1 /* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12 #include <linux/module.h> 13 #include <linux/slab.h> 14 #include <linux/compiler.h> 15 #include <linux/fs.h> 16 #include <linux/uaccess.h> 17 #include <linux/aio.h> 18 #include <linux/capability.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/mm.h> 21 #include <linux/swap.h> 22 #include <linux/mman.h> 23 #include <linux/pagemap.h> 24 #include <linux/file.h> 25 #include <linux/uio.h> 26 #include <linux/hash.h> 27 #include <linux/writeback.h> 28 #include <linux/pagevec.h> 29 #include <linux/blkdev.h> 30 #include <linux/security.h> 31 #include <linux/syscalls.h> 32 #include <linux/cpuset.h> 33 #include "filemap.h" 34 #include "internal.h" 35 36 /* 37 * FIXME: remove all knowledge of the buffer layer from the core VM 38 */ 39 #include <linux/buffer_head.h> /* for generic_osync_inode */ 40 41 #include <asm/mman.h> 42 43 static ssize_t 44 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, 45 loff_t offset, unsigned long nr_segs); 46 47 /* 48 * Shared mappings implemented 30.11.1994. It's not fully working yet, 49 * though. 50 * 51 * Shared mappings now work. 15.8.1995 Bruno. 52 * 53 * finished 'unifying' the page and buffer cache and SMP-threaded the 54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 55 * 56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 57 */ 58 59 /* 60 * Lock ordering: 61 * 62 * ->i_mmap_lock (vmtruncate) 63 * ->private_lock (__free_pte->__set_page_dirty_buffers) 64 * ->swap_lock (exclusive_swap_page, others) 65 * ->mapping->tree_lock 66 * 67 * ->i_mutex 68 * ->i_mmap_lock (truncate->unmap_mapping_range) 69 * 70 * ->mmap_sem 71 * ->i_mmap_lock 72 * ->page_table_lock or pte_lock (various, mainly in memory.c) 73 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) 74 * 75 * ->mmap_sem 76 * ->lock_page (access_process_vm) 77 * 78 * ->mmap_sem 79 * ->i_mutex (msync) 80 * 81 * ->i_mutex 82 * ->i_alloc_sem (various) 83 * 84 * ->inode_lock 85 * ->sb_lock (fs/fs-writeback.c) 86 * ->mapping->tree_lock (__sync_single_inode) 87 * 88 * ->i_mmap_lock 89 * ->anon_vma.lock (vma_adjust) 90 * 91 * ->anon_vma.lock 92 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 93 * 94 * ->page_table_lock or pte_lock 95 * ->swap_lock (try_to_unmap_one) 96 * ->private_lock (try_to_unmap_one) 97 * ->tree_lock (try_to_unmap_one) 98 * ->zone.lru_lock (follow_page->mark_page_accessed) 99 * ->zone.lru_lock (check_pte_range->isolate_lru_page) 100 * ->private_lock (page_remove_rmap->set_page_dirty) 101 * ->tree_lock (page_remove_rmap->set_page_dirty) 102 * ->inode_lock (page_remove_rmap->set_page_dirty) 103 * ->inode_lock (zap_pte_range->set_page_dirty) 104 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 105 * 106 * ->task->proc_lock 107 * ->dcache_lock (proc_pid_lookup) 108 */ 109 110 /* 111 * Remove a page from the page cache and free it. Caller has to make 112 * sure the page is locked and that nobody else uses it - or that usage 113 * is safe. The caller must hold a write_lock on the mapping's tree_lock. 114 */ 115 void __remove_from_page_cache(struct page *page) 116 { 117 struct address_space *mapping = page->mapping; 118 119 radix_tree_delete(&mapping->page_tree, page->index); 120 page->mapping = NULL; 121 mapping->nrpages--; 122 __dec_zone_page_state(page, NR_FILE_PAGES); 123 } 124 125 void remove_from_page_cache(struct page *page) 126 { 127 struct address_space *mapping = page->mapping; 128 129 BUG_ON(!PageLocked(page)); 130 131 write_lock_irq(&mapping->tree_lock); 132 __remove_from_page_cache(page); 133 write_unlock_irq(&mapping->tree_lock); 134 } 135 136 static int sync_page(void *word) 137 { 138 struct address_space *mapping; 139 struct page *page; 140 141 page = container_of((unsigned long *)word, struct page, flags); 142 143 /* 144 * page_mapping() is being called without PG_locked held. 145 * Some knowledge of the state and use of the page is used to 146 * reduce the requirements down to a memory barrier. 147 * The danger here is of a stale page_mapping() return value 148 * indicating a struct address_space different from the one it's 149 * associated with when it is associated with one. 150 * After smp_mb(), it's either the correct page_mapping() for 151 * the page, or an old page_mapping() and the page's own 152 * page_mapping() has gone NULL. 153 * The ->sync_page() address_space operation must tolerate 154 * page_mapping() going NULL. By an amazing coincidence, 155 * this comes about because none of the users of the page 156 * in the ->sync_page() methods make essential use of the 157 * page_mapping(), merely passing the page down to the backing 158 * device's unplug functions when it's non-NULL, which in turn 159 * ignore it for all cases but swap, where only page_private(page) is 160 * of interest. When page_mapping() does go NULL, the entire 161 * call stack gracefully ignores the page and returns. 162 * -- wli 163 */ 164 smp_mb(); 165 mapping = page_mapping(page); 166 if (mapping && mapping->a_ops && mapping->a_ops->sync_page) 167 mapping->a_ops->sync_page(page); 168 io_schedule(); 169 return 0; 170 } 171 172 /** 173 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 174 * @mapping: address space structure to write 175 * @start: offset in bytes where the range starts 176 * @end: offset in bytes where the range ends (inclusive) 177 * @sync_mode: enable synchronous operation 178 * 179 * Start writeback against all of a mapping's dirty pages that lie 180 * within the byte offsets <start, end> inclusive. 181 * 182 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 183 * opposed to a regular memory cleansing writeback. The difference between 184 * these two operations is that if a dirty page/buffer is encountered, it must 185 * be waited upon, and not just skipped over. 186 */ 187 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 188 loff_t end, int sync_mode) 189 { 190 int ret; 191 struct writeback_control wbc = { 192 .sync_mode = sync_mode, 193 .nr_to_write = mapping->nrpages * 2, 194 .range_start = start, 195 .range_end = end, 196 }; 197 198 if (!mapping_cap_writeback_dirty(mapping)) 199 return 0; 200 201 ret = do_writepages(mapping, &wbc); 202 return ret; 203 } 204 205 static inline int __filemap_fdatawrite(struct address_space *mapping, 206 int sync_mode) 207 { 208 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 209 } 210 211 int filemap_fdatawrite(struct address_space *mapping) 212 { 213 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 214 } 215 EXPORT_SYMBOL(filemap_fdatawrite); 216 217 static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 218 loff_t end) 219 { 220 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 221 } 222 223 /** 224 * filemap_flush - mostly a non-blocking flush 225 * @mapping: target address_space 226 * 227 * This is a mostly non-blocking flush. Not suitable for data-integrity 228 * purposes - I/O may not be started against all dirty pages. 229 */ 230 int filemap_flush(struct address_space *mapping) 231 { 232 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 233 } 234 EXPORT_SYMBOL(filemap_flush); 235 236 /** 237 * wait_on_page_writeback_range - wait for writeback to complete 238 * @mapping: target address_space 239 * @start: beginning page index 240 * @end: ending page index 241 * 242 * Wait for writeback to complete against pages indexed by start->end 243 * inclusive 244 */ 245 int wait_on_page_writeback_range(struct address_space *mapping, 246 pgoff_t start, pgoff_t end) 247 { 248 struct pagevec pvec; 249 int nr_pages; 250 int ret = 0; 251 pgoff_t index; 252 253 if (end < start) 254 return 0; 255 256 pagevec_init(&pvec, 0); 257 index = start; 258 while ((index <= end) && 259 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 260 PAGECACHE_TAG_WRITEBACK, 261 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { 262 unsigned i; 263 264 for (i = 0; i < nr_pages; i++) { 265 struct page *page = pvec.pages[i]; 266 267 /* until radix tree lookup accepts end_index */ 268 if (page->index > end) 269 continue; 270 271 wait_on_page_writeback(page); 272 if (PageError(page)) 273 ret = -EIO; 274 } 275 pagevec_release(&pvec); 276 cond_resched(); 277 } 278 279 /* Check for outstanding write errors */ 280 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 281 ret = -ENOSPC; 282 if (test_and_clear_bit(AS_EIO, &mapping->flags)) 283 ret = -EIO; 284 285 return ret; 286 } 287 288 /** 289 * sync_page_range - write and wait on all pages in the passed range 290 * @inode: target inode 291 * @mapping: target address_space 292 * @pos: beginning offset in pages to write 293 * @count: number of bytes to write 294 * 295 * Write and wait upon all the pages in the passed range. This is a "data 296 * integrity" operation. It waits upon in-flight writeout before starting and 297 * waiting upon new writeout. If there was an IO error, return it. 298 * 299 * We need to re-take i_mutex during the generic_osync_inode list walk because 300 * it is otherwise livelockable. 