1 /* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12 #include <linux/export.h> 13 #include <linux/compiler.h> 14 #include <linux/dax.h> 15 #include <linux/fs.h> 16 #include <linux/sched/signal.h> 17 #include <linux/uaccess.h> 18 #include <linux/capability.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/gfp.h> 21 #include <linux/mm.h> 22 #include <linux/swap.h> 23 #include <linux/mman.h> 24 #include <linux/pagemap.h> 25 #include <linux/file.h> 26 #include <linux/uio.h> 27 #include <linux/hash.h> 28 #include <linux/writeback.h> 29 #include <linux/backing-dev.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/security.h> 33 #include <linux/cpuset.h> 34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */ 35 #include <linux/hugetlb.h> 36 #include <linux/memcontrol.h> 37 #include <linux/cleancache.h> 38 #include <linux/rmap.h> 39 #include "internal.h" 40 41 #define CREATE_TRACE_POINTS 42 #include <trace/events/filemap.h> 43 44 /* 45 * FIXME: remove all knowledge of the buffer layer from the core VM 46 */ 47 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 48 49 #include <asm/mman.h> 50 51 /* 52 * Shared mappings implemented 30.11.1994. It's not fully working yet, 53 * though. 54 * 55 * Shared mappings now work. 15.8.1995 Bruno. 56 * 57 * finished 'unifying' the page and buffer cache and SMP-threaded the 58 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 59 * 60 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 61 */ 62 63 /* 64 * Lock ordering: 65 * 66 * ->i_mmap_rwsem (truncate_pagecache) 67 * ->private_lock (__free_pte->__set_page_dirty_buffers) 68 * ->swap_lock (exclusive_swap_page, others) 69 * ->mapping->tree_lock 70 * 71 * ->i_mutex 72 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 73 * 74 * ->mmap_sem 75 * ->i_mmap_rwsem 76 * ->page_table_lock or pte_lock (various, mainly in memory.c) 77 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) 78 * 79 * ->mmap_sem 80 * ->lock_page (access_process_vm) 81 * 82 * ->i_mutex (generic_perform_write) 83 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 84 * 85 * bdi->wb.list_lock 86 * sb_lock (fs/fs-writeback.c) 87 * ->mapping->tree_lock (__sync_single_inode) 88 * 89 * ->i_mmap_rwsem 90 * ->anon_vma.lock (vma_adjust) 91 * 92 * ->anon_vma.lock 93 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 94 * 95 * ->page_table_lock or pte_lock 96 * ->swap_lock (try_to_unmap_one) 97 * ->private_lock (try_to_unmap_one) 98 * ->tree_lock (try_to_unmap_one) 99 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed) 100 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page) 101 * ->private_lock (page_remove_rmap->set_page_dirty) 102 * ->tree_lock (page_remove_rmap->set_page_dirty) 103 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 104 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 105 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) 106 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 107 * ->inode->i_lock (zap_pte_range->set_page_dirty) 108 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 109 * 110 * ->i_mmap_rwsem 111 * ->tasklist_lock (memory_failure, collect_procs_ao) 112 */ 113 114 static int page_cache_tree_insert(struct address_space *mapping, 115 struct page *page, void **shadowp) 116 { 117 struct radix_tree_node *node; 118 void **slot; 119 int error; 120 121 error = __radix_tree_create(&mapping->page_tree, page->index, 0, 122 &node, &slot); 123 if (error) 124 return error; 125 if (*slot) { 126 void *p; 127 128 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock); 129 if (!radix_tree_exceptional_entry(p)) 130 return -EEXIST; 131 132 mapping->nrexceptional--; 133 if (!dax_mapping(mapping)) { 134 if (shadowp) 135 *shadowp = p; 136 } else { 137 /* DAX can replace empty locked entry with a hole */ 138 WARN_ON_ONCE(p != 139 dax_radix_locked_entry(0, RADIX_DAX_EMPTY)); 140 /* Wakeup waiters for exceptional entry lock */ 141 dax_wake_mapping_entry_waiter(mapping, page->index, p, 142 true); 143 } 144 } 145 __radix_tree_replace(&mapping->page_tree, node, slot, page, 146 workingset_update_node, mapping); 147 mapping->nrpages++; 148 return 0; 149 } 150 151 static void page_cache_tree_delete(struct address_space *mapping, 152 struct page *page, void *shadow) 153 { 154 int i, nr; 155 156 /* hugetlb pages are represented by one entry in the radix tree */ 157 nr = PageHuge(page) ? 1 : hpage_nr_pages(page); 158 159 VM_BUG_ON_PAGE(!PageLocked(page), page); 160 VM_BUG_ON_PAGE(PageTail(page), page); 161 VM_BUG_ON_PAGE(nr != 1 && shadow, page); 162 163 for (i = 0; i < nr; i++) { 164 struct radix_tree_node *node; 165 void **slot; 166 167 __radix_tree_lookup(&mapping->page_tree, page->index + i, 168 &node, &slot); 169 170 VM_BUG_ON_PAGE(!node && nr != 1, page); 171 172 radix_tree_clear_tags(&mapping->page_tree, node, slot); 173 __radix_tree_replace(&mapping->page_tree, node, slot, shadow, 174 workingset_update_node, mapping); 175 } 176 177 if (shadow) { 178 mapping->nrexceptional += nr; 179 /* 180 * Make sure the nrexceptional update is committed before 181 * the nrpages update so that final truncate racing 182 * with reclaim does not see both counters 0 at the 183 * same time and miss a shadow entry. 