1 /* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12 #include <linux/module.h> 13 #include <linux/slab.h> 14 #include <linux/compiler.h> 15 #include <linux/fs.h> 16 #include <linux/uaccess.h> 17 #include <linux/aio.h> 18 #include <linux/capability.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/mm.h> 21 #include <linux/swap.h> 22 #include <linux/mman.h> 23 #include <linux/pagemap.h> 24 #include <linux/file.h> 25 #include <linux/uio.h> 26 #include <linux/hash.h> 27 #include <linux/writeback.h> 28 #include <linux/pagevec.h> 29 #include <linux/blkdev.h> 30 #include <linux/security.h> 31 #include <linux/syscalls.h> 32 #include <linux/cpuset.h> 33 #include "filemap.h" 34 #include "internal.h" 35 36 /* 37 * FIXME: remove all knowledge of the buffer layer from the core VM 38 */ 39 #include <linux/buffer_head.h> /* for generic_osync_inode */ 40 41 #include <asm/mman.h> 42 43 static ssize_t 44 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, 45 loff_t offset, unsigned long nr_segs); 46 47 /* 48 * Shared mappings implemented 30.11.1994. It's not fully working yet, 49 * though. 50 * 51 * Shared mappings now work. 15.8.1995 Bruno. 52 * 53 * finished 'unifying' the page and buffer cache and SMP-threaded the 54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 55 * 56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 57 */ 58 59 /* 60 * Lock ordering: 61 * 62 * ->i_mmap_lock (vmtruncate) 63 * ->private_lock (__free_pte->__set_page_dirty_buffers) 64 * ->swap_lock (exclusive_swap_page, others) 65 * ->mapping->tree_lock 66 * 67 * ->i_mutex 68 * ->i_mmap_lock (truncate->unmap_mapping_range) 69 * 70 * ->mmap_sem 71 * ->i_mmap_lock 72 * ->page_table_lock or pte_lock (various, mainly in memory.c) 73 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) 74 * 75 * ->mmap_sem 76 * ->lock_page (access_process_vm) 77 * 78 * ->i_mutex (generic_file_buffered_write) 79 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 80 * 81 * ->i_mutex 82 * ->i_alloc_sem (various) 83 * 84 * ->inode_lock 85 * ->sb_lock (fs/fs-writeback.c) 86 * ->mapping->tree_lock (__sync_single_inode) 87 * 88 * ->i_mmap_lock 89 * ->anon_vma.lock (vma_adjust) 90 * 91 * ->anon_vma.lock 92 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 93 * 94 * ->page_table_lock or pte_lock 95 * ->swap_lock (try_to_unmap_one) 96 * ->private_lock (try_to_unmap_one) 97 * ->tree_lock (try_to_unmap_one) 98 * ->zone.lru_lock (follow_page->mark_page_accessed) 99 * ->zone.lru_lock (check_pte_range->isolate_lru_page) 100 * ->private_lock (page_remove_rmap->set_page_dirty) 101 * ->tree_lock (page_remove_rmap->set_page_dirty) 102 * ->inode_lock (page_remove_rmap->set_page_dirty) 103 * ->inode_lock (zap_pte_range->set_page_dirty) 104 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 105 * 106 * ->task->proc_lock 107 * ->dcache_lock (proc_pid_lookup) 108 */ 109 110 /* 111 * Remove a page from the page cache and free it. Caller has to make 112 * sure the page is locked and that nobody else uses it - or that usage 113 * is safe. The caller must hold a write_lock on the mapping's tree_lock. 114 */ 115 void __remove_from_page_cache(struct page *page) 116 { 117 struct address_space *mapping = page->mapping; 118 119 radix_tree_delete(&mapping->page_tree, page->index); 120 page->mapping = NULL; 121 mapping->nrpages--; 122 __dec_zone_page_state(page, NR_FILE_PAGES); 123 } 124 125 void remove_from_page_cache(struct page *page) 126 { 127 struct address_space *mapping = page->mapping; 128 129 BUG_ON(!PageLocked(page)); 130 131 write_lock_irq(&mapping->tree_lock); 132 __remove_from_page_cache(page); 133 write_unlock_irq(&mapping->tree_lock); 134 } 135 136 static int sync_page(void *word) 137 { 138 struct address_space *mapping; 139 struct page *page; 140 141 page = container_of((unsigned long *)word, struct page, flags); 142 143 /* 144 * page_mapping() is being called without PG_locked held. 145 * Some knowledge of the state and use of the page is used to 146 * reduce the requirements down to a memory barrier. 147 * The danger here is of a stale page_mapping() return value 148 * indicating a struct address_space different from the one it's 149 * associated with when it is associated with one. 150 * After smp_mb(), it's either the correct page_mapping() for 151 * the page, or an old page_mapping() and the page's own 152 * page_mapping() has gone NULL. 153 * The ->sync_page() address_space operation must tolerate 154 * page_mapping() going NULL. By an amazing coincidence, 155 * this comes about because none of the users of the page 156 * in the ->sync_page() methods make essential use of the 157 * page_mapping(), merely passing the page down to the backing 158 * device's unplug functions when it's non-NULL, which in turn 159 * ignore it for all cases but swap, where only page_private(page) is 160 * of interest. When page_mapping() does go NULL, the entire 161 * call stack gracefully ignores the page and returns. 162 * -- wli 163 */ 164 smp_mb(); 165 mapping = page_mapping(page); 166 if (mapping && mapping->a_ops && mapping->a_ops->sync_page) 167 mapping->a_ops->sync_page(page); 168 io_schedule(); 169 return 0; 170 } 171 172 /** 173 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 174 * @mapping: address space structure to write 175 * @start: offset in bytes where the range starts 176 * @end: offset in bytes where the range ends (inclusive) 177 * @sync_mode: enable synchronous operation 178 * 179 * Start writeback against all of a mapping's dirty pages that lie 180 * within the byte offsets <start, end> inclusive. 181 * 182 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 183 * opposed to a regular memory cleansing writeback. The difference between 184 * these two operations is that if a dirty page/buffer is encountered, it must 185 * be waited upon, and not just skipped over. 186 */ 187 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 188 loff_t end, int sync_mode) 189 { 190 int ret; 191 struct writeback_control wbc = { 192 .sync_mode = sync_mode, 193 .nr_to_write = mapping->nrpages * 2, 194 .range_start = start, 195 .range_end = end, 196 }; 197 198 if (!mapping_cap_writeback_dirty(mapping)) 199 return 0; 200 201 ret = do_writepages(mapping, &wbc); 202 return ret; 203 } 204 205 static inline int __filemap_fdatawrite(struct address_space *mapping, 206 int sync_mode) 207 { 208 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 209 } 210 211 int filemap_fdatawrite(struct address_space *mapping) 212 { 213 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 214 } 215 EXPORT_SYMBOL(filemap_fdatawrite); 216 217 static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 218 loff_t end) 219 { 220 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 221 } 222 223 /** 224 * filemap_flush - mostly a non-blocking flush 225 * @mapping: target address_space 226 * 227 * This is a mostly non-blocking flush. Not suitable for data-integrity 228 * purposes - I/O may not be started against all dirty pages. 229 */ 230 int filemap_flush(struct address_space *mapping) 231 { 232 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 233 } 234 EXPORT_SYMBOL(filemap_flush); 235 236 /** 237 * wait_on_page_writeback_range - wait for writeback to complete 238 * @mapping: target address_space 239 * @start: beginning page index 240 * @end: ending page index 241 * 242 * Wait for writeback to complete against pages indexed by start->end 243 * inclusive 244 */ 245 int wait_on_page_writeback_range(struct address_space *mapping, 246 pgoff_t start, pgoff_t end) 247 { 248 struct pagevec pvec; 249 int nr_pages; 250 int ret = 0; 251 pgoff_t index; 252 253 if (end < start) 254 return 0; 255 256 pagevec_init(&pvec, 0); 257 index = start; 258 while ((index <= end) && 259 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 260 PAGECACHE_TAG_WRITEBACK, 261 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { 262 unsigned i; 263 264 for (i = 0; i < nr_pages; i++) { 265 struct page *page = pvec.pages[i]; 266 267 /* until radix tree lookup accepts end_index */ 268 if (page->index > end) 269 continue; 270 271 wait_on_page_writeback(page); 272 if (PageError(page)) 273 ret = -EIO; 274 } 275 pagevec_release(&pvec); 276 cond_resched(); 277 } 278 279 /* Check for outstanding write errors */ 280 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 281 ret = -ENOSPC; 282 if (test_and_clear_bit(AS_EIO, &mapping->flags)) 283 ret = -EIO; 284 285 return ret; 286 } 287 288 /** 289 * sync_page_range - write and wait on all pages in the passed range 290 * @inode: target inode 291 * @mapping: target address_space 292 * @pos: beginning offset in pages to write 293 * @count: number of bytes to write 294 * 295 * Write and wait upon all the pages in the passed range. This is a "data 296 * integrity" operation. It waits upon in-flight writeout before starting and 297 * waiting upon new writeout. If there was an IO error, return it. 298 * 299 * We need to re-take i_mutex during the generic_osync_inode list walk because 300 * it is otherwise livelockable. 