xref: /linux/mm/filemap.c (revision 7ec7fb394298c212c30e063c57e0aa895efe9439)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include "internal.h"
38 
39 /*
40  * FIXME: remove all knowledge of the buffer layer from the core VM
41  */
42 #include <linux/buffer_head.h> /* for generic_osync_inode */
43 
44 #include <asm/mman.h>
45 
46 
47 /*
48  * Shared mappings implemented 30.11.1994. It's not fully working yet,
49  * though.
50  *
51  * Shared mappings now work. 15.8.1995  Bruno.
52  *
53  * finished 'unifying' the page and buffer cache and SMP-threaded the
54  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55  *
56  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
57  */
58 
59 /*
60  * Lock ordering:
61  *
62  *  ->i_mmap_lock		(vmtruncate)
63  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
64  *      ->swap_lock		(exclusive_swap_page, others)
65  *        ->mapping->tree_lock
66  *
67  *  ->i_mutex
68  *    ->i_mmap_lock		(truncate->unmap_mapping_range)
69  *
70  *  ->mmap_sem
71  *    ->i_mmap_lock
72  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
73  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
74  *
75  *  ->mmap_sem
76  *    ->lock_page		(access_process_vm)
77  *
78  *  ->i_mutex			(generic_file_buffered_write)
79  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
80  *
81  *  ->i_mutex
82  *    ->i_alloc_sem             (various)
83  *
84  *  ->inode_lock
85  *    ->sb_lock			(fs/fs-writeback.c)
86  *    ->mapping->tree_lock	(__sync_single_inode)
87  *
88  *  ->i_mmap_lock
89  *    ->anon_vma.lock		(vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock		(try_to_unmap_one)
96  *    ->private_lock		(try_to_unmap_one)
97  *    ->tree_lock		(try_to_unmap_one)
98  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
99  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
100  *    ->private_lock		(page_remove_rmap->set_page_dirty)
101  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
102  *    ->inode_lock		(page_remove_rmap->set_page_dirty)
103  *    ->inode_lock		(zap_pte_range->set_page_dirty)
104  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
105  *
106  *  ->task->proc_lock
107  *    ->dcache_lock		(proc_pid_lookup)
108  */
109 
110 /*
111  * Remove a page from the page cache and free it. Caller has to make
112  * sure the page is locked and that nobody else uses it - or that usage
113  * is safe.  The caller must hold the mapping's tree_lock.
114  */
115 void __remove_from_page_cache(struct page *page)
116 {
117 	struct address_space *mapping = page->mapping;
118 
119 	radix_tree_delete(&mapping->page_tree, page->index);
120 	page->mapping = NULL;
121 	mapping->nrpages--;
122 	__dec_zone_page_state(page, NR_FILE_PAGES);
123 	BUG_ON(page_mapped(page));
124 	mem_cgroup_uncharge_cache_page(page);
125 
126 	/*
127 	 * Some filesystems seem to re-dirty the page even after
128 	 * the VM has canceled the dirty bit (eg ext3 journaling).
129 	 *
130 	 * Fix it up by doing a final dirty accounting check after
131 	 * having removed the page entirely.
132 	 */
133 	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
134 		dec_zone_page_state(page, NR_FILE_DIRTY);
135 		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
136 	}
137 }
138 
139 void remove_from_page_cache(struct page *page)
140 {
141 	struct address_space *mapping = page->mapping;
142 
143 	BUG_ON(!PageLocked(page));
144 
145 	spin_lock_irq(&mapping->tree_lock);
146 	__remove_from_page_cache(page);
147 	spin_unlock_irq(&mapping->tree_lock);
148 }
149 
150 static int sync_page(void *word)
151 {
152 	struct address_space *mapping;
153 	struct page *page;
154 
155 	page = container_of((unsigned long *)word, struct page, flags);
156 
157 	/*
158 	 * page_mapping() is being called without PG_locked held.
159 	 * Some knowledge of the state and use of the page is used to
160 	 * reduce the requirements down to a memory barrier.
161 	 * The danger here is of a stale page_mapping() return value
162 	 * indicating a struct address_space different from the one it's
163 	 * associated with when it is associated with one.
164 	 * After smp_mb(), it's either the correct page_mapping() for
165 	 * the page, or an old page_mapping() and the page's own
166 	 * page_mapping() has gone NULL.
167 	 * The ->sync_page() address_space operation must tolerate
168 	 * page_mapping() going NULL. By an amazing coincidence,
169 	 * this comes about because none of the users of the page
170 	 * in the ->sync_page() methods make essential use of the
171 	 * page_mapping(), merely passing the page down to the backing
172 	 * device's unplug functions when it's non-NULL, which in turn
173 	 * ignore it for all cases but swap, where only page_private(page) is
174 	 * of interest. When page_mapping() does go NULL, the entire
175 	 * call stack gracefully ignores the page and returns.
176 	 * -- wli
177 	 */
178 	smp_mb();
179 	mapping = page_mapping(page);
180 	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
181 		mapping->a_ops->sync_page(page);
182 	io_schedule();
183 	return 0;
184 }
185 
186 static int sync_page_killable(void *word)
187 {
188 	sync_page(word);
189 	return fatal_signal_pending(current) ? -EINTR : 0;
190 }
191 
192 /**
193  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
194  * @mapping:	address space structure to write
195  * @start:	offset in bytes where the range starts
196  * @end:	offset in bytes where the range ends (inclusive)
197  * @sync_mode:	enable synchronous operation
198  *
199  * Start writeback against all of a mapping's dirty pages that lie
200  * within the byte offsets <start, end> inclusive.
201  *
202  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
203  * opposed to a regular memory cleansing writeback.  The difference between
204  * these two operations is that if a dirty page/buffer is encountered, it must
205  * be waited upon, and not just skipped over.
206  */
207 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
208 				loff_t end, int sync_mode)
209 {
210 	int ret;
211 	struct writeback_control wbc = {
212 		.sync_mode = sync_mode,
213 		.nr_to_write = LONG_MAX,
214 		.range_start = start,
215 		.range_end = end,
216 	};
217 
218 	if (!mapping_cap_writeback_dirty(mapping))
219 		return 0;
220 
221 	ret = do_writepages(mapping, &wbc);
222 	return ret;
223 }
224 
225 static inline int __filemap_fdatawrite(struct address_space *mapping,
226 	int sync_mode)
227 {
228 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
229 }
230 
231 int filemap_fdatawrite(struct address_space *mapping)
232 {
233 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
234 }
235 EXPORT_SYMBOL(filemap_fdatawrite);
236 
237 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
238 				loff_t end)
239 {
240 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
241 }
242 EXPORT_SYMBOL(filemap_fdatawrite_range);
243 
244 /**
245  * filemap_flush - mostly a non-blocking flush
246  * @mapping:	target address_space
247  *
248  * This is a mostly non-blocking flush.  Not suitable for data-integrity
249  * purposes - I/O may not be started against all dirty pages.
250  */
251 int filemap_flush(struct address_space *mapping)
252 {
253 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
254 }
255 EXPORT_SYMBOL(filemap_flush);
256 
257 /**
258  * wait_on_page_writeback_range - wait for writeback to complete
259  * @mapping:	target address_space
260  * @start:	beginning page index
261  * @end:	ending page index
262  *
263  * Wait for writeback to complete against pages indexed by start->end
264  * inclusive
265  */
266 int wait_on_page_writeback_range(struct address_space *mapping,
267 				pgoff_t start, pgoff_t end)
268 {
269 	struct pagevec pvec;
270 	int nr_pages;
271 	int ret = 0;
272 	pgoff_t index;
273 
274 	if (end < start)
275 		return 0;
276 
277 	pagevec_init(&pvec, 0);
278 	index = start;
279 	while ((index <= end) &&
280 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
281 			PAGECACHE_TAG_WRITEBACK,
282 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
283 		unsigned i;
284 
285 		for (i = 0; i < nr_pages; i++) {
286 			struct page *page = pvec.pages[i];
287 
288 			/* until radix tree lookup accepts end_index */
289 			if (page->index > end)
290 				continue;
291 
292 			wait_on_page_writeback(page);
293 			if (PageError(page))
294 				ret = -EIO;
295 		}
296 		pagevec_release(&pvec);
297 		cond_resched();
298 	}
299 
300 	/* Check for outstanding write errors */
301 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
302 		ret = -ENOSPC;
303 	if (test_and_clear_bit(AS_EIO, &mapping->flags))
304 		ret = -EIO;
305 
306 	return ret;
307 }
308 
309 /**
310  * sync_page_range - write and wait on all pages in the passed range
311  * @inode:	target inode
312  * @mapping:	target address_space
313  * @pos:	beginning offset in pages to write
314  * @count:	number of bytes to write
315  *
316  * Write and wait upon all the pages in the passed range.  This is a "data
317  * integrity" operation.  It waits upon in-flight writeout before starting and
318  * waiting upon new writeout.  If there was an IO error, return it.
319  *
320  * We need to re-take i_mutex during the generic_osync_inode list walk because
321  * it is otherwise livelockable.
322  */
323 int sync_page_range(struct inode *inode, struct address_space *mapping,
324 			loff_t pos, loff_t count)
325 {
326 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
327 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
328 	int ret;
329 
330 	if (!mapping_cap_writeback_dirty(mapping) || !count)
331 		return 0;
332 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
333 	if (ret == 0) {
334 		mutex_lock(&inode->i_mutex);
335 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
336 		mutex_unlock(&inode->i_mutex);
337 	}
338 	if (ret == 0)
339 		ret = wait_on_page_writeback_range(mapping, start, end);
340 	return ret;
341 }
342 EXPORT_SYMBOL(sync_page_range);
343 
344 /**
345  * sync_page_range_nolock - write & wait on all pages in the passed range without locking
346  * @inode:	target inode
347  * @mapping:	target address_space
348  * @pos:	beginning offset in pages to write
349  * @count:	number of bytes to write
350  *
351  * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
352  * as it forces O_SYNC writers to different parts of the same file
353  * to be serialised right until io completion.