184 */ 185 smp_wmb(); 186 } 187 mapping->nrpages -= nr; 188 } 189 190 /* 191 * Delete a page from the page cache and free it. Caller has to make 192 * sure the page is locked and that nobody else uses it - or that usage 193 * is safe. The caller must hold the mapping's tree_lock. 194 */ 195 void __delete_from_page_cache(struct page *page, void *shadow) 196 { 197 struct address_space *mapping = page->mapping; 198 int nr = hpage_nr_pages(page); 199 200 trace_mm_filemap_delete_from_page_cache(page); 201 /* 202 * if we're uptodate, flush out into the cleancache, otherwise 203 * invalidate any existing cleancache entries. We can't leave 204 * stale data around in the cleancache once our page is gone 205 */ 206 if (PageUptodate(page) && PageMappedToDisk(page)) 207 cleancache_put_page(page); 208 else 209 cleancache_invalidate_page(mapping, page); 210 211 VM_BUG_ON_PAGE(PageTail(page), page); 212 VM_BUG_ON_PAGE(page_mapped(page), page); 213 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) { 214 int mapcount; 215 216 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 217 current->comm, page_to_pfn(page)); 218 dump_page(page, "still mapped when deleted"); 219 dump_stack(); 220 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 221 222 mapcount = page_mapcount(page); 223 if (mapping_exiting(mapping) && 224 page_count(page) >= mapcount + 2) { 225 /* 226 * All vmas have already been torn down, so it's 227 * a good bet that actually the page is unmapped, 228 * and we'd prefer not to leak it: if we're wrong, 229 * some other bad page check should catch it later. 230 */ 231 page_mapcount_reset(page); 232 page_ref_sub(page, mapcount); 233 } 234 } 235 236 page_cache_tree_delete(mapping, page, shadow); 237 238 page->mapping = NULL; 239 /* Leave page->index set: truncation lookup relies upon it */ 240 241 /* hugetlb pages do not participate in page cache accounting. */ 242 if (!PageHuge(page)) 243 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr); 244 if (PageSwapBacked(page)) { 245 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr); 246 if (PageTransHuge(page)) 247 __dec_node_page_state(page, NR_SHMEM_THPS); 248 } else { 249 VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page); 250 } 251 252 /* 253 * At this point page must be either written or cleaned by truncate. 254 * Dirty page here signals a bug and loss of unwritten data. 255 * 256 * This fixes dirty accounting after removing the page entirely but 257 * leaves PageDirty set: it has no effect for truncated page and 258 * anyway will be cleared before returning page into buddy allocator. 259 */ 260 if (WARN_ON_ONCE(PageDirty(page))) 261 account_page_cleaned(page, mapping, inode_to_wb(mapping->host)); 262 } 263 264 /** 265 * delete_from_page_cache - delete page from page cache 266 * @page: the page which the kernel is trying to remove from page cache 267 * 268 * This must be called only on pages that have been verified to be in the page 269 * cache and locked. It will never put the page into the free list, the caller 270 * has a reference on the page. 271 */ 272 void delete_from_page_cache(struct page *page) 273 { 274 struct address_space *mapping = page_mapping(page); 275 unsigned long flags; 276 void (*freepage)(struct page *); 277 278 BUG_ON(!PageLocked(page)); 279 280 freepage = mapping->a_ops->freepage; 281 282 spin_lock_irqsave(&mapping->tree_lock, flags); 283 __delete_from_page_cache(page, NULL); 284 spin_unlock_irqrestore(&mapping->tree_lock, flags); 285 286 if (freepage) 287 freepage(page); 288 289 if (PageTransHuge(page) && !PageHuge(page)) { 290 page_ref_sub(page, HPAGE_PMD_NR); 291 VM_BUG_ON_PAGE(page_count(page) <= 0, page); 292 } else { 293 put_page(page); 294 } 295 } 296 EXPORT_SYMBOL(delete_from_page_cache); 297 298 int filemap_check_errors(struct address_space *mapping) 299 { 300 int ret = 0; 301 /* Check for outstanding write errors */ 302 if (test_bit(AS_ENOSPC, &mapping->flags) && 303 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 304 ret = -ENOSPC; 305 if (test_bit(AS_EIO, &mapping->flags) && 306 test_and_clear_bit(AS_EIO, &mapping->flags)) 307 ret = -EIO; 308 return ret; 309 } 310 EXPORT_SYMBOL(filemap_check_errors); 311 312 /** 313 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 314 * @mapping: address space structure to write 315 * @start: offset in bytes where the range starts 316 * @end: offset in bytes where the range ends (inclusive) 317 * @sync_mode: enable synchronous operation 318 * 319 * Start writeback against all of a mapping's dirty pages that lie 320 * within the byte offsets <start, end> inclusive. 321 * 322 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 323 * opposed to a regular memory cleansing writeback. The difference between 324 * these two operations is that if a dirty page/buffer is encountered, it must 325 * be waited upon, and not just skipped over. 326 */ 327 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 328 loff_t end, int sync_mode) 329 { 330 int ret; 331 struct writeback_control wbc = { 332 .sync_mode = sync_mode, 333 .nr_to_write = LONG_MAX, 334 .range_start = start, 335 .range_end = end, 336 }; 337 338 if (!mapping_cap_writeback_dirty(mapping)) 339 return 0; 340 341 wbc_attach_fdatawrite_inode(&wbc, mapping->host); 342 ret = do_writepages(mapping, &wbc); 343 wbc_detach_inode(&wbc); 344 return ret; 345 } 346 347 static inline int __filemap_fdatawrite(struct address_space *mapping, 348 int sync_mode) 349 { 350 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 351 } 352 353 int filemap_fdatawrite(struct address_space *mapping) 354 { 355 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 356 } 357 EXPORT_SYMBOL(filemap_fdatawrite); 358 359 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 360 loff_t end) 361 { 362 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 363 } 364 EXPORT_SYMBOL(filemap_fdatawrite_range); 365 366 /** 367 * filemap_flush - mostly a non-blocking flush 368 * @mapping: target address_space 369 * 370 * This is a mostly non-blocking flush. Not suitable for data-integrity 371 * purposes - I/O may not be started against all dirty pages. 