301 */ 302 int sync_page_range(struct inode *inode, struct address_space *mapping, 303 loff_t pos, loff_t count) 304 { 305 pgoff_t start = pos >> PAGE_CACHE_SHIFT; 306 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT; 307 int ret; 308 309 if (!mapping_cap_writeback_dirty(mapping) || !count) 310 return 0; 311 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1); 312 if (ret == 0) { 313 mutex_lock(&inode->i_mutex); 314 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA); 315 mutex_unlock(&inode->i_mutex); 316 } 317 if (ret == 0) 318 ret = wait_on_page_writeback_range(mapping, start, end); 319 return ret; 320 } 321 EXPORT_SYMBOL(sync_page_range); 322 323 /** 324 * sync_page_range_nolock 325 * @inode: target inode 326 * @mapping: target address_space 327 * @pos: beginning offset in pages to write 328 * @count: number of bytes to write 329 * 330 * Note: Holding i_mutex across sync_page_range_nolock is not a good idea 331 * as it forces O_SYNC writers to different parts of the same file 332 * to be serialised right until io completion. 333 */ 334 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping, 335 loff_t pos, loff_t count) 336 { 337 pgoff_t start = pos >> PAGE_CACHE_SHIFT; 338 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT; 339 int ret; 340 341 if (!mapping_cap_writeback_dirty(mapping) || !count) 342 return 0; 343 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1); 344 if (ret == 0) 345 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA); 346 if (ret == 0) 347 ret = wait_on_page_writeback_range(mapping, start, end); 348 return ret; 349 } 350 EXPORT_SYMBOL(sync_page_range_nolock); 351 352 /** 353 * filemap_fdatawait - wait for all under-writeback pages to complete 354 * @mapping: address space structure to wait for 355 * 356 * Walk the list of under-writeback pages of the given address space 357 * and wait for all of them. 358 */ 359 int filemap_fdatawait(struct address_space *mapping) 360 { 361 loff_t i_size = i_size_read(mapping->host); 362 363 if (i_size == 0) 364 return 0; 365 366 return wait_on_page_writeback_range(mapping, 0, 367 (i_size - 1) >> PAGE_CACHE_SHIFT); 368 } 369 EXPORT_SYMBOL(filemap_fdatawait); 370 371 int filemap_write_and_wait(struct address_space *mapping) 372 { 373 int err = 0; 374 375 if (mapping->nrpages) { 376 err = filemap_fdatawrite(mapping); 377 /* 378 * Even if the above returned error, the pages may be 379 * written partially (e.g. -ENOSPC), so we wait for it. 380 * But the -EIO is special case, it may indicate the worst 381 * thing (e.g. bug) happened, so we avoid waiting for it. 382 */ 383 if (err != -EIO) { 384 int err2 = filemap_fdatawait(mapping); 385 if (!err) 386 err = err2; 387 } 388 } 389 return err; 390 } 391 EXPORT_SYMBOL(filemap_write_and_wait); 392 393 /** 394 * filemap_write_and_wait_range - write out & wait on a file range 395 * @mapping: the address_space for the pages 396 * @lstart: offset in bytes where the range starts 397 * @lend: offset in bytes where the range ends (inclusive) 398 * 399 * Write out and wait upon file offsets lstart->lend, inclusive. 400 * 401 * Note that `lend' is inclusive (describes the last byte to be written) so 402 * that this function can be used to write to the very end-of-file (end = -1). 403 */ 404 int filemap_write_and_wait_range(struct address_space *mapping, 405 loff_t lstart, loff_t lend) 406 { 407 int err = 0; 408 409 if (mapping->nrpages) { 410 err = __filemap_fdatawrite_range(mapping, lstart, lend, 411 WB_SYNC_ALL); 412 /* See comment of filemap_write_and_wait() */ 413 if (err != -EIO) { 414 int err2 = wait_on_page_writeback_range(mapping, 415 lstart >> PAGE_CACHE_SHIFT, 416 lend >> PAGE_CACHE_SHIFT); 417 if (!err) 418 err = err2; 419 } 420 } 421 return err; 422 } 423 424 /** 425 * add_to_page_cache - add newly allocated pagecache pages 426 * @page: page to add 427 * @mapping: the page's address_space 428 * @offset: page index 429 * @gfp_mask: page allocation mode 430 * 431 * This function is used to add newly allocated pagecache pages; 432 * the page is new, so we can just run SetPageLocked() against it. 433 * The other page state flags were set by rmqueue(). 434 * 435 * This function does not add the page to the LRU. The caller must do that. 436 */ 437 int add_to_page_cache(struct page *page, struct address_space *mapping, 438 pgoff_t offset, gfp_t gfp_mask) 439 { 440 int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 441 442 if (error == 0) { 443 write_lock_irq(&mapping->tree_lock); 444 error = radix_tree_insert(&mapping->page_tree, offset, page); 445 if (!error) { 446 page_cache_get(page); 447 SetPageLocked(page); 448 page->mapping = mapping; 449 page->index = offset; 450 mapping->nrpages++; 451 __inc_zone_page_state(page, NR_FILE_PAGES); 452 } 453 write_unlock_irq(&mapping->tree_lock); 454 radix_tree_preload_end(); 455 } 456 return error; 457 } 458 EXPORT_SYMBOL(add_to_page_cache); 459 460 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 461 pgoff_t offset, gfp_t gfp_mask) 462 { 463 int ret = add_to_page_cache(page, mapping, offset, gfp_mask); 464 if (ret == 0) 465 lru_cache_add(page); 466 return ret; 467 } 468 469 #ifdef CONFIG_NUMA 470 struct page *page_cache_alloc(struct address_space *x) 471 { 472 if (cpuset_do_page_mem_spread()) { 473 int n = cpuset_mem_spread_node(); 474 return alloc_pages_node(n, mapping_gfp_mask(x), 0); 475 } 476 return alloc_pages(mapping_gfp_mask(x), 0); 477 } 478 EXPORT_SYMBOL(page_cache_alloc); 479 480 struct page *page_cache_alloc_cold(struct address_space *x) 481 { 482 if (cpuset_do_page_mem_spread()) { 483 int n = cpuset_mem_spread_node(); 484 return alloc_pages_node(n, mapping_gfp_mask(x)|__GFP_COLD, 0); 485 } 486 return alloc_pages(mapping_gfp_mask(x)|__GFP_COLD, 0); 487 } 488 EXPORT_SYMBOL(page_cache_alloc_cold); 489 #endif 490 491 /* 492 * In order to wait for pages to become available there must be 493 * waitqueues associated with pages. By using a hash table of 494 * waitqueues where the bucket discipline is to maintain all 495 * waiters on the same queue and wake all when any of the pages 496 * become available, and for the woken contexts to check to be 497 * sure the appropriate page became available, this saves space 498 * at a cost of "thundering herd" phenomena during rare hash 499 * collisions. 500 */ 501 static wait_queue_head_t *page_waitqueue(struct page *page) 502 { 503 const struct zone *zone = page_zone(page); 504 505 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)]; 506 } 507 508 static inline void wake_up_page(struct page *page, int bit) 509 { 510 __wake_up_bit(page_waitqueue(page), &page->flags, bit); 511 } 512 513 void fastcall wait_on_page_bit(struct page *page, int bit_nr) 514 { 515 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 516 517 if (test_bit(bit_nr, &page->flags)) 518 __wait_on_bit(page_waitqueue(page), &wait, sync_page, 519 TASK_UNINTERRUPTIBLE); 520 } 521 EXPORT_SYMBOL(wait_on_page_bit); 522 523 /** 524 * unlock_page - unlock a locked page 525 * @page: the page 526 * 527 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 528 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 529 * mechananism between PageLocked pages and PageWriteback pages is shared. 530 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 531 * 532 * The first mb is necessary to safely close the critical section opened by the 533 * TestSetPageLocked(), the second mb is necessary to enforce ordering between 534 * the clear_bit and the read of the waitqueue (to avoid SMP races with a 535 * parallel wait_on_page_locked()). 536 */ 537 void fastcall unlock_page(struct page *page) 538 { 539 smp_mb__before_clear_bit(); 540 if (!TestClearPageLocked(page)) 541 BUG(); 542 smp_mb__after_clear_bit(); 543 wake_up_page(page, PG_locked); 544 } 545 EXPORT_SYMBOL(unlock_page); 546 547 /** 548 * end_page_writeback - end writeback against a page 549 * @page: the page 550 */ 551 void end_page_writeback(struct page *page) 552 { 553 if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) { 554 if (!test_clear_page_writeback(page)) 555 BUG(); 556 } 557 smp_mb__after_clear_bit(); 558 wake_up_page(page, PG_writeback); 559 } 560 EXPORT_SYMBOL(end_page_writeback); 561 562 /** 563 * __lock_page - get a lock on the page, assuming we need to sleep to get it 564 * @page: the page to lock 565 * 566 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some 567 * random driver's requestfn sets TASK_RUNNING, we could busywait. However 568 * chances are that on the second loop, the block layer's plug list is empty, 569 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE. 570 */ 571 void fastcall __lock_page(struct page *page) 572 { 573 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 574 575 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page, 576 TASK_UNINTERRUPTIBLE); 577 } 578 EXPORT_SYMBOL(__lock_page); 579 580 /** 581 * find_get_page - find and get a page reference 582 * @mapping: the address_space to search 583 * @offset: the page index 584 * 585 * A rather lightweight function, finding and getting a reference to a 586 * hashed page atomically. 