xref: /linux/mm/filemap.c (revision 6e8331ac6973435b1e7604c30f2ad394035b46e1)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/cpuset.h>
33 #include "filemap.h"
34 #include "internal.h"
35 
36 /*
37  * FIXME: remove all knowledge of the buffer layer from the core VM
38  */
39 #include <linux/buffer_head.h> /* for generic_osync_inode */
40 
41 #include <asm/mman.h>
42 
43 static ssize_t
44 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
45 	loff_t offset, unsigned long nr_segs);
46 
47 /*
48  * Shared mappings implemented 30.11.1994. It's not fully working yet,
49  * though.
50  *
51  * Shared mappings now work. 15.8.1995  Bruno.
52  *
53  * finished 'unifying' the page and buffer cache and SMP-threaded the
54  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55  *
56  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
57  */
58 
59 /*
60  * Lock ordering:
61  *
62  *  ->i_mmap_lock		(vmtruncate)
63  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
64  *      ->swap_lock		(exclusive_swap_page, others)
65  *        ->mapping->tree_lock
66  *
67  *  ->i_mutex
68  *    ->i_mmap_lock		(truncate->unmap_mapping_range)
69  *
70  *  ->mmap_sem
71  *    ->i_mmap_lock
72  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
73  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
74  *
75  *  ->mmap_sem
76  *    ->lock_page		(access_process_vm)
77  *
78  *  ->mmap_sem
79  *    ->i_mutex			(msync)
80  *
81  *  ->i_mutex
82  *    ->i_alloc_sem             (various)
83  *
84  *  ->inode_lock
85  *    ->sb_lock			(fs/fs-writeback.c)
86  *    ->mapping->tree_lock	(__sync_single_inode)
87  *
88  *  ->i_mmap_lock
89  *    ->anon_vma.lock		(vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock		(try_to_unmap_one)
96  *    ->private_lock		(try_to_unmap_one)
97  *    ->tree_lock		(try_to_unmap_one)
98  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
99  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
100  *    ->private_lock		(page_remove_rmap->set_page_dirty)
101  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
102  *    ->inode_lock		(page_remove_rmap->set_page_dirty)
103  *    ->inode_lock		(zap_pte_range->set_page_dirty)
104  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
105  *
106  *  ->task->proc_lock
107  *    ->dcache_lock		(proc_pid_lookup)
108  */
109 
110 /*
111  * Remove a page from the page cache and free it. Caller has to make
112  * sure the page is locked and that nobody else uses it - or that usage
113  * is safe.  The caller must hold a write_lock on the mapping's tree_lock.
114  */
115 void __remove_from_page_cache(struct page *page)
116 {
117 	struct address_space *mapping = page->mapping;
118 
119 	radix_tree_delete(&mapping->page_tree, page->index);
120 	page->mapping = NULL;
121 	mapping->nrpages--;
122 	__dec_zone_page_state(page, NR_FILE_PAGES);
123 }
124 
125 void remove_from_page_cache(struct page *page)
126 {
127 	struct address_space *mapping = page->mapping;
128 
129 	BUG_ON(!PageLocked(page));
130 
131 	write_lock_irq(&mapping->tree_lock);
132 	__remove_from_page_cache(page);
133 	write_unlock_irq(&mapping->tree_lock);
134 }
135 
136 static int sync_page(void *word)
137 {
138 	struct address_space *mapping;
139 	struct page *page;
140 
141 	page = container_of((unsigned long *)word, struct page, flags);
142 
143 	/*
144 	 * page_mapping() is being called without PG_locked held.
145 	 * Some knowledge of the state and use of the page is used to
146 	 * reduce the requirements down to a memory barrier.
147 	 * The danger here is of a stale page_mapping() return value
148 	 * indicating a struct address_space different from the one it's
149 	 * associated with when it is associated with one.
150 	 * After smp_mb(), it's either the correct page_mapping() for
151 	 * the page, or an old page_mapping() and the page's own
152 	 * page_mapping() has gone NULL.
153 	 * The ->sync_page() address_space operation must tolerate
154 	 * page_mapping() going NULL. By an amazing coincidence,
155 	 * this comes about because none of the users of the page
156 	 * in the ->sync_page() methods make essential use of the
157 	 * page_mapping(), merely passing the page down to the backing
158 	 * device's unplug functions when it's non-NULL, which in turn
159 	 * ignore it for all cases but swap, where only page_private(page) is
160 	 * of interest. When page_mapping() does go NULL, the entire
161 	 * call stack gracefully ignores the page and returns.
162 	 * -- wli
163 	 */
164 	smp_mb();
165 	mapping = page_mapping(page);
166 	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
167 		mapping->a_ops->sync_page(page);
168 	io_schedule();
169 	return 0;
170 }
171 
172 /**
173  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
174  * @mapping:	address space structure to write
175  * @start:	offset in bytes where the range starts
176  * @end:	offset in bytes where the range ends (inclusive)
177  * @sync_mode:	enable synchronous operation
178  *
179  * Start writeback against all of a mapping's dirty pages that lie
180  * within the byte offsets <start, end> inclusive.
181  *
182  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
183  * opposed to a regular memory cleansing writeback.  The difference between
184  * these two operations is that if a dirty page/buffer is encountered, it must
185  * be waited upon, and not just skipped over.
186  */
187 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
188 				loff_t end, int sync_mode)
189 {
190 	int ret;
191 	struct writeback_control wbc = {
192 		.sync_mode = sync_mode,
193 		.nr_to_write = mapping->nrpages * 2,
194 		.range_start = start,
195 		.range_end = end,
196 	};
197 
198 	if (!mapping_cap_writeback_dirty(mapping))
199 		return 0;
200 
201 	ret = do_writepages(mapping, &wbc);
202 	return ret;
203 }
204 
205 static inline int __filemap_fdatawrite(struct address_space *mapping,
206 	int sync_mode)
207 {
208 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
209 }
210 
211 int filemap_fdatawrite(struct address_space *mapping)
212 {
213 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
214 }
215 EXPORT_SYMBOL(filemap_fdatawrite);
216 
217 static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
218 				loff_t end)
219 {
220 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
221 }
222 
223 /**
224  * filemap_flush - mostly a non-blocking flush
225  * @mapping:	target address_space
226  *
227  * This is a mostly non-blocking flush.  Not suitable for data-integrity
228  * purposes - I/O may not be started against all dirty pages.
229  */
230 int filemap_flush(struct address_space *mapping)
231 {
232 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
233 }
234 EXPORT_SYMBOL(filemap_flush);
235 
236 /**
237  * wait_on_page_writeback_range - wait for writeback to complete
238  * @mapping:	target address_space
239  * @start:	beginning page index
240  * @end:	ending page index
241  *
242  * Wait for writeback to complete against pages indexed by start->end
243  * inclusive
244  */
245 int wait_on_page_writeback_range(struct address_space *mapping,
246 				pgoff_t start, pgoff_t end)
247 {
248 	struct pagevec pvec;
249 	int nr_pages;
250 	int ret = 0;
251 	pgoff_t index;
252 
253 	if (end < start)
254 		return 0;
255 
256 	pagevec_init(&pvec, 0);
257 	index = start;
258 	while ((index <= end) &&
259 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
260 			PAGECACHE_TAG_WRITEBACK,
261 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
262 		unsigned i;
263 
264 		for (i = 0; i < nr_pages; i++) {
265 			struct page *page = pvec.pages[i];
266 
267 			/* until radix tree lookup accepts end_index */
268 			if (page->index > end)
269 				continue;
270 
271 			wait_on_page_writeback(page);
272 			if (PageError(page))
273 				ret = -EIO;
274 		}
275 		pagevec_release(&pvec);
276 		cond_resched();
277 	}
278 
279 	/* Check for outstanding write errors */
280 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
281 		ret = -ENOSPC;
282 	if (test_and_clear_bit(AS_EIO, &mapping->flags))
283 		ret = -EIO;
284 
285 	return ret;
286 }
287 
288 /**
289  * sync_page_range - write and wait on all pages in the passed range
290  * @inode:	target inode
291  * @mapping:	target address_space
292  * @pos:	beginning offset in pages to write
293  * @count:	number of bytes to write
294  *
295  * Write and wait upon all the pages in the passed range.  This is a "data
296  * integrity" operation.  It waits upon in-flight writeout before starting and
297  * waiting upon new writeout.  If there was an IO error, return it.
298  *
299  * We need to re-take i_mutex during the generic_osync_inode list walk because
300  * it is otherwise livelockable.
301  */
302 int sync_page_range(struct inode *inode, struct address_space *mapping,
303 			loff_t pos, loff_t count)
304 {
305 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
306 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
307 	int ret;
308 
309 	if (!mapping_cap_writeback_dirty(mapping) || !count)
310 		return 0;
311 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
312 	if (ret == 0) {
313 		mutex_lock(&inode->i_mutex);
314 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
315 		mutex_unlock(&inode->i_mutex);
316 	}
317 	if (ret == 0)
318 		ret = wait_on_page_writeback_range(mapping, start, end);
319 	return ret;
320 }
321 EXPORT_SYMBOL(sync_page_range);
322 
323 /**
324  * sync_page_range_nolock
325  * @inode:	target inode
326  * @mapping:	target address_space
327  * @pos:	beginning offset in pages to write
328  * @count:	number of bytes to write
329  *
330  * Note: Holding i_mutex across sync_page_range_nolock is not a good idea
331  * as it forces O_SYNC writers to different parts of the same file
332  * to be serialised right until io completion.
333  */
334 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
335 			   loff_t pos, loff_t count)
336 {
337 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
338 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
339 	int ret;
340 
341 	if (!mapping_cap_writeback_dirty(mapping) || !count)
342 		return 0;
343 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
344 	if (ret == 0)
345 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
346 	if (ret == 0)
347 		ret = wait_on_page_writeback_range(mapping, start, end);
348 	return ret;
349 }
350 EXPORT_SYMBOL(sync_page_range_nolock);
351 
352 /**
353  * filemap_fdatawait - wait for all under-writeback pages to complete
354  * @mapping: address space structure to wait for
355  *
356  * Walk the list of under-writeback pages of the given address space
357  * and wait for all of them.