354  */
355 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
356 			   loff_t pos, loff_t count)
357 {
358 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
359 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
360 	int ret;
361 
362 	if (!mapping_cap_writeback_dirty(mapping) || !count)
363 		return 0;
364 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
365 	if (ret == 0)
366 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
367 	if (ret == 0)
368 		ret = wait_on_page_writeback_range(mapping, start, end);
369 	return ret;
370 }
371 EXPORT_SYMBOL(sync_page_range_nolock);
372 
373 /**
374  * filemap_fdatawait - wait for all under-writeback pages to complete
375  * @mapping: address space structure to wait for
376  *
377  * Walk the list of under-writeback pages of the given address space
378  * and wait for all of them.
379  */
380 int filemap_fdatawait(struct address_space *mapping)
381 {
382 	loff_t i_size = i_size_read(mapping->host);
383 
384 	if (i_size == 0)
385 		return 0;
386 
387 	return wait_on_page_writeback_range(mapping, 0,
388 				(i_size - 1) >> PAGE_CACHE_SHIFT);
389 }
390 EXPORT_SYMBOL(filemap_fdatawait);
391 
392 int filemap_write_and_wait(struct address_space *mapping)
393 {
394 	int err = 0;
395 
396 	if (mapping->nrpages) {
397 		err = filemap_fdatawrite(mapping);
398 		/*
399 		 * Even if the above returned error, the pages may be
400 		 * written partially (e.g. -ENOSPC), so we wait for it.
401 		 * But the -EIO is special case, it may indicate the worst
402 		 * thing (e.g. bug) happened, so we avoid waiting for it.
403 		 */
404 		if (err != -EIO) {
405 			int err2 = filemap_fdatawait(mapping);
406 			if (!err)
407 				err = err2;
408 		}
409 	}
410 	return err;
411 }
412 EXPORT_SYMBOL(filemap_write_and_wait);
413 
414 /**
415  * filemap_write_and_wait_range - write out & wait on a file range
416  * @mapping:	the address_space for the pages
417  * @lstart:	offset in bytes where the range starts
418  * @lend:	offset in bytes where the range ends (inclusive)
419  *
420  * Write out and wait upon file offsets lstart->lend, inclusive.
421  *
422  * Note that `lend' is inclusive (describes the last byte to be written) so
423  * that this function can be used to write to the very end-of-file (end = -1).
424  */
425 int filemap_write_and_wait_range(struct address_space *mapping,
426 				 loff_t lstart, loff_t lend)
427 {
428 	int err = 0;
429 
430 	if (mapping->nrpages) {
431 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
432 						 WB_SYNC_ALL);
433 		/* See comment of filemap_write_and_wait() */
434 		if (err != -EIO) {
435 			int err2 = wait_on_page_writeback_range(mapping,
436 						lstart >> PAGE_CACHE_SHIFT,
437 						lend >> PAGE_CACHE_SHIFT);
438 			if (!err)
439 				err = err2;
440 		}
441 	}
442 	return err;
443 }
444 
445 /**
446  * add_to_page_cache_locked - add a locked page to the pagecache
447  * @page:	page to add
448  * @mapping:	the page's address_space
449  * @offset:	page index
450  * @gfp_mask:	page allocation mode
451  *
452  * This function is used to add a page to the pagecache. It must be locked.
453  * This function does not add the page to the LRU.  The caller must do that.
454  */
455 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
456 		pgoff_t offset, gfp_t gfp_mask)
457 {
458 	int error;
459 
460 	VM_BUG_ON(!PageLocked(page));
461 
462 	error = mem_cgroup_cache_charge(page, current->mm,
463 					gfp_mask & ~__GFP_HIGHMEM);
464 	if (error)
465 		goto out;
466 
467 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
468 	if (error == 0) {
469 		page_cache_get(page);
470 		page->mapping = mapping;
471 		page->index = offset;
472 
473 		spin_lock_irq(&mapping->tree_lock);
474 		error = radix_tree_insert(&mapping->page_tree, offset, page);
475 		if (likely(!error)) {
476 			mapping->nrpages++;
477 			__inc_zone_page_state(page, NR_FILE_PAGES);
478 		} else {
479 			page->mapping = NULL;
480 			mem_cgroup_uncharge_cache_page(page);
481 			page_cache_release(page);
482 		}
483 
484 		spin_unlock_irq(&mapping->tree_lock);
485 		radix_tree_preload_end();
486 	} else
487 		mem_cgroup_uncharge_cache_page(page);
488 out:
489 	return error;
490 }
491 EXPORT_SYMBOL(add_to_page_cache_locked);
492 
493 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
494 				pgoff_t offset, gfp_t gfp_mask)
495 {
496 	int ret;
497 
498 	/*
499 	 * Splice_read and readahead add shmem/tmpfs pages into the page cache
500 	 * before shmem_readpage has a chance to mark them as SwapBacked: they
501 	 * need to go on the active_anon lru below, and mem_cgroup_cache_charge
502 	 * (called in add_to_page_cache) needs to know where they're going too.
503 	 */
504 	if (mapping_cap_swap_backed(mapping))
505 		SetPageSwapBacked(page);
506 
507 	ret = add_to_page_cache(page, mapping, offset, gfp_mask);
508 	if (ret == 0) {
509 		if (page_is_file_cache(page))
510 			lru_cache_add_file(page);
511 		else
512 			lru_cache_add_active_anon(page);
513 	}
514 	return ret;
515 }
516 
517 #ifdef CONFIG_NUMA
518 struct page *__page_cache_alloc(gfp_t gfp)
519 {
520 	if (cpuset_do_page_mem_spread()) {
521 		int n = cpuset_mem_spread_node();
522 		return alloc_pages_node(n, gfp, 0);
523 	}
524 	return alloc_pages(gfp, 0);
525 }
526 EXPORT_SYMBOL(__page_cache_alloc);
527 #endif
528 
529 static int __sleep_on_page_lock(void *word)
530 {
531 	io_schedule();
532 	return 0;
533 }
534 
535 /*
536  * In order to wait for pages to become available there must be
537  * waitqueues associated with pages. By using a hash table of
538  * waitqueues where the bucket discipline is to maintain all
539  * waiters on the same queue and wake all when any of the pages
540  * become available, and for the woken contexts to check to be
541  * sure the appropriate page became available, this saves space
542  * at a cost of "thundering herd" phenomena during rare hash
543  * collisions.
544  */
545 static wait_queue_head_t *page_waitqueue(struct page *page)
546 {
547 	const struct zone *zone = page_zone(page);
548 
549 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
550 }
551 
552 static inline void wake_up_page(struct page *page, int bit)
553 {
554 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
555 }
556 
557 void wait_on_page_bit(struct page *page, int bit_nr)
558 {
559 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
560 
561 	if (test_bit(bit_nr, &page->flags))
562 		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
563 							TASK_UNINTERRUPTIBLE);
564 }
565 EXPORT_SYMBOL(wait_on_page_bit);
566 
567 /**
568  * unlock_page - unlock a locked page
569  * @page: the page
570  *
571  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
572  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
573  * mechananism between PageLocked pages and PageWriteback pages is shared.
574  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
575  *
576  * The mb is necessary to enforce ordering between the clear_bit and the read
577  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
578  */
579 void unlock_page(struct page *page)
580 {
581 	VM_BUG_ON(!PageLocked(page));
582 	clear_bit_unlock(PG_locked, &page->flags);
583 	smp_mb__after_clear_bit();
584 	wake_up_page(page, PG_locked);
585 }
586 EXPORT_SYMBOL(unlock_page);
587 
588 /**
589  * end_page_writeback - end writeback against a page
590  * @page: the page
591  */
592 void end_page_writeback(struct page *page)
593 {
594 	if (TestClearPageReclaim(page))
595 		rotate_reclaimable_page(page);
596 
597 	if (!test_clear_page_writeback(page))
598 		BUG();
599 
600 	smp_mb__after_clear_bit();
601 	wake_up_page(page, PG_writeback);
602 }
603 EXPORT_SYMBOL(end_page_writeback);
604 
605 /**
606  * __lock_page - get a lock on the page, assuming we need to sleep to get it
607  * @page: the page to lock
608  *
609  * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
610  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
611  * chances are that on the second loop, the block layer's plug list is empty,
612  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
613  */
614 void __lock_page(struct page *page)
615 {
616 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
617 
618 	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
619 							TASK_UNINTERRUPTIBLE);
620 }
621 EXPORT_SYMBOL(__lock_page);
622 
623 int __lock_page_killable(struct page *page)
624 {
625 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
626 
627 	return __wait_on_bit_lock(page_waitqueue(page), &wait,
628 					sync_page_killable, TASK_KILLABLE);
629 }
630 
631 /**
632  * __lock_page_nosync - get a lock on the page, without calling sync_page()
633  * @page: the page to lock
634  *
635  * Variant of lock_page that does not require the caller to hold a reference
636  * on the page's mapping.
637  */
638 void __lock_page_nosync(struct page *page)
639 {
640 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
641 	__wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
642 							TASK_UNINTERRUPTIBLE);
643 }
644 
645 /**
646  * find_get_page - find and get a page reference
647  * @mapping: the address_space to search
648  * @offset: the page index
649  *
650  * Is there a pagecache struct page at the given (mapping, offset) tuple?
651  * If yes, increment its refcount and return it; if no, return NULL.
652  */
653 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
654 {
655 	void **pagep;
656 	struct page *page;
657 
658 	rcu_read_lock();
659 repeat:
660 	page = NULL;
661 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
662 	if (pagep) {
663 		page = radix_tree_deref_slot(pagep);
664 		if (unlikely(!page || page == RADIX_TREE_RETRY))
665 			goto repeat;
666 
667 		if (!page_cache_get_speculative(page))
668 			goto repeat;
669 
670 		/*
671 		 * Has the page moved?
