xref: /linux/mm/filemap.c (revision 704bf317fd21683e5c71a542f5fb5f65271a1582)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/module.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include "internal.h"
38 
39 /*
40  * FIXME: remove all knowledge of the buffer layer from the core VM
41  */
42 #include <linux/buffer_head.h> /* for try_to_free_buffers */
43 
44 #include <asm/mman.h>
45 
46 /*
47  * Shared mappings implemented 30.11.1994. It's not fully working yet,
48  * though.
49  *
50  * Shared mappings now work. 15.8.1995  Bruno.
51  *
52  * finished 'unifying' the page and buffer cache and SMP-threaded the
53  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
54  *
55  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
56  */
57 
58 /*
59  * Lock ordering:
60  *
61  *  ->i_mmap_lock		(truncate_pagecache)
62  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
63  *      ->swap_lock		(exclusive_swap_page, others)
64  *        ->mapping->tree_lock
65  *
66  *  ->i_mutex
67  *    ->i_mmap_lock		(truncate->unmap_mapping_range)
68  *
69  *  ->mmap_sem
70  *    ->i_mmap_lock
71  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
72  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
73  *
74  *  ->mmap_sem
75  *    ->lock_page		(access_process_vm)
76  *
77  *  ->i_mutex			(generic_file_buffered_write)
78  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
79  *
80  *  ->i_mutex
81  *    ->i_alloc_sem             (various)
82  *
83  *  ->inode_lock
84  *    ->sb_lock			(fs/fs-writeback.c)
85  *    ->mapping->tree_lock	(__sync_single_inode)
86  *
87  *  ->i_mmap_lock
88  *    ->anon_vma.lock		(vma_adjust)
89  *
90  *  ->anon_vma.lock
91  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
92  *
93  *  ->page_table_lock or pte_lock
94  *    ->swap_lock		(try_to_unmap_one)
95  *    ->private_lock		(try_to_unmap_one)
96  *    ->tree_lock		(try_to_unmap_one)
97  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
98  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
99  *    ->private_lock		(page_remove_rmap->set_page_dirty)
100  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
101  *    ->inode_lock		(page_remove_rmap->set_page_dirty)
102  *    ->inode_lock		(zap_pte_range->set_page_dirty)
103  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
104  *
105  *  (code doesn't rely on that order, so you could switch it around)
106  *  ->tasklist_lock             (memory_failure, collect_procs_ao)
107  *    ->i_mmap_lock
108  */
109 
110 /*
111  * Remove a page from the page cache and free it. Caller has to make
112  * sure the page is locked and that nobody else uses it - or that usage
113  * is safe.  The caller must hold the mapping's tree_lock.
114  */
115 void __remove_from_page_cache(struct page *page)
116 {
117 	struct address_space *mapping = page->mapping;
118 
119 	radix_tree_delete(&mapping->page_tree, page->index);
120 	page->mapping = NULL;
121 	mapping->nrpages--;
122 	__dec_zone_page_state(page, NR_FILE_PAGES);
123 	if (PageSwapBacked(page))
124 		__dec_zone_page_state(page, NR_SHMEM);
125 	BUG_ON(page_mapped(page));
126 
127 	/*
128 	 * Some filesystems seem to re-dirty the page even after
129 	 * the VM has canceled the dirty bit (eg ext3 journaling).
130 	 *
131 	 * Fix it up by doing a final dirty accounting check after
132 	 * having removed the page entirely.
133 	 */
134 	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
135 		dec_zone_page_state(page, NR_FILE_DIRTY);
136 		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
137 	}
138 }
139 
140 void remove_from_page_cache(struct page *page)
141 {
142 	struct address_space *mapping = page->mapping;
143 	void (*freepage)(struct page *);
144 
145 	BUG_ON(!PageLocked(page));
146 
147 	freepage = mapping->a_ops->freepage;
148 	spin_lock_irq(&mapping->tree_lock);
149 	__remove_from_page_cache(page);
150 	spin_unlock_irq(&mapping->tree_lock);
151 	mem_cgroup_uncharge_cache_page(page);
152 
153 	if (freepage)
154 		freepage(page);
155 }
156 EXPORT_SYMBOL(remove_from_page_cache);
157 
158 static int sync_page(void *word)
159 {
160 	struct address_space *mapping;
161 	struct page *page;
162 
163 	page = container_of((unsigned long *)word, struct page, flags);
164 
165 	/*
166 	 * page_mapping() is being called without PG_locked held.
167 	 * Some knowledge of the state and use of the page is used to
168 	 * reduce the requirements down to a memory barrier.
169 	 * The danger here is of a stale page_mapping() return value
170 	 * indicating a struct address_space different from the one it's
171 	 * associated with when it is associated with one.
172 	 * After smp_mb(), it's either the correct page_mapping() for
173 	 * the page, or an old page_mapping() and the page's own
174 	 * page_mapping() has gone NULL.
175 	 * The ->sync_page() address_space operation must tolerate
176 	 * page_mapping() going NULL. By an amazing coincidence,
177 	 * this comes about because none of the users of the page
178 	 * in the ->sync_page() methods make essential use of the
179 	 * page_mapping(), merely passing the page down to the backing
180 	 * device's unplug functions when it's non-NULL, which in turn
181 	 * ignore it for all cases but swap, where only page_private(page) is
182 	 * of interest. When page_mapping() does go NULL, the entire
183 	 * call stack gracefully ignores the page and returns.
184 	 * -- wli
185 	 */
186 	smp_mb();
187 	mapping = page_mapping(page);
188 	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
189 		mapping->a_ops->sync_page(page);
190 	io_schedule();
191 	return 0;
192 }
193 
194 static int sync_page_killable(void *word)
195 {
196 	sync_page(word);
197 	return fatal_signal_pending(current) ? -EINTR : 0;
198 }
199 
200 /**
201  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
202  * @mapping:	address space structure to write
203  * @start:	offset in bytes where the range starts
204  * @end:	offset in bytes where the range ends (inclusive)
205  * @sync_mode:	enable synchronous operation
206  *
207  * Start writeback against all of a mapping's dirty pages that lie
208  * within the byte offsets <start, end> inclusive.
209  *
210  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
211  * opposed to a regular memory cleansing writeback.  The difference between
212  * these two operations is that if a dirty page/buffer is encountered, it must
213  * be waited upon, and not just skipped over.
214  */
215 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
216 				loff_t end, int sync_mode)
217 {
218 	int ret;
219 	struct writeback_control wbc = {
220 		.sync_mode = sync_mode,
221 		.nr_to_write = LONG_MAX,
222 		.range_start = start,
223 		.range_end = end,
224 	};
225 
226 	if (!mapping_cap_writeback_dirty(mapping))
227 		return 0;
228 
229 	ret = do_writepages(mapping, &wbc);
230 	return ret;
231 }
232 
233 static inline int __filemap_fdatawrite(struct address_space *mapping,
234 	int sync_mode)
235 {
236 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
237 }
238 
239 int filemap_fdatawrite(struct address_space *mapping)
240 {
241 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
242 }
243 EXPORT_SYMBOL(filemap_fdatawrite);
244 
245 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
246 				loff_t end)
247 {
248 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
249 }
250 EXPORT_SYMBOL(filemap_fdatawrite_range);
251 
252 /**
253  * filemap_flush - mostly a non-blocking flush
254  * @mapping:	target address_space
255  *
256  * This is a mostly non-blocking flush.  Not suitable for data-integrity
257  * purposes - I/O may not be started against all dirty pages.
258  */
259 int filemap_flush(struct address_space *mapping)
260 {
261 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
262 }
263 EXPORT_SYMBOL(filemap_flush);
264 
265 /**
266  * filemap_fdatawait_range - wait for writeback to complete
267  * @mapping:		address space structure to wait for
268  * @start_byte:		offset in bytes where the range starts
269  * @end_byte:		offset in bytes where the range ends (inclusive)
270  *
271  * Walk the list of under-writeback pages of the given address space
272  * in the given range and wait for all of them.
273  */
274 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
275 			    loff_t end_byte)
276 {
277 	pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
278 	pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
279 	struct pagevec pvec;
280 	int nr_pages;
281 	int ret = 0;
282 
283 	if (end_byte < start_byte)
284 		return 0;
285 
286 	pagevec_init(&pvec, 0);
287 	while ((index <= end) &&
288 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
289 			PAGECACHE_TAG_WRITEBACK,
290 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
291 		unsigned i;
292 
293 		for (i = 0; i < nr_pages; i++) {
294 			struct page *page = pvec.pages[i];
295 
296 			/* until radix tree lookup accepts end_index */
297 			if (page->index > end)
298 				continue;
299 
300 			wait_on_page_writeback(page);
301 			if (PageError(page))
302 				ret = -EIO;
303 		}
304 		pagevec_release(&pvec);
305 		cond_resched();
306 	}
307 
308 	/* Check for outstanding write errors */
309 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
310 		ret = -ENOSPC;
311 	if (test_and_clear_bit(AS_EIO, &mapping->flags))
312 		ret = -EIO;
313 
314 	return ret;
315 }
316 EXPORT_SYMBOL(filemap_fdatawait_range);
317 
318 /**
319  * filemap_fdatawait - wait for all under-writeback pages to complete
320  * @mapping: address space structure to wait for
321  *
322  * Walk the list of under-writeback pages of the given address space
323  * and wait for all of them.
324  */
325 int filemap_fdatawait(struct address_space *mapping)
326 {
327 	loff_t i_size = i_size_read(mapping->host);
328 
329 	if (i_size == 0)
330 		return 0;
331 
332 	return filemap_fdatawait_range(mapping, 0, i_size - 1);
333 }
334 EXPORT_SYMBOL(filemap_fdatawait);
335 
336 int filemap_write_and_wait(struct address_space *mapping)
337 {
338 	int err = 0;
339 
340 	if (mapping->nrpages) {
341 		err = filemap_fdatawrite(mapping);
342 		/*
343 		 * Even if the above returned error, the pages may be
344 		 * written partially (e.g. -ENOSPC), so we wait for it.