358  */
359 int filemap_fdatawait(struct address_space *mapping)
360 {
361 	loff_t i_size = i_size_read(mapping->host);
362 
363 	if (i_size == 0)
364 		return 0;
365 
366 	return wait_on_page_writeback_range(mapping, 0,
367 				(i_size - 1) >> PAGE_CACHE_SHIFT);
368 }
369 EXPORT_SYMBOL(filemap_fdatawait);
370 
371 int filemap_write_and_wait(struct address_space *mapping)
372 {
373 	int err = 0;
374 
375 	if (mapping->nrpages) {
376 		err = filemap_fdatawrite(mapping);
377 		/*
378 		 * Even if the above returned error, the pages may be
379 		 * written partially (e.g. -ENOSPC), so we wait for it.
380 		 * But the -EIO is special case, it may indicate the worst
381 		 * thing (e.g. bug) happened, so we avoid waiting for it.
382 		 */
383 		if (err != -EIO) {
384 			int err2 = filemap_fdatawait(mapping);
385 			if (!err)
386 				err = err2;
387 		}
388 	}
389 	return err;
390 }
391 EXPORT_SYMBOL(filemap_write_and_wait);
392 
393 /**
394  * filemap_write_and_wait_range - write out & wait on a file range
395  * @mapping:	the address_space for the pages
396  * @lstart:	offset in bytes where the range starts
397  * @lend:	offset in bytes where the range ends (inclusive)
398  *
399  * Write out and wait upon file offsets lstart->lend, inclusive.
400  *
401  * Note that `lend' is inclusive (describes the last byte to be written) so
402  * that this function can be used to write to the very end-of-file (end = -1).
403  */
404 int filemap_write_and_wait_range(struct address_space *mapping,
405 				 loff_t lstart, loff_t lend)
406 {
407 	int err = 0;
408 
409 	if (mapping->nrpages) {
410 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
411 						 WB_SYNC_ALL);
412 		/* See comment of filemap_write_and_wait() */
413 		if (err != -EIO) {
414 			int err2 = wait_on_page_writeback_range(mapping,
415 						lstart >> PAGE_CACHE_SHIFT,
416 						lend >> PAGE_CACHE_SHIFT);
417 			if (!err)
418 				err = err2;
419 		}
420 	}
421 	return err;
422 }
423 
424 /**
425  * add_to_page_cache - add newly allocated pagecache pages
426  * @page:	page to add
427  * @mapping:	the page's address_space
428  * @offset:	page index
429  * @gfp_mask:	page allocation mode
430  *
431  * This function is used to add newly allocated pagecache pages;
432  * the page is new, so we can just run SetPageLocked() against it.
433  * The other page state flags were set by rmqueue().
434  *
435  * This function does not add the page to the LRU.  The caller must do that.
436  */
437 int add_to_page_cache(struct page *page, struct address_space *mapping,
438 		pgoff_t offset, gfp_t gfp_mask)
439 {
440 	int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
441 
442 	if (error == 0) {
443 		write_lock_irq(&mapping->tree_lock);
444 		error = radix_tree_insert(&mapping->page_tree, offset, page);
445 		if (!error) {
446 			page_cache_get(page);
447 			SetPageLocked(page);
448 			page->mapping = mapping;
449 			page->index = offset;
450 			mapping->nrpages++;
451 			__inc_zone_page_state(page, NR_FILE_PAGES);
452 		}
453 		write_unlock_irq(&mapping->tree_lock);
454 		radix_tree_preload_end();
455 	}
456 	return error;
457 }
458 EXPORT_SYMBOL(add_to_page_cache);
459 
460 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
461 				pgoff_t offset, gfp_t gfp_mask)
462 {
463 	int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
464 	if (ret == 0)
465 		lru_cache_add(page);
466 	return ret;
467 }
468 
469 #ifdef CONFIG_NUMA
470 struct page *page_cache_alloc(struct address_space *x)
471 {
472 	if (cpuset_do_page_mem_spread()) {
473 		int n = cpuset_mem_spread_node();
474 		return alloc_pages_node(n, mapping_gfp_mask(x), 0);
475 	}
476 	return alloc_pages(mapping_gfp_mask(x), 0);
477 }
478 EXPORT_SYMBOL(page_cache_alloc);
479 
480 struct page *page_cache_alloc_cold(struct address_space *x)
481 {
482 	if (cpuset_do_page_mem_spread()) {
483 		int n = cpuset_mem_spread_node();
484 		return alloc_pages_node(n, mapping_gfp_mask(x)|__GFP_COLD, 0);
485 	}
486 	return alloc_pages(mapping_gfp_mask(x)|__GFP_COLD, 0);
487 }
488 EXPORT_SYMBOL(page_cache_alloc_cold);
489 #endif
490 
491 /*
492  * In order to wait for pages to become available there must be
493  * waitqueues associated with pages. By using a hash table of
494  * waitqueues where the bucket discipline is to maintain all
495  * waiters on the same queue and wake all when any of the pages
496  * become available, and for the woken contexts to check to be
497  * sure the appropriate page became available, this saves space
498  * at a cost of "thundering herd" phenomena during rare hash
499  * collisions.
500  */
501 static wait_queue_head_t *page_waitqueue(struct page *page)
502 {
503 	const struct zone *zone = page_zone(page);
504 
505 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
506 }
507 
508 static inline void wake_up_page(struct page *page, int bit)
509 {
510 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
511 }
512 
513 void fastcall wait_on_page_bit(struct page *page, int bit_nr)
514 {
515 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
516 
517 	if (test_bit(bit_nr, &page->flags))
518 		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
519 							TASK_UNINTERRUPTIBLE);
520 }
521 EXPORT_SYMBOL(wait_on_page_bit);
522 
523 /**
524  * unlock_page - unlock a locked page
525  * @page: the page
526  *
527  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
528  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
529  * mechananism between PageLocked pages and PageWriteback pages is shared.
530  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
531  *
532  * The first mb is necessary to safely close the critical section opened by the
533  * TestSetPageLocked(), the second mb is necessary to enforce ordering between
534  * the clear_bit and the read of the waitqueue (to avoid SMP races with a
535  * parallel wait_on_page_locked()).
536  */
537 void fastcall unlock_page(struct page *page)
538 {
539 	smp_mb__before_clear_bit();
540 	if (!TestClearPageLocked(page))
541 		BUG();
542 	smp_mb__after_clear_bit();
543 	wake_up_page(page, PG_locked);
544 }
545 EXPORT_SYMBOL(unlock_page);
546 
547 /**
548  * end_page_writeback - end writeback against a page
549  * @page: the page
550  */
551 void end_page_writeback(struct page *page)
552 {
553 	if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
554 		if (!test_clear_page_writeback(page))
555 			BUG();
556 	}
557 	smp_mb__after_clear_bit();
558 	wake_up_page(page, PG_writeback);
559 }
560 EXPORT_SYMBOL(end_page_writeback);
561 
562 /**
563  * __lock_page - get a lock on the page, assuming we need to sleep to get it
564  * @page: the page to lock
565  *
566  * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
567  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
568  * chances are that on the second loop, the block layer's plug list is empty,
569  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
570  */
571 void fastcall __lock_page(struct page *page)
572 {
573 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
574 
575 	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
576 							TASK_UNINTERRUPTIBLE);
577 }
578 EXPORT_SYMBOL(__lock_page);
579 
580 /**
581  * find_get_page - find and get a page reference
582  * @mapping: the address_space to search
583  * @offset: the page index
584  *
585  * A rather lightweight function, finding and getting a reference to a
586  * hashed page atomically.
587  */
588 struct page * find_get_page(struct address_space *mapping, unsigned long offset)
589 {
590 	struct page *page;
591 
592 	read_lock_irq(&mapping->tree_lock);
593 	page = radix_tree_lookup(&mapping->page_tree, offset);
594 	if (page)
595 		page_cache_get(page);
596 	read_unlock_irq(&mapping->tree_lock);
597 	return page;
598 }
599 EXPORT_SYMBOL(find_get_page);
600 
601 /**
602  * find_trylock_page - find and lock a page
603  * @mapping: the address_space to search
604  * @offset: the page index
605  *
606  * Same as find_get_page(), but trylock it instead of incrementing the count.
607  */
608 struct page *find_trylock_page(struct address_space *mapping, unsigned long offset)
609 {
610 	struct page *page;
611 
612 	read_lock_irq(&mapping->tree_lock);
613 	page = radix_tree_lookup(&mapping->page_tree, offset);
614 	if (page && TestSetPageLocked(page))
615 		page = NULL;
616 	read_unlock_irq(&mapping->tree_lock);
617 	return page;
618 }
619 EXPORT_SYMBOL(find_trylock_page);
620 
621 /**
622  * find_lock_page - locate, pin and lock a pagecache page
623  * @mapping: the address_space to search
624  * @offset: the page index
625  *
626  * Locates the desired pagecache page, locks it, increments its reference
627  * count and returns its address.
628  *
629  * Returns zero if the page was not present. find_lock_page() may sleep.
630  */
631 struct page *find_lock_page(struct address_space *mapping,
632 				unsigned long offset)
633 {
634 	struct page *page;
635 
636 	read_lock_irq(&mapping->tree_lock);
637 repeat:
638 	page = radix_tree_lookup(&mapping->page_tree, offset);
639 	if (page) {
640 		page_cache_get(page);
641 		if (TestSetPageLocked(page)) {
642 			read_unlock_irq(&mapping->tree_lock);
643 			__lock_page(page);
644 			read_lock_irq(&mapping->tree_lock);
645 
646 			/* Has the page been truncated while we slept? */
647 			if (unlikely(page->mapping != mapping ||
648 				     page->index != offset)) {
649 				unlock_page(page);
650 				page_cache_release(page);
651 				goto repeat;
652 			}
653 		}
654 	}
655 	read_unlock_irq(&mapping->tree_lock);
656 	return page;
657 }
658 EXPORT_SYMBOL(find_lock_page);
659 
660 /**
661  * find_or_create_page - locate or add a pagecache page
662  * @mapping: the page's address_space
663  * @index: the page's index into the mapping
664  * @gfp_mask: page allocation mode
665  *
666  * Locates a page in the pagecache.  If the page is not present, a new page
667  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
668  * LRU list.  The returned page is locked and has its reference count
669  * incremented.