301 */ 302 int sync_page_range(struct inode *inode, struct address_space *mapping, 303 loff_t pos, loff_t count) 304 { 305 pgoff_t start = pos >> PAGE_CACHE_SHIFT; 306 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT; 307 int ret; 308 309 if (!mapping_cap_writeback_dirty(mapping) || !count) 310 return 0; 311 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1); 312 if (ret == 0) { 313 mutex_lock(&inode->i_mutex); 314 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA); 315 mutex_unlock(&inode->i_mutex); 316 } 317 if (ret == 0) 318 ret = wait_on_page_writeback_range(mapping, start, end); 319 return ret; 320 } 321 EXPORT_SYMBOL(sync_page_range); 322 323 /** 324 * sync_page_range_nolock 325 * @inode: target inode 326 * @mapping: target address_space 327 * @pos: beginning offset in pages to write 328 * @count: number of bytes to write 329 * 330 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea 331 * as it forces O_SYNC writers to different parts of the same file 332 * to be serialised right until io completion. 333 */ 334 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping, 335 loff_t pos, loff_t count) 336 { 337 pgoff_t start = pos >> PAGE_CACHE_SHIFT; 338 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT; 339 int ret; 340 341 if (!mapping_cap_writeback_dirty(mapping) || !count) 342 return 0; 343 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1); 344 if (ret == 0) 345 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA); 346 if (ret == 0) 347 ret = wait_on_page_writeback_range(mapping, start, end); 348 return ret; 349 } 350 EXPORT_SYMBOL(sync_page_range_nolock); 351 352 /** 353 * filemap_fdatawait - wait for all under-writeback pages to complete 354 * @mapping: address space structure to wait for 355 * 356 * Walk the list of under-writeback pages of the given address space 357 * and wait for all of them. 358 */ 359 int filemap_fdatawait(struct address_space *mapping) 360 { 361 loff_t i_size = i_size_read(mapping->host); 362 363 if (i_size == 0) 364 return 0; 365 366 return wait_on_page_writeback_range(mapping, 0, 367 (i_size - 1) >> PAGE_CACHE_SHIFT); 368 } 369 EXPORT_SYMBOL(filemap_fdatawait); 370 371 int filemap_write_and_wait(struct address_space *mapping) 372 { 373 int err = 0; 374 375 if (mapping->nrpages) { 376 err = filemap_fdatawrite(mapping); 377 /* 378 * Even if the above returned error, the pages may be 379 * written partially (e.g. -ENOSPC), so we wait for it. 380 * But the -EIO is special case, it may indicate the worst 381 * thing (e.g. bug) happened, so we avoid waiting for it. 382 */ 383 if (err != -EIO) { 384 int err2 = filemap_fdatawait(mapping); 385 if (!err) 386 err = err2; 387 } 388 } 389 return err; 390 } 391 EXPORT_SYMBOL(filemap_write_and_wait); 392 393 /** 394 * filemap_write_and_wait_range - write out & wait on a file range 395 * @mapping: the address_space for the pages 396 * @lstart: offset in bytes where the range starts 397 * @lend: offset in bytes where the range ends (inclusive) 398 * 399 * Write out and wait upon file offsets lstart->lend, inclusive. 400 * 401 * Note that `lend' is inclusive (describes the last byte to be written) so 402 * that this function can be used to write to the very end-of-file (end = -1). 403 */ 404 int filemap_write_and_wait_range(struct address_space *mapping, 405 loff_t lstart, loff_t lend) 406 { 407 int err = 0; 408 409 if (mapping->nrpages) { 410 err = __filemap_fdatawrite_range(mapping, lstart, lend, 411 WB_SYNC_ALL); 412 /* See comment of filemap_write_and_wait() */ 413 if (err != -EIO) { 414 int err2 = wait_on_page_writeback_range(mapping, 415 lstart >> PAGE_CACHE_SHIFT, 416 lend >> PAGE_CACHE_SHIFT); 417 if (!err) 418 err = err2; 419 } 420 } 421 return err; 422 } 423 424 /** 425 * add_to_page_cache - add newly allocated pagecache pages 426 * @page: page to add 427 * @mapping: the page's address_space 428 * @offset: page index 429 * @gfp_mask: page allocation mode 430 * 431 * This function is used to add newly allocated pagecache pages; 432 * the page is new, so we can just run SetPageLocked() against it. 433 * The other page state flags were set by rmqueue(). 434 * 435 * This function does not add the page to the LRU. The caller must do that. 436 */ 437 int add_to_page_cache(struct page *page, struct address_space *mapping, 438 pgoff_t offset, gfp_t gfp_mask) 439 { 440 int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 441 442 if (error == 0) { 443 write_lock_irq(&mapping->tree_lock); 444 error = radix_tree_insert(&mapping->page_tree, offset, page); 445 if (!error) { 446 page_cache_get(page); 447 SetPageLocked(page); 448 page->mapping = mapping; 449 page->index = offset; 450 mapping->nrpages++; 451 __inc_zone_page_state(page, NR_FILE_PAGES); 452 } 453 write_unlock_irq(&mapping->tree_lock); 454 radix_tree_preload_end(); 455 } 456 return error; 457 } 458 EXPORT_SYMBOL(add_to_page_cache); 459 460 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 461 pgoff_t offset, gfp_t gfp_mask) 462 { 463 int ret = add_to_page_cache(page, mapping, offset, gfp_mask); 464 if (ret == 0) 465 lru_cache_add(page); 466 return ret; 467 } 468 469 #ifdef CONFIG_NUMA 470 struct page *__page_cache_alloc(gfp_t gfp) 471 { 472 if (cpuset_do_page_mem_spread()) { 473 int n = cpuset_mem_spread_node(); 474 return alloc_pages_node(n, gfp, 0); 475 } 476 return alloc_pages(gfp, 0); 477 } 478 EXPORT_SYMBOL(__page_cache_alloc); 479 #endif 480 481 static int __sleep_on_page_lock(void *word) 482 { 483 io_schedule(); 484 return 0; 485 } 486 487 /* 488 * In order to wait for pages to become available there must be 489 * waitqueues associated with pages. By using a hash table of 490 * waitqueues where the bucket discipline is to maintain all 491 * waiters on the same queue and wake all when any of the pages 492 * become available, and for the woken contexts to check to be 493 * sure the appropriate page became available, this saves space 494 * at a cost of "thundering herd" phenomena during rare hash 495 * collisions. 496 */ 497 static wait_queue_head_t *page_waitqueue(struct page *page) 498 { 499 const struct zone *zone = page_zone(page); 500 501 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)]; 502 } 503 504 static inline void wake_up_page(struct page *page, int bit) 505 { 506 __wake_up_bit(page_waitqueue(page), &page->flags, bit); 507 } 508 509 void fastcall wait_on_page_bit(struct page *page, int bit_nr) 510 { 511 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 512 513 if (test_bit(bit_nr, &page->flags)) 514 __wait_on_bit(page_waitqueue(page), &wait, sync_page, 515 TASK_UNINTERRUPTIBLE); 516 } 517 EXPORT_SYMBOL(wait_on_page_bit); 518 519 /** 520 * unlock_page - unlock a locked page 521 * @page: the page 522 * 523 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 524 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 525 * mechananism between PageLocked pages and PageWriteback pages is shared. 526 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 527 * 528 * The first mb is necessary to safely close the critical section opened by the 529 * TestSetPageLocked(), the second mb is necessary to enforce ordering between 530 * the clear_bit and the read of the waitqueue (to avoid SMP races with a 531 * parallel wait_on_page_locked()). 532 */ 533 void fastcall unlock_page(struct page *page) 534 { 535 smp_mb__before_clear_bit(); 536 if (!TestClearPageLocked(page)) 537 BUG(); 538 smp_mb__after_clear_bit(); 539 wake_up_page(page, PG_locked); 540 } 541 EXPORT_SYMBOL(unlock_page); 542 543 /** 544 * end_page_writeback - end writeback against a page 545 * @page: the page 546 */ 547 void end_page_writeback(struct page *page) 548 { 549 if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) { 550 if (!test_clear_page_writeback(page)) 551 BUG(); 552 } 553 smp_mb__after_clear_bit(); 554 wake_up_page(page, PG_writeback); 555 } 556 EXPORT_SYMBOL(end_page_writeback); 557 558 /** 559 * __lock_page - get a lock on the page, assuming we need to sleep to get it 560 * @page: the page to lock 561 * 562 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some 563 * random driver's requestfn sets TASK_RUNNING, we could busywait. However 564 * chances are that on the second loop, the block layer's plug list is empty, 565 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE. 566 */ 567 void fastcall __lock_page(struct page *page) 568 { 569 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 570 571 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page, 572 TASK_UNINTERRUPTIBLE); 573 } 574 EXPORT_SYMBOL(__lock_page); 575 576 /* 577 * Variant of lock_page that does not require the caller to hold a reference 578 * on the page's mapping. 579 */ 580 void fastcall __lock_page_nosync(struct page *page) 581 { 582 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 583 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock, 584 TASK_UNINTERRUPTIBLE); 585 } 586 587 /** 588 * find_get_page - find and get a page reference 589 * @mapping: the address_space to search 590 * @offset: the page index 591 * 592 * Is there a pagecache struct page at the given (mapping, offset) tuple? 