xref: /linux/mm/filemap.c (revision 74ce1896c6c65b2f8cccbf59162d542988835835)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/sched/signal.h>
17 #include <linux/uaccess.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/gfp.h>
21 #include <linux/mm.h>
22 #include <linux/swap.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/file.h>
26 #include <linux/uio.h>
27 #include <linux/hash.h>
28 #include <linux/writeback.h>
29 #include <linux/backing-dev.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/security.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/hugetlb.h>
36 #include <linux/memcontrol.h>
37 #include <linux/cleancache.h>
38 #include <linux/rmap.h>
39 #include "internal.h"
40 
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/filemap.h>
43 
44 /*
45  * FIXME: remove all knowledge of the buffer layer from the core VM
46  */
47 #include <linux/buffer_head.h> /* for try_to_free_buffers */
48 
49 #include <asm/mman.h>
50 
51 /*
52  * Shared mappings implemented 30.11.1994. It's not fully working yet,
53  * though.
54  *
55  * Shared mappings now work. 15.8.1995  Bruno.
56  *
57  * finished 'unifying' the page and buffer cache and SMP-threaded the
58  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
59  *
60  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
61  */
62 
63 /*
64  * Lock ordering:
65  *
66  *  ->i_mmap_rwsem		(truncate_pagecache)
67  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
68  *      ->swap_lock		(exclusive_swap_page, others)
69  *        ->mapping->tree_lock
70  *
71  *  ->i_mutex
72  *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
73  *
74  *  ->mmap_sem
75  *    ->i_mmap_rwsem
76  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
77  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
78  *
79  *  ->mmap_sem
80  *    ->lock_page		(access_process_vm)
81  *
82  *  ->i_mutex			(generic_perform_write)
83  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
84  *
85  *  bdi->wb.list_lock
86  *    sb_lock			(fs/fs-writeback.c)
87  *    ->mapping->tree_lock	(__sync_single_inode)
88  *
89  *  ->i_mmap_rwsem
90  *    ->anon_vma.lock		(vma_adjust)
91  *
92  *  ->anon_vma.lock
93  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
94  *
95  *  ->page_table_lock or pte_lock
96  *    ->swap_lock		(try_to_unmap_one)
97  *    ->private_lock		(try_to_unmap_one)
98  *    ->tree_lock		(try_to_unmap_one)
99  *    ->zone_lru_lock(zone)	(follow_page->mark_page_accessed)
100  *    ->zone_lru_lock(zone)	(check_pte_range->isolate_lru_page)
101  *    ->private_lock		(page_remove_rmap->set_page_dirty)
102  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
103  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
104  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
105  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
106  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
107  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
108  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
109  *
110  * ->i_mmap_rwsem
111  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
112  */
113 
114 static int page_cache_tree_insert(struct address_space *mapping,
115 				  struct page *page, void **shadowp)
116 {
117 	struct radix_tree_node *node;
118 	void **slot;
119 	int error;
120 
121 	error = __radix_tree_create(&mapping->page_tree, page->index, 0,
122 				    &node, &slot);
123 	if (error)
124 		return error;
125 	if (*slot) {
126 		void *p;
127 
128 		p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
129 		if (!radix_tree_exceptional_entry(p))
130 			return -EEXIST;
131 
132 		mapping->nrexceptional--;
133 		if (shadowp)
134 			*shadowp = p;
135 	}
136 	__radix_tree_replace(&mapping->page_tree, node, slot, page,
137 			     workingset_update_node, mapping);
138 	mapping->nrpages++;
139 	return 0;
140 }
141 
142 static void page_cache_tree_delete(struct address_space *mapping,
143 				   struct page *page, void *shadow)
144 {
145 	int i, nr;
146 
147 	/* hugetlb pages are represented by one entry in the radix tree */
148 	nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
149 
150 	VM_BUG_ON_PAGE(!PageLocked(page), page);
151 	VM_BUG_ON_PAGE(PageTail(page), page);
152 	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
153 
154 	for (i = 0; i < nr; i++) {
155 		struct radix_tree_node *node;
156 		void **slot;
157 
158 		__radix_tree_lookup(&mapping->page_tree, page->index + i,
159 				    &node, &slot);
160 
161 		VM_BUG_ON_PAGE(!node && nr != 1, page);
162 
163 		radix_tree_clear_tags(&mapping->page_tree, node, slot);
164 		__radix_tree_replace(&mapping->page_tree, node, slot, shadow,
165 				     workingset_update_node, mapping);
166 	}
167 
168 	if (shadow) {
169 		mapping->nrexceptional += nr;
170 		/*
171 		 * Make sure the nrexceptional update is committed before
172 		 * the nrpages update so that final truncate racing
173 		 * with reclaim does not see both counters 0 at the
174 		 * same time and miss a shadow entry.
175 		 */
176 		smp_wmb();
177 	}
178 	mapping->nrpages -= nr;
179 }
180 
181 /*
182  * Delete a page from the page cache and free it. Caller has to make
183  * sure the page is locked and that nobody else uses it - or that usage
184  * is safe.  The caller must hold the mapping's tree_lock.
185  */
186 void __delete_from_page_cache(struct page *page, void *shadow)
187 {
188 	struct address_space *mapping = page->mapping;
189 	int nr = hpage_nr_pages(page);
190 
191 	trace_mm_filemap_delete_from_page_cache(page);
192 	/*
193 	 * if we're uptodate, flush out into the cleancache, otherwise
194 	 * invalidate any existing cleancache entries.  We can't leave
195 	 * stale data around in the cleancache once our page is gone
196 	 */
197 	if (PageUptodate(page) && PageMappedToDisk(page))
198 		cleancache_put_page(page);
199 	else
200 		cleancache_invalidate_page(mapping, page);
201 
202 	VM_BUG_ON_PAGE(PageTail(page), page);
203 	VM_BUG_ON_PAGE(page_mapped(page), page);
204 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
205 		int mapcount;
206 
207 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
208 			 current->comm, page_to_pfn(page));
209 		dump_page(page, "still mapped when deleted");
210 		dump_stack();
211 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
212 
213 		mapcount = page_mapcount(page);
214 		if (mapping_exiting(mapping) &&
215 		    page_count(page) >= mapcount + 2) {
216 			/*
217 			 * All vmas have already been torn down, so it's
218 			 * a good bet that actually the page is unmapped,
219 			 * and we'd prefer not to leak it: if we're wrong,
220 			 * some other bad page check should catch it later.
221 			 */
222 			page_mapcount_reset(page);
223 			page_ref_sub(page, mapcount);
224 		}
225 	}
226 
227 	page_cache_tree_delete(mapping, page, shadow);
228 
229 	page->mapping = NULL;
230 	/* Leave page->index set: truncation lookup relies upon it */
231 
232 	/* hugetlb pages do not participate in page cache accounting. */
233 	if (PageHuge(page))
234 		return;
235 
236 	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
237 	if (PageSwapBacked(page)) {
238 		__mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
239 		if (PageTransHuge(page))
240 			__dec_node_page_state(page, NR_SHMEM_THPS);
241 	} else {
242 		VM_BUG_ON_PAGE(PageTransHuge(page), page);
243 	}
244 
245 	/*
246 	 * At this point page must be either written or cleaned by truncate.
247 	 * Dirty page here signals a bug and loss of unwritten data.
248 	 *
249 	 * This fixes dirty accounting after removing the page entirely but
250 	 * leaves PageDirty set: it has no effect for truncated page and
251 	 * anyway will be cleared before returning page into buddy allocator.
252 	 */
253 	if (WARN_ON_ONCE(PageDirty(page)))
254 		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
255 }
256 
257 /**
258  * delete_from_page_cache - delete page from page cache
259  * @page: the page which the kernel is trying to remove from page cache
260  *
261  * This must be called only on pages that have been verified to be in the page
262  * cache and locked.  It will never put the page into the free list, the caller
263  * has a reference on the page.
264  */
265 void delete_from_page_cache(struct page *page)
266 {
267 	struct address_space *mapping = page_mapping(page);
268 	unsigned long flags;
269 	void (*freepage)(struct page *);
270 
271 	BUG_ON(!PageLocked(page));
272 
273 	freepage = mapping->a_ops->freepage;
274 
275 	spin_lock_irqsave(&mapping->tree_lock, flags);
276 	__delete_from_page_cache(page, NULL);
277 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
278 
279 	if (freepage)
280 		freepage(page);
281 
282 	if (PageTransHuge(page) && !PageHuge(page)) {
283 		page_ref_sub(page, HPAGE_PMD_NR);
284 		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
285 	} else {
286 		put_page(page);
287 	}
288 }
289 EXPORT_SYMBOL(delete_from_page_cache);
290 
291 int filemap_check_errors(struct address_space *mapping)
292 {
293 	int ret = 0;
294 	/* Check for outstanding write errors */
295 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
296 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
297 		ret = -ENOSPC;
298 	if (test_bit(AS_EIO, &mapping->flags) &&
299 	    test_and_clear_bit(AS_EIO, &mapping->flags))
300 		ret = -EIO;
301 	return ret;
302 }
303 EXPORT_SYMBOL(filemap_check_errors);
304 
305 static int filemap_check_and_keep_errors(struct address_space *mapping)
306 {
307 	/* Check for outstanding write errors */
308 	if (test_bit(AS_EIO, &mapping->flags))
309 		return -EIO;
310 	if (test_bit(AS_ENOSPC, &mapping->flags))
311 		return -ENOSPC;
312 	return 0;
313 }
314 
315 /**
316  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
317  * @mapping:	address space structure to write
318  * @start:	offset in bytes where the range starts
319  * @end:	offset in bytes where the range ends (inclusive)
320  * @sync_mode:	enable synchronous operation
321  *
322  * Start writeback against all of a mapping's dirty pages that lie
323  * within the byte offsets <start, end> inclusive.
324  *
325  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
326  * opposed to a regular memory cleansing writeback.  The difference between
327  * these two operations is that if a dirty page/buffer is encountered, it must
328  * be waited upon, and not just skipped over.
329  */
330 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
331 				loff_t end, int sync_mode)
332 {
333 	int ret;
334 	struct writeback_control wbc = {
335 		.sync_mode = sync_mode,
336 		.nr_to_write = LONG_MAX,
337 		.range_start = start,
338 		.range_end = end,
339 	};
340 
341 	if (!mapping_cap_writeback_dirty(mapping))
342 		return 0;
343 
344 	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
345 	ret = do_writepages(mapping, &wbc);
346 	wbc_detach_inode(&wbc);
347 	return ret;
348 }
349 
350 static inline int __filemap_fdatawrite(struct address_space *mapping,
351 	int sync_mode)
352 {
353 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
354 }
355 
356 int filemap_fdatawrite(struct address_space *mapping)
357 {
358 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
359 }
360 EXPORT_SYMBOL(filemap_fdatawrite);
361 
362 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
363 				loff_t end)
364 {
365 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
366 }
367 EXPORT_SYMBOL(filemap_fdatawrite_range);
368 
369 /**
370  * filemap_flush - mostly a non-blocking flush
371  * @mapping:	target address_space
372  *
373  * This is a mostly non-blocking flush.  Not suitable for data-integrity
374  * purposes - I/O may not be started against all dirty pages.
375  */
376 int filemap_flush(struct address_space *mapping)
377 {
378 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
379 }
380 EXPORT_SYMBOL(filemap_flush);
381 
382 /**
383  * filemap_range_has_page - check if a page exists in range.
384  * @mapping:           address space within which to check
385  * @start_byte:        offset in bytes where the range starts
386  * @end_byte:          offset in bytes where the range ends (inclusive)
387  *
388  * Find at least one page in the range supplied, usually used to check if
389  * direct writing in this range will trigger a writeback.
390  */
391 bool filemap_range_has_page(struct address_space *mapping,
392 			   loff_t start_byte, loff_t end_byte)
393 {
394 	pgoff_t index = start_byte >> PAGE_SHIFT;
395 	pgoff_t end = end_byte >> PAGE_SHIFT;
396 	struct page *page;
397 
398 	if (end_byte < start_byte)
399 		return false;
400 
401 	if (mapping->nrpages == 0)
402 		return false;
403 
404 	if (!find_get_pages_range(mapping, &index, end, 1, &page))
405 		return false;
406 	put_page(page);
407 	return true;
408 }
409 EXPORT_SYMBOL(filemap_range_has_page);
410 
411 static void __filemap_fdatawait_range(struct address_space *mapping,
412 				     loff_t start_byte, loff_t end_byte)
413 {
414 	pgoff_t index = start_byte >> PAGE_SHIFT;
415 	pgoff_t end = end_byte >> PAGE_SHIFT;
416 	struct pagevec pvec;
417 	int nr_pages;
418 
419 	if (end_byte < start_byte)
420 		return;
421 
422 	pagevec_init(&pvec, 0);
423 	while ((index <= end) &&
424 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
425 			PAGECACHE_TAG_WRITEBACK,
426 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
427 		unsigned i;
428 
429 		for (i = 0; i < nr_pages; i++) {
430 			struct page *page = pvec.pages[i];
431 
432 			/* until radix tree lookup accepts end_index */
433 			if (page->index > end)
434 				continue;
435 
436 			wait_on_page_writeback(page);
437 			ClearPageError(page);
438 		}
439 		pagevec_release(&pvec);
440 		cond_resched();
441 	}
442 }
443 
444 /**
445  * filemap_fdatawait_range - wait for writeback to complete
446  * @mapping:		address space structure to wait for
447  * @start_byte:		offset in bytes where the range starts
448  * @end_byte:		offset in bytes where the range ends (inclusive)
449  *
450  * Walk the list of under-writeback pages of the given address space
451  * in the given range and wait for all of them.  Check error status of
452  * the address space and return it.