672 		 * This is part of the lockless pagecache protocol. See
673 		 * include/linux/pagemap.h for details.
674 		 */
675 		if (unlikely(page != *pagep)) {
676 			page_cache_release(page);
677 			goto repeat;
678 		}
679 	}
680 	rcu_read_unlock();
681 
682 	return page;
683 }
684 EXPORT_SYMBOL(find_get_page);
685 
686 /**
687  * find_lock_page - locate, pin and lock a pagecache page
688  * @mapping: the address_space to search
689  * @offset: the page index
690  *
691  * Locates the desired pagecache page, locks it, increments its reference
692  * count and returns its address.
693  *
694  * Returns zero if the page was not present. find_lock_page() may sleep.
695  */
696 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
697 {
698 	struct page *page;
699 
700 repeat:
701 	page = find_get_page(mapping, offset);
702 	if (page) {
703 		lock_page(page);
704 		/* Has the page been truncated? */
705 		if (unlikely(page->mapping != mapping)) {
706 			unlock_page(page);
707 			page_cache_release(page);
708 			goto repeat;
709 		}
710 		VM_BUG_ON(page->index != offset);
711 	}
712 	return page;
713 }
714 EXPORT_SYMBOL(find_lock_page);
715 
716 /**
717  * find_or_create_page - locate or add a pagecache page
718  * @mapping: the page's address_space
719  * @index: the page's index into the mapping
720  * @gfp_mask: page allocation mode
721  *
722  * Locates a page in the pagecache.  If the page is not present, a new page
723  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
724  * LRU list.  The returned page is locked and has its reference count
725  * incremented.
726  *
727  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
728  * allocation!
729  *
730  * find_or_create_page() returns the desired page's address, or zero on
731  * memory exhaustion.
732  */
733 struct page *find_or_create_page(struct address_space *mapping,
734 		pgoff_t index, gfp_t gfp_mask)
735 {
736 	struct page *page;
737 	int err;
738 repeat:
739 	page = find_lock_page(mapping, index);
740 	if (!page) {
741 		page = __page_cache_alloc(gfp_mask);
742 		if (!page)
743 			return NULL;
744 		/*
745 		 * We want a regular kernel memory (not highmem or DMA etc)
746 		 * allocation for the radix tree nodes, but we need to honour
747 		 * the context-specific requirements the caller has asked for.
748 		 * GFP_RECLAIM_MASK collects those requirements.
749 		 */
750 		err = add_to_page_cache_lru(page, mapping, index,
751 			(gfp_mask & GFP_RECLAIM_MASK));
752 		if (unlikely(err)) {
753 			page_cache_release(page);
754 			page = NULL;
755 			if (err == -EEXIST)
756 				goto repeat;
757 		}
758 	}
759 	return page;
760 }
761 EXPORT_SYMBOL(find_or_create_page);
762 
763 /**
764  * find_get_pages - gang pagecache lookup
765  * @mapping:	The address_space to search
766  * @start:	The starting page index
767  * @nr_pages:	The maximum number of pages
768  * @pages:	Where the resulting pages are placed
769  *
770  * find_get_pages() will search for and return a group of up to
771  * @nr_pages pages in the mapping.  The pages are placed at @pages.
772  * find_get_pages() takes a reference against the returned pages.
773  *
774  * The search returns a group of mapping-contiguous pages with ascending
775  * indexes.  There may be holes in the indices due to not-present pages.
776  *
777  * find_get_pages() returns the number of pages which were found.
778  */
779 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
780 			    unsigned int nr_pages, struct page **pages)
781 {
782 	unsigned int i;
783 	unsigned int ret;
784 	unsigned int nr_found;
785 
786 	rcu_read_lock();
787 restart:
788 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
789 				(void ***)pages, start, nr_pages);
790 	ret = 0;
791 	for (i = 0; i < nr_found; i++) {
792 		struct page *page;
793 repeat:
794 		page = radix_tree_deref_slot((void **)pages[i]);
795 		if (unlikely(!page))
796 			continue;
797 		/*
798 		 * this can only trigger if nr_found == 1, making livelock
799 		 * a non issue.
800 		 */
801 		if (unlikely(page == RADIX_TREE_RETRY))
802 			goto restart;
803 
804 		if (!page_cache_get_speculative(page))
805 			goto repeat;
806 
807 		/* Has the page moved? */
808 		if (unlikely(page != *((void **)pages[i]))) {
809 			page_cache_release(page);
810 			goto repeat;
811 		}
812 
813 		pages[ret] = page;
814 		ret++;
815 	}
816 	rcu_read_unlock();
817 	return ret;
818 }
819 
820 /**
821  * find_get_pages_contig - gang contiguous pagecache lookup
822  * @mapping:	The address_space to search
823  * @index:	The starting page index
824  * @nr_pages:	The maximum number of pages
825  * @pages:	Where the resulting pages are placed
826  *
827  * find_get_pages_contig() works exactly like find_get_pages(), except
828  * that the returned number of pages are guaranteed to be contiguous.
829  *
830  * find_get_pages_contig() returns the number of pages which were found.
831  */
832 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
833 			       unsigned int nr_pages, struct page **pages)
834 {
835 	unsigned int i;
836 	unsigned int ret;
837 	unsigned int nr_found;
838 
839 	rcu_read_lock();
840 restart:
841 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
842 				(void ***)pages, index, nr_pages);
843 	ret = 0;
844 	for (i = 0; i < nr_found; i++) {
845 		struct page *page;
846 repeat:
847 		page = radix_tree_deref_slot((void **)pages[i]);
848 		if (unlikely(!page))
849 			continue;
850 		/*
851 		 * this can only trigger if nr_found == 1, making livelock
852 		 * a non issue.
853 		 */
854 		if (unlikely(page == RADIX_TREE_RETRY))
855 			goto restart;
856 
857 		if (page->mapping == NULL || page->index != index)
858 			break;
859 
860 		if (!page_cache_get_speculative(page))
861 			goto repeat;
862 
863 		/* Has the page moved? */
864 		if (unlikely(page != *((void **)pages[i]))) {
865 			page_cache_release(page);
866 			goto repeat;
867 		}
868 
869 		pages[ret] = page;
870 		ret++;
871 		index++;
872 	}
873 	rcu_read_unlock();
874 	return ret;
875 }
876 EXPORT_SYMBOL(find_get_pages_contig);
877 
878 /**
879  * find_get_pages_tag - find and return pages that match @tag
880  * @mapping:	the address_space to search
881  * @index:	the starting page index
882  * @tag:	the tag index
883  * @nr_pages:	the maximum number of pages
884  * @pages:	where the resulting pages are placed
885  *
886  * Like find_get_pages, except we only return pages which are tagged with
887  * @tag.   We update @index to index the next page for the traversal.
888  */
889 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
890 			int tag, unsigned int nr_pages, struct page **pages)
891 {
892 	unsigned int i;
893 	unsigned int ret;
894 	unsigned int nr_found;
895 
896 	rcu_read_lock();
897 restart:
898 	nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
899 				(void ***)pages, *index, nr_pages, tag);
900 	ret = 0;
901 	for (i = 0; i < nr_found; i++) {
902 		struct page *page;
903 repeat:
904 		page = radix_tree_deref_slot((void **)pages[i]);
905 		if (unlikely(!page))
906 			continue;
907 		/*
908 		 * this can only trigger if nr_found == 1, making livelock
909 		 * a non issue.
910 		 */
911 		if (unlikely(page == RADIX_TREE_RETRY))
912 			goto restart;
913 
914 		if (!page_cache_get_speculative(page))
915 			goto repeat;
916 
917 		/* Has the page moved? */
918 		if (unlikely(page != *((void **)pages[i]))) {
919 			page_cache_release(page);
920 			goto repeat;
921 		}
922 
923 		pages[ret] = page;
924 		ret++;
925 	}
926 	rcu_read_unlock();
927 
928 	if (ret)
929 		*index = pages[ret - 1]->index + 1;
930 
931 	return ret;
932 }
933 EXPORT_SYMBOL(find_get_pages_tag);
934 
935 /**
936  * grab_cache_page_nowait - returns locked page at given index in given cache
937  * @mapping: target address_space
938  * @index: the page index
939  *
940  * Same as grab_cache_page(), but do not wait if the page is unavailable.
941  * This is intended for speculative data generators, where the data can
942  * be regenerated if the page couldn't be grabbed.  This routine should
943  * be safe to call while holding the lock for another page.
944  *
945  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
946  * and deadlock against the caller's locked page.
947  */
948 struct page *
949 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
950 {
951 	struct page *page = find_get_page(mapping, index);
952 
953 	if (page) {
954 		if (trylock_page(page))
955 			return page;
956 		page_cache_release(page);
957 		return NULL;
958 	}
959 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
960 	if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
961 		page_cache_release(page);
962 		page = NULL;
963 	}
964 	return page;
965 }
966 EXPORT_SYMBOL(grab_cache_page_nowait);
967 
968 /*
969  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
970  * a _large_ part of the i/o request. Imagine the worst scenario:
971  *
972  *      ---R__________________________________________B__________
973  *         ^ reading here                             ^ bad block(assume 4k)
974  *
975  * read(R) => miss => readahead(R...B) => media error => frustrating retries
976  * => failing the whole request => read(R) => read(R+1) =>
977  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
978  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
979  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
980  *
981  * It is going insane. Fix it by quickly scaling down the readahead size.