593 * If yes, increment its refcount and return it; if no, return NULL. 594 */ 595 struct page * find_get_page(struct address_space *mapping, unsigned long offset) 596 { 597 struct page *page; 598 599 read_lock_irq(&mapping->tree_lock); 600 page = radix_tree_lookup(&mapping->page_tree, offset); 601 if (page) 602 page_cache_get(page); 603 read_unlock_irq(&mapping->tree_lock); 604 return page; 605 } 606 EXPORT_SYMBOL(find_get_page); 607 608 /** 609 * find_lock_page - locate, pin and lock a pagecache page 610 * @mapping: the address_space to search 611 * @offset: the page index 612 * 613 * Locates the desired pagecache page, locks it, increments its reference 614 * count and returns its address. 615 * 616 * Returns zero if the page was not present. find_lock_page() may sleep. 617 */ 618 struct page *find_lock_page(struct address_space *mapping, 619 unsigned long offset) 620 { 621 struct page *page; 622 623 read_lock_irq(&mapping->tree_lock); 624 repeat: 625 page = radix_tree_lookup(&mapping->page_tree, offset); 626 if (page) { 627 page_cache_get(page); 628 if (TestSetPageLocked(page)) { 629 read_unlock_irq(&mapping->tree_lock); 630 __lock_page(page); 631 read_lock_irq(&mapping->tree_lock); 632 633 /* Has the page been truncated while we slept? */ 634 if (unlikely(page->mapping != mapping || 635 page->index != offset)) { 636 unlock_page(page); 637 page_cache_release(page); 638 goto repeat; 639 } 640 } 641 } 642 read_unlock_irq(&mapping->tree_lock); 643 return page; 644 } 645 EXPORT_SYMBOL(find_lock_page); 646 647 /** 648 * find_or_create_page - locate or add a pagecache page 649 * @mapping: the page's address_space 650 * @index: the page's index into the mapping 651 * @gfp_mask: page allocation mode 652 * 653 * Locates a page in the pagecache. If the page is not present, a new page 654 * is allocated using @gfp_mask and is added to the pagecache and to the VM's 655 * LRU list. The returned page is locked and has its reference count 656 * incremented. 657 * 658 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic 659 * allocation! 660 * 661 * find_or_create_page() returns the desired page's address, or zero on 662 * memory exhaustion. 663 */ 664 struct page *find_or_create_page(struct address_space *mapping, 665 unsigned long index, gfp_t gfp_mask) 666 { 667 struct page *page, *cached_page = NULL; 668 int err; 669 repeat: 670 page = find_lock_page(mapping, index); 671 if (!page) { 672 if (!cached_page) { 673 cached_page = alloc_page(gfp_mask); 674 if (!cached_page) 675 return NULL; 676 } 677 err = add_to_page_cache_lru(cached_page, mapping, 678 index, gfp_mask); 679 if (!err) { 680 page = cached_page; 681 cached_page = NULL; 682 } else if (err == -EEXIST) 683 goto repeat; 684 } 685 if (cached_page) 686 page_cache_release(cached_page); 687 return page; 688 } 689 EXPORT_SYMBOL(find_or_create_page); 690 691 /** 692 * find_get_pages - gang pagecache lookup 693 * @mapping: The address_space to search 694 * @start: The starting page index 695 * @nr_pages: The maximum number of pages 696 * @pages: Where the resulting pages are placed 697 * 698 * find_get_pages() will search for and return a group of up to 699 * @nr_pages pages in the mapping. The pages are placed at @pages. 700 * find_get_pages() takes a reference against the returned pages. 701 * 702 * The search returns a group of mapping-contiguous pages with ascending 703 * indexes. There may be holes in the indices due to not-present pages. 704 * 705 * find_get_pages() returns the number of pages which were found. 706 */ 707 unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 708 unsigned int nr_pages, struct page **pages) 709 { 710 unsigned int i; 711 unsigned int ret; 712 713 read_lock_irq(&mapping->tree_lock); 714 ret = radix_tree_gang_lookup(&mapping->page_tree, 715 (void **)pages, start, nr_pages); 716 for (i = 0; i < ret; i++) 717 page_cache_get(pages[i]); 718 read_unlock_irq(&mapping->tree_lock); 719 return ret; 720 } 721 722 /** 723 * find_get_pages_contig - gang contiguous pagecache lookup 724 * @mapping: The address_space to search 725 * @index: The starting page index 726 * @nr_pages: The maximum number of pages 727 * @pages: Where the resulting pages are placed 728 * 729 * find_get_pages_contig() works exactly like find_get_pages(), except 730 * that the returned number of pages are guaranteed to be contiguous. 731 * 732 * find_get_pages_contig() returns the number of pages which were found. 733 */ 734 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 735 unsigned int nr_pages, struct page **pages) 736 { 737 unsigned int i; 738 unsigned int ret; 739 740 read_lock_irq(&mapping->tree_lock); 741 ret = radix_tree_gang_lookup(&mapping->page_tree, 742 (void **)pages, index, nr_pages); 743 for (i = 0; i < ret; i++) { 744 if (pages[i]->mapping == NULL || pages[i]->index != index) 745 break; 746 747 page_cache_get(pages[i]); 748 index++; 749 } 750 read_unlock_irq(&mapping->tree_lock); 751 return i; 752 } 753 754 /** 755 * find_get_pages_tag - find and return pages that match @tag 756 * @mapping: the address_space to search 757 * @index: the starting page index 758 * @tag: the tag index 759 * @nr_pages: the maximum number of pages 760 * @pages: where the resulting pages are placed 761 * 762 * Like find_get_pages, except we only return pages which are tagged with 763 * @tag. We update @index to index the next page for the traversal. 764 */ 765 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 766 int tag, unsigned int nr_pages, struct page **pages) 767 { 768 unsigned int i; 769 unsigned int ret; 770 771 read_lock_irq(&mapping->tree_lock); 772 ret = radix_tree_gang_lookup_tag(&mapping->page_tree, 773 (void **)pages, *index, nr_pages, tag); 774 for (i = 0; i < ret; i++) 775 page_cache_get(pages[i]); 776 if (ret) 777 *index = pages[ret - 1]->index + 1; 778 read_unlock_irq(&mapping->tree_lock); 779 return ret; 780 } 781 782 /** 783 * grab_cache_page_nowait - returns locked page at given index in given cache 784 * @mapping: target address_space 785 * @index: the page index 786 * 787 * Same as grab_cache_page(), but do not wait if the page is unavailable. 788 * This is intended for speculative data generators, where the data can 789 * be regenerated if the page couldn't be grabbed. This routine should 790 * be safe to call while holding the lock for another page. 791 * 792 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 793 * and deadlock against the caller's locked page. 794 */ 795 struct page * 796 grab_cache_page_nowait(struct address_space *mapping, unsigned long index) 797 { 798 struct page *page = find_get_page(mapping, index); 799 800 if (page) { 801 if (!TestSetPageLocked(page)) 802 return page; 803 page_cache_release(page); 804 return NULL; 805 } 806 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS); 807 if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) { 808 page_cache_release(page); 809 page = NULL; 810 } 811 return page; 812 } 813 EXPORT_SYMBOL(grab_cache_page_nowait); 814 815 /* 816 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 817 * a _large_ part of the i/o request. Imagine the worst scenario: 818 * 819 * ---R__________________________________________B__________ 820 * ^ reading here ^ bad block(assume 4k) 821 * 822 * read(R) => miss => readahead(R...B) => media error => frustrating retries 823 * => failing the whole request => read(R) => read(R+1) => 824 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 825 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 826 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 827 * 828 * It is going insane. Fix it by quickly scaling down the readahead size. 829 */ 830 static void shrink_readahead_size_eio(struct file *filp, 831 struct file_ra_state *ra) 832 { 833 if (!ra->ra_pages) 834 return; 835 836 ra->ra_pages /= 4; 837 } 838 839 /** 840 * do_generic_mapping_read - generic file read routine 841 * @mapping: address_space to be read 842 * @_ra: file's readahead state 843 * @filp: the file to read 844 * @ppos: current file position 845 * @desc: read_descriptor 846 * @actor: read method 847 * 848 * This is a generic file read routine, and uses the 849 * mapping->a_ops->readpage() function for the actual low-level stuff. 850 * 851 * This is really ugly. But the goto's actually try to clarify some 852 * of the logic when it comes to error handling etc. 853 * 854 * Note the struct file* is only passed for the use of readpage. 