453  *
454  * Since the error status of the address space is cleared by this function,
455  * callers are responsible for checking the return value and handling and/or
456  * reporting the error.
457  */
458 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
459 			    loff_t end_byte)
460 {
461 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
462 	return filemap_check_errors(mapping);
463 }
464 EXPORT_SYMBOL(filemap_fdatawait_range);
465 
466 /**
467  * file_fdatawait_range - wait for writeback to complete
468  * @file:		file pointing to address space structure to wait for
469  * @start_byte:		offset in bytes where the range starts
470  * @end_byte:		offset in bytes where the range ends (inclusive)
471  *
472  * Walk the list of under-writeback pages of the address space that file
473  * refers to, in the given range and wait for all of them.  Check error
474  * status of the address space vs. the file->f_wb_err cursor and return it.
475  *
476  * Since the error status of the file is advanced by this function,
477  * callers are responsible for checking the return value and handling and/or
478  * reporting the error.
479  */
480 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
481 {
482 	struct address_space *mapping = file->f_mapping;
483 
484 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
485 	return file_check_and_advance_wb_err(file);
486 }
487 EXPORT_SYMBOL(file_fdatawait_range);
488 
489 /**
490  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
491  * @mapping: address space structure to wait for
492  *
493  * Walk the list of under-writeback pages of the given address space
494  * and wait for all of them.  Unlike filemap_fdatawait(), this function
495  * does not clear error status of the address space.
496  *
497  * Use this function if callers don't handle errors themselves.  Expected
498  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
499  * fsfreeze(8)
500  */
501 int filemap_fdatawait_keep_errors(struct address_space *mapping)
502 {
503 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
504 	return filemap_check_and_keep_errors(mapping);
505 }
506 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
507 
508 static bool mapping_needs_writeback(struct address_space *mapping)
509 {
510 	return (!dax_mapping(mapping) && mapping->nrpages) ||
511 	    (dax_mapping(mapping) && mapping->nrexceptional);
512 }
513 
514 int filemap_write_and_wait(struct address_space *mapping)
515 {
516 	int err = 0;
517 
518 	if (mapping_needs_writeback(mapping)) {
519 		err = filemap_fdatawrite(mapping);
520 		/*
521 		 * Even if the above returned error, the pages may be
522 		 * written partially (e.g. -ENOSPC), so we wait for it.
523 		 * But the -EIO is special case, it may indicate the worst
524 		 * thing (e.g. bug) happened, so we avoid waiting for it.
525 		 */
526 		if (err != -EIO) {
527 			int err2 = filemap_fdatawait(mapping);
528 			if (!err)
529 				err = err2;
530 		} else {
531 			/* Clear any previously stored errors */
532 			filemap_check_errors(mapping);
533 		}
534 	} else {
535 		err = filemap_check_errors(mapping);
536 	}
537 	return err;
538 }
539 EXPORT_SYMBOL(filemap_write_and_wait);
540 
541 /**
542  * filemap_write_and_wait_range - write out & wait on a file range
543  * @mapping:	the address_space for the pages
544  * @lstart:	offset in bytes where the range starts
545  * @lend:	offset in bytes where the range ends (inclusive)
546  *
547  * Write out and wait upon file offsets lstart->lend, inclusive.
548  *
549  * Note that @lend is inclusive (describes the last byte to be written) so
550  * that this function can be used to write to the very end-of-file (end = -1).
551  */
552 int filemap_write_and_wait_range(struct address_space *mapping,
553 				 loff_t lstart, loff_t lend)
554 {
555 	int err = 0;
556 
557 	if (mapping_needs_writeback(mapping)) {
558 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
559 						 WB_SYNC_ALL);
560 		/* See comment of filemap_write_and_wait() */
561 		if (err != -EIO) {
562 			int err2 = filemap_fdatawait_range(mapping,
563 						lstart, lend);
564 			if (!err)
565 				err = err2;
566 		} else {
567 			/* Clear any previously stored errors */
568 			filemap_check_errors(mapping);
569 		}
570 	} else {
571 		err = filemap_check_errors(mapping);
572 	}
573 	return err;
574 }
575 EXPORT_SYMBOL(filemap_write_and_wait_range);
576 
577 void __filemap_set_wb_err(struct address_space *mapping, int err)
578 {
579 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
580 
581 	trace_filemap_set_wb_err(mapping, eseq);
582 }
583 EXPORT_SYMBOL(__filemap_set_wb_err);
584 
585 /**
586  * file_check_and_advance_wb_err - report wb error (if any) that was previously
587  * 				   and advance wb_err to current one
588  * @file: struct file on which the error is being reported
589  *
590  * When userland calls fsync (or something like nfsd does the equivalent), we
591  * want to report any writeback errors that occurred since the last fsync (or
592  * since the file was opened if there haven't been any).
593  *
594  * Grab the wb_err from the mapping. If it matches what we have in the file,
595  * then just quickly return 0. The file is all caught up.
596  *
597  * If it doesn't match, then take the mapping value, set the "seen" flag in
598  * it and try to swap it into place. If it works, or another task beat us
599  * to it with the new value, then update the f_wb_err and return the error
600  * portion. The error at this point must be reported via proper channels
601  * (a'la fsync, or NFS COMMIT operation, etc.).
602  *
603  * While we handle mapping->wb_err with atomic operations, the f_wb_err
604  * value is protected by the f_lock since we must ensure that it reflects
605  * the latest value swapped in for this file descriptor.
606  */
607 int file_check_and_advance_wb_err(struct file *file)
608 {
609 	int err = 0;
610 	errseq_t old = READ_ONCE(file->f_wb_err);
611 	struct address_space *mapping = file->f_mapping;
612 
613 	/* Locklessly handle the common case where nothing has changed */
614 	if (errseq_check(&mapping->wb_err, old)) {
615 		/* Something changed, must use slow path */
616 		spin_lock(&file->f_lock);
617 		old = file->f_wb_err;
618 		err = errseq_check_and_advance(&mapping->wb_err,
619 						&file->f_wb_err);
620 		trace_file_check_and_advance_wb_err(file, old);
621 		spin_unlock(&file->f_lock);
622 	}
623 	return err;
624 }
625 EXPORT_SYMBOL(file_check_and_advance_wb_err);
626 
627 /**
628  * file_write_and_wait_range - write out & wait on a file range
629  * @file:	file pointing to address_space with pages
630  * @lstart:	offset in bytes where the range starts
631  * @lend:	offset in bytes where the range ends (inclusive)
632  *
633  * Write out and wait upon file offsets lstart->lend, inclusive.
634  *
635  * Note that @lend is inclusive (describes the last byte to be written) so
636  * that this function can be used to write to the very end-of-file (end = -1).
637  *
638  * After writing out and waiting on the data, we check and advance the
639  * f_wb_err cursor to the latest value, and return any errors detected there.
640  */
641 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
642 {
643 	int err = 0, err2;
644 	struct address_space *mapping = file->f_mapping;
645 
646 	if (mapping_needs_writeback(mapping)) {
647 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
648 						 WB_SYNC_ALL);
649 		/* See comment of filemap_write_and_wait() */
650 		if (err != -EIO)
651 			__filemap_fdatawait_range(mapping, lstart, lend);
652 	}
653 	err2 = file_check_and_advance_wb_err(file);
654 	if (!err)
655 		err = err2;
656 	return err;
657 }
658 EXPORT_SYMBOL(file_write_and_wait_range);
659 
660 /**
661  * replace_page_cache_page - replace a pagecache page with a new one
662  * @old:	page to be replaced
663  * @new:	page to replace with
664  * @gfp_mask:	allocation mode
665  *
666  * This function replaces a page in the pagecache with a new one.  On
667  * success it acquires the pagecache reference for the new page and
668  * drops it for the old page.  Both the old and new pages must be
669  * locked.  This function does not add the new page to the LRU, the
670  * caller must do that.
671  *
672  * The remove + add is atomic.  The only way this function can fail is
673  * memory allocation failure.
674  */
675 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
676 {
677 	int error;
678 
679 	VM_BUG_ON_PAGE(!PageLocked(old), old);
680 	VM_BUG_ON_PAGE(!PageLocked(new), new);
681 	VM_BUG_ON_PAGE(new->mapping, new);
682 
683 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
684 	if (!error) {
685 		struct address_space *mapping = old->mapping;
686 		void (*freepage)(struct page *);
687 		unsigned long flags;
688 
689 		pgoff_t offset = old->index;
690 		freepage = mapping->a_ops->freepage;
691 
692 		get_page(new);
693 		new->mapping = mapping;
694 		new->index = offset;
695 
696 		spin_lock_irqsave(&mapping->tree_lock, flags);
697 		__delete_from_page_cache(old, NULL);
698 		error = page_cache_tree_insert(mapping, new, NULL);
699 		BUG_ON(error);
700 
701 		/*
702 		 * hugetlb pages do not participate in page cache accounting.
703 		 */
704 		if (!PageHuge(new))
705 			__inc_node_page_state(new, NR_FILE_PAGES);
706 		if (PageSwapBacked(new))
707 			__inc_node_page_state(new, NR_SHMEM);
708 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
709 		mem_cgroup_migrate(old, new);
710 		radix_tree_preload_end();
711 		if (freepage)
712 			freepage(old);
713 		put_page(old);
714 	}
715 
716 	return error;
717 }
718 EXPORT_SYMBOL_GPL(replace_page_cache_page);
719 
720 static int __add_to_page_cache_locked(struct page *page,
721 				      struct address_space *mapping,
722 				      pgoff_t offset, gfp_t gfp_mask,
723 				      void **shadowp)
724 {
725 	int huge = PageHuge(page);
726 	struct mem_cgroup *memcg;
727 	int error;
728 
729 	VM_BUG_ON_PAGE(!PageLocked(page), page);
730 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
731 
732 	if (!huge) {
733 		error = mem_cgroup_try_charge(page, current->mm,
734 					      gfp_mask, &memcg, false);
735 		if (error)
736 			return error;
737 	}
738 
739 	error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
740 	if (error) {
741 		if (!huge)
742 			mem_cgroup_cancel_charge(page, memcg, false);
743 		return error;
744 	}
745 
746 	get_page(page);
747 	page->mapping = mapping;
748 	page->index = offset;
749 
750 	spin_lock_irq(&mapping->tree_lock);
751 	error = page_cache_tree_insert(mapping, page, shadowp);
752 	radix_tree_preload_end();
753 	if (unlikely(error))
754 		goto err_insert;
755 
756 	/* hugetlb pages do not participate in page cache accounting. */
757 	if (!huge)
758 		__inc_node_page_state(page, NR_FILE_PAGES);
759 	spin_unlock_irq(&mapping->tree_lock);
760 	if (!huge)
761 		mem_cgroup_commit_charge(page, memcg, false, false);
762 	trace_mm_filemap_add_to_page_cache(page);
763 	return 0;
764 err_insert:
765 	page->mapping = NULL;
766 	/* Leave page->index set: truncation relies upon it */
767 	spin_unlock_irq(&mapping->tree_lock);
768 	if (!huge)
769 		mem_cgroup_cancel_charge(page, memcg, false);
770 	put_page(page);
771 	return error;
772 }
773 
774 /**
775  * add_to_page_cache_locked - add a locked page to the pagecache
776  * @page:	page to add
777  * @mapping:	the page's address_space
778  * @offset:	page index
779  * @gfp_mask:	page allocation mode
780  *
781  * This function is used to add a page to the pagecache. It must be locked.
782  * This function does not add the page to the LRU.  The caller must do that.
783  */
784 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
785 		pgoff_t offset, gfp_t gfp_mask)
786 {
787 	return __add_to_page_cache_locked(page, mapping, offset,
788 					  gfp_mask, NULL);
789 }
790 EXPORT_SYMBOL(add_to_page_cache_locked);
791 
792 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
793 				pgoff_t offset, gfp_t gfp_mask)
794 {
795 	void *shadow = NULL;
796 	int ret;
797 
798 	__SetPageLocked(page);
799 	ret = __add_to_page_cache_locked(page, mapping, offset,
800 					 gfp_mask, &shadow);
801 	if (unlikely(ret))
802 		__ClearPageLocked(page);
803 	else {
804 		/*
805 		 * The page might have been evicted from cache only
806 		 * recently, in which case it should be activated like
807 		 * any other repeatedly accessed page.
808 		 * The exception is pages getting rewritten; evicting other
809 		 * data from the working set, only to cache data that will
810 		 * get overwritten with something else, is a waste of memory.