345 		 * But the -EIO is special case, it may indicate the worst
346 		 * thing (e.g. bug) happened, so we avoid waiting for it.
347 		 */
348 		if (err != -EIO) {
349 			int err2 = filemap_fdatawait(mapping);
350 			if (!err)
351 				err = err2;
352 		}
353 	}
354 	return err;
355 }
356 EXPORT_SYMBOL(filemap_write_and_wait);
357 
358 /**
359  * filemap_write_and_wait_range - write out & wait on a file range
360  * @mapping:	the address_space for the pages
361  * @lstart:	offset in bytes where the range starts
362  * @lend:	offset in bytes where the range ends (inclusive)
363  *
364  * Write out and wait upon file offsets lstart->lend, inclusive.
365  *
366  * Note that `lend' is inclusive (describes the last byte to be written) so
367  * that this function can be used to write to the very end-of-file (end = -1).
368  */
369 int filemap_write_and_wait_range(struct address_space *mapping,
370 				 loff_t lstart, loff_t lend)
371 {
372 	int err = 0;
373 
374 	if (mapping->nrpages) {
375 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
376 						 WB_SYNC_ALL);
377 		/* See comment of filemap_write_and_wait() */
378 		if (err != -EIO) {
379 			int err2 = filemap_fdatawait_range(mapping,
380 						lstart, lend);
381 			if (!err)
382 				err = err2;
383 		}
384 	}
385 	return err;
386 }
387 EXPORT_SYMBOL(filemap_write_and_wait_range);
388 
389 /**
390  * add_to_page_cache_locked - add a locked page to the pagecache
391  * @page:	page to add
392  * @mapping:	the page's address_space
393  * @offset:	page index
394  * @gfp_mask:	page allocation mode
395  *
396  * This function is used to add a page to the pagecache. It must be locked.
397  * This function does not add the page to the LRU.  The caller must do that.
398  */
399 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
400 		pgoff_t offset, gfp_t gfp_mask)
401 {
402 	int error;
403 
404 	VM_BUG_ON(!PageLocked(page));
405 
406 	error = mem_cgroup_cache_charge(page, current->mm,
407 					gfp_mask & GFP_RECLAIM_MASK);
408 	if (error)
409 		goto out;
410 
411 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
412 	if (error == 0) {
413 		page_cache_get(page);
414 		page->mapping = mapping;
415 		page->index = offset;
416 
417 		spin_lock_irq(&mapping->tree_lock);
418 		error = radix_tree_insert(&mapping->page_tree, offset, page);
419 		if (likely(!error)) {
420 			mapping->nrpages++;
421 			__inc_zone_page_state(page, NR_FILE_PAGES);
422 			if (PageSwapBacked(page))
423 				__inc_zone_page_state(page, NR_SHMEM);
424 			spin_unlock_irq(&mapping->tree_lock);
425 		} else {
426 			page->mapping = NULL;
427 			spin_unlock_irq(&mapping->tree_lock);
428 			mem_cgroup_uncharge_cache_page(page);
429 			page_cache_release(page);
430 		}
431 		radix_tree_preload_end();
432 	} else
433 		mem_cgroup_uncharge_cache_page(page);
434 out:
435 	return error;
436 }
437 EXPORT_SYMBOL(add_to_page_cache_locked);
438 
439 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
440 				pgoff_t offset, gfp_t gfp_mask)
441 {
442 	int ret;
443 
444 	/*
445 	 * Splice_read and readahead add shmem/tmpfs pages into the page cache
446 	 * before shmem_readpage has a chance to mark them as SwapBacked: they
447 	 * need to go on the anon lru below, and mem_cgroup_cache_charge
448 	 * (called in add_to_page_cache) needs to know where they're going too.
449 	 */
450 	if (mapping_cap_swap_backed(mapping))
451 		SetPageSwapBacked(page);
452 
453 	ret = add_to_page_cache(page, mapping, offset, gfp_mask);
454 	if (ret == 0) {
455 		if (page_is_file_cache(page))
456 			lru_cache_add_file(page);
457 		else
458 			lru_cache_add_anon(page);
459 	}
460 	return ret;
461 }
462 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
463 
464 #ifdef CONFIG_NUMA
465 struct page *__page_cache_alloc(gfp_t gfp)
466 {
467 	int n;
468 	struct page *page;
469 
470 	if (cpuset_do_page_mem_spread()) {
471 		get_mems_allowed();
472 		n = cpuset_mem_spread_node();
473 		page = alloc_pages_exact_node(n, gfp, 0);
474 		put_mems_allowed();
475 		return page;
476 	}
477 	return alloc_pages(gfp, 0);
478 }
479 EXPORT_SYMBOL(__page_cache_alloc);
480 #endif
481 
482 static int __sleep_on_page_lock(void *word)
483 {
484 	io_schedule();
485 	return 0;
486 }
487 
488 /*
489  * In order to wait for pages to become available there must be
490  * waitqueues associated with pages. By using a hash table of
491  * waitqueues where the bucket discipline is to maintain all
492  * waiters on the same queue and wake all when any of the pages
493  * become available, and for the woken contexts to check to be
494  * sure the appropriate page became available, this saves space
495  * at a cost of "thundering herd" phenomena during rare hash
496  * collisions.
497  */
498 static wait_queue_head_t *page_waitqueue(struct page *page)
499 {
500 	const struct zone *zone = page_zone(page);
501 
502 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
503 }
504 
505 static inline void wake_up_page(struct page *page, int bit)
506 {
507 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
508 }
509 
510 void wait_on_page_bit(struct page *page, int bit_nr)
511 {
512 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
513 
514 	if (test_bit(bit_nr, &page->flags))
515 		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
516 							TASK_UNINTERRUPTIBLE);
517 }
518 EXPORT_SYMBOL(wait_on_page_bit);
519 
520 /**
521  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
522  * @page: Page defining the wait queue of interest
523  * @waiter: Waiter to add to the queue
524  *
525  * Add an arbitrary @waiter to the wait queue for the nominated @page.
526  */
527 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
528 {
529 	wait_queue_head_t *q = page_waitqueue(page);
530 	unsigned long flags;
531 
532 	spin_lock_irqsave(&q->lock, flags);
533 	__add_wait_queue(q, waiter);
534 	spin_unlock_irqrestore(&q->lock, flags);
535 }
536 EXPORT_SYMBOL_GPL(add_page_wait_queue);
537 
538 /**
539  * unlock_page - unlock a locked page
540  * @page: the page
541  *
542  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
543  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
544  * mechananism between PageLocked pages and PageWriteback pages is shared.
545  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
546  *
547  * The mb is necessary to enforce ordering between the clear_bit and the read
548  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
549  */
550 void unlock_page(struct page *page)
551 {
552 	VM_BUG_ON(!PageLocked(page));
553 	clear_bit_unlock(PG_locked, &page->flags);
554 	smp_mb__after_clear_bit();
555 	wake_up_page(page, PG_locked);
556 }
557 EXPORT_SYMBOL(unlock_page);
558 
559 /**
560  * end_page_writeback - end writeback against a page
561  * @page: the page
562  */
563 void end_page_writeback(struct page *page)
564 {
565 	if (TestClearPageReclaim(page))
566 		rotate_reclaimable_page(page);
567 
568 	if (!test_clear_page_writeback(page))
569 		BUG();
570 
571 	smp_mb__after_clear_bit();
572 	wake_up_page(page, PG_writeback);
573 }
574 EXPORT_SYMBOL(end_page_writeback);
575 
576 /**
577  * __lock_page - get a lock on the page, assuming we need to sleep to get it
578  * @page: the page to lock
579  *
580  * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
581  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
582  * chances are that on the second loop, the block layer's plug list is empty,
583  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
584  */
585 void __lock_page(struct page *page)
586 {
587 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
588 
589 	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
590 							TASK_UNINTERRUPTIBLE);
591 }
592 EXPORT_SYMBOL(__lock_page);
593 
594 int __lock_page_killable(struct page *page)
595 {
596 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
597 
598 	return __wait_on_bit_lock(page_waitqueue(page), &wait,
599 					sync_page_killable, TASK_KILLABLE);
600 }
601 EXPORT_SYMBOL_GPL(__lock_page_killable);
602 
603 /**
604  * __lock_page_nosync - get a lock on the page, without calling sync_page()
605  * @page: the page to lock
606  *
607  * Variant of lock_page that does not require the caller to hold a reference
608  * on the page's mapping.
609  */
610 void __lock_page_nosync(struct page *page)
611 {
612 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
613 	__wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
614 							TASK_UNINTERRUPTIBLE);
615 }
616 
617 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
618 			 unsigned int flags)
619 {
620 	if (!(flags & FAULT_FLAG_ALLOW_RETRY)) {
621 		__lock_page(page);
622 		return 1;
623 	} else {
624 		up_read(&mm->mmap_sem);
625 		wait_on_page_locked(page);
626 		return 0;
627 	}
628 }
629 
630 /**
631  * find_get_page - find and get a page reference
632  * @mapping: the address_space to search
633  * @offset: the page index
634  *
635  * Is there a pagecache struct page at the given (mapping, offset) tuple?
636  * If yes, increment its refcount and return it; if no, return NULL.
637  */
638 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
639 {
640 	void **pagep;
641 	struct page *page;
642 
643 	rcu_read_lock();
644 repeat:
645 	page = NULL;
646 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
647 	if (pagep) {
648 		page = radix_tree_deref_slot(pagep);
649 		if (unlikely(!page))
650 			goto out;
651 		if (radix_tree_deref_retry(page))
652 			goto repeat;
653 
654 		if (!page_cache_get_speculative(page))
655 			goto repeat;
656 
657 		/*
658 		 * Has the page moved?
659 		 * This is part of the lockless pagecache protocol. See
660 		 * include/linux/pagemap.h for details.
661 		 */
662 		if (unlikely(page != *pagep)) {
663 			page_cache_release(page);
664 			goto repeat;
665 		}
666 	}
667 out:
668 	rcu_read_unlock();
669 
670 	return page;
671 }
672 EXPORT_SYMBOL(find_get_page);
673 
674 /**
675  * find_lock_page - locate, pin and lock a pagecache page
676  * @mapping: the address_space to search
677  * @offset: the page index
678  *
679  * Locates the desired pagecache page, locks it, increments its reference
680  * count and returns its address.