855 * It may be NULL. 856 */ 857 void do_generic_mapping_read(struct address_space *mapping, 858 struct file_ra_state *_ra, 859 struct file *filp, 860 loff_t *ppos, 861 read_descriptor_t *desc, 862 read_actor_t actor) 863 { 864 struct inode *inode = mapping->host; 865 unsigned long index; 866 unsigned long end_index; 867 unsigned long offset; 868 unsigned long last_index; 869 unsigned long next_index; 870 unsigned long prev_index; 871 unsigned int prev_offset; 872 loff_t isize; 873 struct page *cached_page; 874 int error; 875 struct file_ra_state ra = *_ra; 876 877 cached_page = NULL; 878 index = *ppos >> PAGE_CACHE_SHIFT; 879 next_index = index; 880 prev_index = ra.prev_index; 881 prev_offset = ra.prev_offset; 882 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; 883 offset = *ppos & ~PAGE_CACHE_MASK; 884 885 isize = i_size_read(inode); 886 if (!isize) 887 goto out; 888 889 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 890 for (;;) { 891 struct page *page; 892 unsigned long nr, ret; 893 894 /* nr is the maximum number of bytes to copy from this page */ 895 nr = PAGE_CACHE_SIZE; 896 if (index >= end_index) { 897 if (index > end_index) 898 goto out; 899 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 900 if (nr <= offset) { 901 goto out; 902 } 903 } 904 nr = nr - offset; 905 906 cond_resched(); 907 if (index == next_index) 908 next_index = page_cache_readahead(mapping, &ra, filp, 909 index, last_index - index); 910 911 find_page: 912 page = find_get_page(mapping, index); 913 if (unlikely(page == NULL)) { 914 handle_ra_miss(mapping, &ra, index); 915 goto no_cached_page; 916 } 917 if (!PageUptodate(page)) 918 goto page_not_up_to_date; 919 page_ok: 920 921 /* If users can be writing to this page using arbitrary 922 * virtual addresses, take care about potential aliasing 923 * before reading the page on the kernel side. 924 */ 925 if (mapping_writably_mapped(mapping)) 926 flush_dcache_page(page); 927 928 /* 929 * When a sequential read accesses a page several times, 930 * only mark it as accessed the first time. 931 */ 932 if (prev_index != index || offset != prev_offset) 933 mark_page_accessed(page); 934 prev_index = index; 935 936 /* 937 * Ok, we have the page, and it's up-to-date, so 938 * now we can copy it to user space... 939 * 940 * The actor routine returns how many bytes were actually used.. 941 * NOTE! This may not be the same as how much of a user buffer 942 * we filled up (we may be padding etc), so we can only update 943 * "pos" here (the actor routine has to update the user buffer 944 * pointers and the remaining count). 945 */ 946 ret = actor(desc, page, offset, nr); 947 offset += ret; 948 index += offset >> PAGE_CACHE_SHIFT; 949 offset &= ~PAGE_CACHE_MASK; 950 prev_offset = offset; 951 ra.prev_offset = offset; 952 953 page_cache_release(page); 954 if (ret == nr && desc->count) 955 continue; 956 goto out; 957 958 page_not_up_to_date: 959 /* Get exclusive access to the page ... */ 960 lock_page(page); 961 962 /* Did it get truncated before we got the lock? */ 963 if (!page->mapping) { 964 unlock_page(page); 965 page_cache_release(page); 966 continue; 967 } 968 969 /* Did somebody else fill it already? */ 970 if (PageUptodate(page)) { 971 unlock_page(page); 972 goto page_ok; 973 } 974 975 readpage: 976 /* Start the actual read. The read will unlock the page. */ 977 error = mapping->a_ops->readpage(filp, page); 978 979 if (unlikely(error)) { 980 if (error == AOP_TRUNCATED_PAGE) { 981 page_cache_release(page); 982 goto find_page; 983 } 984 goto readpage_error; 985 } 986 987 if (!PageUptodate(page)) { 988 lock_page(page); 989 if (!PageUptodate(page)) { 990 if (page->mapping == NULL) { 991 /* 992 * invalidate_inode_pages got it 993 */ 994 unlock_page(page); 995 page_cache_release(page); 996 goto find_page; 997 } 998 unlock_page(page); 999 error = -EIO; 1000 shrink_readahead_size_eio(filp, &ra); 1001 goto readpage_error; 1002 } 1003 unlock_page(page); 1004 } 1005 1006 /* 1007 * i_size must be checked after we have done ->readpage. 1008 * 1009 * Checking i_size after the readpage allows us to calculate 1010 * the correct value for "nr", which means the zero-filled 1011 * part of the page is not copied back to userspace (unless 1012 * another truncate extends the file - this is desired though). 1013 */ 1014 isize = i_size_read(inode); 1015 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1016 if (unlikely(!isize || index > end_index)) { 1017 page_cache_release(page); 1018 goto out; 1019 } 1020 1021 /* nr is the maximum number of bytes to copy from this page */ 1022 nr = PAGE_CACHE_SIZE; 1023 if (index == end_index) { 1024 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 1025 if (nr <= offset) { 1026 page_cache_release(page); 1027 goto out; 1028 } 1029 } 1030 nr = nr - offset; 1031 goto page_ok; 1032 1033 readpage_error: 1034 /* UHHUH! A synchronous read error occurred. Report it */ 1035 desc->error = error; 1036 page_cache_release(page); 1037 goto out; 1038 1039 no_cached_page: 1040 /* 1041 * Ok, it wasn't cached, so we need to create a new 1042 * page.. 1043 */ 1044 if (!cached_page) { 1045 cached_page = page_cache_alloc_cold(mapping); 1046 if (!cached_page) { 1047 desc->error = -ENOMEM; 1048 goto out; 1049 } 1050 } 1051 error = add_to_page_cache_lru(cached_page, mapping, 1052 index, GFP_KERNEL); 1053 if (error) { 1054 if (error == -EEXIST) 1055 goto find_page; 1056 desc->error = error; 1057 goto out; 1058 } 1059 page = cached_page; 1060 cached_page = NULL; 1061 goto readpage; 1062 } 1063 1064 out: 1065 *_ra = ra; 1066 1067 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset; 1068 if (cached_page) 1069 page_cache_release(cached_page); 1070 if (filp) 1071 file_accessed(filp); 1072 } 1073 EXPORT_SYMBOL(do_generic_mapping_read); 1074 1075 int file_read_actor(read_descriptor_t *desc, struct page *page, 1076 unsigned long offset, unsigned long size) 1077 { 1078 char *kaddr; 1079 unsigned long left, count = desc->count; 1080 1081 if (size > count) 1082 size = count; 1083 1084 /* 1085 * Faults on the destination of a read are common, so do it before 1086 * taking the kmap. 1087 */ 1088 if (!fault_in_pages_writeable(desc->arg.buf, size)) { 1089 kaddr = kmap_atomic(page, KM_USER0); 1090 left = __copy_to_user_inatomic(desc->arg.buf, 1091 kaddr + offset, size); 1092 kunmap_atomic(kaddr, KM_USER0); 1093 if (left == 0) 1094 goto success; 1095 } 1096 1097 /* Do it the slow way */ 1098 kaddr = kmap(page); 1099 left = __copy_to_user(desc->arg.buf, kaddr + offset, size); 1100 kunmap(page); 1101 1102 if (left) { 1103 size -= left; 1104 desc->error = -EFAULT; 1105 } 1106 success: 1107 desc->count = count - size; 1108 desc->written += size; 1109 desc->arg.buf += size; 1110 return size; 1111 } 1112 1113 /* 1114 * Performs necessary checks before doing a write 1115 * @iov: io vector request 1116 * @nr_segs: number of segments in the iovec 1117 * @count: number of bytes to write 1118 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE 1119 * 1120 * Adjust number of segments and amount of bytes to write (nr_segs should be 1121 * properly initialized first). Returns appropriate error code that caller 1122 * should return or zero in case that write should be allowed. 1123 */ 1124 int generic_segment_checks(const struct iovec *iov, 1125 unsigned long *nr_segs, size_t *count, int access_flags) 1126 { 1127 unsigned long seg; 1128 size_t cnt = 0; 1129 for (seg = 0; seg < *nr_segs; seg++) { 1130 const struct iovec *iv = &iov[seg]; 1131 1132 /* 1133 * If any segment has a negative length, or the cumulative 1134 * length ever wraps negative then return -EINVAL. 1135 */ 1136 cnt += iv->iov_len; 1137 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0)) 1138 return -EINVAL; 1139 if (access_ok(access_flags, iv->iov_base, iv->iov_len)) 1140 continue; 1141 if (seg == 0) 1142 return -EFAULT; 1143 *nr_segs = seg; 1144 cnt -= iv->iov_len; /* This segment is no good */ 1145 break; 1146 } 1147 *count = cnt; 1148 return 0; 1149 } 1150 EXPORT_SYMBOL(generic_segment_checks); 1151 1152 /** 1153 * generic_file_aio_read - generic filesystem read routine 1154 * @iocb: kernel I/O control block 1155 * @iov: io vector request 1156 * @nr_segs: number of segments in the iovec 1157 * @pos: current file position 1158 * 1159 * This is the "read()" routine for all filesystems 1160 * that can use the page cache directly. 