587 */ 588 struct page * find_get_page(struct address_space *mapping, unsigned long offset) 589 { 590 struct page *page; 591 592 read_lock_irq(&mapping->tree_lock); 593 page = radix_tree_lookup(&mapping->page_tree, offset); 594 if (page) 595 page_cache_get(page); 596 read_unlock_irq(&mapping->tree_lock); 597 return page; 598 } 599 EXPORT_SYMBOL(find_get_page); 600 601 /** 602 * find_trylock_page - find and lock a page 603 * @mapping: the address_space to search 604 * @offset: the page index 605 * 606 * Same as find_get_page(), but trylock it instead of incrementing the count. 607 */ 608 struct page *find_trylock_page(struct address_space *mapping, unsigned long offset) 609 { 610 struct page *page; 611 612 read_lock_irq(&mapping->tree_lock); 613 page = radix_tree_lookup(&mapping->page_tree, offset); 614 if (page && TestSetPageLocked(page)) 615 page = NULL; 616 read_unlock_irq(&mapping->tree_lock); 617 return page; 618 } 619 EXPORT_SYMBOL(find_trylock_page); 620 621 /** 622 * find_lock_page - locate, pin and lock a pagecache page 623 * @mapping: the address_space to search 624 * @offset: the page index 625 * 626 * Locates the desired pagecache page, locks it, increments its reference 627 * count and returns its address. 628 * 629 * Returns zero if the page was not present. find_lock_page() may sleep. 630 */ 631 struct page *find_lock_page(struct address_space *mapping, 632 unsigned long offset) 633 { 634 struct page *page; 635 636 read_lock_irq(&mapping->tree_lock); 637 repeat: 638 page = radix_tree_lookup(&mapping->page_tree, offset); 639 if (page) { 640 page_cache_get(page); 641 if (TestSetPageLocked(page)) { 642 read_unlock_irq(&mapping->tree_lock); 643 __lock_page(page); 644 read_lock_irq(&mapping->tree_lock); 645 646 /* Has the page been truncated while we slept? */ 647 if (unlikely(page->mapping != mapping || 648 page->index != offset)) { 649 unlock_page(page); 650 page_cache_release(page); 651 goto repeat; 652 } 653 } 654 } 655 read_unlock_irq(&mapping->tree_lock); 656 return page; 657 } 658 EXPORT_SYMBOL(find_lock_page); 659 660 /** 661 * find_or_create_page - locate or add a pagecache page 662 * @mapping: the page's address_space 663 * @index: the page's index into the mapping 664 * @gfp_mask: page allocation mode 665 * 666 * Locates a page in the pagecache. If the page is not present, a new page 667 * is allocated using @gfp_mask and is added to the pagecache and to the VM's 668 * LRU list. The returned page is locked and has its reference count 669 * incremented. 670 * 671 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic 672 * allocation! 673 * 674 * find_or_create_page() returns the desired page's address, or zero on 675 * memory exhaustion. 676 */ 677 struct page *find_or_create_page(struct address_space *mapping, 678 unsigned long index, gfp_t gfp_mask) 679 { 680 struct page *page, *cached_page = NULL; 681 int err; 682 repeat: 683 page = find_lock_page(mapping, index); 684 if (!page) { 685 if (!cached_page) { 686 cached_page = alloc_page(gfp_mask); 687 if (!cached_page) 688 return NULL; 689 } 690 err = add_to_page_cache_lru(cached_page, mapping, 691 index, gfp_mask); 692 if (!err) { 693 page = cached_page; 694 cached_page = NULL; 695 } else if (err == -EEXIST) 696 goto repeat; 697 } 698 if (cached_page) 699 page_cache_release(cached_page); 700 return page; 701 } 702 EXPORT_SYMBOL(find_or_create_page); 703 704 /** 705 * find_get_pages - gang pagecache lookup 706 * @mapping: The address_space to search 707 * @start: The starting page index 708 * @nr_pages: The maximum number of pages 709 * @pages: Where the resulting pages are placed 710 * 711 * find_get_pages() will search for and return a group of up to 712 * @nr_pages pages in the mapping. The pages are placed at @pages. 713 * find_get_pages() takes a reference against the returned pages. 714 * 715 * The search returns a group of mapping-contiguous pages with ascending 716 * indexes. There may be holes in the indices due to not-present pages. 717 * 718 * find_get_pages() returns the number of pages which were found. 719 */ 720 unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 721 unsigned int nr_pages, struct page **pages) 722 { 723 unsigned int i; 724 unsigned int ret; 725 726 read_lock_irq(&mapping->tree_lock); 727 ret = radix_tree_gang_lookup(&mapping->page_tree, 728 (void **)pages, start, nr_pages); 729 for (i = 0; i < ret; i++) 730 page_cache_get(pages[i]); 731 read_unlock_irq(&mapping->tree_lock); 732 return ret; 733 } 734 735 /** 736 * find_get_pages_contig - gang contiguous pagecache lookup 737 * @mapping: The address_space to search 738 * @index: The starting page index 739 * @nr_pages: The maximum number of pages 740 * @pages: Where the resulting pages are placed 741 * 742 * find_get_pages_contig() works exactly like find_get_pages(), except 743 * that the returned number of pages are guaranteed to be contiguous. 744 * 745 * find_get_pages_contig() returns the number of pages which were found. 746 */ 747 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 748 unsigned int nr_pages, struct page **pages) 749 { 750 unsigned int i; 751 unsigned int ret; 752 753 read_lock_irq(&mapping->tree_lock); 754 ret = radix_tree_gang_lookup(&mapping->page_tree, 755 (void **)pages, index, nr_pages); 756 for (i = 0; i < ret; i++) { 757 if (pages[i]->mapping == NULL || pages[i]->index != index) 758 break; 759 760 page_cache_get(pages[i]); 761 index++; 762 } 763 read_unlock_irq(&mapping->tree_lock); 764 return i; 765 } 766 767 /** 768 * find_get_pages_tag - find and return pages that match @tag 769 * @mapping: the address_space to search 770 * @index: the starting page index 771 * @tag: the tag index 772 * @nr_pages: the maximum number of pages 773 * @pages: where the resulting pages are placed 774 * 775 * Like find_get_pages, except we only return pages which are tagged with 776 * @tag. We update @index to index the next page for the traversal. 777 */ 778 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 779 int tag, unsigned int nr_pages, struct page **pages) 780 { 781 unsigned int i; 782 unsigned int ret; 783 784 read_lock_irq(&mapping->tree_lock); 785 ret = radix_tree_gang_lookup_tag(&mapping->page_tree, 786 (void **)pages, *index, nr_pages, tag); 787 for (i = 0; i < ret; i++) 788 page_cache_get(pages[i]); 789 if (ret) 790 *index = pages[ret - 1]->index + 1; 791 read_unlock_irq(&mapping->tree_lock); 792 return ret; 793 } 794 795 /** 796 * grab_cache_page_nowait - returns locked page at given index in given cache 797 * @mapping: target address_space 798 * @index: the page index 799 * 800 * Same as grab_cache_page, but do not wait if the page is unavailable. 801 * This is intended for speculative data generators, where the data can 802 * be regenerated if the page couldn't be grabbed. This routine should 803 * be safe to call while holding the lock for another page. 804 * 805 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 806 * and deadlock against the caller's locked page. 807 */ 808 struct page * 809 grab_cache_page_nowait(struct address_space *mapping, unsigned long index) 810 { 811 struct page *page = find_get_page(mapping, index); 812 gfp_t gfp_mask; 813 814 if (page) { 815 if (!TestSetPageLocked(page)) 816 return page; 817 page_cache_release(page); 818 return NULL; 819 } 820 gfp_mask = mapping_gfp_mask(mapping) & ~__GFP_FS; 821 page = alloc_pages(gfp_mask, 0); 822 if (page && add_to_page_cache_lru(page, mapping, index, gfp_mask)) { 823 page_cache_release(page); 824 page = NULL; 825 } 826 return page; 827 } 828 EXPORT_SYMBOL(grab_cache_page_nowait); 829 830 /* 831 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 832 * a _large_ part of the i/o request. Imagine the worst scenario: 833 * 834 * ---R__________________________________________B__________ 835 * ^ reading here ^ bad block(assume 4k) 836 * 837 * read(R) => miss => readahead(R...B) => media error => frustrating retries 838 * => failing the whole request => read(R) => read(R+1) => 839 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 840 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 841 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 842 * 843 * It is going insane. Fix it by quickly scaling down the readahead size. 844 */ 845 static void shrink_readahead_size_eio(struct file *filp, 846 struct file_ra_state *ra) 847 { 848 if (!ra->ra_pages) 849 return; 850 851 ra->ra_pages /= 4; 852 } 853 854 /** 855 * do_generic_mapping_read - generic file read routine 856 * @mapping: address_space to be read 857 * @_ra: file's readahead state 858 * @filp: the file to read 859 * @ppos: current file position 860 * @desc: read_descriptor 861 * @actor: read method 862 * 863 * This is a generic file read routine, and uses the 864 * mapping->a_ops->readpage() function for the actual low-level stuff. 