) 1065 { 1066 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)]; 1067 } 1068 1069 /* How many times do we accept lock stealing from under a waiter? */ 1070 static int sysctl_page_lock_unfairness = 5; 1071 static const struct ctl_table filemap_sysctl_table[] = { 1072 { 1073 .procname = "page_lock_unfairness", 1074 .data = &sysctl_page_lock_unfairness, 1075 .maxlen = sizeof(sysctl_page_lock_unfairness), 1076 .mode = 0644, 1077 .proc_handler = proc_dointvec_minmax, 1078 .extra1 = SYSCTL_ZERO, 1079 } 1080 }; 1081 1082 void __init pagecache_init(void) 1083 { 1084 int i; 1085 1086 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 1087 init_waitqueue_head(&folio_wait_table[i]); 1088 1089 page_writeback_init(); 1090 register_sysctl_init("vm", filemap_sysctl_table); 1091 } 1092 1093 /* 1094 * The page wait code treats the "wait->flags" somewhat unusually, because 1095 * we have multiple different kinds of waits, not just the usual "exclusive" 1096 * one. 1097 * 1098 * We have: 1099 * 1100 * (a) no special bits set: 1101 * 1102 * We're just waiting for the bit to be released, and when a waker 1103 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up, 1104 * and remove it from the wait queue. 1105 * 1106 * Simple and straightforward. 1107 * 1108 * (b) WQ_FLAG_EXCLUSIVE: 1109 * 1110 * The waiter is waiting to get the lock, and only one waiter should 1111 * be woken up to avoid any thundering herd behavior. We'll set the 1112 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue. 1113 * 1114 * This is the traditional exclusive wait. 1115 * 1116 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM: 1117 * 1118 * The waiter is waiting to get the bit, and additionally wants the 1119 * lock to be transferred to it for fair lock behavior. If the lock 1120 * cannot be taken, we stop walking the wait queue without waking 1121 * the waiter. 1122 * 1123 * This is the "fair lock handoff" case, and in addition to setting 1124 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see 1125 * that it now has the lock. 1126 */ 1127 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 1128 { 1129 unsigned int flags; 1130 struct wait_page_key *key = arg; 1131 struct wait_page_queue *wait_page 1132 = container_of(wait, struct wait_page_queue, wait); 1133 1134 if (!wake_page_match(wait_page, key)) 1135 return 0; 1136 1137 /* 1138 * If it's a lock handoff wait, we get the bit for it, and 1139 * stop walking (and do not wake it up) if we can't. 1140 */ 1141 flags = wait->flags; 1142 if (flags & WQ_FLAG_EXCLUSIVE) { 1143 if (test_bit(key->bit_nr, &key->folio->flags.f)) 1144 return -1; 1145 if (flags & WQ_FLAG_CUSTOM) { 1146 if (test_and_set_bit(key->bit_nr, &key->folio->flags.f)) 1147 return -1; 1148 flags |= WQ_FLAG_DONE; 1149 } 1150 } 1151 1152 /* 1153 * We are holding the wait-queue lock, but the waiter that 1154 * is waiting for this will be checking the flags without 1155 * any locking. 1156 * 1157 * So update the flags atomically, and wake up the waiter 1158 * afterwards to avoid any races. This store-release pairs 1159 * with the load-acquire in folio_wait_bit_common(). 1160 */ 1161 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN); 1162 wake_up_state(wait->private, mode); 1163 1164 /* 1165 * Ok, we have successfully done what we're waiting for, 1166 * and we can unconditionally remove the wait entry. 1167 * 1168 * Note that this pairs with the "finish_wait()" in the 1169 * waiter, and has to be the absolute last thing we do. 1170 * After this list_del_init(&wait->entry) the wait entry 1171 * might be de-allocated and the process might even have 1172 * exited. 1173 */ 1174 list_del_init_careful(&wait->entry); 1175 return (flags & WQ_FLAG_EXCLUSIVE) != 0; 1176 } 1177 1178 static void folio_wake_bit(struct folio *folio, int bit_nr) 1179 { 1180 wait_queue_head_t *q = folio_waitqueue(folio); 1181 struct wait_page_key key; 1182 unsigned long flags; 1183 1184 key.folio = folio; 1185 key.bit_nr = bit_nr; 1186 key.page_match = 0; 1187 1188 spin_lock_irqsave(&q->lock, flags); 1189 __wake_up_locked_key(q, TASK_NORMAL, &key); 1190 1191 /* 1192 * It's possible to miss clearing waiters here, when we woke our page 1193 * waiters, but the hashed waitqueue has waiters for other pages on it. 1194 * That's okay, it's a rare case. The next waker will clear it. 1195 * 1196 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE, 1197 * other), the flag may be cleared in the course of freeing the page; 1198 * but that is not required for correctness. 1199 */ 1200 if (!waitqueue_active(q) || !key.page_match) 1201 folio_clear_waiters(folio); 1202 1203 spin_unlock_irqrestore(&q->lock, flags); 1204 } 1205 1206 /* 1207 * A choice of three behaviors for folio_wait_bit_common(): 1208 */ 1209 enum behavior { 1210 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1211 * __folio_lock() waiting on then setting PG_locked. 1212 */ 1213 SHARED, /* Hold ref to page and check the bit when woken, like 1214 * folio_wait_writeback() waiting on PG_writeback. 1215 */ 1216 DROP, /* Drop ref to page before wait, no check when woken, 1217 * like folio_put_wait_locked() on PG_locked. 1218 */ 1219 }; 1220 1221 /* 1222 * Attempt to check (or get) the folio flag, and mark us done 1223 * if successful. 1224 */ 1225 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr, 1226 struct wait_queue_entry *wait) 1227 { 1228 if (wait->flags & WQ_FLAG_EXCLUSIVE) { 1229 if (test_and_set_bit(bit_nr, &folio->flags.f)) 1230 return false; 1231 } else if (test_bit(bit_nr, &folio->flags.f)) 1232 return false; 1233 1234 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE; 1235 return true; 1236 } 1237 1238 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr, 1239 int state, enum behavior behavior) 1240 { 1241 wait_queue_head_t *q = folio_waitqueue(folio); 1242 int unfairness = sysctl_page_lock_unfairness; 1243 struct wait_page_queue wait_page; 1244 wait_queue_entry_t *wait = &wait_page.wait; 1245 bool thrashing = false; 1246 unsigned long pflags; 1247 bool in_thrashing; 1248 1249 if (bit_nr == PG_locked && 1250 !folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1251 delayacct_thrashing_start(&in_thrashing); 1252 psi_memstall_enter(&pflags); 1253 thrashing = true; 1254 } 1255 1256 init_wait(wait); 1257 wait->func = wake_page_function; 1258 wait_page.folio = folio; 1259 wait_page.bit_nr = bit_nr; 1260 1261 repeat: 1262 wait->flags = 0; 1263 if (behavior == EXCLUSIVE) { 1264 wait->flags = WQ_FLAG_EXCLUSIVE; 1265 if (--unfairness < 0) 1266 wait->flags |= WQ_FLAG_CUSTOM; 1267 } 1268 1269 /* 1270 * Do one last check whether we can get the 1271 * page bit synchronously. 1272 * 1273 * Do the folio_set_waiters() marking before that 1274 * to let any waker we _just_ missed know they 1275 * need to wake us up (otherwise they'll never 1276 * even go to the slow case that looks at the 1277 * page queue), and add ourselves to the wait 1278 * queue if we need to sleep. 1279 * 1280 * This part needs to be done under the queue 1281 * lock to avoid races. 1282 */ 1283 spin_lock_irq(&q->lock); 1284 folio_set_waiters(folio); 1285 if (!folio_trylock_flag(folio, bit_nr, wait)) 1286 __add_wait_queue_entry_tail(q, wait); 1287 spin_unlock_irq(&q->lock); 1288 1289 /* 1290 * From now on, all the logic will be based on 1291 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to 1292 * see whether the page bit testing has already 1293 * been done by the wake function. 1294 * 1295 * We can drop our reference to the folio. 1296 */ 1297 if (behavior == DROP) 1298 folio_put(folio); 1299 1300 /* 1301 * Note that until the "finish_wait()", or until 1302 * we see the WQ_FLAG_WOKEN flag, we need to 1303 * be very careful with the 'wait->flags', because 1304 * we may race with a waker that sets them. 1305 */ 1306 for (;;) { 1307 unsigned int flags; 1308 1309 set_current_state(state); 1310 1311 /* Loop until we've been woken or interrupted */ 1312 flags = smp_load_acquire(&wait->flags); 1313 if (!(flags & WQ_FLAG_WOKEN)) { 1314 if (signal_pending_state(state, current)) 1315 break; 1316 1317 io_schedule(); 1318 continue; 1319 } 1320 1321 /* If we were non-exclusive, we're done */ 1322 if (behavior != EXCLUSIVE) 1323 break; 1324 1325 /* If the waker got the lock for us, we're done */ 1326 if (flags & WQ_FLAG_DONE) 1327 break; 1328 1329 /* 1330 * Otherwise, if we're getting the lock, we need to 1331 * try to get it ourselves. 1332 * 1333 * And if that fails, we'll have to retry this all. 1334 */ 1335 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0)))) 1336 goto repeat; 1337 1338 wait->flags |= WQ_FLAG_DONE; 1339 break; 1340 } 1341 1342 /* 1343 * If a signal happened, this 'finish_wait()' may remove the last 1344 * waiter from the wait-queues, but the folio waiters bit will remain 1345 * set. That's ok. The next wakeup will take care of it, and trying 1346 * to do it here would be difficult and prone to races. 1347 */ 1348 finish_wait(q, wait); 1349 1350 if (thrashing) { 1351 delayacct_thrashing_end(&in_thrashing); 1352 psi_memstall_leave(&pflags); 1353 } 1354 1355 /* 1356 * NOTE! The wait->flags weren't stable until we've done the 1357 * 'finish_wait()', and we could have exited the loop above due 1358 * to a signal, and had a wakeup event happen after the signal 1359 * test but before the 'finish_wait()'. 1360 * 1361 * So only after the finish_wait() can we reliably determine 1362 * if we got woken up or not, so we can now figure out the final 1363 * return value based on that state without races. 1364 * 1365 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive 1366 * waiter, but an exclusive one requires WQ_FLAG_DONE. 1367 */ 1368 if (behavior == EXCLUSIVE) 1369 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR; 1370 1371 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR; 1372 } 1373 1374 #ifdef CONFIG_MIGRATION 1375 /** 1376 * migration_entry_wait_on_locked - Wait for a migration entry to be removed 1377 * @entry: migration swap entry. 1378 * @ptl: already locked ptl. This function will drop the lock. 1379 * 1380 * Wait for a migration entry referencing the given page to be removed. This is 1381 * equivalent to folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE) except 1382 * this can be called without taking a reference on the page. Instead this 1383 * should be called while holding the ptl for the migration entry referencing 1384 * the page. 1385 * 1386 * Returns after unlocking the ptl. 1387 * 1388 * This follows the same logic as folio_wait_bit_common() so see the comments 1389 * there. 1390 */ 1391 void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl) 1392 __releases(ptl) 1393 { 1394 struct wait_page_queue wait_page; 1395 wait_queue_entry_t *wait = &wait_page.wait; 1396 bool thrashing = false; 1397 unsigned long pflags; 1398 bool in_thrashing; 1399 wait_queue_head_t *q; 1400 struct folio *folio = pfn_swap_entry_folio(entry); 1401 1402 q = folio_waitqueue(folio); 1403 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1404 delayacct_thrashing_start(&in_thrashing); 1405 psi_memstall_enter(&pflags); 1406 thrashing = true; 1407 } 1408 1409 init_wait(wait); 1410 wait->func = wake_page_function; 1411 wait_page.folio = folio; 1412 wait_page.bit_nr = PG_locked; 1413 wait->flags = 0; 1414 1415 spin_lock_irq(&q->lock); 1416 folio_set_waiters(folio); 1417 if (!folio_trylock_flag(folio, PG_locked, wait)) 1418 __add_wait_queue_entry_tail(q, wait); 1419 spin_unlock_irq(&q->lock); 1420 1421 /* 1422 * If a migration entry exists for the page the migration path must hold 1423 * a valid reference to the page, and it must take the ptl to remove the 1424 * migration entry. So the page is valid until the ptl is dropped. 1425 */ 1426 spin_unlock(ptl); 1427 1428 for (;;) { 1429 unsigned int flags; 1430 1431 set_current_state(TASK_UNINTERRUPTIBLE); 1432 1433 /* Loop until we've been woken or interrupted */ 1434 flags = smp_load_acquire(&wait->flags); 1435 if (!(flags & WQ_FLAG_WOKEN)) { 1436 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current)) 1437 break; 1438 1439 io_schedule(); 1440 continue; 1441 } 1442 break; 1443 } 1444 1445 finish_wait(q, wait); 1446 1447 if (thrashing) { 1448 delayacct_thrashing_end(&in_thrashing); 1449 psi_memstall_leave(&pflags); 1450 } 1451 } 1452 #endif 1453 1454 void folio_wait_bit(struct folio *folio, int bit_nr) 1455 { 1456 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1457 } 1458 EXPORT_SYMBOL(folio_wait_bit); 1459 1460 int folio_wait_bit_killable(struct folio *folio, int bit_nr) 1461 { 1462 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED); 1463 } 1464 EXPORT_SYMBOL(folio_wait_bit_killable); 1465 1466 /** 1467 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked 1468 * @folio: The folio to wait for. 1469 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc). 1470 * 1471 * The caller should hold a reference on @folio. They expect the page to 1472 * become unlocked relatively soon, but do not wish to hold up migration 1473 * (for example) by holding the reference while waiting for the folio to 1474 * come unlocked. After this function returns, the caller should not 1475 * dereference @folio. 1476 * 1477 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal. 1478 */ 1479 static int folio_put_wait_locked(struct folio *folio, int state) 1480 { 1481 return folio_wait_bit_common(folio, PG_locked, state, DROP); 1482 } 1483 1484 /** 1485 * folio_unlock - Unlock a locked folio. 1486 * @folio: The folio. 1487 * 1488 * Unlocks the folio and wakes up any thread sleeping on the page lock. 1489 * 1490 * Context: May be called from interrupt or process context. May not be 1491 * called from NMI context. 1492 */ 1493 void folio_unlock(struct folio *folio) 1494 { 1495 /* Bit 7 allows x86 to check the byte's sign bit */ 1496 BUILD_BUG_ON(PG_waiters != 7); 1497 BUILD_BUG_ON(PG_locked > 7); 1498 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1499 if (folio_xor_flags_has_waiters(folio, 1 << PG_locked)) 1500 folio_wake_bit(folio, PG_locked); 1501 } 1502 EXPORT_SYMBOL(folio_unlock); 1503 1504 /** 1505 * folio_end_read - End read on a folio. 1506 * @folio: The folio. 1507 * @success: True if all reads completed successfully. 1508 * 1509 * When all reads against a folio have completed, filesystems should 1510 * call this function to let the pagecache know that no more reads 1511 * are outstanding. This will unlock the folio and wake up any thread 1512 * sleeping on the lock. The folio will also be marked uptodate if all 1513 * reads succeeded. 1514 * 1515 * Context: May be called from interrupt or process context. May not be 1516 * called from NMI context. 