811 		 */
812 		if (!(gfp_mask & __GFP_WRITE) &&
813 		    shadow && workingset_refault(shadow)) {
814 			SetPageActive(page);
815 			workingset_activation(page);
816 		} else
817 			ClearPageActive(page);
818 		lru_cache_add(page);
819 	}
820 	return ret;
821 }
822 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
823 
824 #ifdef CONFIG_NUMA
825 struct page *__page_cache_alloc(gfp_t gfp)
826 {
827 	int n;
828 	struct page *page;
829 
830 	if (cpuset_do_page_mem_spread()) {
831 		unsigned int cpuset_mems_cookie;
832 		do {
833 			cpuset_mems_cookie = read_mems_allowed_begin();
834 			n = cpuset_mem_spread_node();
835 			page = __alloc_pages_node(n, gfp, 0);
836 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
837 
838 		return page;
839 	}
840 	return alloc_pages(gfp, 0);
841 }
842 EXPORT_SYMBOL(__page_cache_alloc);
843 #endif
844 
845 /*
846  * In order to wait for pages to become available there must be
847  * waitqueues associated with pages. By using a hash table of
848  * waitqueues where the bucket discipline is to maintain all
849  * waiters on the same queue and wake all when any of the pages
850  * become available, and for the woken contexts to check to be
851  * sure the appropriate page became available, this saves space
852  * at a cost of "thundering herd" phenomena during rare hash
853  * collisions.
854  */
855 #define PAGE_WAIT_TABLE_BITS 8
856 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
857 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
858 
859 static wait_queue_head_t *page_waitqueue(struct page *page)
860 {
861 	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
862 }
863 
864 void __init pagecache_init(void)
865 {
866 	int i;
867 
868 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
869 		init_waitqueue_head(&page_wait_table[i]);
870 
871 	page_writeback_init();
872 }
873 
874 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
875 struct wait_page_key {
876 	struct page *page;
877 	int bit_nr;
878 	int page_match;
879 };
880 
881 struct wait_page_queue {
882 	struct page *page;
883 	int bit_nr;
884 	wait_queue_entry_t wait;
885 };
886 
887 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
888 {
889 	struct wait_page_key *key = arg;
890 	struct wait_page_queue *wait_page
891 		= container_of(wait, struct wait_page_queue, wait);
892 
893 	if (wait_page->page != key->page)
894 	       return 0;
895 	key->page_match = 1;
896 
897 	if (wait_page->bit_nr != key->bit_nr)
898 		return 0;
899 
900 	/* Stop walking if it's locked */
901 	if (test_bit(key->bit_nr, &key->page->flags))
902 		return -1;
903 
904 	return autoremove_wake_function(wait, mode, sync, key);
905 }
906 
907 static void wake_up_page_bit(struct page *page, int bit_nr)
908 {
909 	wait_queue_head_t *q = page_waitqueue(page);
910 	struct wait_page_key key;
911 	unsigned long flags;
912 	wait_queue_entry_t bookmark;
913 
914 	key.page = page;
915 	key.bit_nr = bit_nr;
916 	key.page_match = 0;
917 
918 	bookmark.flags = 0;
919 	bookmark.private = NULL;
920 	bookmark.func = NULL;
921 	INIT_LIST_HEAD(&bookmark.entry);
922 
923 	spin_lock_irqsave(&q->lock, flags);
924 	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
925 
926 	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
927 		/*
928 		 * Take a breather from holding the lock,
929 		 * allow pages that finish wake up asynchronously
930 		 * to acquire the lock and remove themselves
931 		 * from wait queue
932 		 */
933 		spin_unlock_irqrestore(&q->lock, flags);
934 		cpu_relax();
935 		spin_lock_irqsave(&q->lock, flags);
936 		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
937 	}
938 
939 	/*
940 	 * It is possible for other pages to have collided on the waitqueue
941 	 * hash, so in that case check for a page match. That prevents a long-
942 	 * term waiter
943 	 *
944 	 * It is still possible to miss a case here, when we woke page waiters
945 	 * and removed them from the waitqueue, but there are still other
946 	 * page waiters.
947 	 */
948 	if (!waitqueue_active(q) || !key.page_match) {
949 		ClearPageWaiters(page);
950 		/*
951 		 * It's possible to miss clearing Waiters here, when we woke
952 		 * our page waiters, but the hashed waitqueue has waiters for
953 		 * other pages on it.
954 		 *
955 		 * That's okay, it's a rare case. The next waker will clear it.
956 		 */
957 	}
958 	spin_unlock_irqrestore(&q->lock, flags);
959 }
960 
961 static void wake_up_page(struct page *page, int bit)
962 {
963 	if (!PageWaiters(page))
964 		return;
965 	wake_up_page_bit(page, bit);
966 }
967 
968 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
969 		struct page *page, int bit_nr, int state, bool lock)
970 {
971 	struct wait_page_queue wait_page;
972 	wait_queue_entry_t *wait = &wait_page.wait;
973 	int ret = 0;
974 
975 	init_wait(wait);
976 	wait->flags = lock ? WQ_FLAG_EXCLUSIVE : 0;
977 	wait->func = wake_page_function;
978 	wait_page.page = page;
979 	wait_page.bit_nr = bit_nr;
980 
981 	for (;;) {
982 		spin_lock_irq(&q->lock);
983 
984 		if (likely(list_empty(&wait->entry))) {
985 			__add_wait_queue_entry_tail(q, wait);
986 			SetPageWaiters(page);
987 		}
988 
989 		set_current_state(state);
990 
991 		spin_unlock_irq(&q->lock);
992 
993 		if (likely(test_bit(bit_nr, &page->flags))) {
994 			io_schedule();
995 		}
996 
997 		if (lock) {
998 			if (!test_and_set_bit_lock(bit_nr, &page->flags))
999 				break;
1000 		} else {
1001 			if (!test_bit(bit_nr, &page->flags))
1002 				break;
1003 		}
1004 
1005 		if (unlikely(signal_pending_state(state, current))) {
1006 			ret = -EINTR;
1007 			break;
1008 		}
1009 	}
1010 
1011 	finish_wait(q, wait);
1012 
1013 	/*
1014 	 * A signal could leave PageWaiters set. Clearing it here if
1015 	 * !waitqueue_active would be possible (by open-coding finish_wait),
1016 	 * but still fail to catch it in the case of wait hash collision. We
1017 	 * already can fail to clear wait hash collision cases, so don't
1018 	 * bother with signals either.
1019 	 */
1020 
1021 	return ret;
1022 }
1023 
1024 void wait_on_page_bit(struct page *page, int bit_nr)
1025 {
1026 	wait_queue_head_t *q = page_waitqueue(page);
1027 	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
1028 }
1029 EXPORT_SYMBOL(wait_on_page_bit);
1030 
1031 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1032 {
1033 	wait_queue_head_t *q = page_waitqueue(page);
1034 	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
1035 }
1036 
1037 /**
1038  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1039  * @page: Page defining the wait queue of interest
1040  * @waiter: Waiter to add to the queue
1041  *
1042  * Add an arbitrary @waiter to the wait queue for the nominated @page.
1043  */
1044 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1045 {
1046 	wait_queue_head_t *q = page_waitqueue(page);
1047 	unsigned long flags;
1048 
1049 	spin_lock_irqsave(&q->lock, flags);
1050 	__add_wait_queue_entry_tail(q, waiter);
1051 	SetPageWaiters(page);
1052 	spin_unlock_irqrestore(&q->lock, flags);
1053 }
1054 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1055 
1056 #ifndef clear_bit_unlock_is_negative_byte
1057 
1058 /*
1059  * PG_waiters is the high bit in the same byte as PG_lock.
1060  *
1061  * On x86 (and on many other architectures), we can clear PG_lock and
1062  * test the sign bit at the same time. But if the architecture does
1063  * not support that special operation, we just do this all by hand
1064  * instead.
1065  *
1066  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1067  * being cleared, but a memory barrier should be unneccssary since it is
1068  * in the same byte as PG_locked.
1069  */
1070 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1071 {
1072 	clear_bit_unlock(nr, mem);
1073 	/* smp_mb__after_atomic(); */
1074 	return test_bit(PG_waiters, mem);
1075 }
1076 
1077 #endif
1078 
1079 /**
1080  * unlock_page - unlock a locked page
1081  * @page: the page
1082  *
1083  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1084  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1085  * mechanism between PageLocked pages and PageWriteback pages is shared.
1086  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1087  *
1088  * Note that this depends on PG_waiters being the sign bit in the byte
1089  * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1090  * clear the PG_locked bit and test PG_waiters at the same time fairly
1091  * portably (architectures that do LL/SC can test any bit, while x86 can
1092  * test the sign bit).
1093  */
1094 void unlock_page(struct page *page)
1095 {
1096 	BUILD_BUG_ON(PG_waiters != 7);
1097 	page = compound_head(page);
1098 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1099 	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1100 		wake_up_page_bit(page, PG_locked);
1101 }
1102 EXPORT_SYMBOL(unlock_page);
1103 
1104 /**
1105  * end_page_writeback - end writeback against a page
1106  * @page: the page
1107  */
1108 void end_page_writeback(struct page *page)
1109 {
1110 	/*
1111 	 * TestClearPageReclaim could be used here but it is an atomic
1112 	 * operation and overkill in this particular case. Failing to
1113 	 * shuffle a page marked for immediate reclaim is too mild to
1114 	 * justify taking an atomic operation penalty at the end of
1115 	 * ever page writeback.
1116 	 */
1117 	if (PageReclaim(page)) {
1118 		ClearPageReclaim(page);
1119 		rotate_reclaimable_page(page);
1120 	}
1121 
1122 	if (!test_clear_page_writeback(page))
1123 		BUG();
1124 
1125 	smp_mb__after_atomic();
1126 	wake_up_page(page, PG_writeback);
1127 }
1128 EXPORT_SYMBOL(end_page_writeback);
1129 
1130 /*
1131  * After completing I/O on a page, call this routine to update the page
1132  * flags appropriately
1133  */
1134 void page_endio(struct page *page, bool is_write, int err)
1135 {
1136 	if (!is_write) {
1137 		if (!err) {
1138 			SetPageUptodate(page);
1139 		} else {
1140 			ClearPageUptodate(page);
1141 			SetPageError(page);
1142 		}
1143 		unlock_page(page);
1144 	} else {
1145 		if (err) {
1146 			struct address_space *mapping;
1147 
1148 			SetPageError(page);
1149 			mapping = page_mapping(page);
1150 			if (mapping)
1151 				mapping_set_error(mapping, err);
1152 		}
1153 		end_page_writeback(page);
1154 	}
1155 }
1156 EXPORT_SYMBOL_GPL(page_endio);
1157 
1158 /**
1159  * __lock_page - get a lock on the page, assuming we need to sleep to get it
1160  * @__page: the page to lock
1161  */
1162 void __lock_page(struct page *__page)
1163 {
1164 	struct page *page = compound_head(__page);
1165 	wait_queue_head_t *q = page_waitqueue(page);
1166 	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1167 }
1168 EXPORT_SYMBOL(__lock_page);
1169 
1170 int __lock_page_killable(struct page *__page)
1171 {
1172 	struct page *page = compound_head(__page);
1173 	wait_queue_head_t *q = page_waitqueue(page);
1174 	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
1175 }
1176 EXPORT_SYMBOL_GPL(__lock_page_killable);
1177 
1178 /*
1179  * Return values:
1180  * 1 - page is locked; mmap_sem is still held.
1181  * 0 - page is not locked.
1182  *     mmap_sem has been released (up_read()), unless flags had both
1183  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1184  *     which case mmap_sem is still held.
1185  *
1186  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1187  * with the page locked and the mmap_sem unperturbed.
1188  */
1189 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1190 			 unsigned int flags)
1191 {
1192 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
1193 		/*
1194 		 * CAUTION! In this case, mmap_sem is not released
1195 		 * even though return 0.
1196 		 */
1197 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1198 			return 0;
1199 
1200 		up_read(&mm->mmap_sem);
1201 		if (flags & FAULT_FLAG_KILLABLE)
1202 			wait_on_page_locked_killable(page);
1203 		else
1204 			wait_on_page_locked(page);
1205 		return 0;
1206 	} else {
1207 		if (flags & FAULT_FLAG_KILLABLE) {
1208 			int ret;
1209 
1210 			ret = __lock_page_killable(page);
1211 			if (ret) {
1212 				up_read(&mm->mmap_sem);
1213 				return 0;
1214 			}
1215 		} else
1216 			__lock_page(page);
1217 		return 1;
1218 	}
1219 }
1220 
1221 /**
1222  * page_cache_next_hole - find the next hole (not-present entry)
1223  * @mapping: mapping
1224  * @index: index
1225  * @max_scan: maximum range to search
1226  *
1227  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1228  * lowest indexed hole.
1229  *
1230  * Returns: the index of the hole if found, otherwise returns an index
1231  * outside of the set specified (in which case 'return - index >=
1232  * max_scan' will be true). In rare cases of index wrap-around, 0 will
1233  * be returned.
1234  *
1235  * page_cache_next_hole may be called under rcu_read_lock. However,
1236  * like radix_tree_gang_lookup, this will not atomically search a
1237  * snapshot of the tree at a single point in time. For example, if a
1238  * hole is created at index 5, then subsequently a hole is created at
1239  * index 10, page_cache_next_hole covering both indexes may return 10
1240  * if called under rcu_read_lock.