372 */ 373 int filemap_flush(struct address_space *mapping) 374 { 375 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 376 } 377 EXPORT_SYMBOL(filemap_flush); 378 379 /** 380 * filemap_range_has_page - check if a page exists in range. 381 * @mapping: address space within which to check 382 * @start_byte: offset in bytes where the range starts 383 * @end_byte: offset in bytes where the range ends (inclusive) 384 * 385 * Find at least one page in the range supplied, usually used to check if 386 * direct writing in this range will trigger a writeback. 387 */ 388 bool filemap_range_has_page(struct address_space *mapping, 389 loff_t start_byte, loff_t end_byte) 390 { 391 pgoff_t index = start_byte >> PAGE_SHIFT; 392 pgoff_t end = end_byte >> PAGE_SHIFT; 393 struct pagevec pvec; 394 bool ret; 395 396 if (end_byte < start_byte) 397 return false; 398 399 if (mapping->nrpages == 0) 400 return false; 401 402 pagevec_init(&pvec, 0); 403 if (!pagevec_lookup(&pvec, mapping, index, 1)) 404 return false; 405 ret = (pvec.pages[0]->index <= end); 406 pagevec_release(&pvec); 407 return ret; 408 } 409 EXPORT_SYMBOL(filemap_range_has_page); 410 411 static int __filemap_fdatawait_range(struct address_space *mapping, 412 loff_t start_byte, loff_t end_byte) 413 { 414 pgoff_t index = start_byte >> PAGE_SHIFT; 415 pgoff_t end = end_byte >> PAGE_SHIFT; 416 struct pagevec pvec; 417 int nr_pages; 418 int ret = 0; 419 420 if (end_byte < start_byte) 421 goto out; 422 423 pagevec_init(&pvec, 0); 424 while ((index <= end) && 425 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 426 PAGECACHE_TAG_WRITEBACK, 427 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { 428 unsigned i; 429 430 for (i = 0; i < nr_pages; i++) { 431 struct page *page = pvec.pages[i]; 432 433 /* until radix tree lookup accepts end_index */ 434 if (page->index > end) 435 continue; 436 437 wait_on_page_writeback(page); 438 if (TestClearPageError(page)) 439 ret = -EIO; 440 } 441 pagevec_release(&pvec); 442 cond_resched(); 443 } 444 out: 445 return ret; 446 } 447 448 /** 449 * filemap_fdatawait_range - wait for writeback to complete 450 * @mapping: address space structure to wait for 451 * @start_byte: offset in bytes where the range starts 452 * @end_byte: offset in bytes where the range ends (inclusive) 453 * 454 * Walk the list of under-writeback pages of the given address space 455 * in the given range and wait for all of them. Check error status of 456 * the address space and return it. 457 * 458 * Since the error status of the address space is cleared by this function, 459 * callers are responsible for checking the return value and handling and/or 460 * reporting the error. 461 */ 462 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 463 loff_t end_byte) 464 { 465 int ret, ret2; 466 467 ret = __filemap_fdatawait_range(mapping, start_byte, end_byte); 468 ret2 = filemap_check_errors(mapping); 469 if (!ret) 470 ret = ret2; 471 472 return ret; 473 } 474 EXPORT_SYMBOL(filemap_fdatawait_range); 475 476 /** 477 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 478 * @mapping: address space structure to wait for 479 * 480 * Walk the list of under-writeback pages of the given address space 481 * and wait for all of them. Unlike filemap_fdatawait(), this function 482 * does not clear error status of the address space. 483 * 484 * Use this function if callers don't handle errors themselves. Expected 485 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 486 * fsfreeze(8) 487 */ 488 void filemap_fdatawait_keep_errors(struct address_space *mapping) 489 { 490 loff_t i_size = i_size_read(mapping->host); 491 492 if (i_size == 0) 493 return; 494 495 __filemap_fdatawait_range(mapping, 0, i_size - 1); 496 } 497 498 /** 499 * filemap_fdatawait - wait for all under-writeback pages to complete 500 * @mapping: address space structure to wait for 501 * 502 * Walk the list of under-writeback pages of the given address space 503 * and wait for all of them. Check error status of the address space 504 * and return it. 505 * 506 * Since the error status of the address space is cleared by this function, 507 * callers are responsible for checking the return value and handling and/or 508 * reporting the error. 