982  */
983 static void shrink_readahead_size_eio(struct file *filp,
984 					struct file_ra_state *ra)
985 {
986 	if (!ra->ra_pages)
987 		return;
988 
989 	ra->ra_pages /= 4;
990 }
991 
992 /**
993  * do_generic_file_read - generic file read routine
994  * @filp:	the file to read
995  * @ppos:	current file position
996  * @desc:	read_descriptor
997  * @actor:	read method
998  *
999  * This is a generic file read routine, and uses the
1000  * mapping->a_ops->readpage() function for the actual low-level stuff.
1001  *
1002  * This is really ugly. But the goto's actually try to clarify some
1003  * of the logic when it comes to error handling etc.
1004  */
1005 static void do_generic_file_read(struct file *filp, loff_t *ppos,
1006 		read_descriptor_t *desc, read_actor_t actor)
1007 {
1008 	struct address_space *mapping = filp->f_mapping;
1009 	struct inode *inode = mapping->host;
1010 	struct file_ra_state *ra = &filp->f_ra;
1011 	pgoff_t index;
1012 	pgoff_t last_index;
1013 	pgoff_t prev_index;
1014 	unsigned long offset;      /* offset into pagecache page */
1015 	unsigned int prev_offset;
1016 	int error;
1017 
1018 	index = *ppos >> PAGE_CACHE_SHIFT;
1019 	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1020 	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1021 	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1022 	offset = *ppos & ~PAGE_CACHE_MASK;
1023 
1024 	for (;;) {
1025 		struct page *page;
1026 		pgoff_t end_index;
1027 		loff_t isize;
1028 		unsigned long nr, ret;
1029 
1030 		cond_resched();
1031 find_page:
1032 		page = find_get_page(mapping, index);
1033 		if (!page) {
1034 			page_cache_sync_readahead(mapping,
1035 					ra, filp,
1036 					index, last_index - index);
1037 			page = find_get_page(mapping, index);
1038 			if (unlikely(page == NULL))
1039 				goto no_cached_page;
1040 		}
1041 		if (PageReadahead(page)) {
1042 			page_cache_async_readahead(mapping,
1043 					ra, filp, page,
1044 					index, last_index - index);
1045 		}
1046 		if (!PageUptodate(page)) {
1047 			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1048 					!mapping->a_ops->is_partially_uptodate)
1049 				goto page_not_up_to_date;
1050 			if (!trylock_page(page))
1051 				goto page_not_up_to_date;
1052 			if (!mapping->a_ops->is_partially_uptodate(page,
1053 								desc, offset))
1054 				goto page_not_up_to_date_locked;
1055 			unlock_page(page);
1056 		}
1057 page_ok:
1058 		/*
1059 		 * i_size must be checked after we know the page is Uptodate.
1060 		 *
1061 		 * Checking i_size after the check allows us to calculate
1062 		 * the correct value for "nr", which means the zero-filled
1063 		 * part of the page is not copied back to userspace (unless
1064 		 * another truncate extends the file - this is desired though).
1065 		 */
1066 
1067 		isize = i_size_read(inode);
1068 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1069 		if (unlikely(!isize || index > end_index)) {
1070 			page_cache_release(page);
1071 			goto out;
1072 		}
1073 
1074 		/* nr is the maximum number of bytes to copy from this page */
1075 		nr = PAGE_CACHE_SIZE;
1076 		if (index == end_index) {
1077 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1078 			if (nr <= offset) {
1079 				page_cache_release(page);
1080 				goto out;
1081 			}
1082 		}
1083 		nr = nr - offset;
1084 
1085 		/* If users can be writing to this page using arbitrary
1086 		 * virtual addresses, take care about potential aliasing
1087 		 * before reading the page on the kernel side.
1088 		 */
1089 		if (mapping_writably_mapped(mapping))
1090 			flush_dcache_page(page);
1091 
1092 		/*
1093 		 * When a sequential read accesses a page several times,
1094 		 * only mark it as accessed the first time.
1095 		 */
1096 		if (prev_index != index || offset != prev_offset)
1097 			mark_page_accessed(page);
1098 		prev_index = index;
1099 
1100 		/*
1101 		 * Ok, we have the page, and it's up-to-date, so
1102 		 * now we can copy it to user space...
1103 		 *
1104 		 * The actor routine returns how many bytes were actually used..
1105 		 * NOTE! This may not be the same as how much of a user buffer
1106 		 * we filled up (we may be padding etc), so we can only update
1107 		 * "pos" here (the actor routine has to update the user buffer
1108 		 * pointers and the remaining count).
1109 		 */
1110 		ret = actor(desc, page, offset, nr);
1111 		offset += ret;
1112 		index += offset >> PAGE_CACHE_SHIFT;
1113 		offset &= ~PAGE_CACHE_MASK;
1114 		prev_offset = offset;
1115 
1116 		page_cache_release(page);
1117 		if (ret == nr && desc->count)
1118 			continue;
1119 		goto out;
1120 
1121 page_not_up_to_date:
1122 		/* Get exclusive access to the page ... */
1123 		error = lock_page_killable(page);
1124 		if (unlikely(error))
1125 			goto readpage_error;
1126 
1127 page_not_up_to_date_locked:
1128 		/* Did it get truncated before we got the lock? */
1129 		if (!page->mapping) {
1130 			unlock_page(page);
1131 			page_cache_release(page);
1132 			continue;
1133 		}
1134 
1135 		/* Did somebody else fill it already? */
1136 		if (PageUptodate(page)) {
1137 			unlock_page(page);
1138 			goto page_ok;
1139 		}
1140 
1141 readpage:
1142 		/* Start the actual read. The read will unlock the page. */
1143 		error = mapping->a_ops->readpage(filp, page);
1144 
1145 		if (unlikely(error)) {
1146 			if (error == AOP_TRUNCATED_PAGE) {
1147 				page_cache_release(page);
1148 				goto find_page;
1149 			}
1150 			goto readpage_error;
1151 		}
1152 
1153 		if (!PageUptodate(page)) {
1154 			error = lock_page_killable(page);
1155 			if (unlikely(error))
1156 				goto readpage_error;
1157 			if (!PageUptodate(page)) {
1158 				if (page->mapping == NULL) {
1159 					/*
1160 					 * invalidate_inode_pages got it
1161 					 */
1162 					unlock_page(page);
1163 					page_cache_release(page);
1164 					goto find_page;
1165 				}
1166 				unlock_page(page);
1167 				shrink_readahead_size_eio(filp, ra);
1168 				error = -EIO;
1169 				goto readpage_error;
1170 			}
1171 			unlock_page(page);
1172 		}
1173 
1174 		goto page_ok;
1175 
1176 readpage_error:
1177 		/* UHHUH! A synchronous read error occurred. Report it */
1178 		desc->error = error;
1179 		page_cache_release(page);
1180 		goto out;
1181 
1182 no_cached_page:
1183 		/*
1184 		 * Ok, it wasn't cached, so we need to create a new
1185 		 * page..
1186 		 */
1187 		page = page_cache_alloc_cold(mapping);
1188 		if (!page) {
1189 			desc->error = -ENOMEM;
1190 			goto out;
1191 		}
1192 		error = add_to_page_cache_lru(page, mapping,
1193 						index, GFP_KERNEL);
1194 		if (error) {
1195 			page_cache_release(page);
1196 			if (error == -EEXIST)
1197 				goto find_page;
1198 			desc->error = error;
1199 			goto out;
1200 		}
1201 		goto readpage;
1202 	}
1203 
1204 out:
1205 	ra->prev_pos = prev_index;
1206 	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1207 	ra->prev_pos |= prev_offset;
1208 
1209 	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1210 	file_accessed(filp);
1211 }
1212 
1213 int file_read_actor(read_descriptor_t *desc, struct page *page,
1214 			unsigned long offset, unsigned long size)
1215 {
1216 	char *kaddr;
1217 	unsigned long left, count = desc->count;
1218 
1219 	if (size > count)
1220 		size = count;
1221 
1222 	/*
1223 	 * Faults on the destination of a read are common, so do it before
1224 	 * taking the kmap.
1225 	 */
1226 	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1227 		kaddr = kmap_atomic(page, KM_USER0);
1228 		left = __copy_to_user_inatomic(desc->arg.buf,
1229 						kaddr + offset, size);
1230 		kunmap_atomic(kaddr, KM_USER0);
1231 		if (left == 0)
1232 			goto success;
1233 	}
1234 
1235 	/* Do it the slow way */
1236 	kaddr = kmap(page);
1237 	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1238 	kunmap(page);
1239 
1240 	if (left) {
1241 		size -= left;
1242 		desc->error = -EFAULT;
1243 	}
1244 success:
1245 	desc->count = count - size;
1246 	desc->written += size;
1247 	desc->arg.buf += size;
1248 	return size;
1249 }
1250 
1251 /*
1252  * Performs necessary checks before doing a write
1253  * @iov:	io vector request
1254  * @nr_segs:	number of segments in the iovec
1255  * @count:	number of bytes to write
1256  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1257  *
1258  * Adjust number of segments and amount of bytes to write (nr_segs should be
1259  * properly initialized first). Returns appropriate error code that caller
1260  * should return or zero in case that write should be allowed.
1261  */
1262 int generic_segment_checks(const struct iovec *iov,
1263 			unsigned long *nr_segs, size_t *count, int access_flags)
1264 {
1265 	unsigned long   seg;
1266 	size_t cnt = 0;
1267 	for (seg = 0; seg < *nr_segs; seg++) {
1268 		const struct iovec *iv = &iov[seg];
1269 
1270 		/*
1271 		 * If any segment has a negative length, or the cumulative
1272 		 * length ever wraps negative then return -EINVAL.