681  *
682  * Returns zero if the page was not present. find_lock_page() may sleep.
683  */
684 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
685 {
686 	struct page *page;
687 
688 repeat:
689 	page = find_get_page(mapping, offset);
690 	if (page) {
691 		lock_page(page);
692 		/* Has the page been truncated? */
693 		if (unlikely(page->mapping != mapping)) {
694 			unlock_page(page);
695 			page_cache_release(page);
696 			goto repeat;
697 		}
698 		VM_BUG_ON(page->index != offset);
699 	}
700 	return page;
701 }
702 EXPORT_SYMBOL(find_lock_page);
703 
704 /**
705  * find_or_create_page - locate or add a pagecache page
706  * @mapping: the page's address_space
707  * @index: the page's index into the mapping
708  * @gfp_mask: page allocation mode
709  *
710  * Locates a page in the pagecache.  If the page is not present, a new page
711  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
712  * LRU list.  The returned page is locked and has its reference count
713  * incremented.
714  *
715  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
716  * allocation!
717  *
718  * find_or_create_page() returns the desired page's address, or zero on
719  * memory exhaustion.
720  */
721 struct page *find_or_create_page(struct address_space *mapping,
722 		pgoff_t index, gfp_t gfp_mask)
723 {
724 	struct page *page;
725 	int err;
726 repeat:
727 	page = find_lock_page(mapping, index);
728 	if (!page) {
729 		page = __page_cache_alloc(gfp_mask);
730 		if (!page)
731 			return NULL;
732 		/*
733 		 * We want a regular kernel memory (not highmem or DMA etc)
734 		 * allocation for the radix tree nodes, but we need to honour
735 		 * the context-specific requirements the caller has asked for.
736 		 * GFP_RECLAIM_MASK collects those requirements.
737 		 */
738 		err = add_to_page_cache_lru(page, mapping, index,
739 			(gfp_mask & GFP_RECLAIM_MASK));
740 		if (unlikely(err)) {
741 			page_cache_release(page);
742 			page = NULL;
743 			if (err == -EEXIST)
744 				goto repeat;
745 		}
746 	}
747 	return page;
748 }
749 EXPORT_SYMBOL(find_or_create_page);
750 
751 /**
752  * find_get_pages - gang pagecache lookup
753  * @mapping:	The address_space to search
754  * @start:	The starting page index
755  * @nr_pages:	The maximum number of pages
756  * @pages:	Where the resulting pages are placed
757  *
758  * find_get_pages() will search for and return a group of up to
759  * @nr_pages pages in the mapping.  The pages are placed at @pages.
760  * find_get_pages() takes a reference against the returned pages.
761  *
762  * The search returns a group of mapping-contiguous pages with ascending
763  * indexes.  There may be holes in the indices due to not-present pages.
764  *
765  * find_get_pages() returns the number of pages which were found.
766  */
767 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
768 			    unsigned int nr_pages, struct page **pages)
769 {
770 	unsigned int i;
771 	unsigned int ret;
772 	unsigned int nr_found;
773 
774 	rcu_read_lock();
775 restart:
776 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
777 				(void ***)pages, start, nr_pages);
778 	ret = 0;
779 	for (i = 0; i < nr_found; i++) {
780 		struct page *page;
781 repeat:
782 		page = radix_tree_deref_slot((void **)pages[i]);
783 		if (unlikely(!page))
784 			continue;
785 		if (radix_tree_deref_retry(page)) {
786 			if (ret)
787 				start = pages[ret-1]->index;
788 			goto restart;
789 		}
790 
791 		if (!page_cache_get_speculative(page))
792 			goto repeat;
793 
794 		/* Has the page moved? */
795 		if (unlikely(page != *((void **)pages[i]))) {
796 			page_cache_release(page);
797 			goto repeat;
798 		}
799 
800 		pages[ret] = page;
801 		ret++;
802 	}
803 	rcu_read_unlock();
804 	return ret;
805 }
806 
807 /**
808  * find_get_pages_contig - gang contiguous pagecache lookup
809  * @mapping:	The address_space to search
810  * @index:	The starting page index
811  * @nr_pages:	The maximum number of pages
812  * @pages:	Where the resulting pages are placed
813  *
814  * find_get_pages_contig() works exactly like find_get_pages(), except
815  * that the returned number of pages are guaranteed to be contiguous.
816  *
817  * find_get_pages_contig() returns the number of pages which were found.
818  */
819 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
820 			       unsigned int nr_pages, struct page **pages)
821 {
822 	unsigned int i;
823 	unsigned int ret;
824 	unsigned int nr_found;
825 
826 	rcu_read_lock();
827 restart:
828 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
829 				(void ***)pages, index, nr_pages);
830 	ret = 0;
831 	for (i = 0; i < nr_found; i++) {
832 		struct page *page;
833 repeat:
834 		page = radix_tree_deref_slot((void **)pages[i]);
835 		if (unlikely(!page))
836 			continue;
837 		if (radix_tree_deref_retry(page))
838 			goto restart;
839 
840 		if (page->mapping == NULL || page->index != index)
841 			break;
842 
843 		if (!page_cache_get_speculative(page))
844 			goto repeat;
845 
846 		/* Has the page moved? */
847 		if (unlikely(page != *((void **)pages[i]))) {
848 			page_cache_release(page);
849 			goto repeat;
850 		}
851 
852 		pages[ret] = page;
853 		ret++;
854 		index++;
855 	}
856 	rcu_read_unlock();
857 	return ret;
858 }
859 EXPORT_SYMBOL(find_get_pages_contig);
860 
861 /**
862  * find_get_pages_tag - find and return pages that match @tag
863  * @mapping:	the address_space to search
864  * @index:	the starting page index
865  * @tag:	the tag index
866  * @nr_pages:	the maximum number of pages
867  * @pages:	where the resulting pages are placed
868  *
869  * Like find_get_pages, except we only return pages which are tagged with
870  * @tag.   We update @index to index the next page for the traversal.
871  */
872 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
873 			int tag, unsigned int nr_pages, struct page **pages)
874 {
875 	unsigned int i;
876 	unsigned int ret;
877 	unsigned int nr_found;
878 
879 	rcu_read_lock();
880 restart:
881 	nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
882 				(void ***)pages, *index, nr_pages, tag);
883 	ret = 0;
884 	for (i = 0; i < nr_found; i++) {
885 		struct page *page;
886 repeat:
887 		page = radix_tree_deref_slot((void **)pages[i]);
888 		if (unlikely(!page))
889 			continue;
890 		if (radix_tree_deref_retry(page))
891 			goto restart;
892 
893 		if (!page_cache_get_speculative(page))
894 			goto repeat;
895 
896 		/* Has the page moved? */
897 		if (unlikely(page != *((void **)pages[i]))) {
898 			page_cache_release(page);
899 			goto repeat;
900 		}
901 
902 		pages[ret] = page;
903 		ret++;
904 	}
905 	rcu_read_unlock();
906 
907 	if (ret)
908 		*index = pages[ret - 1]->index + 1;
909 
910 	return ret;
911 }
912 EXPORT_SYMBOL(find_get_pages_tag);
913 
914 /**
915  * grab_cache_page_nowait - returns locked page at given index in given cache
916  * @mapping: target address_space
917  * @index: the page index
918  *
919  * Same as grab_cache_page(), but do not wait if the page is unavailable.
920  * This is intended for speculative data generators, where the data can
921  * be regenerated if the page couldn't be grabbed.  This routine should
922  * be safe to call while holding the lock for another page.
923  *
924  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
925  * and deadlock against the caller's locked page.
926  */
927 struct page *
928 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
929 {
930 	struct page *page = find_get_page(mapping, index);
931 
932 	if (page) {
933 		if (trylock_page(page))
934 			return page;
935 		page_cache_release(page);
936 		return NULL;
937 	}
938 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
939 	if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
940 		page_cache_release(page);
941 		page = NULL;
942 	}
943 	return page;
944 }
945 EXPORT_SYMBOL(grab_cache_page_nowait);
946 
947 /*
948  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
949  * a _large_ part of the i/o request. Imagine the worst scenario:
950  *
951  *      ---R__________________________________________B__________
952  *         ^ reading here                             ^ bad block(assume 4k)
953  *
954  * read(R) => miss => readahead(R...B) => media error => frustrating retries
955  * => failing the whole request => read(R) => read(R+1) =>
956  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
957  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
958  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
959  *
960  * It is going insane. Fix it by quickly scaling down the readahead size.
961  */
962 static void shrink_readahead_size_eio(struct file *filp,
963 					struct file_ra_state *ra)
964 {
965 	ra->ra_pages /= 4;
966 }
967 
968 /**
969  * do_generic_file_read - generic file read routine
970  * @filp:	the file to read
971  * @ppos:	current file position
972  * @desc:	read_descriptor
973  * @actor:	read method
974  *
975  * This is a generic file read routine, and uses the
976  * mapping->a_ops->readpage() function for the actual low-level stuff.
977  *
978  * This is really ugly. But the goto's actually try to clarify some
979  * of the logic when it comes to error handling etc.