509 */ 510 int filemap_fdatawait(struct address_space *mapping) 511 { 512 loff_t i_size = i_size_read(mapping->host); 513 514 if (i_size == 0) 515 return 0; 516 517 return filemap_fdatawait_range(mapping, 0, i_size - 1); 518 } 519 EXPORT_SYMBOL(filemap_fdatawait); 520 521 int filemap_write_and_wait(struct address_space *mapping) 522 { 523 int err = 0; 524 525 if ((!dax_mapping(mapping) && mapping->nrpages) || 526 (dax_mapping(mapping) && mapping->nrexceptional)) { 527 err = filemap_fdatawrite(mapping); 528 /* 529 * Even if the above returned error, the pages may be 530 * written partially (e.g. -ENOSPC), so we wait for it. 531 * But the -EIO is special case, it may indicate the worst 532 * thing (e.g. bug) happened, so we avoid waiting for it. 533 */ 534 if (err != -EIO) { 535 int err2 = filemap_fdatawait(mapping); 536 if (!err) 537 err = err2; 538 } 539 } else { 540 err = filemap_check_errors(mapping); 541 } 542 return err; 543 } 544 EXPORT_SYMBOL(filemap_write_and_wait); 545 546 /** 547 * filemap_write_and_wait_range - write out & wait on a file range 548 * @mapping: the address_space for the pages 549 * @lstart: offset in bytes where the range starts 550 * @lend: offset in bytes where the range ends (inclusive) 551 * 552 * Write out and wait upon file offsets lstart->lend, inclusive. 553 * 554 * Note that @lend is inclusive (describes the last byte to be written) so 555 * that this function can be used to write to the very end-of-file (end = -1). 556 */ 557 int filemap_write_and_wait_range(struct address_space *mapping, 558 loff_t lstart, loff_t lend) 559 { 560 int err = 0; 561 562 if ((!dax_mapping(mapping) && mapping->nrpages) || 563 (dax_mapping(mapping) && mapping->nrexceptional)) { 564 err = __filemap_fdatawrite_range(mapping, lstart, lend, 565 WB_SYNC_ALL); 566 /* See comment of filemap_write_and_wait() */ 567 if (err != -EIO) { 568 int err2 = filemap_fdatawait_range(mapping, 569 lstart, lend); 570 if (!err) 571 err = err2; 572 } 573 } else { 574 err = filemap_check_errors(mapping); 575 } 576 return err; 577 } 578 EXPORT_SYMBOL(filemap_write_and_wait_range); 579 580 /** 581 * replace_page_cache_page - replace a pagecache page with a new one 582 * @old: page to be replaced 583 * @new: page to replace with 584 * @gfp_mask: allocation mode 585 * 586 * This function replaces a page in the pagecache with a new one. On 587 * success it acquires the pagecache reference for the new page and 588 * drops it for the old page. Both the old and new pages must be 589 * locked. This function does not add the new page to the LRU, the 590 * caller must do that. 591 * 592 * The remove + add is atomic. The only way this function can fail is 593 * memory allocation failure. 594 */ 595 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) 596 { 597 int error; 598 599 VM_BUG_ON_PAGE(!PageLocked(old), old); 600 VM_BUG_ON_PAGE(!PageLocked(new), new); 601 VM_BUG_ON_PAGE(new->mapping, new); 602 603 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 604 if (!error) { 605 struct address_space *mapping = old->mapping; 606 void (*freepage)(struct page *); 607 unsigned long flags; 608 609 pgoff_t offset = old->index; 610 freepage = mapping->a_ops->freepage; 611 612 get_page(new); 613 new->mapping = mapping; 614 new->index = offset; 615 616 spin_lock_irqsave(&mapping->tree_lock, flags); 617 __delete_from_page_cache(old, NULL); 618 error = page_cache_tree_insert(mapping, new, NULL); 619 BUG_ON(error); 620 621 /* 622 * hugetlb pages do not participate in page cache accounting. 623 */ 624 if (!PageHuge(new)) 625 __inc_node_page_state(new, NR_FILE_PAGES); 626 if (PageSwapBacked(new)) 627 __inc_node_page_state(new, NR_SHMEM); 628 spin_unlock_irqrestore(&mapping->tree_lock, flags); 629 mem_cgroup_migrate(old, new); 630 radix_tree_preload_end(); 631 if (freepage) 632 freepage(old); 633 put_page(old); 634 } 635 636 return error; 637 } 638 EXPORT_SYMBOL_GPL(replace_page_cache_page); 639 640 static int __add_to_page_cache_locked(struct page *page, 641 struct address_space *mapping, 642 pgoff_t offset, gfp_t gfp_mask, 643 void **shadowp) 644 { 645 int huge = PageHuge(page); 646 struct mem_cgroup *memcg; 647 int error; 648 649 VM_BUG_ON_PAGE(!PageLocked(page), page); 650 VM_BUG_ON_PAGE(PageSwapBacked(page), page); 651 652 if (!huge) { 653 error = mem_cgroup_try_charge(page, current->mm, 654 gfp_mask, &memcg, false); 655 if (error) 656 return error; 657 } 658 659 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM); 660 if (error) { 661 if (!huge) 662 mem_cgroup_cancel_charge(page, memcg, false); 663 return error; 664 } 665 666 get_page(page); 667 page->mapping = mapping; 668 page->index = offset; 669 670 spin_lock_irq(&mapping->tree_lock); 671 error = page_cache_tree_insert(mapping, page, shadowp); 672 radix_tree_preload_end(); 673 if (unlikely(error)) 674 goto err_insert; 675 676 /* hugetlb pages do not participate in page cache accounting. */ 677 if (!huge) 678 __inc_node_page_state(page, NR_FILE_PAGES); 679 spin_unlock_irq(&mapping->tree_lock); 680 if (!huge) 681 mem_cgroup_commit_charge(page, memcg, false, false); 682 trace_mm_filemap_add_to_page_cache(page); 683 return 0; 684 err_insert: 685 page->mapping = NULL; 686 /* Leave page->index set: truncation relies upon it */ 687 spin_unlock_irq(&mapping->tree_lock); 688 if (!huge) 689 mem_cgroup_cancel_charge(page, memcg, false); 690 put_page(page); 691 return error; 692 } 693 694 /** 695 * add_to_page_cache_locked - add a locked page to the pagecache 696 * @page: page to add 697 * @mapping: the page's address_space 698 * @offset: page index 699 * @gfp_mask: page allocation mode 700 * 701 * This function is used to add a page to the pagecache. It must be locked. 