865 * 866 * This is really ugly. But the goto's actually try to clarify some 867 * of the logic when it comes to error handling etc. 868 * 869 * Note the struct file* is only passed for the use of readpage. 870 * It may be NULL. 871 */ 872 void do_generic_mapping_read(struct address_space *mapping, 873 struct file_ra_state *_ra, 874 struct file *filp, 875 loff_t *ppos, 876 read_descriptor_t *desc, 877 read_actor_t actor) 878 { 879 struct inode *inode = mapping->host; 880 unsigned long index; 881 unsigned long end_index; 882 unsigned long offset; 883 unsigned long last_index; 884 unsigned long next_index; 885 unsigned long prev_index; 886 loff_t isize; 887 struct page *cached_page; 888 int error; 889 struct file_ra_state ra = *_ra; 890 891 cached_page = NULL; 892 index = *ppos >> PAGE_CACHE_SHIFT; 893 next_index = index; 894 prev_index = ra.prev_page; 895 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; 896 offset = *ppos & ~PAGE_CACHE_MASK; 897 898 isize = i_size_read(inode); 899 if (!isize) 900 goto out; 901 902 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 903 for (;;) { 904 struct page *page; 905 unsigned long nr, ret; 906 907 /* nr is the maximum number of bytes to copy from this page */ 908 nr = PAGE_CACHE_SIZE; 909 if (index >= end_index) { 910 if (index > end_index) 911 goto out; 912 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 913 if (nr <= offset) { 914 goto out; 915 } 916 } 917 nr = nr - offset; 918 919 cond_resched(); 920 if (index == next_index) 921 next_index = page_cache_readahead(mapping, &ra, filp, 922 index, last_index - index); 923 924 find_page: 925 page = find_get_page(mapping, index); 926 if (unlikely(page == NULL)) { 927 handle_ra_miss(mapping, &ra, index); 928 goto no_cached_page; 929 } 930 if (!PageUptodate(page)) 931 goto page_not_up_to_date; 932 page_ok: 933 934 /* If users can be writing to this page using arbitrary 935 * virtual addresses, take care about potential aliasing 936 * before reading the page on the kernel side. 937 */ 938 if (mapping_writably_mapped(mapping)) 939 flush_dcache_page(page); 940 941 /* 942 * When (part of) the same page is read multiple times 943 * in succession, only mark it as accessed the first time. 944 */ 945 if (prev_index != index) 946 mark_page_accessed(page); 947 prev_index = index; 948 949 /* 950 * Ok, we have the page, and it's up-to-date, so 951 * now we can copy it to user space... 952 * 953 * The actor routine returns how many bytes were actually used.. 954 * NOTE! This may not be the same as how much of a user buffer 955 * we filled up (we may be padding etc), so we can only update 956 * "pos" here (the actor routine has to update the user buffer 957 * pointers and the remaining count). 958 */ 959 ret = actor(desc, page, offset, nr); 960 offset += ret; 961 index += offset >> PAGE_CACHE_SHIFT; 962 offset &= ~PAGE_CACHE_MASK; 963 964 page_cache_release(page); 965 if (ret == nr && desc->count) 966 continue; 967 goto out; 968 969 page_not_up_to_date: 970 /* Get exclusive access to the page ... */ 971 lock_page(page); 972 973 /* Did it get unhashed before we got the lock? */ 974 if (!page->mapping) { 975 unlock_page(page); 976 page_cache_release(page); 977 continue; 978 } 979 980 /* Did somebody else fill it already? */ 981 if (PageUptodate(page)) { 982 unlock_page(page); 983 goto page_ok; 984 } 985 986 readpage: 987 /* Start the actual read. The read will unlock the page. */ 988 error = mapping->a_ops->readpage(filp, page); 989 990 if (unlikely(error)) { 991 if (error == AOP_TRUNCATED_PAGE) { 992 page_cache_release(page); 993 goto find_page; 994 } 995 goto readpage_error; 996 } 997 998 if (!PageUptodate(page)) { 999 lock_page(page); 1000 if (!PageUptodate(page)) { 1001 if (page->mapping == NULL) { 1002 /* 1003 * invalidate_inode_pages got it 1004 */ 1005 unlock_page(page); 1006 page_cache_release(page); 1007 goto find_page; 1008 } 1009 unlock_page(page); 1010 error = -EIO; 1011 shrink_readahead_size_eio(filp, &ra); 1012 goto readpage_error; 1013 } 1014 unlock_page(page); 1015 } 1016 1017 /* 1018 * i_size must be checked after we have done ->readpage. 1019 * 1020 * Checking i_size after the readpage allows us to calculate 1021 * the correct value for "nr", which means the zero-filled 1022 * part of the page is not copied back to userspace (unless 1023 * another truncate extends the file - this is desired though). 1024 */ 1025 isize = i_size_read(inode); 1026 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1027 if (unlikely(!isize || index > end_index)) { 1028 page_cache_release(page); 1029 goto out; 1030 } 1031 1032 /* nr is the maximum number of bytes to copy from this page */ 1033 nr = PAGE_CACHE_SIZE; 1034 if (index == end_index) { 1035 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 1036 if (nr <= offset) { 1037 page_cache_release(page); 1038 goto out; 1039 } 1040 } 1041 nr = nr - offset; 1042 goto page_ok; 1043 1044 readpage_error: 1045 /* UHHUH! A synchronous read error occurred. Report it */ 1046 desc->error = error; 1047 page_cache_release(page); 1048 goto out; 1049 1050 no_cached_page: 1051 /* 1052 * Ok, it wasn't cached, so we need to create a new 1053 * page.. 1054 */ 1055 if (!cached_page) { 1056 cached_page = page_cache_alloc_cold(mapping); 1057 if (!cached_page) { 1058 desc->error = -ENOMEM; 1059 goto out; 1060 } 1061 } 1062 error = add_to_page_cache_lru(cached_page, mapping, 1063 index, GFP_KERNEL); 1064 if (error) { 1065 if (error == -EEXIST) 1066 goto find_page; 1067 desc->error = error; 1068 goto out; 1069 } 1070 page = cached_page; 1071 cached_page = NULL; 1072 goto readpage; 1073 } 1074 1075 out: 1076 *_ra = ra; 1077 1078 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset; 1079 if (cached_page) 1080 page_cache_release(cached_page); 1081 if (filp) 1082 file_accessed(filp); 1083 } 1084 EXPORT_SYMBOL(do_generic_mapping_read); 1085 1086 int file_read_actor(read_descriptor_t *desc, struct page *page, 1087 unsigned long offset, unsigned long size) 1088 { 1089 char *kaddr; 1090 unsigned long left, count = desc->count; 1091 1092 if (size > count) 1093 size = count; 1094 1095 /* 1096 * Faults on the destination of a read are common, so do it before 1097 * taking the kmap. 1098 */ 1099 if (!fault_in_pages_writeable(desc->arg.buf, size)) { 1100 kaddr = kmap_atomic(page, KM_USER0); 1101 left = __copy_to_user_inatomic(desc->arg.buf, 1102 kaddr + offset, size); 1103 kunmap_atomic(kaddr, KM_USER0); 1104 if (left == 0) 1105 goto success; 1106 } 1107 1108 /* Do it the slow way */ 1109 kaddr = kmap(page); 1110 left = __copy_to_user(desc->arg.buf, kaddr + offset, size); 1111 kunmap(page); 1112 1113 if (left) { 1114 size -= left; 1115 desc->error = -EFAULT; 1116 } 1117 success: 1118 desc->count = count - size; 1119 desc->written += size; 1120 desc->arg.buf += size; 1121 return size; 1122 } 1123 1124 /** 1125 * __generic_file_aio_read - generic filesystem read routine 1126 * @iocb: kernel I/O control block 1127 * @iov: io vector request 1128 * @nr_segs: number of segments in the iovec 1129 * @ppos: current file position 1130 * 1131 * This is the "read()" routine for all filesystems 1132 * that can use the page cache directly. 1133 */ 1134 ssize_t 1135 __generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov, 1136 unsigned long nr_segs, loff_t *ppos) 1137 { 1138 struct file *filp = iocb->ki_filp; 1139 ssize_t retval; 1140 unsigned long seg; 1141 size_t count; 1142 1143 count = 0; 1144 for (seg = 0; seg < nr_segs; seg++) { 1145 const struct iovec *iv = &iov[seg]; 1146 1147 /* 1148 * If any segment has a negative length, or the cumulative 1149 * length ever wraps negative then return -EINVAL. 