670  *
671  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
672  * allocation!
673  *
674  * find_or_create_page() returns the desired page's address, or zero on
675  * memory exhaustion.
676  */
677 struct page *find_or_create_page(struct address_space *mapping,
678 		unsigned long index, gfp_t gfp_mask)
679 {
680 	struct page *page, *cached_page = NULL;
681 	int err;
682 repeat:
683 	page = find_lock_page(mapping, index);
684 	if (!page) {
685 		if (!cached_page) {
686 			cached_page = alloc_page(gfp_mask);
687 			if (!cached_page)
688 				return NULL;
689 		}
690 		err = add_to_page_cache_lru(cached_page, mapping,
691 					index, gfp_mask);
692 		if (!err) {
693 			page = cached_page;
694 			cached_page = NULL;
695 		} else if (err == -EEXIST)
696 			goto repeat;
697 	}
698 	if (cached_page)
699 		page_cache_release(cached_page);
700 	return page;
701 }
702 EXPORT_SYMBOL(find_or_create_page);
703 
704 /**
705  * find_get_pages - gang pagecache lookup
706  * @mapping:	The address_space to search
707  * @start:	The starting page index
708  * @nr_pages:	The maximum number of pages
709  * @pages:	Where the resulting pages are placed
710  *
711  * find_get_pages() will search for and return a group of up to
712  * @nr_pages pages in the mapping.  The pages are placed at @pages.
713  * find_get_pages() takes a reference against the returned pages.
714  *
715  * The search returns a group of mapping-contiguous pages with ascending
716  * indexes.  There may be holes in the indices due to not-present pages.
717  *
718  * find_get_pages() returns the number of pages which were found.
719  */
720 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
721 			    unsigned int nr_pages, struct page **pages)
722 {
723 	unsigned int i;
724 	unsigned int ret;
725 
726 	read_lock_irq(&mapping->tree_lock);
727 	ret = radix_tree_gang_lookup(&mapping->page_tree,
728 				(void **)pages, start, nr_pages);
729 	for (i = 0; i < ret; i++)
730 		page_cache_get(pages[i]);
731 	read_unlock_irq(&mapping->tree_lock);
732 	return ret;
733 }
734 
735 /**
736  * find_get_pages_contig - gang contiguous pagecache lookup
737  * @mapping:	The address_space to search
738  * @index:	The starting page index
739  * @nr_pages:	The maximum number of pages
740  * @pages:	Where the resulting pages are placed
741  *
742  * find_get_pages_contig() works exactly like find_get_pages(), except
743  * that the returned number of pages are guaranteed to be contiguous.
744  *
745  * find_get_pages_contig() returns the number of pages which were found.
746  */
747 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
748 			       unsigned int nr_pages, struct page **pages)
749 {
750 	unsigned int i;
751 	unsigned int ret;
752 
753 	read_lock_irq(&mapping->tree_lock);
754 	ret = radix_tree_gang_lookup(&mapping->page_tree,
755 				(void **)pages, index, nr_pages);
756 	for (i = 0; i < ret; i++) {
757 		if (pages[i]->mapping == NULL || pages[i]->index != index)
758 			break;
759 
760 		page_cache_get(pages[i]);
761 		index++;
762 	}
763 	read_unlock_irq(&mapping->tree_lock);
764 	return i;
765 }
766 
767 /**
768  * find_get_pages_tag - find and return pages that match @tag
769  * @mapping:	the address_space to search
770  * @index:	the starting page index
771  * @tag:	the tag index
772  * @nr_pages:	the maximum number of pages
773  * @pages:	where the resulting pages are placed
774  *
775  * Like find_get_pages, except we only return pages which are tagged with
776  * @tag.   We update @index to index the next page for the traversal.
777  */
778 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
779 			int tag, unsigned int nr_pages, struct page **pages)
780 {
781 	unsigned int i;
782 	unsigned int ret;
783 
784 	read_lock_irq(&mapping->tree_lock);
785 	ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
786 				(void **)pages, *index, nr_pages, tag);
787 	for (i = 0; i < ret; i++)
788 		page_cache_get(pages[i]);
789 	if (ret)
790 		*index = pages[ret - 1]->index + 1;
791 	read_unlock_irq(&mapping->tree_lock);
792 	return ret;
793 }
794 
795 /**
796  * grab_cache_page_nowait - returns locked page at given index in given cache
797  * @mapping: target address_space
798  * @index: the page index
799  *
800  * Same as grab_cache_page, but do not wait if the page is unavailable.
801  * This is intended for speculative data generators, where the data can
802  * be regenerated if the page couldn't be grabbed.  This routine should
803  * be safe to call while holding the lock for another page.
804  *
805  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
806  * and deadlock against the caller's locked page.
807  */
808 struct page *
809 grab_cache_page_nowait(struct address_space *mapping, unsigned long index)
810 {
811 	struct page *page = find_get_page(mapping, index);
812 	gfp_t gfp_mask;
813 
814 	if (page) {
815 		if (!TestSetPageLocked(page))
816 			return page;
817 		page_cache_release(page);
818 		return NULL;
819 	}
820 	gfp_mask = mapping_gfp_mask(mapping) & ~__GFP_FS;
821 	page = alloc_pages(gfp_mask, 0);
822 	if (page && add_to_page_cache_lru(page, mapping, index, gfp_mask)) {
823 		page_cache_release(page);
824 		page = NULL;
825 	}
826 	return page;
827 }
828 EXPORT_SYMBOL(grab_cache_page_nowait);
829 
830 /*
831  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
832  * a _large_ part of the i/o request. Imagine the worst scenario:
833  *
834  *      ---R__________________________________________B__________
835  *         ^ reading here                             ^ bad block(assume 4k)
836  *
837  * read(R) => miss => readahead(R...B) => media error => frustrating retries
838  * => failing the whole request => read(R) => read(R+1) =>
839  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
840  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
841  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
842  *
843  * It is going insane. Fix it by quickly scaling down the readahead size.
844  */
845 static void shrink_readahead_size_eio(struct file *filp,
846 					struct file_ra_state *ra)
847 {
848 	if (!ra->ra_pages)
849 		return;
850 
851 	ra->ra_pages /= 4;
852 }
853 
854 /**
855  * do_generic_mapping_read - generic file read routine
856  * @mapping:	address_space to be read
857  * @_ra:	file's readahead state
858  * @filp:	the file to read
859  * @ppos:	current file position
860  * @desc:	read_descriptor
861  * @actor:	read method
862  *
863  * This is a generic file read routine, and uses the
864  * mapping->a_ops->readpage() function for the actual low-level stuff.
865  *
866  * This is really ugly. But the goto's actually try to clarify some
867  * of the logic when it comes to error handling etc.
868  *
869  * Note the struct file* is only passed for the use of readpage.
870  * It may be NULL.
871  */
872 void do_generic_mapping_read(struct address_space *mapping,
873 			     struct file_ra_state *_ra,
874 			     struct file *filp,
875 			     loff_t *ppos,
876 			     read_descriptor_t *desc,
877 			     read_actor_t actor)
878 {
879 	struct inode *inode = mapping->host;
880 	unsigned long index;
881 	unsigned long end_index;
882 	unsigned long offset;
883 	unsigned long last_index;
884 	unsigned long next_index;
885 	unsigned long prev_index;
886 	loff_t isize;
887 	struct page *cached_page;
888 	int error;
889 	struct file_ra_state ra = *_ra;
890 
891 	cached_page = NULL;
892 	index = *ppos >> PAGE_CACHE_SHIFT;
893 	next_index = index;
894 	prev_index = ra.prev_page;
895 	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
896 	offset = *ppos & ~PAGE_CACHE_MASK;
897 
898 	isize = i_size_read(inode);
899 	if (!isize)
900 		goto out;
901 
902 	end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
903 	for (;;) {
904 		struct page *page;
905 		unsigned long nr, ret;
906 
907 		/* nr is the maximum number of bytes to copy from this page */
908 		nr = PAGE_CACHE_SIZE;
909 		if (index >= end_index) {
910 			if (index > end_index)
911 				goto out;
912 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
913 			if (nr <= offset) {
914 				goto out;
915 			}
916 		}
917 		nr = nr - offset;
918 
919 		cond_resched();
920 		if (index == next_index)
921 			next_index = page_cache_readahead(mapping, &ra, filp,
922 					index, last_index - index);
923 
924 find_page:
925 		page = find_get_page(mapping, index);
926 		if (unlikely(page == NULL)) {
927 			handle_ra_miss(mapping, &ra, index);
928 			goto no_cached_page;
929 		}
930 		if (!PageUptodate(page))
931 			goto page_not_up_to_date;
932 page_ok:
933 
934 		/* If users can be writing to this page using arbitrary
935 		 * virtual addresses, take care about potential aliasing
936 		 * before reading the page on the kernel side.
937 		 */
938 		if (mapping_writably_mapped(mapping))
939 			flush_dcache_page(page);
940 
941 		/*
942 		 * When (part of) the same page is read multiple times
943 		 * in succession, only mark it as accessed the first time.
944 		 */
945 		if (prev_index != index)
946 			mark_page_accessed(page);
947 		prev_index = index;
948 
949 		/*
950 		 * Ok, we have the page, and it's up-to-date, so
951 		 * now we can copy it to user space...
952 		 *
953 		 * The actor routine returns how many bytes were actually used..
954 		 * NOTE! This may not be the same as how much of a user buffer
955 		 * we filled up (we may be padding etc), so we can only update
956 		 * "pos" here (the actor routine has to update the user buffer
957 		 * pointers and the remaining count).