1161 */ 1162 ssize_t 1163 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov, 1164 unsigned long nr_segs, loff_t pos) 1165 { 1166 struct file *filp = iocb->ki_filp; 1167 ssize_t retval; 1168 unsigned long seg; 1169 size_t count; 1170 loff_t *ppos = &iocb->ki_pos; 1171 1172 count = 0; 1173 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE); 1174 if (retval) 1175 return retval; 1176 1177 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 1178 if (filp->f_flags & O_DIRECT) { 1179 loff_t size; 1180 struct address_space *mapping; 1181 struct inode *inode; 1182 1183 mapping = filp->f_mapping; 1184 inode = mapping->host; 1185 retval = 0; 1186 if (!count) 1187 goto out; /* skip atime */ 1188 size = i_size_read(inode); 1189 if (pos < size) { 1190 retval = generic_file_direct_IO(READ, iocb, 1191 iov, pos, nr_segs); 1192 if (retval > 0) 1193 *ppos = pos + retval; 1194 } 1195 if (likely(retval != 0)) { 1196 file_accessed(filp); 1197 goto out; 1198 } 1199 } 1200 1201 retval = 0; 1202 if (count) { 1203 for (seg = 0; seg < nr_segs; seg++) { 1204 read_descriptor_t desc; 1205 1206 desc.written = 0; 1207 desc.arg.buf = iov[seg].iov_base; 1208 desc.count = iov[seg].iov_len; 1209 if (desc.count == 0) 1210 continue; 1211 desc.error = 0; 1212 do_generic_file_read(filp,ppos,&desc,file_read_actor); 1213 retval += desc.written; 1214 if (desc.error) { 1215 retval = retval ?: desc.error; 1216 break; 1217 } 1218 } 1219 } 1220 out: 1221 return retval; 1222 } 1223 EXPORT_SYMBOL(generic_file_aio_read); 1224 1225 int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size) 1226 { 1227 ssize_t written; 1228 unsigned long count = desc->count; 1229 struct file *file = desc->arg.data; 1230 1231 if (size > count) 1232 size = count; 1233 1234 written = file->f_op->sendpage(file, page, offset, 1235 size, &file->f_pos, size<count); 1236 if (written < 0) { 1237 desc->error = written; 1238 written = 0; 1239 } 1240 desc->count = count - written; 1241 desc->written += written; 1242 return written; 1243 } 1244 1245 ssize_t generic_file_sendfile(struct file *in_file, loff_t *ppos, 1246 size_t count, read_actor_t actor, void *target) 1247 { 1248 read_descriptor_t desc; 1249 1250 if (!count) 1251 return 0; 1252 1253 desc.written = 0; 1254 desc.count = count; 1255 desc.arg.data = target; 1256 desc.error = 0; 1257 1258 do_generic_file_read(in_file, ppos, &desc, actor); 1259 if (desc.written) 1260 return desc.written; 1261 return desc.error; 1262 } 1263 EXPORT_SYMBOL(generic_file_sendfile); 1264 1265 static ssize_t 1266 do_readahead(struct address_space *mapping, struct file *filp, 1267 unsigned long index, unsigned long nr) 1268 { 1269 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage) 1270 return -EINVAL; 1271 1272 force_page_cache_readahead(mapping, filp, index, 1273 max_sane_readahead(nr)); 1274 return 0; 1275 } 1276 1277 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count) 1278 { 1279 ssize_t ret; 1280 struct file *file; 1281 1282 ret = -EBADF; 1283 file = fget(fd); 1284 if (file) { 1285 if (file->f_mode & FMODE_READ) { 1286 struct address_space *mapping = file->f_mapping; 1287 unsigned long start = offset >> PAGE_CACHE_SHIFT; 1288 unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT; 1289 unsigned long len = end - start + 1; 1290 ret = do_readahead(mapping, file, start, len); 1291 } 1292 fput(file); 1293 } 1294 return ret; 1295 } 1296 1297 #ifdef CONFIG_MMU 1298 static int FASTCALL(page_cache_read(struct file * file, unsigned long offset)); 1299 /** 1300 * page_cache_read - adds requested page to the page cache if not already there 1301 * @file: file to read 1302 * @offset: page index 1303 * 1304 * This adds the requested page to the page cache if it isn't already there, 1305 * and schedules an I/O to read in its contents from disk. 1306 */ 1307 static int fastcall page_cache_read(struct file * file, unsigned long offset) 1308 { 1309 struct address_space *mapping = file->f_mapping; 1310 struct page *page; 1311 int ret; 1312 1313 do { 1314 page = page_cache_alloc_cold(mapping); 1315 if (!page) 1316 return -ENOMEM; 1317 1318 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL); 1319 if (ret == 0) 1320 ret = mapping->a_ops->readpage(file, page); 1321 else if (ret == -EEXIST) 1322 ret = 0; /* losing race to add is OK */ 1323 1324 page_cache_release(page); 1325 1326 } while (ret == AOP_TRUNCATED_PAGE); 1327 1328 return ret; 1329 } 1330 1331 #define MMAP_LOTSAMISS (100) 1332 1333 /** 1334 * filemap_nopage - read in file data for page fault handling 1335 * @area: the applicable vm_area 1336 * @address: target address to read in 1337 * @type: returned with VM_FAULT_{MINOR,MAJOR} if not %NULL 1338 * 1339 * filemap_nopage() is invoked via the vma operations vector for a 1340 * mapped memory region to read in file data during a page fault. 1341 * 1342 * The goto's are kind of ugly, but this streamlines the normal case of having 1343 * it in the page cache, and handles the special cases reasonably without 1344 * having a lot of duplicated code. 1345 */ 1346 struct page *filemap_nopage(struct vm_area_struct *area, 1347 unsigned long address, int *type) 1348 { 1349 int error; 1350 struct file *file = area->vm_file; 1351 struct address_space *mapping = file->f_mapping; 1352 struct file_ra_state *ra = &file->f_ra; 1353 struct inode *inode = mapping->host; 1354 struct page *page; 1355 unsigned long size, pgoff; 1356 int did_readaround = 0, majmin = VM_FAULT_MINOR; 1357 1358 pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff; 1359 1360 retry_all: 1361 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1362 if (pgoff >= size) 1363 goto outside_data_content; 1364 1365 /* If we don't want any read-ahead, don't bother */ 1366 if (VM_RandomReadHint(area)) 1367 goto no_cached_page; 1368 1369 /* 1370 * The readahead code wants to be told about each and every page 1371 * so it can build and shrink its windows appropriately 1372 * 1373 * For sequential accesses, we use the generic readahead logic. 1374 */ 1375 if (VM_SequentialReadHint(area)) 1376 page_cache_readahead(mapping, ra, file, pgoff, 1); 1377 1378 /* 1379 * Do we have something in the page cache already? 1380 */ 1381 retry_find: 1382 page = find_get_page(mapping, pgoff); 1383 if (!page) { 1384 unsigned long ra_pages; 1385 1386 if (VM_SequentialReadHint(area)) { 1387 handle_ra_miss(mapping, ra, pgoff); 1388 goto no_cached_page; 1389 } 1390 ra->mmap_miss++; 1391 1392 /* 1393 * Do we miss much more than hit in this file? If so, 1394 * stop bothering with read-ahead. It will only hurt. 1395 */ 1396 if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS) 1397 goto no_cached_page; 1398 1399 /* 1400 * To keep the pgmajfault counter straight, we need to 1401 * check did_readaround, as this is an inner loop. 1402 */ 1403 if (!did_readaround) { 1404 majmin = VM_FAULT_MAJOR; 1405 count_vm_event(PGMAJFAULT); 1406 } 1407 did_readaround = 1; 1408 ra_pages = max_sane_readahead(file->f_ra.ra_pages); 1409 if (ra_pages) { 1410 pgoff_t start = 0; 1411 1412 if (pgoff > ra_pages / 2) 1413 start = pgoff - ra_pages / 2; 1414 do_page_cache_readahead(mapping, file, start, ra_pages); 1415 } 1416 page = find_get_page(mapping, pgoff); 1417 if (!page) 1418 goto no_cached_page; 1419 } 1420 1421 if (!did_readaround) 1422 ra->mmap_hit++; 1423 1424 /* 1425 * Ok, found a page in the page cache, now we need to check 1426 * that it's up-to-date. 1427 */ 1428 if (!PageUptodate(page)) 1429 goto page_not_uptodate; 1430 1431 success: 1432 /* 1433 * Found the page and have a reference on it. 1434 */ 1435 mark_page_accessed(page); 1436 if (type) 1437 *type = majmin; 1438 return page; 1439 1440 outside_data_content: 1441 /* 1442 * An external ptracer can access pages that normally aren't 1443 * accessible.. 1444 */ 1445 if (area->vm_mm == current->mm) 1446 return NOPAGE_SIGBUS; 1447 /* Fall through to the non-read-ahead case */ 1448 no_cached_page: 1449 /* 1450 * We're only likely to ever get here if MADV_RANDOM is in 1451 * effect. 1452 */ 1453 error = page_cache_read(file, pgoff); 1454 1455 /* 1456 * The page we want has now been added to the page cache. 1457 * In the unlikely event that someone removed it in the 1458 * meantime, we'll just come back here and read it again. 1459 */ 1460 if (error >= 0) 1461 goto retry_find; 1462 1463 /* 1464 * An error return from page_cache_read can result if the 1465 * system is low on memory, or a problem occurs while trying 1466 * to schedule I/O. 1467 */ 1468 if (error == -ENOMEM) 1469 return NOPAGE_OOM; 1470 return NOPAGE_SIGBUS; 1471 1472 page_not_uptodate: 1473 if (!did_readaround) { 1474 majmin = VM_FAULT_MAJOR; 1475 count_vm_event(PGMAJFAULT); 1476 } 1477 1478 /* 1479 * Umm, take care of errors if the page isn't up-to-date. 1480 * Try to re-read it _once_. We do this synchronously, 1481 * because there really aren't any performance issues here 1482 * and we need to check for errors. 1483 */ 1484 lock_page(page); 1485 1486 /* Somebody truncated the page on us? */ 1487 if (!page->mapping) { 1488 unlock_page(page); 1489 page_cache_release(page); 1490 goto retry_all; 1491 } 1492 1493 /* Somebody else successfully read it in? */ 1494 if (PageUptodate(page)) { 1495 unlock_page(page); 1496 goto success; 1497 } 1498 ClearPageError(page); 1499 error = mapping->a_ops->readpage(file, page); 1500 if (!error) { 1501 wait_on_page_locked(page); 1502 if (PageUptodate(page)) 1503 goto success; 1504 } else if (error == AOP_TRUNCATED_PAGE) { 1505 page_cache_release(page); 1506 goto retry_find; 1507 } 1508 1509 /* 1510 * Things didn't work out. Return zero to tell the 1511 * mm layer so, possibly freeing the page cache page first. 1512 */ 1513 shrink_readahead_size_eio(file, ra); 1514 page_cache_release(page); 1515 return NOPAGE_SIGBUS; 1516 } 1517 EXPORT_SYMBOL(filemap_nopage); 1518 1519 static struct page * filemap_getpage(struct file *file, unsigned long pgoff, 1520 int nonblock) 1521 { 1522 struct address_space *mapping = file->f_mapping; 1523 struct page *page; 1524 int error; 1525 1526 /* 1527 * Do we have something in the page cache already? 