1150 */ 1151 count += iv->iov_len; 1152 if (unlikely((ssize_t)(count|iv->iov_len) < 0)) 1153 return -EINVAL; 1154 if (access_ok(VERIFY_WRITE, iv->iov_base, iv->iov_len)) 1155 continue; 1156 if (seg == 0) 1157 return -EFAULT; 1158 nr_segs = seg; 1159 count -= iv->iov_len; /* This segment is no good */ 1160 break; 1161 } 1162 1163 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 1164 if (filp->f_flags & O_DIRECT) { 1165 loff_t pos = *ppos, size; 1166 struct address_space *mapping; 1167 struct inode *inode; 1168 1169 mapping = filp->f_mapping; 1170 inode = mapping->host; 1171 retval = 0; 1172 if (!count) 1173 goto out; /* skip atime */ 1174 size = i_size_read(inode); 1175 if (pos < size) { 1176 retval = generic_file_direct_IO(READ, iocb, 1177 iov, pos, nr_segs); 1178 if (retval > 0 && !is_sync_kiocb(iocb)) 1179 retval = -EIOCBQUEUED; 1180 if (retval > 0) 1181 *ppos = pos + retval; 1182 } 1183 file_accessed(filp); 1184 goto out; 1185 } 1186 1187 retval = 0; 1188 if (count) { 1189 for (seg = 0; seg < nr_segs; seg++) { 1190 read_descriptor_t desc; 1191 1192 desc.written = 0; 1193 desc.arg.buf = iov[seg].iov_base; 1194 desc.count = iov[seg].iov_len; 1195 if (desc.count == 0) 1196 continue; 1197 desc.error = 0; 1198 do_generic_file_read(filp,ppos,&desc,file_read_actor); 1199 retval += desc.written; 1200 if (desc.error) { 1201 retval = retval ?: desc.error; 1202 break; 1203 } 1204 } 1205 } 1206 out: 1207 return retval; 1208 } 1209 EXPORT_SYMBOL(__generic_file_aio_read); 1210 1211 ssize_t 1212 generic_file_aio_read(struct kiocb *iocb, char __user *buf, size_t count, loff_t pos) 1213 { 1214 struct iovec local_iov = { .iov_base = buf, .iov_len = count }; 1215 1216 BUG_ON(iocb->ki_pos != pos); 1217 return __generic_file_aio_read(iocb, &local_iov, 1, &iocb->ki_pos); 1218 } 1219 EXPORT_SYMBOL(generic_file_aio_read); 1220 1221 ssize_t 1222 generic_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos) 1223 { 1224 struct iovec local_iov = { .iov_base = buf, .iov_len = count }; 1225 struct kiocb kiocb; 1226 ssize_t ret; 1227 1228 init_sync_kiocb(&kiocb, filp); 1229 ret = __generic_file_aio_read(&kiocb, &local_iov, 1, ppos); 1230 if (-EIOCBQUEUED == ret) 1231 ret = wait_on_sync_kiocb(&kiocb); 1232 return ret; 1233 } 1234 EXPORT_SYMBOL(generic_file_read); 1235 1236 int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size) 1237 { 1238 ssize_t written; 1239 unsigned long count = desc->count; 1240 struct file *file = desc->arg.data; 1241 1242 if (size > count) 1243 size = count; 1244 1245 written = file->f_op->sendpage(file, page, offset, 1246 size, &file->f_pos, size<count); 1247 if (written < 0) { 1248 desc->error = written; 1249 written = 0; 1250 } 1251 desc->count = count - written; 1252 desc->written += written; 1253 return written; 1254 } 1255 1256 ssize_t generic_file_sendfile(struct file *in_file, loff_t *ppos, 1257 size_t count, read_actor_t actor, void *target) 1258 { 1259 read_descriptor_t desc; 1260 1261 if (!count) 1262 return 0; 1263 1264 desc.written = 0; 1265 desc.count = count; 1266 desc.arg.data = target; 1267 desc.error = 0; 1268 1269 do_generic_file_read(in_file, ppos, &desc, actor); 1270 if (desc.written) 1271 return desc.written; 1272 return desc.error; 1273 } 1274 EXPORT_SYMBOL(generic_file_sendfile); 1275 1276 static ssize_t 1277 do_readahead(struct address_space *mapping, struct file *filp, 1278 unsigned long index, unsigned long nr) 1279 { 1280 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage) 1281 return -EINVAL; 1282 1283 force_page_cache_readahead(mapping, filp, index, 1284 max_sane_readahead(nr)); 1285 return 0; 1286 } 1287 1288 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count) 1289 { 1290 ssize_t ret; 1291 struct file *file; 1292 1293 ret = -EBADF; 1294 file = fget(fd); 1295 if (file) { 1296 if (file->f_mode & FMODE_READ) { 1297 struct address_space *mapping = file->f_mapping; 1298 unsigned long start = offset >> PAGE_CACHE_SHIFT; 1299 unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT; 1300 unsigned long len = end - start + 1; 1301 ret = do_readahead(mapping, file, start, len); 1302 } 1303 fput(file); 1304 } 1305 return ret; 1306 } 1307 1308 #ifdef CONFIG_MMU 1309 static int FASTCALL(page_cache_read(struct file * file, unsigned long offset)); 1310 /** 1311 * page_cache_read - adds requested page to the page cache if not already there 1312 * @file: file to read 1313 * @offset: page index 1314 * 1315 * This adds the requested page to the page cache if it isn't already there, 1316 * and schedules an I/O to read in its contents from disk. 1317 */ 1318 static int fastcall page_cache_read(struct file * file, unsigned long offset) 1319 { 1320 struct address_space *mapping = file->f_mapping; 1321 struct page *page; 1322 int ret; 1323 1324 do { 1325 page = page_cache_alloc_cold(mapping); 1326 if (!page) 1327 return -ENOMEM; 1328 1329 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL); 1330 if (ret == 0) 1331 ret = mapping->a_ops->readpage(file, page); 1332 else if (ret == -EEXIST) 1333 ret = 0; /* losing race to add is OK */ 1334 1335 page_cache_release(page); 1336 1337 } while (ret == AOP_TRUNCATED_PAGE); 1338 1339 return ret; 1340 } 1341 1342 #define MMAP_LOTSAMISS (100) 1343 1344 /** 1345 * filemap_nopage - read in file data for page fault handling 1346 * @area: the applicable vm_area 1347 * @address: target address to read in 1348 * @type: returned with VM_FAULT_{MINOR,MAJOR} if not %NULL 1349 * 1350 * filemap_nopage() is invoked via the vma operations vector for a 1351 * mapped memory region to read in file data during a page fault. 1352 * 1353 * The goto's are kind of ugly, but this streamlines the normal case of having 1354 * it in the page cache, and handles the special cases reasonably without 1355 * having a lot of duplicated code. 1356 */ 1357 struct page *filemap_nopage(struct vm_area_struct *area, 1358 unsigned long address, int *type) 1359 { 1360 int error; 1361 struct file *file = area->vm_file; 1362 struct address_space *mapping = file->f_mapping; 1363 struct file_ra_state *ra = &file->f_ra; 1364 struct inode *inode = mapping->host; 1365 struct page *page; 1366 unsigned long size, pgoff; 1367 int did_readaround = 0, majmin = VM_FAULT_MINOR; 1368 1369 pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff; 1370 1371 retry_all: 1372 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1373 if (pgoff >= size) 1374 goto outside_data_content; 1375 1376 /* If we don't want any read-ahead, don't bother */ 1377 if (VM_RandomReadHint(area)) 1378 goto no_cached_page; 1379 1380 /* 1381 * The readahead code wants to be told about each and every page 1382 * so it can build and shrink its windows appropriately 1383 * 1384 * For sequential accesses, we use the generic readahead logic. 1385 */ 1386 if (VM_SequentialReadHint(area)) 1387 page_cache_readahead(mapping, ra, file, pgoff, 1); 1388 1389 /* 1390 * Do we have something in the page cache already? 1391 */ 1392 retry_find: 1393 page = find_get_page(mapping, pgoff); 1394 if (!page) { 1395 unsigned long ra_pages; 1396 1397 if (VM_SequentialReadHint(area)) { 1398 handle_ra_miss(mapping, ra, pgoff); 1399 goto no_cached_page; 1400 } 1401 ra->mmap_miss++; 1402 1403 /* 1404 * Do we miss much more than hit in this file? If so, 1405 * stop bothering with read-ahead. It will only hurt. 1406 */ 1407 if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS) 1408 goto no_cached_page; 1409 1410 /* 1411 * To keep the pgmajfault counter straight, we need to 1412 * check did_readaround, as this is an inner loop. 1413 */ 1414 if (!did_readaround) { 1415 majmin = VM_FAULT_MAJOR; 1416 count_vm_event(PGMAJFAULT); 1417 } 1418 did_readaround = 1; 1419 ra_pages = max_sane_readahead(file->f_ra.ra_pages); 1420 if (ra_pages) { 1421 pgoff_t start = 0; 1422 1423 if (pgoff > ra_pages / 2) 1424 start = pgoff - ra_pages / 2; 1425 do_page_cache_readahead(mapping, file, start, ra_pages); 1426 } 1427 page = find_get_page(mapping, pgoff); 1428 if (!page) 1429 goto no_cached_page; 1430 } 1431 1432 if (!did_readaround) 1433 ra->mmap_hit++; 1434 1435 /* 1436 * Ok, found a page in the page cache, now we need to check 1437 * that it's up-to-date. 1438 */ 1439 if (!PageUptodate(page)) 1440 goto page_not_uptodate; 1441 1442 success: 1443 /* 1444 * Found the page and have a reference on it. 1445 */ 1446 mark_page_accessed(page); 1447 if (type) 1448 *type = majmin; 1449 return page; 1450 1451 outside_data_content: 1452 /* 1453 * An external ptracer can access pages that normally aren't 1454 * accessible.. 1455 */ 1456 if (area->vm_mm == current->mm) 1457 return NULL; 1458 /* Fall through to the non-read-ahead case */ 1459 no_cached_page: 1460 /* 1461 * We're only likely to ever get here if MADV_RANDOM is in 1462 * effect. 1463 */ 1464 error = page_cache_read(file, pgoff); 1465 grab_swap_token(); 1466 1467 /* 1468 * The page we want has now been added to the page cache. 1469 * In the unlikely event that someone removed it in the 1470 * meantime, we'll just come back here and read it again. 1471 */ 1472 if (error >= 0) 1473 goto retry_find; 1474 1475 /* 1476 * An error return from page_cache_read can result if the 1477 * system is low on memory, or a problem occurs while trying 1478 * to schedule I/O. 1479 */ 1480 if (error == -ENOMEM) 1481 return NOPAGE_OOM; 1482 return NULL; 1483 1484 page_not_uptodate: 1485 if (!did_readaround) { 1486 majmin = VM_FAULT_MAJOR; 1487 count_vm_event(PGMAJFAULT); 1488 } 1489 lock_page(page); 1490 1491 /* Did it get unhashed while we waited for it? */ 1492 if (!page->mapping) { 1493 unlock_page(page); 1494 page_cache_release(page); 1495 goto retry_all; 1496 } 1497 1498 /* Did somebody else get it up-to-date? */ 1499 if (PageUptodate(page)) { 1500 unlock_page(page); 1501 goto success; 1502 } 1503 1504 error = mapping->a_ops->readpage(file, page); 1505 if (!error) { 1506 wait_on_page_locked(page); 1507 if (PageUptodate(page)) 1508 goto success; 1509 } else if (error == AOP_TRUNCATED_PAGE) { 1510 page_cache_release(page); 1511 goto retry_find; 1512 } 1513 1514 /* 1515 * Umm, take care of errors if the page isn't up-to-date. 1516 * Try to re-read it _once_. We do this synchronously, 1517 * because there really aren't any performance issues here 1518 * and we need to check for errors. 