xref: /linux/mm/filemap.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/mm/filemap.c
4  *
5  * Copyright (C) 1994-1999  Linus Torvalds
6  */
7 
8 /*
9  * This file handles the generic file mmap semantics used by
10  * most "normal" filesystems (but you don't /have/ to use this:
11  * the NFS filesystem used to do this differently, for example)
12  */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/syscalls.h>
26 #include <linux/mman.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
29 #include <linux/uio.h>
30 #include <linux/error-injection.h>
31 #include <linux/hash.h>
32 #include <linux/writeback.h>
33 #include <linux/backing-dev.h>
34 #include <linux/pagevec.h>
35 #include <linux/security.h>
36 #include <linux/cpuset.h>
37 #include <linux/hugetlb.h>
38 #include <linux/memcontrol.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include <linux/page_idle.h>
45 #include <linux/migrate.h>
46 #include <linux/pipe_fs_i.h>
47 #include <linux/splice.h>
48 #include <linux/rcupdate_wait.h>
49 #include <linux/sched/mm.h>
50 #include <asm/pgalloc.h>
51 #include <asm/tlbflush.h>
52 #include "internal.h"
53 
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/filemap.h>
56 
57 /*
58  * FIXME: remove all knowledge of the buffer layer from the core VM
59  */
60 #include <linux/buffer_head.h> /* for try_to_free_buffers */
61 
62 #include <asm/mman.h>
63 
64 #include "swap.h"
65 
66 /*
67  * Shared mappings implemented 30.11.1994. It's not fully working yet,
68  * though.
69  *
70  * Shared mappings now work. 15.8.1995  Bruno.
71  *
72  * finished 'unifying' the page and buffer cache and SMP-threaded the
73  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
74  *
75  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
76  */
77 
78 /*
79  * Lock ordering:
80  *
81  *  ->i_mmap_rwsem		(truncate_pagecache)
82  *    ->private_lock		(__free_pte->block_dirty_folio)
83  *      ->swap_lock		(exclusive_swap_page, others)
84  *        ->i_pages lock
85  *
86  *  ->i_rwsem
87  *    ->invalidate_lock		(acquired by fs in truncate path)
88  *      ->i_mmap_rwsem		(truncate->unmap_mapping_range)
89  *
90  *  ->mmap_lock
91  *    ->i_mmap_rwsem
92  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
93  *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
94  *
95  *  ->mmap_lock
96  *    ->invalidate_lock		(filemap_fault)
97  *      ->lock_page		(filemap_fault, access_process_vm)
98  *
99  *  ->i_rwsem			(generic_perform_write)
100  *    ->mmap_lock		(fault_in_readable->do_page_fault)
101  *
102  *  bdi->wb.list_lock
103  *    sb_lock			(fs/fs-writeback.c)
104  *    ->i_pages lock		(__sync_single_inode)
105  *
106  *  ->i_mmap_rwsem
107  *    ->anon_vma.lock		(vma_merge)
108  *
109  *  ->anon_vma.lock
110  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
111  *
112  *  ->page_table_lock or pte_lock
113  *    ->swap_lock		(try_to_unmap_one)
114  *    ->private_lock		(try_to_unmap_one)
115  *    ->i_pages lock		(try_to_unmap_one)
116  *    ->lruvec->lru_lock	(follow_page_mask->mark_page_accessed)
117  *    ->lruvec->lru_lock	(check_pte_range->folio_isolate_lru)
118  *    ->private_lock		(folio_remove_rmap_pte->set_page_dirty)
119  *    ->i_pages lock		(folio_remove_rmap_pte->set_page_dirty)
120  *    bdi.wb->list_lock		(folio_remove_rmap_pte->set_page_dirty)
121  *    ->inode->i_lock		(folio_remove_rmap_pte->set_page_dirty)
122  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
123  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
124  *    ->private_lock		(zap_pte_range->block_dirty_folio)
125  */
126 
127 static void mapping_set_update(struct xa_state *xas,
128 		struct address_space *mapping)
129 {
130 	if (dax_mapping(mapping) || shmem_mapping(mapping))
131 		return;
132 	xas_set_update(xas, workingset_update_node);
133 	xas_set_lru(xas, &shadow_nodes);
134 }
135 
136 static void page_cache_delete(struct address_space *mapping,
137 				   struct folio *folio, void *shadow)
138 {
139 	XA_STATE(xas, &mapping->i_pages, folio->index);
140 	long nr = 1;
141 
142 	mapping_set_update(&xas, mapping);
143 
144 	xas_set_order(&xas, folio->index, folio_order(folio));
145 	nr = folio_nr_pages(folio);
146 
147 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
148 
149 	xas_store(&xas, shadow);
150 	xas_init_marks(&xas);
151 
152 	folio->mapping = NULL;
153 	/* Leave page->index set: truncation lookup relies upon it */
154 	mapping->nrpages -= nr;
155 }
156 
157 static void filemap_unaccount_folio(struct address_space *mapping,
158 		struct folio *folio)
159 {
160 	long nr;
161 
162 	VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
163 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
164 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
165 			 current->comm, folio_pfn(folio));
166 		dump_page(&folio->page, "still mapped when deleted");
167 		dump_stack();
168 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
169 
170 		if (mapping_exiting(mapping) && !folio_test_large(folio)) {
171 			int mapcount = folio_mapcount(folio);
172 
173 			if (folio_ref_count(folio) >= mapcount + 2) {
174 				/*
175 				 * All vmas have already been torn down, so it's
176 				 * a good bet that actually the page is unmapped
177 				 * and we'd rather not leak it: if we're wrong,
178 				 * another bad page check should catch it later.
179 				 */
180 				atomic_set(&folio->_mapcount, -1);
181 				folio_ref_sub(folio, mapcount);
182 			}
183 		}
184 	}
185 
186 	/* hugetlb folios do not participate in page cache accounting. */
187 	if (folio_test_hugetlb(folio))
188 		return;
189 
190 	nr = folio_nr_pages(folio);
191 
192 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
193 	if (folio_test_swapbacked(folio)) {
194 		__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
195 		if (folio_test_pmd_mappable(folio))
196 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
197 	} else if (folio_test_pmd_mappable(folio)) {
198 		__lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
199 		filemap_nr_thps_dec(mapping);
200 	}
201 
202 	/*
203 	 * At this point folio must be either written or cleaned by
204 	 * truncate.  Dirty folio here signals a bug and loss of
205 	 * unwritten data - on ordinary filesystems.
206 	 *
207 	 * But it's harmless on in-memory filesystems like tmpfs; and can
208 	 * occur when a driver which did get_user_pages() sets page dirty
209 	 * before putting it, while the inode is being finally evicted.
210 	 *
211 	 * Below fixes dirty accounting after removing the folio entirely
212 	 * but leaves the dirty flag set: it has no effect for truncated
213 	 * folio and anyway will be cleared before returning folio to
214 	 * buddy allocator.
215 	 */
216 	if (WARN_ON_ONCE(folio_test_dirty(folio) &&
217 			 mapping_can_writeback(mapping)))
218 		folio_account_cleaned(folio, inode_to_wb(mapping->host));
219 }
220 
221 /*
222  * Delete a page from the page cache and free it. Caller has to make
223  * sure the page is locked and that nobody else uses it - or that usage
224  * is safe.  The caller must hold the i_pages lock.
225  */
226 void __filemap_remove_folio(struct folio *folio, void *shadow)
227 {
228 	struct address_space *mapping = folio->mapping;
229 
230 	trace_mm_filemap_delete_from_page_cache(folio);
231 	filemap_unaccount_folio(mapping, folio);
232 	page_cache_delete(mapping, folio, shadow);
233 }
234 
235 void filemap_free_folio(struct address_space *mapping, struct folio *folio)
236 {
237 	void (*free_folio)(struct folio *);
238 	int refs = 1;
239 
240 	free_folio = mapping->a_ops->free_folio;
241 	if (free_folio)
242 		free_folio(folio);
243 
244 	if (folio_test_large(folio))
245 		refs = folio_nr_pages(folio);
246 	folio_put_refs(folio, refs);
247 }
248 
249 /**
250  * filemap_remove_folio - Remove folio from page cache.
251  * @folio: The folio.
252  *
253  * This must be called only on folios that are locked and have been
254  * verified to be in the page cache.  It will never put the folio into
255  * the free list because the caller has a reference on the page.
256  */
257 void filemap_remove_folio(struct folio *folio)
258 {
259 	struct address_space *mapping = folio->mapping;
260 
261 	BUG_ON(!folio_test_locked(folio));
262 	spin_lock(&mapping->host->i_lock);
263 	xa_lock_irq(&mapping->i_pages);
264 	__filemap_remove_folio(folio, NULL);
265 	xa_unlock_irq(&mapping->i_pages);
266 	if (mapping_shrinkable(mapping))
267 		inode_add_lru(mapping->host);
268 	spin_unlock(&mapping->host->i_lock);
269 
270 	filemap_free_folio(mapping, folio);
271 }
272 
273 /*
274  * page_cache_delete_batch - delete several folios from page cache
275  * @mapping: the mapping to which folios belong
276  * @fbatch: batch of folios to delete
277  *
278  * The function walks over mapping->i_pages and removes folios passed in
279  * @fbatch from the mapping. The function expects @fbatch to be sorted
280  * by page index and is optimised for it to be dense.
281  * It tolerates holes in @fbatch (mapping entries at those indices are not
282  * modified).
283  *
284  * The function expects the i_pages lock to be held.
285  */
286 static void page_cache_delete_batch(struct address_space *mapping,
287 			     struct folio_batch *fbatch)
288 {
289 	XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
290 	long total_pages = 0;
291 	int i = 0;
292 	struct folio *folio;
293 
294 	mapping_set_update(&xas, mapping);
295 	xas_for_each(&xas, folio, ULONG_MAX) {
296 		if (i >= folio_batch_count(fbatch))
297 			break;
298 
299 		/* A swap/dax/shadow entry got inserted? Skip it. */
300 		if (xa_is_value(folio))
301 			continue;
302 		/*
303 		 * A page got inserted in our range? Skip it. We have our
304 		 * pages locked so they are protected from being removed.
305 		 * If we see a page whose index is higher than ours, it
306 		 * means our page has been removed, which shouldn't be
307 		 * possible because we're holding the PageLock.
308 		 */
309 		if (folio != fbatch->folios[i]) {
310 			VM_BUG_ON_FOLIO(folio->index >
311 					fbatch->folios[i]->index, folio);
312 			continue;
313 		}
314 
315 		WARN_ON_ONCE(!folio_test_locked(folio));
316 
317 		folio->mapping = NULL;
318 		/* Leave folio->index set: truncation lookup relies on it */
319 
320 		i++;
321 		xas_store(&xas, NULL);
322 		total_pages += folio_nr_pages(folio);
323 	}
324 	mapping->nrpages -= total_pages;
325 }
326 
327 void delete_from_page_cache_batch(struct address_space *mapping,
328 				  struct folio_batch *fbatch)
329 {
330 	int i;
331 
332 	if (!folio_batch_count(fbatch))
333 		return;
334 
335 	spin_lock(&mapping->host->i_lock);
336 	xa_lock_irq(&mapping->i_pages);
337 	for (i = 0; i < folio_batch_count(fbatch); i++) {
338 		struct folio *folio = fbatch->folios[i];
339 
340 		trace_mm_filemap_delete_from_page_cache(folio);
341 		filemap_unaccount_folio(mapping, folio);
342 	}
343 	page_cache_delete_batch(mapping, fbatch);
344 	xa_unlock_irq(&mapping->i_pages);
345 	if (mapping_shrinkable(mapping))
346 		inode_add_lru(mapping->host);
347 	spin_unlock(&mapping->host->i_lock);
348 
349 	for (i = 0; i < folio_batch_count(fbatch); i++)
350 		filemap_free_folio(mapping, fbatch->folios[i]);
351 }
352 
353 int filemap_check_errors(struct address_space *mapping)
354 {
355 	int ret = 0;
356 	/* Check for outstanding write errors */
357 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
358 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
359 		ret = -ENOSPC;
360 	if (test_bit(AS_EIO, &mapping->flags) &&
361 	    test_and_clear_bit(AS_EIO, &mapping->flags))
362 		ret = -EIO;
363 	return ret;
364 }
365 EXPORT_SYMBOL(filemap_check_errors);
366 
367 static int filemap_check_and_keep_errors(struct address_space *mapping)
368 {
369 	/* Check for outstanding write errors */
370 	if (test_bit(AS_EIO, &mapping->flags))
371 		return -EIO;
372 	if (test_bit(AS_ENOSPC, &mapping->flags))
373 		return -ENOSPC;
374 	return 0;
375 }
376 
377 /**
378  * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
379  * @mapping:	address space structure to write
380  * @wbc:	the writeback_control controlling the writeout
381  *
382  * Call writepages on the mapping using the provided wbc to control the
383  * writeout.
384  *
385  * Return: %0 on success, negative error code otherwise.
386  */
387 int filemap_fdatawrite_wbc(struct address_space *mapping,
388 			   struct writeback_control *wbc)
389 {
390 	int ret;
391 
392 	if (!mapping_can_writeback(mapping) ||
393 	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
394 		return 0;
395 
396 	wbc_attach_fdatawrite_inode(wbc, mapping->host);
397 	ret = do_writepages(mapping, wbc);
398 	wbc_detach_inode(wbc);
399 	return ret;
400 }
401 EXPORT_SYMBOL(filemap_fdatawrite_wbc);
402 
403 /**
404  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
405  * @mapping:	address space structure to write
406  * @start:	offset in bytes where the range starts
407  * @end:	offset in bytes where the range ends (inclusive)
408  * @sync_mode:	enable synchronous operation
409  *
410  * Start writeback against all of a mapping's dirty pages that lie
411  * within the byte offsets <start, end> inclusive.
412  *
413  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
414  * opposed to a regular memory cleansing writeback.  The difference between
415  * these two operations is that if a dirty page/buffer is encountered, it must
416  * be waited upon, and not just skipped over.
417  *
418  * Return: %0 on success, negative error code otherwise.
419  */
420 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
421 				loff_t end, int sync_mode)
422 {
423 	struct writeback_control wbc = {
424 		.sync_mode = sync_mode,
425 		.nr_to_write = LONG_MAX,
426 		.range_start = start,
427 		.range_end = end,
428 	};
429 
430 	return filemap_fdatawrite_wbc(mapping, &wbc);
431 }
432 
433 static inline int __filemap_fdatawrite(struct address_space *mapping,
434 	int sync_mode)
435 {
436 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
437 }
438 
439 int filemap_fdatawrite(struct address_space *mapping)
440 {
441 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
442 }
443 EXPORT_SYMBOL(filemap_fdatawrite);
444 
445 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
446 				loff_t end)
447 {
448 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
449 }
450 EXPORT_SYMBOL(filemap_fdatawrite_range);
451 
452 /**
453  * filemap_flush - mostly a non-blocking flush
454  * @mapping:	target address_space
455  *
456  * This is a mostly non-blocking flush.  Not suitable for data-integrity
457  * purposes - I/O may not be started against all dirty pages.
458  *
459  * Return: %0 on success, negative error code otherwise.
460  */
461 int filemap_flush(struct address_space *mapping)
462 {
463 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
464 }
465 EXPORT_SYMBOL(filemap_flush);
466 
467 /**
468  * filemap_range_has_page - check if a page exists in range.
469  * @mapping:           address space within which to check
470  * @start_byte:        offset in bytes where the range starts
471  * @end_byte:          offset in bytes where the range ends (inclusive)
472  *
473  * Find at least one page in the range supplied, usually used to check if
474  * direct writing in this range will trigger a writeback.
475  *
476  * Return: %true if at least one page exists in the specified range,
477  * %false otherwise.
478  */
479 bool filemap_range_has_page(struct address_space *mapping,
480 			   loff_t start_byte, loff_t end_byte)
481 {
482 	struct folio *folio;
483 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
484 	pgoff_t max = end_byte >> PAGE_SHIFT;
485 
486 	if (end_byte < start_byte)
487 		return false;
488 
489 	rcu_read_lock();
490 	for (;;) {
491 		folio = xas_find(&xas, max);
492 		if (xas_retry(&xas, folio))
493 			continue;
494 		/* Shadow entries don't count */
495 		if (xa_is_value(folio))
496 			continue;
497 		/*
498 		 * We don't need to try to pin this page; we're about to
499 		 * release the RCU lock anyway.  It is enough to know that
500 		 * there was a page here recently.
501 		 */
502 		break;
503 	}
504 	rcu_read_unlock();
505 
506 	return folio != NULL;
507 }
508 EXPORT_SYMBOL(filemap_range_has_page);
509 
510 static void __filemap_fdatawait_range(struct address_space *mapping,
511 				     loff_t start_byte, loff_t end_byte)
512 {
513 	pgoff_t index = start_byte >> PAGE_SHIFT;
514 	pgoff_t end = end_byte >> PAGE_SHIFT;
515 	struct folio_batch fbatch;
516 	unsigned nr_folios;
517 
518 	folio_batch_init(&fbatch);
519 
520 	while (index <= end) {
521 		unsigned i;
522 
523 		nr_folios = filemap_get_folios_tag(mapping, &index, end,
524 				PAGECACHE_TAG_WRITEBACK, &fbatch);
525 
526 		if (!nr_folios)
527 			break;
528 
529 		for (i = 0; i < nr_folios; i++) {
530 			struct folio *folio = fbatch.folios[i];
531 
532 			folio_wait_writeback(folio);
533 		}
534 		folio_batch_release(&fbatch);
535 		cond_resched();
536 	}
537 }
538 
539 /**
540  * filemap_fdatawait_range - wait for writeback to complete
541  * @mapping:		address space structure to wait for
542  * @start_byte:		offset in bytes where the range starts
543  * @end_byte:		offset in bytes where the range ends (inclusive)
544  *
545  * Walk the list of under-writeback pages of the given address space
546  * in the given range and wait for all of them.  Check error status of
547  * the address space and return it.
548  *
549  * Since the error status of the address space is cleared by this function,
550  * callers are responsible for checking the return value and handling and/or
551  * reporting the error.
552  *
553  * Return: error status of the address space.
554  */
555 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
556 			    loff_t end_byte)
557 {
558 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
559 	return filemap_check_errors(mapping);
560 }
561 EXPORT_SYMBOL(filemap_fdatawait_range);
562 
563 /**
564  * filemap_fdatawait_range_keep_errors - wait for writeback to complete
565  * @mapping:		address space structure to wait for
566  * @start_byte:		offset in bytes where the range starts
567  * @end_byte:		offset in bytes where the range ends (inclusive)
568  *
569  * Walk the list of under-writeback pages of the given address space in the
570  * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
571  * this function does not clear error status of the address space.
572  *
573  * Use this function if callers don't handle errors themselves.  Expected
574  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
575  * fsfreeze(8)
576  */
577 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
578 		loff_t start_byte, loff_t end_byte)
579 {
580 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
581 	return filemap_check_and_keep_errors(mapping);
582 }
583 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
584 
585 /**
586  * file_fdatawait_range - wait for writeback to complete
587  * @file:		file pointing to address space structure to wait for
588  * @start_byte:		offset in bytes where the range starts
589  * @end_byte:		offset in bytes where the range ends (inclusive)
590  *
591  * Walk the list of under-writeback pages of the address space that file
592  * refers to, in the given range and wait for all of them.  Check error
593  * status of the address space vs. the file->f_wb_err cursor and return it.