980  */
981 static void do_generic_file_read(struct file *filp, loff_t *ppos,
982 		read_descriptor_t *desc, read_actor_t actor)
983 {
984 	struct address_space *mapping = filp->f_mapping;
985 	struct inode *inode = mapping->host;
986 	struct file_ra_state *ra = &filp->f_ra;
987 	pgoff_t index;
988 	pgoff_t last_index;
989 	pgoff_t prev_index;
990 	unsigned long offset;      /* offset into pagecache page */
991 	unsigned int prev_offset;
992 	int error;
993 
994 	index = *ppos >> PAGE_CACHE_SHIFT;
995 	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
996 	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
997 	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
998 	offset = *ppos & ~PAGE_CACHE_MASK;
999 
1000 	for (;;) {
1001 		struct page *page;
1002 		pgoff_t end_index;
1003 		loff_t isize;
1004 		unsigned long nr, ret;
1005 
1006 		cond_resched();
1007 find_page:
1008 		page = find_get_page(mapping, index);
1009 		if (!page) {
1010 			page_cache_sync_readahead(mapping,
1011 					ra, filp,
1012 					index, last_index - index);
1013 			page = find_get_page(mapping, index);
1014 			if (unlikely(page == NULL))
1015 				goto no_cached_page;
1016 		}
1017 		if (PageReadahead(page)) {
1018 			page_cache_async_readahead(mapping,
1019 					ra, filp, page,
1020 					index, last_index - index);
1021 		}
1022 		if (!PageUptodate(page)) {
1023 			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1024 					!mapping->a_ops->is_partially_uptodate)
1025 				goto page_not_up_to_date;
1026 			if (!trylock_page(page))
1027 				goto page_not_up_to_date;
1028 			/* Did it get truncated before we got the lock? */
1029 			if (!page->mapping)
1030 				goto page_not_up_to_date_locked;
1031 			if (!mapping->a_ops->is_partially_uptodate(page,
1032 								desc, offset))
1033 				goto page_not_up_to_date_locked;
1034 			unlock_page(page);
1035 		}
1036 page_ok:
1037 		/*
1038 		 * i_size must be checked after we know the page is Uptodate.
1039 		 *
1040 		 * Checking i_size after the check allows us to calculate
1041 		 * the correct value for "nr", which means the zero-filled
1042 		 * part of the page is not copied back to userspace (unless
1043 		 * another truncate extends the file - this is desired though).
1044 		 */
1045 
1046 		isize = i_size_read(inode);
1047 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1048 		if (unlikely(!isize || index > end_index)) {
1049 			page_cache_release(page);
1050 			goto out;
1051 		}
1052 
1053 		/* nr is the maximum number of bytes to copy from this page */
1054 		nr = PAGE_CACHE_SIZE;
1055 		if (index == end_index) {
1056 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1057 			if (nr <= offset) {
1058 				page_cache_release(page);
1059 				goto out;
1060 			}
1061 		}
1062 		nr = nr - offset;
1063 
1064 		/* If users can be writing to this page using arbitrary
1065 		 * virtual addresses, take care about potential aliasing
1066 		 * before reading the page on the kernel side.
1067 		 */
1068 		if (mapping_writably_mapped(mapping))
1069 			flush_dcache_page(page);
1070 
1071 		/*
1072 		 * When a sequential read accesses a page several times,
1073 		 * only mark it as accessed the first time.
1074 		 */
1075 		if (prev_index != index || offset != prev_offset)
1076 			mark_page_accessed(page);
1077 		prev_index = index;
1078 
1079 		/*
1080 		 * Ok, we have the page, and it's up-to-date, so
1081 		 * now we can copy it to user space...
1082 		 *
1083 		 * The actor routine returns how many bytes were actually used..
1084 		 * NOTE! This may not be the same as how much of a user buffer
1085 		 * we filled up (we may be padding etc), so we can only update
1086 		 * "pos" here (the actor routine has to update the user buffer
1087 		 * pointers and the remaining count).
1088 		 */
1089 		ret = actor(desc, page, offset, nr);
1090 		offset += ret;
1091 		index += offset >> PAGE_CACHE_SHIFT;
1092 		offset &= ~PAGE_CACHE_MASK;
1093 		prev_offset = offset;
1094 
1095 		page_cache_release(page);
1096 		if (ret == nr && desc->count)
1097 			continue;
1098 		goto out;
1099 
1100 page_not_up_to_date:
1101 		/* Get exclusive access to the page ... */
1102 		error = lock_page_killable(page);
1103 		if (unlikely(error))
1104 			goto readpage_error;
1105 
1106 page_not_up_to_date_locked:
1107 		/* Did it get truncated before we got the lock? */
1108 		if (!page->mapping) {
1109 			unlock_page(page);
1110 			page_cache_release(page);
1111 			continue;
1112 		}
1113 
1114 		/* Did somebody else fill it already? */
1115 		if (PageUptodate(page)) {
1116 			unlock_page(page);
1117 			goto page_ok;
1118 		}
1119 
1120 readpage:
1121 		/*
1122 		 * A previous I/O error may have been due to temporary
1123 		 * failures, eg. multipath errors.
1124 		 * PG_error will be set again if readpage fails.
1125 		 */
1126 		ClearPageError(page);
1127 		/* Start the actual read. The read will unlock the page. */
1128 		error = mapping->a_ops->readpage(filp, page);
1129 
1130 		if (unlikely(error)) {
1131 			if (error == AOP_TRUNCATED_PAGE) {
1132 				page_cache_release(page);
1133 				goto find_page;
1134 			}
1135 			goto readpage_error;
1136 		}
1137 
1138 		if (!PageUptodate(page)) {
1139 			error = lock_page_killable(page);
1140 			if (unlikely(error))
1141 				goto readpage_error;
1142 			if (!PageUptodate(page)) {
1143 				if (page->mapping == NULL) {
1144 					/*
1145 					 * invalidate_mapping_pages got it
1146 					 */
1147 					unlock_page(page);
1148 					page_cache_release(page);
1149 					goto find_page;
1150 				}
1151 				unlock_page(page);
1152 				shrink_readahead_size_eio(filp, ra);
1153 				error = -EIO;
1154 				goto readpage_error;
1155 			}
1156 			unlock_page(page);
1157 		}
1158 
1159 		goto page_ok;
1160 
1161 readpage_error:
1162 		/* UHHUH! A synchronous read error occurred. Report it */
1163 		desc->error = error;
1164 		page_cache_release(page);
1165 		goto out;
1166 
1167 no_cached_page:
1168 		/*
1169 		 * Ok, it wasn't cached, so we need to create a new
1170 		 * page..
1171 		 */
1172 		page = page_cache_alloc_cold(mapping);
1173 		if (!page) {
1174 			desc->error = -ENOMEM;
1175 			goto out;
1176 		}
1177 		error = add_to_page_cache_lru(page, mapping,
1178 						index, GFP_KERNEL);
1179 		if (error) {
1180 			page_cache_release(page);
1181 			if (error == -EEXIST)
1182 				goto find_page;
1183 			desc->error = error;
1184 			goto out;
1185 		}
1186 		goto readpage;
1187 	}
1188 
1189 out:
1190 	ra->prev_pos = prev_index;
1191 	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1192 	ra->prev_pos |= prev_offset;
1193 
1194 	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1195 	file_accessed(filp);
1196 }
1197 
1198 int file_read_actor(read_descriptor_t *desc, struct page *page,
1199 			unsigned long offset, unsigned long size)
1200 {
1201 	char *kaddr;
1202 	unsigned long left, count = desc->count;
1203 
1204 	if (size > count)
1205 		size = count;
1206 
1207 	/*
1208 	 * Faults on the destination of a read are common, so do it before
1209 	 * taking the kmap.
1210 	 */
1211 	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1212 		kaddr = kmap_atomic(page, KM_USER0);
1213 		left = __copy_to_user_inatomic(desc->arg.buf,
1214 						kaddr + offset, size);
1215 		kunmap_atomic(kaddr, KM_USER0);
1216 		if (left == 0)
1217 			goto success;
1218 	}
1219 
1220 	/* Do it the slow way */
1221 	kaddr = kmap(page);
1222 	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1223 	kunmap(page);
1224 
1225 	if (left) {
1226 		size -= left;
1227 		desc->error = -EFAULT;
1228 	}
1229 success:
1230 	desc->count = count - size;
1231 	desc->written += size;
1232 	desc->arg.buf += size;
1233 	return size;
1234 }
1235 
1236 /*
1237  * Performs necessary checks before doing a write
1238  * @iov:	io vector request
1239  * @nr_segs:	number of segments in the iovec
1240  * @count:	number of bytes to write
1241  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1242  *
1243  * Adjust number of segments and amount of bytes to write (nr_segs should be
1244  * properly initialized first). Returns appropriate error code that caller
1245  * should return or zero in case that write should be allowed.
1246  */
1247 int generic_segment_checks(const struct iovec *iov,
1248 			unsigned long *nr_segs, size_t *count, int access_flags)
1249 {
1250 	unsigned long   seg;
1251 	size_t cnt = 0;
1252 	for (seg = 0; seg < *nr_segs; seg++) {
1253 		const struct iovec *iv = &iov[seg];
1254 
1255 		/*
1256 		 * If any segment has a negative length, or the cumulative
1257 		 * length ever wraps negative then return -EINVAL.
1258 		 */
1259 		cnt += iv->iov_len;
1260 		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1261 			return -EINVAL;
1262 		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1263 			continue;
1264 		if (seg == 0)
1265 			return -EFAULT;
1266 		*nr_segs = seg;
1267 		cnt -= iv->iov_len;	/* This segment is no good */
1268 		break;
1269 	}
1270 	*count = cnt;
1271 	return 0;
1272 }
1273 EXPORT_SYMBOL(generic_segment_checks);
1274 
1275 /**
1276  * generic_file_aio_read - generic filesystem read routine
1277  * @iocb:	kernel I/O control block
1278  * @iov:	io vector request
1279  * @nr_segs:	number of segments in the iovec
1280  * @pos:	current file position
1281  *
1282  * This is the "read()" routine for all filesystems
1283  * that can use the page cache directly.