1519 */ 1520 lock_page(page); 1521 1522 /* Somebody truncated the page on us? */ 1523 if (!page->mapping) { 1524 unlock_page(page); 1525 page_cache_release(page); 1526 goto retry_all; 1527 } 1528 1529 /* Somebody else successfully read it in? */ 1530 if (PageUptodate(page)) { 1531 unlock_page(page); 1532 goto success; 1533 } 1534 ClearPageError(page); 1535 error = mapping->a_ops->readpage(file, page); 1536 if (!error) { 1537 wait_on_page_locked(page); 1538 if (PageUptodate(page)) 1539 goto success; 1540 } else if (error == AOP_TRUNCATED_PAGE) { 1541 page_cache_release(page); 1542 goto retry_find; 1543 } 1544 1545 /* 1546 * Things didn't work out. Return zero to tell the 1547 * mm layer so, possibly freeing the page cache page first. 1548 */ 1549 shrink_readahead_size_eio(file, ra); 1550 page_cache_release(page); 1551 return NULL; 1552 } 1553 EXPORT_SYMBOL(filemap_nopage); 1554 1555 static struct page * filemap_getpage(struct file *file, unsigned long pgoff, 1556 int nonblock) 1557 { 1558 struct address_space *mapping = file->f_mapping; 1559 struct page *page; 1560 int error; 1561 1562 /* 1563 * Do we have something in the page cache already? 1564 */ 1565 retry_find: 1566 page = find_get_page(mapping, pgoff); 1567 if (!page) { 1568 if (nonblock) 1569 return NULL; 1570 goto no_cached_page; 1571 } 1572 1573 /* 1574 * Ok, found a page in the page cache, now we need to check 1575 * that it's up-to-date. 1576 */ 1577 if (!PageUptodate(page)) { 1578 if (nonblock) { 1579 page_cache_release(page); 1580 return NULL; 1581 } 1582 goto page_not_uptodate; 1583 } 1584 1585 success: 1586 /* 1587 * Found the page and have a reference on it. 1588 */ 1589 mark_page_accessed(page); 1590 return page; 1591 1592 no_cached_page: 1593 error = page_cache_read(file, pgoff); 1594 1595 /* 1596 * The page we want has now been added to the page cache. 1597 * In the unlikely event that someone removed it in the 1598 * meantime, we'll just come back here and read it again. 1599 */ 1600 if (error >= 0) 1601 goto retry_find; 1602 1603 /* 1604 * An error return from page_cache_read can result if the 1605 * system is low on memory, or a problem occurs while trying 1606 * to schedule I/O. 1607 */ 1608 return NULL; 1609 1610 page_not_uptodate: 1611 lock_page(page); 1612 1613 /* Did it get unhashed while we waited for it? */ 1614 if (!page->mapping) { 1615 unlock_page(page); 1616 goto err; 1617 } 1618 1619 /* Did somebody else get it up-to-date? */ 1620 if (PageUptodate(page)) { 1621 unlock_page(page); 1622 goto success; 1623 } 1624 1625 error = mapping->a_ops->readpage(file, page); 1626 if (!error) { 1627 wait_on_page_locked(page); 1628 if (PageUptodate(page)) 1629 goto success; 1630 } else if (error == AOP_TRUNCATED_PAGE) { 1631 page_cache_release(page); 1632 goto retry_find; 1633 } 1634 1635 /* 1636 * Umm, take care of errors if the page isn't up-to-date. 1637 * Try to re-read it _once_. We do this synchronously, 1638 * because there really aren't any performance issues here 1639 * and we need to check for errors. 1640 */ 1641 lock_page(page); 1642 1643 /* Somebody truncated the page on us? */ 1644 if (!page->mapping) { 1645 unlock_page(page); 1646 goto err; 1647 } 1648 /* Somebody else successfully read it in? */ 1649 if (PageUptodate(page)) { 1650 unlock_page(page); 1651 goto success; 1652 } 1653 1654 ClearPageError(page); 1655 error = mapping->a_ops->readpage(file, page); 1656 if (!error) { 1657 wait_on_page_locked(page); 1658 if (PageUptodate(page)) 1659 goto success; 1660 } else if (error == AOP_TRUNCATED_PAGE) { 1661 page_cache_release(page); 1662 goto retry_find; 1663 } 1664 1665 /* 1666 * Things didn't work out. Return zero to tell the 1667 * mm layer so, possibly freeing the page cache page first. 1668 */ 1669 err: 1670 page_cache_release(page); 1671 1672 return NULL; 1673 } 1674 1675 int filemap_populate(struct vm_area_struct *vma, unsigned long addr, 1676 unsigned long len, pgprot_t prot, unsigned long pgoff, 1677 int nonblock) 1678 { 1679 struct file *file = vma->vm_file; 1680 struct address_space *mapping = file->f_mapping; 1681 struct inode *inode = mapping->host; 1682 unsigned long size; 1683 struct mm_struct *mm = vma->vm_mm; 1684 struct page *page; 1685 int err; 1686 1687 if (!nonblock) 1688 force_page_cache_readahead(mapping, vma->vm_file, 1689 pgoff, len >> PAGE_CACHE_SHIFT); 1690 1691 repeat: 1692 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1693 if (pgoff + (len >> PAGE_CACHE_SHIFT) > size) 1694 return -EINVAL; 1695 1696 page = filemap_getpage(file, pgoff, nonblock); 1697 1698 /* XXX: This is wrong, a filesystem I/O error may have happened. Fix that as 1699 * done in shmem_populate calling shmem_getpage */ 1700 if (!page && !nonblock) 1701 return -ENOMEM; 1702 1703 if (page) { 1704 err = install_page(mm, vma, addr, page, prot); 1705 if (err) { 1706 page_cache_release(page); 1707 return err; 1708 } 1709 } else if (vma->vm_flags & VM_NONLINEAR) { 1710 /* No page was found just because we can't read it in now (being 1711 * here implies nonblock != 0), but the page may exist, so set 1712 * the PTE to fault it in later. */ 1713 err = install_file_pte(mm, vma, addr, pgoff, prot); 1714 if (err) 1715 return err; 1716 } 1717 1718 len -= PAGE_SIZE; 1719 addr += PAGE_SIZE; 1720 pgoff++; 1721 if (len) 1722 goto repeat; 1723 1724 return 0; 1725 } 1726 EXPORT_SYMBOL(filemap_populate); 1727 1728 struct vm_operations_struct generic_file_vm_ops = { 1729 .nopage = filemap_nopage, 1730 .populate = filemap_populate, 1731 }; 1732 1733 /* This is used for a general mmap of a disk file */ 1734 1735 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1736 { 1737 struct address_space *mapping = file->f_mapping; 1738 1739 if (!mapping->a_ops->readpage) 1740 return -ENOEXEC; 1741 file_accessed(file); 1742 vma->vm_ops = &generic_file_vm_ops; 1743 return 0; 1744 } 1745 1746 /* 1747 * This is for filesystems which do not implement ->writepage. 1748 */ 1749 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 1750 { 1751 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 1752 return -EINVAL; 1753 return generic_file_mmap(file, vma); 1754 } 1755 #else 1756 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1757 { 1758 return -ENOSYS; 1759 } 1760 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 1761 { 1762 return -ENOSYS; 1763 } 1764 #endif /* CONFIG_MMU */ 1765 1766 EXPORT_SYMBOL(generic_file_mmap); 1767 EXPORT_SYMBOL(generic_file_readonly_mmap); 1768 1769 static inline struct page *__read_cache_page(struct address_space *mapping, 1770 unsigned long index, 1771 int (*filler)(void *,struct page*), 1772 void *data) 1773 { 1774 struct page *page, *cached_page = NULL; 1775 int err; 1776 repeat: 1777 page = find_get_page(mapping, index); 1778 if (!page) { 1779 if (!cached_page) { 1780 cached_page = page_cache_alloc_cold(mapping); 1781 if (!cached_page) 1782 return ERR_PTR(-ENOMEM); 1783 } 1784 err = add_to_page_cache_lru(cached_page, mapping, 1785 index, GFP_KERNEL); 1786 if (err == -EEXIST) 1787 goto repeat; 1788 if (err < 0) { 1789 /* Presumably ENOMEM for radix tree node */ 1790 page_cache_release(cached_page); 1791 return ERR_PTR(err); 1792 } 1793 page = cached_page; 1794 cached_page = NULL; 1795 err = filler(data, page); 1796 if (err < 0) { 1797 page_cache_release(page); 1798 page = ERR_PTR(err); 1799 } 1800 } 1801 if (cached_page) 1802 page_cache_release(cached_page); 1803 return page; 1804 } 1805 1806 /** 1807 * read_cache_page - read into page cache, fill it if needed 1808 * @mapping: the page's address_space 1809 * @index: the page index 1810 * @filler: function to perform the read 1811 * @data: destination for read data 1812 * 1813 * Read into the page cache. If a page already exists, 1814 * and PageUptodate() is not set, try to fill the page. 1815 */ 1816 struct page *read_cache_page(struct address_space *mapping, 1817 unsigned long index, 1818 int (*filler)(void *,struct page*), 1819 void *data) 1820 { 1821 struct page *page; 1822 int err; 1823 1824 retry: 1825 page = __read_cache_page(mapping, index, filler, data); 1826 if (IS_ERR(page)) 1827 goto out; 1828 mark_page_accessed(page); 1829 if (PageUptodate(page)) 1830 goto out; 1831 1832 lock_page(page); 1833 if (!page->mapping) { 1834 unlock_page(page); 1835 page_cache_release(page); 1836 goto retry; 1837 } 1838 if (PageUptodate(page)) { 1839 unlock_page(page); 1840 goto out; 1841 } 1842 err = filler(data, page); 1843 if (err < 0) { 1844 page_cache_release(page); 1845 page = ERR_PTR(err); 1846 } 1847 out: 1848 return page; 1849 } 1850 EXPORT_SYMBOL(read_cache_page); 1851 1852 /* 1853 * If the page was newly created, increment its refcount and add it to the 1854 * caller's lru-buffering pagevec. This function is specifically for 1855 * generic_file_write(). 