594  *
595  * Since the error status of the file is advanced by this function,
596  * callers are responsible for checking the return value and handling and/or
597  * reporting the error.
598  *
599  * Return: error status of the address space vs. the file->f_wb_err cursor.
600  */
601 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
602 {
603 	struct address_space *mapping = file->f_mapping;
604 
605 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
606 	return file_check_and_advance_wb_err(file);
607 }
608 EXPORT_SYMBOL(file_fdatawait_range);
609 
610 /**
611  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
612  * @mapping: address space structure to wait for
613  *
614  * Walk the list of under-writeback pages of the given address space
615  * and wait for all of them.  Unlike filemap_fdatawait(), this function
616  * does not clear error status of the address space.
617  *
618  * Use this function if callers don't handle errors themselves.  Expected
619  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
620  * fsfreeze(8)
621  *
622  * Return: error status of the address space.
623  */
624 int filemap_fdatawait_keep_errors(struct address_space *mapping)
625 {
626 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
627 	return filemap_check_and_keep_errors(mapping);
628 }
629 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
630 
631 /* Returns true if writeback might be needed or already in progress. */
632 static bool mapping_needs_writeback(struct address_space *mapping)
633 {
634 	return mapping->nrpages;
635 }
636 
637 bool filemap_range_has_writeback(struct address_space *mapping,
638 				 loff_t start_byte, loff_t end_byte)
639 {
640 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
641 	pgoff_t max = end_byte >> PAGE_SHIFT;
642 	struct folio *folio;
643 
644 	if (end_byte < start_byte)
645 		return false;
646 
647 	rcu_read_lock();
648 	xas_for_each(&xas, folio, max) {
649 		if (xas_retry(&xas, folio))
650 			continue;
651 		if (xa_is_value(folio))
652 			continue;
653 		if (folio_test_dirty(folio) || folio_test_locked(folio) ||
654 				folio_test_writeback(folio))
655 			break;
656 	}
657 	rcu_read_unlock();
658 	return folio != NULL;
659 }
660 EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
661 
662 /**
663  * filemap_write_and_wait_range - write out & wait on a file range
664  * @mapping:	the address_space for the pages
665  * @lstart:	offset in bytes where the range starts
666  * @lend:	offset in bytes where the range ends (inclusive)
667  *
668  * Write out and wait upon file offsets lstart->lend, inclusive.
669  *
670  * Note that @lend is inclusive (describes the last byte to be written) so
671  * that this function can be used to write to the very end-of-file (end = -1).
672  *
673  * Return: error status of the address space.
674  */
675 int filemap_write_and_wait_range(struct address_space *mapping,
676 				 loff_t lstart, loff_t lend)
677 {
678 	int err = 0, err2;
679 
680 	if (lend < lstart)
681 		return 0;
682 
683 	if (mapping_needs_writeback(mapping)) {
684 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
685 						 WB_SYNC_ALL);
686 		/*
687 		 * Even if the above returned error, the pages may be
688 		 * written partially (e.g. -ENOSPC), so we wait for it.
689 		 * But the -EIO is special case, it may indicate the worst
690 		 * thing (e.g. bug) happened, so we avoid waiting for it.
691 		 */
692 		if (err != -EIO)
693 			__filemap_fdatawait_range(mapping, lstart, lend);
694 	}
695 	err2 = filemap_check_errors(mapping);
696 	if (!err)
697 		err = err2;
698 	return err;
699 }
700 EXPORT_SYMBOL(filemap_write_and_wait_range);
701 
702 void __filemap_set_wb_err(struct address_space *mapping, int err)
703 {
704 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
705 
706 	trace_filemap_set_wb_err(mapping, eseq);
707 }
708 EXPORT_SYMBOL(__filemap_set_wb_err);
709 
710 /**
711  * file_check_and_advance_wb_err - report wb error (if any) that was previously
712  * 				   and advance wb_err to current one
713  * @file: struct file on which the error is being reported
714  *
715  * When userland calls fsync (or something like nfsd does the equivalent), we
716  * want to report any writeback errors that occurred since the last fsync (or
717  * since the file was opened if there haven't been any).
718  *
719  * Grab the wb_err from the mapping. If it matches what we have in the file,
720  * then just quickly return 0. The file is all caught up.
721  *
722  * If it doesn't match, then take the mapping value, set the "seen" flag in
723  * it and try to swap it into place. If it works, or another task beat us
724  * to it with the new value, then update the f_wb_err and return the error
725  * portion. The error at this point must be reported via proper channels
726  * (a'la fsync, or NFS COMMIT operation, etc.).
727  *
728  * While we handle mapping->wb_err with atomic operations, the f_wb_err
729  * value is protected by the f_lock since we must ensure that it reflects
730  * the latest value swapped in for this file descriptor.
731  *
732  * Return: %0 on success, negative error code otherwise.
733  */
734 int file_check_and_advance_wb_err(struct file *file)
735 {
736 	int err = 0;
737 	errseq_t old = READ_ONCE(file->f_wb_err);
738 	struct address_space *mapping = file->f_mapping;
739 
740 	/* Locklessly handle the common case where nothing has changed */
741 	if (errseq_check(&mapping->wb_err, old)) {
742 		/* Something changed, must use slow path */
743 		spin_lock(&file->f_lock);
744 		old = file->f_wb_err;
745 		err = errseq_check_and_advance(&mapping->wb_err,
746 						&file->f_wb_err);
747 		trace_file_check_and_advance_wb_err(file, old);
748 		spin_unlock(&file->f_lock);
749 	}
750 
751 	/*
752 	 * We're mostly using this function as a drop in replacement for
753 	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
754 	 * that the legacy code would have had on these flags.
755 	 */
756 	clear_bit(AS_EIO, &mapping->flags);
757 	clear_bit(AS_ENOSPC, &mapping->flags);
758 	return err;
759 }
760 EXPORT_SYMBOL(file_check_and_advance_wb_err);
761 
762 /**
763  * file_write_and_wait_range - write out & wait on a file range
764  * @file:	file pointing to address_space with pages
765  * @lstart:	offset in bytes where the range starts
766  * @lend:	offset in bytes where the range ends (inclusive)
767  *
768  * Write out and wait upon file offsets lstart->lend, inclusive.
769  *
770  * Note that @lend is inclusive (describes the last byte to be written) so
771  * that this function can be used to write to the very end-of-file (end = -1).
772  *
773  * After writing out and waiting on the data, we check and advance the
774  * f_wb_err cursor to the latest value, and return any errors detected there.
775  *
776  * Return: %0 on success, negative error code otherwise.
777  */
778 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
779 {
780 	int err = 0, err2;
781 	struct address_space *mapping = file->f_mapping;
782 
783 	if (lend < lstart)
784 		return 0;
785 
786 	if (mapping_needs_writeback(mapping)) {
787 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
788 						 WB_SYNC_ALL);
789 		/* See comment of filemap_write_and_wait() */
790 		if (err != -EIO)
791 			__filemap_fdatawait_range(mapping, lstart, lend);
792 	}
793 	err2 = file_check_and_advance_wb_err(file);
794 	if (!err)
795 		err = err2;
796 	return err;
797 }
798 EXPORT_SYMBOL(file_write_and_wait_range);
799 
800 /**
801  * replace_page_cache_folio - replace a pagecache folio with a new one
802  * @old:	folio to be replaced
803  * @new:	folio to replace with
804  *
805  * This function replaces a folio in the pagecache with a new one.  On
806  * success it acquires the pagecache reference for the new folio and
807  * drops it for the old folio.  Both the old and new folios must be
808  * locked.  This function does not add the new folio to the LRU, the
809  * caller must do that.
810  *
811  * The remove + add is atomic.  This function cannot fail.
812  */
813 void replace_page_cache_folio(struct folio *old, struct folio *new)
814 {
815 	struct address_space *mapping = old->mapping;
816 	void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
817 	pgoff_t offset = old->index;
818 	XA_STATE(xas, &mapping->i_pages, offset);
819 
820 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
821 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
822 	VM_BUG_ON_FOLIO(new->mapping, new);
823 
824 	folio_get(new);
825 	new->mapping = mapping;
826 	new->index = offset;
827 
828 	mem_cgroup_replace_folio(old, new);
829 
830 	xas_lock_irq(&xas);
831 	xas_store(&xas, new);
832 
833 	old->mapping = NULL;
834 	/* hugetlb pages do not participate in page cache accounting. */
835 	if (!folio_test_hugetlb(old))
836 		__lruvec_stat_sub_folio(old, NR_FILE_PAGES);
837 	if (!folio_test_hugetlb(new))
838 		__lruvec_stat_add_folio(new, NR_FILE_PAGES);
839 	if (folio_test_swapbacked(old))
840 		__lruvec_stat_sub_folio(old, NR_SHMEM);
841 	if (folio_test_swapbacked(new))
842 		__lruvec_stat_add_folio(new, NR_SHMEM);
843 	xas_unlock_irq(&xas);
844 	if (free_folio)
845 		free_folio(old);
846 	folio_put(old);
847 }
848 EXPORT_SYMBOL_GPL(replace_page_cache_folio);
849 
850 noinline int __filemap_add_folio(struct address_space *mapping,
851 		struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
852 {
853 	XA_STATE(xas, &mapping->i_pages, index);
854 	void *alloced_shadow = NULL;
855 	int alloced_order = 0;
856 	bool huge;
857 	long nr;
858 
859 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
860 	VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
861 	VM_BUG_ON_FOLIO(folio_order(folio) < mapping_min_folio_order(mapping),
862 			folio);
863 	mapping_set_update(&xas, mapping);
864 
865 	VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
866 	xas_set_order(&xas, index, folio_order(folio));
867 	huge = folio_test_hugetlb(folio);
868 	nr = folio_nr_pages(folio);
869 
870 	gfp &= GFP_RECLAIM_MASK;
871 	folio_ref_add(folio, nr);
872 	folio->mapping = mapping;
873 	folio->index = xas.xa_index;
874 
875 	for (;;) {
876 		int order = -1, split_order = 0;
877 		void *entry, *old = NULL;
878 
879 		xas_lock_irq(&xas);
880 		xas_for_each_conflict(&xas, entry) {
881 			old = entry;
882 			if (!xa_is_value(entry)) {
883 				xas_set_err(&xas, -EEXIST);
884 				goto unlock;
885 			}
886 			/*
887 			 * If a larger entry exists,
888 			 * it will be the first and only entry iterated.
889 			 */
890 			if (order == -1)
891 				order = xas_get_order(&xas);
892 		}
893 
894 		/* entry may have changed before we re-acquire the lock */
895 		if (alloced_order && (old != alloced_shadow || order != alloced_order)) {
896 			xas_destroy(&xas);
897 			alloced_order = 0;
898 		}
899 
900 		if (old) {
901 			if (order > 0 && order > folio_order(folio)) {
902 				/* How to handle large swap entries? */
903 				BUG_ON(shmem_mapping(mapping));
904 				if (!alloced_order) {
905 					split_order = order;
906 					goto unlock;
907 				}
908 				xas_split(&xas, old, order);
909 				xas_reset(&xas);
910 			}
911 			if (shadowp)
912 				*shadowp = old;
913 		}
914 
915 		xas_store(&xas, folio);
916 		if (xas_error(&xas))
917 			goto unlock;
918 
919 		mapping->nrpages += nr;
920 
921 		/* hugetlb pages do not participate in page cache accounting */
922 		if (!huge) {
923 			__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
924 			if (folio_test_pmd_mappable(folio))
925 				__lruvec_stat_mod_folio(folio,
926 						NR_FILE_THPS, nr);
927 		}
928 
929 unlock:
930 		xas_unlock_irq(&xas);
931 
932 		/* split needed, alloc here and retry. */
933 		if (split_order) {
934 			xas_split_alloc(&xas, old, split_order, gfp);
935 			if (xas_error(&xas))
936 				goto error;
937 			alloced_shadow = old;
938 			alloced_order = split_order;
939 			xas_reset(&xas);
940 			continue;
941 		}
942 
943 		if (!xas_nomem(&xas, gfp))
944 			break;
945 	}
946 
947 	if (xas_error(&xas))
948 		goto error;
949 
950 	trace_mm_filemap_add_to_page_cache(folio);
951 	return 0;
952 error:
953 	folio->mapping = NULL;
954 	/* Leave page->index set: truncation relies upon it */
955 	folio_put_refs(folio, nr);
956 	return xas_error(&xas);
957 }
958 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
959 
960 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
961 				pgoff_t index, gfp_t gfp)
962 {
963 	void *shadow = NULL;
964 	int ret;
965 
966 	ret = mem_cgroup_charge(folio, NULL, gfp);
967 	if (ret)
968 		return ret;
969 
970 	__folio_set_locked(folio);
971 	ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
972 	if (unlikely(ret)) {
973 		mem_cgroup_uncharge(folio);
974 		__folio_clear_locked(folio);
975 	} else {
976 		/*
977 		 * The folio might have been evicted from cache only
978 		 * recently, in which case it should be activated like
979 		 * any other repeatedly accessed folio.
980 		 * The exception is folios getting rewritten; evicting other
981 		 * data from the working set, only to cache data that will
982 		 * get overwritten with something else, is a waste of memory.
983 		 */
984 		WARN_ON_ONCE(folio_test_active(folio));
985 		if (!(gfp & __GFP_WRITE) && shadow)
986 			workingset_refault(folio, shadow);
987 		folio_add_lru(folio);
988 	}
989 	return ret;
990 }
991 EXPORT_SYMBOL_GPL(filemap_add_folio);
992 
993 #ifdef CONFIG_NUMA
994 struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order)
995 {
996 	int n;
997 	struct folio *folio;
998 
999 	if (cpuset_do_page_mem_spread()) {
1000 		unsigned int cpuset_mems_cookie;
1001 		do {
1002 			cpuset_mems_cookie = read_mems_allowed_begin();
1003 			n = cpuset_mem_spread_node();
1004 			folio = __folio_alloc_node_noprof(gfp, order, n);
1005 		} while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
1006 
1007 		return folio;
1008 	}
1009 	return folio_alloc_noprof(gfp, order);
1010 }
1011 EXPORT_SYMBOL(filemap_alloc_folio_noprof);
1012 #endif
1013 
1014 /*
1015  * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
1016  *
1017  * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
1018  *
1019  * @mapping1: the first mapping to lock
1020  * @mapping2: the second mapping to lock
1021  */
1022 void filemap_invalidate_lock_two(struct address_space *mapping1,
1023 				 struct address_space *mapping2)
1024 {
1025 	if (mapping1 > mapping2)
1026 		swap(mapping1, mapping2);
1027 	if (mapping1)
1028 		down_write(&mapping1->invalidate_lock);
1029 	if (mapping2 && mapping1 != mapping2)
1030 		down_write_nested(&mapping2->invalidate_lock, 1);
1031 }
1032 EXPORT_SYMBOL(filemap_invalidate_lock_two);
1033 
1034 /*
1035  * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1036  *
1037  * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1038  *
1039  * @mapping1: the first mapping to unlock
1040  * @mapping2: the second mapping to unlock
1041  */
1042 void filemap_invalidate_unlock_two(struct address_space *mapping1,
1043 				   struct address_space *mapping2)
1044 {
1045 	if (mapping1)
1046 		up_write(&mapping1->invalidate_lock);
1047 	if (mapping2 && mapping1 != mapping2)
1048 		up_write(&mapping2->invalidate_lock);
1049 }
1050 EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1051 
1052 /*
1053  * In order to wait for pages to become available there must be
1054  * waitqueues associated with pages. By using a hash table of
1055  * waitqueues where the bucket discipline is to maintain all
1056  * waiters on the same queue and wake all when any of the pages
1057  * become available, and for the woken contexts to check to be
1058  * sure the appropriate page became available, this saves space
1059  * at a cost of "thundering herd" phenomena during rare hash
1060  * collisions.
1061  */
1062 #define PAGE_WAIT_TABLE_BITS 8
1063 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1064 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1065 
1066 static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1067 {
1068 	return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1069 }
1070 
1071 void __init pagecache_init(void)
1072 {
1073 	int i;
1074 
1075 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1076 		init_waitqueue_head(&folio_wait_table[i]);
1077 
1078 	page_writeback_init();
1079 }
1080 
1081 /*
1082  * The page wait code treats the "wait->flags" somewhat unusually, because
1083  * we have multiple different kinds of waits, not just the usual "exclusive"
1084  * one.
1085  *
1086  * We have:
1087  *
1088  *  (a) no special bits set:
1089  *
1090  *	We're just waiting for the bit to be released, and when a waker
1091  *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1092  *	and remove it from the wait queue.
1093  *
1094  *	Simple and straightforward.
1095  *
1096  *  (b) WQ_FLAG_EXCLUSIVE:
1097  *
1098  *	The waiter is waiting to get the lock, and only one waiter should
1099  *	be woken up to avoid any thundering herd behavior. We'll set the
1100  *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1101  *
1102  *	This is the traditional exclusive wait.
1103  *
1104  *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1105  *
1106  *	The waiter is waiting to get the bit, and additionally wants the
1107  *	lock to be transferred to it for fair lock behavior. If the lock
1108  *	cannot be taken, we stop walking the wait queue without waking
1109  *	the waiter.
1110  *
1111  *	This is the "fair lock handoff" case, and in addition to setting
1112  *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1113  *	that it now has the lock.
1114  */
1115 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1116 {
1117 	unsigned int flags;
1118 	struct wait_page_key *key = arg;
1119 	struct wait_page_queue *wait_page
1120 		= container_of(wait, struct wait_page_queue, wait);
1121 
1122 	if (!wake_page_match(wait_page, key))
1123 		return 0;
1124 
1125 	/*
1126 	 * If it's a lock handoff wait, we get the bit for it, and
1127 	 * stop walking (and do not wake it up) if we can't.
1128 	 */
1129 	flags = wait->flags;
1130 	if (flags & WQ_FLAG_EXCLUSIVE) {
1131 		if (test_bit(key->bit_nr, &key->folio->flags))
1132 			return -1;
1133 		if (flags & WQ_FLAG_CUSTOM) {
1134 			if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1135 				return -1;
1136 			flags |= WQ_FLAG_DONE;
1137 		}
1138 	}
1139 
1140 	/*
1141 	 * We are holding the wait-queue lock, but the waiter that
1142 	 * is waiting for this will be checking the flags without
1143 	 * any locking.
1144 	 *
1145 	 * So update the flags atomically, and wake up the waiter
1146 	 * afterwards to avoid any races. This store-release pairs
1147 	 * with the load-acquire in folio_wait_bit_common().
1148 	 */
1149 	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1150 	wake_up_state(wait->private, mode);
1151 
1152 	/*
1153 	 * Ok, we have successfully done what we're waiting for,
1154 	 * and we can unconditionally remove the wait entry.
1155 	 *
1156 	 * Note that this pairs with the "finish_wait()" in the
1157 	 * waiter, and has to be the absolute last thing we do.
1158 	 * After this list_del_init(&wait->entry) the wait entry
1159 	 * might be de-allocated and the process might even have
1160 	 * exited.