1517 */ 1518 void folio_end_read(struct folio *folio, bool success) 1519 { 1520 unsigned long mask = 1 << PG_locked; 1521 1522 /* Must be in bottom byte for x86 to work */ 1523 BUILD_BUG_ON(PG_uptodate > 7); 1524 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1525 VM_BUG_ON_FOLIO(success && folio_test_uptodate(folio), folio); 1526 1527 if (likely(success)) 1528 mask |= 1 << PG_uptodate; 1529 if (folio_xor_flags_has_waiters(folio, mask)) 1530 folio_wake_bit(folio, PG_locked); 1531 } 1532 EXPORT_SYMBOL(folio_end_read); 1533 1534 /** 1535 * folio_end_private_2 - Clear PG_private_2 and wake any waiters. 1536 * @folio: The folio. 1537 * 1538 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for 1539 * it. The folio reference held for PG_private_2 being set is released. 1540 * 1541 * This is, for example, used when a netfs folio is being written to a local 1542 * disk cache, thereby allowing writes to the cache for the same folio to be 1543 * serialised. 1544 */ 1545 void folio_end_private_2(struct folio *folio) 1546 { 1547 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio); 1548 clear_bit_unlock(PG_private_2, folio_flags(folio, 0)); 1549 folio_wake_bit(folio, PG_private_2); 1550 folio_put(folio); 1551 } 1552 EXPORT_SYMBOL(folio_end_private_2); 1553 1554 /** 1555 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio. 1556 * @folio: The folio to wait on. 1557 * 1558 * Wait for PG_private_2 to be cleared on a folio. 1559 */ 1560 void folio_wait_private_2(struct folio *folio) 1561 { 1562 while (folio_test_private_2(folio)) 1563 folio_wait_bit(folio, PG_private_2); 1564 } 1565 EXPORT_SYMBOL(folio_wait_private_2); 1566 1567 /** 1568 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio. 1569 * @folio: The folio to wait on. 1570 * 1571 * Wait for PG_private_2 to be cleared on a folio or until a fatal signal is 1572 * received by the calling task. 1573 * 1574 * Return: 1575 * - 0 if successful. 1576 * - -EINTR if a fatal signal was encountered. 1577 */ 1578 int folio_wait_private_2_killable(struct folio *folio) 1579 { 1580 int ret = 0; 1581 1582 while (folio_test_private_2(folio)) { 1583 ret = folio_wait_bit_killable(folio, PG_private_2); 1584 if (ret < 0) 1585 break; 1586 } 1587 1588 return ret; 1589 } 1590 EXPORT_SYMBOL(folio_wait_private_2_killable); 1591 1592 static void filemap_end_dropbehind(struct folio *folio) 1593 { 1594 struct address_space *mapping = folio->mapping; 1595 1596 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1597 1598 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 1599 return; 1600 if (!folio_test_clear_dropbehind(folio)) 1601 return; 1602 if (mapping) 1603 folio_unmap_invalidate(mapping, folio, 0); 1604 } 1605 1606 /* 1607 * If folio was marked as dropbehind, then pages should be dropped when writeback 1608 * completes. Do that now. If we fail, it's likely because of a big folio - 1609 * just reset dropbehind for that case and latter completions should invalidate. 1610 */ 1611 void folio_end_dropbehind(struct folio *folio) 1612 { 1613 if (!folio_test_dropbehind(folio)) 1614 return; 1615 1616 /* 1617 * Hitting !in_task() should not happen off RWF_DONTCACHE writeback, 1618 * but can happen if normal writeback just happens to find dirty folios 1619 * that were created as part of uncached writeback, and that writeback 1620 * would otherwise not need non-IRQ handling. Just skip the 1621 * invalidation in that case. 1622 */ 1623 if (in_task() && folio_trylock(folio)) { 1624 filemap_end_dropbehind(folio); 1625 folio_unlock(folio); 1626 } 1627 } 1628 EXPORT_SYMBOL_GPL(folio_end_dropbehind); 1629 1630 /** 1631 * folio_end_writeback_no_dropbehind - End writeback against a folio. 1632 * @folio: The folio. 1633 * 1634 * The folio must actually be under writeback. 1635 * This call is intended for filesystems that need to defer dropbehind. 1636 * 1637 * Context: May be called from process or interrupt context. 1638 */ 1639 void folio_end_writeback_no_dropbehind(struct folio *folio) 1640 { 1641 VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio); 1642 1643 /* 1644 * folio_test_clear_reclaim() could be used here but it is an 1645 * atomic operation and overkill in this particular case. Failing 1646 * to shuffle a folio marked for immediate reclaim is too mild 1647 * a gain to justify taking an atomic operation penalty at the 1648 * end of every folio writeback. 1649 */ 1650 if (folio_test_reclaim(folio)) { 1651 folio_clear_reclaim(folio); 1652 folio_rotate_reclaimable(folio); 1653 } 1654 1655 if (__folio_end_writeback(folio)) 1656 folio_wake_bit(folio, PG_writeback); 1657 1658 acct_reclaim_writeback(folio); 1659 } 1660 EXPORT_SYMBOL_GPL(folio_end_writeback_no_dropbehind); 1661 1662 /** 1663 * folio_end_writeback - End writeback against a folio. 1664 * @folio: The folio. 1665 * 1666 * The folio must actually be under writeback. 1667 * 1668 * Context: May be called from process or interrupt context. 1669 */ 1670 void folio_end_writeback(struct folio *folio) 1671 { 1672 VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio); 1673 1674 /* 1675 * Writeback does not hold a folio reference of its own, relying 1676 * on truncation to wait for the clearing of PG_writeback. 1677 * But here we must make sure that the folio is not freed and 1678 * reused before the folio_wake_bit(). 1679 */ 1680 folio_get(folio); 1681 folio_end_writeback_no_dropbehind(folio); 1682 folio_end_dropbehind(folio); 1683 folio_put(folio); 1684 } 1685 EXPORT_SYMBOL(folio_end_writeback); 1686 1687 /** 1688 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it. 1689 * @folio: The folio to lock 1690 */ 1691 void __folio_lock(struct folio *folio) 1692 { 1693 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE, 1694 EXCLUSIVE); 1695 } 1696 EXPORT_SYMBOL(__folio_lock); 1697 1698 int __folio_lock_killable(struct folio *folio) 1699 { 1700 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE, 1701 EXCLUSIVE); 1702 } 1703 EXPORT_SYMBOL_GPL(__folio_lock_killable); 1704 1705 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait) 1706 { 1707 struct wait_queue_head *q = folio_waitqueue(folio); 1708 int ret; 1709 1710 wait->folio = folio; 1711 wait->bit_nr = PG_locked; 1712 1713 spin_lock_irq(&q->lock); 1714 __add_wait_queue_entry_tail(q, &wait->wait); 1715 folio_set_waiters(folio); 1716 ret = !folio_trylock(folio); 1717 /* 1718 * If we were successful now, we know we're still on the 1719 * waitqueue as we're still under the lock. This means it's 1720 * safe to remove and return success, we know the callback 1721 * isn't going to trigger. 1722 */ 1723 if (!ret) 1724 __remove_wait_queue(q, &wait->wait); 1725 else 1726 ret = -EIOCBQUEUED; 1727 spin_unlock_irq(&q->lock); 1728 return ret; 1729 } 1730 1731 /* 1732 * Return values: 1733 * 0 - folio is locked. 1734 * non-zero - folio is not locked. 1735 * mmap_lock or per-VMA lock has been released (mmap_read_unlock() or 1736 * vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and 1737 * FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held. 1738 * 1739 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0 1740 * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed. 1741 */ 1742 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf) 1743 { 1744 unsigned int flags = vmf->flags; 1745 1746 if (fault_flag_allow_retry_first(flags)) { 1747 /* 1748 * CAUTION! In this case, mmap_lock/per-VMA lock is not 1749 * released even though returning VM_FAULT_RETRY. 1750 */ 1751 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1752 return VM_FAULT_RETRY; 1753 1754 release_fault_lock(vmf); 1755 if (flags & FAULT_FLAG_KILLABLE) 1756 folio_wait_locked_killable(folio); 1757 else 1758 folio_wait_locked(folio); 1759 return VM_FAULT_RETRY; 1760 } 1761 if (flags & FAULT_FLAG_KILLABLE) { 1762 bool ret; 1763 1764 ret = __folio_lock_killable(folio); 1765 if (ret) { 1766 release_fault_lock(vmf); 1767 return VM_FAULT_RETRY; 1768 } 1769 } else { 1770 __folio_lock(folio); 1771 } 1772 1773 return 0; 1774 } 1775 1776 /** 1777 * page_cache_next_miss() - Find the next gap in the page cache. 1778 * @mapping: Mapping. 1779 * @index: Index. 1780 * @max_scan: Maximum range to search. 1781 * 1782 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1783 * gap with the lowest index. 1784 * 1785 * This function may be called under the rcu_read_lock. However, this will 1786 * not atomically search a snapshot of the cache at a single point in time. 1787 * For example, if a gap is created at index 5, then subsequently a gap is 1788 * created at index 10, page_cache_next_miss covering both indices may 1789 * return 10 if called under the rcu_read_lock. 1790 * 1791 * Return: The index of the gap if found, otherwise an index outside the 1792 * range specified (in which case 'return - index >= max_scan' will be true). 1793 * In the rare case of index wrap-around, 0 will be returned. 1794 */ 1795 pgoff_t page_cache_next_miss(struct address_space *mapping, 1796 pgoff_t index, unsigned long max_scan) 1797 { 1798 XA_STATE(xas, &mapping->i_pages, index); 1799 unsigned long nr = max_scan; 1800 1801 while (nr--) { 1802 void *entry = xas_next(&xas); 1803 if (!entry || xa_is_value(entry)) 1804 return xas.xa_index; 1805 if (xas.xa_index == 0) 1806 return 0; 1807 } 1808 1809 return index + max_scan; 1810 } 1811 EXPORT_SYMBOL(page_cache_next_miss); 1812 1813 /** 1814 * page_cache_prev_miss() - Find the previous gap in the page cache. 1815 * @mapping: Mapping. 1816 * @index: Index. 1817 * @max_scan: Maximum range to search. 1818 * 1819 * Search the range [max(index - max_scan + 1, 0), index] for the 1820 * gap with the highest index. 1821 * 1822 * This function may be called under the rcu_read_lock. However, this will 1823 * not atomically search a snapshot of the cache at a single point in time. 1824 * For example, if a gap is created at index 10, then subsequently a gap is 1825 * created at index 5, page_cache_prev_miss() covering both indices may 1826 * return 5 if called under the rcu_read_lock. 1827 * 1828 * Return: The index of the gap if found, otherwise an index outside the 1829 * range specified (in which case 'index - return >= max_scan' will be true). 1830 * In the rare case of wrap-around, ULONG_MAX will be returned. 1831 */ 1832 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1833 pgoff_t index, unsigned long max_scan) 1834 { 1835 XA_STATE(xas, &mapping->i_pages, index); 1836 1837 while (max_scan--) { 1838 void *entry = xas_prev(&xas); 1839 if (!entry || xa_is_value(entry)) 1840 break; 1841 if (xas.xa_index == ULONG_MAX) 1842 break; 1843 } 1844 1845 return xas.xa_index; 1846 } 1847 EXPORT_SYMBOL(page_cache_prev_miss); 1848 1849 /* 1850 * Lockless page cache protocol: 1851 * On the lookup side: 1852 * 1. Load the folio from i_pages 1853 * 2. Increment the refcount if it's not zero 1854 * 3. If the folio is not found by xas_reload(), put the refcount and retry 1855 * 1856 * On the removal side: 1857 * A. Freeze the page (by zeroing the refcount if nobody else has a reference) 1858 * B. Remove the page from i_pages 1859 * C. Return the page to the page allocator 1860 * 1861 * This means that any page may have its reference count temporarily 1862 * increased by a speculative page cache (or GUP-fast) lookup as it can 1863 * be allocated by another user before the RCU grace period expires. 1864 * Because the refcount temporarily acquired here may end up being the 1865 * last refcount on the page, any page allocation must be freeable by 1866 * folio_put(). 1867 */ 1868 1869 /* 1870 * filemap_get_entry - Get a page cache entry. 1871 * @mapping: the address_space to search 1872 * @index: The page cache index. 1873 * 1874 * Looks up the page cache entry at @mapping & @index. If it is a folio, 1875 * it is returned with an increased refcount. If it is a shadow entry 1876 * of a previously evicted folio, or a swap entry from shmem/tmpfs, 1877 * it is returned without further action. 1878 * 1879 * Return: The folio, swap or shadow entry, %NULL if nothing is found. 1880 */ 1881 void *filemap_get_entry(struct address_space *mapping, pgoff_t index) 1882 { 1883 XA_STATE(xas, &mapping->i_pages, index); 1884 struct folio *folio; 1885 1886 rcu_read_lock(); 1887 repeat: 1888 xas_reset(&xas); 1889 folio = xas_load(&xas); 1890 if (xas_retry(&xas, folio)) 1891 goto repeat; 1892 /* 1893 * A shadow entry of a recently evicted page, or a swap entry from 1894 * shmem/tmpfs. Return it without attempting to raise page count. 1895 */ 1896 if (!folio || xa_is_value(folio)) 1897 goto out; 1898 1899 if (!folio_try_get(folio)) 1900 goto repeat; 1901 1902 if (unlikely(folio != xas_reload(&xas))) { 1903 folio_put(folio); 1904 goto repeat; 1905 } 1906 out: 1907 rcu_read_unlock(); 1908 1909 return folio; 1910 } 1911 1912 /** 1913 * __filemap_get_folio - Find and get a reference to a folio. 1914 * @mapping: The address_space to search. 1915 * @index: The page index. 1916 * @fgp_flags: %FGP flags modify how the folio is returned. 1917 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified. 1918 * 1919 * Looks up the page cache entry at @mapping & @index. 1920 * 1921 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even 1922 * if the %GFP flags specified for %FGP_CREAT are atomic. 1923 * 1924 * If this function returns a folio, it is returned with an increased refcount. 1925 * 1926 * Return: The found folio or an ERR_PTR() otherwise. 