1241  */
1242 pgoff_t page_cache_next_hole(struct address_space *mapping,
1243 			     pgoff_t index, unsigned long max_scan)
1244 {
1245 	unsigned long i;
1246 
1247 	for (i = 0; i < max_scan; i++) {
1248 		struct page *page;
1249 
1250 		page = radix_tree_lookup(&mapping->page_tree, index);
1251 		if (!page || radix_tree_exceptional_entry(page))
1252 			break;
1253 		index++;
1254 		if (index == 0)
1255 			break;
1256 	}
1257 
1258 	return index;
1259 }
1260 EXPORT_SYMBOL(page_cache_next_hole);
1261 
1262 /**
1263  * page_cache_prev_hole - find the prev hole (not-present entry)
1264  * @mapping: mapping
1265  * @index: index
1266  * @max_scan: maximum range to search
1267  *
1268  * Search backwards in the range [max(index-max_scan+1, 0), index] for
1269  * the first hole.
1270  *
1271  * Returns: the index of the hole if found, otherwise returns an index
1272  * outside of the set specified (in which case 'index - return >=
1273  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1274  * will be returned.
1275  *
1276  * page_cache_prev_hole may be called under rcu_read_lock. However,
1277  * like radix_tree_gang_lookup, this will not atomically search a
1278  * snapshot of the tree at a single point in time. For example, if a
1279  * hole is created at index 10, then subsequently a hole is created at
1280  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1281  * called under rcu_read_lock.
1282  */
1283 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1284 			     pgoff_t index, unsigned long max_scan)
1285 {
1286 	unsigned long i;
1287 
1288 	for (i = 0; i < max_scan; i++) {
1289 		struct page *page;
1290 
1291 		page = radix_tree_lookup(&mapping->page_tree, index);
1292 		if (!page || radix_tree_exceptional_entry(page))
1293 			break;
1294 		index--;
1295 		if (index == ULONG_MAX)
1296 			break;
1297 	}
1298 
1299 	return index;
1300 }
1301 EXPORT_SYMBOL(page_cache_prev_hole);
1302 
1303 /**
1304  * find_get_entry - find and get a page cache entry
1305  * @mapping: the address_space to search
1306  * @offset: the page cache index
1307  *
1308  * Looks up the page cache slot at @mapping & @offset.  If there is a
1309  * page cache page, it is returned with an increased refcount.
1310  *
1311  * If the slot holds a shadow entry of a previously evicted page, or a
1312  * swap entry from shmem/tmpfs, it is returned.
1313  *
1314  * Otherwise, %NULL is returned.
1315  */
1316 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1317 {
1318 	void **pagep;
1319 	struct page *head, *page;
1320 
1321 	rcu_read_lock();
1322 repeat:
1323 	page = NULL;
1324 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1325 	if (pagep) {
1326 		page = radix_tree_deref_slot(pagep);
1327 		if (unlikely(!page))
1328 			goto out;
1329 		if (radix_tree_exception(page)) {
1330 			if (radix_tree_deref_retry(page))
1331 				goto repeat;
1332 			/*
1333 			 * A shadow entry of a recently evicted page,
1334 			 * or a swap entry from shmem/tmpfs.  Return
1335 			 * it without attempting to raise page count.
1336 			 */
1337 			goto out;
1338 		}
1339 
1340 		head = compound_head(page);
1341 		if (!page_cache_get_speculative(head))
1342 			goto repeat;
1343 
1344 		/* The page was split under us? */
1345 		if (compound_head(page) != head) {
1346 			put_page(head);
1347 			goto repeat;
1348 		}
1349 
1350 		/*
1351 		 * Has the page moved?
1352 		 * This is part of the lockless pagecache protocol. See
1353 		 * include/linux/pagemap.h for details.
1354 		 */
1355 		if (unlikely(page != *pagep)) {
1356 			put_page(head);
1357 			goto repeat;
1358 		}
1359 	}
1360 out:
1361 	rcu_read_unlock();
1362 
1363 	return page;
1364 }
1365 EXPORT_SYMBOL(find_get_entry);
1366 
1367 /**
1368  * find_lock_entry - locate, pin and lock a page cache entry
1369  * @mapping: the address_space to search
1370  * @offset: the page cache index
1371  *
1372  * Looks up the page cache slot at @mapping & @offset.  If there is a
1373  * page cache page, it is returned locked and with an increased
1374  * refcount.
1375  *
1376  * If the slot holds a shadow entry of a previously evicted page, or a
1377  * swap entry from shmem/tmpfs, it is returned.
1378  *
1379  * Otherwise, %NULL is returned.
1380  *
1381  * find_lock_entry() may sleep.
1382  */
1383 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1384 {
1385 	struct page *page;
1386 
1387 repeat:
1388 	page = find_get_entry(mapping, offset);
1389 	if (page && !radix_tree_exception(page)) {
1390 		lock_page(page);
1391 		/* Has the page been truncated? */
1392 		if (unlikely(page_mapping(page) != mapping)) {
1393 			unlock_page(page);
1394 			put_page(page);
1395 			goto repeat;
1396 		}
1397 		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1398 	}
1399 	return page;
1400 }
1401 EXPORT_SYMBOL(find_lock_entry);
1402 
1403 /**
1404  * pagecache_get_page - find and get a page reference
1405  * @mapping: the address_space to search
1406  * @offset: the page index
1407  * @fgp_flags: PCG flags
1408  * @gfp_mask: gfp mask to use for the page cache data page allocation
1409  *
1410  * Looks up the page cache slot at @mapping & @offset.
1411  *
1412  * PCG flags modify how the page is returned.
1413  *
1414  * @fgp_flags can be:
1415  *
1416  * - FGP_ACCESSED: the page will be marked accessed
1417  * - FGP_LOCK: Page is return locked
1418  * - FGP_CREAT: If page is not present then a new page is allocated using
1419  *   @gfp_mask and added to the page cache and the VM's LRU
1420  *   list. The page is returned locked and with an increased
1421  *   refcount. Otherwise, NULL is returned.
1422  *
1423  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1424  * if the GFP flags specified for FGP_CREAT are atomic.
1425  *
1426  * If there is a page cache page, it is returned with an increased refcount.
1427  */
1428 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1429 	int fgp_flags, gfp_t gfp_mask)
1430 {
1431 	struct page *page;
1432 
1433 repeat:
1434 	page = find_get_entry(mapping, offset);
1435 	if (radix_tree_exceptional_entry(page))
1436 		page = NULL;
1437 	if (!page)
1438 		goto no_page;
1439 
1440 	if (fgp_flags & FGP_LOCK) {
1441 		if (fgp_flags & FGP_NOWAIT) {
1442 			if (!trylock_page(page)) {
1443 				put_page(page);
1444 				return NULL;
1445 			}
1446 		} else {
1447 			lock_page(page);
1448 		}
1449 
1450 		/* Has the page been truncated? */
1451 		if (unlikely(page->mapping != mapping)) {
1452 			unlock_page(page);
1453 			put_page(page);
1454 			goto repeat;
1455 		}
1456 		VM_BUG_ON_PAGE(page->index != offset, page);
1457 	}
1458 
1459 	if (page && (fgp_flags & FGP_ACCESSED))
1460 		mark_page_accessed(page);
1461 
1462 no_page:
1463 	if (!page && (fgp_flags & FGP_CREAT)) {
1464 		int err;
1465 		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1466 			gfp_mask |= __GFP_WRITE;
1467 		if (fgp_flags & FGP_NOFS)
1468 			gfp_mask &= ~__GFP_FS;
1469 
1470 		page = __page_cache_alloc(gfp_mask);
1471 		if (!page)
1472 			return NULL;
1473 
1474 		if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1475 			fgp_flags |= FGP_LOCK;
1476 
1477 		/* Init accessed so avoid atomic mark_page_accessed later */
1478 		if (fgp_flags & FGP_ACCESSED)
1479 			__SetPageReferenced(page);
1480 
1481 		err = add_to_page_cache_lru(page, mapping, offset,
1482 				gfp_mask & GFP_RECLAIM_MASK);
1483 		if (unlikely(err)) {
1484 			put_page(page);
1485 			page = NULL;
1486 			if (err == -EEXIST)
1487 				goto repeat;
1488 		}
1489 	}
1490 
1491 	return page;
1492 }
1493 EXPORT_SYMBOL(pagecache_get_page);
1494 
1495 /**
1496  * find_get_entries - gang pagecache lookup
1497  * @mapping:	The address_space to search
1498  * @start:	The starting page cache index
1499  * @nr_entries:	The maximum number of entries
1500  * @entries:	Where the resulting entries are placed
1501  * @indices:	The cache indices corresponding to the entries in @entries
1502  *
1503  * find_get_entries() will search for and return a group of up to
1504  * @nr_entries entries in the mapping.  The entries are placed at
1505  * @entries.  find_get_entries() takes a reference against any actual
1506  * pages it returns.
1507  *
1508  * The search returns a group of mapping-contiguous page cache entries
1509  * with ascending indexes.  There may be holes in the indices due to
1510  * not-present pages.
1511  *
1512  * Any shadow entries of evicted pages, or swap entries from
1513  * shmem/tmpfs, are included in the returned array.
1514  *
1515  * find_get_entries() returns the number of pages and shadow entries
1516  * which were found.
1517  */
1518 unsigned find_get_entries(struct address_space *mapping,
1519 			  pgoff_t start, unsigned int nr_entries,
1520 			  struct page **entries, pgoff_t *indices)
1521 {
1522 	void **slot;
1523 	unsigned int ret = 0;
1524 	struct radix_tree_iter iter;
1525 
1526 	if (!nr_entries)
1527 		return 0;
1528 
1529 	rcu_read_lock();
1530 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1531 		struct page *head, *page;
1532 repeat:
1533 		page = radix_tree_deref_slot(slot);
1534 		if (unlikely(!page))
1535 			continue;
1536 		if (radix_tree_exception(page)) {
1537 			if (radix_tree_deref_retry(page)) {
1538 				slot = radix_tree_iter_retry(&iter);
1539 				continue;
1540 			}
1541 			/*
1542 			 * A shadow entry of a recently evicted page, a swap
1543 			 * entry from shmem/tmpfs or a DAX entry.  Return it
1544 			 * without attempting to raise page count.
1545 			 */
1546 			goto export;
1547 		}
1548 
1549 		head = compound_head(page);
1550 		if (!page_cache_get_speculative(head))
1551 			goto repeat;
1552 
1553 		/* The page was split under us? */
1554 		if (compound_head(page) != head) {
1555 			put_page(head);
1556 			goto repeat;
1557 		}
1558 
1559 		/* Has the page moved? */
1560 		if (unlikely(page != *slot)) {
1561 			put_page(head);
1562 			goto repeat;
1563 		}
1564 export:
1565 		indices[ret] = iter.index;
1566 		entries[ret] = page;
1567 		if (++ret == nr_entries)
1568 			break;
1569 	}
1570 	rcu_read_unlock();
1571 	return ret;
1572 }
1573 
1574 /**
1575  * find_get_pages_range - gang pagecache lookup
1576  * @mapping:	The address_space to search
1577  * @start:	The starting page index
1578  * @end:	The final page index (inclusive)
1579  * @nr_pages:	The maximum number of pages
1580  * @pages:	Where the resulting pages are placed
1581  *
1582  * find_get_pages_range() will search for and return a group of up to @nr_pages
1583  * pages in the mapping starting at index @start and up to index @end
1584  * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
1585  * a reference against the returned pages.
1586  *
1587  * The search returns a group of mapping-contiguous pages with ascending
1588  * indexes.  There may be holes in the indices due to not-present pages.
1589  * We also update @start to index the next page for the traversal.
1590  *
1591  * find_get_pages_range() returns the number of pages which were found. If this
1592  * number is smaller than @nr_pages, the end of specified range has been
1593  * reached.
1594  */
1595 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1596 			      pgoff_t end, unsigned int nr_pages,
1597 			      struct page **pages)
1598 {
1599 	struct radix_tree_iter iter;
1600 	void **slot;
1601 	unsigned ret = 0;
1602 
1603 	if (unlikely(!nr_pages))
1604 		return 0;
1605 
1606 	rcu_read_lock();
1607 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, *start) {
1608 		struct page *head, *page;
1609 
1610 		if (iter.index > end)
1611 			break;
1612 repeat:
1613 		page = radix_tree_deref_slot(slot);
1614 		if (unlikely(!page))
1615 			continue;
1616 
1617 		if (radix_tree_exception(page)) {
1618 			if (radix_tree_deref_retry(page)) {
1619 				slot = radix_tree_iter_retry(&iter);
1620 				continue;
1621 			}
1622 			/*
1623 			 * A shadow entry of a recently evicted page,
1624 			 * or a swap entry from shmem/tmpfs.  Skip
1625 			 * over it.