702 * This function does not add the page to the LRU. The caller must do that. 703 */ 704 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 705 pgoff_t offset, gfp_t gfp_mask) 706 { 707 return __add_to_page_cache_locked(page, mapping, offset, 708 gfp_mask, NULL); 709 } 710 EXPORT_SYMBOL(add_to_page_cache_locked); 711 712 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 713 pgoff_t offset, gfp_t gfp_mask) 714 { 715 void *shadow = NULL; 716 int ret; 717 718 __SetPageLocked(page); 719 ret = __add_to_page_cache_locked(page, mapping, offset, 720 gfp_mask, &shadow); 721 if (unlikely(ret)) 722 __ClearPageLocked(page); 723 else { 724 /* 725 * The page might have been evicted from cache only 726 * recently, in which case it should be activated like 727 * any other repeatedly accessed page. 728 * The exception is pages getting rewritten; evicting other 729 * data from the working set, only to cache data that will 730 * get overwritten with something else, is a waste of memory. 731 */ 732 if (!(gfp_mask & __GFP_WRITE) && 733 shadow && workingset_refault(shadow)) { 734 SetPageActive(page); 735 workingset_activation(page); 736 } else 737 ClearPageActive(page); 738 lru_cache_add(page); 739 } 740 return ret; 741 } 742 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 743 744 #ifdef CONFIG_NUMA 745 struct page *__page_cache_alloc(gfp_t gfp) 746 { 747 int n; 748 struct page *page; 749 750 if (cpuset_do_page_mem_spread()) { 751 unsigned int cpuset_mems_cookie; 752 do { 753 cpuset_mems_cookie = read_mems_allowed_begin(); 754 n = cpuset_mem_spread_node(); 755 page = __alloc_pages_node(n, gfp, 0); 756 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie)); 757 758 return page; 759 } 760 return alloc_pages(gfp, 0); 761 } 762 EXPORT_SYMBOL(__page_cache_alloc); 763 #endif 764 765 /* 766 * In order to wait for pages to become available there must be 767 * waitqueues associated with pages. By using a hash table of 768 * waitqueues where the bucket discipline is to maintain all 769 * waiters on the same queue and wake all when any of the pages 770 * become available, and for the woken contexts to check to be 771 * sure the appropriate page became available, this saves space 772 * at a cost of "thundering herd" phenomena during rare hash 773 * collisions. 774 */ 775 #define PAGE_WAIT_TABLE_BITS 8 776 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 777 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 778 779 static wait_queue_head_t *page_waitqueue(struct page *page) 780 { 781 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)]; 782 } 783 784 void __init pagecache_init(void) 785 { 786 int i; 787 788 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 789 init_waitqueue_head(&page_wait_table[i]); 790 791 page_writeback_init(); 792 } 793 794 struct wait_page_key { 795 struct page *page; 796 int bit_nr; 797 int page_match; 798 }; 799 800 struct wait_page_queue { 801 struct page *page; 802 int bit_nr; 803 wait_queue_entry_t wait; 804 }; 805 806 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 807 { 808 struct wait_page_key *key = arg; 809 struct wait_page_queue *wait_page 810 = container_of(wait, struct wait_page_queue, wait); 811 812 if (wait_page->page != key->page) 813 return 0; 814 key->page_match = 1; 815 816 if (wait_page->bit_nr != key->bit_nr) 817 return 0; 818 if (test_bit(key->bit_nr, &key->page->flags)) 819 return 0; 820 821 return autoremove_wake_function(wait, mode, sync, key); 822 } 823 824 static void wake_up_page_bit(struct page *page, int bit_nr) 825 { 826 wait_queue_head_t *q = page_waitqueue(page); 827 struct wait_page_key key; 828 unsigned long flags; 829 830 key.page = page; 831 key.bit_nr = bit_nr; 832 key.page_match = 0; 833 834 spin_lock_irqsave(&q->lock, flags); 835 __wake_up_locked_key(q, TASK_NORMAL, &key); 836 /* 837 * It is possible for other pages to have collided on the waitqueue 838 * hash, so in that case check for a page match. That prevents a long- 839 * term waiter 840 * 841 * It is still possible to miss a case here, when we woke page waiters 842 * and removed them from the waitqueue, but there are still other 843 * page waiters. 844 */ 845 if (!waitqueue_active(q) || !key.page_match) { 846 ClearPageWaiters(page); 847 /* 848 * It's possible to miss clearing Waiters here, when we woke 849 * our page waiters, but the hashed waitqueue has waiters for 850 * other pages on it. 851 * 852 * That's okay, it's a rare case. The next waker will clear it. 853 */ 854 } 855 spin_unlock_irqrestore(&q->lock, flags); 856 } 857 858 static void wake_up_page(struct page *page, int bit) 859 { 860 if (!PageWaiters(page)) 861 return; 862 wake_up_page_bit(page, bit); 863 } 864 865 static inline int wait_on_page_bit_common(wait_queue_head_t *q, 866 struct page *page, int bit_nr, int state, bool lock) 867 { 868 struct wait_page_queue wait_page; 869 wait_queue_entry_t *wait = &wait_page.wait; 870 int ret = 0; 871 872 init_wait(wait); 873 wait->func = wake_page_function; 874 wait_page.page = page; 875 wait_page.bit_nr = bit_nr; 876 877 for (;;) { 878 spin_lock_irq(&q->lock); 879 880 if (likely(list_empty(&wait->entry))) { 881 if (lock) 882 __add_wait_queue_entry_tail_exclusive(q, wait); 883 else 884 __add_wait_queue(q, wait); 885 SetPageWaiters(page); 886 } 887 888 set_current_state(state); 889 890 spin_unlock_irq(&q->lock); 891 892 if (likely(test_bit(bit_nr, &page->flags))) { 893 io_schedule(); 894 if (unlikely(signal_pending_state(state, current))) { 895 ret = -EINTR; 896 break; 897 } 898 } 899 900 if (lock) { 901 if (!test_and_set_bit_lock(bit_nr, &page->flags)) 902 break; 903 } else { 904 if (!test_bit(bit_nr, &page->flags)) 905 break; 906 } 907 } 908 909 finish_wait(q, wait); 910 911 /* 912 * A signal could leave PageWaiters set. Clearing it here if 913 * !waitqueue_active would be possible (by open-coding finish_wait), 914 * but still fail to catch it in the case of wait hash collision. We 915 * already can fail to clear wait hash collision cases, so don't 916 * bother with signals either. 