1856 */ 1857 static inline struct page * 1858 __grab_cache_page(struct address_space *mapping, unsigned long index, 1859 struct page **cached_page, struct pagevec *lru_pvec) 1860 { 1861 int err; 1862 struct page *page; 1863 repeat: 1864 page = find_lock_page(mapping, index); 1865 if (!page) { 1866 if (!*cached_page) { 1867 *cached_page = page_cache_alloc(mapping); 1868 if (!*cached_page) 1869 return NULL; 1870 } 1871 err = add_to_page_cache(*cached_page, mapping, 1872 index, GFP_KERNEL); 1873 if (err == -EEXIST) 1874 goto repeat; 1875 if (err == 0) { 1876 page = *cached_page; 1877 page_cache_get(page); 1878 if (!pagevec_add(lru_pvec, page)) 1879 __pagevec_lru_add(lru_pvec); 1880 *cached_page = NULL; 1881 } 1882 } 1883 return page; 1884 } 1885 1886 /* 1887 * The logic we want is 1888 * 1889 * if suid or (sgid and xgrp) 1890 * remove privs 1891 */ 1892 int remove_suid(struct dentry *dentry) 1893 { 1894 mode_t mode = dentry->d_inode->i_mode; 1895 int kill = 0; 1896 int result = 0; 1897 1898 /* suid always must be killed */ 1899 if (unlikely(mode & S_ISUID)) 1900 kill = ATTR_KILL_SUID; 1901 1902 /* 1903 * sgid without any exec bits is just a mandatory locking mark; leave 1904 * it alone. If some exec bits are set, it's a real sgid; kill it. 1905 */ 1906 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1907 kill |= ATTR_KILL_SGID; 1908 1909 if (unlikely(kill && !capable(CAP_FSETID))) { 1910 struct iattr newattrs; 1911 1912 newattrs.ia_valid = ATTR_FORCE | kill; 1913 result = notify_change(dentry, &newattrs); 1914 } 1915 return result; 1916 } 1917 EXPORT_SYMBOL(remove_suid); 1918 1919 size_t 1920 __filemap_copy_from_user_iovec_inatomic(char *vaddr, 1921 const struct iovec *iov, size_t base, size_t bytes) 1922 { 1923 size_t copied = 0, left = 0; 1924 1925 while (bytes) { 1926 char __user *buf = iov->iov_base + base; 1927 int copy = min(bytes, iov->iov_len - base); 1928 1929 base = 0; 1930 left = __copy_from_user_inatomic_nocache(vaddr, buf, copy); 1931 copied += copy; 1932 bytes -= copy; 1933 vaddr += copy; 1934 iov++; 1935 1936 if (unlikely(left)) 1937 break; 1938 } 1939 return copied - left; 1940 } 1941 1942 /* 1943 * Performs necessary checks before doing a write 1944 * 1945 * Can adjust writing position or amount of bytes to write. 1946 * Returns appropriate error code that caller should return or 1947 * zero in case that write should be allowed. 1948 */ 1949 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk) 1950 { 1951 struct inode *inode = file->f_mapping->host; 1952 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 1953 1954 if (unlikely(*pos < 0)) 1955 return -EINVAL; 1956 1957 if (!isblk) { 1958 /* FIXME: this is for backwards compatibility with 2.4 */ 1959 if (file->f_flags & O_APPEND) 1960 *pos = i_size_read(inode); 1961 1962 if (limit != RLIM_INFINITY) { 1963 if (*pos >= limit) { 1964 send_sig(SIGXFSZ, current, 0); 1965 return -EFBIG; 1966 } 1967 if (*count > limit - (typeof(limit))*pos) { 1968 *count = limit - (typeof(limit))*pos; 1969 } 1970 } 1971 } 1972 1973 /* 1974 * LFS rule 1975 */ 1976 if (unlikely(*pos + *count > MAX_NON_LFS && 1977 !(file->f_flags & O_LARGEFILE))) { 1978 if (*pos >= MAX_NON_LFS) { 1979 send_sig(SIGXFSZ, current, 0); 1980 return -EFBIG; 1981 } 1982 if (*count > MAX_NON_LFS - (unsigned long)*pos) { 1983 *count = MAX_NON_LFS - (unsigned long)*pos; 1984 } 1985 } 1986 1987 /* 1988 * Are we about to exceed the fs block limit ? 1989 * 1990 * If we have written data it becomes a short write. If we have 1991 * exceeded without writing data we send a signal and return EFBIG. 1992 * Linus frestrict idea will clean these up nicely.. 1993 */ 1994 if (likely(!isblk)) { 1995 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) { 1996 if (*count || *pos > inode->i_sb->s_maxbytes) { 1997 send_sig(SIGXFSZ, current, 0); 1998 return -EFBIG; 1999 } 2000 /* zero-length writes at ->s_maxbytes are OK */ 2001 } 2002 2003 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes)) 2004 *count = inode->i_sb->s_maxbytes - *pos; 2005 } else { 2006 loff_t isize; 2007 if (bdev_read_only(I_BDEV(inode))) 2008 return -EPERM; 2009 isize = i_size_read(inode); 2010 if (*pos >= isize) { 2011 if (*count || *pos > isize) 2012 return -ENOSPC; 2013 } 2014 2015 if (*pos + *count > isize) 2016 *count = isize - *pos; 2017 } 2018 return 0; 2019 } 2020 EXPORT_SYMBOL(generic_write_checks); 2021 2022 ssize_t 2023 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov, 2024 unsigned long *nr_segs, loff_t pos, loff_t *ppos, 2025 size_t count, size_t ocount) 2026 { 2027 struct file *file = iocb->ki_filp; 2028 struct address_space *mapping = file->f_mapping; 2029 struct inode *inode = mapping->host; 2030 ssize_t written; 2031 2032 if (count != ocount) 2033 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count); 2034 2035 written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs); 2036 if (written > 0) { 2037 loff_t end = pos + written; 2038 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 2039 i_size_write(inode, end); 2040 mark_inode_dirty(inode); 2041 } 2042 *ppos = end; 2043 } 2044 2045 /* 2046 * Sync the fs metadata but not the minor inode changes and 2047 * of course not the data as we did direct DMA for the IO. 2048 * i_mutex is held, which protects generic_osync_inode() from 2049 * livelocking. 2050 */ 2051 if (written >= 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2052 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA); 2053 if (err < 0) 2054 written = err; 2055 } 2056 if (written == count && !is_sync_kiocb(iocb)) 2057 written = -EIOCBQUEUED; 2058 return written; 2059 } 2060 EXPORT_SYMBOL(generic_file_direct_write); 2061 2062 ssize_t 2063 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov, 2064 unsigned long nr_segs, loff_t pos, loff_t *ppos, 2065 size_t count, ssize_t written) 2066 { 2067 struct file *file = iocb->ki_filp; 2068 struct address_space * mapping = file->f_mapping; 2069 const struct address_space_operations *a_ops = mapping->a_ops; 2070 struct inode *inode = mapping->host; 2071 long status = 0; 2072 struct page *page; 2073 struct page *cached_page = NULL; 2074 size_t bytes; 2075 struct pagevec lru_pvec; 2076 const struct iovec *cur_iov = iov; /* current iovec */ 2077 size_t iov_base = 0; /* offset in the current iovec */ 2078 char __user *buf; 2079 2080 pagevec_init(&lru_pvec, 0); 2081 2082 /* 2083 * handle partial DIO write. Adjust cur_iov if needed. 2084 */ 2085 if (likely(nr_segs == 1)) 2086 buf = iov->iov_base + written; 2087 else { 2088 filemap_set_next_iovec(&cur_iov, &iov_base, written); 2089 buf = cur_iov->iov_base + iov_base; 2090 } 2091 2092 do { 2093 unsigned long index; 2094 unsigned long offset; 2095 size_t copied; 2096 2097 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */ 2098 index = pos >> PAGE_CACHE_SHIFT; 2099 bytes = PAGE_CACHE_SIZE - offset; 2100 2101 /* Limit the size of the copy to the caller's write size */ 2102 bytes = min(bytes, count); 2103 2104 /* 2105 * Limit the size of the copy to that of the current segment, 2106 * because fault_in_pages_readable() doesn't know how to walk 2107 * segments. 2108 */ 2109 bytes = min(bytes, cur_iov->iov_len - iov_base); 2110 2111 /* 2112 * Bring in the user page that we will copy from _first_. 2113 * Otherwise there's a nasty deadlock on copying from the 2114 * same page as we're writing to, without it being marked 2115 * up-to-date. 2116 */ 2117 fault_in_pages_readable(buf, bytes); 2118 2119 page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec); 2120 if (!page) { 2121 status = -ENOMEM; 2122 break; 2123 } 2124 2125 if (unlikely(bytes == 0)) { 2126 status = 0; 2127 copied = 0; 2128 goto zero_length_segment; 2129 } 2130 2131 status = a_ops->prepare_write(file, page, offset, offset+bytes); 2132 if (unlikely(status)) { 2133 loff_t isize = i_size_read(inode); 2134 2135 if (status != AOP_TRUNCATED_PAGE) 2136 unlock_page(page); 2137 page_cache_release(page); 2138 if (status == AOP_TRUNCATED_PAGE) 2139 continue; 2140 /* 2141 * prepare_write() may have instantiated a few blocks 2142 * outside i_size. Trim these off again. 