1273 		 */
1274 		cnt += iv->iov_len;
1275 		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1276 			return -EINVAL;
1277 		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1278 			continue;
1279 		if (seg == 0)
1280 			return -EFAULT;
1281 		*nr_segs = seg;
1282 		cnt -= iv->iov_len;	/* This segment is no good */
1283 		break;
1284 	}
1285 	*count = cnt;
1286 	return 0;
1287 }
1288 EXPORT_SYMBOL(generic_segment_checks);
1289 
1290 /**
1291  * generic_file_aio_read - generic filesystem read routine
1292  * @iocb:	kernel I/O control block
1293  * @iov:	io vector request
1294  * @nr_segs:	number of segments in the iovec
1295  * @pos:	current file position
1296  *
1297  * This is the "read()" routine for all filesystems
1298  * that can use the page cache directly.
1299  */
1300 ssize_t
1301 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1302 		unsigned long nr_segs, loff_t pos)
1303 {
1304 	struct file *filp = iocb->ki_filp;
1305 	ssize_t retval;
1306 	unsigned long seg;
1307 	size_t count;
1308 	loff_t *ppos = &iocb->ki_pos;
1309 
1310 	count = 0;
1311 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1312 	if (retval)
1313 		return retval;
1314 
1315 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1316 	if (filp->f_flags & O_DIRECT) {
1317 		loff_t size;
1318 		struct address_space *mapping;
1319 		struct inode *inode;
1320 
1321 		mapping = filp->f_mapping;
1322 		inode = mapping->host;
1323 		if (!count)
1324 			goto out; /* skip atime */
1325 		size = i_size_read(inode);
1326 		if (pos < size) {
1327 			retval = filemap_write_and_wait_range(mapping, pos,
1328 					pos + iov_length(iov, nr_segs) - 1);
1329 			if (!retval) {
1330 				retval = mapping->a_ops->direct_IO(READ, iocb,
1331 							iov, pos, nr_segs);
1332 			}
1333 			if (retval > 0)
1334 				*ppos = pos + retval;
1335 			if (retval) {
1336 				file_accessed(filp);
1337 				goto out;
1338 			}
1339 		}
1340 	}
1341 
1342 	for (seg = 0; seg < nr_segs; seg++) {
1343 		read_descriptor_t desc;
1344 
1345 		desc.written = 0;
1346 		desc.arg.buf = iov[seg].iov_base;
1347 		desc.count = iov[seg].iov_len;
1348 		if (desc.count == 0)
1349 			continue;
1350 		desc.error = 0;
1351 		do_generic_file_read(filp, ppos, &desc, file_read_actor);
1352 		retval += desc.written;
1353 		if (desc.error) {
1354 			retval = retval ?: desc.error;
1355 			break;
1356 		}
1357 		if (desc.count > 0)
1358 			break;
1359 	}
1360 out:
1361 	return retval;
1362 }
1363 EXPORT_SYMBOL(generic_file_aio_read);
1364 
1365 static ssize_t
1366 do_readahead(struct address_space *mapping, struct file *filp,
1367 	     pgoff_t index, unsigned long nr)
1368 {
1369 	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1370 		return -EINVAL;
1371 
1372 	force_page_cache_readahead(mapping, filp, index,
1373 					max_sane_readahead(nr));
1374 	return 0;
1375 }
1376 
1377 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1378 {
1379 	ssize_t ret;
1380 	struct file *file;
1381 
1382 	ret = -EBADF;
1383 	file = fget(fd);
1384 	if (file) {
1385 		if (file->f_mode & FMODE_READ) {
1386 			struct address_space *mapping = file->f_mapping;
1387 			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1388 			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1389 			unsigned long len = end - start + 1;
1390 			ret = do_readahead(mapping, file, start, len);
1391 		}
1392 		fput(file);
1393 	}
1394 	return ret;
1395 }
1396 
1397 #ifdef CONFIG_MMU
1398 /**
1399  * page_cache_read - adds requested page to the page cache if not already there
1400  * @file:	file to read
1401  * @offset:	page index
1402  *
1403  * This adds the requested page to the page cache if it isn't already there,
1404  * and schedules an I/O to read in its contents from disk.
1405  */
1406 static int page_cache_read(struct file *file, pgoff_t offset)
1407 {
1408 	struct address_space *mapping = file->f_mapping;
1409 	struct page *page;
1410 	int ret;
1411 
1412 	do {
1413 		page = page_cache_alloc_cold(mapping);
1414 		if (!page)
1415 			return -ENOMEM;
1416 
1417 		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1418 		if (ret == 0)
1419 			ret = mapping->a_ops->readpage(file, page);
1420 		else if (ret == -EEXIST)
1421 			ret = 0; /* losing race to add is OK */
1422 
1423 		page_cache_release(page);
1424 
1425 	} while (ret == AOP_TRUNCATED_PAGE);
1426 
1427 	return ret;
1428 }
1429 
1430 #define MMAP_LOTSAMISS  (100)
1431 
1432 /**
1433  * filemap_fault - read in file data for page fault handling
1434  * @vma:	vma in which the fault was taken
1435  * @vmf:	struct vm_fault containing details of the fault
1436  *
1437  * filemap_fault() is invoked via the vma operations vector for a
1438  * mapped memory region to read in file data during a page fault.
1439  *
1440  * The goto's are kind of ugly, but this streamlines the normal case of having
1441  * it in the page cache, and handles the special cases reasonably without
1442  * having a lot of duplicated code.
1443  */
1444 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1445 {
1446 	int error;
1447 	struct file *file = vma->vm_file;
1448 	struct address_space *mapping = file->f_mapping;
1449 	struct file_ra_state *ra = &file->f_ra;
1450 	struct inode *inode = mapping->host;
1451 	struct page *page;
1452 	pgoff_t size;
1453 	int did_readaround = 0;
1454 	int ret = 0;
1455 
1456 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1457 	if (vmf->pgoff >= size)
1458 		return VM_FAULT_SIGBUS;
1459 
1460 	/* If we don't want any read-ahead, don't bother */
1461 	if (VM_RandomReadHint(vma))
1462 		goto no_cached_page;
1463 
1464 	/*
1465 	 * Do we have something in the page cache already?
1466 	 */
1467 retry_find:
1468 	page = find_lock_page(mapping, vmf->pgoff);
1469 	/*
1470 	 * For sequential accesses, we use the generic readahead logic.
1471 	 */
1472 	if (VM_SequentialReadHint(vma)) {
1473 		if (!page) {
1474 			page_cache_sync_readahead(mapping, ra, file,
1475 							   vmf->pgoff, 1);
1476 			page = find_lock_page(mapping, vmf->pgoff);
1477 			if (!page)
1478 				goto no_cached_page;
1479 		}
1480 		if (PageReadahead(page)) {
1481 			page_cache_async_readahead(mapping, ra, file, page,
1482 							   vmf->pgoff, 1);
1483 		}
1484 	}
1485 
1486 	if (!page) {
1487 		unsigned long ra_pages;
1488 
1489 		ra->mmap_miss++;
1490 
1491 		/*
1492 		 * Do we miss much more than hit in this file? If so,
1493 		 * stop bothering with read-ahead. It will only hurt.
1494 		 */
1495 		if (ra->mmap_miss > MMAP_LOTSAMISS)
1496 			goto no_cached_page;
1497 
1498 		/*
1499 		 * To keep the pgmajfault counter straight, we need to
1500 		 * check did_readaround, as this is an inner loop.
1501 		 */
1502 		if (!did_readaround) {
1503 			ret = VM_FAULT_MAJOR;
1504 			count_vm_event(PGMAJFAULT);
1505 		}
1506 		did_readaround = 1;
1507 		ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1508 		if (ra_pages) {
1509 			pgoff_t start = 0;
1510 
1511 			if (vmf->pgoff > ra_pages / 2)
1512 				start = vmf->pgoff - ra_pages / 2;
1513 			do_page_cache_readahead(mapping, file, start, ra_pages);
1514 		}
1515 		page = find_lock_page(mapping, vmf->pgoff);
1516 		if (!page)
1517 			goto no_cached_page;
1518 	}
1519 
1520 	if (!did_readaround)
1521 		ra->mmap_miss--;
1522 
1523 	/*
1524 	 * We have a locked page in the page cache, now we need to check
1525 	 * that it's up-to-date. If not, it is going to be due to an error.
1526 	 */
1527 	if (unlikely(!PageUptodate(page)))
1528 		goto page_not_uptodate;
1529 
1530 	/* Must recheck i_size under page lock */
1531 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1532 	if (unlikely(vmf->pgoff >= size)) {
1533 		unlock_page(page);
1534 		page_cache_release(page);
1535 		return VM_FAULT_SIGBUS;
1536 	}
1537 
1538 	/*
1539 	 * Found the page and have a reference on it.
1540 	 */
1541 	ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT;
1542 	vmf->page = page;
1543 	return ret | VM_FAULT_LOCKED;
1544 
1545 no_cached_page:
1546 	/*
1547 	 * We're only likely to ever get here if MADV_RANDOM is in
1548 	 * effect.
1549 	 */
1550 	error = page_cache_read(file, vmf->pgoff);
1551 
1552 	/*
1553 	 * The page we want has now been added to the page cache.
1554 	 * In the unlikely event that someone removed it in the
1555 	 * meantime, we'll just come back here and read it again.
1556 	 */
1557 	if (error >= 0)
1558 		goto retry_find;
1559 
1560 	/*
1561 	 * An error return from page_cache_read can result if the
1562 	 * system is low on memory, or a problem occurs while trying
1563 	 * to schedule I/O.
1564 	 */
1565 	if (error == -ENOMEM)
1566 		return VM_FAULT_OOM;
1567 	return VM_FAULT_SIGBUS;
1568 
1569 page_not_uptodate:
1570 	/* IO error path */
1571 	if (!did_readaround) {
1572 		ret = VM_FAULT_MAJOR;
1573 		count_vm_event(PGMAJFAULT);
1574 	}
1575 
1576 	/*
1577 	 * Umm, take care of errors if the page isn't up-to-date.