958 		 */
959 		ret = actor(desc, page, offset, nr);
960 		offset += ret;
961 		index += offset >> PAGE_CACHE_SHIFT;
962 		offset &= ~PAGE_CACHE_MASK;
963 
964 		page_cache_release(page);
965 		if (ret == nr && desc->count)
966 			continue;
967 		goto out;
968 
969 page_not_up_to_date:
970 		/* Get exclusive access to the page ... */
971 		lock_page(page);
972 
973 		/* Did it get unhashed before we got the lock? */
974 		if (!page->mapping) {
975 			unlock_page(page);
976 			page_cache_release(page);
977 			continue;
978 		}
979 
980 		/* Did somebody else fill it already? */
981 		if (PageUptodate(page)) {
982 			unlock_page(page);
983 			goto page_ok;
984 		}
985 
986 readpage:
987 		/* Start the actual read. The read will unlock the page. */
988 		error = mapping->a_ops->readpage(filp, page);
989 
990 		if (unlikely(error)) {
991 			if (error == AOP_TRUNCATED_PAGE) {
992 				page_cache_release(page);
993 				goto find_page;
994 			}
995 			goto readpage_error;
996 		}
997 
998 		if (!PageUptodate(page)) {
999 			lock_page(page);
1000 			if (!PageUptodate(page)) {
1001 				if (page->mapping == NULL) {
1002 					/*
1003 					 * invalidate_inode_pages got it
1004 					 */
1005 					unlock_page(page);
1006 					page_cache_release(page);
1007 					goto find_page;
1008 				}
1009 				unlock_page(page);
1010 				error = -EIO;
1011 				shrink_readahead_size_eio(filp, &ra);
1012 				goto readpage_error;
1013 			}
1014 			unlock_page(page);
1015 		}
1016 
1017 		/*
1018 		 * i_size must be checked after we have done ->readpage.
1019 		 *
1020 		 * Checking i_size after the readpage allows us to calculate
1021 		 * the correct value for "nr", which means the zero-filled
1022 		 * part of the page is not copied back to userspace (unless
1023 		 * another truncate extends the file - this is desired though).
1024 		 */
1025 		isize = i_size_read(inode);
1026 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1027 		if (unlikely(!isize || index > end_index)) {
1028 			page_cache_release(page);
1029 			goto out;
1030 		}
1031 
1032 		/* nr is the maximum number of bytes to copy from this page */
1033 		nr = PAGE_CACHE_SIZE;
1034 		if (index == end_index) {
1035 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1036 			if (nr <= offset) {
1037 				page_cache_release(page);
1038 				goto out;
1039 			}
1040 		}
1041 		nr = nr - offset;
1042 		goto page_ok;
1043 
1044 readpage_error:
1045 		/* UHHUH! A synchronous read error occurred. Report it */
1046 		desc->error = error;
1047 		page_cache_release(page);
1048 		goto out;
1049 
1050 no_cached_page:
1051 		/*
1052 		 * Ok, it wasn't cached, so we need to create a new
1053 		 * page..
1054 		 */
1055 		if (!cached_page) {
1056 			cached_page = page_cache_alloc_cold(mapping);
1057 			if (!cached_page) {
1058 				desc->error = -ENOMEM;
1059 				goto out;
1060 			}
1061 		}
1062 		error = add_to_page_cache_lru(cached_page, mapping,
1063 						index, GFP_KERNEL);
1064 		if (error) {
1065 			if (error == -EEXIST)
1066 				goto find_page;
1067 			desc->error = error;
1068 			goto out;
1069 		}
1070 		page = cached_page;
1071 		cached_page = NULL;
1072 		goto readpage;
1073 	}
1074 
1075 out:
1076 	*_ra = ra;
1077 
1078 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1079 	if (cached_page)
1080 		page_cache_release(cached_page);
1081 	if (filp)
1082 		file_accessed(filp);
1083 }
1084 EXPORT_SYMBOL(do_generic_mapping_read);
1085 
1086 int file_read_actor(read_descriptor_t *desc, struct page *page,
1087 			unsigned long offset, unsigned long size)
1088 {
1089 	char *kaddr;
1090 	unsigned long left, count = desc->count;
1091 
1092 	if (size > count)
1093 		size = count;
1094 
1095 	/*
1096 	 * Faults on the destination of a read are common, so do it before
1097 	 * taking the kmap.
1098 	 */
1099 	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1100 		kaddr = kmap_atomic(page, KM_USER0);
1101 		left = __copy_to_user_inatomic(desc->arg.buf,
1102 						kaddr + offset, size);
1103 		kunmap_atomic(kaddr, KM_USER0);
1104 		if (left == 0)
1105 			goto success;
1106 	}
1107 
1108 	/* Do it the slow way */
1109 	kaddr = kmap(page);
1110 	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1111 	kunmap(page);
1112 
1113 	if (left) {
1114 		size -= left;
1115 		desc->error = -EFAULT;
1116 	}
1117 success:
1118 	desc->count = count - size;
1119 	desc->written += size;
1120 	desc->arg.buf += size;
1121 	return size;
1122 }
1123 
1124 /**
1125  * __generic_file_aio_read - generic filesystem read routine
1126  * @iocb:	kernel I/O control block
1127  * @iov:	io vector request
1128  * @nr_segs:	number of segments in the iovec
1129  * @ppos:	current file position
1130  *
1131  * This is the "read()" routine for all filesystems
1132  * that can use the page cache directly.
1133  */
1134 ssize_t
1135 __generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1136 		unsigned long nr_segs, loff_t *ppos)
1137 {
1138 	struct file *filp = iocb->ki_filp;
1139 	ssize_t retval;
1140 	unsigned long seg;
1141 	size_t count;
1142 
1143 	count = 0;
1144 	for (seg = 0; seg < nr_segs; seg++) {
1145 		const struct iovec *iv = &iov[seg];
1146 
1147 		/*
1148 		 * If any segment has a negative length, or the cumulative
1149 		 * length ever wraps negative then return -EINVAL.
1150 		 */
1151 		count += iv->iov_len;
1152 		if (unlikely((ssize_t)(count|iv->iov_len) < 0))
1153 			return -EINVAL;
1154 		if (access_ok(VERIFY_WRITE, iv->iov_base, iv->iov_len))
1155 			continue;
1156 		if (seg == 0)
1157 			return -EFAULT;
1158 		nr_segs = seg;
1159 		count -= iv->iov_len;	/* This segment is no good */
1160 		break;
1161 	}
1162 
1163 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1164 	if (filp->f_flags & O_DIRECT) {
1165 		loff_t pos = *ppos, size;
1166 		struct address_space *mapping;
1167 		struct inode *inode;
1168 
1169 		mapping = filp->f_mapping;
1170 		inode = mapping->host;
1171 		retval = 0;
1172 		if (!count)
1173 			goto out; /* skip atime */
1174 		size = i_size_read(inode);
1175 		if (pos < size) {
1176 			retval = generic_file_direct_IO(READ, iocb,
1177 						iov, pos, nr_segs);
1178 			if (retval > 0 && !is_sync_kiocb(iocb))
1179 				retval = -EIOCBQUEUED;
1180 			if (retval > 0)
1181 				*ppos = pos + retval;
1182 		}
1183 		file_accessed(filp);
1184 		goto out;
1185 	}
1186 
1187 	retval = 0;
1188 	if (count) {
1189 		for (seg = 0; seg < nr_segs; seg++) {
1190 			read_descriptor_t desc;
1191 
1192 			desc.written = 0;
1193 			desc.arg.buf = iov[seg].iov_base;
1194 			desc.count = iov[seg].iov_len;
1195 			if (desc.count == 0)
1196 				continue;
1197 			desc.error = 0;
1198 			do_generic_file_read(filp,ppos,&desc,file_read_actor);
1199 			retval += desc.written;
1200 			if (desc.error) {
1201 				retval = retval ?: desc.error;
1202 				break;
1203 			}
1204 		}
1205 	}
1206 out:
1207 	return retval;
1208 }
1209 EXPORT_SYMBOL(__generic_file_aio_read);
1210 
1211 ssize_t
1212 generic_file_aio_read(struct kiocb *iocb, char __user *buf, size_t count, loff_t pos)
1213 {
1214 	struct iovec local_iov = { .iov_base = buf, .iov_len = count };
1215 
1216 	BUG_ON(iocb->ki_pos != pos);
1217 	return __generic_file_aio_read(iocb, &local_iov, 1, &iocb->ki_pos);
1218 }
1219 EXPORT_SYMBOL(generic_file_aio_read);
1220 
1221 ssize_t
1222 generic_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1223 {
1224 	struct iovec local_iov = { .iov_base = buf, .iov_len = count };
1225 	struct kiocb kiocb;
1226 	ssize_t ret;
1227 
1228 	init_sync_kiocb(&kiocb, filp);
1229 	ret = __generic_file_aio_read(&kiocb, &local_iov, 1, ppos);
1230 	if (-EIOCBQUEUED == ret)
1231 		ret = wait_on_sync_kiocb(&kiocb);
1232 	return ret;
1233 }
1234 EXPORT_SYMBOL(generic_file_read);
1235 
1236 int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size)
1237 {
1238 	ssize_t written;
1239 	unsigned long count = desc->count;
1240 	struct file *file = desc->arg.data;
1241 
1242 	if (size > count)
1243 		size = count;
1244 
1245 	written = file->f_op->sendpage(file, page, offset,
1246 				       size, &file->f_pos, size<count);
1247 	if (written < 0) {
1248 		desc->error = written;
1249 		written = 0;
1250 	}
1251 	desc->count = count - written;
1252 	desc->written += written;
1253 	return written;
1254 }
1255 
1256 ssize_t generic_file_sendfile(struct file *in_file, loff_t *ppos,
1257 			 size_t count, read_actor_t actor, void *target)
1258 {
1259 	read_descriptor_t desc;
1260 
1261 	if (!count)
1262 		return 0;
1263 
1264 	desc.written = 0;
1265 	desc.count = count;
1266 	desc.arg.data = target;
1267 	desc.error = 0;
1268 
1269 	do_generic_file_read(in_file, ppos, &desc, actor);
1270 	if (desc.written)
1271 		return desc.written;
1272 	return desc.error;
1273 }
1274 EXPORT_SYMBOL(generic_file_sendfile);
1275 
1276 static ssize_t
1277 do_readahead(struct address_space *mapping, struct file *filp,
1278 	     unsigned long index, unsigned long nr)
1279 {
1280 	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1281 		return -EINVAL;
1282 
1283 	force_page_cache_readahead(mapping, filp, index,
1284 					max_sane_readahead(nr));
1285 	return 0;
1286 }
1287 
1288 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1289 {
1290 	ssize_t ret;
1291 	struct file *file;
1292 
1293 	ret = -EBADF;
1294 	file = fget(fd);
1295 	if (file) {
1296 		if (file->f_mode & FMODE_READ) {
1297 			struct address_space *mapping = file->f_mapping;
1298 			unsigned long start = offset >> PAGE_CACHE_SHIFT;
1299 			unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1300 			unsigned long len = end - start + 1;
1301 			ret = do_readahead(mapping, file, start, len);
1302 		}
1303 		fput(file);
1304 	}
1305 	return ret;
1306 }
1307 
1308 #ifdef CONFIG_MMU
1309 static int FASTCALL(page_cache_read(struct file * file, unsigned long offset));
1310 /**
1311  * page_cache_read - adds requested page to the page cache if not already there
1312  * @file:	file to read
1313  * @offset:	page index
1314  *
1315  * This adds the requested page to the page cache if it isn't already there,
1316  * and schedules an I/O to read in its contents from disk.