2143 */ 2144 if (pos + bytes > isize) 2145 vmtruncate(inode, isize); 2146 break; 2147 } 2148 if (likely(nr_segs == 1)) 2149 copied = filemap_copy_from_user(page, offset, 2150 buf, bytes); 2151 else 2152 copied = filemap_copy_from_user_iovec(page, offset, 2153 cur_iov, iov_base, bytes); 2154 flush_dcache_page(page); 2155 status = a_ops->commit_write(file, page, offset, offset+bytes); 2156 if (status == AOP_TRUNCATED_PAGE) { 2157 page_cache_release(page); 2158 continue; 2159 } 2160 zero_length_segment: 2161 if (likely(copied >= 0)) { 2162 if (!status) 2163 status = copied; 2164 2165 if (status >= 0) { 2166 written += status; 2167 count -= status; 2168 pos += status; 2169 buf += status; 2170 if (unlikely(nr_segs > 1)) { 2171 filemap_set_next_iovec(&cur_iov, 2172 &iov_base, status); 2173 if (count) 2174 buf = cur_iov->iov_base + 2175 iov_base; 2176 } else { 2177 iov_base += status; 2178 } 2179 } 2180 } 2181 if (unlikely(copied != bytes)) 2182 if (status >= 0) 2183 status = -EFAULT; 2184 unlock_page(page); 2185 mark_page_accessed(page); 2186 page_cache_release(page); 2187 if (status < 0) 2188 break; 2189 balance_dirty_pages_ratelimited(mapping); 2190 cond_resched(); 2191 } while (count); 2192 *ppos = pos; 2193 2194 if (cached_page) 2195 page_cache_release(cached_page); 2196 2197 /* 2198 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC 2199 */ 2200 if (likely(status >= 0)) { 2201 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2202 if (!a_ops->writepage || !is_sync_kiocb(iocb)) 2203 status = generic_osync_inode(inode, mapping, 2204 OSYNC_METADATA|OSYNC_DATA); 2205 } 2206 } 2207 2208 /* 2209 * If we get here for O_DIRECT writes then we must have fallen through 2210 * to buffered writes (block instantiation inside i_size). So we sync 2211 * the file data here, to try to honour O_DIRECT expectations. 2212 */ 2213 if (unlikely(file->f_flags & O_DIRECT) && written) 2214 status = filemap_write_and_wait(mapping); 2215 2216 pagevec_lru_add(&lru_pvec); 2217 return written ? written : status; 2218 } 2219 EXPORT_SYMBOL(generic_file_buffered_write); 2220 2221 static ssize_t 2222 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov, 2223 unsigned long nr_segs, loff_t *ppos) 2224 { 2225 struct file *file = iocb->ki_filp; 2226 const struct address_space * mapping = file->f_mapping; 2227 size_t ocount; /* original count */ 2228 size_t count; /* after file limit checks */ 2229 struct inode *inode = mapping->host; 2230 unsigned long seg; 2231 loff_t pos; 2232 ssize_t written; 2233 ssize_t err; 2234 2235 ocount = 0; 2236 for (seg = 0; seg < nr_segs; seg++) { 2237 const struct iovec *iv = &iov[seg]; 2238 2239 /* 2240 * If any segment has a negative length, or the cumulative 2241 * length ever wraps negative then return -EINVAL. 2242 */ 2243 ocount += iv->iov_len; 2244 if (unlikely((ssize_t)(ocount|iv->iov_len) < 0)) 2245 return -EINVAL; 2246 if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len)) 2247 continue; 2248 if (seg == 0) 2249 return -EFAULT; 2250 nr_segs = seg; 2251 ocount -= iv->iov_len; /* This segment is no good */ 2252 break; 2253 } 2254 2255 count = ocount; 2256 pos = *ppos; 2257 2258 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); 2259 2260 /* We can write back this queue in page reclaim */ 2261 current->backing_dev_info = mapping->backing_dev_info; 2262 written = 0; 2263 2264 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 2265 if (err) 2266 goto out; 2267 2268 if (count == 0) 2269 goto out; 2270 2271 err = remove_suid(file->f_dentry); 2272 if (err) 2273 goto out; 2274 2275 file_update_time(file); 2276 2277 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 2278 if (unlikely(file->f_flags & O_DIRECT)) { 2279 written = generic_file_direct_write(iocb, iov, 2280 &nr_segs, pos, ppos, count, ocount); 2281 if (written < 0 || written == count) 2282 goto out; 2283 /* 2284 * direct-io write to a hole: fall through to buffered I/O 2285 * for completing the rest of the request. 2286 */ 2287 pos += written; 2288 count -= written; 2289 } 2290 2291 written = generic_file_buffered_write(iocb, iov, nr_segs, 2292 pos, ppos, count, written); 2293 out: 2294 current->backing_dev_info = NULL; 2295 return written ? written : err; 2296 } 2297 EXPORT_SYMBOL(generic_file_aio_write_nolock); 2298 2299 ssize_t 2300 generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov, 2301 unsigned long nr_segs, loff_t *ppos) 2302 { 2303 struct file *file = iocb->ki_filp; 2304 struct address_space *mapping = file->f_mapping; 2305 struct inode *inode = mapping->host; 2306 ssize_t ret; 2307 loff_t pos = *ppos; 2308 2309 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, ppos); 2310 2311 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2312 int err; 2313 2314 err = sync_page_range_nolock(inode, mapping, pos, ret); 2315 if (err < 0) 2316 ret = err; 2317 } 2318 return ret; 2319 } 2320 2321 static ssize_t 2322 __generic_file_write_nolock(struct file *file, const struct iovec *iov, 2323 unsigned long nr_segs, loff_t *ppos) 2324 { 2325 struct kiocb kiocb; 2326 ssize_t ret; 2327 2328 init_sync_kiocb(&kiocb, file); 2329 ret = __generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos); 2330 if (ret == -EIOCBQUEUED) 2331 ret = wait_on_sync_kiocb(&kiocb); 2332 return ret; 2333 } 2334 2335 ssize_t 2336 generic_file_write_nolock(struct file *file, const struct iovec *iov, 2337 unsigned long nr_segs, loff_t *ppos) 2338 { 2339 struct kiocb kiocb; 2340 ssize_t ret; 2341 2342 init_sync_kiocb(&kiocb, file); 2343 ret = generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos); 2344 if (-EIOCBQUEUED == ret) 2345 ret = wait_on_sync_kiocb(&kiocb); 2346 return ret; 2347 } 2348 EXPORT_SYMBOL(generic_file_write_nolock); 2349 2350 ssize_t generic_file_aio_write(struct kiocb *iocb, const char __user *buf, 2351 size_t count, loff_t pos) 2352 { 2353 struct file *file = iocb->ki_filp; 2354 struct address_space *mapping = file->f_mapping; 2355 struct inode *inode = mapping->host; 2356 ssize_t ret; 2357 struct iovec local_iov = { .iov_base = (void __user *)buf, 2358 .iov_len = count }; 2359 2360 BUG_ON(iocb->ki_pos != pos); 2361 2362 mutex_lock(&inode->i_mutex); 2363 ret = __generic_file_aio_write_nolock(iocb, &local_iov, 1, 2364 &iocb->ki_pos); 2365 mutex_unlock(&inode->i_mutex); 2366 2367 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2368 ssize_t err; 2369 2370 err = sync_page_range(inode, mapping, pos, ret); 2371 if (err < 0) 2372 ret = err; 2373 } 2374 return ret; 2375 } 2376 EXPORT_SYMBOL(generic_file_aio_write); 2377 2378 ssize_t generic_file_write(struct file *file, const char __user *buf, 2379 size_t count, loff_t *ppos) 2380 { 2381 struct address_space *mapping = file->f_mapping; 2382 struct inode *inode = mapping->host; 2383 ssize_t ret; 2384 struct iovec local_iov = { .iov_base = (void __user *)buf, 2385 .iov_len = count }; 2386 2387 mutex_lock(&inode->i_mutex); 2388 ret = __generic_file_write_nolock(file, &local_iov, 1, ppos); 2389 mutex_unlock(&inode->i_mutex); 2390 2391 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2392 ssize_t err; 2393 2394 err = sync_page_range(inode, mapping, *ppos - ret, ret); 2395 if (err < 0) 2396 ret = err; 2397 } 2398 return ret; 2399 } 2400 EXPORT_SYMBOL(generic_file_write); 2401 2402 ssize_t generic_file_readv(struct file *filp, const struct iovec *iov, 2403 unsigned long nr_segs, loff_t *ppos) 2404 { 2405 struct kiocb kiocb; 2406 ssize_t ret; 2407 2408 init_sync_kiocb(&kiocb, filp); 2409 ret = __generic_file_aio_read(&kiocb, iov, nr_segs, ppos); 2410 if (-EIOCBQUEUED == ret) 2411 ret = wait_on_sync_kiocb(&kiocb); 2412 return ret; 2413 } 2414 EXPORT_SYMBOL(generic_file_readv); 2415 2416 ssize_t generic_file_writev(struct file *file, const struct iovec *iov, 2417 unsigned long nr_segs, loff_t *ppos) 2418 { 2419 struct address_space *mapping = file->f_mapping; 2420 struct inode *inode = mapping->host; 2421 ssize_t ret; 2422 2423 mutex_lock(&inode->i_mutex); 2424 ret = __generic_file_write_nolock(file, iov, nr_segs, ppos); 2425 mutex_unlock(&inode->i_mutex); 2426 2427 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2428 int err; 2429 2430 err = sync_page_range(inode, mapping, *ppos - ret, ret); 2431 if (err < 0) 2432 ret = err; 2433 } 2434 return ret; 2435 } 2436 EXPORT_SYMBOL(generic_file_writev); 2437 2438 /* 2439 * Called under i_mutex for writes to S_ISREG files. Returns -EIO if something 2440 * went wrong during pagecache shootdown. 2441 */ 2442 static ssize_t 2443 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, 2444 loff_t offset, unsigned long nr_segs) 2445 { 2446 struct file *file = iocb->ki_filp; 2447 struct address_space *mapping = file->f_mapping; 2448 ssize_t retval; 2449 size_t write_len = 0; 2450 2451 /* 2452 * If it's a write, unmap all mmappings of the file up-front. This 2453 * will cause any pte dirty bits to be propagated into the pageframes 2454 * for the subsequent filemap_write_and_wait(). 2455 */ 2456 if (rw == WRITE) { 2457 write_len = iov_length(iov, nr_segs); 2458 if (mapping_mapped(mapping)) 2459 unmap_mapping_range(mapping, offset, write_len, 0); 2460 } 2461 2462 retval = filemap_write_and_wait(mapping); 2463 if (retval == 0) { 2464 retval = mapping->a_ops->direct_IO(rw, iocb, iov, 2465 offset, nr_segs); 2466 if (rw == WRITE && mapping->nrpages) { 2467 pgoff_t end = (offset + write_len - 1) 2468 >> PAGE_CACHE_SHIFT; 2469 int err = invalidate_inode_pages2_range(mapping, 2470 offset >> PAGE_CACHE_SHIFT, end); 2471 if (err) 2472 retval = err; 2473 } 2474 } 2475 return retval; 2476 } 2477