1161 	 */
1162 	list_del_init_careful(&wait->entry);
1163 	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1164 }
1165 
1166 static void folio_wake_bit(struct folio *folio, int bit_nr)
1167 {
1168 	wait_queue_head_t *q = folio_waitqueue(folio);
1169 	struct wait_page_key key;
1170 	unsigned long flags;
1171 
1172 	key.folio = folio;
1173 	key.bit_nr = bit_nr;
1174 	key.page_match = 0;
1175 
1176 	spin_lock_irqsave(&q->lock, flags);
1177 	__wake_up_locked_key(q, TASK_NORMAL, &key);
1178 
1179 	/*
1180 	 * It's possible to miss clearing waiters here, when we woke our page
1181 	 * waiters, but the hashed waitqueue has waiters for other pages on it.
1182 	 * That's okay, it's a rare case. The next waker will clear it.
1183 	 *
1184 	 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1185 	 * other), the flag may be cleared in the course of freeing the page;
1186 	 * but that is not required for correctness.
1187 	 */
1188 	if (!waitqueue_active(q) || !key.page_match)
1189 		folio_clear_waiters(folio);
1190 
1191 	spin_unlock_irqrestore(&q->lock, flags);
1192 }
1193 
1194 /*
1195  * A choice of three behaviors for folio_wait_bit_common():
1196  */
1197 enum behavior {
1198 	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1199 			 * __folio_lock() waiting on then setting PG_locked.
1200 			 */
1201 	SHARED,		/* Hold ref to page and check the bit when woken, like
1202 			 * folio_wait_writeback() waiting on PG_writeback.
1203 			 */
1204 	DROP,		/* Drop ref to page before wait, no check when woken,
1205 			 * like folio_put_wait_locked() on PG_locked.
1206 			 */
1207 };
1208 
1209 /*
1210  * Attempt to check (or get) the folio flag, and mark us done
1211  * if successful.
1212  */
1213 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1214 					struct wait_queue_entry *wait)
1215 {
1216 	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1217 		if (test_and_set_bit(bit_nr, &folio->flags))
1218 			return false;
1219 	} else if (test_bit(bit_nr, &folio->flags))
1220 		return false;
1221 
1222 	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1223 	return true;
1224 }
1225 
1226 /* How many times do we accept lock stealing from under a waiter? */
1227 int sysctl_page_lock_unfairness = 5;
1228 
1229 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1230 		int state, enum behavior behavior)
1231 {
1232 	wait_queue_head_t *q = folio_waitqueue(folio);
1233 	int unfairness = sysctl_page_lock_unfairness;
1234 	struct wait_page_queue wait_page;
1235 	wait_queue_entry_t *wait = &wait_page.wait;
1236 	bool thrashing = false;
1237 	unsigned long pflags;
1238 	bool in_thrashing;
1239 
1240 	if (bit_nr == PG_locked &&
1241 	    !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1242 		delayacct_thrashing_start(&in_thrashing);
1243 		psi_memstall_enter(&pflags);
1244 		thrashing = true;
1245 	}
1246 
1247 	init_wait(wait);
1248 	wait->func = wake_page_function;
1249 	wait_page.folio = folio;
1250 	wait_page.bit_nr = bit_nr;
1251 
1252 repeat:
1253 	wait->flags = 0;
1254 	if (behavior == EXCLUSIVE) {
1255 		wait->flags = WQ_FLAG_EXCLUSIVE;
1256 		if (--unfairness < 0)
1257 			wait->flags |= WQ_FLAG_CUSTOM;
1258 	}
1259 
1260 	/*
1261 	 * Do one last check whether we can get the
1262 	 * page bit synchronously.
1263 	 *
1264 	 * Do the folio_set_waiters() marking before that
1265 	 * to let any waker we _just_ missed know they
1266 	 * need to wake us up (otherwise they'll never
1267 	 * even go to the slow case that looks at the
1268 	 * page queue), and add ourselves to the wait
1269 	 * queue if we need to sleep.
1270 	 *
1271 	 * This part needs to be done under the queue
1272 	 * lock to avoid races.
1273 	 */
1274 	spin_lock_irq(&q->lock);
1275 	folio_set_waiters(folio);
1276 	if (!folio_trylock_flag(folio, bit_nr, wait))
1277 		__add_wait_queue_entry_tail(q, wait);
1278 	spin_unlock_irq(&q->lock);
1279 
1280 	/*
1281 	 * From now on, all the logic will be based on
1282 	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1283 	 * see whether the page bit testing has already
1284 	 * been done by the wake function.
1285 	 *
1286 	 * We can drop our reference to the folio.
1287 	 */
1288 	if (behavior == DROP)
1289 		folio_put(folio);
1290 
1291 	/*
1292 	 * Note that until the "finish_wait()", or until
1293 	 * we see the WQ_FLAG_WOKEN flag, we need to
1294 	 * be very careful with the 'wait->flags', because
1295 	 * we may race with a waker that sets them.
1296 	 */
1297 	for (;;) {
1298 		unsigned int flags;
1299 
1300 		set_current_state(state);
1301 
1302 		/* Loop until we've been woken or interrupted */
1303 		flags = smp_load_acquire(&wait->flags);
1304 		if (!(flags & WQ_FLAG_WOKEN)) {
1305 			if (signal_pending_state(state, current))
1306 				break;
1307 
1308 			io_schedule();
1309 			continue;
1310 		}
1311 
1312 		/* If we were non-exclusive, we're done */
1313 		if (behavior != EXCLUSIVE)
1314 			break;
1315 
1316 		/* If the waker got the lock for us, we're done */
1317 		if (flags & WQ_FLAG_DONE)
1318 			break;
1319 
1320 		/*
1321 		 * Otherwise, if we're getting the lock, we need to
1322 		 * try to get it ourselves.
1323 		 *
1324 		 * And if that fails, we'll have to retry this all.
1325 		 */
1326 		if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1327 			goto repeat;
1328 
1329 		wait->flags |= WQ_FLAG_DONE;
1330 		break;
1331 	}
1332 
1333 	/*
1334 	 * If a signal happened, this 'finish_wait()' may remove the last
1335 	 * waiter from the wait-queues, but the folio waiters bit will remain
1336 	 * set. That's ok. The next wakeup will take care of it, and trying
1337 	 * to do it here would be difficult and prone to races.
1338 	 */
1339 	finish_wait(q, wait);
1340 
1341 	if (thrashing) {
1342 		delayacct_thrashing_end(&in_thrashing);
1343 		psi_memstall_leave(&pflags);
1344 	}
1345 
1346 	/*
1347 	 * NOTE! The wait->flags weren't stable until we've done the
1348 	 * 'finish_wait()', and we could have exited the loop above due
1349 	 * to a signal, and had a wakeup event happen after the signal
1350 	 * test but before the 'finish_wait()'.
1351 	 *
1352 	 * So only after the finish_wait() can we reliably determine
1353 	 * if we got woken up or not, so we can now figure out the final
1354 	 * return value based on that state without races.
1355 	 *
1356 	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1357 	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1358 	 */
1359 	if (behavior == EXCLUSIVE)
1360 		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1361 
1362 	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1363 }
1364 
1365 #ifdef CONFIG_MIGRATION
1366 /**
1367  * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1368  * @entry: migration swap entry.
1369  * @ptl: already locked ptl. This function will drop the lock.
1370  *
1371  * Wait for a migration entry referencing the given page to be removed. This is
1372  * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1373  * this can be called without taking a reference on the page. Instead this
1374  * should be called while holding the ptl for the migration entry referencing
1375  * the page.
1376  *
1377  * Returns after unlocking the ptl.
1378  *
1379  * This follows the same logic as folio_wait_bit_common() so see the comments
1380  * there.
1381  */
1382 void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl)
1383 	__releases(ptl)
1384 {
1385 	struct wait_page_queue wait_page;
1386 	wait_queue_entry_t *wait = &wait_page.wait;
1387 	bool thrashing = false;
1388 	unsigned long pflags;
1389 	bool in_thrashing;
1390 	wait_queue_head_t *q;
1391 	struct folio *folio = pfn_swap_entry_folio(entry);
1392 
1393 	q = folio_waitqueue(folio);
1394 	if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1395 		delayacct_thrashing_start(&in_thrashing);
1396 		psi_memstall_enter(&pflags);
1397 		thrashing = true;
1398 	}
1399 
1400 	init_wait(wait);
1401 	wait->func = wake_page_function;
1402 	wait_page.folio = folio;
1403 	wait_page.bit_nr = PG_locked;
1404 	wait->flags = 0;
1405 
1406 	spin_lock_irq(&q->lock);
1407 	folio_set_waiters(folio);
1408 	if (!folio_trylock_flag(folio, PG_locked, wait))
1409 		__add_wait_queue_entry_tail(q, wait);
1410 	spin_unlock_irq(&q->lock);
1411 
1412 	/*
1413 	 * If a migration entry exists for the page the migration path must hold
1414 	 * a valid reference to the page, and it must take the ptl to remove the
1415 	 * migration entry. So the page is valid until the ptl is dropped.
1416 	 */
1417 	spin_unlock(ptl);
1418 
1419 	for (;;) {
1420 		unsigned int flags;
1421 
1422 		set_current_state(TASK_UNINTERRUPTIBLE);
1423 
1424 		/* Loop until we've been woken or interrupted */
1425 		flags = smp_load_acquire(&wait->flags);
1426 		if (!(flags & WQ_FLAG_WOKEN)) {
1427 			if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1428 				break;
1429 
1430 			io_schedule();
1431 			continue;
1432 		}
1433 		break;
1434 	}
1435 
1436 	finish_wait(q, wait);
1437 
1438 	if (thrashing) {
1439 		delayacct_thrashing_end(&in_thrashing);
1440 		psi_memstall_leave(&pflags);
1441 	}
1442 }
1443 #endif
1444 
1445 void folio_wait_bit(struct folio *folio, int bit_nr)
1446 {
1447 	folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1448 }
1449 EXPORT_SYMBOL(folio_wait_bit);
1450 
1451 int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1452 {
1453 	return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1454 }
1455 EXPORT_SYMBOL(folio_wait_bit_killable);
1456 
1457 /**
1458  * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1459  * @folio: The folio to wait for.
1460  * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1461  *
1462  * The caller should hold a reference on @folio.  They expect the page to
1463  * become unlocked relatively soon, but do not wish to hold up migration
1464  * (for example) by holding the reference while waiting for the folio to
1465  * come unlocked.  After this function returns, the caller should not
1466  * dereference @folio.
1467  *
1468  * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1469  */
1470 static int folio_put_wait_locked(struct folio *folio, int state)
1471 {
1472 	return folio_wait_bit_common(folio, PG_locked, state, DROP);
1473 }
1474 
1475 /**
1476  * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1477  * @folio: Folio defining the wait queue of interest
1478  * @waiter: Waiter to add to the queue
1479  *
1480  * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1481  */
1482 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1483 {
1484 	wait_queue_head_t *q = folio_waitqueue(folio);
1485 	unsigned long flags;
1486 
1487 	spin_lock_irqsave(&q->lock, flags);
1488 	__add_wait_queue_entry_tail(q, waiter);
1489 	folio_set_waiters(folio);
1490 	spin_unlock_irqrestore(&q->lock, flags);
1491 }
1492 EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1493 
1494 /**
1495  * folio_unlock - Unlock a locked folio.
1496  * @folio: The folio.
1497  *
1498  * Unlocks the folio and wakes up any thread sleeping on the page lock.
1499  *
1500  * Context: May be called from interrupt or process context.  May not be
1501  * called from NMI context.
1502  */
1503 void folio_unlock(struct folio *folio)
1504 {
1505 	/* Bit 7 allows x86 to check the byte's sign bit */
1506 	BUILD_BUG_ON(PG_waiters != 7);
1507 	BUILD_BUG_ON(PG_locked > 7);
1508 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1509 	if (folio_xor_flags_has_waiters(folio, 1 << PG_locked))
1510 		folio_wake_bit(folio, PG_locked);
1511 }
1512 EXPORT_SYMBOL(folio_unlock);
1513 
1514 /**
1515  * folio_end_read - End read on a folio.
1516  * @folio: The folio.
1517  * @success: True if all reads completed successfully.
1518  *
1519  * When all reads against a folio have completed, filesystems should
1520  * call this function to let the pagecache know that no more reads
1521  * are outstanding.  This will unlock the folio and wake up any thread
1522  * sleeping on the lock.  The folio will also be marked uptodate if all
1523  * reads succeeded.
1524  *
1525  * Context: May be called from interrupt or process context.  May not be
1526  * called from NMI context.
1527  */
1528 void folio_end_read(struct folio *folio, bool success)
1529 {
1530 	unsigned long mask = 1 << PG_locked;
1531 
1532 	/* Must be in bottom byte for x86 to work */
1533 	BUILD_BUG_ON(PG_uptodate > 7);
1534 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1535 	VM_BUG_ON_FOLIO(folio_test_uptodate(folio), folio);
1536 
1537 	if (likely(success))
1538 		mask |= 1 << PG_uptodate;
1539 	if (folio_xor_flags_has_waiters(folio, mask))
1540 		folio_wake_bit(folio, PG_locked);
1541 }
1542 EXPORT_SYMBOL(folio_end_read);
1543 
1544 /**
1545  * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1546  * @folio: The folio.
1547  *
1548  * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1549  * it.  The folio reference held for PG_private_2 being set is released.
1550  *
1551  * This is, for example, used when a netfs folio is being written to a local
1552  * disk cache, thereby allowing writes to the cache for the same folio to be
1553  * serialised.
1554  */
1555 void folio_end_private_2(struct folio *folio)
1556 {
1557 	VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1558 	clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1559 	folio_wake_bit(folio, PG_private_2);
1560 	folio_put(folio);
1561 }
1562 EXPORT_SYMBOL(folio_end_private_2);
1563 
1564 /**
1565  * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1566  * @folio: The folio to wait on.
1567  *
1568  * Wait for PG_private_2 to be cleared on a folio.
1569  */
1570 void folio_wait_private_2(struct folio *folio)
1571 {
1572 	while (folio_test_private_2(folio))
1573 		folio_wait_bit(folio, PG_private_2);
1574 }
1575 EXPORT_SYMBOL(folio_wait_private_2);
1576 
1577 /**
1578  * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1579  * @folio: The folio to wait on.
1580  *
1581  * Wait for PG_private_2 to be cleared on a folio or until a fatal signal is
1582  * received by the calling task.
1583  *
1584  * Return:
1585  * - 0 if successful.
1586  * - -EINTR if a fatal signal was encountered.
1587  */
1588 int folio_wait_private_2_killable(struct folio *folio)
1589 {
1590 	int ret = 0;
1591 
1592 	while (folio_test_private_2(folio)) {
1593 		ret = folio_wait_bit_killable(folio, PG_private_2);
1594 		if (ret < 0)
1595 			break;
1596 	}
1597 
1598 	return ret;
1599 }
1600 EXPORT_SYMBOL(folio_wait_private_2_killable);
1601 
1602 /**
1603  * folio_end_writeback - End writeback against a folio.
1604  * @folio: The folio.
1605  *
1606  * The folio must actually be under writeback.
1607  *
1608  * Context: May be called from process or interrupt context.
1609  */
1610 void folio_end_writeback(struct folio *folio)
1611 {
1612 	VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio);
1613 
1614 	/*
1615 	 * folio_test_clear_reclaim() could be used here but it is an
1616 	 * atomic operation and overkill in this particular case. Failing
1617 	 * to shuffle a folio marked for immediate reclaim is too mild
1618 	 * a gain to justify taking an atomic operation penalty at the
1619 	 * end of every folio writeback.
1620 	 */
1621 	if (folio_test_reclaim(folio)) {
1622 		folio_clear_reclaim(folio);
1623 		folio_rotate_reclaimable(folio);
1624 	}
1625 
1626 	/*
1627 	 * Writeback does not hold a folio reference of its own, relying
1628 	 * on truncation to wait for the clearing of PG_writeback.
1629 	 * But here we must make sure that the folio is not freed and
1630 	 * reused before the folio_wake_bit().
1631 	 */
1632 	folio_get(folio);
1633 	if (__folio_end_writeback(folio))
1634 		folio_wake_bit(folio, PG_writeback);
1635 	acct_reclaim_writeback(folio);
1636 	folio_put(folio);
1637 }
1638 EXPORT_SYMBOL(folio_end_writeback);
1639 
1640 /**
1641  * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1642  * @folio: The folio to lock
1643  */
1644 void __folio_lock(struct folio *folio)
1645 {
1646 	folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1647 				EXCLUSIVE);
1648 }
1649 EXPORT_SYMBOL(__folio_lock);
1650 
1651 int __folio_lock_killable(struct folio *folio)
1652 {
1653 	return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1654 					EXCLUSIVE);
1655 }
1656 EXPORT_SYMBOL_GPL(__folio_lock_killable);
1657 
1658 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1659 {
1660 	struct wait_queue_head *q = folio_waitqueue(folio);
1661 	int ret;
1662 
1663 	wait->folio = folio;
1664 	wait->bit_nr = PG_locked;
1665 
1666 	spin_lock_irq(&q->lock);
1667 	__add_wait_queue_entry_tail(q, &wait->wait);
1668 	folio_set_waiters(folio);
1669 	ret = !folio_trylock(folio);
1670 	/*
1671 	 * If we were successful now, we know we're still on the
1672 	 * waitqueue as we're still under the lock. This means it's
1673 	 * safe to remove and return success, we know the callback
1674 	 * isn't going to trigger.
1675 	 */
1676 	if (!ret)
1677 		__remove_wait_queue(q, &wait->wait);
1678 	else
1679 		ret = -EIOCBQUEUED;
1680 	spin_unlock_irq(&q->lock);
1681 	return ret;
1682 }
1683 
1684 /*
1685  * Return values:
1686  * 0 - folio is locked.
1687  * non-zero - folio is not locked.
1688  *     mmap_lock or per-VMA lock has been released (mmap_read_unlock() or
1689  *     vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and
1690  *     FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held.
1691  *
1692  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0
1693  * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed.
1694  */
1695 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf)
1696 {
1697 	unsigned int flags = vmf->flags;
1698 
1699 	if (fault_flag_allow_retry_first(flags)) {
1700 		/*
1701 		 * CAUTION! In this case, mmap_lock/per-VMA lock is not
1702 		 * released even though returning VM_FAULT_RETRY.
1703 		 */
1704 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1705 			return VM_FAULT_RETRY;
1706 
1707 		release_fault_lock(vmf);
1708 		if (flags & FAULT_FLAG_KILLABLE)
1709 			folio_wait_locked_killable(folio);
1710 		else
1711 			folio_wait_locked(folio);
1712 		return VM_FAULT_RETRY;
1713 	}
1714 	if (flags & FAULT_FLAG_KILLABLE) {
1715 		bool ret;
1716 
1717 		ret = __folio_lock_killable(folio);
1718 		if (ret) {
1719 			release_fault_lock(vmf);
1720 			return VM_FAULT_RETRY;
1721 		}
1722 	} else {
1723 		__folio_lock(folio);
1724 	}
1725 
1726 	return 0;
1727 }
1728 
1729 /**
1730  * page_cache_next_miss() - Find the next gap in the page cache.
1731  * @mapping: Mapping.
1732  * @index: Index.
1733  * @max_scan: Maximum range to search.
1734  *
1735  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1736  * gap with the lowest index.
1737  *
1738  * This function may be called under the rcu_read_lock.  However, this will
1739  * not atomically search a snapshot of the cache at a single point in time.