1927 */ 1928 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index, 1929 fgf_t fgp_flags, gfp_t gfp) 1930 { 1931 struct folio *folio; 1932 1933 repeat: 1934 folio = filemap_get_entry(mapping, index); 1935 if (xa_is_value(folio)) 1936 folio = NULL; 1937 if (!folio) 1938 goto no_page; 1939 1940 if (fgp_flags & FGP_LOCK) { 1941 if (fgp_flags & FGP_NOWAIT) { 1942 if (!folio_trylock(folio)) { 1943 folio_put(folio); 1944 return ERR_PTR(-EAGAIN); 1945 } 1946 } else { 1947 folio_lock(folio); 1948 } 1949 1950 /* Has the page been truncated? */ 1951 if (unlikely(folio->mapping != mapping)) { 1952 folio_unlock(folio); 1953 folio_put(folio); 1954 goto repeat; 1955 } 1956 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 1957 } 1958 1959 if (fgp_flags & FGP_ACCESSED) 1960 folio_mark_accessed(folio); 1961 else if (fgp_flags & FGP_WRITE) { 1962 /* Clear idle flag for buffer write */ 1963 if (folio_test_idle(folio)) 1964 folio_clear_idle(folio); 1965 } 1966 1967 if (fgp_flags & FGP_STABLE) 1968 folio_wait_stable(folio); 1969 no_page: 1970 if (!folio && (fgp_flags & FGP_CREAT)) { 1971 unsigned int min_order = mapping_min_folio_order(mapping); 1972 unsigned int order = max(min_order, FGF_GET_ORDER(fgp_flags)); 1973 int err; 1974 index = mapping_align_index(mapping, index); 1975 1976 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping)) 1977 gfp |= __GFP_WRITE; 1978 if (fgp_flags & FGP_NOFS) 1979 gfp &= ~__GFP_FS; 1980 if (fgp_flags & FGP_NOWAIT) { 1981 gfp &= ~GFP_KERNEL; 1982 gfp |= GFP_NOWAIT; 1983 } 1984 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 1985 fgp_flags |= FGP_LOCK; 1986 1987 if (order > mapping_max_folio_order(mapping)) 1988 order = mapping_max_folio_order(mapping); 1989 /* If we're not aligned, allocate a smaller folio */ 1990 if (index & ((1UL << order) - 1)) 1991 order = __ffs(index); 1992 1993 do { 1994 gfp_t alloc_gfp = gfp; 1995 1996 err = -ENOMEM; 1997 if (order > min_order) 1998 alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN; 1999 folio = filemap_alloc_folio(alloc_gfp, order); 2000 if (!folio) 2001 continue; 2002 2003 /* Init accessed so avoid atomic mark_page_accessed later */ 2004 if (fgp_flags & FGP_ACCESSED) 2005 __folio_set_referenced(folio); 2006 if (fgp_flags & FGP_DONTCACHE) 2007 __folio_set_dropbehind(folio); 2008 2009 err = filemap_add_folio(mapping, folio, index, gfp); 2010 if (!err) 2011 break; 2012 folio_put(folio); 2013 folio = NULL; 2014 } while (order-- > min_order); 2015 2016 if (err == -EEXIST) 2017 goto repeat; 2018 if (err) { 2019 /* 2020 * When NOWAIT I/O fails to allocate folios this could 2021 * be due to a nonblocking memory allocation and not 2022 * because the system actually is out of memory. 2023 * Return -EAGAIN so that there caller retries in a 2024 * blocking fashion instead of propagating -ENOMEM 2025 * to the application. 2026 */ 2027 if ((fgp_flags & FGP_NOWAIT) && err == -ENOMEM) 2028 err = -EAGAIN; 2029 return ERR_PTR(err); 2030 } 2031 /* 2032 * filemap_add_folio locks the page, and for mmap 2033 * we expect an unlocked page. 2034 */ 2035 if (folio && (fgp_flags & FGP_FOR_MMAP)) 2036 folio_unlock(folio); 2037 } 2038 2039 if (!folio) 2040 return ERR_PTR(-ENOENT); 2041 /* not an uncached lookup, clear uncached if set */ 2042 if (folio_test_dropbehind(folio) && !(fgp_flags & FGP_DONTCACHE)) 2043 folio_clear_dropbehind(folio); 2044 return folio; 2045 } 2046 EXPORT_SYMBOL(__filemap_get_folio); 2047 2048 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max, 2049 xa_mark_t mark) 2050 { 2051 struct folio *folio; 2052 2053 retry: 2054 if (mark == XA_PRESENT) 2055 folio = xas_find(xas, max); 2056 else 2057 folio = xas_find_marked(xas, max, mark); 2058 2059 if (xas_retry(xas, folio)) 2060 goto retry; 2061 /* 2062 * A shadow entry of a recently evicted page, a swap 2063 * entry from shmem/tmpfs or a DAX entry. Return it 2064 * without attempting to raise page count. 2065 */ 2066 if (!folio || xa_is_value(folio)) 2067 return folio; 2068 2069 if (!folio_try_get(folio)) 2070 goto reset; 2071 2072 if (unlikely(folio != xas_reload(xas))) { 2073 folio_put(folio); 2074 goto reset; 2075 } 2076 2077 return folio; 2078 reset: 2079 xas_reset(xas); 2080 goto retry; 2081 } 2082 2083 /** 2084 * find_get_entries - gang pagecache lookup 2085 * @mapping: The address_space to search 2086 * @start: The starting page cache index 2087 * @end: The final page index (inclusive). 2088 * @fbatch: Where the resulting entries are placed. 2089 * @indices: The cache indices corresponding to the entries in @entries 2090 * 2091 * find_get_entries() will search for and return a batch of entries in 2092 * the mapping. The entries are placed in @fbatch. find_get_entries() 2093 * takes a reference on any actual folios it returns. 2094 * 2095 * The entries have ascending indexes. The indices may not be consecutive 2096 * due to not-present entries or large folios. 2097 * 2098 * Any shadow entries of evicted folios, or swap entries from 2099 * shmem/tmpfs, are included in the returned array. 2100 * 2101 * Return: The number of entries which were found. 2102 */ 2103 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start, 2104 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2105 { 2106 XA_STATE(xas, &mapping->i_pages, *start); 2107 struct folio *folio; 2108 2109 rcu_read_lock(); 2110 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) { 2111 indices[fbatch->nr] = xas.xa_index; 2112 if (!folio_batch_add(fbatch, folio)) 2113 break; 2114 } 2115 2116 if (folio_batch_count(fbatch)) { 2117 unsigned long nr; 2118 int idx = folio_batch_count(fbatch) - 1; 2119 2120 folio = fbatch->folios[idx]; 2121 if (!xa_is_value(folio)) 2122 nr = folio_nr_pages(folio); 2123 else 2124 nr = 1 << xa_get_order(&mapping->i_pages, indices[idx]); 2125 *start = round_down(indices[idx] + nr, nr); 2126 } 2127 rcu_read_unlock(); 2128 2129 return folio_batch_count(fbatch); 2130 } 2131 2132 /** 2133 * find_lock_entries - Find a batch of pagecache entries. 2134 * @mapping: The address_space to search. 2135 * @start: The starting page cache index. 2136 * @end: The final page index (inclusive). 2137 * @fbatch: Where the resulting entries are placed. 2138 * @indices: The cache indices of the entries in @fbatch. 2139 * 2140 * find_lock_entries() will return a batch of entries from @mapping. 2141 * Swap, shadow and DAX entries are included. Folios are returned 2142 * locked and with an incremented refcount. Folios which are locked 2143 * by somebody else or under writeback are skipped. Folios which are 2144 * partially outside the range are not returned. 2145 * 2146 * The entries have ascending indexes. The indices may not be consecutive 2147 * due to not-present entries, large folios, folios which could not be 2148 * locked or folios under writeback. 2149 * 2150 * Return: The number of entries which were found. 2151 */ 2152 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start, 2153 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2154 { 2155 XA_STATE(xas, &mapping->i_pages, *start); 2156 struct folio *folio; 2157 2158 rcu_read_lock(); 2159 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) { 2160 unsigned long base; 2161 unsigned long nr; 2162 2163 if (!xa_is_value(folio)) { 2164 nr = folio_nr_pages(folio); 2165 base = folio->index; 2166 /* Omit large folio which begins before the start */ 2167 if (base < *start) 2168 goto put; 2169 /* Omit large folio which extends beyond the end */ 2170 if (base + nr - 1 > end) 2171 goto put; 2172 if (!folio_trylock(folio)) 2173 goto put; 2174 if (folio->mapping != mapping || 2175 folio_test_writeback(folio)) 2176 goto unlock; 2177 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index), 2178 folio); 2179 } else { 2180 nr = 1 << xas_get_order(&xas); 2181 base = xas.xa_index & ~(nr - 1); 2182 /* Omit order>0 value which begins before the start */ 2183 if (base < *start) 2184 continue; 2185 /* Omit order>0 value which extends beyond the end */ 2186 if (base + nr - 1 > end) 2187 break; 2188 } 2189 2190 /* Update start now so that last update is correct on return */ 2191 *start = base + nr; 2192 indices[fbatch->nr] = xas.xa_index; 2193 if (!folio_batch_add(fbatch, folio)) 2194 break; 2195 continue; 2196 unlock: 2197 folio_unlock(folio); 2198 put: 2199 folio_put(folio); 2200 } 2201 rcu_read_unlock(); 2202 2203 return folio_batch_count(fbatch); 2204 } 2205 2206 /** 2207 * filemap_get_folios - Get a batch of folios 2208 * @mapping: The address_space to search 2209 * @start: The starting page index 2210 * @end: The final page index (inclusive) 2211 * @fbatch: The batch to fill. 2212 * 2213 * Search for and return a batch of folios in the mapping starting at 2214 * index @start and up to index @end (inclusive). The folios are returned 2215 * in @fbatch with an elevated reference count. 2216 * 2217 * Return: The number of folios which were found. 2218 * We also update @start to index the next folio for the traversal. 2219 */ 2220 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start, 2221 pgoff_t end, struct folio_batch *fbatch) 2222 { 2223 return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch); 2224 } 2225 EXPORT_SYMBOL(filemap_get_folios); 2226 2227 /** 2228 * filemap_get_folios_contig - Get a batch of contiguous folios 2229 * @mapping: The address_space to search 2230 * @start: The starting page index 2231 * @end: The final page index (inclusive) 2232 * @fbatch: The batch to fill 2233 * 2234 * filemap_get_folios_contig() works exactly like filemap_get_folios(), 2235 * except the returned folios are guaranteed to be contiguous. This may 2236 * not return all contiguous folios if the batch gets filled up. 2237 * 2238 * Return: The number of folios found. 2239 * Also update @start to be positioned for traversal of the next folio. 2240 */ 2241 2242 unsigned filemap_get_folios_contig(struct address_space *mapping, 2243 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch) 2244 { 2245 XA_STATE(xas, &mapping->i_pages, *start); 2246 unsigned long nr; 2247 struct folio *folio; 2248 2249 rcu_read_lock(); 2250 2251 for (folio = xas_load(&xas); folio && xas.xa_index <= end; 2252 folio = xas_next(&xas)) { 2253 if (xas_retry(&xas, folio)) 2254 continue; 2255 /* 2256 * If the entry has been swapped out, we can stop looking. 2257 * No current caller is looking for DAX entries. 2258 */ 2259 if (xa_is_value(folio)) 2260 goto update_start; 2261 2262 /* If we landed in the middle of a THP, continue at its end. */ 2263 if (xa_is_sibling(folio)) 2264 goto update_start; 2265 2266 if (!folio_try_get(folio)) 2267 goto retry; 2268 2269 if (unlikely(folio != xas_reload(&xas))) 2270 goto put_folio; 2271 2272 if (!folio_batch_add(fbatch, folio)) { 2273 nr = folio_nr_pages(folio); 2274 *start = folio->index + nr; 2275 goto out; 2276 } 2277 xas_advance(&xas, folio_next_index(folio) - 1); 2278 continue; 2279 put_folio: 2280 folio_put(folio); 2281 2282 retry: 2283 xas_reset(&xas); 2284 } 2285 2286 update_start: 2287 nr = folio_batch_count(fbatch); 2288 2289 if (nr) { 2290 folio = fbatch->folios[nr - 1]; 2291 *start = folio_next_index(folio); 2292 } 2293 out: 2294 rcu_read_unlock(); 2295 return folio_batch_count(fbatch); 2296 } 2297 EXPORT_SYMBOL(filemap_get_folios_contig); 2298 2299 /** 2300 * filemap_get_folios_tag - Get a batch of folios matching @tag 2301 * @mapping: The address_space to search 2302 * @start: The starting page index 2303 * @end: The final page index (inclusive) 2304 * @tag: The tag index 2305 * @fbatch: The batch to fill 2306 * 2307 * The first folio may start before @start; if it does, it will contain 2308 * @start. The final folio may extend beyond @end; if it does, it will 2309 * contain @end. The folios have ascending indices. There may be gaps 2310 * between the folios if there are indices which have no folio in the 2311 * page cache. If folios are added to or removed from the page cache 2312 * while this is running, they may or may not be found by this call. 2313 * Only returns folios that are tagged with @tag. 2314 * 2315 * Return: The number of folios found. 2316 * Also update @start to index the next folio for traversal. 2317 */ 2318 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start, 2319 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch) 2320 { 2321 XA_STATE(xas, &mapping->i_pages, *start); 2322 struct folio *folio; 2323 2324 rcu_read_lock(); 2325 while ((folio = find_get_entry(&xas, end, tag)) != NULL) { 2326 /* 2327 * Shadow entries should never be tagged, but this iteration 2328 * is lockless so there is a window for page reclaim to evict 2329 * a page we saw tagged. Skip over it. 2330 */ 2331 if (xa_is_value(folio)) 2332 continue; 2333 if (!folio_batch_add(fbatch, folio)) { 2334 unsigned long nr = folio_nr_pages(folio); 2335 *start = folio->index + nr; 2336 goto out; 2337 } 2338 } 2339 /* 2340 * We come here when there is no page beyond @end. We take care to not 2341 * overflow the index @start as it confuses some of the callers. This 2342 * breaks the iteration when there is a page at index -1 but that is 2343 * already broke anyway. 2344 */ 2345 if (end == (pgoff_t)-1) 2346 *start = (pgoff_t)-1; 2347 else 2348 *start = end + 1; 2349 out: 2350 rcu_read_unlock(); 2351 2352 return folio_batch_count(fbatch); 2353 } 2354 EXPORT_SYMBOL(filemap_get_folios_tag); 2355 2356 /** 2357 * filemap_get_folios_dirty - Get a batch of dirty folios 2358 * @mapping: The address_space to search 2359 * @start: The starting folio index 2360 * @end: The final folio index (inclusive) 2361 * @fbatch: The batch to fill 2362 * 2363 * filemap_get_folios_dirty() works exactly like filemap_get_folios(), except 2364 * the returned folios are presumed to be dirty or undergoing writeback. Dirty 2365 * state is presumed because we don't block on folio lock nor want to miss 2366 * folios. Callers that need to can recheck state upon locking the folio. 2367 * 2368 * This may not return all dirty folios if the batch gets filled up. 2369 * 2370 * Return: The number of folios found. 2371 * Also update @start to be positioned for traversal of the next folio. 2372 */ 2373 unsigned filemap_get_folios_dirty(struct address_space *mapping, pgoff_t *start, 2374 pgoff_t end, struct folio_batch *fbatch) 2375 { 2376 XA_STATE(xas, &mapping->i_pages, *start); 2377 struct folio *folio; 2378 2379 rcu_read_lock(); 2380 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) { 2381 if (xa_is_value(folio)) 2382 continue; 2383 if (folio_trylock(folio)) { 2384 bool clean = !folio_test_dirty(folio) && 2385 !folio_test_writeback(folio); 2386 folio_unlock(folio); 2387 if (clean) { 2388 folio_put(folio); 2389 continue; 2390 } 2391 } 2392 if (!folio_batch_add(fbatch, folio)) { 2393 unsigned long nr = folio_nr_pages(folio); 2394 *start = folio->index + nr; 2395 goto out; 2396 } 2397 } 2398 /* 2399 * We come here when there is no folio beyond @end. We take care to not 2400 * overflow the index @start as it confuses some of the callers. This 2401 * breaks the iteration when there is a folio at index -1 but that is 2402 * already broke anyway. 