917 */ 918 919 return ret; 920 } 921 922 void wait_on_page_bit(struct page *page, int bit_nr) 923 { 924 wait_queue_head_t *q = page_waitqueue(page); 925 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false); 926 } 927 EXPORT_SYMBOL(wait_on_page_bit); 928 929 int wait_on_page_bit_killable(struct page *page, int bit_nr) 930 { 931 wait_queue_head_t *q = page_waitqueue(page); 932 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false); 933 } 934 935 /** 936 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 937 * @page: Page defining the wait queue of interest 938 * @waiter: Waiter to add to the queue 939 * 940 * Add an arbitrary @waiter to the wait queue for the nominated @page. 941 */ 942 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter) 943 { 944 wait_queue_head_t *q = page_waitqueue(page); 945 unsigned long flags; 946 947 spin_lock_irqsave(&q->lock, flags); 948 __add_wait_queue(q, waiter); 949 SetPageWaiters(page); 950 spin_unlock_irqrestore(&q->lock, flags); 951 } 952 EXPORT_SYMBOL_GPL(add_page_wait_queue); 953 954 #ifndef clear_bit_unlock_is_negative_byte 955 956 /* 957 * PG_waiters is the high bit in the same byte as PG_lock. 958 * 959 * On x86 (and on many other architectures), we can clear PG_lock and 960 * test the sign bit at the same time. But if the architecture does 961 * not support that special operation, we just do this all by hand 962 * instead. 963 * 964 * The read of PG_waiters has to be after (or concurrently with) PG_locked 965 * being cleared, but a memory barrier should be unneccssary since it is 966 * in the same byte as PG_locked. 967 */ 968 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) 969 { 970 clear_bit_unlock(nr, mem); 971 /* smp_mb__after_atomic(); */ 972 return test_bit(PG_waiters, mem); 973 } 974 975 #endif 976 977 /** 978 * unlock_page - unlock a locked page 979 * @page: the page 980 * 981 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 982 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 983 * mechanism between PageLocked pages and PageWriteback pages is shared. 984 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 985 * 986 * Note that this depends on PG_waiters being the sign bit in the byte 987 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to 988 * clear the PG_locked bit and test PG_waiters at the same time fairly 989 * portably (architectures that do LL/SC can test any bit, while x86 can 990 * test the sign bit). 991 */ 992 void unlock_page(struct page *page) 993 { 994 BUILD_BUG_ON(PG_waiters != 7); 995 page = compound_head(page); 996 VM_BUG_ON_PAGE(!PageLocked(page), page); 997 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags)) 998 wake_up_page_bit(page, PG_locked); 999 } 1000 EXPORT_SYMBOL(unlock_page); 1001 1002 /** 1003 * end_page_writeback - end writeback against a page 1004 * @page: the page 1005 */ 1006 void end_page_writeback(struct page *page) 1007 { 1008 /* 1009 * TestClearPageReclaim could be used here but it is an atomic 1010 * operation and overkill in this particular case. Failing to 1011 * shuffle a page marked for immediate reclaim is too mild to 1012 * justify taking an atomic operation penalty at the end of 1013 * ever page writeback. 1014 */ 1015 if (PageReclaim(page)) { 1016 ClearPageReclaim(page); 1017 rotate_reclaimable_page(page); 1018 } 1019 1020 if (!test_clear_page_writeback(page)) 1021 BUG(); 1022 1023 smp_mb__after_atomic(); 1024 wake_up_page(page, PG_writeback); 1025 } 1026 EXPORT_SYMBOL(end_page_writeback); 1027 1028 /* 1029 * After completing I/O on a page, call this routine to update the page 1030 * flags appropriately 1031 */ 1032 void page_endio(struct page *page, bool is_write, int err) 1033 { 1034 if (!is_write) { 1035 if (!err) { 1036 SetPageUptodate(page); 1037 } else { 1038 ClearPageUptodate(page); 1039 SetPageError(page); 1040 } 1041 unlock_page(page); 1042 } else { 1043 if (err) { 1044 struct address_space *mapping; 1045 1046 SetPageError(page); 1047 mapping = page_mapping(page); 1048 if (mapping) 1049 mapping_set_error(mapping, err); 1050 } 1051 end_page_writeback(page); 1052 } 1053 } 1054 EXPORT_SYMBOL_GPL(page_endio); 1055 1056 /** 1057 * __lock_page - get a lock on the page, assuming we need to sleep to get it 1058 * @__page: the page to lock 1059 */ 1060 void __lock_page(struct page *__page) 1061 { 1062 struct page *page = compound_head(__page); 1063 wait_queue_head_t *q = page_waitqueue(page); 1064 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true); 1065 } 1066 EXPORT_SYMBOL(__lock_page); 1067 1068 int __lock_page_killable(struct page *__page) 1069 { 1070 struct page *page = compound_head(__page); 1071 wait_queue_head_t *q = page_waitqueue(page); 1072 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true); 1073 } 1074 EXPORT_SYMBOL_GPL(__lock_page_killable); 1075 1076 /* 1077 * Return values: 1078 * 1 - page is locked; mmap_sem is still held. 1079 * 0 - page is not locked. 