1626 			 */
1627 			continue;
1628 		}
1629 
1630 		head = compound_head(page);
1631 		if (!page_cache_get_speculative(head))
1632 			goto repeat;
1633 
1634 		/* The page was split under us? */
1635 		if (compound_head(page) != head) {
1636 			put_page(head);
1637 			goto repeat;
1638 		}
1639 
1640 		/* Has the page moved? */
1641 		if (unlikely(page != *slot)) {
1642 			put_page(head);
1643 			goto repeat;
1644 		}
1645 
1646 		pages[ret] = page;
1647 		if (++ret == nr_pages) {
1648 			*start = pages[ret - 1]->index + 1;
1649 			goto out;
1650 		}
1651 	}
1652 
1653 	/*
1654 	 * We come here when there is no page beyond @end. We take care to not
1655 	 * overflow the index @start as it confuses some of the callers. This
1656 	 * breaks the iteration when there is page at index -1 but that is
1657 	 * already broken anyway.
1658 	 */
1659 	if (end == (pgoff_t)-1)
1660 		*start = (pgoff_t)-1;
1661 	else
1662 		*start = end + 1;
1663 out:
1664 	rcu_read_unlock();
1665 
1666 	return ret;
1667 }
1668 
1669 /**
1670  * find_get_pages_contig - gang contiguous pagecache lookup
1671  * @mapping:	The address_space to search
1672  * @index:	The starting page index
1673  * @nr_pages:	The maximum number of pages
1674  * @pages:	Where the resulting pages are placed
1675  *
1676  * find_get_pages_contig() works exactly like find_get_pages(), except
1677  * that the returned number of pages are guaranteed to be contiguous.
1678  *
1679  * find_get_pages_contig() returns the number of pages which were found.
1680  */
1681 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1682 			       unsigned int nr_pages, struct page **pages)
1683 {
1684 	struct radix_tree_iter iter;
1685 	void **slot;
1686 	unsigned int ret = 0;
1687 
1688 	if (unlikely(!nr_pages))
1689 		return 0;
1690 
1691 	rcu_read_lock();
1692 	radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1693 		struct page *head, *page;
1694 repeat:
1695 		page = radix_tree_deref_slot(slot);
1696 		/* The hole, there no reason to continue */
1697 		if (unlikely(!page))
1698 			break;
1699 
1700 		if (radix_tree_exception(page)) {
1701 			if (radix_tree_deref_retry(page)) {
1702 				slot = radix_tree_iter_retry(&iter);
1703 				continue;
1704 			}
1705 			/*
1706 			 * A shadow entry of a recently evicted page,
1707 			 * or a swap entry from shmem/tmpfs.  Stop
1708 			 * looking for contiguous pages.
1709 			 */
1710 			break;
1711 		}
1712 
1713 		head = compound_head(page);
1714 		if (!page_cache_get_speculative(head))
1715 			goto repeat;
1716 
1717 		/* The page was split under us? */
1718 		if (compound_head(page) != head) {
1719 			put_page(head);
1720 			goto repeat;
1721 		}
1722 
1723 		/* Has the page moved? */
1724 		if (unlikely(page != *slot)) {
1725 			put_page(head);
1726 			goto repeat;
1727 		}
1728 
1729 		/*
1730 		 * must check mapping and index after taking the ref.
1731 		 * otherwise we can get both false positives and false
1732 		 * negatives, which is just confusing to the caller.
1733 		 */
1734 		if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1735 			put_page(page);
1736 			break;
1737 		}
1738 
1739 		pages[ret] = page;
1740 		if (++ret == nr_pages)
1741 			break;
1742 	}
1743 	rcu_read_unlock();
1744 	return ret;
1745 }
1746 EXPORT_SYMBOL(find_get_pages_contig);
1747 
1748 /**
1749  * find_get_pages_tag - find and return pages that match @tag
1750  * @mapping:	the address_space to search
1751  * @index:	the starting page index
1752  * @tag:	the tag index
1753  * @nr_pages:	the maximum number of pages
1754  * @pages:	where the resulting pages are placed
1755  *
1756  * Like find_get_pages, except we only return pages which are tagged with
1757  * @tag.   We update @index to index the next page for the traversal.
1758  */
1759 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1760 			int tag, unsigned int nr_pages, struct page **pages)
1761 {
1762 	struct radix_tree_iter iter;
1763 	void **slot;
1764 	unsigned ret = 0;
1765 
1766 	if (unlikely(!nr_pages))
1767 		return 0;
1768 
1769 	rcu_read_lock();
1770 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1771 				   &iter, *index, tag) {
1772 		struct page *head, *page;
1773 repeat:
1774 		page = radix_tree_deref_slot(slot);
1775 		if (unlikely(!page))
1776 			continue;
1777 
1778 		if (radix_tree_exception(page)) {
1779 			if (radix_tree_deref_retry(page)) {
1780 				slot = radix_tree_iter_retry(&iter);
1781 				continue;
1782 			}
1783 			/*
1784 			 * A shadow entry of a recently evicted page.
1785 			 *
1786 			 * Those entries should never be tagged, but
1787 			 * this tree walk is lockless and the tags are
1788 			 * looked up in bulk, one radix tree node at a
1789 			 * time, so there is a sizable window for page
1790 			 * reclaim to evict a page we saw tagged.
1791 			 *
1792 			 * Skip over it.
1793 			 */
1794 			continue;
1795 		}
1796 
1797 		head = compound_head(page);
1798 		if (!page_cache_get_speculative(head))
1799 			goto repeat;
1800 
1801 		/* The page was split under us? */
1802 		if (compound_head(page) != head) {
1803 			put_page(head);
1804 			goto repeat;
1805 		}
1806 
1807 		/* Has the page moved? */
1808 		if (unlikely(page != *slot)) {
1809 			put_page(head);
1810 			goto repeat;
1811 		}
1812 
1813 		pages[ret] = page;
1814 		if (++ret == nr_pages)
1815 			break;
1816 	}
1817 
1818 	rcu_read_unlock();
1819 
1820 	if (ret)
1821 		*index = pages[ret - 1]->index + 1;
1822 
1823 	return ret;
1824 }
1825 EXPORT_SYMBOL(find_get_pages_tag);
1826 
1827 /**
1828  * find_get_entries_tag - find and return entries that match @tag
1829  * @mapping:	the address_space to search
1830  * @start:	the starting page cache index
1831  * @tag:	the tag index
1832  * @nr_entries:	the maximum number of entries
1833  * @entries:	where the resulting entries are placed
1834  * @indices:	the cache indices corresponding to the entries in @entries
1835  *
1836  * Like find_get_entries, except we only return entries which are tagged with
1837  * @tag.
1838  */
1839 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1840 			int tag, unsigned int nr_entries,
1841 			struct page **entries, pgoff_t *indices)
1842 {
1843 	void **slot;
1844 	unsigned int ret = 0;
1845 	struct radix_tree_iter iter;
1846 
1847 	if (!nr_entries)
1848 		return 0;
1849 
1850 	rcu_read_lock();
1851 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1852 				   &iter, start, tag) {
1853 		struct page *head, *page;
1854 repeat:
1855 		page = radix_tree_deref_slot(slot);
1856 		if (unlikely(!page))
1857 			continue;
1858 		if (radix_tree_exception(page)) {
1859 			if (radix_tree_deref_retry(page)) {
1860 				slot = radix_tree_iter_retry(&iter);
1861 				continue;
1862 			}
1863 
1864 			/*
1865 			 * A shadow entry of a recently evicted page, a swap
1866 			 * entry from shmem/tmpfs or a DAX entry.  Return it
1867 			 * without attempting to raise page count.
1868 			 */
1869 			goto export;
1870 		}
1871 
1872 		head = compound_head(page);
1873 		if (!page_cache_get_speculative(head))
1874 			goto repeat;
1875 
1876 		/* The page was split under us? */
1877 		if (compound_head(page) != head) {
1878 			put_page(head);
1879 			goto repeat;
1880 		}
1881 
1882 		/* Has the page moved? */
1883 		if (unlikely(page != *slot)) {
1884 			put_page(head);
1885 			goto repeat;
1886 		}
1887 export:
1888 		indices[ret] = iter.index;
1889 		entries[ret] = page;
1890 		if (++ret == nr_entries)
1891 			break;
1892 	}
1893 	rcu_read_unlock();
1894 	return ret;
1895 }
1896 EXPORT_SYMBOL(find_get_entries_tag);
1897 
1898 /*
1899  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1900  * a _large_ part of the i/o request. Imagine the worst scenario:
1901  *
1902  *      ---R__________________________________________B__________
1903  *         ^ reading here                             ^ bad block(assume 4k)
1904  *
1905  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1906  * => failing the whole request => read(R) => read(R+1) =>
1907  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1908  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1909  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1910  *
1911  * It is going insane. Fix it by quickly scaling down the readahead size.
1912  */
1913 static void shrink_readahead_size_eio(struct file *filp,
1914 					struct file_ra_state *ra)
1915 {
1916 	ra->ra_pages /= 4;
1917 }
1918 
1919 /**
1920  * generic_file_buffered_read - generic file read routine
1921  * @iocb:	the iocb to read
1922  * @iter:	data destination
1923  * @written:	already copied
1924  *
1925  * This is a generic file read routine, and uses the
1926  * mapping->a_ops->readpage() function for the actual low-level stuff.
1927  *
1928  * This is really ugly. But the goto's actually try to clarify some
1929  * of the logic when it comes to error handling etc.
1930  */
1931 static ssize_t generic_file_buffered_read(struct kiocb *iocb,
1932 		struct iov_iter *iter, ssize_t written)
1933 {
1934 	struct file *filp = iocb->ki_filp;
1935 	struct address_space *mapping = filp->f_mapping;
1936 	struct inode *inode = mapping->host;
1937 	struct file_ra_state *ra = &filp->f_ra;
1938 	loff_t *ppos = &iocb->ki_pos;
1939 	pgoff_t index;
1940 	pgoff_t last_index;
1941 	pgoff_t prev_index;
1942 	unsigned long offset;      /* offset into pagecache page */
1943 	unsigned int prev_offset;
1944 	int error = 0;
1945 
1946 	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1947 		return 0;
1948 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1949 
1950 	index = *ppos >> PAGE_SHIFT;
1951 	prev_index = ra->prev_pos >> PAGE_SHIFT;
1952 	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1953 	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1954 	offset = *ppos & ~PAGE_MASK;
1955 
1956 	for (;;) {
1957 		struct page *page;
1958 		pgoff_t end_index;
1959 		loff_t isize;
1960 		unsigned long nr, ret;
1961 
1962 		cond_resched();
1963 find_page:
1964 		if (fatal_signal_pending(current)) {
1965 			error = -EINTR;
1966 			goto out;
1967 		}
1968 
1969 		page = find_get_page(mapping, index);
1970 		if (!page) {
1971 			if (iocb->ki_flags & IOCB_NOWAIT)
1972 				goto would_block;
1973 			page_cache_sync_readahead(mapping,
1974 					ra, filp,
1975 					index, last_index - index);
1976 			page = find_get_page(mapping, index);
1977 			if (unlikely(page == NULL))
1978 				goto no_cached_page;
1979 		}
1980 		if (PageReadahead(page)) {
1981 			page_cache_async_readahead(mapping,
1982 					ra, filp, page,
1983 					index, last_index - index);
1984 		}
1985 		if (!PageUptodate(page)) {
1986 			if (iocb->ki_flags & IOCB_NOWAIT) {
1987 				put_page(page);
1988 				goto would_block;
1989 			}
1990 
1991 			/*
1992 			 * See comment in do_read_cache_page on why
1993 			 * wait_on_page_locked is used to avoid unnecessarily
1994 			 * serialisations and why it's safe.
1995 			 */
1996 			error = wait_on_page_locked_killable(page);
1997 			if (unlikely(error))
1998 				goto readpage_error;
1999 			if (PageUptodate(page))
2000 				goto page_ok;
2001 
2002 			if (inode->i_blkbits == PAGE_SHIFT ||
2003 					!mapping->a_ops->is_partially_uptodate)
2004 				goto page_not_up_to_date;
2005 			/* pipes can't handle partially uptodate pages */
2006 			if (unlikely(iter->type & ITER_PIPE))
2007 				goto page_not_up_to_date;
2008 			if (!trylock_page(page))
2009 				goto page_not_up_to_date;
2010 			/* Did it get truncated before we got the lock? */
2011 			if (!page->mapping)
2012 				goto page_not_up_to_date_locked;
2013 			if (!mapping->a_ops->is_partially_uptodate(page,
2014 							offset, iter->count))
2015 				goto page_not_up_to_date_locked;
2016 			unlock_page(page);
2017 		}
2018 page_ok:
2019 		/*
2020 		 * i_size must be checked after we know the page is Uptodate.
2021 		 *
2022 		 * Checking i_size after the check allows us to calculate
2023 		 * the correct value for "nr", which means the zero-filled
2024 		 * part of the page is not copied back to userspace (unless
2025 		 * another truncate extends the file - this is desired though).
2026 		 */
2027 
2028 		isize = i_size_read(inode);
2029 		end_index = (isize - 1) >> PAGE_SHIFT;
2030 		if (unlikely(!isize || index > end_index)) {
2031 			put_page(page);
2032 			goto out;
2033 		}
2034 
2035 		/* nr is the maximum number of bytes to copy from this page */
2036 		nr = PAGE_SIZE;
2037 		if (index == end_index) {
2038 			nr = ((isize - 1) & ~PAGE_MASK) + 1;
2039 			if (nr <= offset) {
2040 				put_page(page);
2041 				goto out;
2042 			}
2043 		}
2044 		nr = nr - offset;
2045 
2046 		/* If users can be writing to this page using arbitrary
2047 		 * virtual addresses, take care about potential aliasing
2048 		 * before reading the page on the kernel side.