1740  * For example, if a gap is created at index 5, then subsequently a gap is
1741  * created at index 10, page_cache_next_miss covering both indices may
1742  * return 10 if called under the rcu_read_lock.
1743  *
1744  * Return: The index of the gap if found, otherwise an index outside the
1745  * range specified (in which case 'return - index >= max_scan' will be true).
1746  * In the rare case of index wrap-around, 0 will be returned.
1747  */
1748 pgoff_t page_cache_next_miss(struct address_space *mapping,
1749 			     pgoff_t index, unsigned long max_scan)
1750 {
1751 	XA_STATE(xas, &mapping->i_pages, index);
1752 
1753 	while (max_scan--) {
1754 		void *entry = xas_next(&xas);
1755 		if (!entry || xa_is_value(entry))
1756 			return xas.xa_index;
1757 		if (xas.xa_index == 0)
1758 			return 0;
1759 	}
1760 
1761 	return index + max_scan;
1762 }
1763 EXPORT_SYMBOL(page_cache_next_miss);
1764 
1765 /**
1766  * page_cache_prev_miss() - Find the previous gap in the page cache.
1767  * @mapping: Mapping.
1768  * @index: Index.
1769  * @max_scan: Maximum range to search.
1770  *
1771  * Search the range [max(index - max_scan + 1, 0), index] for the
1772  * gap with the highest index.
1773  *
1774  * This function may be called under the rcu_read_lock.  However, this will
1775  * not atomically search a snapshot of the cache at a single point in time.
1776  * For example, if a gap is created at index 10, then subsequently a gap is
1777  * created at index 5, page_cache_prev_miss() covering both indices may
1778  * return 5 if called under the rcu_read_lock.
1779  *
1780  * Return: The index of the gap if found, otherwise an index outside the
1781  * range specified (in which case 'index - return >= max_scan' will be true).
1782  * In the rare case of wrap-around, ULONG_MAX will be returned.
1783  */
1784 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1785 			     pgoff_t index, unsigned long max_scan)
1786 {
1787 	XA_STATE(xas, &mapping->i_pages, index);
1788 
1789 	while (max_scan--) {
1790 		void *entry = xas_prev(&xas);
1791 		if (!entry || xa_is_value(entry))
1792 			break;
1793 		if (xas.xa_index == ULONG_MAX)
1794 			break;
1795 	}
1796 
1797 	return xas.xa_index;
1798 }
1799 EXPORT_SYMBOL(page_cache_prev_miss);
1800 
1801 /*
1802  * Lockless page cache protocol:
1803  * On the lookup side:
1804  * 1. Load the folio from i_pages
1805  * 2. Increment the refcount if it's not zero
1806  * 3. If the folio is not found by xas_reload(), put the refcount and retry
1807  *
1808  * On the removal side:
1809  * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1810  * B. Remove the page from i_pages
1811  * C. Return the page to the page allocator
1812  *
1813  * This means that any page may have its reference count temporarily
1814  * increased by a speculative page cache (or GUP-fast) lookup as it can
1815  * be allocated by another user before the RCU grace period expires.
1816  * Because the refcount temporarily acquired here may end up being the
1817  * last refcount on the page, any page allocation must be freeable by
1818  * folio_put().
1819  */
1820 
1821 /*
1822  * filemap_get_entry - Get a page cache entry.
1823  * @mapping: the address_space to search
1824  * @index: The page cache index.
1825  *
1826  * Looks up the page cache entry at @mapping & @index.  If it is a folio,
1827  * it is returned with an increased refcount.  If it is a shadow entry
1828  * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1829  * it is returned without further action.
1830  *
1831  * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1832  */
1833 void *filemap_get_entry(struct address_space *mapping, pgoff_t index)
1834 {
1835 	XA_STATE(xas, &mapping->i_pages, index);
1836 	struct folio *folio;
1837 
1838 	rcu_read_lock();
1839 repeat:
1840 	xas_reset(&xas);
1841 	folio = xas_load(&xas);
1842 	if (xas_retry(&xas, folio))
1843 		goto repeat;
1844 	/*
1845 	 * A shadow entry of a recently evicted page, or a swap entry from
1846 	 * shmem/tmpfs.  Return it without attempting to raise page count.
1847 	 */
1848 	if (!folio || xa_is_value(folio))
1849 		goto out;
1850 
1851 	if (!folio_try_get(folio))
1852 		goto repeat;
1853 
1854 	if (unlikely(folio != xas_reload(&xas))) {
1855 		folio_put(folio);
1856 		goto repeat;
1857 	}
1858 out:
1859 	rcu_read_unlock();
1860 
1861 	return folio;
1862 }
1863 
1864 /**
1865  * __filemap_get_folio - Find and get a reference to a folio.
1866  * @mapping: The address_space to search.
1867  * @index: The page index.
1868  * @fgp_flags: %FGP flags modify how the folio is returned.
1869  * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1870  *
1871  * Looks up the page cache entry at @mapping & @index.
1872  *
1873  * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1874  * if the %GFP flags specified for %FGP_CREAT are atomic.
1875  *
1876  * If this function returns a folio, it is returned with an increased refcount.
1877  *
1878  * Return: The found folio or an ERR_PTR() otherwise.
1879  */
1880 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1881 		fgf_t fgp_flags, gfp_t gfp)
1882 {
1883 	struct folio *folio;
1884 
1885 repeat:
1886 	folio = filemap_get_entry(mapping, index);
1887 	if (xa_is_value(folio))
1888 		folio = NULL;
1889 	if (!folio)
1890 		goto no_page;
1891 
1892 	if (fgp_flags & FGP_LOCK) {
1893 		if (fgp_flags & FGP_NOWAIT) {
1894 			if (!folio_trylock(folio)) {
1895 				folio_put(folio);
1896 				return ERR_PTR(-EAGAIN);
1897 			}
1898 		} else {
1899 			folio_lock(folio);
1900 		}
1901 
1902 		/* Has the page been truncated? */
1903 		if (unlikely(folio->mapping != mapping)) {
1904 			folio_unlock(folio);
1905 			folio_put(folio);
1906 			goto repeat;
1907 		}
1908 		VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1909 	}
1910 
1911 	if (fgp_flags & FGP_ACCESSED)
1912 		folio_mark_accessed(folio);
1913 	else if (fgp_flags & FGP_WRITE) {
1914 		/* Clear idle flag for buffer write */
1915 		if (folio_test_idle(folio))
1916 			folio_clear_idle(folio);
1917 	}
1918 
1919 	if (fgp_flags & FGP_STABLE)
1920 		folio_wait_stable(folio);
1921 no_page:
1922 	if (!folio && (fgp_flags & FGP_CREAT)) {
1923 		unsigned int min_order = mapping_min_folio_order(mapping);
1924 		unsigned int order = max(min_order, FGF_GET_ORDER(fgp_flags));
1925 		int err;
1926 		index = mapping_align_index(mapping, index);
1927 
1928 		if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1929 			gfp |= __GFP_WRITE;
1930 		if (fgp_flags & FGP_NOFS)
1931 			gfp &= ~__GFP_FS;
1932 		if (fgp_flags & FGP_NOWAIT) {
1933 			gfp &= ~GFP_KERNEL;
1934 			gfp |= GFP_NOWAIT | __GFP_NOWARN;
1935 		}
1936 		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1937 			fgp_flags |= FGP_LOCK;
1938 
1939 		if (order > mapping_max_folio_order(mapping))
1940 			order = mapping_max_folio_order(mapping);
1941 		/* If we're not aligned, allocate a smaller folio */
1942 		if (index & ((1UL << order) - 1))
1943 			order = __ffs(index);
1944 
1945 		do {
1946 			gfp_t alloc_gfp = gfp;
1947 
1948 			err = -ENOMEM;
1949 			if (order > min_order)
1950 				alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN;
1951 			folio = filemap_alloc_folio(alloc_gfp, order);
1952 			if (!folio)
1953 				continue;
1954 
1955 			/* Init accessed so avoid atomic mark_page_accessed later */
1956 			if (fgp_flags & FGP_ACCESSED)
1957 				__folio_set_referenced(folio);
1958 
1959 			err = filemap_add_folio(mapping, folio, index, gfp);
1960 			if (!err)
1961 				break;
1962 			folio_put(folio);
1963 			folio = NULL;
1964 		} while (order-- > min_order);
1965 
1966 		if (err == -EEXIST)
1967 			goto repeat;
1968 		if (err)
1969 			return ERR_PTR(err);
1970 		/*
1971 		 * filemap_add_folio locks the page, and for mmap
1972 		 * we expect an unlocked page.
1973 		 */
1974 		if (folio && (fgp_flags & FGP_FOR_MMAP))
1975 			folio_unlock(folio);
1976 	}
1977 
1978 	if (!folio)
1979 		return ERR_PTR(-ENOENT);
1980 	return folio;
1981 }
1982 EXPORT_SYMBOL(__filemap_get_folio);
1983 
1984 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
1985 		xa_mark_t mark)
1986 {
1987 	struct folio *folio;
1988 
1989 retry:
1990 	if (mark == XA_PRESENT)
1991 		folio = xas_find(xas, max);
1992 	else
1993 		folio = xas_find_marked(xas, max, mark);
1994 
1995 	if (xas_retry(xas, folio))
1996 		goto retry;
1997 	/*
1998 	 * A shadow entry of a recently evicted page, a swap
1999 	 * entry from shmem/tmpfs or a DAX entry.  Return it
2000 	 * without attempting to raise page count.
2001 	 */
2002 	if (!folio || xa_is_value(folio))
2003 		return folio;
2004 
2005 	if (!folio_try_get(folio))
2006 		goto reset;
2007 
2008 	if (unlikely(folio != xas_reload(xas))) {
2009 		folio_put(folio);
2010 		goto reset;
2011 	}
2012 
2013 	return folio;
2014 reset:
2015 	xas_reset(xas);
2016 	goto retry;
2017 }
2018 
2019 /**
2020  * find_get_entries - gang pagecache lookup
2021  * @mapping:	The address_space to search
2022  * @start:	The starting page cache index
2023  * @end:	The final page index (inclusive).
2024  * @fbatch:	Where the resulting entries are placed.
2025  * @indices:	The cache indices corresponding to the entries in @entries
2026  *
2027  * find_get_entries() will search for and return a batch of entries in
2028  * the mapping.  The entries are placed in @fbatch.  find_get_entries()
2029  * takes a reference on any actual folios it returns.
2030  *
2031  * The entries have ascending indexes.  The indices may not be consecutive
2032  * due to not-present entries or large folios.
2033  *
2034  * Any shadow entries of evicted folios, or swap entries from
2035  * shmem/tmpfs, are included in the returned array.
2036  *
2037  * Return: The number of entries which were found.
2038  */
2039 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
2040 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2041 {
2042 	XA_STATE(xas, &mapping->i_pages, *start);
2043 	struct folio *folio;
2044 
2045 	rcu_read_lock();
2046 	while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2047 		indices[fbatch->nr] = xas.xa_index;
2048 		if (!folio_batch_add(fbatch, folio))
2049 			break;
2050 	}
2051 
2052 	if (folio_batch_count(fbatch)) {
2053 		unsigned long nr;
2054 		int idx = folio_batch_count(fbatch) - 1;
2055 
2056 		folio = fbatch->folios[idx];
2057 		if (!xa_is_value(folio))
2058 			nr = folio_nr_pages(folio);
2059 		else
2060 			nr = 1 << xa_get_order(&mapping->i_pages, indices[idx]);
2061 		*start = round_down(indices[idx] + nr, nr);
2062 	}
2063 	rcu_read_unlock();
2064 
2065 	return folio_batch_count(fbatch);
2066 }
2067 
2068 /**
2069  * find_lock_entries - Find a batch of pagecache entries.
2070  * @mapping:	The address_space to search.
2071  * @start:	The starting page cache index.
2072  * @end:	The final page index (inclusive).
2073  * @fbatch:	Where the resulting entries are placed.
2074  * @indices:	The cache indices of the entries in @fbatch.
2075  *
2076  * find_lock_entries() will return a batch of entries from @mapping.
2077  * Swap, shadow and DAX entries are included.  Folios are returned
2078  * locked and with an incremented refcount.  Folios which are locked
2079  * by somebody else or under writeback are skipped.  Folios which are
2080  * partially outside the range are not returned.
2081  *
2082  * The entries have ascending indexes.  The indices may not be consecutive
2083  * due to not-present entries, large folios, folios which could not be
2084  * locked or folios under writeback.
2085  *
2086  * Return: The number of entries which were found.
2087  */
2088 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
2089 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2090 {
2091 	XA_STATE(xas, &mapping->i_pages, *start);
2092 	struct folio *folio;
2093 
2094 	rcu_read_lock();
2095 	while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2096 		unsigned long base;
2097 		unsigned long nr;
2098 
2099 		if (!xa_is_value(folio)) {
2100 			nr = folio_nr_pages(folio);
2101 			base = folio->index;
2102 			/* Omit large folio which begins before the start */
2103 			if (base < *start)
2104 				goto put;
2105 			/* Omit large folio which extends beyond the end */
2106 			if (base + nr - 1 > end)
2107 				goto put;
2108 			if (!folio_trylock(folio))
2109 				goto put;
2110 			if (folio->mapping != mapping ||
2111 			    folio_test_writeback(folio))
2112 				goto unlock;
2113 			VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2114 					folio);
2115 		} else {
2116 			nr = 1 << xas_get_order(&xas);
2117 			base = xas.xa_index & ~(nr - 1);
2118 			/* Omit order>0 value which begins before the start */
2119 			if (base < *start)
2120 				continue;
2121 			/* Omit order>0 value which extends beyond the end */
2122 			if (base + nr - 1 > end)
2123 				break;
2124 		}
2125 
2126 		/* Update start now so that last update is correct on return */
2127 		*start = base + nr;
2128 		indices[fbatch->nr] = xas.xa_index;
2129 		if (!folio_batch_add(fbatch, folio))
2130 			break;
2131 		continue;
2132 unlock:
2133 		folio_unlock(folio);
2134 put:
2135 		folio_put(folio);
2136 	}
2137 	rcu_read_unlock();
2138 
2139 	return folio_batch_count(fbatch);
2140 }
2141 
2142 /**
2143  * filemap_get_folios - Get a batch of folios
2144  * @mapping:	The address_space to search
2145  * @start:	The starting page index
2146  * @end:	The final page index (inclusive)
2147  * @fbatch:	The batch to fill.
2148  *
2149  * Search for and return a batch of folios in the mapping starting at
2150  * index @start and up to index @end (inclusive).  The folios are returned
2151  * in @fbatch with an elevated reference count.
2152  *
2153  * Return: The number of folios which were found.
2154  * We also update @start to index the next folio for the traversal.
2155  */
2156 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2157 		pgoff_t end, struct folio_batch *fbatch)
2158 {
2159 	return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch);
2160 }
2161 EXPORT_SYMBOL(filemap_get_folios);
2162 
2163 /**
2164  * filemap_get_folios_contig - Get a batch of contiguous folios
2165  * @mapping:	The address_space to search
2166  * @start:	The starting page index
2167  * @end:	The final page index (inclusive)
2168  * @fbatch:	The batch to fill
2169  *
2170  * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2171  * except the returned folios are guaranteed to be contiguous. This may
2172  * not return all contiguous folios if the batch gets filled up.
2173  *
2174  * Return: The number of folios found.
2175  * Also update @start to be positioned for traversal of the next folio.
2176  */
2177 
2178 unsigned filemap_get_folios_contig(struct address_space *mapping,
2179 		pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
2180 {
2181 	XA_STATE(xas, &mapping->i_pages, *start);
2182 	unsigned long nr;
2183 	struct folio *folio;
2184 
2185 	rcu_read_lock();
2186 
2187 	for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2188 			folio = xas_next(&xas)) {
2189 		if (xas_retry(&xas, folio))
2190 			continue;
2191 		/*
2192 		 * If the entry has been swapped out, we can stop looking.
2193 		 * No current caller is looking for DAX entries.
2194 		 */
2195 		if (xa_is_value(folio))
2196 			goto update_start;
2197 
2198 		/* If we landed in the middle of a THP, continue at its end. */
2199 		if (xa_is_sibling(folio))
2200 			goto update_start;
2201 
2202 		if (!folio_try_get(folio))
2203 			goto retry;
2204 
2205 		if (unlikely(folio != xas_reload(&xas)))
2206 			goto put_folio;
2207 
2208 		if (!folio_batch_add(fbatch, folio)) {
2209 			nr = folio_nr_pages(folio);
2210 			*start = folio->index + nr;
2211 			goto out;
2212 		}
2213 		continue;
2214 put_folio:
2215 		folio_put(folio);
2216 
2217 retry:
2218 		xas_reset(&xas);
2219 	}
2220 
2221 update_start:
2222 	nr = folio_batch_count(fbatch);
2223 
2224 	if (nr) {
2225 		folio = fbatch->folios[nr - 1];
2226 		*start = folio_next_index(folio);
2227 	}
2228 out:
2229 	rcu_read_unlock();
2230 	return folio_batch_count(fbatch);
2231 }
2232 EXPORT_SYMBOL(filemap_get_folios_contig);
2233 
2234 /**
2235  * filemap_get_folios_tag - Get a batch of folios matching @tag
2236  * @mapping:    The address_space to search
2237  * @start:      The starting page index
2238  * @end:        The final page index (inclusive)
2239  * @tag:        The tag index
2240  * @fbatch:     The batch to fill
2241  *
2242  * The first folio may start before @start; if it does, it will contain
2243  * @start.  The final folio may extend beyond @end; if it does, it will
2244  * contain @end.  The folios have ascending indices.  There may be gaps
2245  * between the folios if there are indices which have no folio in the
2246  * page cache.  If folios are added to or removed from the page cache
2247  * while this is running, they may or may not be found by this call.
2248  * Only returns folios that are tagged with @tag.
2249  *
2250  * Return: The number of folios found.
2251  * Also update @start to index the next folio for traversal.
2252  */
2253 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
2254 			pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
2255 {
2256 	XA_STATE(xas, &mapping->i_pages, *start);
2257 	struct folio *folio;
2258 
2259 	rcu_read_lock();
2260 	while ((folio = find_get_entry(&xas, end, tag)) != NULL) {
2261 		/*
2262 		 * Shadow entries should never be tagged, but this iteration
2263 		 * is lockless so there is a window for page reclaim to evict
2264 		 * a page we saw tagged. Skip over it.
2265 		 */
2266 		if (xa_is_value(folio))
2267 			continue;
2268 		if (!folio_batch_add(fbatch, folio)) {
2269 			unsigned long nr = folio_nr_pages(folio);
2270 			*start = folio->index + nr;
2271 			goto out;
2272 		}
2273 	}
2274 	/*
2275 	 * We come here when there is no page beyond @end. We take care to not
2276 	 * overflow the index @start as it confuses some of the callers. This
2277 	 * breaks the iteration when there is a page at index -1 but that is
2278 	 * already broke anyway.