1528 */ 1529 retry_find: 1530 page = find_get_page(mapping, pgoff); 1531 if (!page) { 1532 if (nonblock) 1533 return NULL; 1534 goto no_cached_page; 1535 } 1536 1537 /* 1538 * Ok, found a page in the page cache, now we need to check 1539 * that it's up-to-date. 1540 */ 1541 if (!PageUptodate(page)) { 1542 if (nonblock) { 1543 page_cache_release(page); 1544 return NULL; 1545 } 1546 goto page_not_uptodate; 1547 } 1548 1549 success: 1550 /* 1551 * Found the page and have a reference on it. 1552 */ 1553 mark_page_accessed(page); 1554 return page; 1555 1556 no_cached_page: 1557 error = page_cache_read(file, pgoff); 1558 1559 /* 1560 * The page we want has now been added to the page cache. 1561 * In the unlikely event that someone removed it in the 1562 * meantime, we'll just come back here and read it again. 1563 */ 1564 if (error >= 0) 1565 goto retry_find; 1566 1567 /* 1568 * An error return from page_cache_read can result if the 1569 * system is low on memory, or a problem occurs while trying 1570 * to schedule I/O. 1571 */ 1572 return NULL; 1573 1574 page_not_uptodate: 1575 lock_page(page); 1576 1577 /* Did it get truncated while we waited for it? */ 1578 if (!page->mapping) { 1579 unlock_page(page); 1580 goto err; 1581 } 1582 1583 /* Did somebody else get it up-to-date? */ 1584 if (PageUptodate(page)) { 1585 unlock_page(page); 1586 goto success; 1587 } 1588 1589 error = mapping->a_ops->readpage(file, page); 1590 if (!error) { 1591 wait_on_page_locked(page); 1592 if (PageUptodate(page)) 1593 goto success; 1594 } else if (error == AOP_TRUNCATED_PAGE) { 1595 page_cache_release(page); 1596 goto retry_find; 1597 } 1598 1599 /* 1600 * Umm, take care of errors if the page isn't up-to-date. 1601 * Try to re-read it _once_. We do this synchronously, 1602 * because there really aren't any performance issues here 1603 * and we need to check for errors. 1604 */ 1605 lock_page(page); 1606 1607 /* Somebody truncated the page on us? */ 1608 if (!page->mapping) { 1609 unlock_page(page); 1610 goto err; 1611 } 1612 /* Somebody else successfully read it in? */ 1613 if (PageUptodate(page)) { 1614 unlock_page(page); 1615 goto success; 1616 } 1617 1618 ClearPageError(page); 1619 error = mapping->a_ops->readpage(file, page); 1620 if (!error) { 1621 wait_on_page_locked(page); 1622 if (PageUptodate(page)) 1623 goto success; 1624 } else if (error == AOP_TRUNCATED_PAGE) { 1625 page_cache_release(page); 1626 goto retry_find; 1627 } 1628 1629 /* 1630 * Things didn't work out. Return zero to tell the 1631 * mm layer so, possibly freeing the page cache page first. 1632 */ 1633 err: 1634 page_cache_release(page); 1635 1636 return NULL; 1637 } 1638 1639 int filemap_populate(struct vm_area_struct *vma, unsigned long addr, 1640 unsigned long len, pgprot_t prot, unsigned long pgoff, 1641 int nonblock) 1642 { 1643 struct file *file = vma->vm_file; 1644 struct address_space *mapping = file->f_mapping; 1645 struct inode *inode = mapping->host; 1646 unsigned long size; 1647 struct mm_struct *mm = vma->vm_mm; 1648 struct page *page; 1649 int err; 1650 1651 if (!nonblock) 1652 force_page_cache_readahead(mapping, vma->vm_file, 1653 pgoff, len >> PAGE_CACHE_SHIFT); 1654 1655 repeat: 1656 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1657 if (pgoff + (len >> PAGE_CACHE_SHIFT) > size) 1658 return -EINVAL; 1659 1660 page = filemap_getpage(file, pgoff, nonblock); 1661 1662 /* XXX: This is wrong, a filesystem I/O error may have happened. Fix that as 1663 * done in shmem_populate calling shmem_getpage */ 1664 if (!page && !nonblock) 1665 return -ENOMEM; 1666 1667 if (page) { 1668 err = install_page(mm, vma, addr, page, prot); 1669 if (err) { 1670 page_cache_release(page); 1671 return err; 1672 } 1673 } else if (vma->vm_flags & VM_NONLINEAR) { 1674 /* No page was found just because we can't read it in now (being 1675 * here implies nonblock != 0), but the page may exist, so set 1676 * the PTE to fault it in later. */ 1677 err = install_file_pte(mm, vma, addr, pgoff, prot); 1678 if (err) 1679 return err; 1680 } 1681 1682 len -= PAGE_SIZE; 1683 addr += PAGE_SIZE; 1684 pgoff++; 1685 if (len) 1686 goto repeat; 1687 1688 return 0; 1689 } 1690 EXPORT_SYMBOL(filemap_populate); 1691 1692 struct vm_operations_struct generic_file_vm_ops = { 1693 .nopage = filemap_nopage, 1694 .populate = filemap_populate, 1695 }; 1696 1697 /* This is used for a general mmap of a disk file */ 1698 1699 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1700 { 1701 struct address_space *mapping = file->f_mapping; 1702 1703 if (!mapping->a_ops->readpage) 1704 return -ENOEXEC; 1705 file_accessed(file); 1706 vma->vm_ops = &generic_file_vm_ops; 1707 return 0; 1708 } 1709 1710 /* 1711 * This is for filesystems which do not implement ->writepage. 1712 */ 1713 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 1714 { 1715 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 1716 return -EINVAL; 1717 return generic_file_mmap(file, vma); 1718 } 1719 #else 1720 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1721 { 1722 return -ENOSYS; 1723 } 1724 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 1725 { 1726 return -ENOSYS; 1727 } 1728 #endif /* CONFIG_MMU */ 1729 1730 EXPORT_SYMBOL(generic_file_mmap); 1731 EXPORT_SYMBOL(generic_file_readonly_mmap); 1732 1733 static struct page *__read_cache_page(struct address_space *mapping, 1734 unsigned long index, 1735 int (*filler)(void *,struct page*), 1736 void *data) 1737 { 1738 struct page *page, *cached_page = NULL; 1739 int err; 1740 repeat: 1741 page = find_get_page(mapping, index); 1742 if (!page) { 1743 if (!cached_page) { 1744 cached_page = page_cache_alloc_cold(mapping); 1745 if (!cached_page) 1746 return ERR_PTR(-ENOMEM); 1747 } 1748 err = add_to_page_cache_lru(cached_page, mapping, 1749 index, GFP_KERNEL); 1750 if (err == -EEXIST) 1751 goto repeat; 1752 if (err < 0) { 1753 /* Presumably ENOMEM for radix tree node */ 1754 page_cache_release(cached_page); 1755 return ERR_PTR(err); 1756 } 1757 page = cached_page; 1758 cached_page = NULL; 1759 err = filler(data, page); 1760 if (err < 0) { 1761 page_cache_release(page); 1762 page = ERR_PTR(err); 1763 } 1764 } 1765 if (cached_page) 1766 page_cache_release(cached_page); 1767 return page; 1768 } 1769 1770 /* 1771 * Same as read_cache_page, but don't wait for page to become unlocked 1772 * after submitting it to the filler. 1773 */ 1774 struct page *read_cache_page_async(struct address_space *mapping, 1775 unsigned long index, 1776 int (*filler)(void *,struct page*), 1777 void *data) 1778 { 1779 struct page *page; 1780 int err; 1781 1782 retry: 1783 page = __read_cache_page(mapping, index, filler, data); 1784 if (IS_ERR(page)) 1785 goto out; 1786 mark_page_accessed(page); 1787 if (PageUptodate(page)) 1788 goto out; 1789 1790 lock_page(page); 1791 if (!page->mapping) { 1792 unlock_page(page); 1793 page_cache_release(page); 1794 goto retry; 1795 } 1796 if (PageUptodate(page)) { 1797 unlock_page(page); 1798 goto out; 1799 } 1800 err = filler(data, page); 1801 if (err < 0) { 1802 page_cache_release(page); 1803 page = ERR_PTR(err); 1804 } 1805 out: 1806 mark_page_accessed(page); 1807 return page; 1808 } 1809 EXPORT_SYMBOL(read_cache_page_async); 1810 1811 /** 1812 * read_cache_page - read into page cache, fill it if needed 1813 * @mapping: the page's address_space 1814 * @index: the page index 1815 * @filler: function to perform the read 1816 * @data: destination for read data 1817 * 1818 * Read into the page cache. If a page already exists, and PageUptodate() is 1819 * not set, try to fill the page then wait for it to become unlocked. 1820 * 1821 * If the page does not get brought uptodate, return -EIO. 1822 */ 1823 struct page *read_cache_page(struct address_space *mapping, 1824 unsigned long index, 1825 int (*filler)(void *,struct page*), 1826 void *data) 1827 { 1828 struct page *page; 1829 1830 page = read_cache_page_async(mapping, index, filler, data); 1831 if (IS_ERR(page)) 1832 goto out; 1833 wait_on_page_locked(page); 1834 if (!PageUptodate(page)) { 1835 page_cache_release(page); 1836 page = ERR_PTR(-EIO); 1837 } 1838 out: 1839 return page; 1840 } 1841 EXPORT_SYMBOL(read_cache_page); 1842 1843 /* 1844 * If the page was newly created, increment its refcount and add it to the 1845 * caller's lru-buffering pagevec. This function is specifically for 1846 * generic_file_write(). 1847 */ 1848 static inline struct page * 1849 __grab_cache_page(struct address_space *mapping, unsigned long index, 1850 struct page **cached_page, struct pagevec *lru_pvec) 1851 { 1852 int err; 1853 struct page *page; 1854 repeat: 1855 page = find_lock_page(mapping, index); 1856 if (!page) { 1857 if (!*cached_page) { 1858 *cached_page = page_cache_alloc(mapping); 1859 if (!