1284  */
1285 ssize_t
1286 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1287 		unsigned long nr_segs, loff_t pos)
1288 {
1289 	struct file *filp = iocb->ki_filp;
1290 	ssize_t retval;
1291 	unsigned long seg = 0;
1292 	size_t count;
1293 	loff_t *ppos = &iocb->ki_pos;
1294 
1295 	count = 0;
1296 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1297 	if (retval)
1298 		return retval;
1299 
1300 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1301 	if (filp->f_flags & O_DIRECT) {
1302 		loff_t size;
1303 		struct address_space *mapping;
1304 		struct inode *inode;
1305 
1306 		mapping = filp->f_mapping;
1307 		inode = mapping->host;
1308 		if (!count)
1309 			goto out; /* skip atime */
1310 		size = i_size_read(inode);
1311 		if (pos < size) {
1312 			retval = filemap_write_and_wait_range(mapping, pos,
1313 					pos + iov_length(iov, nr_segs) - 1);
1314 			if (!retval) {
1315 				retval = mapping->a_ops->direct_IO(READ, iocb,
1316 							iov, pos, nr_segs);
1317 			}
1318 			if (retval > 0) {
1319 				*ppos = pos + retval;
1320 				count -= retval;
1321 			}
1322 
1323 			/*
1324 			 * Btrfs can have a short DIO read if we encounter
1325 			 * compressed extents, so if there was an error, or if
1326 			 * we've already read everything we wanted to, or if
1327 			 * there was a short read because we hit EOF, go ahead
1328 			 * and return.  Otherwise fallthrough to buffered io for
1329 			 * the rest of the read.
1330 			 */
1331 			if (retval < 0 || !count || *ppos >= size) {
1332 				file_accessed(filp);
1333 				goto out;
1334 			}
1335 		}
1336 	}
1337 
1338 	count = retval;
1339 	for (seg = 0; seg < nr_segs; seg++) {
1340 		read_descriptor_t desc;
1341 		loff_t offset = 0;
1342 
1343 		/*
1344 		 * If we did a short DIO read we need to skip the section of the
1345 		 * iov that we've already read data into.
1346 		 */
1347 		if (count) {
1348 			if (count > iov[seg].iov_len) {
1349 				count -= iov[seg].iov_len;
1350 				continue;
1351 			}
1352 			offset = count;
1353 			count = 0;
1354 		}
1355 
1356 		desc.written = 0;
1357 		desc.arg.buf = iov[seg].iov_base + offset;
1358 		desc.count = iov[seg].iov_len - offset;
1359 		if (desc.count == 0)
1360 			continue;
1361 		desc.error = 0;
1362 		do_generic_file_read(filp, ppos, &desc, file_read_actor);
1363 		retval += desc.written;
1364 		if (desc.error) {
1365 			retval = retval ?: desc.error;
1366 			break;
1367 		}
1368 		if (desc.count > 0)
1369 			break;
1370 	}
1371 out:
1372 	return retval;
1373 }
1374 EXPORT_SYMBOL(generic_file_aio_read);
1375 
1376 static ssize_t
1377 do_readahead(struct address_space *mapping, struct file *filp,
1378 	     pgoff_t index, unsigned long nr)
1379 {
1380 	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1381 		return -EINVAL;
1382 
1383 	force_page_cache_readahead(mapping, filp, index, nr);
1384 	return 0;
1385 }
1386 
1387 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1388 {
1389 	ssize_t ret;
1390 	struct file *file;
1391 
1392 	ret = -EBADF;
1393 	file = fget(fd);
1394 	if (file) {
1395 		if (file->f_mode & FMODE_READ) {
1396 			struct address_space *mapping = file->f_mapping;
1397 			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1398 			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1399 			unsigned long len = end - start + 1;
1400 			ret = do_readahead(mapping, file, start, len);
1401 		}
1402 		fput(file);
1403 	}
1404 	return ret;
1405 }
1406 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1407 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1408 {
1409 	return SYSC_readahead((int) fd, offset, (size_t) count);
1410 }
1411 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1412 #endif
1413 
1414 #ifdef CONFIG_MMU
1415 /**
1416  * page_cache_read - adds requested page to the page cache if not already there
1417  * @file:	file to read
1418  * @offset:	page index
1419  *
1420  * This adds the requested page to the page cache if it isn't already there,
1421  * and schedules an I/O to read in its contents from disk.
1422  */
1423 static int page_cache_read(struct file *file, pgoff_t offset)
1424 {
1425 	struct address_space *mapping = file->f_mapping;
1426 	struct page *page;
1427 	int ret;
1428 
1429 	do {
1430 		page = page_cache_alloc_cold(mapping);
1431 		if (!page)
1432 			return -ENOMEM;
1433 
1434 		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1435 		if (ret == 0)
1436 			ret = mapping->a_ops->readpage(file, page);
1437 		else if (ret == -EEXIST)
1438 			ret = 0; /* losing race to add is OK */
1439 
1440 		page_cache_release(page);
1441 
1442 	} while (ret == AOP_TRUNCATED_PAGE);
1443 
1444 	return ret;
1445 }
1446 
1447 #define MMAP_LOTSAMISS  (100)
1448 
1449 /*
1450  * Synchronous readahead happens when we don't even find
1451  * a page in the page cache at all.
1452  */
1453 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1454 				   struct file_ra_state *ra,
1455 				   struct file *file,
1456 				   pgoff_t offset)
1457 {
1458 	unsigned long ra_pages;
1459 	struct address_space *mapping = file->f_mapping;
1460 
1461 	/* If we don't want any read-ahead, don't bother */
1462 	if (VM_RandomReadHint(vma))
1463 		return;
1464 
1465 	if (VM_SequentialReadHint(vma) ||
1466 			offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) {
1467 		page_cache_sync_readahead(mapping, ra, file, offset,
1468 					  ra->ra_pages);
1469 		return;
1470 	}
1471 
1472 	if (ra->mmap_miss < INT_MAX)
1473 		ra->mmap_miss++;
1474 
1475 	/*
1476 	 * Do we miss much more than hit in this file? If so,
1477 	 * stop bothering with read-ahead. It will only hurt.
1478 	 */
1479 	if (ra->mmap_miss > MMAP_LOTSAMISS)
1480 		return;
1481 
1482 	/*
1483 	 * mmap read-around
1484 	 */
1485 	ra_pages = max_sane_readahead(ra->ra_pages);
1486 	if (ra_pages) {
1487 		ra->start = max_t(long, 0, offset - ra_pages/2);
1488 		ra->size = ra_pages;
1489 		ra->async_size = 0;
1490 		ra_submit(ra, mapping, file);
1491 	}
1492 }
1493 
1494 /*
1495  * Asynchronous readahead happens when we find the page and PG_readahead,
1496  * so we want to possibly extend the readahead further..
1497  */
1498 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1499 				    struct file_ra_state *ra,
1500 				    struct file *file,
1501 				    struct page *page,
1502 				    pgoff_t offset)
1503 {
1504 	struct address_space *mapping = file->f_mapping;
1505 
1506 	/* If we don't want any read-ahead, don't bother */
1507 	if (VM_RandomReadHint(vma))
1508 		return;
1509 	if (ra->mmap_miss > 0)
1510 		ra->mmap_miss--;
1511 	if (PageReadahead(page))
1512 		page_cache_async_readahead(mapping, ra, file,
1513 					   page, offset, ra->ra_pages);
1514 }
1515 
1516 /**
1517  * filemap_fault - read in file data for page fault handling
1518  * @vma:	vma in which the fault was taken
1519  * @vmf:	struct vm_fault containing details of the fault
1520  *
1521  * filemap_fault() is invoked via the vma operations vector for a
1522  * mapped memory region to read in file data during a page fault.
1523  *
1524  * The goto's are kind of ugly, but this streamlines the normal case of having
1525  * it in the page cache, and handles the special cases reasonably without
1526  * having a lot of duplicated code.
1527  */
1528 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1529 {
1530 	int error;
1531 	struct file *file = vma->vm_file;
1532 	struct address_space *mapping = file->f_mapping;
1533 	struct file_ra_state *ra = &file->f_ra;
1534 	struct inode *inode = mapping->host;
1535 	pgoff_t offset = vmf->pgoff;
1536 	struct page *page;
1537 	pgoff_t size;
1538 	int ret = 0;
1539 
1540 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1541 	if (offset >= size)
1542 		return VM_FAULT_SIGBUS;
1543 
1544 	/*
1545 	 * Do we have something in the page cache already?
1546 	 */
1547 	page = find_get_page(mapping, offset);
1548 	if (likely(page)) {
1549 		/*
1550 		 * We found the page, so try async readahead before
1551 		 * waiting for the lock.
1552 		 */
1553 		do_async_mmap_readahead(vma, ra, file, page, offset);
1554 	} else {
1555 		/* No page in the page cache at all */
1556 		do_sync_mmap_readahead(vma, ra, file, offset);
1557 		count_vm_event(PGMAJFAULT);
1558 		ret = VM_FAULT_MAJOR;
1559 retry_find:
1560 		page = find_get_page(mapping, offset);
1561 		if (!page)
1562 			goto no_cached_page;
1563 	}
1564 
1565 	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1566 		page_cache_release(page);
1567 		return ret | VM_FAULT_RETRY;
1568 	}
1569 
1570 	/* Did it get truncated? */
1571 	if (unlikely(page->mapping != mapping)) {
1572 		unlock_page(page);
1573 		put_page(page);
1574 		goto retry_find;
1575 	}
1576 	VM_BUG_ON(page->index != offset);
1577 
1578 	/*
1579 	 * We have a locked page in the page cache, now we need to check
1580 	 * that it's up-to-date. If not, it is going to be due to an error.
1581 	 */
1582 	if (unlikely(!PageUptodate(page)))
1583 		goto page_not_uptodate;
1584 
1585 	/*
1586 	 * Found the page and have a reference on it.
1587 	 * We must recheck i_size under page lock.
1588 	 */
1589 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1590 	if (unlikely(offset >= size)) {
1591 		unlock_page(page);
1592 		page_cache_release(page);
1593 		return VM_FAULT_SIGBUS;
1594 	}
1595 
1596 	ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT;
1597 	vmf->page = page;
1598 	return ret | VM_FAULT_LOCKED;
1599 
1600 no_cached_page:
1601 	/*
1602 	 * We're only likely to ever get here if MADV_RANDOM is in
1603 	 * effect.
1604 	 */
1605 	error = page_cache_read(file, offset);
1606 
1607 	/*
1608 	 * The page we want has now been added to the page cache.
1609 	 * In the unlikely event that someone removed it in the
1610 	 * meantime, we'll just come back here and read it again.