2403 */ 2404 if (end == (pgoff_t)-1) 2405 *start = (pgoff_t)-1; 2406 else 2407 *start = end + 1; 2408 out: 2409 rcu_read_unlock(); 2410 2411 return folio_batch_count(fbatch); 2412 } 2413 2414 /* 2415 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 2416 * a _large_ part of the i/o request. Imagine the worst scenario: 2417 * 2418 * ---R__________________________________________B__________ 2419 * ^ reading here ^ bad block(assume 4k) 2420 * 2421 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2422 * => failing the whole request => read(R) => read(R+1) => 2423 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2424 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2425 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2426 * 2427 * It is going insane. Fix it by quickly scaling down the readahead size. 2428 */ 2429 static void shrink_readahead_size_eio(struct file_ra_state *ra) 2430 { 2431 ra->ra_pages /= 4; 2432 } 2433 2434 /* 2435 * filemap_get_read_batch - Get a batch of folios for read 2436 * 2437 * Get a batch of folios which represent a contiguous range of bytes in 2438 * the file. No exceptional entries will be returned. If @index is in 2439 * the middle of a folio, the entire folio will be returned. The last 2440 * folio in the batch may have the readahead flag set or the uptodate flag 2441 * clear so that the caller can take the appropriate action. 2442 */ 2443 static void filemap_get_read_batch(struct address_space *mapping, 2444 pgoff_t index, pgoff_t max, struct folio_batch *fbatch) 2445 { 2446 XA_STATE(xas, &mapping->i_pages, index); 2447 struct folio *folio; 2448 2449 rcu_read_lock(); 2450 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) { 2451 if (xas_retry(&xas, folio)) 2452 continue; 2453 if (xas.xa_index > max || xa_is_value(folio)) 2454 break; 2455 if (xa_is_sibling(folio)) 2456 break; 2457 if (!folio_try_get(folio)) 2458 goto retry; 2459 2460 if (unlikely(folio != xas_reload(&xas))) 2461 goto put_folio; 2462 2463 if (!folio_batch_add(fbatch, folio)) 2464 break; 2465 if (!folio_test_uptodate(folio)) 2466 break; 2467 if (folio_test_readahead(folio)) 2468 break; 2469 xas_advance(&xas, folio_next_index(folio) - 1); 2470 continue; 2471 put_folio: 2472 folio_put(folio); 2473 retry: 2474 xas_reset(&xas); 2475 } 2476 rcu_read_unlock(); 2477 } 2478 2479 static int filemap_read_folio(struct file *file, filler_t filler, 2480 struct folio *folio) 2481 { 2482 bool workingset = folio_test_workingset(folio); 2483 unsigned long pflags; 2484 int error; 2485 2486 /* Start the actual read. The read will unlock the page. */ 2487 if (unlikely(workingset)) 2488 psi_memstall_enter(&pflags); 2489 error = filler(file, folio); 2490 if (unlikely(workingset)) 2491 psi_memstall_leave(&pflags); 2492 if (error) 2493 return error; 2494 2495 error = folio_wait_locked_killable(folio); 2496 if (error) 2497 return error; 2498 if (folio_test_uptodate(folio)) 2499 return 0; 2500 if (file) 2501 shrink_readahead_size_eio(&file->f_ra); 2502 return -EIO; 2503 } 2504 2505 static bool filemap_range_uptodate(struct address_space *mapping, 2506 loff_t pos, size_t count, struct folio *folio, 2507 bool need_uptodate) 2508 { 2509 if (folio_test_uptodate(folio)) 2510 return true; 2511 /* pipes can't handle partially uptodate pages */ 2512 if (need_uptodate) 2513 return false; 2514 if (!mapping->a_ops->is_partially_uptodate) 2515 return false; 2516 if (mapping->host->i_blkbits >= folio_shift(folio)) 2517 return false; 2518 2519 if (folio_pos(folio) > pos) { 2520 count -= folio_pos(folio) - pos; 2521 pos = 0; 2522 } else { 2523 pos -= folio_pos(folio); 2524 } 2525 2526 if (pos == 0 && count >= folio_size(folio)) 2527 return false; 2528 2529 return mapping->a_ops->is_partially_uptodate(folio, pos, count); 2530 } 2531 2532 static int filemap_update_page(struct kiocb *iocb, 2533 struct address_space *mapping, size_t count, 2534 struct folio *folio, bool need_uptodate) 2535 { 2536 int error; 2537 2538 if (iocb->ki_flags & IOCB_NOWAIT) { 2539 if (!filemap_invalidate_trylock_shared(mapping)) 2540 return -EAGAIN; 2541 } else { 2542 filemap_invalidate_lock_shared(mapping); 2543 } 2544 2545 if (!folio_trylock(folio)) { 2546 error = -EAGAIN; 2547 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) 2548 goto unlock_mapping; 2549 if (!(iocb->ki_flags & IOCB_WAITQ)) { 2550 filemap_invalidate_unlock_shared(mapping); 2551 /* 2552 * This is where we usually end up waiting for a 2553 * previously submitted readahead to finish. 2554 */ 2555 folio_put_wait_locked(folio, TASK_KILLABLE); 2556 return AOP_TRUNCATED_PAGE; 2557 } 2558 error = __folio_lock_async(folio, iocb->ki_waitq); 2559 if (error) 2560 goto unlock_mapping; 2561 } 2562 2563 error = AOP_TRUNCATED_PAGE; 2564 if (!folio->mapping) 2565 goto unlock; 2566 2567 error = 0; 2568 if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio, 2569 need_uptodate)) 2570 goto unlock; 2571 2572 error = -EAGAIN; 2573 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ)) 2574 goto unlock; 2575 2576 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio, 2577 folio); 2578 goto unlock_mapping; 2579 unlock: 2580 folio_unlock(folio); 2581 unlock_mapping: 2582 filemap_invalidate_unlock_shared(mapping); 2583 if (error == AOP_TRUNCATED_PAGE) 2584 folio_put(folio); 2585 return error; 2586 } 2587 2588 static int filemap_create_folio(struct kiocb *iocb, struct folio_batch *fbatch) 2589 { 2590 struct address_space *mapping = iocb->ki_filp->f_mapping; 2591 struct folio *folio; 2592 int error; 2593 unsigned int min_order = mapping_min_folio_order(mapping); 2594 pgoff_t index; 2595 2596 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ)) 2597 return -EAGAIN; 2598 2599 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), min_order); 2600 if (!folio) 2601 return -ENOMEM; 2602 if (iocb->ki_flags & IOCB_DONTCACHE) 2603 __folio_set_dropbehind(folio); 2604 2605 /* 2606 * Protect against truncate / hole punch. Grabbing invalidate_lock 2607 * here assures we cannot instantiate and bring uptodate new 2608 * pagecache folios after evicting page cache during truncate 2609 * and before actually freeing blocks. Note that we could 2610 * release invalidate_lock after inserting the folio into 2611 * the page cache as the locked folio would then be enough to 2612 * synchronize with hole punching. But there are code paths 2613 * such as filemap_update_page() filling in partially uptodate 2614 * pages or ->readahead() that need to hold invalidate_lock 2615 * while mapping blocks for IO so let's hold the lock here as 2616 * well to keep locking rules simple. 2617 */ 2618 filemap_invalidate_lock_shared(mapping); 2619 index = (iocb->ki_pos >> (PAGE_SHIFT + min_order)) << min_order; 2620 error = filemap_add_folio(mapping, folio, index, 2621 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2622 if (error == -EEXIST) 2623 error = AOP_TRUNCATED_PAGE; 2624 if (error) 2625 goto error; 2626 2627 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio, 2628 folio); 2629 if (error) 2630 goto error; 2631 2632 filemap_invalidate_unlock_shared(mapping); 2633 folio_batch_add(fbatch, folio); 2634 return 0; 2635 error: 2636 filemap_invalidate_unlock_shared(mapping); 2637 folio_put(folio); 2638 return error; 2639 } 2640 2641 static int filemap_readahead(struct kiocb *iocb, struct file *file, 2642 struct address_space *mapping, struct folio *folio, 2643 pgoff_t last_index) 2644 { 2645 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index); 2646 2647 if (iocb->ki_flags & IOCB_NOIO) 2648 return -EAGAIN; 2649 if (iocb->ki_flags & IOCB_DONTCACHE) 2650 ractl.dropbehind = 1; 2651 page_cache_async_ra(&ractl, folio, last_index - folio->index); 2652 return 0; 2653 } 2654 2655 static int filemap_get_pages(struct kiocb *iocb, size_t count, 2656 struct folio_batch *fbatch, bool need_uptodate) 2657 { 2658 struct file *filp = iocb->ki_filp; 2659 struct address_space *mapping = filp->f_mapping; 2660 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT; 2661 pgoff_t last_index; 2662 struct folio *folio; 2663 unsigned int flags; 2664 int err = 0; 2665 2666 /* "last_index" is the index of the folio beyond the end of the read */ 2667 last_index = round_up(iocb->ki_pos + count, 2668 mapping_min_folio_nrbytes(mapping)) >> PAGE_SHIFT; 2669 retry: 2670 if (fatal_signal_pending(current)) 2671 return -EINTR; 2672 2673 filemap_get_read_batch(mapping, index, last_index - 1, fbatch); 2674 if (!folio_batch_count(fbatch)) { 2675 DEFINE_READAHEAD(ractl, filp, &filp->f_ra, mapping, index); 2676 2677 if (iocb->ki_flags & IOCB_NOIO) 2678 return -EAGAIN; 2679 if (iocb->ki_flags & IOCB_NOWAIT) 2680 flags = memalloc_noio_save(); 2681 if (iocb->ki_flags & IOCB_DONTCACHE) 2682 ractl.dropbehind = 1; 2683 page_cache_sync_ra(&ractl, last_index - index); 2684 if (iocb->ki_flags & IOCB_NOWAIT) 2685 memalloc_noio_restore(flags); 2686 filemap_get_read_batch(mapping, index, last_index - 1, fbatch); 2687 } 2688 if (!folio_batch_count(fbatch)) { 2689 err = filemap_create_folio(iocb, fbatch); 2690 if (err == AOP_TRUNCATED_PAGE) 2691 goto retry; 2692 return err; 2693 } 2694 2695 folio = fbatch->folios[folio_batch_count(fbatch) - 1]; 2696 if (folio_test_readahead(folio)) { 2697 err = filemap_readahead(iocb, filp, mapping, folio, last_index); 2698 if (err) 2699 goto err; 2700 } 2701 if (!folio_test_uptodate(folio)) { 2702 if (folio_batch_count(fbatch) > 1) { 2703 err = -EAGAIN; 2704 goto err; 2705 } 2706 err = filemap_update_page(iocb, mapping, count, folio, 2707 need_uptodate); 2708 if (err) 2709 goto err; 2710 } 2711 2712 trace_mm_filemap_get_pages(mapping, index, last_index - 1); 2713 return 0; 2714 err: 2715 if (err < 0) 2716 folio_put(folio); 2717 if (likely(--fbatch->nr)) 2718 return 0; 2719 if (err == AOP_TRUNCATED_PAGE) 2720 goto retry; 2721 return err; 2722 } 2723 2724 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio) 2725 { 2726 unsigned int shift = folio_shift(folio); 2727 2728 return (pos1 >> shift == pos2 >> shift); 2729 } 2730 2731 static void filemap_end_dropbehind_read(struct folio *folio) 2732 { 2733 if (!folio_test_dropbehind(folio)) 2734 return; 2735 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 2736 return; 2737 if (folio_trylock(folio)) { 2738 filemap_end_dropbehind(folio); 2739 folio_unlock(folio); 2740 } 2741 } 2742 2743 /** 2744 * filemap_read - Read data from the page cache. 2745 * @iocb: The iocb to read. 2746 * @iter: Destination for the data. 2747 * @already_read: Number of bytes already read by the caller. 2748 * 2749 * Copies data from the page cache. If the data is not currently present, 2750 * uses the readahead and read_folio address_space operations to fetch it. 2751 * 2752 * Return: Total number of bytes copied, including those already read by 2753 * the caller. If an error happens before any bytes are copied, returns 2754 * a negative error number. 2755 */ 2756 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter, 2757 ssize_t already_read) 2758 { 2759 struct file *filp = iocb->ki_filp; 2760 struct file_ra_state *ra = &filp->f_ra; 2761 struct address_space *mapping = filp->f_mapping; 2762 struct inode *inode = mapping->host; 2763 struct folio_batch fbatch; 2764 int i, error = 0; 2765 bool writably_mapped; 2766 loff_t isize, end_offset; 2767 loff_t last_pos = ra->prev_pos; 2768 2769 if (unlikely(iocb->ki_pos < 0)) 2770 return -EINVAL; 2771 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes)) 2772 return 0; 2773 if (unlikely(!iov_iter_count(iter))) 2774 return 0; 2775 2776 iov_iter_truncate(iter, inode->i_sb->s_maxbytes - iocb->ki_pos); 2777 folio_batch_init(&fbatch); 2778 2779 do { 2780 cond_resched(); 2781 2782 /* 2783 * If we've already successfully copied some data, then we 2784 * can no longer safely return -EIOCBQUEUED. Hence mark 2785 * an async read NOWAIT at that point. 2786 */ 2787 if ((iocb->ki_flags & IOCB_WAITQ) && already_read) 2788 iocb->ki_flags |= IOCB_NOWAIT; 2789 2790 if (unlikely(iocb->ki_pos >= i_size_read(inode))) 2791 break; 2792 2793 error = filemap_get_pages(iocb, iter->count, &fbatch, false); 2794 if (error < 0) 2795 break; 2796 2797 /* 2798 * i_size must be checked after we know the pages are Uptodate. 2799 * 2800 * Checking i_size after the check allows us to calculate 2801 * the correct value for "nr", which means the zero-filled 2802 * part of the page is not copied back to userspace (unless 2803 * another truncate extends the file - this is desired though). 2804 */ 2805 isize = i_size_read(inode); 2806 if (unlikely(iocb->ki_pos >= isize)) 2807 goto put_folios; 2808 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count); 2809 2810 /* 2811 * Once we start copying data, we don't want to be touching any 2812 * cachelines that might be contended: 2813 */ 2814 writably_mapped = mapping_writably_mapped(mapping); 2815 2816 /* 2817 * When a read accesses the same folio several times, only 2818 * mark it as accessed the first time. 2819 */ 2820 if (!pos_same_folio(iocb->ki_pos, last_pos - 1, 2821 fbatch.folios[0])) 2822 folio_mark_accessed(fbatch.folios[0]); 2823 2824 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2825 struct folio *folio = fbatch.folios[i]; 2826 size_t fsize = folio_size(folio); 2827 size_t offset = iocb->ki_pos & (fsize - 1); 2828 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos, 2829 fsize - offset); 2830 size_t copied; 2831 2832 if (end_offset < folio_pos(folio)) 2833 break; 2834 if (i > 0) 2835 folio_mark_accessed(folio); 2836 /* 2837 * If users can be writing to this folio using arbitrary 2838 * virtual addresses, take care of potential aliasing 2839 * before reading the folio on the kernel side. 2840 */ 2841 if (writably_mapped) 2842 flush_dcache_folio(folio); 2843 2844 copied = copy_folio_to_iter(folio, offset, bytes, iter); 2845 2846 already_read += copied; 2847 iocb->ki_pos += copied; 2848 last_pos = iocb->ki_pos; 2849 2850 if (copied < bytes) { 2851 error = -EFAULT; 2852 break; 2853 } 2854 } 2855 put_folios: 2856 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2857 struct folio *folio = fbatch.folios[i]; 2858 2859 filemap_end_dropbehind_read(folio); 2860 folio_put(folio); 2861 } 2862 folio_batch_init(&fbatch); 2863 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error); 2864 2865 file_accessed(filp); 2866 ra->prev_pos = last_pos; 2867 return already_read ? already_read : error; 2868 } 2869 EXPORT_SYMBOL_GPL(filemap_read); 2870 2871 int kiocb_write_and_wait(struct kiocb *iocb, size_t count) 2872 { 2873 struct address_space *mapping = iocb->ki_filp->f_mapping; 2874 loff_t pos = iocb->ki_pos; 2875 loff_t end = pos + count - 1; 2876 2877 if (iocb->ki_flags & IOCB_NOWAIT) { 2878 if (filemap_range_needs_writeback(mapping, pos, end)) 2879 return -EAGAIN; 2880 return 0; 2881 } 2882 2883 return filemap_write_and_wait_range(mapping, pos, end); 2884 } 2885 EXPORT_SYMBOL_GPL(kiocb_write_and_wait); 2886 2887 int filemap_invalidate_pages(struct address_space *mapping, 2888 loff_t pos, loff_t end, bool nowait) 2889 { 2890 int ret; 2891 2892 if (nowait) { 2893 /* we could block if there are any pages in the range */ 2894 if (filemap_range_has_page(mapping, pos, end)) 2895 return -EAGAIN; 2896 } else { 2897 ret = filemap_write_and_wait_range(mapping, pos, end); 2898 if (ret) 2899 return ret; 2900 } 2901 2902 /* 2903 * After a write we want buffered reads to be sure to go to disk to get 2904 * the new data. We invalidate clean cached page from the region we're 2905 * about to write. We do this *before* the write so that we can return 2906 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2907 */ 2908 return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, 2909 end >> PAGE_SHIFT); 2910 } 2911 2912 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count) 2913 { 2914 struct address_space *mapping = iocb->ki_filp->f_mapping; 2915 2916 return filemap_invalidate_pages(mapping, iocb->ki_pos, 2917 iocb->ki_pos + count - 1, 2918 iocb->ki_flags & IOCB_NOWAIT); 2919 } 2920 EXPORT_SYMBOL_GPL(kiocb_invalidate_pages); 2921 2922 /** 2923 * generic_file_read_iter - generic filesystem read routine 2924 * @iocb: kernel I/O control block 2925 * @iter: destination for the data read 2926 * 2927 * This is the "read_iter()" routine for all filesystems 2928 * that can use the page cache directly. 