1578 	 * Try to re-read it _once_. We do this synchronously,
1579 	 * because there really aren't any performance issues here
1580 	 * and we need to check for errors.
1581 	 */
1582 	ClearPageError(page);
1583 	error = mapping->a_ops->readpage(file, page);
1584 	if (!error) {
1585 		wait_on_page_locked(page);
1586 		if (!PageUptodate(page))
1587 			error = -EIO;
1588 	}
1589 	page_cache_release(page);
1590 
1591 	if (!error || error == AOP_TRUNCATED_PAGE)
1592 		goto retry_find;
1593 
1594 	/* Things didn't work out. Return zero to tell the mm layer so. */
1595 	shrink_readahead_size_eio(file, ra);
1596 	return VM_FAULT_SIGBUS;
1597 }
1598 EXPORT_SYMBOL(filemap_fault);
1599 
1600 struct vm_operations_struct generic_file_vm_ops = {
1601 	.fault		= filemap_fault,
1602 };
1603 
1604 /* This is used for a general mmap of a disk file */
1605 
1606 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1607 {
1608 	struct address_space *mapping = file->f_mapping;
1609 
1610 	if (!mapping->a_ops->readpage)
1611 		return -ENOEXEC;
1612 	file_accessed(file);
1613 	vma->vm_ops = &generic_file_vm_ops;
1614 	vma->vm_flags |= VM_CAN_NONLINEAR;
1615 	return 0;
1616 }
1617 
1618 /*
1619  * This is for filesystems which do not implement ->writepage.
1620  */
1621 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1622 {
1623 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1624 		return -EINVAL;
1625 	return generic_file_mmap(file, vma);
1626 }
1627 #else
1628 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1629 {
1630 	return -ENOSYS;
1631 }
1632 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1633 {
1634 	return -ENOSYS;
1635 }
1636 #endif /* CONFIG_MMU */
1637 
1638 EXPORT_SYMBOL(generic_file_mmap);
1639 EXPORT_SYMBOL(generic_file_readonly_mmap);
1640 
1641 static struct page *__read_cache_page(struct address_space *mapping,
1642 				pgoff_t index,
1643 				int (*filler)(void *,struct page*),
1644 				void *data)
1645 {
1646 	struct page *page;
1647 	int err;
1648 repeat:
1649 	page = find_get_page(mapping, index);
1650 	if (!page) {
1651 		page = page_cache_alloc_cold(mapping);
1652 		if (!page)
1653 			return ERR_PTR(-ENOMEM);
1654 		err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1655 		if (unlikely(err)) {
1656 			page_cache_release(page);
1657 			if (err == -EEXIST)
1658 				goto repeat;
1659 			/* Presumably ENOMEM for radix tree node */
1660 			return ERR_PTR(err);
1661 		}
1662 		err = filler(data, page);
1663 		if (err < 0) {
1664 			page_cache_release(page);
1665 			page = ERR_PTR(err);
1666 		}
1667 	}
1668 	return page;
1669 }
1670 
1671 /**
1672  * read_cache_page_async - read into page cache, fill it if needed
1673  * @mapping:	the page's address_space
1674  * @index:	the page index
1675  * @filler:	function to perform the read
1676  * @data:	destination for read data
1677  *
1678  * Same as read_cache_page, but don't wait for page to become unlocked
1679  * after submitting it to the filler.
1680  *
1681  * Read into the page cache. If a page already exists, and PageUptodate() is
1682  * not set, try to fill the page but don't wait for it to become unlocked.
1683  *
1684  * If the page does not get brought uptodate, return -EIO.
1685  */
1686 struct page *read_cache_page_async(struct address_space *mapping,
1687 				pgoff_t index,
1688 				int (*filler)(void *,struct page*),
1689 				void *data)
1690 {
1691 	struct page *page;
1692 	int err;
1693 
1694 retry:
1695 	page = __read_cache_page(mapping, index, filler, data);
1696 	if (IS_ERR(page))
1697 		return page;
1698 	if (PageUptodate(page))
1699 		goto out;
1700 
1701 	lock_page(page);
1702 	if (!page->mapping) {
1703 		unlock_page(page);
1704 		page_cache_release(page);
1705 		goto retry;
1706 	}
1707 	if (PageUptodate(page)) {
1708 		unlock_page(page);
1709 		goto out;
1710 	}
1711 	err = filler(data, page);
1712 	if (err < 0) {
1713 		page_cache_release(page);
1714 		return ERR_PTR(err);
1715 	}
1716 out:
1717 	mark_page_accessed(page);
1718 	return page;
1719 }
1720 EXPORT_SYMBOL(read_cache_page_async);
1721 
1722 /**
1723  * read_cache_page - read into page cache, fill it if needed
1724  * @mapping:	the page's address_space
1725  * @index:	the page index
1726  * @filler:	function to perform the read
1727  * @data:	destination for read data
1728  *
1729  * Read into the page cache. If a page already exists, and PageUptodate() is
1730  * not set, try to fill the page then wait for it to become unlocked.
1731  *
1732  * If the page does not get brought uptodate, return -EIO.
1733  */
1734 struct page *read_cache_page(struct address_space *mapping,
1735 				pgoff_t index,
1736 				int (*filler)(void *,struct page*),
1737 				void *data)
1738 {
1739 	struct page *page;
1740 
1741 	page = read_cache_page_async(mapping, index, filler, data);
1742 	if (IS_ERR(page))
1743 		goto out;
1744 	wait_on_page_locked(page);
1745 	if (!PageUptodate(page)) {
1746 		page_cache_release(page);
1747 		page = ERR_PTR(-EIO);
1748 	}
1749  out:
1750 	return page;
1751 }
1752 EXPORT_SYMBOL(read_cache_page);
1753 
1754 /*
1755  * The logic we want is
1756  *
1757  *	if suid or (sgid and xgrp)
1758  *		remove privs
1759  */
1760 int should_remove_suid(struct dentry *dentry)
1761 {
1762 	mode_t mode = dentry->d_inode->i_mode;
1763 	int kill = 0;
1764 
1765 	/* suid always must be killed */
1766 	if (unlikely(mode & S_ISUID))
1767 		kill = ATTR_KILL_SUID;
1768 
1769 	/*
1770 	 * sgid without any exec bits is just a mandatory locking mark; leave
1771 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1772 	 */
1773 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1774 		kill |= ATTR_KILL_SGID;
1775 
1776 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1777 		return kill;
1778 
1779 	return 0;
1780 }
1781 EXPORT_SYMBOL(should_remove_suid);
1782 
1783 static int __remove_suid(struct dentry *dentry, int kill)
1784 {
1785 	struct iattr newattrs;
1786 
1787 	newattrs.ia_valid = ATTR_FORCE | kill;
1788 	return notify_change(dentry, &newattrs);
1789 }
1790 
1791 int file_remove_suid(struct file *file)
1792 {
1793 	struct dentry *dentry = file->f_path.dentry;
1794 	int killsuid = should_remove_suid(dentry);
1795 	int killpriv = security_inode_need_killpriv(dentry);
1796 	int error = 0;
1797 
1798 	if (killpriv < 0)
1799 		return killpriv;
1800 	if (killpriv)
1801 		error = security_inode_killpriv(dentry);
1802 	if (!error && killsuid)
1803 		error = __remove_suid(dentry, killsuid);
1804 
1805 	return error;
1806 }
1807 EXPORT_SYMBOL(file_remove_suid);
1808 
1809 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1810 			const struct iovec *iov, size_t base, size_t bytes)
1811 {
1812 	size_t copied = 0, left = 0;
1813 
1814 	while (bytes) {
1815 		char __user *buf = iov->iov_base + base;
1816 		int copy = min(bytes, iov->iov_len - base);
1817 
1818 		base = 0;
1819 		left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1820 		copied += copy;
1821 		bytes -= copy;
1822 		vaddr += copy;
1823 		iov++;
1824 
1825 		if (unlikely(left))
1826 			break;
1827 	}
1828 	return copied - left;
1829 }
1830 
1831 /*
1832  * Copy as much as we can into the page and return the number of bytes which
1833  * were sucessfully copied.  If a fault is encountered then return the number of
1834  * bytes which were copied.
1835  */
1836 size_t iov_iter_copy_from_user_atomic(struct page *page,
1837 		struct iov_iter *i, unsigned long offset, size_t bytes)
1838 {
1839 	char *kaddr;
1840 	size_t copied;
1841 
1842 	BUG_ON(!in_atomic());
1843 	kaddr = kmap_atomic(page, KM_USER0);
1844 	if (likely(i->nr_segs == 1)) {
1845 		int left;
1846 		char __user *buf = i->iov->iov_base + i->iov_offset;
1847 		left = __copy_from_user_inatomic_nocache(kaddr + offset,
1848 							buf, bytes);
1849 		copied = bytes - left;
1850 	} else {
1851 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1852 						i->iov, i->iov_offset, bytes);
1853 	}
1854 	kunmap_atomic(kaddr, KM_USER0);
1855 
1856 	return copied;
1857 }
1858 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1859 
1860 /*
1861  * This has the same sideeffects and return value as
1862  * iov_iter_copy_from_user_atomic().
1863  * The difference is that it attempts to resolve faults.
1864  * Page must not be locked.