2279 	 */
2280 	if (end == (pgoff_t)-1)
2281 		*start = (pgoff_t)-1;
2282 	else
2283 		*start = end + 1;
2284 out:
2285 	rcu_read_unlock();
2286 
2287 	return folio_batch_count(fbatch);
2288 }
2289 EXPORT_SYMBOL(filemap_get_folios_tag);
2290 
2291 /*
2292  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2293  * a _large_ part of the i/o request. Imagine the worst scenario:
2294  *
2295  *      ---R__________________________________________B__________
2296  *         ^ reading here                             ^ bad block(assume 4k)
2297  *
2298  * read(R) => miss => readahead(R...B) => media error => frustrating retries
2299  * => failing the whole request => read(R) => read(R+1) =>
2300  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2301  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2302  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2303  *
2304  * It is going insane. Fix it by quickly scaling down the readahead size.
2305  */
2306 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2307 {
2308 	ra->ra_pages /= 4;
2309 }
2310 
2311 /*
2312  * filemap_get_read_batch - Get a batch of folios for read
2313  *
2314  * Get a batch of folios which represent a contiguous range of bytes in
2315  * the file.  No exceptional entries will be returned.  If @index is in
2316  * the middle of a folio, the entire folio will be returned.  The last
2317  * folio in the batch may have the readahead flag set or the uptodate flag
2318  * clear so that the caller can take the appropriate action.
2319  */
2320 static void filemap_get_read_batch(struct address_space *mapping,
2321 		pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2322 {
2323 	XA_STATE(xas, &mapping->i_pages, index);
2324 	struct folio *folio;
2325 
2326 	rcu_read_lock();
2327 	for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2328 		if (xas_retry(&xas, folio))
2329 			continue;
2330 		if (xas.xa_index > max || xa_is_value(folio))
2331 			break;
2332 		if (xa_is_sibling(folio))
2333 			break;
2334 		if (!folio_try_get(folio))
2335 			goto retry;
2336 
2337 		if (unlikely(folio != xas_reload(&xas)))
2338 			goto put_folio;
2339 
2340 		if (!folio_batch_add(fbatch, folio))
2341 			break;
2342 		if (!folio_test_uptodate(folio))
2343 			break;
2344 		if (folio_test_readahead(folio))
2345 			break;
2346 		xas_advance(&xas, folio_next_index(folio) - 1);
2347 		continue;
2348 put_folio:
2349 		folio_put(folio);
2350 retry:
2351 		xas_reset(&xas);
2352 	}
2353 	rcu_read_unlock();
2354 }
2355 
2356 static int filemap_read_folio(struct file *file, filler_t filler,
2357 		struct folio *folio)
2358 {
2359 	bool workingset = folio_test_workingset(folio);
2360 	unsigned long pflags;
2361 	int error;
2362 
2363 	/* Start the actual read. The read will unlock the page. */
2364 	if (unlikely(workingset))
2365 		psi_memstall_enter(&pflags);
2366 	error = filler(file, folio);
2367 	if (unlikely(workingset))
2368 		psi_memstall_leave(&pflags);
2369 	if (error)
2370 		return error;
2371 
2372 	error = folio_wait_locked_killable(folio);
2373 	if (error)
2374 		return error;
2375 	if (folio_test_uptodate(folio))
2376 		return 0;
2377 	if (file)
2378 		shrink_readahead_size_eio(&file->f_ra);
2379 	return -EIO;
2380 }
2381 
2382 static bool filemap_range_uptodate(struct address_space *mapping,
2383 		loff_t pos, size_t count, struct folio *folio,
2384 		bool need_uptodate)
2385 {
2386 	if (folio_test_uptodate(folio))
2387 		return true;
2388 	/* pipes can't handle partially uptodate pages */
2389 	if (need_uptodate)
2390 		return false;
2391 	if (!mapping->a_ops->is_partially_uptodate)
2392 		return false;
2393 	if (mapping->host->i_blkbits >= folio_shift(folio))
2394 		return false;
2395 
2396 	if (folio_pos(folio) > pos) {
2397 		count -= folio_pos(folio) - pos;
2398 		pos = 0;
2399 	} else {
2400 		pos -= folio_pos(folio);
2401 	}
2402 
2403 	return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2404 }
2405 
2406 static int filemap_update_page(struct kiocb *iocb,
2407 		struct address_space *mapping, size_t count,
2408 		struct folio *folio, bool need_uptodate)
2409 {
2410 	int error;
2411 
2412 	if (iocb->ki_flags & IOCB_NOWAIT) {
2413 		if (!filemap_invalidate_trylock_shared(mapping))
2414 			return -EAGAIN;
2415 	} else {
2416 		filemap_invalidate_lock_shared(mapping);
2417 	}
2418 
2419 	if (!folio_trylock(folio)) {
2420 		error = -EAGAIN;
2421 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2422 			goto unlock_mapping;
2423 		if (!(iocb->ki_flags & IOCB_WAITQ)) {
2424 			filemap_invalidate_unlock_shared(mapping);
2425 			/*
2426 			 * This is where we usually end up waiting for a
2427 			 * previously submitted readahead to finish.
2428 			 */
2429 			folio_put_wait_locked(folio, TASK_KILLABLE);
2430 			return AOP_TRUNCATED_PAGE;
2431 		}
2432 		error = __folio_lock_async(folio, iocb->ki_waitq);
2433 		if (error)
2434 			goto unlock_mapping;
2435 	}
2436 
2437 	error = AOP_TRUNCATED_PAGE;
2438 	if (!folio->mapping)
2439 		goto unlock;
2440 
2441 	error = 0;
2442 	if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio,
2443 				   need_uptodate))
2444 		goto unlock;
2445 
2446 	error = -EAGAIN;
2447 	if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2448 		goto unlock;
2449 
2450 	error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2451 			folio);
2452 	goto unlock_mapping;
2453 unlock:
2454 	folio_unlock(folio);
2455 unlock_mapping:
2456 	filemap_invalidate_unlock_shared(mapping);
2457 	if (error == AOP_TRUNCATED_PAGE)
2458 		folio_put(folio);
2459 	return error;
2460 }
2461 
2462 static int filemap_create_folio(struct file *file,
2463 		struct address_space *mapping, loff_t pos,
2464 		struct folio_batch *fbatch)
2465 {
2466 	struct folio *folio;
2467 	int error;
2468 	unsigned int min_order = mapping_min_folio_order(mapping);
2469 	pgoff_t index;
2470 
2471 	folio = filemap_alloc_folio(mapping_gfp_mask(mapping), min_order);
2472 	if (!folio)
2473 		return -ENOMEM;
2474 
2475 	/*
2476 	 * Protect against truncate / hole punch. Grabbing invalidate_lock
2477 	 * here assures we cannot instantiate and bring uptodate new
2478 	 * pagecache folios after evicting page cache during truncate
2479 	 * and before actually freeing blocks.	Note that we could
2480 	 * release invalidate_lock after inserting the folio into
2481 	 * the page cache as the locked folio would then be enough to
2482 	 * synchronize with hole punching. But there are code paths
2483 	 * such as filemap_update_page() filling in partially uptodate
2484 	 * pages or ->readahead() that need to hold invalidate_lock
2485 	 * while mapping blocks for IO so let's hold the lock here as
2486 	 * well to keep locking rules simple.
2487 	 */
2488 	filemap_invalidate_lock_shared(mapping);
2489 	index = (pos >> (PAGE_SHIFT + min_order)) << min_order;
2490 	error = filemap_add_folio(mapping, folio, index,
2491 			mapping_gfp_constraint(mapping, GFP_KERNEL));
2492 	if (error == -EEXIST)
2493 		error = AOP_TRUNCATED_PAGE;
2494 	if (error)
2495 		goto error;
2496 
2497 	error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
2498 	if (error)
2499 		goto error;
2500 
2501 	filemap_invalidate_unlock_shared(mapping);
2502 	folio_batch_add(fbatch, folio);
2503 	return 0;
2504 error:
2505 	filemap_invalidate_unlock_shared(mapping);
2506 	folio_put(folio);
2507 	return error;
2508 }
2509 
2510 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2511 		struct address_space *mapping, struct folio *folio,
2512 		pgoff_t last_index)
2513 {
2514 	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2515 
2516 	if (iocb->ki_flags & IOCB_NOIO)
2517 		return -EAGAIN;
2518 	page_cache_async_ra(&ractl, folio, last_index - folio->index);
2519 	return 0;
2520 }
2521 
2522 static int filemap_get_pages(struct kiocb *iocb, size_t count,
2523 		struct folio_batch *fbatch, bool need_uptodate)
2524 {
2525 	struct file *filp = iocb->ki_filp;
2526 	struct address_space *mapping = filp->f_mapping;
2527 	struct file_ra_state *ra = &filp->f_ra;
2528 	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2529 	pgoff_t last_index;
2530 	struct folio *folio;
2531 	unsigned int flags;
2532 	int err = 0;
2533 
2534 	/* "last_index" is the index of the page beyond the end of the read */
2535 	last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE);
2536 retry:
2537 	if (fatal_signal_pending(current))
2538 		return -EINTR;
2539 
2540 	filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2541 	if (!folio_batch_count(fbatch)) {
2542 		if (iocb->ki_flags & IOCB_NOIO)
2543 			return -EAGAIN;
2544 		if (iocb->ki_flags & IOCB_NOWAIT)
2545 			flags = memalloc_noio_save();
2546 		page_cache_sync_readahead(mapping, ra, filp, index,
2547 				last_index - index);
2548 		if (iocb->ki_flags & IOCB_NOWAIT)
2549 			memalloc_noio_restore(flags);
2550 		filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2551 	}
2552 	if (!folio_batch_count(fbatch)) {
2553 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2554 			return -EAGAIN;
2555 		err = filemap_create_folio(filp, mapping, iocb->ki_pos, fbatch);
2556 		if (err == AOP_TRUNCATED_PAGE)
2557 			goto retry;
2558 		return err;
2559 	}
2560 
2561 	folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2562 	if (folio_test_readahead(folio)) {
2563 		err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2564 		if (err)
2565 			goto err;
2566 	}
2567 	if (!folio_test_uptodate(folio)) {
2568 		if ((iocb->ki_flags & IOCB_WAITQ) &&
2569 		    folio_batch_count(fbatch) > 1)
2570 			iocb->ki_flags |= IOCB_NOWAIT;
2571 		err = filemap_update_page(iocb, mapping, count, folio,
2572 					  need_uptodate);
2573 		if (err)
2574 			goto err;
2575 	}
2576 
2577 	trace_mm_filemap_get_pages(mapping, index, last_index - 1);
2578 	return 0;
2579 err:
2580 	if (err < 0)
2581 		folio_put(folio);
2582 	if (likely(--fbatch->nr))
2583 		return 0;
2584 	if (err == AOP_TRUNCATED_PAGE)
2585 		goto retry;
2586 	return err;
2587 }
2588 
2589 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2590 {
2591 	unsigned int shift = folio_shift(folio);
2592 
2593 	return (pos1 >> shift == pos2 >> shift);
2594 }
2595 
2596 /**
2597  * filemap_read - Read data from the page cache.
2598  * @iocb: The iocb to read.
2599  * @iter: Destination for the data.
2600  * @already_read: Number of bytes already read by the caller.
2601  *
2602  * Copies data from the page cache.  If the data is not currently present,
2603  * uses the readahead and read_folio address_space operations to fetch it.
2604  *
2605  * Return: Total number of bytes copied, including those already read by
2606  * the caller.  If an error happens before any bytes are copied, returns
2607  * a negative error number.
2608  */
2609 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2610 		ssize_t already_read)
2611 {
2612 	struct file *filp = iocb->ki_filp;
2613 	struct file_ra_state *ra = &filp->f_ra;
2614 	struct address_space *mapping = filp->f_mapping;
2615 	struct inode *inode = mapping->host;
2616 	struct folio_batch fbatch;
2617 	int i, error = 0;
2618 	bool writably_mapped;
2619 	loff_t isize, end_offset;
2620 	loff_t last_pos = ra->prev_pos;
2621 
2622 	if (unlikely(iocb->ki_pos < 0))
2623 		return -EINVAL;
2624 	if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2625 		return 0;
2626 	if (unlikely(!iov_iter_count(iter)))
2627 		return 0;
2628 
2629 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes - iocb->ki_pos);
2630 	folio_batch_init(&fbatch);
2631 
2632 	do {
2633 		cond_resched();
2634 
2635 		/*
2636 		 * If we've already successfully copied some data, then we
2637 		 * can no longer safely return -EIOCBQUEUED. Hence mark
2638 		 * an async read NOWAIT at that point.
2639 		 */
2640 		if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2641 			iocb->ki_flags |= IOCB_NOWAIT;
2642 
2643 		if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2644 			break;
2645 
2646 		error = filemap_get_pages(iocb, iter->count, &fbatch, false);
2647 		if (error < 0)
2648 			break;
2649 
2650 		/*
2651 		 * i_size must be checked after we know the pages are Uptodate.
2652 		 *
2653 		 * Checking i_size after the check allows us to calculate
2654 		 * the correct value for "nr", which means the zero-filled
2655 		 * part of the page is not copied back to userspace (unless
2656 		 * another truncate extends the file - this is desired though).
2657 		 */
2658 		isize = i_size_read(inode);
2659 		if (unlikely(iocb->ki_pos >= isize))
2660 			goto put_folios;
2661 		end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2662 
2663 		/*
2664 		 * Once we start copying data, we don't want to be touching any
2665 		 * cachelines that might be contended:
2666 		 */
2667 		writably_mapped = mapping_writably_mapped(mapping);
2668 
2669 		/*
2670 		 * When a read accesses the same folio several times, only
2671 		 * mark it as accessed the first time.
2672 		 */
2673 		if (!pos_same_folio(iocb->ki_pos, last_pos - 1,
2674 				    fbatch.folios[0]))
2675 			folio_mark_accessed(fbatch.folios[0]);
2676 
2677 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2678 			struct folio *folio = fbatch.folios[i];
2679 			size_t fsize = folio_size(folio);
2680 			size_t offset = iocb->ki_pos & (fsize - 1);
2681 			size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2682 					     fsize - offset);
2683 			size_t copied;
2684 
2685 			if (end_offset < folio_pos(folio))
2686 				break;
2687 			if (i > 0)
2688 				folio_mark_accessed(folio);
2689 			/*
2690 			 * If users can be writing to this folio using arbitrary
2691 			 * virtual addresses, take care of potential aliasing
2692 			 * before reading the folio on the kernel side.
2693 			 */
2694 			if (writably_mapped)
2695 				flush_dcache_folio(folio);
2696 
2697 			copied = copy_folio_to_iter(folio, offset, bytes, iter);
2698 
2699 			already_read += copied;
2700 			iocb->ki_pos += copied;
2701 			last_pos = iocb->ki_pos;
2702 
2703 			if (copied < bytes) {
2704 				error = -EFAULT;
2705 				break;
2706 			}
2707 		}
2708 put_folios:
2709 		for (i = 0; i < folio_batch_count(&fbatch); i++)
2710 			folio_put(fbatch.folios[i]);
2711 		folio_batch_init(&fbatch);
2712 	} while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2713 
2714 	file_accessed(filp);
2715 	ra->prev_pos = last_pos;
2716 	return already_read ? already_read : error;
2717 }
2718 EXPORT_SYMBOL_GPL(filemap_read);
2719 
2720 int kiocb_write_and_wait(struct kiocb *iocb, size_t count)
2721 {
2722 	struct address_space *mapping = iocb->ki_filp->f_mapping;
2723 	loff_t pos = iocb->ki_pos;
2724 	loff_t end = pos + count - 1;
2725 
2726 	if (iocb->ki_flags & IOCB_NOWAIT) {
2727 		if (filemap_range_needs_writeback(mapping, pos, end))
2728 			return -EAGAIN;
2729 		return 0;
2730 	}
2731 
2732 	return filemap_write_and_wait_range(mapping, pos, end);
2733 }
2734 EXPORT_SYMBOL_GPL(kiocb_write_and_wait);
2735 
2736 int filemap_invalidate_pages(struct address_space *mapping,
2737 			     loff_t pos, loff_t end, bool nowait)
2738 {
2739 	int ret;
2740 
2741 	if (nowait) {
2742 		/* we could block if there are any pages in the range */
2743 		if (filemap_range_has_page(mapping, pos, end))
2744 			return -EAGAIN;
2745 	} else {
2746 		ret = filemap_write_and_wait_range(mapping, pos, end);
2747 		if (ret)
2748 			return ret;
2749 	}
2750 
2751 	/*
2752 	 * After a write we want buffered reads to be sure to go to disk to get
2753 	 * the new data.  We invalidate clean cached page from the region we're
2754 	 * about to write.  We do this *before* the write so that we can return
2755 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2756 	 */
2757 	return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT,
2758 					     end >> PAGE_SHIFT);
2759 }
2760 
2761 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count)
2762 {
2763 	struct address_space *mapping = iocb->ki_filp->f_mapping;
2764 
2765 	return filemap_invalidate_pages(mapping, iocb->ki_pos,
2766 					iocb->ki_pos + count - 1,
2767 					iocb->ki_flags & IOCB_NOWAIT);
2768 }
2769 EXPORT_SYMBOL_GPL(kiocb_invalidate_pages);
2770 
2771 /**
2772  * generic_file_read_iter - generic filesystem read routine
2773  * @iocb:	kernel I/O control block
2774  * @iter:	destination for the data read
2775  *
2776  * This is the "read_iter()" routine for all filesystems
2777  * that can use the page cache directly.
2778  *
2779  * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2780  * be returned when no data can be read without waiting for I/O requests
2781  * to complete; it doesn't prevent readahead.
2782  *
2783  * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2784  * requests shall be made for the read or for readahead.  When no data
2785  * can be read, -EAGAIN shall be returned.  When readahead would be
2786  * triggered, a partial, possibly empty read shall be returned.
2787  *
2788  * Return:
2789  * * number of bytes copied, even for partial reads
2790  * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2791  */
2792 ssize_t
2793 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2794 {
2795 	size_t count = iov_iter_count(iter);
2796 	ssize_t retval = 0;
2797 
2798 	if (!count)
2799 		return 0; /* skip atime */
2800 
2801 	if (iocb->ki_flags & IOCB_DIRECT) {
2802 		struct file *file = iocb->ki_filp;
2803 		struct address_space *mapping = file->f_mapping;
2804 		struct inode *inode = mapping->host;
2805 
2806 		retval = kiocb_write_and_wait(iocb, count);
2807 		if (retval < 0)
2808 			return retval;
2809 		file_accessed(file);
2810 
2811 		retval = mapping->a_ops->direct_IO(iocb, iter);
2812 		if (retval >= 0) {
2813 			iocb->ki_pos += retval;
2814 			count -= retval;
2815 		}
2816 		if (retval != -EIOCBQUEUED)
2817 			iov_iter_revert(iter, count - iov_iter_count(iter));
2818 
2819 		/*
2820 		 * Btrfs can have a short DIO read if we encounter
2821 		 * compressed extents, so if there was an error, or if
2822 		 * we've already read everything we wanted to, or if
2823 		 * there was a short read because we hit EOF, go ahead
2824 		 * and return.  Otherwise fallthrough to buffered io for
2825 		 * the rest of the read.  Buffered reads will not work for
2826 		 * DAX files, so don't bother trying.
2827 		 */
2828 		if (retval < 0 || !count || IS_DAX(inode))
2829 			return retval;
2830 		if (iocb->ki_pos >= i_size_read(inode))
2831 			return retval;
2832 	}
2833 
2834 	return filemap_read(iocb, iter, retval);
2835 }
2836 EXPORT_SYMBOL(generic_file_read_iter);
2837 
2838 /*
2839  * Splice subpages from a folio into a pipe.