1317  */
1318 static int fastcall page_cache_read(struct file * file, unsigned long offset)
1319 {
1320 	struct address_space *mapping = file->f_mapping;
1321 	struct page *page;
1322 	int ret;
1323 
1324 	do {
1325 		page = page_cache_alloc_cold(mapping);
1326 		if (!page)
1327 			return -ENOMEM;
1328 
1329 		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1330 		if (ret == 0)
1331 			ret = mapping->a_ops->readpage(file, page);
1332 		else if (ret == -EEXIST)
1333 			ret = 0; /* losing race to add is OK */
1334 
1335 		page_cache_release(page);
1336 
1337 	} while (ret == AOP_TRUNCATED_PAGE);
1338 
1339 	return ret;
1340 }
1341 
1342 #define MMAP_LOTSAMISS  (100)
1343 
1344 /**
1345  * filemap_nopage - read in file data for page fault handling
1346  * @area:	the applicable vm_area
1347  * @address:	target address to read in
1348  * @type:	returned with VM_FAULT_{MINOR,MAJOR} if not %NULL
1349  *
1350  * filemap_nopage() is invoked via the vma operations vector for a
1351  * mapped memory region to read in file data during a page fault.
1352  *
1353  * The goto's are kind of ugly, but this streamlines the normal case of having
1354  * it in the page cache, and handles the special cases reasonably without
1355  * having a lot of duplicated code.
1356  */
1357 struct page *filemap_nopage(struct vm_area_struct *area,
1358 				unsigned long address, int *type)
1359 {
1360 	int error;
1361 	struct file *file = area->vm_file;
1362 	struct address_space *mapping = file->f_mapping;
1363 	struct file_ra_state *ra = &file->f_ra;
1364 	struct inode *inode = mapping->host;
1365 	struct page *page;
1366 	unsigned long size, pgoff;
1367 	int did_readaround = 0, majmin = VM_FAULT_MINOR;
1368 
1369 	pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff;
1370 
1371 retry_all:
1372 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1373 	if (pgoff >= size)
1374 		goto outside_data_content;
1375 
1376 	/* If we don't want any read-ahead, don't bother */
1377 	if (VM_RandomReadHint(area))
1378 		goto no_cached_page;
1379 
1380 	/*
1381 	 * The readahead code wants to be told about each and every page
1382 	 * so it can build and shrink its windows appropriately
1383 	 *
1384 	 * For sequential accesses, we use the generic readahead logic.
1385 	 */
1386 	if (VM_SequentialReadHint(area))
1387 		page_cache_readahead(mapping, ra, file, pgoff, 1);
1388 
1389 	/*
1390 	 * Do we have something in the page cache already?
1391 	 */
1392 retry_find:
1393 	page = find_get_page(mapping, pgoff);
1394 	if (!page) {
1395 		unsigned long ra_pages;
1396 
1397 		if (VM_SequentialReadHint(area)) {
1398 			handle_ra_miss(mapping, ra, pgoff);
1399 			goto no_cached_page;
1400 		}
1401 		ra->mmap_miss++;
1402 
1403 		/*
1404 		 * Do we miss much more than hit in this file? If so,
1405 		 * stop bothering with read-ahead. It will only hurt.
1406 		 */
1407 		if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS)
1408 			goto no_cached_page;
1409 
1410 		/*
1411 		 * To keep the pgmajfault counter straight, we need to
1412 		 * check did_readaround, as this is an inner loop.
1413 		 */
1414 		if (!did_readaround) {
1415 			majmin = VM_FAULT_MAJOR;
1416 			count_vm_event(PGMAJFAULT);
1417 		}
1418 		did_readaround = 1;
1419 		ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1420 		if (ra_pages) {
1421 			pgoff_t start = 0;
1422 
1423 			if (pgoff > ra_pages / 2)
1424 				start = pgoff - ra_pages / 2;
1425 			do_page_cache_readahead(mapping, file, start, ra_pages);
1426 		}
1427 		page = find_get_page(mapping, pgoff);
1428 		if (!page)
1429 			goto no_cached_page;
1430 	}
1431 
1432 	if (!did_readaround)
1433 		ra->mmap_hit++;
1434 
1435 	/*
1436 	 * Ok, found a page in the page cache, now we need to check
1437 	 * that it's up-to-date.
1438 	 */
1439 	if (!PageUptodate(page))
1440 		goto page_not_uptodate;
1441 
1442 success:
1443 	/*
1444 	 * Found the page and have a reference on it.
1445 	 */
1446 	mark_page_accessed(page);
1447 	if (type)
1448 		*type = majmin;
1449 	return page;
1450 
1451 outside_data_content:
1452 	/*
1453 	 * An external ptracer can access pages that normally aren't
1454 	 * accessible..
1455 	 */
1456 	if (area->vm_mm == current->mm)
1457 		return NULL;
1458 	/* Fall through to the non-read-ahead case */
1459 no_cached_page:
1460 	/*
1461 	 * We're only likely to ever get here if MADV_RANDOM is in
1462 	 * effect.
1463 	 */
1464 	error = page_cache_read(file, pgoff);
1465 	grab_swap_token();
1466 
1467 	/*
1468 	 * The page we want has now been added to the page cache.
1469 	 * In the unlikely event that someone removed it in the
1470 	 * meantime, we'll just come back here and read it again.
1471 	 */
1472 	if (error >= 0)
1473 		goto retry_find;
1474 
1475 	/*
1476 	 * An error return from page_cache_read can result if the
1477 	 * system is low on memory, or a problem occurs while trying
1478 	 * to schedule I/O.
1479 	 */
1480 	if (error == -ENOMEM)
1481 		return NOPAGE_OOM;
1482 	return NULL;
1483 
1484 page_not_uptodate:
1485 	if (!did_readaround) {
1486 		majmin = VM_FAULT_MAJOR;
1487 		count_vm_event(PGMAJFAULT);
1488 	}
1489 	lock_page(page);
1490 
1491 	/* Did it get unhashed while we waited for it? */
1492 	if (!page->mapping) {
1493 		unlock_page(page);
1494 		page_cache_release(page);
1495 		goto retry_all;
1496 	}
1497 
1498 	/* Did somebody else get it up-to-date? */
1499 	if (PageUptodate(page)) {
1500 		unlock_page(page);
1501 		goto success;
1502 	}
1503 
1504 	error = mapping->a_ops->readpage(file, page);
1505 	if (!error) {
1506 		wait_on_page_locked(page);
1507 		if (PageUptodate(page))
1508 			goto success;
1509 	} else if (error == AOP_TRUNCATED_PAGE) {
1510 		page_cache_release(page);
1511 		goto retry_find;
1512 	}
1513 
1514 	/*
1515 	 * Umm, take care of errors if the page isn't up-to-date.
1516 	 * Try to re-read it _once_. We do this synchronously,
1517 	 * because there really aren't any performance issues here
1518 	 * and we need to check for errors.
1519 	 */
1520 	lock_page(page);
1521 
1522 	/* Somebody truncated the page on us? */
1523 	if (!page->mapping) {
1524 		unlock_page(page);
1525 		page_cache_release(page);
1526 		goto retry_all;
1527 	}
1528 
1529 	/* Somebody else successfully read it in? */
1530 	if (PageUptodate(page)) {
1531 		unlock_page(page);
1532 		goto success;
1533 	}
1534 	ClearPageError(page);
1535 	error = mapping->a_ops->readpage(file, page);
1536 	if (!error) {
1537 		wait_on_page_locked(page);
1538 		if (PageUptodate(page))
1539 			goto success;
1540 	} else if (error == AOP_TRUNCATED_PAGE) {
1541 		page_cache_release(page);
1542 		goto retry_find;
1543 	}
1544 
1545 	/*
1546 	 * Things didn't work out. Return zero to tell the
1547 	 * mm layer so, possibly freeing the page cache page first.
1548 	 */
1549 	shrink_readahead_size_eio(file, ra);
1550 	page_cache_release(page);
1551 	return NULL;
1552 }
1553 EXPORT_SYMBOL(filemap_nopage);
1554 
1555 static struct page * filemap_getpage(struct file *file, unsigned long pgoff,
1556 					int nonblock)
1557 {
1558 	struct address_space *mapping = file->f_mapping;
1559 	struct page *page;
1560 	int error;
1561 
1562 	/*
1563 	 * Do we have something in the page cache already?
1564 	 */
1565 retry_find:
1566 	page = find_get_page(mapping, pgoff);
1567 	if (!page) {
1568 		if (nonblock)
1569 			return NULL;
1570 		goto no_cached_page;
1571 	}
1572 
1573 	/*
1574 	 * Ok, found a page in the page cache, now we need to check
1575 	 * that it's up-to-date.