2049 		 */
2050 		if (mapping_writably_mapped(mapping))
2051 			flush_dcache_page(page);
2052 
2053 		/*
2054 		 * When a sequential read accesses a page several times,
2055 		 * only mark it as accessed the first time.
2056 		 */
2057 		if (prev_index != index || offset != prev_offset)
2058 			mark_page_accessed(page);
2059 		prev_index = index;
2060 
2061 		/*
2062 		 * Ok, we have the page, and it's up-to-date, so
2063 		 * now we can copy it to user space...
2064 		 */
2065 
2066 		ret = copy_page_to_iter(page, offset, nr, iter);
2067 		offset += ret;
2068 		index += offset >> PAGE_SHIFT;
2069 		offset &= ~PAGE_MASK;
2070 		prev_offset = offset;
2071 
2072 		put_page(page);
2073 		written += ret;
2074 		if (!iov_iter_count(iter))
2075 			goto out;
2076 		if (ret < nr) {
2077 			error = -EFAULT;
2078 			goto out;
2079 		}
2080 		continue;
2081 
2082 page_not_up_to_date:
2083 		/* Get exclusive access to the page ... */
2084 		error = lock_page_killable(page);
2085 		if (unlikely(error))
2086 			goto readpage_error;
2087 
2088 page_not_up_to_date_locked:
2089 		/* Did it get truncated before we got the lock? */
2090 		if (!page->mapping) {
2091 			unlock_page(page);
2092 			put_page(page);
2093 			continue;
2094 		}
2095 
2096 		/* Did somebody else fill it already? */
2097 		if (PageUptodate(page)) {
2098 			unlock_page(page);
2099 			goto page_ok;
2100 		}
2101 
2102 readpage:
2103 		/*
2104 		 * A previous I/O error may have been due to temporary
2105 		 * failures, eg. multipath errors.
2106 		 * PG_error will be set again if readpage fails.
2107 		 */
2108 		ClearPageError(page);
2109 		/* Start the actual read. The read will unlock the page. */
2110 		error = mapping->a_ops->readpage(filp, page);
2111 
2112 		if (unlikely(error)) {
2113 			if (error == AOP_TRUNCATED_PAGE) {
2114 				put_page(page);
2115 				error = 0;
2116 				goto find_page;
2117 			}
2118 			goto readpage_error;
2119 		}
2120 
2121 		if (!PageUptodate(page)) {
2122 			error = lock_page_killable(page);
2123 			if (unlikely(error))
2124 				goto readpage_error;
2125 			if (!PageUptodate(page)) {
2126 				if (page->mapping == NULL) {
2127 					/*
2128 					 * invalidate_mapping_pages got it
2129 					 */
2130 					unlock_page(page);
2131 					put_page(page);
2132 					goto find_page;
2133 				}
2134 				unlock_page(page);
2135 				shrink_readahead_size_eio(filp, ra);
2136 				error = -EIO;
2137 				goto readpage_error;
2138 			}
2139 			unlock_page(page);
2140 		}
2141 
2142 		goto page_ok;
2143 
2144 readpage_error:
2145 		/* UHHUH! A synchronous read error occurred. Report it */
2146 		put_page(page);
2147 		goto out;
2148 
2149 no_cached_page:
2150 		/*
2151 		 * Ok, it wasn't cached, so we need to create a new
2152 		 * page..
2153 		 */
2154 		page = page_cache_alloc_cold(mapping);
2155 		if (!page) {
2156 			error = -ENOMEM;
2157 			goto out;
2158 		}
2159 		error = add_to_page_cache_lru(page, mapping, index,
2160 				mapping_gfp_constraint(mapping, GFP_KERNEL));
2161 		if (error) {
2162 			put_page(page);
2163 			if (error == -EEXIST) {
2164 				error = 0;
2165 				goto find_page;
2166 			}
2167 			goto out;
2168 		}
2169 		goto readpage;
2170 	}
2171 
2172 would_block:
2173 	error = -EAGAIN;
2174 out:
2175 	ra->prev_pos = prev_index;
2176 	ra->prev_pos <<= PAGE_SHIFT;
2177 	ra->prev_pos |= prev_offset;
2178 
2179 	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2180 	file_accessed(filp);
2181 	return written ? written : error;
2182 }
2183 
2184 /**
2185  * generic_file_read_iter - generic filesystem read routine
2186  * @iocb:	kernel I/O control block
2187  * @iter:	destination for the data read
2188  *
2189  * This is the "read_iter()" routine for all filesystems
2190  * that can use the page cache directly.
2191  */
2192 ssize_t
2193 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2194 {
2195 	size_t count = iov_iter_count(iter);
2196 	ssize_t retval = 0;
2197 
2198 	if (!count)
2199 		goto out; /* skip atime */
2200 
2201 	if (iocb->ki_flags & IOCB_DIRECT) {
2202 		struct file *file = iocb->ki_filp;
2203 		struct address_space *mapping = file->f_mapping;
2204 		struct inode *inode = mapping->host;
2205 		loff_t size;
2206 
2207 		size = i_size_read(inode);
2208 		if (iocb->ki_flags & IOCB_NOWAIT) {
2209 			if (filemap_range_has_page(mapping, iocb->ki_pos,
2210 						   iocb->ki_pos + count - 1))
2211 				return -EAGAIN;
2212 		} else {
2213 			retval = filemap_write_and_wait_range(mapping,
2214 						iocb->ki_pos,
2215 					        iocb->ki_pos + count - 1);
2216 			if (retval < 0)
2217 				goto out;
2218 		}
2219 
2220 		file_accessed(file);
2221 
2222 		retval = mapping->a_ops->direct_IO(iocb, iter);
2223 		if (retval >= 0) {
2224 			iocb->ki_pos += retval;
2225 			count -= retval;
2226 		}
2227 		iov_iter_revert(iter, count - iov_iter_count(iter));
2228 
2229 		/*
2230 		 * Btrfs can have a short DIO read if we encounter
2231 		 * compressed extents, so if there was an error, or if
2232 		 * we've already read everything we wanted to, or if
2233 		 * there was a short read because we hit EOF, go ahead
2234 		 * and return.  Otherwise fallthrough to buffered io for
2235 		 * the rest of the read.  Buffered reads will not work for
2236 		 * DAX files, so don't bother trying.
2237 		 */
2238 		if (retval < 0 || !count || iocb->ki_pos >= size ||
2239 		    IS_DAX(inode))
2240 			goto out;
2241 	}
2242 
2243 	retval = generic_file_buffered_read(iocb, iter, retval);
2244 out:
2245 	return retval;
2246 }
2247 EXPORT_SYMBOL(generic_file_read_iter);
2248 
2249 #ifdef CONFIG_MMU
2250 /**
2251  * page_cache_read - adds requested page to the page cache if not already there
2252  * @file:	file to read
2253  * @offset:	page index
2254  * @gfp_mask:	memory allocation flags
2255  *
2256  * This adds the requested page to the page cache if it isn't already there,
2257  * and schedules an I/O to read in its contents from disk.
2258  */
2259 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2260 {
2261 	struct address_space *mapping = file->f_mapping;
2262 	struct page *page;
2263 	int ret;
2264 
2265 	do {
2266 		page = __page_cache_alloc(gfp_mask|__GFP_COLD);
2267 		if (!page)
2268 			return -ENOMEM;
2269 
2270 		ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
2271 		if (ret == 0)
2272 			ret = mapping->a_ops->readpage(file, page);
2273 		else if (ret == -EEXIST)
2274 			ret = 0; /* losing race to add is OK */
2275 
2276 		put_page(page);
2277 
2278 	} while (ret == AOP_TRUNCATED_PAGE);
2279 
2280 	return ret;
2281 }
2282 
2283 #define MMAP_LOTSAMISS  (100)
2284 
2285 /*
2286  * Synchronous readahead happens when we don't even find
2287  * a page in the page cache at all.
2288  */
2289 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2290 				   struct file_ra_state *ra,
2291 				   struct file *file,
2292 				   pgoff_t offset)
2293 {
2294 	struct address_space *mapping = file->f_mapping;
2295 
2296 	/* If we don't want any read-ahead, don't bother */
2297 	if (vma->vm_flags & VM_RAND_READ)
2298 		return;
2299 	if (!ra->ra_pages)
2300 		return;
2301 
2302 	if (vma->vm_flags & VM_SEQ_READ) {
2303 		page_cache_sync_readahead(mapping, ra, file, offset,
2304 					  ra->ra_pages);
2305 		return;
2306 	}
2307 
2308 	/* Avoid banging the cache line if not needed */
2309 	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2310 		ra->mmap_miss++;
2311 
2312 	/*
2313 	 * Do we miss much more than hit in this file? If so,
2314 	 * stop bothering with read-ahead. It will only hurt.
2315 	 */
2316 	if (ra->mmap_miss > MMAP_LOTSAMISS)
2317 		return;
2318 
2319 	/*
2320 	 * mmap read-around
2321 	 */
2322 	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2323 	ra->size = ra->ra_pages;
2324 	ra->async_size = ra->ra_pages / 4;
2325 	ra_submit(ra, mapping, file);
2326 }
2327 
2328 /*
2329  * Asynchronous readahead happens when we find the page and PG_readahead,
2330  * so we want to possibly extend the readahead further..
2331  */
2332 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2333 				    struct file_ra_state *ra,
2334 				    struct file *file,
2335 				    struct page *page,
2336 				    pgoff_t offset)
2337 {
2338 	struct address_space *mapping = file->f_mapping;
2339 
2340 	/* If we don't want any read-ahead, don't bother */
2341 	if (vma->vm_flags & VM_RAND_READ)
2342 		return;
2343 	if (ra->mmap_miss > 0)
2344 		ra->mmap_miss--;
2345 	if (PageReadahead(page))
2346 		page_cache_async_readahead(mapping, ra, file,
2347 					   page, offset, ra->ra_pages);
2348 }
2349 
2350 /**
2351  * filemap_fault - read in file data for page fault handling
2352  * @vmf:	struct vm_fault containing details of the fault
2353  *
2354  * filemap_fault() is invoked via the vma operations vector for a
2355  * mapped memory region to read in file data during a page fault.
2356  *
2357  * The goto's are kind of ugly, but this streamlines the normal case of having
2358  * it in the page cache, and handles the special cases reasonably without
2359  * having a lot of duplicated code.
2360  *
2361  * vma->vm_mm->mmap_sem must be held on entry.
2362  *
2363  * If our return value has VM_FAULT_RETRY set, it's because
2364  * lock_page_or_retry() returned 0.
2365  * The mmap_sem has usually been released in this case.
2366  * See __lock_page_or_retry() for the exception.
2367  *
2368  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2369  * has not been released.
2370  *
2371  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2372  */
2373 int filemap_fault(struct vm_fault *vmf)
2374 {
2375 	int error;
2376 	struct file *file = vmf->vma->vm_file;
2377 	struct address_space *mapping = file->f_mapping;
2378 	struct file_ra_state *ra = &file->f_ra;
2379 	struct inode *inode = mapping->host;
2380 	pgoff_t offset = vmf->pgoff;
2381 	pgoff_t max_off;
2382 	struct page *page;
2383 	int ret = 0;
2384 
2385 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2386 	if (unlikely(offset >= max_off))
2387 		return VM_FAULT_SIGBUS;
2388 
2389 	/*
2390 	 * Do we have something in the page cache already?
2391 	 */
2392 	page = find_get_page(mapping, offset);
2393 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2394 		/*
2395 		 * We found the page, so try async readahead before
2396 		 * waiting for the lock.
2397 		 */
2398 		do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2399 	} else if (!page) {
2400 		/* No page in the page cache at all */
2401 		do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2402 		count_vm_event(PGMAJFAULT);
2403 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2404 		ret = VM_FAULT_MAJOR;
2405 retry_find:
2406 		page = find_get_page(mapping, offset);
2407 		if (!page)
2408 			goto no_cached_page;
2409 	}
2410 
2411 	if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2412 		put_page(page);
2413 		return ret | VM_FAULT_RETRY;
2414 	}
2415 
2416 	/* Did it get truncated? */
2417 	if (unlikely(page->mapping != mapping)) {
2418 		unlock_page(page);
2419 		put_page(page);
2420 		goto retry_find;
2421 	}
2422 	VM_BUG_ON_PAGE(page->index != offset, page);
2423 
2424 	/*
2425 	 * We have a locked page in the page cache, now we need to check
2426 	 * that it's up-to-date. If not, it is going to be due to an error.
2427 	 */
2428 	if (unlikely(!PageUptodate(page)))
2429 		goto page_not_uptodate;
2430 
2431 	/*
2432 	 * Found the page and have a reference on it.
2433 	 * We must recheck i_size under page lock.