2840  */
2841 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
2842 			      struct folio *folio, loff_t fpos, size_t size)
2843 {
2844 	struct page *page;
2845 	size_t spliced = 0, offset = offset_in_folio(folio, fpos);
2846 
2847 	page = folio_page(folio, offset / PAGE_SIZE);
2848 	size = min(size, folio_size(folio) - offset);
2849 	offset %= PAGE_SIZE;
2850 
2851 	while (spliced < size &&
2852 	       !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2853 		struct pipe_buffer *buf = pipe_head_buf(pipe);
2854 		size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
2855 
2856 		*buf = (struct pipe_buffer) {
2857 			.ops	= &page_cache_pipe_buf_ops,
2858 			.page	= page,
2859 			.offset	= offset,
2860 			.len	= part,
2861 		};
2862 		folio_get(folio);
2863 		pipe->head++;
2864 		page++;
2865 		spliced += part;
2866 		offset = 0;
2867 	}
2868 
2869 	return spliced;
2870 }
2871 
2872 /**
2873  * filemap_splice_read -  Splice data from a file's pagecache into a pipe
2874  * @in: The file to read from
2875  * @ppos: Pointer to the file position to read from
2876  * @pipe: The pipe to splice into
2877  * @len: The amount to splice
2878  * @flags: The SPLICE_F_* flags
2879  *
2880  * This function gets folios from a file's pagecache and splices them into the
2881  * pipe.  Readahead will be called as necessary to fill more folios.  This may
2882  * be used for blockdevs also.
2883  *
2884  * Return: On success, the number of bytes read will be returned and *@ppos
2885  * will be updated if appropriate; 0 will be returned if there is no more data
2886  * to be read; -EAGAIN will be returned if the pipe had no space, and some
2887  * other negative error code will be returned on error.  A short read may occur
2888  * if the pipe has insufficient space, we reach the end of the data or we hit a
2889  * hole.
2890  */
2891 ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
2892 			    struct pipe_inode_info *pipe,
2893 			    size_t len, unsigned int flags)
2894 {
2895 	struct folio_batch fbatch;
2896 	struct kiocb iocb;
2897 	size_t total_spliced = 0, used, npages;
2898 	loff_t isize, end_offset;
2899 	bool writably_mapped;
2900 	int i, error = 0;
2901 
2902 	if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes))
2903 		return 0;
2904 
2905 	init_sync_kiocb(&iocb, in);
2906 	iocb.ki_pos = *ppos;
2907 
2908 	/* Work out how much data we can actually add into the pipe */
2909 	used = pipe_occupancy(pipe->head, pipe->tail);
2910 	npages = max_t(ssize_t, pipe->max_usage - used, 0);
2911 	len = min_t(size_t, len, npages * PAGE_SIZE);
2912 
2913 	folio_batch_init(&fbatch);
2914 
2915 	do {
2916 		cond_resched();
2917 
2918 		if (*ppos >= i_size_read(in->f_mapping->host))
2919 			break;
2920 
2921 		iocb.ki_pos = *ppos;
2922 		error = filemap_get_pages(&iocb, len, &fbatch, true);
2923 		if (error < 0)
2924 			break;
2925 
2926 		/*
2927 		 * i_size must be checked after we know the pages are Uptodate.
2928 		 *
2929 		 * Checking i_size after the check allows us to calculate
2930 		 * the correct value for "nr", which means the zero-filled
2931 		 * part of the page is not copied back to userspace (unless
2932 		 * another truncate extends the file - this is desired though).
2933 		 */
2934 		isize = i_size_read(in->f_mapping->host);
2935 		if (unlikely(*ppos >= isize))
2936 			break;
2937 		end_offset = min_t(loff_t, isize, *ppos + len);
2938 
2939 		/*
2940 		 * Once we start copying data, we don't want to be touching any
2941 		 * cachelines that might be contended:
2942 		 */
2943 		writably_mapped = mapping_writably_mapped(in->f_mapping);
2944 
2945 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2946 			struct folio *folio = fbatch.folios[i];
2947 			size_t n;
2948 
2949 			if (folio_pos(folio) >= end_offset)
2950 				goto out;
2951 			folio_mark_accessed(folio);
2952 
2953 			/*
2954 			 * If users can be writing to this folio using arbitrary
2955 			 * virtual addresses, take care of potential aliasing
2956 			 * before reading the folio on the kernel side.
2957 			 */
2958 			if (writably_mapped)
2959 				flush_dcache_folio(folio);
2960 
2961 			n = min_t(loff_t, len, isize - *ppos);
2962 			n = splice_folio_into_pipe(pipe, folio, *ppos, n);
2963 			if (!n)
2964 				goto out;
2965 			len -= n;
2966 			total_spliced += n;
2967 			*ppos += n;
2968 			in->f_ra.prev_pos = *ppos;
2969 			if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
2970 				goto out;
2971 		}
2972 
2973 		folio_batch_release(&fbatch);
2974 	} while (len);
2975 
2976 out:
2977 	folio_batch_release(&fbatch);
2978 	file_accessed(in);
2979 
2980 	return total_spliced ? total_spliced : error;
2981 }
2982 EXPORT_SYMBOL(filemap_splice_read);
2983 
2984 static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2985 		struct address_space *mapping, struct folio *folio,
2986 		loff_t start, loff_t end, bool seek_data)
2987 {
2988 	const struct address_space_operations *ops = mapping->a_ops;
2989 	size_t offset, bsz = i_blocksize(mapping->host);
2990 
2991 	if (xa_is_value(folio) || folio_test_uptodate(folio))
2992 		return seek_data ? start : end;
2993 	if (!ops->is_partially_uptodate)
2994 		return seek_data ? end : start;
2995 
2996 	xas_pause(xas);
2997 	rcu_read_unlock();
2998 	folio_lock(folio);
2999 	if (unlikely(folio->mapping != mapping))
3000 		goto unlock;
3001 
3002 	offset = offset_in_folio(folio, start) & ~(bsz - 1);
3003 
3004 	do {
3005 		if (ops->is_partially_uptodate(folio, offset, bsz) ==
3006 							seek_data)
3007 			break;
3008 		start = (start + bsz) & ~(bsz - 1);
3009 		offset += bsz;
3010 	} while (offset < folio_size(folio));
3011 unlock:
3012 	folio_unlock(folio);
3013 	rcu_read_lock();
3014 	return start;
3015 }
3016 
3017 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
3018 {
3019 	if (xa_is_value(folio))
3020 		return PAGE_SIZE << xas_get_order(xas);
3021 	return folio_size(folio);
3022 }
3023 
3024 /**
3025  * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3026  * @mapping: Address space to search.
3027  * @start: First byte to consider.
3028  * @end: Limit of search (exclusive).
3029  * @whence: Either SEEK_HOLE or SEEK_DATA.
3030  *
3031  * If the page cache knows which blocks contain holes and which blocks
3032  * contain data, your filesystem can use this function to implement
3033  * SEEK_HOLE and SEEK_DATA.  This is useful for filesystems which are
3034  * entirely memory-based such as tmpfs, and filesystems which support
3035  * unwritten extents.
3036  *
3037  * Return: The requested offset on success, or -ENXIO if @whence specifies
3038  * SEEK_DATA and there is no data after @start.  There is an implicit hole
3039  * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
3040  * and @end contain data.
3041  */
3042 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
3043 		loff_t end, int whence)
3044 {
3045 	XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
3046 	pgoff_t max = (end - 1) >> PAGE_SHIFT;
3047 	bool seek_data = (whence == SEEK_DATA);
3048 	struct folio *folio;
3049 
3050 	if (end <= start)
3051 		return -ENXIO;
3052 
3053 	rcu_read_lock();
3054 	while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
3055 		loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
3056 		size_t seek_size;
3057 
3058 		if (start < pos) {
3059 			if (!seek_data)
3060 				goto unlock;
3061 			start = pos;
3062 		}
3063 
3064 		seek_size = seek_folio_size(&xas, folio);
3065 		pos = round_up((u64)pos + 1, seek_size);
3066 		start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
3067 				seek_data);
3068 		if (start < pos)
3069 			goto unlock;
3070 		if (start >= end)
3071 			break;
3072 		if (seek_size > PAGE_SIZE)
3073 			xas_set(&xas, pos >> PAGE_SHIFT);
3074 		if (!xa_is_value(folio))
3075 			folio_put(folio);
3076 	}
3077 	if (seek_data)
3078 		start = -ENXIO;
3079 unlock:
3080 	rcu_read_unlock();
3081 	if (folio && !xa_is_value(folio))
3082 		folio_put(folio);
3083 	if (start > end)
3084 		return end;
3085 	return start;
3086 }
3087 
3088 #ifdef CONFIG_MMU
3089 #define MMAP_LOTSAMISS  (100)
3090 /*
3091  * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
3092  * @vmf - the vm_fault for this fault.
3093  * @folio - the folio to lock.
3094  * @fpin - the pointer to the file we may pin (or is already pinned).
3095  *
3096  * This works similar to lock_folio_or_retry in that it can drop the
3097  * mmap_lock.  It differs in that it actually returns the folio locked
3098  * if it returns 1 and 0 if it couldn't lock the folio.  If we did have
3099  * to drop the mmap_lock then fpin will point to the pinned file and
3100  * needs to be fput()'ed at a later point.
3101  */
3102 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
3103 				     struct file **fpin)
3104 {
3105 	if (folio_trylock(folio))
3106 		return 1;
3107 
3108 	/*
3109 	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
3110 	 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
3111 	 * is supposed to work. We have way too many special cases..
3112 	 */
3113 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3114 		return 0;
3115 
3116 	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
3117 	if (vmf->flags & FAULT_FLAG_KILLABLE) {
3118 		if (__folio_lock_killable(folio)) {
3119 			/*
3120 			 * We didn't have the right flags to drop the
3121 			 * fault lock, but all fault_handlers only check
3122 			 * for fatal signals if we return VM_FAULT_RETRY,
3123 			 * so we need to drop the fault lock here and
3124 			 * return 0 if we don't have a fpin.
3125 			 */
3126 			if (*fpin == NULL)
3127 				release_fault_lock(vmf);
3128 			return 0;
3129 		}
3130 	} else
3131 		__folio_lock(folio);
3132 
3133 	return 1;
3134 }
3135 
3136 /*
3137  * Synchronous readahead happens when we don't even find a page in the page
3138  * cache at all.  We don't want to perform IO under the mmap sem, so if we have
3139  * to drop the mmap sem we return the file that was pinned in order for us to do
3140  * that.  If we didn't pin a file then we return NULL.  The file that is
3141  * returned needs to be fput()'ed when we're done with it.
3142  */
3143 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
3144 {
3145 	struct file *file = vmf->vma->vm_file;
3146 	struct file_ra_state *ra = &file->f_ra;
3147 	struct address_space *mapping = file->f_mapping;
3148 	DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
3149 	struct file *fpin = NULL;
3150 	unsigned long vm_flags = vmf->vma->vm_flags;
3151 	unsigned int mmap_miss;
3152 
3153 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3154 	/* Use the readahead code, even if readahead is disabled */
3155 	if ((vm_flags & VM_HUGEPAGE) && HPAGE_PMD_ORDER <= MAX_PAGECACHE_ORDER) {
3156 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3157 		ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3158 		ra->size = HPAGE_PMD_NR;
3159 		/*
3160 		 * Fetch two PMD folios, so we get the chance to actually
3161 		 * readahead, unless we've been told not to.
3162 		 */
3163 		if (!(vm_flags & VM_RAND_READ))
3164 			ra->size *= 2;
3165 		ra->async_size = HPAGE_PMD_NR;
3166 		page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3167 		return fpin;
3168 	}
3169 #endif
3170 
3171 	/* If we don't want any read-ahead, don't bother */
3172 	if (vm_flags & VM_RAND_READ)
3173 		return fpin;
3174 	if (!ra->ra_pages)
3175 		return fpin;
3176 
3177 	if (vm_flags & VM_SEQ_READ) {
3178 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3179 		page_cache_sync_ra(&ractl, ra->ra_pages);
3180 		return fpin;
3181 	}
3182 
3183 	/* Avoid banging the cache line if not needed */
3184 	mmap_miss = READ_ONCE(ra->mmap_miss);
3185 	if (mmap_miss < MMAP_LOTSAMISS * 10)
3186 		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3187 
3188 	/*
3189 	 * Do we miss much more than hit in this file? If so,
3190 	 * stop bothering with read-ahead. It will only hurt.
3191 	 */
3192 	if (mmap_miss > MMAP_LOTSAMISS)
3193 		return fpin;
3194 
3195 	/*
3196 	 * mmap read-around
3197 	 */
3198 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3199 	ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3200 	ra->size = ra->ra_pages;
3201 	ra->async_size = ra->ra_pages / 4;
3202 	ractl._index = ra->start;
3203 	page_cache_ra_order(&ractl, ra, 0);
3204 	return fpin;
3205 }
3206 
3207 /*
3208  * Asynchronous readahead happens when we find the page and PG_readahead,
3209  * so we want to possibly extend the readahead further.  We return the file that
3210  * was pinned if we have to drop the mmap_lock in order to do IO.
3211  */
3212 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3213 					    struct folio *folio)
3214 {
3215 	struct file *file = vmf->vma->vm_file;
3216 	struct file_ra_state *ra = &file->f_ra;
3217 	DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3218 	struct file *fpin = NULL;
3219 	unsigned int mmap_miss;
3220 
3221 	/* If we don't want any read-ahead, don't bother */
3222 	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3223 		return fpin;
3224 
3225 	mmap_miss = READ_ONCE(ra->mmap_miss);
3226 	if (mmap_miss)
3227 		WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3228 
3229 	if (folio_test_readahead(folio)) {
3230 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3231 		page_cache_async_ra(&ractl, folio, ra->ra_pages);
3232 	}
3233 	return fpin;
3234 }
3235 
3236 static vm_fault_t filemap_fault_recheck_pte_none(struct vm_fault *vmf)
3237 {
3238 	struct vm_area_struct *vma = vmf->vma;
3239 	vm_fault_t ret = 0;
3240 	pte_t *ptep;
3241 
3242 	/*
3243 	 * We might have COW'ed a pagecache folio and might now have an mlocked
3244 	 * anon folio mapped. The original pagecache folio is not mlocked and
3245 	 * might have been evicted. During a read+clear/modify/write update of
3246 	 * the PTE, such as done in do_numa_page()/change_pte_range(), we
3247 	 * temporarily clear the PTE under PT lock and might detect it here as
3248 	 * "none" when not holding the PT lock.
3249 	 *
3250 	 * Not rechecking the PTE under PT lock could result in an unexpected
3251 	 * major fault in an mlock'ed region. Recheck only for this special
3252 	 * scenario while holding the PT lock, to not degrade non-mlocked
3253 	 * scenarios. Recheck the PTE without PT lock firstly, thereby reducing
3254 	 * the number of times we hold PT lock.
3255 	 */
3256 	if (!(vma->vm_flags & VM_LOCKED))
3257 		return 0;
3258 
3259 	if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
3260 		return 0;
3261 
3262 	ptep = pte_offset_map_ro_nolock(vma->vm_mm, vmf->pmd, vmf->address,
3263 					&vmf->ptl);
3264 	if (unlikely(!ptep))
3265 		return VM_FAULT_NOPAGE;
3266 
3267 	if (unlikely(!pte_none(ptep_get_lockless(ptep)))) {
3268 		ret = VM_FAULT_NOPAGE;
3269 	} else {
3270 		spin_lock(vmf->ptl);
3271 		if (unlikely(!pte_none(ptep_get(ptep))))
3272 			ret = VM_FAULT_NOPAGE;
3273 		spin_unlock(vmf->ptl);
3274 	}
3275 	pte_unmap(ptep);
3276 	return ret;
3277 }
3278 
3279 /**
3280  * filemap_fault - read in file data for page fault handling
3281  * @vmf:	struct vm_fault containing details of the fault
3282  *
3283  * filemap_fault() is invoked via the vma operations vector for a
3284  * mapped memory region to read in file data during a page fault.
3285  *
3286  * The goto's are kind of ugly, but this streamlines the normal case of having
3287  * it in the page cache, and handles the special cases reasonably without
3288  * having a lot of duplicated code.
3289  *
3290  * vma->vm_mm->mmap_lock must be held on entry.
3291  *
3292  * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3293  * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3294  *
3295  * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3296  * has not been released.
3297  *
3298  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3299  *
3300  * Return: bitwise-OR of %VM_FAULT_ codes.
3301  */
3302 vm_fault_t filemap_fault(struct vm_fault *vmf)
3303 {
3304 	int error;
3305 	struct file *file = vmf->vma->vm_file;
3306 	struct file *fpin = NULL;
3307 	struct address_space *mapping = file->f_mapping;
3308 	struct inode *inode = mapping->host;
3309 	pgoff_t max_idx, index = vmf->pgoff;
3310 	struct folio *folio;
3311 	vm_fault_t ret = 0;
3312 	bool mapping_locked = false;
3313 
3314 	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3315 	if (unlikely(index >= max_idx))
3316 		return VM_FAULT_SIGBUS;
3317 
3318 	trace_mm_filemap_fault(mapping, index);
3319 
3320 	/*
3321 	 * Do we have something in the page cache already?
3322 	 */
3323 	folio = filemap_get_folio(mapping, index);
3324 	if (likely(!IS_ERR(folio))) {
3325 		/*
3326 		 * We found the page, so try async readahead before waiting for
3327 		 * the lock.
3328 		 */
3329 		if (!(vmf->flags & FAULT_FLAG_TRIED))
3330 			fpin = do_async_mmap_readahead(vmf, folio);
3331 		if (unlikely(!folio_test_uptodate(folio))) {
3332 			filemap_invalidate_lock_shared(mapping);
3333 			mapping_locked = true;
3334 		}
3335 	} else {
3336 		ret = filemap_fault_recheck_pte_none(vmf);
3337 		if (unlikely(ret))
3338 			return ret;
3339 
3340 		/* No page in the page cache at all */
3341 		count_vm_event(PGMAJFAULT);
3342 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3343 		ret = VM_FAULT_MAJOR;
3344 		fpin = do_sync_mmap_readahead(vmf);
3345 retry_find:
3346 		/*
3347 		 * See comment in filemap_create_folio() why we need
3348 		 * invalidate_lock
3349 		 */
3350 		if (!mapping_locked) {
3351 			filemap_invalidate_lock_shared(mapping);
3352 			mapping_locked = true;
3353 		}
3354 		folio = __filemap_get_folio(mapping, index,
3355 					  FGP_CREAT|FGP_FOR_MMAP,
3356 					  vmf->gfp_mask);
3357 		if (IS_ERR(folio)) {
3358 			if (fpin)
3359 				goto out_retry;
3360 			filemap_invalidate_unlock_shared(mapping);
3361 			return VM_FAULT_OOM;
3362 		}
3363 	}
3364 
3365 	if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3366 		goto out_retry;
3367 
3368 	/* Did it get truncated? */
3369 	if (unlikely(folio->mapping != mapping)) {
3370 		folio_unlock(folio);
3371 		folio_put(folio);
3372 		goto retry_find;
3373 	}
3374 	VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3375 
3376 	/*
3377 	 * We have a locked folio in the page cache, now we need to check
3378 	 * that it's up-to-date. If not, it is going to be due to an error,
3379 	 * or because readahead was otherwise unable to retrieve it.