1576 	 */
1577 	if (!PageUptodate(page)) {
1578 		if (nonblock) {
1579 			page_cache_release(page);
1580 			return NULL;
1581 		}
1582 		goto page_not_uptodate;
1583 	}
1584 
1585 success:
1586 	/*
1587 	 * Found the page and have a reference on it.
1588 	 */
1589 	mark_page_accessed(page);
1590 	return page;
1591 
1592 no_cached_page:
1593 	error = page_cache_read(file, pgoff);
1594 
1595 	/*
1596 	 * The page we want has now been added to the page cache.
1597 	 * In the unlikely event that someone removed it in the
1598 	 * meantime, we'll just come back here and read it again.
1599 	 */
1600 	if (error >= 0)
1601 		goto retry_find;
1602 
1603 	/*
1604 	 * An error return from page_cache_read can result if the
1605 	 * system is low on memory, or a problem occurs while trying
1606 	 * to schedule I/O.
1607 	 */
1608 	return NULL;
1609 
1610 page_not_uptodate:
1611 	lock_page(page);
1612 
1613 	/* Did it get unhashed while we waited for it? */
1614 	if (!page->mapping) {
1615 		unlock_page(page);
1616 		goto err;
1617 	}
1618 
1619 	/* Did somebody else get it up-to-date? */
1620 	if (PageUptodate(page)) {
1621 		unlock_page(page);
1622 		goto success;
1623 	}
1624 
1625 	error = mapping->a_ops->readpage(file, page);
1626 	if (!error) {
1627 		wait_on_page_locked(page);
1628 		if (PageUptodate(page))
1629 			goto success;
1630 	} else if (error == AOP_TRUNCATED_PAGE) {
1631 		page_cache_release(page);
1632 		goto retry_find;
1633 	}
1634 
1635 	/*
1636 	 * Umm, take care of errors if the page isn't up-to-date.
1637 	 * Try to re-read it _once_. We do this synchronously,
1638 	 * because there really aren't any performance issues here
1639 	 * and we need to check for errors.
1640 	 */
1641 	lock_page(page);
1642 
1643 	/* Somebody truncated the page on us? */
1644 	if (!page->mapping) {
1645 		unlock_page(page);
1646 		goto err;
1647 	}
1648 	/* Somebody else successfully read it in? */
1649 	if (PageUptodate(page)) {
1650 		unlock_page(page);
1651 		goto success;
1652 	}
1653 
1654 	ClearPageError(page);
1655 	error = mapping->a_ops->readpage(file, page);
1656 	if (!error) {
1657 		wait_on_page_locked(page);
1658 		if (PageUptodate(page))
1659 			goto success;
1660 	} else if (error == AOP_TRUNCATED_PAGE) {
1661 		page_cache_release(page);
1662 		goto retry_find;
1663 	}
1664 
1665 	/*
1666 	 * Things didn't work out. Return zero to tell the
1667 	 * mm layer so, possibly freeing the page cache page first.
1668 	 */
1669 err:
1670 	page_cache_release(page);
1671 
1672 	return NULL;
1673 }
1674 
1675 int filemap_populate(struct vm_area_struct *vma, unsigned long addr,
1676 		unsigned long len, pgprot_t prot, unsigned long pgoff,
1677 		int nonblock)
1678 {
1679 	struct file *file = vma->vm_file;
1680 	struct address_space *mapping = file->f_mapping;
1681 	struct inode *inode = mapping->host;
1682 	unsigned long size;
1683 	struct mm_struct *mm = vma->vm_mm;
1684 	struct page *page;
1685 	int err;
1686 
1687 	if (!nonblock)
1688 		force_page_cache_readahead(mapping, vma->vm_file,
1689 					pgoff, len >> PAGE_CACHE_SHIFT);
1690 
1691 repeat:
1692 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1693 	if (pgoff + (len >> PAGE_CACHE_SHIFT) > size)
1694 		return -EINVAL;
1695 
1696 	page = filemap_getpage(file, pgoff, nonblock);
1697 
1698 	/* XXX: This is wrong, a filesystem I/O error may have happened. Fix that as
1699 	 * done in shmem_populate calling shmem_getpage */
1700 	if (!page && !nonblock)
1701 		return -ENOMEM;
1702 
1703 	if (page) {
1704 		err = install_page(mm, vma, addr, page, prot);
1705 		if (err) {
1706 			page_cache_release(page);
1707 			return err;
1708 		}
1709 	} else if (vma->vm_flags & VM_NONLINEAR) {
1710 		/* No page was found just because we can't read it in now (being
1711 		 * here implies nonblock != 0), but the page may exist, so set
1712 		 * the PTE to fault it in later. */
1713 		err = install_file_pte(mm, vma, addr, pgoff, prot);
1714 		if (err)
1715 			return err;
1716 	}
1717 
1718 	len -= PAGE_SIZE;
1719 	addr += PAGE_SIZE;
1720 	pgoff++;
1721 	if (len)
1722 		goto repeat;
1723 
1724 	return 0;
1725 }
1726 EXPORT_SYMBOL(filemap_populate);
1727 
1728 struct vm_operations_struct generic_file_vm_ops = {
1729 	.nopage		= filemap_nopage,
1730 	.populate	= filemap_populate,
1731 };
1732 
1733 /* This is used for a general mmap of a disk file */
1734 
1735 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1736 {
1737 	struct address_space *mapping = file->f_mapping;
1738 
1739 	if (!mapping->a_ops->readpage)
1740 		return -ENOEXEC;
1741 	file_accessed(file);
1742 	vma->vm_ops = &generic_file_vm_ops;
1743 	return 0;
1744 }
1745 
1746 /*
1747  * This is for filesystems which do not implement ->writepage.
1748  */
1749 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1750 {
1751 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1752 		return -EINVAL;
1753 	return generic_file_mmap(file, vma);
1754 }
1755 #else
1756 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1757 {
1758 	return -ENOSYS;
1759 }
1760 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1761 {
1762 	return -ENOSYS;
1763 }
1764 #endif /* CONFIG_MMU */
1765 
1766 EXPORT_SYMBOL(generic_file_mmap);
1767 EXPORT_SYMBOL(generic_file_readonly_mmap);
1768 
1769 static inline struct page *__read_cache_page(struct address_space *mapping,
1770 				unsigned long index,
1771 				int (*filler)(void *,struct page*),
1772 				void *data)
1773 {
1774 	struct page *page, *cached_page = NULL;
1775 	int err;
1776 repeat:
1777 	page = find_get_page(mapping, index);
1778 	if (!page) {
1779 		if (!cached_page) {
1780 			cached_page = page_cache_alloc_cold(mapping);
1781 			if (!cached_page)
1782 				return ERR_PTR(-ENOMEM);
1783 		}
1784 		err = add_to_page_cache_lru(cached_page, mapping,
1785 					index, GFP_KERNEL);
1786 		if (err == -EEXIST)
1787 			goto repeat;
1788 		if (err < 0) {
1789 			/* Presumably ENOMEM for radix tree node */
1790 			page_cache_release(cached_page);
1791 			return ERR_PTR(err);
1792 		}
1793 		page = cached_page;
1794 		cached_page = NULL;
1795 		err = filler(data, page);
1796 		if (err < 0) {
1797 			page_cache_release(page);
1798 			page = ERR_PTR(err);
1799 		}
1800 	}
1801 	if (cached_page)
1802 		page_cache_release(cached_page);
1803 	return page;
1804 }
1805 
1806 /**
1807  * read_cache_page - read into page cache, fill it if needed
1808  * @mapping:	the page's address_space
1809  * @index:	the page index
1810  * @filler:	function to perform the read
1811  * @data:	destination for read data
1812  *
1813  * Read into the page cache. If a page already exists,
1814  * and PageUptodate() is not set, try to fill the page.
1815  */
1816 struct page *read_cache_page(struct address_space *mapping,
1817 				unsigned long index,
1818 				int (*filler)(void *,struct page*),
1819 				void *data)
1820 {
1821 	struct page *page;
1822 	int err;
1823 
1824 retry:
1825 	page = __read_cache_page(mapping, index, filler, data);
1826 	if (IS_ERR(page))
1827 		goto out;
1828 	mark_page_accessed(page);
1829 	if (PageUptodate(page))
1830 		goto out;
1831 
1832 	lock_page(page);
1833 	if (!page->mapping) {
1834 		unlock_page(page);
1835 		page_cache_release(page);
1836 		goto retry;
1837 	}
1838 	if (PageUptodate(page)) {
1839 		unlock_page(page);
1840 		goto out;
1841 	}
1842 	err = filler(data, page);
1843 	if (err < 0) {
1844 		page_cache_release(page);
1845 		page = ERR_PTR(err);
1846 	}
1847  out:
1848 	return page;
1849 }
1850 EXPORT_SYMBOL(read_cache_page);
1851 
1852 /*
1853  * If the page was newly created, increment its refcount and add it to the
1854  * caller's lru-buffering pagevec.  This function is specifically for
1855  * generic_file_write().