*cached_page) 1860 return NULL; 1861 } 1862 err = add_to_page_cache(*cached_page, mapping, 1863 index, GFP_KERNEL); 1864 if (err == -EEXIST) 1865 goto repeat; 1866 if (err == 0) { 1867 page = *cached_page; 1868 page_cache_get(page); 1869 if (!pagevec_add(lru_pvec, page)) 1870 __pagevec_lru_add(lru_pvec); 1871 *cached_page = NULL; 1872 } 1873 } 1874 return page; 1875 } 1876 1877 /* 1878 * The logic we want is 1879 * 1880 * if suid or (sgid and xgrp) 1881 * remove privs 1882 */ 1883 int should_remove_suid(struct dentry *dentry) 1884 { 1885 mode_t mode = dentry->d_inode->i_mode; 1886 int kill = 0; 1887 1888 /* suid always must be killed */ 1889 if (unlikely(mode & S_ISUID)) 1890 kill = ATTR_KILL_SUID; 1891 1892 /* 1893 * sgid without any exec bits is just a mandatory locking mark; leave 1894 * it alone. If some exec bits are set, it's a real sgid; kill it. 1895 */ 1896 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1897 kill |= ATTR_KILL_SGID; 1898 1899 if (unlikely(kill && !capable(CAP_FSETID))) 1900 return kill; 1901 1902 return 0; 1903 } 1904 EXPORT_SYMBOL(should_remove_suid); 1905 1906 int __remove_suid(struct dentry *dentry, int kill) 1907 { 1908 struct iattr newattrs; 1909 1910 newattrs.ia_valid = ATTR_FORCE | kill; 1911 return notify_change(dentry, &newattrs); 1912 } 1913 1914 int remove_suid(struct dentry *dentry) 1915 { 1916 int kill = should_remove_suid(dentry); 1917 1918 if (unlikely(kill)) 1919 return __remove_suid(dentry, kill); 1920 1921 return 0; 1922 } 1923 EXPORT_SYMBOL(remove_suid); 1924 1925 size_t 1926 __filemap_copy_from_user_iovec_inatomic(char *vaddr, 1927 const struct iovec *iov, size_t base, size_t bytes) 1928 { 1929 size_t copied = 0, left = 0; 1930 1931 while (bytes) { 1932 char __user *buf = iov->iov_base + base; 1933 int copy = min(bytes, iov->iov_len - base); 1934 1935 base = 0; 1936 left = __copy_from_user_inatomic_nocache(vaddr, buf, copy); 1937 copied += copy; 1938 bytes -= copy; 1939 vaddr += copy; 1940 iov++; 1941 1942 if (unlikely(left)) 1943 break; 1944 } 1945 return copied - left; 1946 } 1947 1948 /* 1949 * Performs necessary checks before doing a write 1950 * 1951 * Can adjust writing position or amount of bytes to write. 1952 * Returns appropriate error code that caller should return or 1953 * zero in case that write should be allowed. 1954 */ 1955 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk) 1956 { 1957 struct inode *inode = file->f_mapping->host; 1958 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 1959 1960 if (unlikely(*pos < 0)) 1961 return -EINVAL; 1962 1963 if (!isblk) { 1964 /* FIXME: this is for backwards compatibility with 2.4 */ 1965 if (file->f_flags & O_APPEND) 1966 *pos = i_size_read(inode); 1967 1968 if (limit != RLIM_INFINITY) { 1969 if (*pos >= limit) { 1970 send_sig(SIGXFSZ, current, 0); 1971 return -EFBIG; 1972 } 1973 if (*count > limit - (typeof(limit))*pos) { 1974 *count = limit - (typeof(limit))*pos; 1975 } 1976 } 1977 } 1978 1979 /* 1980 * LFS rule 1981 */ 1982 if (unlikely(*pos + *count > MAX_NON_LFS && 1983 !(file->f_flags & O_LARGEFILE))) { 1984 if (*pos >= MAX_NON_LFS) { 1985 send_sig(SIGXFSZ, current, 0); 1986 return -EFBIG; 1987 } 1988 if (*count > MAX_NON_LFS - (unsigned long)*pos) { 1989 *count = MAX_NON_LFS - (unsigned long)*pos; 1990 } 1991 } 1992 1993 /* 1994 * Are we about to exceed the fs block limit ? 1995 * 1996 * If we have written data it becomes a short write. If we have 1997 * exceeded without writing data we send a signal and return EFBIG. 1998 * Linus frestrict idea will clean these up nicely.. 1999 */ 2000 if (likely(!isblk)) { 2001 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) { 2002 if (*count || *pos > inode->i_sb->s_maxbytes) { 2003 send_sig(SIGXFSZ, current, 0); 2004 return -EFBIG; 2005 } 2006 /* zero-length writes at ->s_maxbytes are OK */ 2007 } 2008 2009 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes)) 2010 *count = inode->i_sb->s_maxbytes - *pos; 2011 } else { 2012 #ifdef CONFIG_BLOCK 2013 loff_t isize; 2014 if (bdev_read_only(I_BDEV(inode))) 2015 return -EPERM; 2016 isize = i_size_read(inode); 2017 if (*pos >= isize) { 2018 if (*count || *pos > isize) 2019 return -ENOSPC; 2020 } 2021 2022 if (*pos + *count > isize) 2023 *count = isize - *pos; 2024 #else 2025 return -EPERM; 2026 #endif 2027 } 2028 return 0; 2029 } 2030 EXPORT_SYMBOL(generic_write_checks); 2031 2032 ssize_t 2033 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov, 2034 unsigned long *nr_segs, loff_t pos, loff_t *ppos, 2035 size_t count, size_t ocount) 2036 { 2037 struct file *file = iocb->ki_filp; 2038 struct address_space *mapping = file->f_mapping; 2039 struct inode *inode = mapping->host; 2040 ssize_t written; 2041 2042 if (count != ocount) 2043 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count); 2044 2045 written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs); 2046 if (written > 0) { 2047 loff_t end = pos + written; 2048 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 2049 i_size_write(inode, end); 2050 mark_inode_dirty(inode); 2051 } 2052 *ppos = end; 2053 } 2054 2055 /* 2056 * Sync the fs metadata but not the minor inode changes and 2057 * of course not the data as we did direct DMA for the IO. 2058 * i_mutex is held, which protects generic_osync_inode() from 2059 * livelocking. AIO O_DIRECT ops attempt to sync metadata here. 2060 */ 2061 if ((written >= 0 || written == -EIOCBQUEUED) && 2062 ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2063 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA); 2064 if (err < 0) 2065 written = err; 2066 } 2067 return written; 2068 } 2069 EXPORT_SYMBOL(generic_file_direct_write); 2070 2071 ssize_t 2072 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov, 2073 unsigned long nr_segs, loff_t pos, loff_t *ppos, 2074 size_t count, ssize_t written) 2075 { 2076 struct file *file = iocb->ki_filp; 2077 struct address_space * mapping = file->f_mapping; 2078 const struct address_space_operations *a_ops = mapping->a_ops; 2079 struct inode *inode = mapping->host; 2080 long status = 0; 2081 struct page *page; 2082 struct page *cached_page = NULL; 2083 size_t bytes; 2084 struct pagevec lru_pvec; 2085 const struct iovec *cur_iov = iov; /* current iovec */ 2086 size_t iov_base = 0; /* offset in the current iovec */ 2087 char __user *buf; 2088 2089 pagevec_init(&lru_pvec, 0); 2090 2091 /* 2092 * handle partial DIO write. Adjust cur_iov if needed. 2093 */ 2094 if (likely(nr_segs == 1)) 2095 buf = iov->iov_base + written; 2096 else { 2097 filemap_set_next_iovec(&cur_iov, &iov_base, written); 2098 buf = cur_iov->iov_base + iov_base; 2099 } 2100 2101 do { 2102 unsigned long index; 2103 unsigned long offset; 2104 size_t copied; 2105 2106 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */ 2107 index = pos >> PAGE_CACHE_SHIFT; 2108 bytes = PAGE_CACHE_SIZE - offset; 2109 2110 /* Limit the size of the copy to the caller's write size */ 2111 bytes = min(bytes, count); 2112 2113 /* We only need to worry about prefaulting when writes are from 2114 * user-space. NFSd uses vfs_writev with several non-aligned 2115 * segments in the vector, and limiting to one segment a time is 2116 * a noticeable performance for re-write 2117 */ 2118 if (!segment_eq(get_fs(), KERNEL_DS)) { 2119 /* 2120 * Limit the size of the copy to that of the current 2121 * segment, because fault_in_pages_readable() doesn't 2122 * know how to walk segments. 2123 */ 2124 bytes = min(bytes, cur_iov->iov_len - iov_base); 2125 2126 /* 2127 * Bring in the user page that we will copy from 2128 * _first_. Otherwise there's a nasty deadlock on 2129 * copying from the same page as we're writing to, 2130 * without it being marked up-to-date. 2131 */ 2132 fault_in_pages_readable(buf, bytes); 2133 } 2134 page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec); 2135 if (!page) { 2136 status = -ENOMEM; 2137 break; 2138 } 2139 2140 if (unlikely(bytes == 0)) { 2141 status = 0; 2142 copied = 0; 2143 goto zero_length_segment; 2144 } 2145 2146 status = a_ops->prepare_write(file, page, offset, offset+bytes); 2147 if (unlikely(status)) { 2148 loff_t isize = i_size_read(inode); 2149 2150 if (status != AOP_TRUNCATED_PAGE) 2151 unlock_page(page); 2152 page_cache_release(page); 2153 if (status == AOP_TRUNCATED_PAGE) 2154 continue; 2155 /* 2156 * prepare_write() may have instantiated a few blocks 2157 * outside i_size. Trim these off again. 