2434 	 */
2435 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2436 	if (unlikely(offset >= max_off)) {
2437 		unlock_page(page);
2438 		put_page(page);
2439 		return VM_FAULT_SIGBUS;
2440 	}
2441 
2442 	vmf->page = page;
2443 	return ret | VM_FAULT_LOCKED;
2444 
2445 no_cached_page:
2446 	/*
2447 	 * We're only likely to ever get here if MADV_RANDOM is in
2448 	 * effect.
2449 	 */
2450 	error = page_cache_read(file, offset, vmf->gfp_mask);
2451 
2452 	/*
2453 	 * The page we want has now been added to the page cache.
2454 	 * In the unlikely event that someone removed it in the
2455 	 * meantime, we'll just come back here and read it again.
2456 	 */
2457 	if (error >= 0)
2458 		goto retry_find;
2459 
2460 	/*
2461 	 * An error return from page_cache_read can result if the
2462 	 * system is low on memory, or a problem occurs while trying
2463 	 * to schedule I/O.
2464 	 */
2465 	if (error == -ENOMEM)
2466 		return VM_FAULT_OOM;
2467 	return VM_FAULT_SIGBUS;
2468 
2469 page_not_uptodate:
2470 	/*
2471 	 * Umm, take care of errors if the page isn't up-to-date.
2472 	 * Try to re-read it _once_. We do this synchronously,
2473 	 * because there really aren't any performance issues here
2474 	 * and we need to check for errors.
2475 	 */
2476 	ClearPageError(page);
2477 	error = mapping->a_ops->readpage(file, page);
2478 	if (!error) {
2479 		wait_on_page_locked(page);
2480 		if (!PageUptodate(page))
2481 			error = -EIO;
2482 	}
2483 	put_page(page);
2484 
2485 	if (!error || error == AOP_TRUNCATED_PAGE)
2486 		goto retry_find;
2487 
2488 	/* Things didn't work out. Return zero to tell the mm layer so. */
2489 	shrink_readahead_size_eio(file, ra);
2490 	return VM_FAULT_SIGBUS;
2491 }
2492 EXPORT_SYMBOL(filemap_fault);
2493 
2494 void filemap_map_pages(struct vm_fault *vmf,
2495 		pgoff_t start_pgoff, pgoff_t end_pgoff)
2496 {
2497 	struct radix_tree_iter iter;
2498 	void **slot;
2499 	struct file *file = vmf->vma->vm_file;
2500 	struct address_space *mapping = file->f_mapping;
2501 	pgoff_t last_pgoff = start_pgoff;
2502 	unsigned long max_idx;
2503 	struct page *head, *page;
2504 
2505 	rcu_read_lock();
2506 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2507 			start_pgoff) {
2508 		if (iter.index > end_pgoff)
2509 			break;
2510 repeat:
2511 		page = radix_tree_deref_slot(slot);
2512 		if (unlikely(!page))
2513 			goto next;
2514 		if (radix_tree_exception(page)) {
2515 			if (radix_tree_deref_retry(page)) {
2516 				slot = radix_tree_iter_retry(&iter);
2517 				continue;
2518 			}
2519 			goto next;
2520 		}
2521 
2522 		head = compound_head(page);
2523 		if (!page_cache_get_speculative(head))
2524 			goto repeat;
2525 
2526 		/* The page was split under us? */
2527 		if (compound_head(page) != head) {
2528 			put_page(head);
2529 			goto repeat;
2530 		}
2531 
2532 		/* Has the page moved? */
2533 		if (unlikely(page != *slot)) {
2534 			put_page(head);
2535 			goto repeat;
2536 		}
2537 
2538 		if (!PageUptodate(page) ||
2539 				PageReadahead(page) ||
2540 				PageHWPoison(page))
2541 			goto skip;
2542 		if (!trylock_page(page))
2543 			goto skip;
2544 
2545 		if (page->mapping != mapping || !PageUptodate(page))
2546 			goto unlock;
2547 
2548 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2549 		if (page->index >= max_idx)
2550 			goto unlock;
2551 
2552 		if (file->f_ra.mmap_miss > 0)
2553 			file->f_ra.mmap_miss--;
2554 
2555 		vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2556 		if (vmf->pte)
2557 			vmf->pte += iter.index - last_pgoff;
2558 		last_pgoff = iter.index;
2559 		if (alloc_set_pte(vmf, NULL, page))
2560 			goto unlock;
2561 		unlock_page(page);
2562 		goto next;
2563 unlock:
2564 		unlock_page(page);
2565 skip:
2566 		put_page(page);
2567 next:
2568 		/* Huge page is mapped? No need to proceed. */
2569 		if (pmd_trans_huge(*vmf->pmd))
2570 			break;
2571 		if (iter.index == end_pgoff)
2572 			break;
2573 	}
2574 	rcu_read_unlock();
2575 }
2576 EXPORT_SYMBOL(filemap_map_pages);
2577 
2578 int filemap_page_mkwrite(struct vm_fault *vmf)
2579 {
2580 	struct page *page = vmf->page;
2581 	struct inode *inode = file_inode(vmf->vma->vm_file);
2582 	int ret = VM_FAULT_LOCKED;
2583 
2584 	sb_start_pagefault(inode->i_sb);
2585 	file_update_time(vmf->vma->vm_file);
2586 	lock_page(page);
2587 	if (page->mapping != inode->i_mapping) {
2588 		unlock_page(page);
2589 		ret = VM_FAULT_NOPAGE;
2590 		goto out;
2591 	}
2592 	/*
2593 	 * We mark the page dirty already here so that when freeze is in
2594 	 * progress, we are guaranteed that writeback during freezing will
2595 	 * see the dirty page and writeprotect it again.
2596 	 */
2597 	set_page_dirty(page);
2598 	wait_for_stable_page(page);
2599 out:
2600 	sb_end_pagefault(inode->i_sb);
2601 	return ret;
2602 }
2603 EXPORT_SYMBOL(filemap_page_mkwrite);
2604 
2605 const struct vm_operations_struct generic_file_vm_ops = {
2606 	.fault		= filemap_fault,
2607 	.map_pages	= filemap_map_pages,
2608 	.page_mkwrite	= filemap_page_mkwrite,
2609 };
2610 
2611 /* This is used for a general mmap of a disk file */
2612 
2613 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2614 {
2615 	struct address_space *mapping = file->f_mapping;
2616 
2617 	if (!mapping->a_ops->readpage)
2618 		return -ENOEXEC;
2619 	file_accessed(file);
2620 	vma->vm_ops = &generic_file_vm_ops;
2621 	return 0;
2622 }
2623 
2624 /*
2625  * This is for filesystems which do not implement ->writepage.
2626  */
2627 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2628 {
2629 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2630 		return -EINVAL;
2631 	return generic_file_mmap(file, vma);
2632 }
2633 #else
2634 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2635 {
2636 	return -ENOSYS;
2637 }
2638 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2639 {
2640 	return -ENOSYS;
2641 }
2642 #endif /* CONFIG_MMU */
2643 
2644 EXPORT_SYMBOL(generic_file_mmap);
2645 EXPORT_SYMBOL(generic_file_readonly_mmap);
2646 
2647 static struct page *wait_on_page_read(struct page *page)
2648 {
2649 	if (!IS_ERR(page)) {
2650 		wait_on_page_locked(page);
2651 		if (!PageUptodate(page)) {
2652 			put_page(page);
2653 			page = ERR_PTR(-EIO);
2654 		}
2655 	}
2656 	return page;
2657 }
2658 
2659 static struct page *do_read_cache_page(struct address_space *mapping,
2660 				pgoff_t index,
2661 				int (*filler)(void *, struct page *),
2662 				void *data,
2663 				gfp_t gfp)
2664 {
2665 	struct page *page;
2666 	int err;
2667 repeat:
2668 	page = find_get_page(mapping, index);
2669 	if (!page) {
2670 		page = __page_cache_alloc(gfp | __GFP_COLD);
2671 		if (!page)
2672 			return ERR_PTR(-ENOMEM);
2673 		err = add_to_page_cache_lru(page, mapping, index, gfp);
2674 		if (unlikely(err)) {
2675 			put_page(page);
2676 			if (err == -EEXIST)
2677 				goto repeat;
2678 			/* Presumably ENOMEM for radix tree node */
2679 			return ERR_PTR(err);
2680 		}
2681 
2682 filler:
2683 		err = filler(data, page);
2684 		if (err < 0) {
2685 			put_page(page);
2686 			return ERR_PTR(err);
2687 		}
2688 
2689 		page = wait_on_page_read(page);
2690 		if (IS_ERR(page))
2691 			return page;
2692 		goto out;
2693 	}
2694 	if (PageUptodate(page))
2695 		goto out;
2696 
2697 	/*
2698 	 * Page is not up to date and may be locked due one of the following
2699 	 * case a: Page is being filled and the page lock is held
2700 	 * case b: Read/write error clearing the page uptodate status
2701 	 * case c: Truncation in progress (page locked)
2702 	 * case d: Reclaim in progress
2703 	 *
2704 	 * Case a, the page will be up to date when the page is unlocked.
2705 	 *    There is no need to serialise on the page lock here as the page
2706 	 *    is pinned so the lock gives no additional protection. Even if the
2707 	 *    the page is truncated, the data is still valid if PageUptodate as
2708 	 *    it's a race vs truncate race.
2709 	 * Case b, the page will not be up to date
2710 	 * Case c, the page may be truncated but in itself, the data may still
2711 	 *    be valid after IO completes as it's a read vs truncate race. The
2712 	 *    operation must restart if the page is not uptodate on unlock but
2713 	 *    otherwise serialising on page lock to stabilise the mapping gives
2714 	 *    no additional guarantees to the caller as the page lock is
2715 	 *    released before return.
2716 	 * Case d, similar to truncation. If reclaim holds the page lock, it
2717 	 *    will be a race with remove_mapping that determines if the mapping
2718 	 *    is valid on unlock but otherwise the data is valid and there is
2719 	 *    no need to serialise with page lock.
2720 	 *
2721 	 * As the page lock gives no additional guarantee, we optimistically
2722 	 * wait on the page to be unlocked and check if it's up to date and
2723 	 * use the page if it is. Otherwise, the page lock is required to
2724 	 * distinguish between the different cases. The motivation is that we
2725 	 * avoid spurious serialisations and wakeups when multiple processes
2726 	 * wait on the same page for IO to complete.
2727 	 */
2728 	wait_on_page_locked(page);
2729 	if (PageUptodate(page))
2730 		goto out;
2731 
2732 	/* Distinguish between all the cases under the safety of the lock */
2733 	lock_page(page);
2734 
2735 	/* Case c or d, restart the operation */
2736 	if (!page->mapping) {
2737 		unlock_page(page);
2738 		put_page(page);
2739 		goto repeat;
2740 	}
2741 
2742 	/* Someone else locked and filled the page in a very small window */
2743 	if (PageUptodate(page)) {
2744 		unlock_page(page);
2745 		goto out;
2746 	}
2747 	goto filler;
2748 
2749 out:
2750 	mark_page_accessed(page);
2751 	return page;
2752 }
2753 
2754 /**
2755  * read_cache_page - read into page cache, fill it if needed
2756  * @mapping:	the page's address_space
2757  * @index:	the page index
2758  * @filler:	function to perform the read
2759  * @data:	first arg to filler(data, page) function, often left as NULL
2760  *
2761  * Read into the page cache. If a page already exists, and PageUptodate() is
2762  * not set, try to fill the page and wait for it to become unlocked.
2763  *
2764  * If the page does not get brought uptodate, return -EIO.
2765  */
2766 struct page *read_cache_page(struct address_space *mapping,
2767 				pgoff_t index,
2768 				int (*filler)(void *, struct page *),
2769 				void *data)
2770 {
2771 	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2772 }
2773 EXPORT_SYMBOL(read_cache_page);
2774 
2775 /**
2776  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2777  * @mapping:	the page's address_space
2778  * @index:	the page index
2779  * @gfp:	the page allocator flags to use if allocating
2780  *
2781  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2782  * any new page allocations done using the specified allocation flags.
2783  *
2784  * If the page does not get brought uptodate, return -EIO.
2785  */
2786 struct page *read_cache_page_gfp(struct address_space *mapping,
2787 				pgoff_t index,
2788 				gfp_t gfp)
2789 {
2790 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2791 
2792 	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2793 }
2794 EXPORT_SYMBOL(read_cache_page_gfp);
2795 
2796 /*
2797  * Performs necessary checks before doing a write
2798  *
2799  * Can adjust writing position or amount of bytes to write.
2800  * Returns appropriate error code that caller should return or
2801  * zero in case that write should be allowed.
2802  */
2803 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2804 {
2805 	struct file *file = iocb->ki_filp;
2806 	struct inode *inode = file->f_mapping->host;
2807 	unsigned long limit = rlimit(RLIMIT_FSIZE);
2808 	loff_t pos;
2809 
2810 	if (!iov_iter_count(from))
2811 		return 0;
2812 
2813 	/* FIXME: this is for backwards compatibility with 2.4 */
2814 	if (iocb->ki_flags & IOCB_APPEND)
2815 		iocb->ki_pos = i_size_read(inode);
2816 
2817 	pos = iocb->ki_pos;
2818 
2819 	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2820 		return -EINVAL;
2821 
2822 	if (limit != RLIM_INFINITY) {
2823 		if (iocb->ki_pos >= limit) {
2824 			send_sig(SIGXFSZ, current, 0);
2825 			return -EFBIG;
2826 		}
2827 		iov_iter_truncate(from, limit - (unsigned long)pos);
2828 	}
2829 
2830 	/*
2831 	 * LFS rule
2832 	 */
2833 	if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2834 				!(file->f_flags & O_LARGEFILE))) {
2835 		if (pos >= MAX_NON_LFS)
2836 			return -EFBIG;
2837 		iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2838 	}
2839 
2840 	/*
2841 	 * Are we about to exceed the fs block limit ?