1865  */
1866 size_t iov_iter_copy_from_user(struct page *page,
1867 		struct iov_iter *i, unsigned long offset, size_t bytes)
1868 {
1869 	char *kaddr;
1870 	size_t copied;
1871 
1872 	kaddr = kmap(page);
1873 	if (likely(i->nr_segs == 1)) {
1874 		int left;
1875 		char __user *buf = i->iov->iov_base + i->iov_offset;
1876 		left = __copy_from_user_nocache(kaddr + offset, buf, bytes);
1877 		copied = bytes - left;
1878 	} else {
1879 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1880 						i->iov, i->iov_offset, bytes);
1881 	}
1882 	kunmap(page);
1883 	return copied;
1884 }
1885 EXPORT_SYMBOL(iov_iter_copy_from_user);
1886 
1887 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1888 {
1889 	BUG_ON(i->count < bytes);
1890 
1891 	if (likely(i->nr_segs == 1)) {
1892 		i->iov_offset += bytes;
1893 		i->count -= bytes;
1894 	} else {
1895 		const struct iovec *iov = i->iov;
1896 		size_t base = i->iov_offset;
1897 
1898 		/*
1899 		 * The !iov->iov_len check ensures we skip over unlikely
1900 		 * zero-length segments (without overruning the iovec).
1901 		 */
1902 		while (bytes || unlikely(i->count && !iov->iov_len)) {
1903 			int copy;
1904 
1905 			copy = min(bytes, iov->iov_len - base);
1906 			BUG_ON(!i->count || i->count < copy);
1907 			i->count -= copy;
1908 			bytes -= copy;
1909 			base += copy;
1910 			if (iov->iov_len == base) {
1911 				iov++;
1912 				base = 0;
1913 			}
1914 		}
1915 		i->iov = iov;
1916 		i->iov_offset = base;
1917 	}
1918 }
1919 EXPORT_SYMBOL(iov_iter_advance);
1920 
1921 /*
1922  * Fault in the first iovec of the given iov_iter, to a maximum length
1923  * of bytes. Returns 0 on success, or non-zero if the memory could not be
1924  * accessed (ie. because it is an invalid address).
1925  *
1926  * writev-intensive code may want this to prefault several iovecs -- that
1927  * would be possible (callers must not rely on the fact that _only_ the
1928  * first iovec will be faulted with the current implementation).
1929  */
1930 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1931 {
1932 	char __user *buf = i->iov->iov_base + i->iov_offset;
1933 	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1934 	return fault_in_pages_readable(buf, bytes);
1935 }
1936 EXPORT_SYMBOL(iov_iter_fault_in_readable);
1937 
1938 /*
1939  * Return the count of just the current iov_iter segment.
1940  */
1941 size_t iov_iter_single_seg_count(struct iov_iter *i)
1942 {
1943 	const struct iovec *iov = i->iov;
1944 	if (i->nr_segs == 1)
1945 		return i->count;
1946 	else
1947 		return min(i->count, iov->iov_len - i->iov_offset);
1948 }
1949 EXPORT_SYMBOL(iov_iter_single_seg_count);
1950 
1951 /*
1952  * Performs necessary checks before doing a write
1953  *
1954  * Can adjust writing position or amount of bytes to write.
1955  * Returns appropriate error code that caller should return or
1956  * zero in case that write should be allowed.
1957  */
1958 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1959 {
1960 	struct inode *inode = file->f_mapping->host;
1961 	unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1962 
1963         if (unlikely(*pos < 0))
1964                 return -EINVAL;
1965 
1966 	if (!isblk) {
1967 		/* FIXME: this is for backwards compatibility with 2.4 */
1968 		if (file->f_flags & O_APPEND)
1969                         *pos = i_size_read(inode);
1970 
1971 		if (limit != RLIM_INFINITY) {
1972 			if (*pos >= limit) {
1973 				send_sig(SIGXFSZ, current, 0);
1974 				return -EFBIG;
1975 			}
1976 			if (*count > limit - (typeof(limit))*pos) {
1977 				*count = limit - (typeof(limit))*pos;
1978 			}
1979 		}
1980 	}
1981 
1982 	/*
1983 	 * LFS rule
1984 	 */
1985 	if (unlikely(*pos + *count > MAX_NON_LFS &&
1986 				!(file->f_flags & O_LARGEFILE))) {
1987 		if (*pos >= MAX_NON_LFS) {
1988 			return -EFBIG;
1989 		}
1990 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1991 			*count = MAX_NON_LFS - (unsigned long)*pos;
1992 		}
1993 	}
1994 
1995 	/*
1996 	 * Are we about to exceed the fs block limit ?
1997 	 *
1998 	 * If we have written data it becomes a short write.  If we have
1999 	 * exceeded without writing data we send a signal and return EFBIG.
2000 	 * Linus frestrict idea will clean these up nicely..
2001 	 */
2002 	if (likely(!isblk)) {
2003 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2004 			if (*count || *pos > inode->i_sb->s_maxbytes) {
2005 				return -EFBIG;
2006 			}
2007 			/* zero-length writes at ->s_maxbytes are OK */
2008 		}
2009 
2010 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2011 			*count = inode->i_sb->s_maxbytes - *pos;
2012 	} else {
2013 #ifdef CONFIG_BLOCK
2014 		loff_t isize;
2015 		if (bdev_read_only(I_BDEV(inode)))
2016 			return -EPERM;
2017 		isize = i_size_read(inode);
2018 		if (*pos >= isize) {
2019 			if (*count || *pos > isize)
2020 				return -ENOSPC;
2021 		}
2022 
2023 		if (*pos + *count > isize)
2024 			*count = isize - *pos;
2025 #else
2026 		return -EPERM;
2027 #endif
2028 	}
2029 	return 0;
2030 }
2031 EXPORT_SYMBOL(generic_write_checks);
2032 
2033 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2034 				loff_t pos, unsigned len, unsigned flags,
2035 				struct page **pagep, void **fsdata)
2036 {
2037 	const struct address_space_operations *aops = mapping->a_ops;
2038 
2039 	return aops->write_begin(file, mapping, pos, len, flags,
2040 							pagep, fsdata);
2041 }
2042 EXPORT_SYMBOL(pagecache_write_begin);
2043 
2044 int pagecache_write_end(struct file *file, struct address_space *mapping,
2045 				loff_t pos, unsigned len, unsigned copied,
2046 				struct page *page, void *fsdata)
2047 {
2048 	const struct address_space_operations *aops = mapping->a_ops;
2049 
2050 	mark_page_accessed(page);
2051 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2052 }
2053 EXPORT_SYMBOL(pagecache_write_end);
2054 
2055 ssize_t
2056 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2057 		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2058 		size_t count, size_t ocount)
2059 {
2060 	struct file	*file = iocb->ki_filp;
2061 	struct address_space *mapping = file->f_mapping;
2062 	struct inode	*inode = mapping->host;
2063 	ssize_t		written;
2064 	size_t		write_len;
2065 	pgoff_t		end;
2066 
2067 	if (count != ocount)
2068 		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2069 
2070 	write_len = iov_length(iov, *nr_segs);
2071 	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2072 
2073 	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2074 	if (written)
2075 		goto out;
2076 
2077 	/*
2078 	 * After a write we want buffered reads to be sure to go to disk to get
2079 	 * the new data.  We invalidate clean cached page from the region we're
2080 	 * about to write.  We do this *before* the write so that we can return
2081 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2082 	 */
2083 	if (mapping->nrpages) {
2084 		written = invalidate_inode_pages2_range(mapping,
2085 					pos >> PAGE_CACHE_SHIFT, end);
2086 		/*
2087 		 * If a page can not be invalidated, return 0 to fall back
2088 		 * to buffered write.
2089 		 */
2090 		if (written) {
2091 			if (written == -EBUSY)
2092 				return 0;
2093 			goto out;
2094 		}
2095 	}
2096 
2097 	written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2098 
2099 	/*
2100 	 * Finally, try again to invalidate clean pages which might have been
2101 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2102 	 * if the source of the write was an mmap'ed region of the file
2103 	 * we're writing.  Either one is a pretty crazy thing to do,
2104 	 * so we don't support it 100%.  If this invalidation
2105 	 * fails, tough, the write still worked...
2106 	 */
2107 	if (mapping->nrpages) {
2108 		invalidate_inode_pages2_range(mapping,
2109 					      pos >> PAGE_CACHE_SHIFT, end);
2110 	}
2111 
2112 	if (written > 0) {
2113 		loff_t end = pos + written;
2114 		if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2115 			i_size_write(inode,  end);
2116 			mark_inode_dirty(inode);
2117 		}
2118 		*ppos = end;
2119 	}
2120 
2121 	/*
2122 	 * Sync the fs metadata but not the minor inode changes and
2123 	 * of course not the data as we did direct DMA for the IO.
2124 	 * i_mutex is held, which protects generic_osync_inode() from
2125 	 * livelocking.  AIO O_DIRECT ops attempt to sync metadata here.
2126 	 */
2127 out:
2128 	if ((written >= 0 || written == -EIOCBQUEUED) &&
2129 	    ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2130 		int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2131 		if (err < 0)
2132 			written = err;
2133 	}
2134 	return written;
2135 }
2136 EXPORT_SYMBOL(generic_file_direct_write);
2137 
2138 /*
2139  * Find or create a page at the given pagecache position. Return the locked
2140  * page. This function is specifically for buffered writes.
2141  */
2142 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2143 					pgoff_t index, unsigned flags)
2144 {
2145 	int status;
2146 	struct page *page;
2147 	gfp_t gfp_notmask = 0;
2148 	if (flags & AOP_FLAG_NOFS)
2149 		gfp_notmask = __GFP_FS;
2150 repeat:
2151 	page = find_lock_page(mapping, index);
2152 	if (likely(page))
2153 		return page;
2154 
2155 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2156 	if (!page)
2157 		return NULL;
2158 	status = add_to_page_cache_lru(page, mapping, index,
2159 						GFP_KERNEL & ~gfp_notmask);
2160 	if (unlikely(status)) {
2161 		page_cache_release(page);
2162 		if (status == -EEXIST)
2163 			goto repeat;
2164 		return NULL;
2165 	}
2166 	return page;
2167 }
2168 EXPORT_SYMBOL(grab_cache_page_write_begin);
2169 
2170 static ssize_t generic_perform_write(struct file *file,
2171 				struct iov_iter *i, loff_t pos)
2172 {
2173 	struct address_space *mapping = file->f_mapping;
2174 	const struct address_space_operations *a_ops = mapping->a_ops;
2175 	long status = 0;
2176 	ssize_t written = 0;
2177 	unsigned int flags = 0;
2178 
2179 	/*
2180 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2181 	 */
2182 	if (segment_eq(get_fs(), KERNEL_DS))
2183 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2184 
2185 	do {
2186 		struct page *page;
2187 		pgoff_t index;		/* Pagecache index for current page */
2188 		unsigned long offset;	/* Offset into pagecache page */
2189 		unsigned long bytes;	/* Bytes to write to page */
2190 		size_t copied;		/* Bytes copied from user */
2191 		void *fsdata;
2192 
2193 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2194 		index = pos >> PAGE_CACHE_SHIFT;
2195 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2196 						iov_iter_count(i));
2197 
2198 again:
2199 
2200 		/*
2201 		 * Bring in the user page that we will copy from _first_.