2158 */ 2159 if (pos + bytes > isize) 2160 vmtruncate(inode, isize); 2161 break; 2162 } 2163 if (likely(nr_segs == 1)) 2164 copied = filemap_copy_from_user(page, offset, 2165 buf, bytes); 2166 else 2167 copied = filemap_copy_from_user_iovec(page, offset, 2168 cur_iov, iov_base, bytes); 2169 flush_dcache_page(page); 2170 status = a_ops->commit_write(file, page, offset, offset+bytes); 2171 if (status == AOP_TRUNCATED_PAGE) { 2172 page_cache_release(page); 2173 continue; 2174 } 2175 zero_length_segment: 2176 if (likely(copied >= 0)) { 2177 if (!status) 2178 status = copied; 2179 2180 if (status >= 0) { 2181 written += status; 2182 count -= status; 2183 pos += status; 2184 buf += status; 2185 if (unlikely(nr_segs > 1)) { 2186 filemap_set_next_iovec(&cur_iov, 2187 &iov_base, status); 2188 if (count) 2189 buf = cur_iov->iov_base + 2190 iov_base; 2191 } else { 2192 iov_base += status; 2193 } 2194 } 2195 } 2196 if (unlikely(copied != bytes)) 2197 if (status >= 0) 2198 status = -EFAULT; 2199 unlock_page(page); 2200 mark_page_accessed(page); 2201 page_cache_release(page); 2202 if (status < 0) 2203 break; 2204 balance_dirty_pages_ratelimited(mapping); 2205 cond_resched(); 2206 } while (count); 2207 *ppos = pos; 2208 2209 if (cached_page) 2210 page_cache_release(cached_page); 2211 2212 /* 2213 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC 2214 */ 2215 if (likely(status >= 0)) { 2216 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2217 if (!a_ops->writepage || !is_sync_kiocb(iocb)) 2218 status = generic_osync_inode(inode, mapping, 2219 OSYNC_METADATA|OSYNC_DATA); 2220 } 2221 } 2222 2223 /* 2224 * If we get here for O_DIRECT writes then we must have fallen through 2225 * to buffered writes (block instantiation inside i_size). So we sync 2226 * the file data here, to try to honour O_DIRECT expectations. 2227 */ 2228 if (unlikely(file->f_flags & O_DIRECT) && written) 2229 status = filemap_write_and_wait(mapping); 2230 2231 pagevec_lru_add(&lru_pvec); 2232 return written ? written : status; 2233 } 2234 EXPORT_SYMBOL(generic_file_buffered_write); 2235 2236 static ssize_t 2237 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov, 2238 unsigned long nr_segs, loff_t *ppos) 2239 { 2240 struct file *file = iocb->ki_filp; 2241 struct address_space * mapping = file->f_mapping; 2242 size_t ocount; /* original count */ 2243 size_t count; /* after file limit checks */ 2244 struct inode *inode = mapping->host; 2245 loff_t pos; 2246 ssize_t written; 2247 ssize_t err; 2248 2249 ocount = 0; 2250 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ); 2251 if (err) 2252 return err; 2253 2254 count = ocount; 2255 pos = *ppos; 2256 2257 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); 2258 2259 /* We can write back this queue in page reclaim */ 2260 current->backing_dev_info = mapping->backing_dev_info; 2261 written = 0; 2262 2263 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 2264 if (err) 2265 goto out; 2266 2267 if (count == 0) 2268 goto out; 2269 2270 err = remove_suid(file->f_path.dentry); 2271 if (err) 2272 goto out; 2273 2274 file_update_time(file); 2275 2276 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 2277 if (unlikely(file->f_flags & O_DIRECT)) { 2278 loff_t endbyte; 2279 ssize_t written_buffered; 2280 2281 written = generic_file_direct_write(iocb, iov, &nr_segs, pos, 2282 ppos, count, ocount); 2283 if (written < 0 || written == count) 2284 goto out; 2285 /* 2286 * direct-io write to a hole: fall through to buffered I/O 2287 * for completing the rest of the request. 2288 */ 2289 pos += written; 2290 count -= written; 2291 written_buffered = generic_file_buffered_write(iocb, iov, 2292 nr_segs, pos, ppos, count, 2293 written); 2294 /* 2295 * If generic_file_buffered_write() retuned a synchronous error 2296 * then we want to return the number of bytes which were 2297 * direct-written, or the error code if that was zero. Note 2298 * that this differs from normal direct-io semantics, which 2299 * will return -EFOO even if some bytes were written. 2300 */ 2301 if (written_buffered < 0) { 2302 err = written_buffered; 2303 goto out; 2304 } 2305 2306 /* 2307 * We need to ensure that the page cache pages are written to 2308 * disk and invalidated to preserve the expected O_DIRECT 2309 * semantics. 2310 */ 2311 endbyte = pos + written_buffered - written - 1; 2312 err = do_sync_mapping_range(file->f_mapping, pos, endbyte, 2313 SYNC_FILE_RANGE_WAIT_BEFORE| 2314 SYNC_FILE_RANGE_WRITE| 2315 SYNC_FILE_RANGE_WAIT_AFTER); 2316 if (err == 0) { 2317 written = written_buffered; 2318 invalidate_mapping_pages(mapping, 2319 pos >> PAGE_CACHE_SHIFT, 2320 endbyte >> PAGE_CACHE_SHIFT); 2321 } else { 2322 /* 2323 * We don't know how much we wrote, so just return 2324 * the number of bytes which were direct-written 2325 */ 2326 } 2327 } else { 2328 written = generic_file_buffered_write(iocb, iov, nr_segs, 2329 pos, ppos, count, written); 2330 } 2331 out: 2332 current->backing_dev_info = NULL; 2333 return written ? written : err; 2334 } 2335 2336 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb, 2337 const struct iovec *iov, unsigned long nr_segs, loff_t pos) 2338 { 2339 struct file *file = iocb->ki_filp; 2340 struct address_space *mapping = file->f_mapping; 2341 struct inode *inode = mapping->host; 2342 ssize_t ret; 2343 2344 BUG_ON(iocb->ki_pos != pos); 2345 2346 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, 2347 &iocb->ki_pos); 2348 2349 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2350 ssize_t err; 2351 2352 err = sync_page_range_nolock(inode, mapping, pos, ret); 2353 if (err < 0) 2354 ret = err; 2355 } 2356 return ret; 2357 } 2358 EXPORT_SYMBOL(generic_file_aio_write_nolock); 2359 2360 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, 2361 unsigned long nr_segs, loff_t pos) 2362 { 2363 struct file *file = iocb->ki_filp; 2364 struct address_space *mapping = file->f_mapping; 2365 struct inode *inode = mapping->host; 2366 ssize_t ret; 2367 2368 BUG_ON(iocb->ki_pos != pos); 2369 2370 mutex_lock(&inode->i_mutex); 2371 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, 2372 &iocb->ki_pos); 2373 mutex_unlock(&inode->i_mutex); 2374 2375 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2376 ssize_t err; 2377 2378 err = sync_page_range(inode, mapping, pos, ret); 2379 if (err < 0) 2380 ret = err; 2381 } 2382 return ret; 2383 } 2384 EXPORT_SYMBOL(generic_file_aio_write); 2385 2386 /* 2387 * Called under i_mutex for writes to S_ISREG files. Returns -EIO if something 2388 * went wrong during pagecache shootdown. 2389 */ 2390 static ssize_t 2391 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, 2392 loff_t offset, unsigned long nr_segs) 2393 { 2394 struct file *file = iocb->ki_filp; 2395 struct address_space *mapping = file->f_mapping; 2396 ssize_t retval; 2397 size_t write_len; 2398 pgoff_t end = 0; /* silence gcc */ 2399 2400 /* 2401 * If it's a write, unmap all mmappings of the file up-front. This 2402 * will cause any pte dirty bits to be propagated into the pageframes 2403 * for the subsequent filemap_write_and_wait(). 2404 */ 2405 if (rw == WRITE) { 2406 write_len = iov_length(iov, nr_segs); 2407 end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT; 2408 if (mapping_mapped(mapping)) 2409 unmap_mapping_range(mapping, offset, write_len, 0); 2410 } 2411 2412 retval = filemap_write_and_wait(mapping); 2413 if (retval) 2414 goto out; 2415 2416 /* 2417 * After a write we want buffered reads to be sure to go to disk to get 2418 * the new data. We invalidate clean cached page from the region we're 2419 * about to write. We do this *before* the write so that we can return 2420 * -EIO without clobbering -EIOCBQUEUED from ->direct_IO(). 2421 */ 2422 if (rw == WRITE && mapping->nrpages) { 2423 retval = invalidate_inode_pages2_range(mapping, 2424 offset >> PAGE_CACHE_SHIFT, end); 2425 if (retval) 2426 goto out; 2427 } 2428 2429 retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs); 2430 if (retval) 2431 goto out; 2432 2433 /* 2434 * Finally, try again to invalidate clean pages which might have been 2435 * faulted in by get_user_pages() if the source of the write was an 2436 * mmap()ed region of the file we're writing. That's a pretty crazy 2437 * thing to do, so we don't support it 100%. If this invalidation 2438 * fails and we have -EIOCBQUEUED we ignore the failure. 2439 */ 2440 if (rw == WRITE && mapping->nrpages) { 2441 int err = invalidate_inode_pages2_range(mapping, 2442 offset >> PAGE_CACHE_SHIFT, end); 2443 if (err && retval >= 0) 2444 retval = err; 2445 } 2446 out: 2447 return retval; 2448 } 2449 2450 /** 2451 * try_to_release_page() - release old fs-specific metadata on a page 2452 * 2453 * @page: the page which the kernel is trying to free 2454 * @gfp_mask: memory allocation flags (and I/O mode) 2455 * 2456 * The address_space is to try to release any data against the page 2457 * (presumably at page->private). If the release was successful, return `1'. 2458 * Otherwise return zero. 2459 * 2460 * The @gfp_mask argument specifies whether I/O may be performed to release 2461 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT). 2462 * 2463 * NOTE: @gfp_mask may go away, and this function may become non-blocking. 2464 */ 2465 int try_to_release_page(struct page *page, gfp_t gfp_mask) 2466 { 2467 struct address_space * const mapping = page->mapping; 2468 2469 BUG_ON(!PageLocked(page)); 2470 if (PageWriteback(page)) 2471 return 0; 2472 2473 if (mapping && mapping->a_ops->releasepage) 2474 return mapping->a_ops->releasepage(page, gfp_mask); 2475 return try_to_free_buffers(page); 2476 } 2477 2478 EXPORT_SYMBOL(try_to_release_page); 2479