1611 	 */
1612 	if (error >= 0)
1613 		goto retry_find;
1614 
1615 	/*
1616 	 * An error return from page_cache_read can result if the
1617 	 * system is low on memory, or a problem occurs while trying
1618 	 * to schedule I/O.
1619 	 */
1620 	if (error == -ENOMEM)
1621 		return VM_FAULT_OOM;
1622 	return VM_FAULT_SIGBUS;
1623 
1624 page_not_uptodate:
1625 	/*
1626 	 * Umm, take care of errors if the page isn't up-to-date.
1627 	 * Try to re-read it _once_. We do this synchronously,
1628 	 * because there really aren't any performance issues here
1629 	 * and we need to check for errors.
1630 	 */
1631 	ClearPageError(page);
1632 	error = mapping->a_ops->readpage(file, page);
1633 	if (!error) {
1634 		wait_on_page_locked(page);
1635 		if (!PageUptodate(page))
1636 			error = -EIO;
1637 	}
1638 	page_cache_release(page);
1639 
1640 	if (!error || error == AOP_TRUNCATED_PAGE)
1641 		goto retry_find;
1642 
1643 	/* Things didn't work out. Return zero to tell the mm layer so. */
1644 	shrink_readahead_size_eio(file, ra);
1645 	return VM_FAULT_SIGBUS;
1646 }
1647 EXPORT_SYMBOL(filemap_fault);
1648 
1649 const struct vm_operations_struct generic_file_vm_ops = {
1650 	.fault		= filemap_fault,
1651 };
1652 
1653 /* This is used for a general mmap of a disk file */
1654 
1655 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1656 {
1657 	struct address_space *mapping = file->f_mapping;
1658 
1659 	if (!mapping->a_ops->readpage)
1660 		return -ENOEXEC;
1661 	file_accessed(file);
1662 	vma->vm_ops = &generic_file_vm_ops;
1663 	vma->vm_flags |= VM_CAN_NONLINEAR;
1664 	return 0;
1665 }
1666 
1667 /*
1668  * This is for filesystems which do not implement ->writepage.
1669  */
1670 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1671 {
1672 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1673 		return -EINVAL;
1674 	return generic_file_mmap(file, vma);
1675 }
1676 #else
1677 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1678 {
1679 	return -ENOSYS;
1680 }
1681 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1682 {
1683 	return -ENOSYS;
1684 }
1685 #endif /* CONFIG_MMU */
1686 
1687 EXPORT_SYMBOL(generic_file_mmap);
1688 EXPORT_SYMBOL(generic_file_readonly_mmap);
1689 
1690 static struct page *__read_cache_page(struct address_space *mapping,
1691 				pgoff_t index,
1692 				int (*filler)(void *,struct page*),
1693 				void *data,
1694 				gfp_t gfp)
1695 {
1696 	struct page *page;
1697 	int err;
1698 repeat:
1699 	page = find_get_page(mapping, index);
1700 	if (!page) {
1701 		page = __page_cache_alloc(gfp | __GFP_COLD);
1702 		if (!page)
1703 			return ERR_PTR(-ENOMEM);
1704 		err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1705 		if (unlikely(err)) {
1706 			page_cache_release(page);
1707 			if (err == -EEXIST)
1708 				goto repeat;
1709 			/* Presumably ENOMEM for radix tree node */
1710 			return ERR_PTR(err);
1711 		}
1712 		err = filler(data, page);
1713 		if (err < 0) {
1714 			page_cache_release(page);
1715 			page = ERR_PTR(err);
1716 		}
1717 	}
1718 	return page;
1719 }
1720 
1721 static struct page *do_read_cache_page(struct address_space *mapping,
1722 				pgoff_t index,
1723 				int (*filler)(void *,struct page*),
1724 				void *data,
1725 				gfp_t gfp)
1726 
1727 {
1728 	struct page *page;
1729 	int err;
1730 
1731 retry:
1732 	page = __read_cache_page(mapping, index, filler, data, gfp);
1733 	if (IS_ERR(page))
1734 		return page;
1735 	if (PageUptodate(page))
1736 		goto out;
1737 
1738 	lock_page(page);
1739 	if (!page->mapping) {
1740 		unlock_page(page);
1741 		page_cache_release(page);
1742 		goto retry;
1743 	}
1744 	if (PageUptodate(page)) {
1745 		unlock_page(page);
1746 		goto out;
1747 	}
1748 	err = filler(data, page);
1749 	if (err < 0) {
1750 		page_cache_release(page);
1751 		return ERR_PTR(err);
1752 	}
1753 out:
1754 	mark_page_accessed(page);
1755 	return page;
1756 }
1757 
1758 /**
1759  * read_cache_page_async - read into page cache, fill it if needed
1760  * @mapping:	the page's address_space
1761  * @index:	the page index
1762  * @filler:	function to perform the read
1763  * @data:	destination for read data
1764  *
1765  * Same as read_cache_page, but don't wait for page to become unlocked
1766  * after submitting it to the filler.
1767  *
1768  * Read into the page cache. If a page already exists, and PageUptodate() is
1769  * not set, try to fill the page but don't wait for it to become unlocked.
1770  *
1771  * If the page does not get brought uptodate, return -EIO.
1772  */
1773 struct page *read_cache_page_async(struct address_space *mapping,
1774 				pgoff_t index,
1775 				int (*filler)(void *,struct page*),
1776 				void *data)
1777 {
1778 	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1779 }
1780 EXPORT_SYMBOL(read_cache_page_async);
1781 
1782 static struct page *wait_on_page_read(struct page *page)
1783 {
1784 	if (!IS_ERR(page)) {
1785 		wait_on_page_locked(page);
1786 		if (!PageUptodate(page)) {
1787 			page_cache_release(page);
1788 			page = ERR_PTR(-EIO);
1789 		}
1790 	}
1791 	return page;
1792 }
1793 
1794 /**
1795  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1796  * @mapping:	the page's address_space
1797  * @index:	the page index
1798  * @gfp:	the page allocator flags to use if allocating
1799  *
1800  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1801  * any new page allocations done using the specified allocation flags. Note
1802  * that the Radix tree operations will still use GFP_KERNEL, so you can't
1803  * expect to do this atomically or anything like that - but you can pass in
1804  * other page requirements.
1805  *
1806  * If the page does not get brought uptodate, return -EIO.
1807  */
1808 struct page *read_cache_page_gfp(struct address_space *mapping,
1809 				pgoff_t index,
1810 				gfp_t gfp)
1811 {
1812 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1813 
1814 	return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1815 }
1816 EXPORT_SYMBOL(read_cache_page_gfp);
1817 
1818 /**
1819  * read_cache_page - read into page cache, fill it if needed
1820  * @mapping:	the page's address_space
1821  * @index:	the page index
1822  * @filler:	function to perform the read
1823  * @data:	destination for read data
1824  *
1825  * Read into the page cache. If a page already exists, and PageUptodate() is
1826  * not set, try to fill the page then wait for it to become unlocked.
1827  *
1828  * If the page does not get brought uptodate, return -EIO.
1829  */
1830 struct page *read_cache_page(struct address_space *mapping,
1831 				pgoff_t index,
1832 				int (*filler)(void *,struct page*),
1833 				void *data)
1834 {
1835 	return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1836 }
1837 EXPORT_SYMBOL(read_cache_page);
1838 
1839 /*
1840  * The logic we want is
1841  *
1842  *	if suid or (sgid and xgrp)
1843  *		remove privs
1844  */
1845 int should_remove_suid(struct dentry *dentry)
1846 {
1847 	mode_t mode = dentry->d_inode->i_mode;
1848 	int kill = 0;
1849 
1850 	/* suid always must be killed */
1851 	if (unlikely(mode & S_ISUID))
1852 		kill = ATTR_KILL_SUID;
1853 
1854 	/*
1855 	 * sgid without any exec bits is just a mandatory locking mark; leave
1856 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1857 	 */
1858 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1859 		kill |= ATTR_KILL_SGID;
1860 
1861 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1862 		return kill;
1863 
1864 	return 0;
1865 }
1866 EXPORT_SYMBOL(should_remove_suid);
1867 
1868 static int __remove_suid(struct dentry *dentry, int kill)
1869 {
1870 	struct iattr newattrs;
1871 
1872 	newattrs.ia_valid = ATTR_FORCE | kill;
1873 	return notify_change(dentry, &newattrs);
1874 }
1875 
1876 int file_remove_suid(struct file *file)
1877 {
1878 	struct dentry *dentry = file->f_path.dentry;
1879 	int killsuid = should_remove_suid(dentry);
1880 	int killpriv = security_inode_need_killpriv(dentry);
1881 	int error = 0;
1882 
1883 	if (killpriv < 0)
1884 		return killpriv;
1885 	if (killpriv)
1886 		error = security_inode_killpriv(dentry);
1887 	if (!error && killsuid)
1888 		error = __remove_suid(dentry, killsuid);
1889 
1890 	return error;
1891 }
1892 EXPORT_SYMBOL(file_remove_suid);
1893 
1894 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1895 			const struct iovec *iov, size_t base, size_t bytes)
1896 {
1897 	size_t copied = 0, left = 0;
1898 
1899 	while (bytes) {
1900 		char __user *buf = iov->iov_base + base;
1901 		int copy = min(bytes, iov->iov_len - base);
1902 
1903 		base = 0;
1904 		left = __copy_from_user_inatomic(vaddr, buf, copy);
1905 		copied += copy;
1906 		bytes -= copy;
1907 		vaddr += copy;
1908 		iov++;
1909 
1910 		if (unlikely(left))
1911 			break;
1912 	}
1913 	return copied - left;
1914 }
1915 
1916 /*
1917  * Copy as much as we can into the page and return the number of bytes which
1918  * were successfully copied.  If a fault is encountered then return the number of
1919  * bytes which were copied.