3380 	 */
3381 	if (unlikely(!folio_test_uptodate(folio))) {
3382 		/*
3383 		 * If the invalidate lock is not held, the folio was in cache
3384 		 * and uptodate and now it is not. Strange but possible since we
3385 		 * didn't hold the page lock all the time. Let's drop
3386 		 * everything, get the invalidate lock and try again.
3387 		 */
3388 		if (!mapping_locked) {
3389 			folio_unlock(folio);
3390 			folio_put(folio);
3391 			goto retry_find;
3392 		}
3393 
3394 		/*
3395 		 * OK, the folio is really not uptodate. This can be because the
3396 		 * VMA has the VM_RAND_READ flag set, or because an error
3397 		 * arose. Let's read it in directly.
3398 		 */
3399 		goto page_not_uptodate;
3400 	}
3401 
3402 	/*
3403 	 * We've made it this far and we had to drop our mmap_lock, now is the
3404 	 * time to return to the upper layer and have it re-find the vma and
3405 	 * redo the fault.
3406 	 */
3407 	if (fpin) {
3408 		folio_unlock(folio);
3409 		goto out_retry;
3410 	}
3411 	if (mapping_locked)
3412 		filemap_invalidate_unlock_shared(mapping);
3413 
3414 	/*
3415 	 * Found the page and have a reference on it.
3416 	 * We must recheck i_size under page lock.
3417 	 */
3418 	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3419 	if (unlikely(index >= max_idx)) {
3420 		folio_unlock(folio);
3421 		folio_put(folio);
3422 		return VM_FAULT_SIGBUS;
3423 	}
3424 
3425 	vmf->page = folio_file_page(folio, index);
3426 	return ret | VM_FAULT_LOCKED;
3427 
3428 page_not_uptodate:
3429 	/*
3430 	 * Umm, take care of errors if the page isn't up-to-date.
3431 	 * Try to re-read it _once_. We do this synchronously,
3432 	 * because there really aren't any performance issues here
3433 	 * and we need to check for errors.
3434 	 */
3435 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3436 	error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
3437 	if (fpin)
3438 		goto out_retry;
3439 	folio_put(folio);
3440 
3441 	if (!error || error == AOP_TRUNCATED_PAGE)
3442 		goto retry_find;
3443 	filemap_invalidate_unlock_shared(mapping);
3444 
3445 	return VM_FAULT_SIGBUS;
3446 
3447 out_retry:
3448 	/*
3449 	 * We dropped the mmap_lock, we need to return to the fault handler to
3450 	 * re-find the vma and come back and find our hopefully still populated
3451 	 * page.
3452 	 */
3453 	if (!IS_ERR(folio))
3454 		folio_put(folio);
3455 	if (mapping_locked)
3456 		filemap_invalidate_unlock_shared(mapping);
3457 	if (fpin)
3458 		fput(fpin);
3459 	return ret | VM_FAULT_RETRY;
3460 }
3461 EXPORT_SYMBOL(filemap_fault);
3462 
3463 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio,
3464 		pgoff_t start)
3465 {
3466 	struct mm_struct *mm = vmf->vma->vm_mm;
3467 
3468 	/* Huge page is mapped? No need to proceed. */
3469 	if (pmd_trans_huge(*vmf->pmd)) {
3470 		folio_unlock(folio);
3471 		folio_put(folio);
3472 		return true;
3473 	}
3474 
3475 	if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) {
3476 		struct page *page = folio_file_page(folio, start);
3477 		vm_fault_t ret = do_set_pmd(vmf, page);
3478 		if (!ret) {
3479 			/* The page is mapped successfully, reference consumed. */
3480 			folio_unlock(folio);
3481 			return true;
3482 		}
3483 	}
3484 
3485 	if (pmd_none(*vmf->pmd) && vmf->prealloc_pte)
3486 		pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3487 
3488 	return false;
3489 }
3490 
3491 static struct folio *next_uptodate_folio(struct xa_state *xas,
3492 		struct address_space *mapping, pgoff_t end_pgoff)
3493 {
3494 	struct folio *folio = xas_next_entry(xas, end_pgoff);
3495 	unsigned long max_idx;
3496 
3497 	do {
3498 		if (!folio)
3499 			return NULL;
3500 		if (xas_retry(xas, folio))
3501 			continue;
3502 		if (xa_is_value(folio))
3503 			continue;
3504 		if (folio_test_locked(folio))
3505 			continue;
3506 		if (!folio_try_get(folio))
3507 			continue;
3508 		/* Has the page moved or been split? */
3509 		if (unlikely(folio != xas_reload(xas)))
3510 			goto skip;
3511 		if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3512 			goto skip;
3513 		if (!folio_trylock(folio))
3514 			goto skip;
3515 		if (folio->mapping != mapping)
3516 			goto unlock;
3517 		if (!folio_test_uptodate(folio))
3518 			goto unlock;
3519 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3520 		if (xas->xa_index >= max_idx)
3521 			goto unlock;
3522 		return folio;
3523 unlock:
3524 		folio_unlock(folio);
3525 skip:
3526 		folio_put(folio);
3527 	} while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3528 
3529 	return NULL;
3530 }
3531 
3532 /*
3533  * Map page range [start_page, start_page + nr_pages) of folio.
3534  * start_page is gotten from start by folio_page(folio, start)
3535  */
3536 static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf,
3537 			struct folio *folio, unsigned long start,
3538 			unsigned long addr, unsigned int nr_pages,
3539 			unsigned long *rss, unsigned int *mmap_miss)
3540 {
3541 	vm_fault_t ret = 0;
3542 	struct page *page = folio_page(folio, start);
3543 	unsigned int count = 0;
3544 	pte_t *old_ptep = vmf->pte;
3545 
3546 	do {
3547 		if (PageHWPoison(page + count))
3548 			goto skip;
3549 
3550 		/*
3551 		 * If there are too many folios that are recently evicted
3552 		 * in a file, they will probably continue to be evicted.
3553 		 * In such situation, read-ahead is only a waste of IO.
3554 		 * Don't decrease mmap_miss in this scenario to make sure
3555 		 * we can stop read-ahead.
3556 		 */
3557 		if (!folio_test_workingset(folio))
3558 			(*mmap_miss)++;
3559 
3560 		/*
3561 		 * NOTE: If there're PTE markers, we'll leave them to be
3562 		 * handled in the specific fault path, and it'll prohibit the
3563 		 * fault-around logic.
3564 		 */
3565 		if (!pte_none(ptep_get(&vmf->pte[count])))
3566 			goto skip;
3567 
3568 		count++;
3569 		continue;
3570 skip:
3571 		if (count) {
3572 			set_pte_range(vmf, folio, page, count, addr);
3573 			*rss += count;
3574 			folio_ref_add(folio, count);
3575 			if (in_range(vmf->address, addr, count * PAGE_SIZE))
3576 				ret = VM_FAULT_NOPAGE;
3577 		}
3578 
3579 		count++;
3580 		page += count;
3581 		vmf->pte += count;
3582 		addr += count * PAGE_SIZE;
3583 		count = 0;
3584 	} while (--nr_pages > 0);
3585 
3586 	if (count) {
3587 		set_pte_range(vmf, folio, page, count, addr);
3588 		*rss += count;
3589 		folio_ref_add(folio, count);
3590 		if (in_range(vmf->address, addr, count * PAGE_SIZE))
3591 			ret = VM_FAULT_NOPAGE;
3592 	}
3593 
3594 	vmf->pte = old_ptep;
3595 
3596 	return ret;
3597 }
3598 
3599 static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf,
3600 		struct folio *folio, unsigned long addr,
3601 		unsigned long *rss, unsigned int *mmap_miss)
3602 {
3603 	vm_fault_t ret = 0;
3604 	struct page *page = &folio->page;
3605 
3606 	if (PageHWPoison(page))
3607 		return ret;
3608 
3609 	/* See comment of filemap_map_folio_range() */
3610 	if (!folio_test_workingset(folio))
3611 		(*mmap_miss)++;
3612 
3613 	/*
3614 	 * NOTE: If there're PTE markers, we'll leave them to be
3615 	 * handled in the specific fault path, and it'll prohibit
3616 	 * the fault-around logic.
3617 	 */
3618 	if (!pte_none(ptep_get(vmf->pte)))
3619 		return ret;
3620 
3621 	if (vmf->address == addr)
3622 		ret = VM_FAULT_NOPAGE;
3623 
3624 	set_pte_range(vmf, folio, page, 1, addr);
3625 	(*rss)++;
3626 	folio_ref_inc(folio);
3627 
3628 	return ret;
3629 }
3630 
3631 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3632 			     pgoff_t start_pgoff, pgoff_t end_pgoff)
3633 {
3634 	struct vm_area_struct *vma = vmf->vma;
3635 	struct file *file = vma->vm_file;
3636 	struct address_space *mapping = file->f_mapping;
3637 	pgoff_t file_end, last_pgoff = start_pgoff;
3638 	unsigned long addr;
3639 	XA_STATE(xas, &mapping->i_pages, start_pgoff);
3640 	struct folio *folio;
3641 	vm_fault_t ret = 0;
3642 	unsigned long rss = 0;
3643 	unsigned int nr_pages = 0, mmap_miss = 0, mmap_miss_saved, folio_type;
3644 
3645 	rcu_read_lock();
3646 	folio = next_uptodate_folio(&xas, mapping, end_pgoff);
3647 	if (!folio)
3648 		goto out;
3649 
3650 	if (filemap_map_pmd(vmf, folio, start_pgoff)) {
3651 		ret = VM_FAULT_NOPAGE;
3652 		goto out;
3653 	}
3654 
3655 	addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3656 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3657 	if (!vmf->pte) {
3658 		folio_unlock(folio);
3659 		folio_put(folio);
3660 		goto out;
3661 	}
3662 
3663 	file_end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE) - 1;
3664 	if (end_pgoff > file_end)
3665 		end_pgoff = file_end;
3666 
3667 	folio_type = mm_counter_file(folio);
3668 	do {
3669 		unsigned long end;
3670 
3671 		addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3672 		vmf->pte += xas.xa_index - last_pgoff;
3673 		last_pgoff = xas.xa_index;
3674 		end = folio_next_index(folio) - 1;
3675 		nr_pages = min(end, end_pgoff) - xas.xa_index + 1;
3676 
3677 		if (!folio_test_large(folio))
3678 			ret |= filemap_map_order0_folio(vmf,
3679 					folio, addr, &rss, &mmap_miss);
3680 		else
3681 			ret |= filemap_map_folio_range(vmf, folio,
3682 					xas.xa_index - folio->index, addr,
3683 					nr_pages, &rss, &mmap_miss);
3684 
3685 		folio_unlock(folio);
3686 		folio_put(folio);
3687 	} while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL);
3688 	add_mm_counter(vma->vm_mm, folio_type, rss);
3689 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3690 	trace_mm_filemap_map_pages(mapping, start_pgoff, end_pgoff);
3691 out:
3692 	rcu_read_unlock();
3693 
3694 	mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss);
3695 	if (mmap_miss >= mmap_miss_saved)
3696 		WRITE_ONCE(file->f_ra.mmap_miss, 0);
3697 	else
3698 		WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss);
3699 
3700 	return ret;
3701 }
3702 EXPORT_SYMBOL(filemap_map_pages);
3703 
3704 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3705 {
3706 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3707 	struct folio *folio = page_folio(vmf->page);
3708 	vm_fault_t ret = VM_FAULT_LOCKED;
3709 
3710 	sb_start_pagefault(mapping->host->i_sb);
3711 	file_update_time(vmf->vma->vm_file);
3712 	folio_lock(folio);
3713 	if (folio->mapping != mapping) {
3714 		folio_unlock(folio);
3715 		ret = VM_FAULT_NOPAGE;
3716 		goto out;
3717 	}
3718 	/*
3719 	 * We mark the folio dirty already here so that when freeze is in
3720 	 * progress, we are guaranteed that writeback during freezing will
3721 	 * see the dirty folio and writeprotect it again.
3722 	 */
3723 	folio_mark_dirty(folio);
3724 	folio_wait_stable(folio);
3725 out:
3726 	sb_end_pagefault(mapping->host->i_sb);
3727 	return ret;
3728 }
3729 
3730 const struct vm_operations_struct generic_file_vm_ops = {
3731 	.fault		= filemap_fault,
3732 	.map_pages	= filemap_map_pages,
3733 	.page_mkwrite	= filemap_page_mkwrite,
3734 };
3735 
3736 /* This is used for a general mmap of a disk file */
3737 
3738 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3739 {
3740 	struct address_space *mapping = file->f_mapping;
3741 
3742 	if (!mapping->a_ops->read_folio)
3743 		return -ENOEXEC;
3744 	file_accessed(file);
3745 	vma->vm_ops = &generic_file_vm_ops;
3746 	return 0;
3747 }
3748 
3749 /*
3750  * This is for filesystems which do not implement ->writepage.
3751  */
3752 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3753 {
3754 	if (vma_is_shared_maywrite(vma))
3755 		return -EINVAL;
3756 	return generic_file_mmap(file, vma);
3757 }
3758 #else
3759 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3760 {
3761 	return VM_FAULT_SIGBUS;
3762 }
3763 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3764 {
3765 	return -ENOSYS;
3766 }
3767 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3768 {
3769 	return -ENOSYS;
3770 }
3771 #endif /* CONFIG_MMU */
3772 
3773 EXPORT_SYMBOL(filemap_page_mkwrite);
3774 EXPORT_SYMBOL(generic_file_mmap);
3775 EXPORT_SYMBOL(generic_file_readonly_mmap);
3776 
3777 static struct folio *do_read_cache_folio(struct address_space *mapping,
3778 		pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
3779 {
3780 	struct folio *folio;
3781 	int err;
3782 
3783 	if (!filler)
3784 		filler = mapping->a_ops->read_folio;
3785 repeat:
3786 	folio = filemap_get_folio(mapping, index);
3787 	if (IS_ERR(folio)) {
3788 		folio = filemap_alloc_folio(gfp,
3789 					    mapping_min_folio_order(mapping));
3790 		if (!folio)
3791 			return ERR_PTR(-ENOMEM);
3792 		index = mapping_align_index(mapping, index);
3793 		err = filemap_add_folio(mapping, folio, index, gfp);
3794 		if (unlikely(err)) {
3795 			folio_put(folio);
3796 			if (err == -EEXIST)
3797 				goto repeat;
3798 			/* Presumably ENOMEM for xarray node */
3799 			return ERR_PTR(err);
3800 		}
3801 
3802 		goto filler;
3803 	}
3804 	if (folio_test_uptodate(folio))
3805 		goto out;
3806 
3807 	if (!folio_trylock(folio)) {
3808 		folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3809 		goto repeat;
3810 	}
3811 
3812 	/* Folio was truncated from mapping */
3813 	if (!folio->mapping) {
3814 		folio_unlock(folio);
3815 		folio_put(folio);
3816 		goto repeat;
3817 	}
3818 
3819 	/* Someone else locked and filled the page in a very small window */
3820 	if (folio_test_uptodate(folio)) {
3821 		folio_unlock(folio);
3822 		goto out;
3823 	}
3824 
3825 filler:
3826 	err = filemap_read_folio(file, filler, folio);
3827 	if (err) {
3828 		folio_put(folio);
3829 		if (err == AOP_TRUNCATED_PAGE)
3830 			goto repeat;
3831 		return ERR_PTR(err);
3832 	}
3833 
3834 out:
3835 	folio_mark_accessed(folio);
3836 	return folio;
3837 }
3838 
3839 /**
3840  * read_cache_folio - Read into page cache, fill it if needed.
3841  * @mapping: The address_space to read from.
3842  * @index: The index to read.
3843  * @filler: Function to perform the read, or NULL to use aops->read_folio().
3844  * @file: Passed to filler function, may be NULL if not required.
3845  *
3846  * Read one page into the page cache.  If it succeeds, the folio returned
3847  * will contain @index, but it may not be the first page of the folio.
3848  *
3849  * If the filler function returns an error, it will be returned to the
3850  * caller.
3851  *
3852  * Context: May sleep.  Expects mapping->invalidate_lock to be held.
3853  * Return: An uptodate folio on success, ERR_PTR() on failure.
3854  */
3855 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3856 		filler_t filler, struct file *file)
3857 {
3858 	return do_read_cache_folio(mapping, index, filler, file,
3859 			mapping_gfp_mask(mapping));
3860 }
3861 EXPORT_SYMBOL(read_cache_folio);
3862 
3863 /**
3864  * mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
3865  * @mapping:	The address_space for the folio.
3866  * @index:	The index that the allocated folio will contain.
3867  * @gfp:	The page allocator flags to use if allocating.
3868  *
3869  * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
3870  * any new memory allocations done using the specified allocation flags.
3871  *
3872  * The most likely error from this function is EIO, but ENOMEM is
3873  * possible and so is EINTR.  If ->read_folio returns another error,
3874  * that will be returned to the caller.
3875  *
3876  * The function expects mapping->invalidate_lock to be already held.
3877  *
3878  * Return: Uptodate folio on success, ERR_PTR() on failure.
3879  */
3880 struct folio *mapping_read_folio_gfp(struct address_space *mapping,
3881 		pgoff_t index, gfp_t gfp)
3882 {
3883 	return do_read_cache_folio(mapping, index, NULL, NULL, gfp);
3884 }
3885 EXPORT_SYMBOL(mapping_read_folio_gfp);
3886 
3887 static struct page *do_read_cache_page(struct address_space *mapping,
3888 		pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
3889 {
3890 	struct folio *folio;
3891 
3892 	folio = do_read_cache_folio(mapping, index, filler, file, gfp);
3893 	if (IS_ERR(folio))
3894 		return &folio->page;
3895 	return folio_file_page(folio, index);
3896 }
3897 
3898 struct page *read_cache_page(struct address_space *mapping,
3899 			pgoff_t index, filler_t *filler, struct file *file)
3900 {
3901 	return do_read_cache_page(mapping, index, filler, file,
3902 			mapping_gfp_mask(mapping));
3903 }
3904 EXPORT_SYMBOL(read_cache_page);
3905 
3906 /**
3907  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3908  * @mapping:	the page's address_space
3909  * @index:	the page index
3910  * @gfp:	the page allocator flags to use if allocating
3911  *
3912  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3913  * any new page allocations done using the specified allocation flags.
3914  *
3915  * If the page does not get brought uptodate, return -EIO.
3916  *
3917  * The function expects mapping->invalidate_lock to be already held.
3918  *
3919  * Return: up to date page on success, ERR_PTR() on failure.
3920  */
3921 struct page *read_cache_page_gfp(struct address_space *mapping,
3922 				pgoff_t index,
3923 				gfp_t gfp)
3924 {
3925 	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3926 }
3927 EXPORT_SYMBOL(read_cache_page_gfp);
3928 
3929 /*
3930  * Warn about a page cache invalidation failure during a direct I/O write.