1856  */
1857 static inline struct page *
1858 __grab_cache_page(struct address_space *mapping, unsigned long index,
1859 			struct page **cached_page, struct pagevec *lru_pvec)
1860 {
1861 	int err;
1862 	struct page *page;
1863 repeat:
1864 	page = find_lock_page(mapping, index);
1865 	if (!page) {
1866 		if (!*cached_page) {
1867 			*cached_page = page_cache_alloc(mapping);
1868 			if (!*cached_page)
1869 				return NULL;
1870 		}
1871 		err = add_to_page_cache(*cached_page, mapping,
1872 					index, GFP_KERNEL);
1873 		if (err == -EEXIST)
1874 			goto repeat;
1875 		if (err == 0) {
1876 			page = *cached_page;
1877 			page_cache_get(page);
1878 			if (!pagevec_add(lru_pvec, page))
1879 				__pagevec_lru_add(lru_pvec);
1880 			*cached_page = NULL;
1881 		}
1882 	}
1883 	return page;
1884 }
1885 
1886 /*
1887  * The logic we want is
1888  *
1889  *	if suid or (sgid and xgrp)
1890  *		remove privs
1891  */
1892 int remove_suid(struct dentry *dentry)
1893 {
1894 	mode_t mode = dentry->d_inode->i_mode;
1895 	int kill = 0;
1896 	int result = 0;
1897 
1898 	/* suid always must be killed */
1899 	if (unlikely(mode & S_ISUID))
1900 		kill = ATTR_KILL_SUID;
1901 
1902 	/*
1903 	 * sgid without any exec bits is just a mandatory locking mark; leave
1904 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1905 	 */
1906 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1907 		kill |= ATTR_KILL_SGID;
1908 
1909 	if (unlikely(kill && !capable(CAP_FSETID))) {
1910 		struct iattr newattrs;
1911 
1912 		newattrs.ia_valid = ATTR_FORCE | kill;
1913 		result = notify_change(dentry, &newattrs);
1914 	}
1915 	return result;
1916 }
1917 EXPORT_SYMBOL(remove_suid);
1918 
1919 size_t
1920 __filemap_copy_from_user_iovec_inatomic(char *vaddr,
1921 			const struct iovec *iov, size_t base, size_t bytes)
1922 {
1923 	size_t copied = 0, left = 0;
1924 
1925 	while (bytes) {
1926 		char __user *buf = iov->iov_base + base;
1927 		int copy = min(bytes, iov->iov_len - base);
1928 
1929 		base = 0;
1930 		left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1931 		copied += copy;
1932 		bytes -= copy;
1933 		vaddr += copy;
1934 		iov++;
1935 
1936 		if (unlikely(left))
1937 			break;
1938 	}
1939 	return copied - left;
1940 }
1941 
1942 /*
1943  * Performs necessary checks before doing a write
1944  *
1945  * Can adjust writing position or amount of bytes to write.
1946  * Returns appropriate error code that caller should return or
1947  * zero in case that write should be allowed.
1948  */
1949 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1950 {
1951 	struct inode *inode = file->f_mapping->host;
1952 	unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1953 
1954         if (unlikely(*pos < 0))
1955                 return -EINVAL;
1956 
1957 	if (!isblk) {
1958 		/* FIXME: this is for backwards compatibility with 2.4 */
1959 		if (file->f_flags & O_APPEND)
1960                         *pos = i_size_read(inode);
1961 
1962 		if (limit != RLIM_INFINITY) {
1963 			if (*pos >= limit) {
1964 				send_sig(SIGXFSZ, current, 0);
1965 				return -EFBIG;
1966 			}
1967 			if (*count > limit - (typeof(limit))*pos) {
1968 				*count = limit - (typeof(limit))*pos;
1969 			}
1970 		}
1971 	}
1972 
1973 	/*
1974 	 * LFS rule
1975 	 */
1976 	if (unlikely(*pos + *count > MAX_NON_LFS &&
1977 				!(file->f_flags & O_LARGEFILE))) {
1978 		if (*pos >= MAX_NON_LFS) {
1979 			send_sig(SIGXFSZ, current, 0);
1980 			return -EFBIG;
1981 		}
1982 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1983 			*count = MAX_NON_LFS - (unsigned long)*pos;
1984 		}
1985 	}
1986 
1987 	/*
1988 	 * Are we about to exceed the fs block limit ?
1989 	 *
1990 	 * If we have written data it becomes a short write.  If we have
1991 	 * exceeded without writing data we send a signal and return EFBIG.
1992 	 * Linus frestrict idea will clean these up nicely..
1993 	 */
1994 	if (likely(!isblk)) {
1995 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1996 			if (*count || *pos > inode->i_sb->s_maxbytes) {
1997 				send_sig(SIGXFSZ, current, 0);
1998 				return -EFBIG;
1999 			}
2000 			/* zero-length writes at ->s_maxbytes are OK */
2001 		}
2002 
2003 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2004 			*count = inode->i_sb->s_maxbytes - *pos;
2005 	} else {
2006 		loff_t isize;
2007 		if (bdev_read_only(I_BDEV(inode)))
2008 			return -EPERM;
2009 		isize = i_size_read(inode);
2010 		if (*pos >= isize) {
2011 			if (*count || *pos > isize)
2012 				return -ENOSPC;
2013 		}
2014 
2015 		if (*pos + *count > isize)
2016 			*count = isize - *pos;
2017 	}
2018 	return 0;
2019 }
2020 EXPORT_SYMBOL(generic_write_checks);
2021 
2022 ssize_t
2023 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2024 		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2025 		size_t count, size_t ocount)
2026 {
2027 	struct file	*file = iocb->ki_filp;
2028 	struct address_space *mapping = file->f_mapping;
2029 	struct inode	*inode = mapping->host;
2030 	ssize_t		written;
2031 
2032 	if (count != ocount)
2033 		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2034 
2035 	written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2036 	if (written > 0) {
2037 		loff_t end = pos + written;
2038 		if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2039 			i_size_write(inode,  end);
2040 			mark_inode_dirty(inode);
2041 		}
2042 		*ppos = end;
2043 	}
2044 
2045 	/*
2046 	 * Sync the fs metadata but not the minor inode changes and
2047 	 * of course not the data as we did direct DMA for the IO.
2048 	 * i_mutex is held, which protects generic_osync_inode() from
2049 	 * livelocking.
2050 	 */
2051 	if (written >= 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2052 		int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2053 		if (err < 0)
2054 			written = err;
2055 	}
2056 	if (written == count && !is_sync_kiocb(iocb))
2057 		written = -EIOCBQUEUED;
2058 	return written;
2059 }
2060 EXPORT_SYMBOL(generic_file_direct_write);
2061 
2062 ssize_t
2063 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2064 		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2065 		size_t count, ssize_t written)
2066 {
2067 	struct file *file = iocb->ki_filp;
2068 	struct address_space * mapping = file->f_mapping;
2069 	const struct address_space_operations *a_ops = mapping->a_ops;
2070 	struct inode 	*inode = mapping->host;
2071 	long		status = 0;
2072 	struct page	*page;
2073 	struct page	*cached_page = NULL;
2074 	size_t		bytes;
2075 	struct pagevec	lru_pvec;
2076 	const struct iovec *cur_iov = iov; /* current iovec */
2077 	size_t		iov_base = 0;	   /* offset in the current iovec */
2078 	char __user	*buf;
2079 
2080 	pagevec_init(&lru_pvec, 0);
2081 
2082 	/*
2083 	 * handle partial DIO write.  Adjust cur_iov if needed.
2084 	 */
2085 	if (likely(nr_segs == 1))
2086 		buf = iov->iov_base + written;
2087 	else {
2088 		filemap_set_next_iovec(&cur_iov, &iov_base, written);
2089 		buf = cur_iov->iov_base + iov_base;
2090 	}
2091 
2092 	do {
2093 		unsigned long index;
2094 		unsigned long offset;
2095 		size_t copied;
2096 
2097 		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
2098 		index = pos >> PAGE_CACHE_SHIFT;
2099 		bytes = PAGE_CACHE_SIZE - offset;
2100 
2101 		/* Limit the size of the copy to the caller's write size */
2102 		bytes = min(bytes, count);
2103 
2104 		/*
2105 		 * Limit the size of the copy to that of the current segment,
2106 		 * because fault_in_pages_readable() doesn't know how to walk
2107 		 * segments.
2108 		 */
2109 		bytes = min(bytes, cur_iov->iov_len - iov_base);
2110 
2111 		/*
2112 		 * Bring in the user page that we will copy from _first_.
2113 		 * Otherwise there's a nasty deadlock on copying from the
2114 		 * same page as we're writing to, without it being marked
2115 		 * up-to-date.
2116 		 */
2117 		fault_in_pages_readable(buf, bytes);
2118 
2119 		page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec);
2120 		if (!page) {
2121 			status = -ENOMEM;
2122 			break;
2123 		}
2124 
2125 		if (unlikely(bytes == 0)) {
2126 			status = 0;
2127 			copied = 0;
2128 			goto zero_length_segment;
2129 		}
2130 
2131 		status = a_ops->prepare_write(file, page, offset, offset+bytes);
2132 		if (unlikely(status)) {
2133 			loff_t isize = i_size_read(inode);
2134 
2135 			if (status != AOP_TRUNCATED_PAGE)
2136 				unlock_page(page);
2137 			page_cache_release(page);
2138 			if (status == AOP_TRUNCATED_PAGE)
2139 				continue;
2140 			/*
2141 			 * prepare_write() may have instantiated a few blocks
2142 			 * outside i_size.  Trim these off again.
2143 			 */
2144 			if (pos + bytes > isize)
2145 				vmtruncate(inode, isize);
2146 			break;
2147 		}
2148 		if (likely(nr_segs == 1))
2149 			copied = filemap_copy_from_user(page, offset,
2150 							buf, bytes);
2151 		else
2152 			copied = filemap_copy_from_user_iovec(page, offset,
2153 						cur_iov, iov_base, bytes);
2154 		flush_dcache_page(page);
2155 		status = a_ops->commit_write(file, page, offset, offset+bytes);
2156 		if (status == AOP_TRUNCATED_PAGE) {
2157 			page_cache_release(page);
2158 			continue;
2159 		}
2160 zero_length_segment:
2161 		if (likely(copied >= 0)) {
2162 			if (!status)
2163 				status = copied;
2164 
2165 			if (status >= 0) {
2166 				written += status;
2167 				count -= status;
2168 				pos += status;
2169 				buf += status;
2170 				if (unlikely(nr_segs > 1)) {
2171 					filemap_set_next_iovec(&cur_iov,
2172 							&iov_base, status);
2173 					if (count)
2174 						buf = cur_iov->iov_base +
2175 							iov_base;
2176 				} else {
2177 					iov_base += status;
2178 				}
2179 			}
2180 		}
2181 		if (unlikely(copied != bytes))
2182 			if (status >= 0)
2183 				status = -EFAULT;
2184 		unlock_page(page);
2185 		mark_page_accessed(page);
2186 		page_cache_release(page);
2187 		if (status < 0)
2188 			break;
2189 		balance_dirty_pages_ratelimited(mapping);
2190 		cond_resched();
2191 	} while (count);
2192 	*ppos = pos;
2193 
2194 	if (cached_page)
2195 		page_cache_release(cached_page);
2196 
2197 	/*
2198 	 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
2199 	 */
2200 	if (likely(status >= 0)) {
2201 		if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2202 			if (!a_ops->writepage || !is_sync_kiocb(iocb))
2203 				status = generic_osync_inode(inode, mapping,
2204 						OSYNC_METADATA|OSYNC_DATA);
2205 		}
2206   	}
2207 
2208 	/*
2209 	 * If we get here for O_DIRECT writes then we must have fallen through
2210 	 * to buffered writes (block instantiation inside i_size).  So we sync
2211 	 * the file data here, to try to honour O_DIRECT expectations.