2929 * 2930 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall 2931 * be returned when no data can be read without waiting for I/O requests 2932 * to complete; it doesn't prevent readahead. 2933 * 2934 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O 2935 * requests shall be made for the read or for readahead. When no data 2936 * can be read, -EAGAIN shall be returned. When readahead would be 2937 * triggered, a partial, possibly empty read shall be returned. 2938 * 2939 * Return: 2940 * * number of bytes copied, even for partial reads 2941 * * negative error code (or 0 if IOCB_NOIO) if nothing was read 2942 */ 2943 ssize_t 2944 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2945 { 2946 size_t count = iov_iter_count(iter); 2947 ssize_t retval = 0; 2948 2949 if (!count) 2950 return 0; /* skip atime */ 2951 2952 if (iocb->ki_flags & IOCB_DIRECT) { 2953 struct file *file = iocb->ki_filp; 2954 struct address_space *mapping = file->f_mapping; 2955 struct inode *inode = mapping->host; 2956 2957 retval = kiocb_write_and_wait(iocb, count); 2958 if (retval < 0) 2959 return retval; 2960 file_accessed(file); 2961 2962 retval = mapping->a_ops->direct_IO(iocb, iter); 2963 if (retval >= 0) { 2964 iocb->ki_pos += retval; 2965 count -= retval; 2966 } 2967 if (retval != -EIOCBQUEUED) 2968 iov_iter_revert(iter, count - iov_iter_count(iter)); 2969 2970 /* 2971 * Btrfs can have a short DIO read if we encounter 2972 * compressed extents, so if there was an error, or if 2973 * we've already read everything we wanted to, or if 2974 * there was a short read because we hit EOF, go ahead 2975 * and return. Otherwise fallthrough to buffered io for 2976 * the rest of the read. Buffered reads will not work for 2977 * DAX files, so don't bother trying. 2978 */ 2979 if (retval < 0 || !count || IS_DAX(inode)) 2980 return retval; 2981 if (iocb->ki_pos >= i_size_read(inode)) 2982 return retval; 2983 } 2984 2985 return filemap_read(iocb, iter, retval); 2986 } 2987 EXPORT_SYMBOL(generic_file_read_iter); 2988 2989 /* 2990 * Splice subpages from a folio into a pipe. 2991 */ 2992 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe, 2993 struct folio *folio, loff_t fpos, size_t size) 2994 { 2995 struct page *page; 2996 size_t spliced = 0, offset = offset_in_folio(folio, fpos); 2997 2998 page = folio_page(folio, offset / PAGE_SIZE); 2999 size = min(size, folio_size(folio) - offset); 3000 offset %= PAGE_SIZE; 3001 3002 while (spliced < size && !pipe_is_full(pipe)) { 3003 struct pipe_buffer *buf = pipe_head_buf(pipe); 3004 size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced); 3005 3006 *buf = (struct pipe_buffer) { 3007 .ops = &page_cache_pipe_buf_ops, 3008 .page = page, 3009 .offset = offset, 3010 .len = part, 3011 }; 3012 folio_get(folio); 3013 pipe->head++; 3014 page++; 3015 spliced += part; 3016 offset = 0; 3017 } 3018 3019 return spliced; 3020 } 3021 3022 /** 3023 * filemap_splice_read - Splice data from a file's pagecache into a pipe 3024 * @in: The file to read from 3025 * @ppos: Pointer to the file position to read from 3026 * @pipe: The pipe to splice into 3027 * @len: The amount to splice 3028 * @flags: The SPLICE_F_* flags 3029 * 3030 * This function gets folios from a file's pagecache and splices them into the 3031 * pipe. Readahead will be called as necessary to fill more folios. This may 3032 * be used for blockdevs also. 3033 * 3034 * Return: On success, the number of bytes read will be returned and *@ppos 3035 * will be updated if appropriate; 0 will be returned if there is no more data 3036 * to be read; -EAGAIN will be returned if the pipe had no space, and some 3037 * other negative error code will be returned on error. A short read may occur 3038 * if the pipe has insufficient space, we reach the end of the data or we hit a 3039 * hole. 3040 */ 3041 ssize_t filemap_splice_read(struct file *in, loff_t *ppos, 3042 struct pipe_inode_info *pipe, 3043 size_t len, unsigned int flags) 3044 { 3045 struct folio_batch fbatch; 3046 struct kiocb iocb; 3047 size_t total_spliced = 0, used, npages; 3048 loff_t isize, end_offset; 3049 bool writably_mapped; 3050 int i, error = 0; 3051 3052 if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes)) 3053 return 0; 3054 3055 init_sync_kiocb(&iocb, in); 3056 iocb.ki_pos = *ppos; 3057 3058 /* Work out how much data we can actually add into the pipe */ 3059 used = pipe_buf_usage(pipe); 3060 npages = max_t(ssize_t, pipe->max_usage - used, 0); 3061 len = min_t(size_t, len, npages * PAGE_SIZE); 3062 3063 folio_batch_init(&fbatch); 3064 3065 do { 3066 cond_resched(); 3067 3068 if (*ppos >= i_size_read(in->f_mapping->host)) 3069 break; 3070 3071 iocb.ki_pos = *ppos; 3072 error = filemap_get_pages(&iocb, len, &fbatch, true); 3073 if (error < 0) 3074 break; 3075 3076 /* 3077 * i_size must be checked after we know the pages are Uptodate. 3078 * 3079 * Checking i_size after the check allows us to calculate 3080 * the correct value for "nr", which means the zero-filled 3081 * part of the page is not copied back to userspace (unless 3082 * another truncate extends the file - this is desired though). 3083 */ 3084 isize = i_size_read(in->f_mapping->host); 3085 if (unlikely(*ppos >= isize)) 3086 break; 3087 end_offset = min_t(loff_t, isize, *ppos + len); 3088 3089 /* 3090 * Once we start copying data, we don't want to be touching any 3091 * cachelines that might be contended: 3092 */ 3093 writably_mapped = mapping_writably_mapped(in->f_mapping); 3094 3095 for (i = 0; i < folio_batch_count(&fbatch); i++) { 3096 struct folio *folio = fbatch.folios[i]; 3097 size_t n; 3098 3099 if (folio_pos(folio) >= end_offset) 3100 goto out; 3101 folio_mark_accessed(folio); 3102 3103 /* 3104 * If users can be writing to this folio using arbitrary 3105 * virtual addresses, take care of potential aliasing 3106 * before reading the folio on the kernel side. 3107 */ 3108 if (writably_mapped) 3109 flush_dcache_folio(folio); 3110 3111 n = min_t(loff_t, len, isize - *ppos); 3112 n = splice_folio_into_pipe(pipe, folio, *ppos, n); 3113 if (!n) 3114 goto out; 3115 len -= n; 3116 total_spliced += n; 3117 *ppos += n; 3118 in->f_ra.prev_pos = *ppos; 3119 if (pipe_is_full(pipe)) 3120 goto out; 3121 } 3122 3123 folio_batch_release(&fbatch); 3124 } while (len); 3125 3126 out: 3127 folio_batch_release(&fbatch); 3128 file_accessed(in); 3129 3130 return total_spliced ? total_spliced : error; 3131 } 3132 EXPORT_SYMBOL(filemap_splice_read); 3133 3134 static inline loff_t folio_seek_hole_data(struct xa_state *xas, 3135 struct address_space *mapping, struct folio *folio, 3136 loff_t start, loff_t end, bool seek_data) 3137 { 3138 const struct address_space_operations *ops = mapping->a_ops; 3139 size_t offset, bsz = i_blocksize(mapping->host); 3140 3141 if (xa_is_value(folio) || folio_test_uptodate(folio)) 3142 return seek_data ? start : end; 3143 if (!ops->is_partially_uptodate) 3144 return seek_data ? end : start; 3145 3146 xas_pause(xas); 3147 rcu_read_unlock(); 3148 folio_lock(folio); 3149 if (unlikely(folio->mapping != mapping)) 3150 goto unlock; 3151 3152 offset = offset_in_folio(folio, start) & ~(bsz - 1); 3153 3154 do { 3155 if (ops->is_partially_uptodate(folio, offset, bsz) == 3156 seek_data) 3157 break; 3158 start = (start + bsz) & ~((u64)bsz - 1); 3159 offset += bsz; 3160 } while (offset < folio_size(folio)); 3161 unlock: 3162 folio_unlock(folio); 3163 rcu_read_lock(); 3164 return start; 3165 } 3166 3167 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio) 3168 { 3169 if (xa_is_value(folio)) 3170 return PAGE_SIZE << xas_get_order(xas); 3171 return folio_size(folio); 3172 } 3173 3174 /** 3175 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache. 3176 * @mapping: Address space to search. 3177 * @start: First byte to consider. 3178 * @end: Limit of search (exclusive). 3179 * @whence: Either SEEK_HOLE or SEEK_DATA. 3180 * 3181 * If the page cache knows which blocks contain holes and which blocks 3182 * contain data, your filesystem can use this function to implement 3183 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are 3184 * entirely memory-based such as tmpfs, and filesystems which support 3185 * unwritten extents. 3186 * 3187 * Return: The requested offset on success, or -ENXIO if @whence specifies 3188 * SEEK_DATA and there is no data after @start. There is an implicit hole 3189 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start 3190 * and @end contain data. 3191 */ 3192 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start, 3193 loff_t end, int whence) 3194 { 3195 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT); 3196 pgoff_t max = (end - 1) >> PAGE_SHIFT; 3197 bool seek_data = (whence == SEEK_DATA); 3198 struct folio *folio; 3199 3200 if (end <= start) 3201 return -ENXIO; 3202 3203 rcu_read_lock(); 3204 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) { 3205 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT; 3206 size_t seek_size; 3207 3208 if (start < pos) { 3209 if (!seek_data) 3210 goto unlock; 3211 start = pos; 3212 } 3213 3214 seek_size = seek_folio_size(&xas, folio); 3215 pos = round_up((u64)pos + 1, seek_size); 3216 start = folio_seek_hole_data(&xas, mapping, folio, start, pos, 3217 seek_data); 3218 if (start < pos) 3219 goto unlock; 3220 if (start >= end) 3221 break; 3222 if (seek_size > PAGE_SIZE) 3223 xas_set(&xas, pos >> PAGE_SHIFT); 3224 if (!xa_is_value(folio)) 3225 folio_put(folio); 3226 } 3227 if (seek_data) 3228 start = -ENXIO; 3229 unlock: 3230 rcu_read_unlock(); 3231 if (folio && !xa_is_value(folio)) 3232 folio_put(folio); 3233 if (start > end) 3234 return end; 3235 return start; 3236 } 3237 3238 #ifdef CONFIG_MMU 3239 #define MMAP_LOTSAMISS (100) 3240 /* 3241 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock 3242 * @vmf - the vm_fault for this fault. 3243 * @folio - the folio to lock. 3244 * @fpin - the pointer to the file we may pin (or is already pinned). 3245 * 3246 * This works similar to lock_folio_or_retry in that it can drop the 3247 * mmap_lock. It differs in that it actually returns the folio locked 3248 * if it returns 1 and 0 if it couldn't lock the folio. If we did have 3249 * to drop the mmap_lock then fpin will point to the pinned file and 3250 * needs to be fput()'ed at a later point. 3251 */ 3252 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio, 3253 struct file **fpin) 3254 { 3255 if (folio_trylock(folio)) 3256 return 1; 3257 3258 /* 3259 * NOTE! This will make us return with VM_FAULT_RETRY, but with 3260 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT 3261 * is supposed to work. We have way too many special cases.. 3262 */ 3263 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 3264 return 0; 3265 3266 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 3267 if (vmf->flags & FAULT_FLAG_KILLABLE) { 3268 if (__folio_lock_killable(folio)) { 3269 /* 3270 * We didn't have the right flags to drop the 3271 * fault lock, but all fault_handlers only check 3272 * for fatal signals if we return VM_FAULT_RETRY, 3273 * so we need to drop the fault lock here and 3274 * return 0 if we don't have a fpin. 3275 */ 3276 if (*fpin == NULL) 3277 release_fault_lock(vmf); 3278 return 0; 3279 } 3280 } else 3281 __folio_lock(folio); 3282 3283 return 1; 3284 } 3285 3286 /* 3287 * Synchronous readahead happens when we don't even find a page in the page 3288 * cache at all. We don't want to perform IO under the mmap sem, so if we have 3289 * to drop the mmap sem we return the file that was pinned in order for us to do 3290 * that. If we didn't pin a file then we return NULL. The file that is 3291 * returned needs to be fput()'ed when we're done with it. 3292 */ 3293 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 3294 { 3295 struct file *file = vmf->vma->vm_file; 3296 struct file_ra_state *ra = &file->f_ra; 3297 struct address_space *mapping = file->f_mapping; 3298 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff); 3299 struct file *fpin = NULL; 3300 vm_flags_t vm_flags = vmf->vma->vm_flags; 3301 unsigned short mmap_miss; 3302 3303 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3304 /* Use the readahead code, even if readahead is disabled */ 3305 if ((vm_flags & VM_HUGEPAGE) && HPAGE_PMD_ORDER <= MAX_PAGECACHE_ORDER) { 3306 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3307 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1); 3308 ra->size = HPAGE_PMD_NR; 3309 /* 3310 * Fetch two PMD folios, so we get the chance to actually 3311 * readahead, unless we've been told not to. 3312 */ 3313 if (!(vm_flags & VM_RAND_READ)) 3314 ra->size *= 2; 3315 ra->async_size = HPAGE_PMD_NR; 3316 ra->order = HPAGE_PMD_ORDER; 3317 page_cache_ra_order(&ractl, ra); 3318 return fpin; 3319 } 3320 #endif 3321 3322 /* 3323 * If we don't want any read-ahead, don't bother. VM_EXEC case below is 3324 * already intended for random access. 3325 */ 3326 if ((vm_flags & (VM_RAND_READ | VM_EXEC)) == VM_RAND_READ) 3327 return fpin; 3328 if (!ra->ra_pages) 3329 return fpin; 3330 3331 if (vm_flags & VM_SEQ_READ) { 3332 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3333 page_cache_sync_ra(&ractl, ra->ra_pages); 3334 return fpin; 3335 } 3336 3337 /* Avoid banging the cache line if not needed */ 3338 mmap_miss = READ_ONCE(ra->mmap_miss); 3339 if (mmap_miss < MMAP_LOTSAMISS * 10) 3340 WRITE_ONCE(ra->mmap_miss, ++mmap_miss); 3341 3342 /* 3343 * Do we miss much more than hit in this file? If so, 3344 * stop bothering with read-ahead. It will only hurt. 3345 */ 3346 if (mmap_miss > MMAP_LOTSAMISS) 3347 return fpin; 3348 3349 if (vm_flags & VM_EXEC) { 3350 /* 3351 * Allow arch to request a preferred minimum folio order for 3352 * executable memory. This can often be beneficial to 3353 * performance if (e.g.) arm64 can contpte-map the folio. 