1920  */
1921 size_t iov_iter_copy_from_user_atomic(struct page *page,
1922 		struct iov_iter *i, unsigned long offset, size_t bytes)
1923 {
1924 	char *kaddr;
1925 	size_t copied;
1926 
1927 	BUG_ON(!in_atomic());
1928 	kaddr = kmap_atomic(page, KM_USER0);
1929 	if (likely(i->nr_segs == 1)) {
1930 		int left;
1931 		char __user *buf = i->iov->iov_base + i->iov_offset;
1932 		left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
1933 		copied = bytes - left;
1934 	} else {
1935 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1936 						i->iov, i->iov_offset, bytes);
1937 	}
1938 	kunmap_atomic(kaddr, KM_USER0);
1939 
1940 	return copied;
1941 }
1942 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1943 
1944 /*
1945  * This has the same sideeffects and return value as
1946  * iov_iter_copy_from_user_atomic().
1947  * The difference is that it attempts to resolve faults.
1948  * Page must not be locked.
1949  */
1950 size_t iov_iter_copy_from_user(struct page *page,
1951 		struct iov_iter *i, unsigned long offset, size_t bytes)
1952 {
1953 	char *kaddr;
1954 	size_t copied;
1955 
1956 	kaddr = kmap(page);
1957 	if (likely(i->nr_segs == 1)) {
1958 		int left;
1959 		char __user *buf = i->iov->iov_base + i->iov_offset;
1960 		left = __copy_from_user(kaddr + offset, buf, bytes);
1961 		copied = bytes - left;
1962 	} else {
1963 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1964 						i->iov, i->iov_offset, bytes);
1965 	}
1966 	kunmap(page);
1967 	return copied;
1968 }
1969 EXPORT_SYMBOL(iov_iter_copy_from_user);
1970 
1971 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1972 {
1973 	BUG_ON(i->count < bytes);
1974 
1975 	if (likely(i->nr_segs == 1)) {
1976 		i->iov_offset += bytes;
1977 		i->count -= bytes;
1978 	} else {
1979 		const struct iovec *iov = i->iov;
1980 		size_t base = i->iov_offset;
1981 
1982 		/*
1983 		 * The !iov->iov_len check ensures we skip over unlikely
1984 		 * zero-length segments (without overruning the iovec).
1985 		 */
1986 		while (bytes || unlikely(i->count && !iov->iov_len)) {
1987 			int copy;
1988 
1989 			copy = min(bytes, iov->iov_len - base);
1990 			BUG_ON(!i->count || i->count < copy);
1991 			i->count -= copy;
1992 			bytes -= copy;
1993 			base += copy;
1994 			if (iov->iov_len == base) {
1995 				iov++;
1996 				base = 0;
1997 			}
1998 		}
1999 		i->iov = iov;
2000 		i->iov_offset = base;
2001 	}
2002 }
2003 EXPORT_SYMBOL(iov_iter_advance);
2004 
2005 /*
2006  * Fault in the first iovec of the given iov_iter, to a maximum length
2007  * of bytes. Returns 0 on success, or non-zero if the memory could not be
2008  * accessed (ie. because it is an invalid address).
2009  *
2010  * writev-intensive code may want this to prefault several iovecs -- that
2011  * would be possible (callers must not rely on the fact that _only_ the
2012  * first iovec will be faulted with the current implementation).
2013  */
2014 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2015 {
2016 	char __user *buf = i->iov->iov_base + i->iov_offset;
2017 	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2018 	return fault_in_pages_readable(buf, bytes);
2019 }
2020 EXPORT_SYMBOL(iov_iter_fault_in_readable);
2021 
2022 /*
2023  * Return the count of just the current iov_iter segment.
2024  */
2025 size_t iov_iter_single_seg_count(struct iov_iter *i)
2026 {
2027 	const struct iovec *iov = i->iov;
2028 	if (i->nr_segs == 1)
2029 		return i->count;
2030 	else
2031 		return min(i->count, iov->iov_len - i->iov_offset);
2032 }
2033 EXPORT_SYMBOL(iov_iter_single_seg_count);
2034 
2035 /*
2036  * Performs necessary checks before doing a write
2037  *
2038  * Can adjust writing position or amount of bytes to write.
2039  * Returns appropriate error code that caller should return or
2040  * zero in case that write should be allowed.
2041  */
2042 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2043 {
2044 	struct inode *inode = file->f_mapping->host;
2045 	unsigned long limit = rlimit(RLIMIT_FSIZE);
2046 
2047         if (unlikely(*pos < 0))
2048                 return -EINVAL;
2049 
2050 	if (!isblk) {
2051 		/* FIXME: this is for backwards compatibility with 2.4 */
2052 		if (file->f_flags & O_APPEND)
2053                         *pos = i_size_read(inode);
2054 
2055 		if (limit != RLIM_INFINITY) {
2056 			if (*pos >= limit) {
2057 				send_sig(SIGXFSZ, current, 0);
2058 				return -EFBIG;
2059 			}
2060 			if (*count > limit - (typeof(limit))*pos) {
2061 				*count = limit - (typeof(limit))*pos;
2062 			}
2063 		}
2064 	}
2065 
2066 	/*
2067 	 * LFS rule
2068 	 */
2069 	if (unlikely(*pos + *count > MAX_NON_LFS &&
2070 				!(file->f_flags & O_LARGEFILE))) {
2071 		if (*pos >= MAX_NON_LFS) {
2072 			return -EFBIG;
2073 		}
2074 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2075 			*count = MAX_NON_LFS - (unsigned long)*pos;
2076 		}
2077 	}
2078 
2079 	/*
2080 	 * Are we about to exceed the fs block limit ?
2081 	 *
2082 	 * If we have written data it becomes a short write.  If we have
2083 	 * exceeded without writing data we send a signal and return EFBIG.
2084 	 * Linus frestrict idea will clean these up nicely..
2085 	 */
2086 	if (likely(!isblk)) {
2087 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2088 			if (*count || *pos > inode->i_sb->s_maxbytes) {
2089 				return -EFBIG;
2090 			}
2091 			/* zero-length writes at ->s_maxbytes are OK */
2092 		}
2093 
2094 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2095 			*count = inode->i_sb->s_maxbytes - *pos;
2096 	} else {
2097 #ifdef CONFIG_BLOCK
2098 		loff_t isize;
2099 		if (bdev_read_only(I_BDEV(inode)))
2100 			return -EPERM;
2101 		isize = i_size_read(inode);
2102 		if (*pos >= isize) {
2103 			if (*count || *pos > isize)
2104 				return -ENOSPC;
2105 		}
2106 
2107 		if (*pos + *count > isize)
2108 			*count = isize - *pos;
2109 #else
2110 		return -EPERM;
2111 #endif
2112 	}
2113 	return 0;
2114 }
2115 EXPORT_SYMBOL(generic_write_checks);
2116 
2117 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2118 				loff_t pos, unsigned len, unsigned flags,
2119 				struct page **pagep, void **fsdata)
2120 {
2121 	const struct address_space_operations *aops = mapping->a_ops;
2122 
2123 	return aops->write_begin(file, mapping, pos, len, flags,
2124 							pagep, fsdata);
2125 }
2126 EXPORT_SYMBOL(pagecache_write_begin);
2127 
2128 int pagecache_write_end(struct file *file, struct address_space *mapping,
2129 				loff_t pos, unsigned len, unsigned copied,
2130 				struct page *page, void *fsdata)
2131 {
2132 	const struct address_space_operations *aops = mapping->a_ops;
2133 
2134 	mark_page_accessed(page);
2135 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2136 }
2137 EXPORT_SYMBOL(pagecache_write_end);
2138 
2139 ssize_t
2140 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2141 		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2142 		size_t count, size_t ocount)
2143 {
2144 	struct file	*file = iocb->ki_filp;
2145 	struct address_space *mapping = file->f_mapping;
2146 	struct inode	*inode = mapping->host;
2147 	ssize_t		written;
2148 	size_t		write_len;
2149 	pgoff_t		end;
2150 
2151 	if (count != ocount)
2152 		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2153 
2154 	write_len = iov_length(iov, *nr_segs);
2155 	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2156 
2157 	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2158 	if (written)
2159 		goto out;
2160 
2161 	/*
2162 	 * After a write we want buffered reads to be sure to go to disk to get
2163 	 * the new data.  We invalidate clean cached page from the region we're
2164 	 * about to write.  We do this *before* the write so that we can return
2165 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2166 	 */
2167 	if (mapping->nrpages) {
2168 		written = invalidate_inode_pages2_range(mapping,
2169 					pos >> PAGE_CACHE_SHIFT, end);
2170 		/*
2171 		 * If a page can not be invalidated, return 0 to fall back
2172 		 * to buffered write.
2173 		 */
2174 		if (written) {
2175 			if (written == -EBUSY)
2176 				return 0;
2177 			goto out;
2178 		}
2179 	}
2180 
2181 	written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2182 
2183 	/*
2184 	 * Finally, try again to invalidate clean pages which might have been
2185 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2186 	 * if the source of the write was an mmap'ed region of the file
2187 	 * we're writing.  Either one is a pretty crazy thing to do,
2188 	 * so we don't support it 100%.  If this invalidation
2189 	 * fails, tough, the write still worked...
2190 	 */
2191 	if (mapping->nrpages) {
2192 		invalidate_inode_pages2_range(mapping,
2193 					      pos >> PAGE_CACHE_SHIFT, end);
2194 	}
2195 
2196 	if (written > 0) {
2197 		pos += written;
2198 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2199 			i_size_write(inode, pos);
2200 			mark_inode_dirty(inode);
2201 		}
2202 		*ppos = pos;
2203 	}
2204 out:
2205 	return written;
2206 }
2207 EXPORT_SYMBOL(generic_file_direct_write);
2208 
2209 /*
2210  * Find or create a page at the given pagecache position. Return the locked
2211  * page. This function is specifically for buffered writes.