2842 	 *
2843 	 * If we have written data it becomes a short write.  If we have
2844 	 * exceeded without writing data we send a signal and return EFBIG.
2845 	 * Linus frestrict idea will clean these up nicely..
2846 	 */
2847 	if (unlikely(pos >= inode->i_sb->s_maxbytes))
2848 		return -EFBIG;
2849 
2850 	iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2851 	return iov_iter_count(from);
2852 }
2853 EXPORT_SYMBOL(generic_write_checks);
2854 
2855 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2856 				loff_t pos, unsigned len, unsigned flags,
2857 				struct page **pagep, void **fsdata)
2858 {
2859 	const struct address_space_operations *aops = mapping->a_ops;
2860 
2861 	return aops->write_begin(file, mapping, pos, len, flags,
2862 							pagep, fsdata);
2863 }
2864 EXPORT_SYMBOL(pagecache_write_begin);
2865 
2866 int pagecache_write_end(struct file *file, struct address_space *mapping,
2867 				loff_t pos, unsigned len, unsigned copied,
2868 				struct page *page, void *fsdata)
2869 {
2870 	const struct address_space_operations *aops = mapping->a_ops;
2871 
2872 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2873 }
2874 EXPORT_SYMBOL(pagecache_write_end);
2875 
2876 ssize_t
2877 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2878 {
2879 	struct file	*file = iocb->ki_filp;
2880 	struct address_space *mapping = file->f_mapping;
2881 	struct inode	*inode = mapping->host;
2882 	loff_t		pos = iocb->ki_pos;
2883 	ssize_t		written;
2884 	size_t		write_len;
2885 	pgoff_t		end;
2886 
2887 	write_len = iov_iter_count(from);
2888 	end = (pos + write_len - 1) >> PAGE_SHIFT;
2889 
2890 	if (iocb->ki_flags & IOCB_NOWAIT) {
2891 		/* If there are pages to writeback, return */
2892 		if (filemap_range_has_page(inode->i_mapping, pos,
2893 					   pos + iov_iter_count(from)))
2894 			return -EAGAIN;
2895 	} else {
2896 		written = filemap_write_and_wait_range(mapping, pos,
2897 							pos + write_len - 1);
2898 		if (written)
2899 			goto out;
2900 	}
2901 
2902 	/*
2903 	 * After a write we want buffered reads to be sure to go to disk to get
2904 	 * the new data.  We invalidate clean cached page from the region we're
2905 	 * about to write.  We do this *before* the write so that we can return
2906 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2907 	 */
2908 	written = invalidate_inode_pages2_range(mapping,
2909 					pos >> PAGE_SHIFT, end);
2910 	/*
2911 	 * If a page can not be invalidated, return 0 to fall back
2912 	 * to buffered write.
2913 	 */
2914 	if (written) {
2915 		if (written == -EBUSY)
2916 			return 0;
2917 		goto out;
2918 	}
2919 
2920 	written = mapping->a_ops->direct_IO(iocb, from);
2921 
2922 	/*
2923 	 * Finally, try again to invalidate clean pages which might have been
2924 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2925 	 * if the source of the write was an mmap'ed region of the file
2926 	 * we're writing.  Either one is a pretty crazy thing to do,
2927 	 * so we don't support it 100%.  If this invalidation
2928 	 * fails, tough, the write still worked...
2929 	 */
2930 	invalidate_inode_pages2_range(mapping,
2931 				pos >> PAGE_SHIFT, end);
2932 
2933 	if (written > 0) {
2934 		pos += written;
2935 		write_len -= written;
2936 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2937 			i_size_write(inode, pos);
2938 			mark_inode_dirty(inode);
2939 		}
2940 		iocb->ki_pos = pos;
2941 	}
2942 	iov_iter_revert(from, write_len - iov_iter_count(from));
2943 out:
2944 	return written;
2945 }
2946 EXPORT_SYMBOL(generic_file_direct_write);
2947 
2948 /*
2949  * Find or create a page at the given pagecache position. Return the locked
2950  * page. This function is specifically for buffered writes.
2951  */
2952 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2953 					pgoff_t index, unsigned flags)
2954 {
2955 	struct page *page;
2956 	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2957 
2958 	if (flags & AOP_FLAG_NOFS)
2959 		fgp_flags |= FGP_NOFS;
2960 
2961 	page = pagecache_get_page(mapping, index, fgp_flags,
2962 			mapping_gfp_mask(mapping));
2963 	if (page)
2964 		wait_for_stable_page(page);
2965 
2966 	return page;
2967 }
2968 EXPORT_SYMBOL(grab_cache_page_write_begin);
2969 
2970 ssize_t generic_perform_write(struct file *file,
2971 				struct iov_iter *i, loff_t pos)
2972 {
2973 	struct address_space *mapping = file->f_mapping;
2974 	const struct address_space_operations *a_ops = mapping->a_ops;
2975 	long status = 0;
2976 	ssize_t written = 0;
2977 	unsigned int flags = 0;
2978 
2979 	do {
2980 		struct page *page;
2981 		unsigned long offset;	/* Offset into pagecache page */
2982 		unsigned long bytes;	/* Bytes to write to page */
2983 		size_t copied;		/* Bytes copied from user */
2984 		void *fsdata;
2985 
2986 		offset = (pos & (PAGE_SIZE - 1));
2987 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
2988 						iov_iter_count(i));
2989 
2990 again:
2991 		/*
2992 		 * Bring in the user page that we will copy from _first_.
2993 		 * Otherwise there's a nasty deadlock on copying from the
2994 		 * same page as we're writing to, without it being marked
2995 		 * up-to-date.
2996 		 *
2997 		 * Not only is this an optimisation, but it is also required
2998 		 * to check that the address is actually valid, when atomic
2999 		 * usercopies are used, below.
3000 		 */
3001 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3002 			status = -EFAULT;
3003 			break;
3004 		}
3005 
3006 		if (fatal_signal_pending(current)) {
3007 			status = -EINTR;
3008 			break;
3009 		}
3010 
3011 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3012 						&page, &fsdata);
3013 		if (unlikely(status < 0))
3014 			break;
3015 
3016 		if (mapping_writably_mapped(mapping))
3017 			flush_dcache_page(page);
3018 
3019 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3020 		flush_dcache_page(page);
3021 
3022 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3023 						page, fsdata);
3024 		if (unlikely(status < 0))
3025 			break;
3026 		copied = status;
3027 
3028 		cond_resched();
3029 
3030 		iov_iter_advance(i, copied);
3031 		if (unlikely(copied == 0)) {
3032 			/*
3033 			 * If we were unable to copy any data at all, we must
3034 			 * fall back to a single segment length write.
3035 			 *
3036 			 * If we didn't fallback here, we could livelock
3037 			 * because not all segments in the iov can be copied at
3038 			 * once without a pagefault.
3039 			 */
3040 			bytes = min_t(unsigned long, PAGE_SIZE - offset,
3041 						iov_iter_single_seg_count(i));
3042 			goto again;
3043 		}
3044 		pos += copied;
3045 		written += copied;
3046 
3047 		balance_dirty_pages_ratelimited(mapping);
3048 	} while (iov_iter_count(i));
3049 
3050 	return written ? written : status;
3051 }
3052 EXPORT_SYMBOL(generic_perform_write);
3053 
3054 /**
3055  * __generic_file_write_iter - write data to a file
3056  * @iocb:	IO state structure (file, offset, etc.)
3057  * @from:	iov_iter with data to write
3058  *
3059  * This function does all the work needed for actually writing data to a
3060  * file. It does all basic checks, removes SUID from the file, updates
3061  * modification times and calls proper subroutines depending on whether we
3062  * do direct IO or a standard buffered write.
3063  *
3064  * It expects i_mutex to be grabbed unless we work on a block device or similar
3065  * object which does not need locking at all.
3066  *
3067  * This function does *not* take care of syncing data in case of O_SYNC write.
3068  * A caller has to handle it. This is mainly due to the fact that we want to
3069  * avoid syncing under i_mutex.
3070  */
3071 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3072 {
3073 	struct file *file = iocb->ki_filp;
3074 	struct address_space * mapping = file->f_mapping;
3075 	struct inode 	*inode = mapping->host;
3076 	ssize_t		written = 0;
3077 	ssize_t		err;
3078 	ssize_t		status;
3079 
3080 	/* We can write back this queue in page reclaim */
3081 	current->backing_dev_info = inode_to_bdi(inode);
3082 	err = file_remove_privs(file);
3083 	if (err)
3084 		goto out;
3085 
3086 	err = file_update_time(file);
3087 	if (err)
3088 		goto out;
3089 
3090 	if (iocb->ki_flags & IOCB_DIRECT) {
3091 		loff_t pos, endbyte;
3092 
3093 		written = generic_file_direct_write(iocb, from);
3094 		/*
3095 		 * If the write stopped short of completing, fall back to
3096 		 * buffered writes.  Some filesystems do this for writes to
3097 		 * holes, for example.  For DAX files, a buffered write will
3098 		 * not succeed (even if it did, DAX does not handle dirty
3099 		 * page-cache pages correctly).
3100 		 */
3101 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3102 			goto out;
3103 
3104 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3105 		/*
3106 		 * If generic_perform_write() returned a synchronous error
3107 		 * then we want to return the number of bytes which were
3108 		 * direct-written, or the error code if that was zero.  Note
3109 		 * that this differs from normal direct-io semantics, which
3110 		 * will return -EFOO even if some bytes were written.
3111 		 */
3112 		if (unlikely(status < 0)) {
3113 			err = status;
3114 			goto out;
3115 		}
3116 		/*
3117 		 * We need to ensure that the page cache pages are written to
3118 		 * disk and invalidated to preserve the expected O_DIRECT
3119 		 * semantics.
3120 		 */
3121 		endbyte = pos + status - 1;
3122 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3123 		if (err == 0) {
3124 			iocb->ki_pos = endbyte + 1;
3125 			written += status;
3126 			invalidate_mapping_pages(mapping,
3127 						 pos >> PAGE_SHIFT,
3128 						 endbyte >> PAGE_SHIFT);
3129 		} else {
3130 			/*
3131 			 * We don't know how much we wrote, so just return
3132 			 * the number of bytes which were direct-written
3133 			 */
3134 		}
3135 	} else {
3136 		written = generic_perform_write(file, from, iocb->ki_pos);
3137 		if (likely(written > 0))
3138 			iocb->ki_pos += written;
3139 	}
3140 out:
3141 	current->backing_dev_info = NULL;
3142 	return written ? written : err;
3143 }
3144 EXPORT_SYMBOL(__generic_file_write_iter);
3145 
3146 /**
3147  * generic_file_write_iter - write data to a file
3148  * @iocb:	IO state structure
3149  * @from:	iov_iter with data to write
3150  *
3151  * This is a wrapper around __generic_file_write_iter() to be used by most
3152  * filesystems. It takes care of syncing the file in case of O_SYNC file
3153  * and acquires i_mutex as needed.
3154  */
3155 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3156 {
3157 	struct file *file = iocb->ki_filp;
3158 	struct inode *inode = file->f_mapping->host;
3159 	ssize_t ret;
3160 
3161 	inode_lock(inode);
3162 	ret = generic_write_checks(iocb, from);
3163 	if (ret > 0)
3164 		ret = __generic_file_write_iter(iocb, from);
3165 	inode_unlock(inode);
3166 
3167 	if (ret > 0)
3168 		ret = generic_write_sync(iocb, ret);
3169 	return ret;
3170 }
3171 EXPORT_SYMBOL(generic_file_write_iter);
3172 
3173 /**
3174  * try_to_release_page() - release old fs-specific metadata on a page
3175  *
3176  * @page: the page which the kernel is trying to free
3177  * @gfp_mask: memory allocation flags (and I/O mode)
3178  *
3179  * The address_space is to try to release any data against the page
3180  * (presumably at page->private).  If the release was successful, return '1'.
3181  * Otherwise return zero.
3182  *
3183  * This may also be called if PG_fscache is set on a page, indicating that the
3184  * page is known to the local caching routines.
3185  *
3186  * The @gfp_mask argument specifies whether I/O may be performed to release
3187  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3188  *
3189  */
3190 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3191 {
3192 	struct address_space * const mapping = page->mapping;
3193 
3194 	BUG_ON(!PageLocked(page));
3195 	if (PageWriteback(page))
3196 		return 0;
3197 
3198 	if (mapping && mapping->a_ops->releasepage)
3199 		return mapping->a_ops->releasepage(page, gfp_mask);
3200 	return try_to_free_buffers(page);
3201 }
3202 
3203 EXPORT_SYMBOL(try_to_release_page);
3204