3354 * Executable memory rarely benefits from readahead, due to its 3355 * random access nature, so set async_size to 0. 3356 * 3357 * Limit to the boundaries of the VMA to avoid reading in any 3358 * pad that might exist between sections, which would be a waste 3359 * of memory. 3360 */ 3361 struct vm_area_struct *vma = vmf->vma; 3362 unsigned long start = vma->vm_pgoff; 3363 unsigned long end = start + vma_pages(vma); 3364 unsigned long ra_end; 3365 3366 ra->order = exec_folio_order(); 3367 ra->start = round_down(vmf->pgoff, 1UL << ra->order); 3368 ra->start = max(ra->start, start); 3369 ra_end = round_up(ra->start + ra->ra_pages, 1UL << ra->order); 3370 ra_end = min(ra_end, end); 3371 ra->size = ra_end - ra->start; 3372 ra->async_size = 0; 3373 } else { 3374 /* 3375 * mmap read-around 3376 */ 3377 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2); 3378 ra->size = ra->ra_pages; 3379 ra->async_size = ra->ra_pages / 4; 3380 ra->order = 0; 3381 } 3382 3383 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3384 ractl._index = ra->start; 3385 page_cache_ra_order(&ractl, ra); 3386 return fpin; 3387 } 3388 3389 /* 3390 * Asynchronous readahead happens when we find the page and PG_readahead, 3391 * so we want to possibly extend the readahead further. We return the file that 3392 * was pinned if we have to drop the mmap_lock in order to do IO. 3393 */ 3394 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 3395 struct folio *folio) 3396 { 3397 struct file *file = vmf->vma->vm_file; 3398 struct file_ra_state *ra = &file->f_ra; 3399 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff); 3400 struct file *fpin = NULL; 3401 unsigned short mmap_miss; 3402 3403 /* If we don't want any read-ahead, don't bother */ 3404 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages) 3405 return fpin; 3406 3407 /* 3408 * If the folio is locked, we're likely racing against another fault. 3409 * Don't touch the mmap_miss counter to avoid decreasing it multiple 3410 * times for a single folio and break the balance with mmap_miss 3411 * increase in do_sync_mmap_readahead(). 3412 */ 3413 if (likely(!folio_test_locked(folio))) { 3414 mmap_miss = READ_ONCE(ra->mmap_miss); 3415 if (mmap_miss) 3416 WRITE_ONCE(ra->mmap_miss, --mmap_miss); 3417 } 3418 3419 if (folio_test_readahead(folio)) { 3420 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3421 page_cache_async_ra(&ractl, folio, ra->ra_pages); 3422 } 3423 return fpin; 3424 } 3425 3426 static vm_fault_t filemap_fault_recheck_pte_none(struct vm_fault *vmf) 3427 { 3428 struct vm_area_struct *vma = vmf->vma; 3429 vm_fault_t ret = 0; 3430 pte_t *ptep; 3431 3432 /* 3433 * We might have COW'ed a pagecache folio and might now have an mlocked 3434 * anon folio mapped. The original pagecache folio is not mlocked and 3435 * might have been evicted. During a read+clear/modify/write update of 3436 * the PTE, such as done in do_numa_page()/change_pte_range(), we 3437 * temporarily clear the PTE under PT lock and might detect it here as 3438 * "none" when not holding the PT lock. 3439 * 3440 * Not rechecking the PTE under PT lock could result in an unexpected 3441 * major fault in an mlock'ed region. Recheck only for this special 3442 * scenario while holding the PT lock, to not degrade non-mlocked 3443 * scenarios. Recheck the PTE without PT lock firstly, thereby reducing 3444 * the number of times we hold PT lock. 3445 */ 3446 if (!(vma->vm_flags & VM_LOCKED)) 3447 return 0; 3448 3449 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 3450 return 0; 3451 3452 ptep = pte_offset_map_ro_nolock(vma->vm_mm, vmf->pmd, vmf->address, 3453 &vmf->ptl); 3454 if (unlikely(!ptep)) 3455 return VM_FAULT_NOPAGE; 3456 3457 if (unlikely(!pte_none(ptep_get_lockless(ptep)))) { 3458 ret = VM_FAULT_NOPAGE; 3459 } else { 3460 spin_lock(vmf->ptl); 3461 if (unlikely(!pte_none(ptep_get(ptep)))) 3462 ret = VM_FAULT_NOPAGE; 3463 spin_unlock(vmf->ptl); 3464 } 3465 pte_unmap(ptep); 3466 return ret; 3467 } 3468 3469 /** 3470 * filemap_fault - read in file data for page fault handling 3471 * @vmf: struct vm_fault containing details of the fault 3472 * 3473 * filemap_fault() is invoked via the vma operations vector for a 3474 * mapped memory region to read in file data during a page fault. 3475 * 3476 * The goto's are kind of ugly, but this streamlines the normal case of having 3477 * it in the page cache, and handles the special cases reasonably without 3478 * having a lot of duplicated code. 3479 * 3480 * vma->vm_mm->mmap_lock must be held on entry. 3481 * 3482 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock 3483 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap(). 3484 * 3485 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock 3486 * has not been released. 3487 * 3488 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 3489 * 3490 * Return: bitwise-OR of %VM_FAULT_ codes. 3491 */ 3492 vm_fault_t filemap_fault(struct vm_fault *vmf) 3493 { 3494 int error; 3495 struct file *file = vmf->vma->vm_file; 3496 struct file *fpin = NULL; 3497 struct address_space *mapping = file->f_mapping; 3498 struct inode *inode = mapping->host; 3499 pgoff_t max_idx, index = vmf->pgoff; 3500 struct folio *folio; 3501 vm_fault_t ret = 0; 3502 bool mapping_locked = false; 3503 3504 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3505 if (unlikely(index >= max_idx)) 3506 return VM_FAULT_SIGBUS; 3507 3508 trace_mm_filemap_fault(mapping, index); 3509 3510 /* 3511 * Do we have something in the page cache already? 3512 */ 3513 folio = filemap_get_folio(mapping, index); 3514 if (likely(!IS_ERR(folio))) { 3515 /* 3516 * We found the page, so try async readahead before waiting for 3517 * the lock. 3518 */ 3519 if (!(vmf->flags & FAULT_FLAG_TRIED)) 3520 fpin = do_async_mmap_readahead(vmf, folio); 3521 if (unlikely(!folio_test_uptodate(folio))) { 3522 filemap_invalidate_lock_shared(mapping); 3523 mapping_locked = true; 3524 } 3525 } else { 3526 ret = filemap_fault_recheck_pte_none(vmf); 3527 if (unlikely(ret)) 3528 return ret; 3529 3530 /* No page in the page cache at all */ 3531 count_vm_event(PGMAJFAULT); 3532 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 3533 ret = VM_FAULT_MAJOR; 3534 fpin = do_sync_mmap_readahead(vmf); 3535 retry_find: 3536 /* 3537 * See comment in filemap_create_folio() why we need 3538 * invalidate_lock 3539 */ 3540 if (!mapping_locked) { 3541 filemap_invalidate_lock_shared(mapping); 3542 mapping_locked = true; 3543 } 3544 folio = __filemap_get_folio(mapping, index, 3545 FGP_CREAT|FGP_FOR_MMAP, 3546 vmf->gfp_mask); 3547 if (IS_ERR(folio)) { 3548 if (fpin) 3549 goto out_retry; 3550 filemap_invalidate_unlock_shared(mapping); 3551 return VM_FAULT_OOM; 3552 } 3553 } 3554 3555 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin)) 3556 goto out_retry; 3557 3558 /* Did it get truncated? */ 3559 if (unlikely(folio->mapping != mapping)) { 3560 folio_unlock(folio); 3561 folio_put(folio); 3562 goto retry_find; 3563 } 3564 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 3565 3566 /* 3567 * We have a locked folio in the page cache, now we need to check 3568 * that it's up-to-date. If not, it is going to be due to an error, 3569 * or because readahead was otherwise unable to retrieve it. 3570 */ 3571 if (unlikely(!folio_test_uptodate(folio))) { 3572 /* 3573 * If the invalidate lock is not held, the folio was in cache 3574 * and uptodate and now it is not. Strange but possible since we 3575 * didn't hold the page lock all the time. Let's drop 3576 * everything, get the invalidate lock and try again. 3577 */ 3578 if (!mapping_locked) { 3579 folio_unlock(folio); 3580 folio_put(folio); 3581 goto retry_find; 3582 } 3583 3584 /* 3585 * OK, the folio is really not uptodate. This can be because the 3586 * VMA has the VM_RAND_READ flag set, or because an error 3587 * arose. Let's read it in directly. 3588 */ 3589 goto page_not_uptodate; 3590 } 3591 3592 /* 3593 * We've made it this far and we had to drop our mmap_lock, now is the 3594 * time to return to the upper layer and have it re-find the vma and 3595 * redo the fault. 3596 */ 3597 if (fpin) { 3598 folio_unlock(folio); 3599 goto out_retry; 3600 } 3601 if (mapping_locked) 3602 filemap_invalidate_unlock_shared(mapping); 3603 3604 /* 3605 * Found the page and have a reference on it. 3606 * We must recheck i_size under page lock. 3607 */ 3608 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3609 if (unlikely(index >= max_idx)) { 3610 folio_unlock(folio); 3611 folio_put(folio); 3612 return VM_FAULT_SIGBUS; 3613 } 3614 3615 vmf->page = folio_file_page(folio, index); 3616 return ret | VM_FAULT_LOCKED; 3617 3618 page_not_uptodate: 3619 /* 3620 * Umm, take care of errors if the page isn't up-to-date. 3621 * Try to re-read it _once_. We do this synchronously, 3622 * because there really aren't any performance issues here 3623 * and we need to check for errors. 3624 */ 3625 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3626 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio); 3627 if (fpin) 3628 goto out_retry; 3629 folio_put(folio); 3630 3631 if (!error || error == AOP_TRUNCATED_PAGE) 3632 goto retry_find; 3633 filemap_invalidate_unlock_shared(mapping); 3634 3635 return VM_FAULT_SIGBUS; 3636 3637 out_retry: 3638 /* 3639 * We dropped the mmap_lock, we need to return to the fault handler to 3640 * re-find the vma and come back and find our hopefully still populated 3641 * page. 3642 */ 3643 if (!IS_ERR(folio)) 3644 folio_put(folio); 3645 if (mapping_locked) 3646 filemap_invalidate_unlock_shared(mapping); 3647 if (fpin) 3648 fput(fpin); 3649 return ret | VM_FAULT_RETRY; 3650 } 3651 EXPORT_SYMBOL(filemap_fault); 3652 3653 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio, 3654 pgoff_t start) 3655 { 3656 struct mm_struct *mm = vmf->vma->vm_mm; 3657 3658 /* Huge page is mapped? No need to proceed. */ 3659 if (pmd_trans_huge(*vmf->pmd)) { 3660 folio_unlock(folio); 3661 folio_put(folio); 3662 return true; 3663 } 3664 3665 if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) { 3666 struct page *page = folio_file_page(folio, start); 3667 vm_fault_t ret = do_set_pmd(vmf, folio, page); 3668 if (!ret) { 3669 /* The page is mapped successfully, reference consumed. */ 3670 folio_unlock(folio); 3671 return true; 3672 } 3673 } 3674 3675 if (pmd_none(*vmf->pmd) && vmf->prealloc_pte) 3676 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte); 3677 3678 return false; 3679 } 3680 3681 static struct folio *next_uptodate_folio(struct xa_state *xas, 3682 struct address_space *mapping, pgoff_t end_pgoff) 3683 { 3684 struct folio *folio = xas_next_entry(xas, end_pgoff); 3685 unsigned long max_idx; 3686 3687 do { 3688 if (!folio) 3689 return NULL; 3690 if (xas_retry(xas, folio)) 3691 continue; 3692 if (xa_is_value(folio)) 3693 continue; 3694 if (!folio_try_get(folio)) 3695 continue; 3696 if (folio_test_locked(folio)) 3697 goto skip; 3698 /* Has the page moved or been split? */ 3699 if (unlikely(folio != xas_reload(xas))) 3700 goto skip; 3701 if (!folio_test_uptodate(folio) || folio_test_readahead(folio)) 3702 goto skip; 3703 if (!folio_trylock(folio)) 3704 goto skip; 3705 if (folio->mapping != mapping) 3706 goto unlock; 3707 if (!folio_test_uptodate(folio)) 3708 goto unlock; 3709 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3710 if (xas->xa_index >= max_idx) 3711 goto unlock; 3712 return folio; 3713 unlock: 3714 folio_unlock(folio); 3715 skip: 3716 folio_put(folio); 3717 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL); 3718 3719 return NULL; 3720 } 3721 3722 /* 3723 * Map page range [start_page, start_page + nr_pages) of folio. 3724 * start_page is gotten from start by folio_page(folio, start) 3725 */ 3726 static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf, 3727 struct folio *folio, unsigned long start, 3728 unsigned long addr, unsigned int nr_pages, 3729 unsigned long *rss, unsigned short *mmap_miss, 3730 pgoff_t file_end) 3731 { 3732 struct address_space *mapping = folio->mapping; 3733 unsigned int ref_from_caller = 1; 3734 vm_fault_t ret = 0; 3735 struct page *page = folio_page(folio, start); 3736 unsigned int count = 0; 3737 pte_t *old_ptep = vmf->pte; 3738 unsigned long addr0; 3739 3740 /* 3741 * Map the large folio fully where possible: 3742 * 3743 * - The folio is fully within size of the file or belong 3744 * to shmem/tmpfs; 3745 * - The folio doesn't cross VMA boundary; 3746 * - The folio doesn't cross page table boundary; 3747 */ 3748 addr0 = addr - start * PAGE_SIZE; 3749 if ((file_end >= folio_next_index(folio) || shmem_mapping(mapping)) && 3750 folio_within_vma(folio, vmf->vma) && 3751 (addr0 & PMD_MASK) == ((addr0 + folio_size(folio) - 1) & PMD_MASK)) { 3752 vmf->pte -= start; 3753 page -= start; 3754 addr = addr0; 3755 nr_pages = folio_nr_pages(folio); 3756 } 3757 3758 do { 3759 if (PageHWPoison(page + count)) 3760 goto skip; 3761 3762 /* 3763 * If there are too many folios that are recently evicted 3764 * in a file, they will probably continue to be evicted. 3765 * In such situation, read-ahead is only a waste of IO. 3766 * Don't decrease mmap_miss in this scenario to make sure 3767 * we can stop read-ahead. 3768 */ 3769 if (!folio_test_workingset(folio)) 3770 (*mmap_miss)++; 3771 3772 /* 3773 * NOTE: If there're PTE markers, we'll leave them to be 3774 * handled in the specific fault path, and it'll prohibit the 3775 * fault-around logic. 3776 */ 3777 if (!pte_none(ptep_get(&vmf->pte[count]))) 3778 goto skip; 3779 3780 count++; 3781 continue; 3782 skip: 3783 if (count) { 3784 set_pte_range(vmf, folio, page, count, addr); 3785 *rss += count; 3786 folio_ref_add(folio, count - ref_from_caller); 3787 ref_from_caller = 0; 3788 if (in_range(vmf->address, addr, count * PAGE_SIZE)) 3789 ret = VM_FAULT_NOPAGE; 3790 } 3791 3792 count++; 3793 page += count; 3794 vmf->pte += count; 3795 addr += count * PAGE_SIZE; 3796 count = 0; 3797 } while (--nr_pages > 0); 3798 3799 if (count) { 3800 set_pte_range(vmf, folio, page, count, addr); 3801 *rss += count; 3802 folio_ref_add(folio, count - ref_from_caller); 3803 ref_from_caller = 0; 3804 if (in_range(vmf->address, addr, count * PAGE_SIZE)) 3805 ret = VM_FAULT_NOPAGE; 3806 } 3807 3808 vmf->pte = old_ptep; 3809 if (ref_from_caller) 3810 /* Locked folios cannot get truncated. */ 3811 folio_ref_dec(folio); 3812 3813 return ret; 3814 } 3815 3816 static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf, 3817 struct folio *folio, unsigned long addr, 3818 unsigned long *rss, unsigned short *mmap_miss) 3819 { 3820 vm_fault_t ret = 0; 3821 struct page *page = &folio->page; 3822 3823 if (PageHWPoison(page)) 3824 goto out; 3825 3826 /* See comment of filemap_map_folio_range() */ 3827 if (!folio_test_workingset(folio)) 3828 (*mmap_miss)++; 3829 3830 /* 3831 * NOTE: If there're PTE markers, we'll leave them to be 3832 * handled in the specific fault path, and it'll prohibit 3833 * the fault-around logic. 