2212  */
2213 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2214 					pgoff_t index, unsigned flags)
2215 {
2216 	int status;
2217 	struct page *page;
2218 	gfp_t gfp_notmask = 0;
2219 	if (flags & AOP_FLAG_NOFS)
2220 		gfp_notmask = __GFP_FS;
2221 repeat:
2222 	page = find_lock_page(mapping, index);
2223 	if (likely(page))
2224 		return page;
2225 
2226 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2227 	if (!page)
2228 		return NULL;
2229 	status = add_to_page_cache_lru(page, mapping, index,
2230 						GFP_KERNEL & ~gfp_notmask);
2231 	if (unlikely(status)) {
2232 		page_cache_release(page);
2233 		if (status == -EEXIST)
2234 			goto repeat;
2235 		return NULL;
2236 	}
2237 	return page;
2238 }
2239 EXPORT_SYMBOL(grab_cache_page_write_begin);
2240 
2241 static ssize_t generic_perform_write(struct file *file,
2242 				struct iov_iter *i, loff_t pos)
2243 {
2244 	struct address_space *mapping = file->f_mapping;
2245 	const struct address_space_operations *a_ops = mapping->a_ops;
2246 	long status = 0;
2247 	ssize_t written = 0;
2248 	unsigned int flags = 0;
2249 
2250 	/*
2251 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2252 	 */
2253 	if (segment_eq(get_fs(), KERNEL_DS))
2254 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2255 
2256 	do {
2257 		struct page *page;
2258 		unsigned long offset;	/* Offset into pagecache page */
2259 		unsigned long bytes;	/* Bytes to write to page */
2260 		size_t copied;		/* Bytes copied from user */
2261 		void *fsdata;
2262 
2263 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2264 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2265 						iov_iter_count(i));
2266 
2267 again:
2268 
2269 		/*
2270 		 * Bring in the user page that we will copy from _first_.
2271 		 * Otherwise there's a nasty deadlock on copying from the
2272 		 * same page as we're writing to, without it being marked
2273 		 * up-to-date.
2274 		 *
2275 		 * Not only is this an optimisation, but it is also required
2276 		 * to check that the address is actually valid, when atomic
2277 		 * usercopies are used, below.
2278 		 */
2279 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2280 			status = -EFAULT;
2281 			break;
2282 		}
2283 
2284 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2285 						&page, &fsdata);
2286 		if (unlikely(status))
2287 			break;
2288 
2289 		if (mapping_writably_mapped(mapping))
2290 			flush_dcache_page(page);
2291 
2292 		pagefault_disable();
2293 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2294 		pagefault_enable();
2295 		flush_dcache_page(page);
2296 
2297 		mark_page_accessed(page);
2298 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2299 						page, fsdata);
2300 		if (unlikely(status < 0))
2301 			break;
2302 		copied = status;
2303 
2304 		cond_resched();
2305 
2306 		iov_iter_advance(i, copied);
2307 		if (unlikely(copied == 0)) {
2308 			/*
2309 			 * If we were unable to copy any data at all, we must
2310 			 * fall back to a single segment length write.
2311 			 *
2312 			 * If we didn't fallback here, we could livelock
2313 			 * because not all segments in the iov can be copied at
2314 			 * once without a pagefault.
2315 			 */
2316 			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2317 						iov_iter_single_seg_count(i));
2318 			goto again;
2319 		}
2320 		pos += copied;
2321 		written += copied;
2322 
2323 		balance_dirty_pages_ratelimited(mapping);
2324 
2325 	} while (iov_iter_count(i));
2326 
2327 	return written ? written : status;
2328 }
2329 
2330 ssize_t
2331 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2332 		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2333 		size_t count, ssize_t written)
2334 {
2335 	struct file *file = iocb->ki_filp;
2336 	ssize_t status;
2337 	struct iov_iter i;
2338 
2339 	iov_iter_init(&i, iov, nr_segs, count, written);
2340 	status = generic_perform_write(file, &i, pos);
2341 
2342 	if (likely(status >= 0)) {
2343 		written += status;
2344 		*ppos = pos + status;
2345   	}
2346 
2347 	return written ? written : status;
2348 }
2349 EXPORT_SYMBOL(generic_file_buffered_write);
2350 
2351 /**
2352  * __generic_file_aio_write - write data to a file
2353  * @iocb:	IO state structure (file, offset, etc.)
2354  * @iov:	vector with data to write
2355  * @nr_segs:	number of segments in the vector
2356  * @ppos:	position where to write
2357  *
2358  * This function does all the work needed for actually writing data to a
2359  * file. It does all basic checks, removes SUID from the file, updates
2360  * modification times and calls proper subroutines depending on whether we
2361  * do direct IO or a standard buffered write.
2362  *
2363  * It expects i_mutex to be grabbed unless we work on a block device or similar
2364  * object which does not need locking at all.
2365  *
2366  * This function does *not* take care of syncing data in case of O_SYNC write.
2367  * A caller has to handle it. This is mainly due to the fact that we want to
2368  * avoid syncing under i_mutex.
2369  */
2370 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2371 				 unsigned long nr_segs, loff_t *ppos)
2372 {
2373 	struct file *file = iocb->ki_filp;
2374 	struct address_space * mapping = file->f_mapping;
2375 	size_t ocount;		/* original count */
2376 	size_t count;		/* after file limit checks */
2377 	struct inode 	*inode = mapping->host;
2378 	loff_t		pos;
2379 	ssize_t		written;
2380 	ssize_t		err;
2381 
2382 	ocount = 0;
2383 	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2384 	if (err)
2385 		return err;
2386 
2387 	count = ocount;
2388 	pos = *ppos;
2389 
2390 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2391 
2392 	/* We can write back this queue in page reclaim */
2393 	current->backing_dev_info = mapping->backing_dev_info;
2394 	written = 0;
2395 
2396 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2397 	if (err)
2398 		goto out;
2399 
2400 	if (count == 0)
2401 		goto out;
2402 
2403 	err = file_remove_suid(file);
2404 	if (err)
2405 		goto out;
2406 
2407 	file_update_time(file);
2408 
2409 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2410 	if (unlikely(file->f_flags & O_DIRECT)) {
2411 		loff_t endbyte;
2412 		ssize_t written_buffered;
2413 
2414 		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2415 							ppos, count, ocount);
2416 		if (written < 0 || written == count)
2417 			goto out;
2418 		/*
2419 		 * direct-io write to a hole: fall through to buffered I/O
2420 		 * for completing the rest of the request.
2421 		 */
2422 		pos += written;
2423 		count -= written;
2424 		written_buffered = generic_file_buffered_write(iocb, iov,
2425 						nr_segs, pos, ppos, count,
2426 						written);
2427 		/*
2428 		 * If generic_file_buffered_write() retuned a synchronous error
2429 		 * then we want to return the number of bytes which were
2430 		 * direct-written, or the error code if that was zero.  Note
2431 		 * that this differs from normal direct-io semantics, which
2432 		 * will return -EFOO even if some bytes were written.
2433 		 */
2434 		if (written_buffered < 0) {
2435 			err = written_buffered;
2436 			goto out;
2437 		}
2438 
2439 		/*
2440 		 * We need to ensure that the page cache pages are written to
2441 		 * disk and invalidated to preserve the expected O_DIRECT
2442 		 * semantics.
2443 		 */
2444 		endbyte = pos + written_buffered - written - 1;
2445 		err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2446 		if (err == 0) {
2447 			written = written_buffered;
2448 			invalidate_mapping_pages(mapping,
2449 						 pos >> PAGE_CACHE_SHIFT,
2450 						 endbyte >> PAGE_CACHE_SHIFT);
2451 		} else {
2452 			/*
2453 			 * We don't know how much we wrote, so just return
2454 			 * the number of bytes which were direct-written
2455 			 */
2456 		}
2457 	} else {
2458 		written = generic_file_buffered_write(iocb, iov, nr_segs,
2459 				pos, ppos, count, written);
2460 	}
2461 out:
2462 	current->backing_dev_info = NULL;
2463 	return written ? written : err;
2464 }
2465 EXPORT_SYMBOL(__generic_file_aio_write);
2466 
2467 /**
2468  * generic_file_aio_write - write data to a file
2469  * @iocb:	IO state structure
2470  * @iov:	vector with data to write
2471  * @nr_segs:	number of segments in the vector
2472  * @pos:	position in file where to write
2473  *
2474  * This is a wrapper around __generic_file_aio_write() to be used by most
2475  * filesystems. It takes care of syncing the file in case of O_SYNC file
2476  * and acquires i_mutex as needed.
2477  */
2478 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2479 		unsigned long nr_segs, loff_t pos)
2480 {
2481 	struct file *file = iocb->ki_filp;
2482 	struct inode *inode = file->f_mapping->host;
2483 	ssize_t ret;
2484 
2485 	BUG_ON(iocb->ki_pos != pos);
2486 
2487 	mutex_lock(&inode->i_mutex);
2488 	ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2489 	mutex_unlock(&inode->i_mutex);
2490 
2491 	if (ret > 0 || ret == -EIOCBQUEUED) {
2492 		ssize_t err;
2493 
2494 		err = generic_write_sync(file, pos, ret);
2495 		if (err < 0 && ret > 0)
2496 			ret = err;
2497 	}
2498 	return ret;
2499 }
2500 EXPORT_SYMBOL(generic_file_aio_write);
2501 
2502 /**
2503  * try_to_release_page() - release old fs-specific metadata on a page
2504  *
2505  * @page: the page which the kernel is trying to free
2506  * @gfp_mask: memory allocation flags (and I/O mode)
2507  *
2508  * The address_space is to try to release any data against the page
2509  * (presumably at page->private).  If the release was successful, return `1'.
2510  * Otherwise return zero.
2511  *
2512  * This may also be called if PG_fscache is set on a page, indicating that the
2513  * page is known to the local caching routines.
2514  *
2515  * The @gfp_mask argument specifies whether I/O may be performed to release
2516  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2517  *
2518  */
2519 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2520 {
2521 	struct address_space * const mapping = page->mapping;
2522 
2523 	BUG_ON(!PageLocked(page));
2524 	if (PageWriteback(page))
2525 		return 0;
2526 
2527 	if (mapping && mapping->a_ops->releasepage)
2528 		return mapping->a_ops->releasepage(page, gfp_mask);
2529 	return try_to_free_buffers(page);
2530 }
2531 
2532 EXPORT_SYMBOL(try_to_release_page);
2533