2202 		 * Otherwise there's a nasty deadlock on copying from the
2203 		 * same page as we're writing to, without it being marked
2204 		 * up-to-date.
2205 		 *
2206 		 * Not only is this an optimisation, but it is also required
2207 		 * to check that the address is actually valid, when atomic
2208 		 * usercopies are used, below.
2209 		 */
2210 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2211 			status = -EFAULT;
2212 			break;
2213 		}
2214 
2215 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2216 						&page, &fsdata);
2217 		if (unlikely(status))
2218 			break;
2219 
2220 		pagefault_disable();
2221 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2222 		pagefault_enable();
2223 		flush_dcache_page(page);
2224 
2225 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2226 						page, fsdata);
2227 		if (unlikely(status < 0))
2228 			break;
2229 		copied = status;
2230 
2231 		cond_resched();
2232 
2233 		iov_iter_advance(i, copied);
2234 		if (unlikely(copied == 0)) {
2235 			/*
2236 			 * If we were unable to copy any data at all, we must
2237 			 * fall back to a single segment length write.
2238 			 *
2239 			 * If we didn't fallback here, we could livelock
2240 			 * because not all segments in the iov can be copied at
2241 			 * once without a pagefault.
2242 			 */
2243 			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2244 						iov_iter_single_seg_count(i));
2245 			goto again;
2246 		}
2247 		pos += copied;
2248 		written += copied;
2249 
2250 		balance_dirty_pages_ratelimited(mapping);
2251 
2252 	} while (iov_iter_count(i));
2253 
2254 	return written ? written : status;
2255 }
2256 
2257 ssize_t
2258 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2259 		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2260 		size_t count, ssize_t written)
2261 {
2262 	struct file *file = iocb->ki_filp;
2263 	struct address_space *mapping = file->f_mapping;
2264 	const struct address_space_operations *a_ops = mapping->a_ops;
2265 	struct inode *inode = mapping->host;
2266 	ssize_t status;
2267 	struct iov_iter i;
2268 
2269 	iov_iter_init(&i, iov, nr_segs, count, written);
2270 	status = generic_perform_write(file, &i, pos);
2271 
2272 	if (likely(status >= 0)) {
2273 		written += status;
2274 		*ppos = pos + status;
2275 
2276 		/*
2277 		 * For now, when the user asks for O_SYNC, we'll actually give
2278 		 * O_DSYNC
2279 		 */
2280 		if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2281 			if (!a_ops->writepage || !is_sync_kiocb(iocb))
2282 				status = generic_osync_inode(inode, mapping,
2283 						OSYNC_METADATA|OSYNC_DATA);
2284 		}
2285   	}
2286 
2287 	/*
2288 	 * If we get here for O_DIRECT writes then we must have fallen through
2289 	 * to buffered writes (block instantiation inside i_size).  So we sync
2290 	 * the file data here, to try to honour O_DIRECT expectations.
2291 	 */
2292 	if (unlikely(file->f_flags & O_DIRECT) && written)
2293 		status = filemap_write_and_wait_range(mapping,
2294 					pos, pos + written - 1);
2295 
2296 	return written ? written : status;
2297 }
2298 EXPORT_SYMBOL(generic_file_buffered_write);
2299 
2300 static ssize_t
2301 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2302 				unsigned long nr_segs, loff_t *ppos)
2303 {
2304 	struct file *file = iocb->ki_filp;
2305 	struct address_space * mapping = file->f_mapping;
2306 	size_t ocount;		/* original count */
2307 	size_t count;		/* after file limit checks */
2308 	struct inode 	*inode = mapping->host;
2309 	loff_t		pos;
2310 	ssize_t		written;
2311 	ssize_t		err;
2312 
2313 	ocount = 0;
2314 	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2315 	if (err)
2316 		return err;
2317 
2318 	count = ocount;
2319 	pos = *ppos;
2320 
2321 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2322 
2323 	/* We can write back this queue in page reclaim */
2324 	current->backing_dev_info = mapping->backing_dev_info;
2325 	written = 0;
2326 
2327 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2328 	if (err)
2329 		goto out;
2330 
2331 	if (count == 0)
2332 		goto out;
2333 
2334 	err = file_remove_suid(file);
2335 	if (err)
2336 		goto out;
2337 
2338 	file_update_time(file);
2339 
2340 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2341 	if (unlikely(file->f_flags & O_DIRECT)) {
2342 		loff_t endbyte;
2343 		ssize_t written_buffered;
2344 
2345 		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2346 							ppos, count, ocount);
2347 		if (written < 0 || written == count)
2348 			goto out;
2349 		/*
2350 		 * direct-io write to a hole: fall through to buffered I/O
2351 		 * for completing the rest of the request.
2352 		 */
2353 		pos += written;
2354 		count -= written;
2355 		written_buffered = generic_file_buffered_write(iocb, iov,
2356 						nr_segs, pos, ppos, count,
2357 						written);
2358 		/*
2359 		 * If generic_file_buffered_write() retuned a synchronous error
2360 		 * then we want to return the number of bytes which were
2361 		 * direct-written, or the error code if that was zero.  Note
2362 		 * that this differs from normal direct-io semantics, which
2363 		 * will return -EFOO even if some bytes were written.
2364 		 */
2365 		if (written_buffered < 0) {
2366 			err = written_buffered;
2367 			goto out;
2368 		}
2369 
2370 		/*
2371 		 * We need to ensure that the page cache pages are written to
2372 		 * disk and invalidated to preserve the expected O_DIRECT
2373 		 * semantics.
2374 		 */
2375 		endbyte = pos + written_buffered - written - 1;
2376 		err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2377 					    SYNC_FILE_RANGE_WAIT_BEFORE|
2378 					    SYNC_FILE_RANGE_WRITE|
2379 					    SYNC_FILE_RANGE_WAIT_AFTER);
2380 		if (err == 0) {
2381 			written = written_buffered;
2382 			invalidate_mapping_pages(mapping,
2383 						 pos >> PAGE_CACHE_SHIFT,
2384 						 endbyte >> PAGE_CACHE_SHIFT);
2385 		} else {
2386 			/*
2387 			 * We don't know how much we wrote, so just return
2388 			 * the number of bytes which were direct-written
2389 			 */
2390 		}
2391 	} else {
2392 		written = generic_file_buffered_write(iocb, iov, nr_segs,
2393 				pos, ppos, count, written);
2394 	}
2395 out:
2396 	current->backing_dev_info = NULL;
2397 	return written ? written : err;
2398 }
2399 
2400 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2401 		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2402 {
2403 	struct file *file = iocb->ki_filp;
2404 	struct address_space *mapping = file->f_mapping;
2405 	struct inode *inode = mapping->host;
2406 	ssize_t ret;
2407 
2408 	BUG_ON(iocb->ki_pos != pos);
2409 
2410 	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2411 			&iocb->ki_pos);
2412 
2413 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2414 		ssize_t err;
2415 
2416 		err = sync_page_range_nolock(inode, mapping, pos, ret);
2417 		if (err < 0)
2418 			ret = err;
2419 	}
2420 	return ret;
2421 }
2422 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2423 
2424 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2425 		unsigned long nr_segs, loff_t pos)
2426 {
2427 	struct file *file = iocb->ki_filp;
2428 	struct address_space *mapping = file->f_mapping;
2429 	struct inode *inode = mapping->host;
2430 	ssize_t ret;
2431 
2432 	BUG_ON(iocb->ki_pos != pos);
2433 
2434 	mutex_lock(&inode->i_mutex);
2435 	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2436 			&iocb->ki_pos);
2437 	mutex_unlock(&inode->i_mutex);
2438 
2439 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2440 		ssize_t err;
2441 
2442 		err = sync_page_range(inode, mapping, pos, ret);
2443 		if (err < 0)
2444 			ret = err;
2445 	}
2446 	return ret;
2447 }
2448 EXPORT_SYMBOL(generic_file_aio_write);
2449 
2450 /**
2451  * try_to_release_page() - release old fs-specific metadata on a page
2452  *
2453  * @page: the page which the kernel is trying to free
2454  * @gfp_mask: memory allocation flags (and I/O mode)
2455  *
2456  * The address_space is to try to release any data against the page
2457  * (presumably at page->private).  If the release was successful, return `1'.
2458  * Otherwise return zero.
2459  *
2460  * The @gfp_mask argument specifies whether I/O may be performed to release
2461  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2462  *
2463  */
2464 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2465 {
2466 	struct address_space * const mapping = page->mapping;
2467 
2468 	BUG_ON(!PageLocked(page));
2469 	if (PageWriteback(page))
2470 		return 0;
2471 
2472 	if (mapping && mapping->a_ops->releasepage)
2473 		return mapping->a_ops->releasepage(page, gfp_mask);
2474 	return try_to_free_buffers(page);
2475 }
2476 
2477 EXPORT_SYMBOL(try_to_release_page);
2478