3834 */ 3835 if (!pte_none(ptep_get(vmf->pte))) 3836 goto out; 3837 3838 if (vmf->address == addr) 3839 ret = VM_FAULT_NOPAGE; 3840 3841 set_pte_range(vmf, folio, page, 1, addr); 3842 (*rss)++; 3843 return ret; 3844 3845 out: 3846 /* Locked folios cannot get truncated. */ 3847 folio_ref_dec(folio); 3848 return ret; 3849 } 3850 3851 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3852 pgoff_t start_pgoff, pgoff_t end_pgoff) 3853 { 3854 struct vm_area_struct *vma = vmf->vma; 3855 struct file *file = vma->vm_file; 3856 struct address_space *mapping = file->f_mapping; 3857 pgoff_t file_end, last_pgoff = start_pgoff; 3858 unsigned long addr; 3859 XA_STATE(xas, &mapping->i_pages, start_pgoff); 3860 struct folio *folio; 3861 vm_fault_t ret = 0; 3862 unsigned long rss = 0; 3863 unsigned int nr_pages = 0, folio_type; 3864 unsigned short mmap_miss = 0, mmap_miss_saved; 3865 3866 rcu_read_lock(); 3867 folio = next_uptodate_folio(&xas, mapping, end_pgoff); 3868 if (!folio) 3869 goto out; 3870 3871 file_end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE) - 1; 3872 end_pgoff = min(end_pgoff, file_end); 3873 3874 /* 3875 * Do not allow to map with PMD across i_size to preserve 3876 * SIGBUS semantics. 3877 * 3878 * Make an exception for shmem/tmpfs that for long time 3879 * intentionally mapped with PMDs across i_size. 3880 */ 3881 if ((file_end >= folio_next_index(folio) || shmem_mapping(mapping)) && 3882 filemap_map_pmd(vmf, folio, start_pgoff)) { 3883 ret = VM_FAULT_NOPAGE; 3884 goto out; 3885 } 3886 3887 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT); 3888 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 3889 if (!vmf->pte) { 3890 folio_unlock(folio); 3891 folio_put(folio); 3892 goto out; 3893 } 3894 3895 folio_type = mm_counter_file(folio); 3896 do { 3897 unsigned long end; 3898 3899 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 3900 vmf->pte += xas.xa_index - last_pgoff; 3901 last_pgoff = xas.xa_index; 3902 end = folio_next_index(folio) - 1; 3903 nr_pages = min(end, end_pgoff) - xas.xa_index + 1; 3904 3905 if (!folio_test_large(folio)) 3906 ret |= filemap_map_order0_folio(vmf, 3907 folio, addr, &rss, &mmap_miss); 3908 else 3909 ret |= filemap_map_folio_range(vmf, folio, 3910 xas.xa_index - folio->index, addr, 3911 nr_pages, &rss, &mmap_miss, file_end); 3912 3913 folio_unlock(folio); 3914 } while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL); 3915 add_mm_counter(vma->vm_mm, folio_type, rss); 3916 pte_unmap_unlock(vmf->pte, vmf->ptl); 3917 trace_mm_filemap_map_pages(mapping, start_pgoff, end_pgoff); 3918 out: 3919 rcu_read_unlock(); 3920 3921 mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss); 3922 if (mmap_miss >= mmap_miss_saved) 3923 WRITE_ONCE(file->f_ra.mmap_miss, 0); 3924 else 3925 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss); 3926 3927 return ret; 3928 } 3929 EXPORT_SYMBOL(filemap_map_pages); 3930 3931 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3932 { 3933 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 3934 struct folio *folio = page_folio(vmf->page); 3935 vm_fault_t ret = VM_FAULT_LOCKED; 3936 3937 sb_start_pagefault(mapping->host->i_sb); 3938 file_update_time(vmf->vma->vm_file); 3939 folio_lock(folio); 3940 if (folio->mapping != mapping) { 3941 folio_unlock(folio); 3942 ret = VM_FAULT_NOPAGE; 3943 goto out; 3944 } 3945 /* 3946 * We mark the folio dirty already here so that when freeze is in 3947 * progress, we are guaranteed that writeback during freezing will 3948 * see the dirty folio and writeprotect it again. 3949 */ 3950 folio_mark_dirty(folio); 3951 folio_wait_stable(folio); 3952 out: 3953 sb_end_pagefault(mapping->host->i_sb); 3954 return ret; 3955 } 3956 3957 const struct vm_operations_struct generic_file_vm_ops = { 3958 .fault = filemap_fault, 3959 .map_pages = filemap_map_pages, 3960 .page_mkwrite = filemap_page_mkwrite, 3961 }; 3962 3963 /* This is used for a general mmap of a disk file */ 3964 3965 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3966 { 3967 struct address_space *mapping = file->f_mapping; 3968 3969 if (!mapping->a_ops->read_folio) 3970 return -ENOEXEC; 3971 file_accessed(file); 3972 vma->vm_ops = &generic_file_vm_ops; 3973 return 0; 3974 } 3975 3976 int generic_file_mmap_prepare(struct vm_area_desc *desc) 3977 { 3978 struct file *file = desc->file; 3979 struct address_space *mapping = file->f_mapping; 3980 3981 if (!mapping->a_ops->read_folio) 3982 return -ENOEXEC; 3983 file_accessed(file); 3984 desc->vm_ops = &generic_file_vm_ops; 3985 return 0; 3986 } 3987 3988 /* 3989 * This is for filesystems which do not implement ->writepage. 3990 */ 3991 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3992 { 3993 if (vma_is_shared_maywrite(vma)) 3994 return -EINVAL; 3995 return generic_file_mmap(file, vma); 3996 } 3997 3998 int generic_file_readonly_mmap_prepare(struct vm_area_desc *desc) 3999 { 4000 if (is_shared_maywrite(desc->vm_flags)) 4001 return -EINVAL; 4002 return generic_file_mmap_prepare(desc); 4003 } 4004 #else 4005 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 4006 { 4007 return VM_FAULT_SIGBUS; 4008 } 4009 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 4010 { 4011 return -ENOSYS; 4012 } 4013 int generic_file_mmap_prepare(struct vm_area_desc *desc) 4014 { 4015 return -ENOSYS; 4016 } 4017 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 4018 { 4019 return -ENOSYS; 4020 } 4021 int generic_file_readonly_mmap_prepare(struct vm_area_desc *desc) 4022 { 4023 return -ENOSYS; 4024 } 4025 #endif /* CONFIG_MMU */ 4026 4027 EXPORT_SYMBOL(filemap_page_mkwrite); 4028 EXPORT_SYMBOL(generic_file_mmap); 4029 EXPORT_SYMBOL(generic_file_mmap_prepare); 4030 EXPORT_SYMBOL(generic_file_readonly_mmap); 4031 EXPORT_SYMBOL(generic_file_readonly_mmap_prepare); 4032 4033 static struct folio *do_read_cache_folio(struct address_space *mapping, 4034 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp) 4035 { 4036 struct folio *folio; 4037 int err; 4038 4039 if (!filler) 4040 filler = mapping->a_ops->read_folio; 4041 repeat: 4042 folio = filemap_get_folio(mapping, index); 4043 if (IS_ERR(folio)) { 4044 folio = filemap_alloc_folio(gfp, 4045 mapping_min_folio_order(mapping)); 4046 if (!folio) 4047 return ERR_PTR(-ENOMEM); 4048 index = mapping_align_index(mapping, index); 4049 err = filemap_add_folio(mapping, folio, index, gfp); 4050 if (unlikely(err)) { 4051 folio_put(folio); 4052 if (err == -EEXIST) 4053 goto repeat; 4054 /* Presumably ENOMEM for xarray node */ 4055 return ERR_PTR(err); 4056 } 4057 4058 goto filler; 4059 } 4060 if (folio_test_uptodate(folio)) 4061 goto out; 4062 4063 if (!folio_trylock(folio)) { 4064 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE); 4065 goto repeat; 4066 } 4067 4068 /* Folio was truncated from mapping */ 4069 if (!folio->mapping) { 4070 folio_unlock(folio); 4071 folio_put(folio); 4072 goto repeat; 4073 } 4074 4075 /* Someone else locked and filled the page in a very small window */ 4076 if (folio_test_uptodate(folio)) { 4077 folio_unlock(folio); 4078 goto out; 4079 } 4080 4081 filler: 4082 err = filemap_read_folio(file, filler, folio); 4083 if (err) { 4084 folio_put(folio); 4085 if (err == AOP_TRUNCATED_PAGE) 4086 goto repeat; 4087 return ERR_PTR(err); 4088 } 4089 4090 out: 4091 folio_mark_accessed(folio); 4092 return folio; 4093 } 4094 4095 /** 4096 * read_cache_folio - Read into page cache, fill it if needed. 4097 * @mapping: The address_space to read from. 4098 * @index: The index to read. 4099 * @filler: Function to perform the read, or NULL to use aops->read_folio(). 4100 * @file: Passed to filler function, may be NULL if not required. 4101 * 4102 * Read one page into the page cache. If it succeeds, the folio returned 4103 * will contain @index, but it may not be the first page of the folio. 4104 * 4105 * If the filler function returns an error, it will be returned to the 4106 * caller. 4107 * 4108 * Context: May sleep. Expects mapping->invalidate_lock to be held. 4109 * Return: An uptodate folio on success, ERR_PTR() on failure. 4110 */ 4111 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index, 4112 filler_t filler, struct file *file) 4113 { 4114 return do_read_cache_folio(mapping, index, filler, file, 4115 mapping_gfp_mask(mapping)); 4116 } 4117 EXPORT_SYMBOL(read_cache_folio); 4118 4119 /** 4120 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags. 4121 * @mapping: The address_space for the folio. 4122 * @index: The index that the allocated folio will contain. 4123 * @gfp: The page allocator flags to use if allocating. 4124 * 4125 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with 4126 * any new memory allocations done using the specified allocation flags. 4127 * 4128 * The most likely error from this function is EIO, but ENOMEM is 4129 * possible and so is EINTR. If ->read_folio returns another error, 4130 * that will be returned to the caller. 4131 * 4132 * The function expects mapping->invalidate_lock to be already held. 4133 * 4134 * Return: Uptodate folio on success, ERR_PTR() on failure. 4135 */ 4136 struct folio *mapping_read_folio_gfp(struct address_space *mapping, 4137 pgoff_t index, gfp_t gfp) 4138 { 4139 return do_read_cache_folio(mapping, index, NULL, NULL, gfp); 4140 } 4141 EXPORT_SYMBOL(mapping_read_folio_gfp); 4142 4143 static struct page *do_read_cache_page(struct address_space *mapping, 4144 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp) 4145 { 4146 struct folio *folio; 4147 4148 folio = do_read_cache_folio(mapping, index, filler, file, gfp); 4149 if (IS_ERR(folio)) 4150 return &folio->page; 4151 return folio_file_page(folio, index); 4152 } 4153 4154 struct page *read_cache_page(struct address_space *mapping, 4155 pgoff_t index, filler_t *filler, struct file *file) 4156 { 4157 return do_read_cache_page(mapping, index, filler, file, 4158 mapping_gfp_mask(mapping)); 4159 } 4160 EXPORT_SYMBOL(read_cache_page); 4161 4162 /** 4163 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 4164 * @mapping: the page's address_space 4165 * @index: the page index 4166 * @gfp: the page allocator flags to use if allocating 4167 * 4168 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 4169 * any new page allocations done using the specified allocation flags. 4170 * 4171 * If the page does not get brought uptodate, return -EIO. 4172 * 4173 * The function expects mapping->invalidate_lock to be already held. 4174 * 4175 * Return: up to date page on success, ERR_PTR() on failure. 4176 */ 4177 struct page *read_cache_page_gfp(struct address_space *mapping, 4178 pgoff_t index, 4179 gfp_t gfp) 4180 { 4181 return do_read_cache_page(mapping, index, NULL, NULL, gfp); 4182 } 4183 EXPORT_SYMBOL(read_cache_page_gfp); 4184 4185 /* 4186 * Warn about a page cache invalidation failure during a direct I/O write. 4187 */ 4188 static void dio_warn_stale_pagecache(struct file *filp) 4189 { 4190 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 4191 char pathname[128]; 4192 char *path; 4193 4194 errseq_set(&filp->f_mapping->wb_err, -EIO); 4195 if (__ratelimit(&_rs)) { 4196 path = file_path(filp, pathname, sizeof(pathname)); 4197 if (IS_ERR(path)) 4198 path = "(unknown)"; 4199 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); 4200 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, 4201 current->comm); 4202 } 4203 } 4204 4205 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count) 4206 { 4207 struct address_space *mapping = iocb->ki_filp->f_mapping; 4208 4209 if (mapping->nrpages && 4210 invalidate_inode_pages2_range(mapping, 4211 iocb->ki_pos >> PAGE_SHIFT, 4212 (iocb->ki_pos + count - 1) >> PAGE_SHIFT)) 4213 dio_warn_stale_pagecache(iocb->ki_filp); 4214 } 4215 4216 ssize_t 4217 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 4218 { 4219 struct address_space *mapping = iocb->ki_filp->f_mapping; 4220 size_t write_len = iov_iter_count(from); 4221 ssize_t written; 4222 4223 /* 4224 * If a page can not be invalidated, return 0 to fall back 4225 * to buffered write. 4226 */ 4227 written = kiocb_invalidate_pages(iocb, write_len); 4228 if (written) { 4229 if (written == -EBUSY) 4230 return 0; 4231 return written; 4232 } 4233 4234 written = mapping->a_ops->direct_IO(iocb, from); 4235 4236 /* 4237 * Finally, try again to invalidate clean pages which might have been 4238 * cached by non-direct readahead, or faulted in by get_user_pages() 4239 * if the source of the write was an mmap'ed region of the file 4240 * we're writing. Either one is a pretty crazy thing to do, 4241 * so we don't support it 100%. If this invalidation 4242 * fails, tough, the write still worked... 4243 * 4244 * Most of the time we do not need this since dio_complete() will do 4245 * the invalidation for us. However there are some file systems that 4246 * do not end up with dio_complete() being called, so let's not break 4247 * them by removing it completely. 4248 * 4249 * Noticeable example is a blkdev_direct_IO(). 4250 * 4251 * Skip invalidation for async writes or if mapping has no pages. 4252 */ 4253 if (written > 0) { 4254 struct inode *inode = mapping->host; 4255 loff_t pos = iocb->ki_pos; 4256 4257 kiocb_invalidate_post_direct_write(iocb, written); 4258 pos += written; 4259 write_len -= written; 4260 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 4261 i_size_write(inode, pos); 4262 mark_inode_dirty(inode); 4263 } 4264 iocb->ki_pos = pos; 4265 } 4266 if (written != -EIOCBQUEUED) 4267 iov_iter_revert(from, write_len - iov_iter_count(from)); 4268 return written; 4269 } 4270 EXPORT_SYMBOL(generic_file_direct_write); 4271 4272 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i) 4273 { 4274 struct file *file = iocb->ki_filp; 4275 loff_t pos = iocb->ki_pos; 4276 struct address_space *mapping = file->f_mapping; 4277 const struct address_space_operations *a_ops = mapping->a_ops; 4278 size_t chunk = mapping_max_folio_size(mapping); 4279 long status = 0; 4280 ssize_t written = 0; 4281 4282 do { 4283 struct folio *folio; 4284 size_t offset; /* Offset into folio */ 4285 size_t bytes; /* Bytes to write to folio */ 4286 size_t copied; /* Bytes copied from user */ 4287 void *fsdata = NULL; 4288 4289 bytes = iov_iter_count(i); 4290 retry: 4291 offset = pos & (chunk - 1); 4292 bytes = min(chunk - offset, bytes); 4293 balance_dirty_pages_ratelimited(mapping); 4294 4295 if (fatal_signal_pending(current)) { 4296 status = -EINTR; 4297 break; 4298 } 4299 4300 status = a_ops->write_begin(iocb, mapping, pos, bytes, 4301 &folio, &fsdata); 4302 if (unlikely(status < 0)) 4303 break; 4304 4305 offset = offset_in_folio(folio, pos); 4306 if (bytes > folio_size(folio) - offset) 4307 bytes = folio_size(folio) - offset; 4308 4309 if (mapping_writably_mapped(mapping)) 4310 flush_dcache_folio(folio); 4311 4312 /* 4313 * Faults here on mmap()s can recurse into arbitrary 4314 * filesystem code. Lots of locks are held that can 4315 * deadlock. Use an atomic copy to avoid deadlocking 4316 * in page fault handling. 