2212 	 */
2213 	if (unlikely(file->f_flags & O_DIRECT) && written)
2214 		status = filemap_write_and_wait(mapping);
2215 
2216 	pagevec_lru_add(&lru_pvec);
2217 	return written ? written : status;
2218 }
2219 EXPORT_SYMBOL(generic_file_buffered_write);
2220 
2221 static ssize_t
2222 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2223 				unsigned long nr_segs, loff_t *ppos)
2224 {
2225 	struct file *file = iocb->ki_filp;
2226 	const struct address_space * mapping = file->f_mapping;
2227 	size_t ocount;		/* original count */
2228 	size_t count;		/* after file limit checks */
2229 	struct inode 	*inode = mapping->host;
2230 	unsigned long	seg;
2231 	loff_t		pos;
2232 	ssize_t		written;
2233 	ssize_t		err;
2234 
2235 	ocount = 0;
2236 	for (seg = 0; seg < nr_segs; seg++) {
2237 		const struct iovec *iv = &iov[seg];
2238 
2239 		/*
2240 		 * If any segment has a negative length, or the cumulative
2241 		 * length ever wraps negative then return -EINVAL.
2242 		 */
2243 		ocount += iv->iov_len;
2244 		if (unlikely((ssize_t)(ocount|iv->iov_len) < 0))
2245 			return -EINVAL;
2246 		if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len))
2247 			continue;
2248 		if (seg == 0)
2249 			return -EFAULT;
2250 		nr_segs = seg;
2251 		ocount -= iv->iov_len;	/* This segment is no good */
2252 		break;
2253 	}
2254 
2255 	count = ocount;
2256 	pos = *ppos;
2257 
2258 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2259 
2260 	/* We can write back this queue in page reclaim */
2261 	current->backing_dev_info = mapping->backing_dev_info;
2262 	written = 0;
2263 
2264 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2265 	if (err)
2266 		goto out;
2267 
2268 	if (count == 0)
2269 		goto out;
2270 
2271 	err = remove_suid(file->f_dentry);
2272 	if (err)
2273 		goto out;
2274 
2275 	file_update_time(file);
2276 
2277 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2278 	if (unlikely(file->f_flags & O_DIRECT)) {
2279 		written = generic_file_direct_write(iocb, iov,
2280 				&nr_segs, pos, ppos, count, ocount);
2281 		if (written < 0 || written == count)
2282 			goto out;
2283 		/*
2284 		 * direct-io write to a hole: fall through to buffered I/O
2285 		 * for completing the rest of the request.
2286 		 */
2287 		pos += written;
2288 		count -= written;
2289 	}
2290 
2291 	written = generic_file_buffered_write(iocb, iov, nr_segs,
2292 			pos, ppos, count, written);
2293 out:
2294 	current->backing_dev_info = NULL;
2295 	return written ? written : err;
2296 }
2297 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2298 
2299 ssize_t
2300 generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2301 				unsigned long nr_segs, loff_t *ppos)
2302 {
2303 	struct file *file = iocb->ki_filp;
2304 	struct address_space *mapping = file->f_mapping;
2305 	struct inode *inode = mapping->host;
2306 	ssize_t ret;
2307 	loff_t pos = *ppos;
2308 
2309 	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, ppos);
2310 
2311 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2312 		int err;
2313 
2314 		err = sync_page_range_nolock(inode, mapping, pos, ret);
2315 		if (err < 0)
2316 			ret = err;
2317 	}
2318 	return ret;
2319 }
2320 
2321 static ssize_t
2322 __generic_file_write_nolock(struct file *file, const struct iovec *iov,
2323 				unsigned long nr_segs, loff_t *ppos)
2324 {
2325 	struct kiocb kiocb;
2326 	ssize_t ret;
2327 
2328 	init_sync_kiocb(&kiocb, file);
2329 	ret = __generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2330 	if (ret == -EIOCBQUEUED)
2331 		ret = wait_on_sync_kiocb(&kiocb);
2332 	return ret;
2333 }
2334 
2335 ssize_t
2336 generic_file_write_nolock(struct file *file, const struct iovec *iov,
2337 				unsigned long nr_segs, loff_t *ppos)
2338 {
2339 	struct kiocb kiocb;
2340 	ssize_t ret;
2341 
2342 	init_sync_kiocb(&kiocb, file);
2343 	ret = generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2344 	if (-EIOCBQUEUED == ret)
2345 		ret = wait_on_sync_kiocb(&kiocb);
2346 	return ret;
2347 }
2348 EXPORT_SYMBOL(generic_file_write_nolock);
2349 
2350 ssize_t generic_file_aio_write(struct kiocb *iocb, const char __user *buf,
2351 			       size_t count, loff_t pos)
2352 {
2353 	struct file *file = iocb->ki_filp;
2354 	struct address_space *mapping = file->f_mapping;
2355 	struct inode *inode = mapping->host;
2356 	ssize_t ret;
2357 	struct iovec local_iov = { .iov_base = (void __user *)buf,
2358 					.iov_len = count };
2359 
2360 	BUG_ON(iocb->ki_pos != pos);
2361 
2362 	mutex_lock(&inode->i_mutex);
2363 	ret = __generic_file_aio_write_nolock(iocb, &local_iov, 1,
2364 						&iocb->ki_pos);
2365 	mutex_unlock(&inode->i_mutex);
2366 
2367 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2368 		ssize_t err;
2369 
2370 		err = sync_page_range(inode, mapping, pos, ret);
2371 		if (err < 0)
2372 			ret = err;
2373 	}
2374 	return ret;
2375 }
2376 EXPORT_SYMBOL(generic_file_aio_write);
2377 
2378 ssize_t generic_file_write(struct file *file, const char __user *buf,
2379 			   size_t count, loff_t *ppos)
2380 {
2381 	struct address_space *mapping = file->f_mapping;
2382 	struct inode *inode = mapping->host;
2383 	ssize_t	ret;
2384 	struct iovec local_iov = { .iov_base = (void __user *)buf,
2385 					.iov_len = count };
2386 
2387 	mutex_lock(&inode->i_mutex);
2388 	ret = __generic_file_write_nolock(file, &local_iov, 1, ppos);
2389 	mutex_unlock(&inode->i_mutex);
2390 
2391 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2392 		ssize_t err;
2393 
2394 		err = sync_page_range(inode, mapping, *ppos - ret, ret);
2395 		if (err < 0)
2396 			ret = err;
2397 	}
2398 	return ret;
2399 }
2400 EXPORT_SYMBOL(generic_file_write);
2401 
2402 ssize_t generic_file_readv(struct file *filp, const struct iovec *iov,
2403 			unsigned long nr_segs, loff_t *ppos)
2404 {
2405 	struct kiocb kiocb;
2406 	ssize_t ret;
2407 
2408 	init_sync_kiocb(&kiocb, filp);
2409 	ret = __generic_file_aio_read(&kiocb, iov, nr_segs, ppos);
2410 	if (-EIOCBQUEUED == ret)
2411 		ret = wait_on_sync_kiocb(&kiocb);
2412 	return ret;
2413 }
2414 EXPORT_SYMBOL(generic_file_readv);
2415 
2416 ssize_t generic_file_writev(struct file *file, const struct iovec *iov,
2417 			unsigned long nr_segs, loff_t *ppos)
2418 {
2419 	struct address_space *mapping = file->f_mapping;
2420 	struct inode *inode = mapping->host;
2421 	ssize_t ret;
2422 
2423 	mutex_lock(&inode->i_mutex);
2424 	ret = __generic_file_write_nolock(file, iov, nr_segs, ppos);
2425 	mutex_unlock(&inode->i_mutex);
2426 
2427 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2428 		int err;
2429 
2430 		err = sync_page_range(inode, mapping, *ppos - ret, ret);
2431 		if (err < 0)
2432 			ret = err;
2433 	}
2434 	return ret;
2435 }
2436 EXPORT_SYMBOL(generic_file_writev);
2437 
2438 /*
2439  * Called under i_mutex for writes to S_ISREG files.   Returns -EIO if something
2440  * went wrong during pagecache shootdown.
2441  */
2442 static ssize_t
2443 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2444 	loff_t offset, unsigned long nr_segs)
2445 {
2446 	struct file *file = iocb->ki_filp;
2447 	struct address_space *mapping = file->f_mapping;
2448 	ssize_t retval;
2449 	size_t write_len = 0;
2450 
2451 	/*
2452 	 * If it's a write, unmap all mmappings of the file up-front.  This
2453 	 * will cause any pte dirty bits to be propagated into the pageframes
2454 	 * for the subsequent filemap_write_and_wait().
2455 	 */
2456 	if (rw == WRITE) {
2457 		write_len = iov_length(iov, nr_segs);
2458 	       	if (mapping_mapped(mapping))
2459 			unmap_mapping_range(mapping, offset, write_len, 0);
2460 	}
2461 
2462 	retval = filemap_write_and_wait(mapping);
2463 	if (retval == 0) {
2464 		retval = mapping->a_ops->direct_IO(rw, iocb, iov,
2465 						offset, nr_segs);
2466 		if (rw == WRITE && mapping->nrpages) {
2467 			pgoff_t end = (offset + write_len - 1)
2468 						>> PAGE_CACHE_SHIFT;
2469 			int err = invalidate_inode_pages2_range(mapping,
2470 					offset >> PAGE_CACHE_SHIFT, end);
2471 			if (err)
2472 				retval = err;
2473 		}
2474 	}
2475 	return retval;
2476 }
2477