3931  */
3932 static void dio_warn_stale_pagecache(struct file *filp)
3933 {
3934 	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3935 	char pathname[128];
3936 	char *path;
3937 
3938 	errseq_set(&filp->f_mapping->wb_err, -EIO);
3939 	if (__ratelimit(&_rs)) {
3940 		path = file_path(filp, pathname, sizeof(pathname));
3941 		if (IS_ERR(path))
3942 			path = "(unknown)";
3943 		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3944 		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3945 			current->comm);
3946 	}
3947 }
3948 
3949 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count)
3950 {
3951 	struct address_space *mapping = iocb->ki_filp->f_mapping;
3952 
3953 	if (mapping->nrpages &&
3954 	    invalidate_inode_pages2_range(mapping,
3955 			iocb->ki_pos >> PAGE_SHIFT,
3956 			(iocb->ki_pos + count - 1) >> PAGE_SHIFT))
3957 		dio_warn_stale_pagecache(iocb->ki_filp);
3958 }
3959 
3960 ssize_t
3961 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3962 {
3963 	struct address_space *mapping = iocb->ki_filp->f_mapping;
3964 	size_t write_len = iov_iter_count(from);
3965 	ssize_t written;
3966 
3967 	/*
3968 	 * If a page can not be invalidated, return 0 to fall back
3969 	 * to buffered write.
3970 	 */
3971 	written = kiocb_invalidate_pages(iocb, write_len);
3972 	if (written) {
3973 		if (written == -EBUSY)
3974 			return 0;
3975 		return written;
3976 	}
3977 
3978 	written = mapping->a_ops->direct_IO(iocb, from);
3979 
3980 	/*
3981 	 * Finally, try again to invalidate clean pages which might have been
3982 	 * cached by non-direct readahead, or faulted in by get_user_pages()
3983 	 * if the source of the write was an mmap'ed region of the file
3984 	 * we're writing.  Either one is a pretty crazy thing to do,
3985 	 * so we don't support it 100%.  If this invalidation
3986 	 * fails, tough, the write still worked...
3987 	 *
3988 	 * Most of the time we do not need this since dio_complete() will do
3989 	 * the invalidation for us. However there are some file systems that
3990 	 * do not end up with dio_complete() being called, so let's not break
3991 	 * them by removing it completely.
3992 	 *
3993 	 * Noticeable example is a blkdev_direct_IO().
3994 	 *
3995 	 * Skip invalidation for async writes or if mapping has no pages.
3996 	 */
3997 	if (written > 0) {
3998 		struct inode *inode = mapping->host;
3999 		loff_t pos = iocb->ki_pos;
4000 
4001 		kiocb_invalidate_post_direct_write(iocb, written);
4002 		pos += written;
4003 		write_len -= written;
4004 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
4005 			i_size_write(inode, pos);
4006 			mark_inode_dirty(inode);
4007 		}
4008 		iocb->ki_pos = pos;
4009 	}
4010 	if (written != -EIOCBQUEUED)
4011 		iov_iter_revert(from, write_len - iov_iter_count(from));
4012 	return written;
4013 }
4014 EXPORT_SYMBOL(generic_file_direct_write);
4015 
4016 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
4017 {
4018 	struct file *file = iocb->ki_filp;
4019 	loff_t pos = iocb->ki_pos;
4020 	struct address_space *mapping = file->f_mapping;
4021 	const struct address_space_operations *a_ops = mapping->a_ops;
4022 	size_t chunk = mapping_max_folio_size(mapping);
4023 	long status = 0;
4024 	ssize_t written = 0;
4025 
4026 	do {
4027 		struct folio *folio;
4028 		size_t offset;		/* Offset into folio */
4029 		size_t bytes;		/* Bytes to write to folio */
4030 		size_t copied;		/* Bytes copied from user */
4031 		void *fsdata = NULL;
4032 
4033 		bytes = iov_iter_count(i);
4034 retry:
4035 		offset = pos & (chunk - 1);
4036 		bytes = min(chunk - offset, bytes);
4037 		balance_dirty_pages_ratelimited(mapping);
4038 
4039 		/*
4040 		 * Bring in the user page that we will copy from _first_.
4041 		 * Otherwise there's a nasty deadlock on copying from the
4042 		 * same page as we're writing to, without it being marked
4043 		 * up-to-date.
4044 		 */
4045 		if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
4046 			status = -EFAULT;
4047 			break;
4048 		}
4049 
4050 		if (fatal_signal_pending(current)) {
4051 			status = -EINTR;
4052 			break;
4053 		}
4054 
4055 		status = a_ops->write_begin(file, mapping, pos, bytes,
4056 						&folio, &fsdata);
4057 		if (unlikely(status < 0))
4058 			break;
4059 
4060 		offset = offset_in_folio(folio, pos);
4061 		if (bytes > folio_size(folio) - offset)
4062 			bytes = folio_size(folio) - offset;
4063 
4064 		if (mapping_writably_mapped(mapping))
4065 			flush_dcache_folio(folio);
4066 
4067 		copied = copy_folio_from_iter_atomic(folio, offset, bytes, i);
4068 		flush_dcache_folio(folio);
4069 
4070 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
4071 						folio, fsdata);
4072 		if (unlikely(status != copied)) {
4073 			iov_iter_revert(i, copied - max(status, 0L));
4074 			if (unlikely(status < 0))
4075 				break;
4076 		}
4077 		cond_resched();
4078 
4079 		if (unlikely(status == 0)) {
4080 			/*
4081 			 * A short copy made ->write_end() reject the
4082 			 * thing entirely.  Might be memory poisoning
4083 			 * halfway through, might be a race with munmap,
4084 			 * might be severe memory pressure.
4085 			 */
4086 			if (chunk > PAGE_SIZE)
4087 				chunk /= 2;
4088 			if (copied) {
4089 				bytes = copied;
4090 				goto retry;
4091 			}
4092 		} else {
4093 			pos += status;
4094 			written += status;
4095 		}
4096 	} while (iov_iter_count(i));
4097 
4098 	if (!written)
4099 		return status;
4100 	iocb->ki_pos += written;
4101 	return written;
4102 }
4103 EXPORT_SYMBOL(generic_perform_write);
4104 
4105 /**
4106  * __generic_file_write_iter - write data to a file
4107  * @iocb:	IO state structure (file, offset, etc.)
4108  * @from:	iov_iter with data to write
4109  *
4110  * This function does all the work needed for actually writing data to a
4111  * file. It does all basic checks, removes SUID from the file, updates
4112  * modification times and calls proper subroutines depending on whether we
4113  * do direct IO or a standard buffered write.
4114  *
4115  * It expects i_rwsem to be grabbed unless we work on a block device or similar
4116  * object which does not need locking at all.
4117  *
4118  * This function does *not* take care of syncing data in case of O_SYNC write.
4119  * A caller has to handle it. This is mainly due to the fact that we want to
4120  * avoid syncing under i_rwsem.
4121  *
4122  * Return:
4123  * * number of bytes written, even for truncated writes
4124  * * negative error code if no data has been written at all
4125  */
4126 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4127 {
4128 	struct file *file = iocb->ki_filp;
4129 	struct address_space *mapping = file->f_mapping;
4130 	struct inode *inode = mapping->host;
4131 	ssize_t ret;
4132 
4133 	ret = file_remove_privs(file);
4134 	if (ret)
4135 		return ret;
4136 
4137 	ret = file_update_time(file);
4138 	if (ret)
4139 		return ret;
4140 
4141 	if (iocb->ki_flags & IOCB_DIRECT) {
4142 		ret = generic_file_direct_write(iocb, from);
4143 		/*
4144 		 * If the write stopped short of completing, fall back to
4145 		 * buffered writes.  Some filesystems do this for writes to
4146 		 * holes, for example.  For DAX files, a buffered write will
4147 		 * not succeed (even if it did, DAX does not handle dirty
4148 		 * page-cache pages correctly).
4149 		 */
4150 		if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode))
4151 			return ret;
4152 		return direct_write_fallback(iocb, from, ret,
4153 				generic_perform_write(iocb, from));
4154 	}
4155 
4156 	return generic_perform_write(iocb, from);
4157 }
4158 EXPORT_SYMBOL(__generic_file_write_iter);
4159 
4160 /**
4161  * generic_file_write_iter - write data to a file
4162  * @iocb:	IO state structure
4163  * @from:	iov_iter with data to write
4164  *
4165  * This is a wrapper around __generic_file_write_iter() to be used by most
4166  * filesystems. It takes care of syncing the file in case of O_SYNC file
4167  * and acquires i_rwsem as needed.
4168  * Return:
4169  * * negative error code if no data has been written at all of
4170  *   vfs_fsync_range() failed for a synchronous write
4171  * * number of bytes written, even for truncated writes
4172  */
4173 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4174 {
4175 	struct file *file = iocb->ki_filp;
4176 	struct inode *inode = file->f_mapping->host;
4177 	ssize_t ret;
4178 
4179 	inode_lock(inode);
4180 	ret = generic_write_checks(iocb, from);
4181 	if (ret > 0)
4182 		ret = __generic_file_write_iter(iocb, from);
4183 	inode_unlock(inode);
4184 
4185 	if (ret > 0)
4186 		ret = generic_write_sync(iocb, ret);
4187 	return ret;
4188 }
4189 EXPORT_SYMBOL(generic_file_write_iter);
4190 
4191 /**
4192  * filemap_release_folio() - Release fs-specific metadata on a folio.
4193  * @folio: The folio which the kernel is trying to free.
4194  * @gfp: Memory allocation flags (and I/O mode).
4195  *
4196  * The address_space is trying to release any data attached to a folio
4197  * (presumably at folio->private).
4198  *
4199  * This will also be called if the private_2 flag is set on a page,
4200  * indicating that the folio has other metadata associated with it.
4201  *
4202  * The @gfp argument specifies whether I/O may be performed to release
4203  * this page (__GFP_IO), and whether the call may block
4204  * (__GFP_RECLAIM & __GFP_FS).
4205  *
4206  * Return: %true if the release was successful, otherwise %false.
4207  */
4208 bool filemap_release_folio(struct folio *folio, gfp_t gfp)
4209 {
4210 	struct address_space * const mapping = folio->mapping;
4211 
4212 	BUG_ON(!folio_test_locked(folio));
4213 	if (!folio_needs_release(folio))
4214 		return true;
4215 	if (folio_test_writeback(folio))
4216 		return false;
4217 
4218 	if (mapping && mapping->a_ops->release_folio)
4219 		return mapping->a_ops->release_folio(folio, gfp);
4220 	return try_to_free_buffers(folio);
4221 }
4222 EXPORT_SYMBOL(filemap_release_folio);
4223 
4224 /**
4225  * filemap_invalidate_inode - Invalidate/forcibly write back a range of an inode's pagecache
4226  * @inode: The inode to flush
4227  * @flush: Set to write back rather than simply invalidate.
4228  * @start: First byte to in range.
4229  * @end: Last byte in range (inclusive), or LLONG_MAX for everything from start
4230  *       onwards.
4231  *
4232  * Invalidate all the folios on an inode that contribute to the specified
4233  * range, possibly writing them back first.  Whilst the operation is
4234  * undertaken, the invalidate lock is held to prevent new folios from being
4235  * installed.
4236  */
4237 int filemap_invalidate_inode(struct inode *inode, bool flush,
4238 			     loff_t start, loff_t end)
4239 {
4240 	struct address_space *mapping = inode->i_mapping;
4241 	pgoff_t first = start >> PAGE_SHIFT;
4242 	pgoff_t last = end >> PAGE_SHIFT;
4243 	pgoff_t nr = end == LLONG_MAX ? ULONG_MAX : last - first + 1;
4244 
4245 	if (!mapping || !mapping->nrpages || end < start)
4246 		goto out;
4247 
4248 	/* Prevent new folios from being added to the inode. */
4249 	filemap_invalidate_lock(mapping);
4250 
4251 	if (!mapping->nrpages)
4252 		goto unlock;
4253 
4254 	unmap_mapping_pages(mapping, first, nr, false);
4255 
4256 	/* Write back the data if we're asked to. */
4257 	if (flush) {
4258 		struct writeback_control wbc = {
4259 			.sync_mode	= WB_SYNC_ALL,
4260 			.nr_to_write	= LONG_MAX,
4261 			.range_start	= start,
4262 			.range_end	= end,
4263 		};
4264 
4265 		filemap_fdatawrite_wbc(mapping, &wbc);
4266 	}
4267 
4268 	/* Wait for writeback to complete on all folios and discard. */
4269 	invalidate_inode_pages2_range(mapping, start / PAGE_SIZE, end / PAGE_SIZE);
4270 
4271 unlock:
4272 	filemap_invalidate_unlock(mapping);
4273 out:
4274 	return filemap_check_errors(mapping);
4275 }
4276 EXPORT_SYMBOL_GPL(filemap_invalidate_inode);
4277 
4278 #ifdef CONFIG_CACHESTAT_SYSCALL
4279 /**
4280  * filemap_cachestat() - compute the page cache statistics of a mapping
4281  * @mapping:	The mapping to compute the statistics for.
4282  * @first_index:	The starting page cache index.
4283  * @last_index:	The final page index (inclusive).
4284  * @cs:	the cachestat struct to write the result to.
4285  *
4286  * This will query the page cache statistics of a mapping in the
4287  * page range of [first_index, last_index] (inclusive). The statistics
4288  * queried include: number of dirty pages, number of pages marked for
4289  * writeback, and the number of (recently) evicted pages.
4290  */
4291 static void filemap_cachestat(struct address_space *mapping,
4292 		pgoff_t first_index, pgoff_t last_index, struct cachestat *cs)
4293 {
4294 	XA_STATE(xas, &mapping->i_pages, first_index);
4295 	struct folio *folio;
4296 
4297 	/* Flush stats (and potentially sleep) outside the RCU read section. */
4298 	mem_cgroup_flush_stats_ratelimited(NULL);
4299 
4300 	rcu_read_lock();
4301 	xas_for_each(&xas, folio, last_index) {
4302 		int order;
4303 		unsigned long nr_pages;
4304 		pgoff_t folio_first_index, folio_last_index;
4305 
4306 		/*
4307 		 * Don't deref the folio. It is not pinned, and might
4308 		 * get freed (and reused) underneath us.
4309 		 *
4310 		 * We *could* pin it, but that would be expensive for
4311 		 * what should be a fast and lightweight syscall.
4312 		 *
4313 		 * Instead, derive all information of interest from
4314 		 * the rcu-protected xarray.
4315 		 */
4316 
4317 		if (xas_retry(&xas, folio))
4318 			continue;
4319 
4320 		order = xas_get_order(&xas);
4321 		nr_pages = 1 << order;
4322 		folio_first_index = round_down(xas.xa_index, 1 << order);
4323 		folio_last_index = folio_first_index + nr_pages - 1;
4324 
4325 		/* Folios might straddle the range boundaries, only count covered pages */
4326 		if (folio_first_index < first_index)
4327 			nr_pages -= first_index - folio_first_index;
4328 
4329 		if (folio_last_index > last_index)
4330 			nr_pages -= folio_last_index - last_index;
4331 
4332 		if (xa_is_value(folio)) {
4333 			/* page is evicted */
4334 			void *shadow = (void *)folio;
4335 			bool workingset; /* not used */
4336 
4337 			cs->nr_evicted += nr_pages;
4338 
4339 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */
4340 			if (shmem_mapping(mapping)) {
4341 				/* shmem file - in swap cache */
4342 				swp_entry_t swp = radix_to_swp_entry(folio);
4343 
4344 				/* swapin error results in poisoned entry */
4345 				if (non_swap_entry(swp))
4346 					goto resched;
4347 
4348 				/*
4349 				 * Getting a swap entry from the shmem
4350 				 * inode means we beat
4351 				 * shmem_unuse(). rcu_read_lock()
4352 				 * ensures swapoff waits for us before
4353 				 * freeing the swapper space. However,
4354 				 * we can race with swapping and
4355 				 * invalidation, so there might not be
4356 				 * a shadow in the swapcache (yet).
4357 				 */
4358 				shadow = get_shadow_from_swap_cache(swp);
4359 				if (!shadow)
4360 					goto resched;
4361 			}
4362 #endif
4363 			if (workingset_test_recent(shadow, true, &workingset, false))
4364 				cs->nr_recently_evicted += nr_pages;
4365 
4366 			goto resched;
4367 		}
4368 
4369 		/* page is in cache */
4370 		cs->nr_cache += nr_pages;
4371 
4372 		if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY))
4373 			cs->nr_dirty += nr_pages;
4374 
4375 		if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK))
4376 			cs->nr_writeback += nr_pages;
4377 
4378 resched:
4379 		if (need_resched()) {
4380 			xas_pause(&xas);
4381 			cond_resched_rcu();
4382 		}
4383 	}
4384 	rcu_read_unlock();
4385 }
4386 
4387 /*
4388  * The cachestat(2) system call.
4389  *
4390  * cachestat() returns the page cache statistics of a file in the
4391  * bytes range specified by `off` and `len`: number of cached pages,
4392  * number of dirty pages, number of pages marked for writeback,
4393  * number of evicted pages, and number of recently evicted pages.
4394  *
4395  * An evicted page is a page that is previously in the page cache
4396  * but has been evicted since. A page is recently evicted if its last
4397  * eviction was recent enough that its reentry to the cache would
4398  * indicate that it is actively being used by the system, and that
4399  * there is memory pressure on the system.
4400  *
4401  * `off` and `len` must be non-negative integers. If `len` > 0,
4402  * the queried range is [`off`, `off` + `len`]. If `len` == 0,
4403  * we will query in the range from `off` to the end of the file.
4404  *
4405  * The `flags` argument is unused for now, but is included for future
4406  * extensibility. User should pass 0 (i.e no flag specified).
4407  *
4408  * Currently, hugetlbfs is not supported.
4409  *
4410  * Because the status of a page can change after cachestat() checks it
4411  * but before it returns to the application, the returned values may
4412  * contain stale information.
4413  *
4414  * return values:
4415  *  zero        - success
4416  *  -EFAULT     - cstat or cstat_range points to an illegal address
4417  *  -EINVAL     - invalid flags
4418  *  -EBADF      - invalid file descriptor
4419  *  -EOPNOTSUPP - file descriptor is of a hugetlbfs file
4420  */
4421 SYSCALL_DEFINE4(cachestat, unsigned int, fd,
4422 		struct cachestat_range __user *, cstat_range,
4423 		struct cachestat __user *, cstat, unsigned int, flags)
4424 {
4425 	CLASS(fd, f)(fd);
4426 	struct address_space *mapping;
4427 	struct cachestat_range csr;
4428 	struct cachestat cs;
4429 	pgoff_t first_index, last_index;
4430 
4431 	if (fd_empty(f))
4432 		return -EBADF;
4433 
4434 	if (copy_from_user(&csr, cstat_range,
4435 			sizeof(struct cachestat_range)))
4436 		return -EFAULT;
4437 
4438 	/* hugetlbfs is not supported */
4439 	if (is_file_hugepages(fd_file(f)))
4440 		return -EOPNOTSUPP;
4441 
4442 	if (flags != 0)
4443 		return -EINVAL;
4444 
4445 	first_index = csr.off >> PAGE_SHIFT;
4446 	last_index =
4447 		csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT;
4448 	memset(&cs, 0, sizeof(struct cachestat));
4449 	mapping = fd_file(f)->f_mapping;
4450 	filemap_cachestat(mapping, first_index, last_index, &cs);
4451 
4452 	if (copy_to_user(cstat, &cs, sizeof(struct cachestat)))
4453 		return -EFAULT;
4454 
4455 	return 0;
4456 }
4457 #endif /* CONFIG_CACHESTAT_SYSCALL */
4458