1080 * mmap_sem has been released (up_read()), unless flags had both 1081 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 1082 * which case mmap_sem is still held. 1083 * 1084 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1 1085 * with the page locked and the mmap_sem unperturbed. 1086 */ 1087 int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 1088 unsigned int flags) 1089 { 1090 if (flags & FAULT_FLAG_ALLOW_RETRY) { 1091 /* 1092 * CAUTION! In this case, mmap_sem is not released 1093 * even though return 0. 1094 */ 1095 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1096 return 0; 1097 1098 up_read(&mm->mmap_sem); 1099 if (flags & FAULT_FLAG_KILLABLE) 1100 wait_on_page_locked_killable(page); 1101 else 1102 wait_on_page_locked(page); 1103 return 0; 1104 } else { 1105 if (flags & FAULT_FLAG_KILLABLE) { 1106 int ret; 1107 1108 ret = __lock_page_killable(page); 1109 if (ret) { 1110 up_read(&mm->mmap_sem); 1111 return 0; 1112 } 1113 } else 1114 __lock_page(page); 1115 return 1; 1116 } 1117 } 1118 1119 /** 1120 * page_cache_next_hole - find the next hole (not-present entry) 1121 * @mapping: mapping 1122 * @index: index 1123 * @max_scan: maximum range to search 1124 * 1125 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the 1126 * lowest indexed hole. 1127 * 1128 * Returns: the index of the hole if found, otherwise returns an index 1129 * outside of the set specified (in which case 'return - index >= 1130 * max_scan' will be true). In rare cases of index wrap-around, 0 will 1131 * be returned. 1132 * 1133 * page_cache_next_hole may be called under rcu_read_lock. However, 1134 * like radix_tree_gang_lookup, this will not atomically search a 1135 * snapshot of the tree at a single point in time. For example, if a 1136 * hole is created at index 5, then subsequently a hole is created at 1137 * index 10, page_cache_next_hole covering both indexes may return 10 1138 * if called under rcu_read_lock. 1139 */ 1140 pgoff_t page_cache_next_hole(struct address_space *mapping, 1141 pgoff_t index, unsigned long max_scan) 1142 { 1143 unsigned long i; 1144 1145 for (i = 0; i < max_scan; i++) { 1146 struct page *page; 1147 1148 page = radix_tree_lookup(&mapping->page_tree, index); 1149 if (!page || radix_tree_exceptional_entry(page)) 1150 break; 1151 index++; 1152 if (index == 0) 1153 break; 1154 } 1155 1156 return index; 1157 } 1158 EXPORT_SYMBOL(page_cache_next_hole); 1159 1160 /** 1161 * page_cache_prev_hole - find the prev hole (not-present entry) 1162 * @mapping: mapping 1163 * @index: index 1164 * @max_scan: maximum range to search 1165 * 1166 * Search backwards in the range [max(index-max_scan+1, 0), index] for 1167 * the first hole. 1168 * 1169 * Returns: the index of the hole if found, otherwise returns an index 1170 * outside of the set specified (in which case 'index - return >= 1171 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX 1172 * will be returned. 1173 * 1174 * page_cache_prev_hole may be called under rcu_read_lock. However, 1175 * like radix_tree_gang_lookup, this will not atomically search a 1176 * snapshot of the tree at a single point in time. For example, if a 1177 * hole is created at index 10, then subsequently a hole is created at 1178 * index 5, page_cache_prev_hole covering both indexes may return 5 if 1179 * called under rcu_read_lock. 1180 */ 1181 pgoff_t page_cache_prev_hole(struct address_space *mapping, 1182 pgoff_t index, unsigned long max_scan) 1183 { 1184 unsigned long i; 1185 1186 for (i = 0; i < max_scan; i++) { 1187 struct page *page; 1188 1189 page = radix_tree_lookup(&mapping->page_tree, index); 1190 if (!page || radix_tree_exceptional_entry(page)) 1191 break; 1192 index--; 1193 if (index == ULONG_MAX) 1194 break; 1195 } 1196 1197 return index; 1198 } 1199 EXPORT_SYMBOL(page_cache_prev_hole); 1200 1201 /** 1202 * find_get_entry - find and get a page cache entry 1203 * @mapping: the address_space to search 1204 * @offset: the page cache index 1205 * 1206 * Looks up the page cache slot at @mapping & @offset. If there is a 1207 * page cache page, it is returned with an increased refcount. 1208 * 1209 * If the slot holds a shadow entry of a previously evicted page, or a 1210 * swap entry from shmem/tmpfs, it is returned. 1211 * 1212 * Otherwise, %NULL is returned. 1213 */ 1214 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset) 1215 { 1216 void **pagep; 1217 struct page *head, *page; 1218 1219 rcu_read_lock(); 1220 repeat: 1221 page = NULL; 1222 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset); 1223 if (pagep) { 1224 page = radix_tree_deref_slot(pagep); 1225 if (unlikely(!page)) 1226 goto out; 1227 if (radix_tree_exception(page)) { 1228 if (radix_tree_deref_retry(page)) 1229 goto repeat; 1230 /* 1231 * A shadow entry of a recently evicted page, 1232 * or a swap entry from shmem/tmpfs. Return 1233 * it without attempting to raise page count. 