4317 */ 4318 copied = copy_folio_from_iter_atomic(folio, offset, bytes, i); 4319 flush_dcache_folio(folio); 4320 4321 status = a_ops->write_end(iocb, mapping, pos, bytes, copied, 4322 folio, fsdata); 4323 if (unlikely(status != copied)) { 4324 iov_iter_revert(i, copied - max(status, 0L)); 4325 if (unlikely(status < 0)) 4326 break; 4327 } 4328 cond_resched(); 4329 4330 if (unlikely(status == 0)) { 4331 /* 4332 * A short copy made ->write_end() reject the 4333 * thing entirely. Might be memory poisoning 4334 * halfway through, might be a race with munmap, 4335 * might be severe memory pressure. 4336 */ 4337 if (chunk > PAGE_SIZE) 4338 chunk /= 2; 4339 if (copied) { 4340 bytes = copied; 4341 goto retry; 4342 } 4343 4344 /* 4345 * 'folio' is now unlocked and faults on it can be 4346 * handled. Ensure forward progress by trying to 4347 * fault it in now. 4348 */ 4349 if (fault_in_iov_iter_readable(i, bytes) == bytes) { 4350 status = -EFAULT; 4351 break; 4352 } 4353 } else { 4354 pos += status; 4355 written += status; 4356 } 4357 } while (iov_iter_count(i)); 4358 4359 if (!written) 4360 return status; 4361 iocb->ki_pos += written; 4362 return written; 4363 } 4364 EXPORT_SYMBOL(generic_perform_write); 4365 4366 /** 4367 * __generic_file_write_iter - write data to a file 4368 * @iocb: IO state structure (file, offset, etc.) 4369 * @from: iov_iter with data to write 4370 * 4371 * This function does all the work needed for actually writing data to a 4372 * file. It does all basic checks, removes SUID from the file, updates 4373 * modification times and calls proper subroutines depending on whether we 4374 * do direct IO or a standard buffered write. 4375 * 4376 * It expects i_rwsem to be grabbed unless we work on a block device or similar 4377 * object which does not need locking at all. 4378 * 4379 * This function does *not* take care of syncing data in case of O_SYNC write. 4380 * A caller has to handle it. This is mainly due to the fact that we want to 4381 * avoid syncing under i_rwsem. 4382 * 4383 * Return: 4384 * * number of bytes written, even for truncated writes 4385 * * negative error code if no data has been written at all 4386 */ 4387 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4388 { 4389 struct file *file = iocb->ki_filp; 4390 struct address_space *mapping = file->f_mapping; 4391 struct inode *inode = mapping->host; 4392 ssize_t ret; 4393 4394 ret = file_remove_privs(file); 4395 if (ret) 4396 return ret; 4397 4398 ret = file_update_time(file); 4399 if (ret) 4400 return ret; 4401 4402 if (iocb->ki_flags & IOCB_DIRECT) { 4403 ret = generic_file_direct_write(iocb, from); 4404 /* 4405 * If the write stopped short of completing, fall back to 4406 * buffered writes. Some filesystems do this for writes to 4407 * holes, for example. For DAX files, a buffered write will 4408 * not succeed (even if it did, DAX does not handle dirty 4409 * page-cache pages correctly). 4410 */ 4411 if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode)) 4412 return ret; 4413 return direct_write_fallback(iocb, from, ret, 4414 generic_perform_write(iocb, from)); 4415 } 4416 4417 return generic_perform_write(iocb, from); 4418 } 4419 EXPORT_SYMBOL(__generic_file_write_iter); 4420 4421 /** 4422 * generic_file_write_iter - write data to a file 4423 * @iocb: IO state structure 4424 * @from: iov_iter with data to write 4425 * 4426 * This is a wrapper around __generic_file_write_iter() to be used by most 4427 * filesystems. It takes care of syncing the file in case of O_SYNC file 4428 * and acquires i_rwsem as needed. 4429 * Return: 4430 * * negative error code if no data has been written at all of 4431 * vfs_fsync_range() failed for a synchronous write 4432 * * number of bytes written, even for truncated writes 4433 */ 4434 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4435 { 4436 struct file *file = iocb->ki_filp; 4437 struct inode *inode = file->f_mapping->host; 4438 ssize_t ret; 4439 4440 inode_lock(inode); 4441 ret = generic_write_checks(iocb, from); 4442 if (ret > 0) 4443 ret = __generic_file_write_iter(iocb, from); 4444 inode_unlock(inode); 4445 4446 if (ret > 0) 4447 ret = generic_write_sync(iocb, ret); 4448 return ret; 4449 } 4450 EXPORT_SYMBOL(generic_file_write_iter); 4451 4452 /** 4453 * filemap_release_folio() - Release fs-specific metadata on a folio. 4454 * @folio: The folio which the kernel is trying to free. 4455 * @gfp: Memory allocation flags (and I/O mode). 4456 * 4457 * The address_space is trying to release any data attached to a folio 4458 * (presumably at folio->private). 4459 * 4460 * This will also be called if the private_2 flag is set on a page, 4461 * indicating that the folio has other metadata associated with it. 4462 * 4463 * The @gfp argument specifies whether I/O may be performed to release 4464 * this page (__GFP_IO), and whether the call may block 4465 * (__GFP_RECLAIM & __GFP_FS). 4466 * 4467 * Return: %true if the release was successful, otherwise %false. 4468 */ 4469 bool filemap_release_folio(struct folio *folio, gfp_t gfp) 4470 { 4471 struct address_space * const mapping = folio->mapping; 4472 4473 BUG_ON(!folio_test_locked(folio)); 4474 if (!folio_needs_release(folio)) 4475 return true; 4476 if (folio_test_writeback(folio)) 4477 return false; 4478 4479 if (mapping && mapping->a_ops->release_folio) 4480 return mapping->a_ops->release_folio(folio, gfp); 4481 return try_to_free_buffers(folio); 4482 } 4483 EXPORT_SYMBOL(filemap_release_folio); 4484 4485 /** 4486 * filemap_invalidate_inode - Invalidate/forcibly write back a range of an inode's pagecache 4487 * @inode: The inode to flush 4488 * @flush: Set to write back rather than simply invalidate. 4489 * @start: First byte to in range. 4490 * @end: Last byte in range (inclusive), or LLONG_MAX for everything from start 4491 * onwards. 4492 * 4493 * Invalidate all the folios on an inode that contribute to the specified 4494 * range, possibly writing them back first. Whilst the operation is 4495 * undertaken, the invalidate lock is held to prevent new folios from being 4496 * installed. 4497 */ 4498 int filemap_invalidate_inode(struct inode *inode, bool flush, 4499 loff_t start, loff_t end) 4500 { 4501 struct address_space *mapping = inode->i_mapping; 4502 pgoff_t first = start >> PAGE_SHIFT; 4503 pgoff_t last = end >> PAGE_SHIFT; 4504 pgoff_t nr = end == LLONG_MAX ? ULONG_MAX : last - first + 1; 4505 4506 if (!mapping || !mapping->nrpages || end < start) 4507 goto out; 4508 4509 /* Prevent new folios from being added to the inode. */ 4510 filemap_invalidate_lock(mapping); 4511 4512 if (!mapping->nrpages) 4513 goto unlock; 4514 4515 unmap_mapping_pages(mapping, first, nr, false); 4516 4517 /* Write back the data if we're asked to. */ 4518 if (flush) 4519 filemap_fdatawrite_range(mapping, start, end); 4520 4521 /* Wait for writeback to complete on all folios and discard. */ 4522 invalidate_inode_pages2_range(mapping, start / PAGE_SIZE, end / PAGE_SIZE); 4523 4524 unlock: 4525 filemap_invalidate_unlock(mapping); 4526 out: 4527 return filemap_check_errors(mapping); 4528 } 4529 EXPORT_SYMBOL_GPL(filemap_invalidate_inode); 4530 4531 #ifdef CONFIG_CACHESTAT_SYSCALL 4532 /** 4533 * filemap_cachestat() - compute the page cache statistics of a mapping 4534 * @mapping: The mapping to compute the statistics for. 4535 * @first_index: The starting page cache index. 4536 * @last_index: The final page index (inclusive). 4537 * @cs: the cachestat struct to write the result to. 4538 * 4539 * This will query the page cache statistics of a mapping in the 4540 * page range of [first_index, last_index] (inclusive). The statistics 4541 * queried include: number of dirty pages, number of pages marked for 4542 * writeback, and the number of (recently) evicted pages. 4543 */ 4544 static void filemap_cachestat(struct address_space *mapping, 4545 pgoff_t first_index, pgoff_t last_index, struct cachestat *cs) 4546 { 4547 XA_STATE(xas, &mapping->i_pages, first_index); 4548 struct folio *folio; 4549 4550 /* Flush stats (and potentially sleep) outside the RCU read section. */ 4551 mem_cgroup_flush_stats_ratelimited(NULL); 4552 4553 rcu_read_lock(); 4554 xas_for_each(&xas, folio, last_index) { 4555 int order; 4556 unsigned long nr_pages; 4557 pgoff_t folio_first_index, folio_last_index; 4558 4559 /* 4560 * Don't deref the folio. It is not pinned, and might 4561 * get freed (and reused) underneath us. 4562 * 4563 * We *could* pin it, but that would be expensive for 4564 * what should be a fast and lightweight syscall. 4565 * 4566 * Instead, derive all information of interest from 4567 * the rcu-protected xarray. 4568 */ 4569 4570 if (xas_retry(&xas, folio)) 4571 continue; 4572 4573 order = xas_get_order(&xas); 4574 nr_pages = 1 << order; 4575 folio_first_index = round_down(xas.xa_index, 1 << order); 4576 folio_last_index = folio_first_index + nr_pages - 1; 4577 4578 /* Folios might straddle the range boundaries, only count covered pages */ 4579 if (folio_first_index < first_index) 4580 nr_pages -= first_index - folio_first_index; 4581 4582 if (folio_last_index > last_index) 4583 nr_pages -= folio_last_index - last_index; 4584 4585 if (xa_is_value(folio)) { 4586 /* page is evicted */ 4587 void *shadow = (void *)folio; 4588 bool workingset; /* not used */ 4589 4590 cs->nr_evicted += nr_pages; 4591 4592 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */ 4593 if (shmem_mapping(mapping)) { 4594 /* shmem file - in swap cache */ 4595 swp_entry_t swp = radix_to_swp_entry(folio); 4596 4597 /* swapin error results in poisoned entry */ 4598 if (non_swap_entry(swp)) 4599 goto resched; 4600 4601 /* 4602 * Getting a swap entry from the shmem 4603 * inode means we beat 4604 * shmem_unuse(). rcu_read_lock() 4605 * ensures swapoff waits for us before 4606 * freeing the swapper space. However, 4607 * we can race with swapping and 4608 * invalidation, so there might not be 4609 * a shadow in the swapcache (yet). 4610 */ 4611 shadow = swap_cache_get_shadow(swp); 4612 if (!shadow) 4613 goto resched; 4614 } 4615 #endif 4616 if (workingset_test_recent(shadow, true, &workingset, false)) 4617 cs->nr_recently_evicted += nr_pages; 4618 4619 goto resched; 4620 } 4621 4622 /* page is in cache */ 4623 cs->nr_cache += nr_pages; 4624 4625 if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY)) 4626 cs->nr_dirty += nr_pages; 4627 4628 if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK)) 4629 cs->nr_writeback += nr_pages; 4630 4631 resched: 4632 if (need_resched()) { 4633 xas_pause(&xas); 4634 cond_resched_rcu(); 4635 } 4636 } 4637 rcu_read_unlock(); 4638 } 4639 4640 /* 4641 * See mincore: reveal pagecache information only for files 4642 * that the calling process has write access to, or could (if 4643 * tried) open for writing. 4644 */ 4645 static inline bool can_do_cachestat(struct file *f) 4646 { 4647 if (f->f_mode & FMODE_WRITE) 4648 return true; 4649 if (inode_owner_or_capable(file_mnt_idmap(f), file_inode(f))) 4650 return true; 4651 return file_permission(f, MAY_WRITE) == 0; 4652 } 4653 4654 /* 4655 * The cachestat(2) system call. 4656 * 4657 * cachestat() returns the page cache statistics of a file in the 4658 * bytes range specified by `off` and `len`: number of cached pages, 4659 * number of dirty pages, number of pages marked for writeback, 4660 * number of evicted pages, and number of recently evicted pages. 4661 * 4662 * An evicted page is a page that is previously in the page cache 4663 * but has been evicted since. A page is recently evicted if its last 4664 * eviction was recent enough that its reentry to the cache would 4665 * indicate that it is actively being used by the system, and that 4666 * there is memory pressure on the system. 4667 * 4668 * `off` and `len` must be non-negative integers. If `len` > 0, 4669 * the queried range is [`off`, `off` + `len`]. If `len` == 0, 4670 * we will query in the range from `off` to the end of the file. 4671 * 4672 * The `flags` argument is unused for now, but is included for future 4673 * extensibility. User should pass 0 (i.e no flag specified). 4674 * 4675 * Currently, hugetlbfs is not supported. 4676 * 4677 * Because the status of a page can change after cachestat() checks it 4678 * but before it returns to the application, the returned values may 4679 * contain stale information. 4680 * 4681 * return values: 4682 * zero - success 4683 * -EFAULT - cstat or cstat_range points to an illegal address 4684 * -EINVAL - invalid flags 4685 * -EBADF - invalid file descriptor 4686 * -EOPNOTSUPP - file descriptor is of a hugetlbfs file 4687 */ 4688 SYSCALL_DEFINE4(cachestat, unsigned int, fd, 4689 struct cachestat_range __user *, cstat_range, 4690 struct cachestat __user *, cstat, unsigned int, flags) 4691 { 4692 CLASS(fd, f)(fd); 4693 struct address_space *mapping; 4694 struct cachestat_range csr; 4695 struct cachestat cs; 4696 pgoff_t first_index, last_index; 4697 4698 if (fd_empty(f)) 4699 return -EBADF; 4700 4701 if (copy_from_user(&csr, cstat_range, 4702 sizeof(struct cachestat_range))) 4703 return -EFAULT; 4704 4705 /* hugetlbfs is not supported */ 4706 if (is_file_hugepages(fd_file(f))) 4707 return -EOPNOTSUPP; 4708 4709 if (!can_do_cachestat(fd_file(f))) 4710 return -EPERM; 4711 4712 if (flags != 0) 4713 return -EINVAL; 4714 4715 first_index = csr.off >> PAGE_SHIFT; 4716 last_index = 4717 csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT; 4718 memset(&cs, 0, sizeof(struct cachestat)); 4719 mapping = fd_file(f)->f_mapping; 4720 filemap_cachestat(mapping, first_index, last_index, &cs); 4721 4722 if (copy_to_user(cstat, &cs, sizeof(struct cachestat))) 4723 return -EFAULT; 4724 4725 return 0; 4726 } 4727 #endif /* CONFIG_CACHESTAT_SYSCALL */ 4728