1234 */ 1235 goto out; 1236 } 1237 1238 head = compound_head(page); 1239 if (!page_cache_get_speculative(head)) 1240 goto repeat; 1241 1242 /* The page was split under us? */ 1243 if (compound_head(page) != head) { 1244 put_page(head); 1245 goto repeat; 1246 } 1247 1248 /* 1249 * Has the page moved? 1250 * This is part of the lockless pagecache protocol. See 1251 * include/linux/pagemap.h for details. 1252 */ 1253 if (unlikely(page != *pagep)) { 1254 put_page(head); 1255 goto repeat; 1256 } 1257 } 1258 out: 1259 rcu_read_unlock(); 1260 1261 return page; 1262 } 1263 EXPORT_SYMBOL(find_get_entry); 1264 1265 /** 1266 * find_lock_entry - locate, pin and lock a page cache entry 1267 * @mapping: the address_space to search 1268 * @offset: the page cache index 1269 * 1270 * Looks up the page cache slot at @mapping & @offset. If there is a 1271 * page cache page, it is returned locked and with an increased 1272 * refcount. 1273 * 1274 * If the slot holds a shadow entry of a previously evicted page, or a 1275 * swap entry from shmem/tmpfs, it is returned. 1276 * 1277 * Otherwise, %NULL is returned. 1278 * 1279 * find_lock_entry() may sleep. 1280 */ 1281 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset) 1282 { 1283 struct page *page; 1284 1285 repeat: 1286 page = find_get_entry(mapping, offset); 1287 if (page && !radix_tree_exception(page)) { 1288 lock_page(page); 1289 /* Has the page been truncated? */ 1290 if (unlikely(page_mapping(page) != mapping)) { 1291 unlock_page(page); 1292 put_page(page); 1293 goto repeat; 1294 } 1295 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page); 1296 } 1297 return page; 1298 } 1299 EXPORT_SYMBOL(find_lock_entry); 1300 1301 /** 1302 * pagecache_get_page - find and get a page reference 1303 * @mapping: the address_space to search 1304 * @offset: the page index 1305 * @fgp_flags: PCG flags 1306 * @gfp_mask: gfp mask to use for the page cache data page allocation 1307 * 1308 * Looks up the page cache slot at @mapping & @offset. 1309 * 1310 * PCG flags modify how the page is returned. 1311 * 1312 * @fgp_flags can be: 1313 * 1314 * - FGP_ACCESSED: the page will be marked accessed 1315 * - FGP_LOCK: Page is return locked 1316 * - FGP_CREAT: If page is not present then a new page is allocated using 1317 * @gfp_mask and added to the page cache and the VM's LRU 1318 * list. The page is returned locked and with an increased 1319 * refcount. Otherwise, NULL is returned. 1320 * 1321 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even 1322 * if the GFP flags specified for FGP_CREAT are atomic. 1323 * 1324 * If there is a page cache page, it is returned with an increased refcount. 1325 */ 1326 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, 1327 int fgp_flags, gfp_t gfp_mask) 1328 { 1329 struct page *page; 1330 1331 repeat: 1332 page = find_get_entry(mapping, offset); 1333 if (radix_tree_exceptional_entry(page)) 1334 page = NULL; 1335 if (!page) 1336 goto no_page; 1337 1338 if (fgp_flags & FGP_LOCK) { 1339 if (fgp_flags & FGP_NOWAIT) { 1340 if (!trylock_page(page)) { 1341 put_page(page); 1342 return NULL; 1343 } 1344 } else { 1345 lock_page(page); 1346 } 1347 1348 /* Has the page been truncated? */ 1349 if (unlikely(page->mapping != mapping)) { 1350 unlock_page(page); 1351 put_page(page); 1352 goto repeat; 1353 } 1354 VM_BUG_ON_PAGE(page->index != offset, page); 1355 } 1356 1357 if (page && (fgp_flags & FGP_ACCESSED)) 1358 mark_page_accessed(page); 1359 1360 no_page: 1361 if (!page && (fgp_flags & FGP_CREAT)) { 1362 int err; 1363 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping)) 1364 gfp_mask |= __GFP_WRITE; 1365 if (fgp_flags & FGP_NOFS) 1366 gfp_mask &= ~__GFP_FS; 1367 1368 page = __page_cache_alloc(gfp_mask); 1369 if (!page) 1370 return NULL; 1371 1372 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK))) 1373 fgp_flags |= FGP_LOCK; 1374 1375 /* Init accessed so avoid atomic mark_page_accessed later */ 1376 if (fgp_flags & FGP_ACCESSED) 1377 __SetPageReferenced(page); 1378 1379 err = add_to_page_cache_lru(page, mapping, offset, 1380 gfp_mask & GFP_RECLAIM_MASK); 1381 if (unlikely(err)) { 1382 put_page(page); 1383 page = NULL; 1384 if (err == -EEXIST) 1385 goto repeat; 1386 } 1387 } 1388 1389 return page; 1390 } 1391 EXPORT_SYMBOL(pagecache_get_page); 1392 1393 /** 1394 * find_get_entries - gang pagecache lookup 1395 * @mapping: The address_space to search 1396 * @start: The starting page cache index 1397 * @nr_entries: The maximum number of entries 1398 * @entries: Where the resulting entries are placed 1399 * @indices: The cache indices corresponding to the entries in @entries 1400 * 1401 * find_get_entries() will search for and return a group of up to 1402 * @nr_entries entries in the mapping. The entries are placed at 1403 * @entries. find_get_entries() takes a reference against any actual 1404 * pages it returns. 1405 * 1406 * The search returns a group of mapping-contiguous page cache entries 1407 * with ascending indexes. There may be holes in the indices due to 1408 * not-present pages. 1409 * 1410 * Any shadow entries of evicted pages, or swap entries from 1411 * shmem/tmpfs, are included in the returned array. 1412 * 1413 * find_get_entries() returns the number of pages and shadow entries 1414 * which were found. 1415 */ 1416 unsigned find_get_entries(struct address_space *mapping, 1417 pgoff_t start, unsigned int nr_entries, 1418 struct page **entries, pgoff_t *indices) 1419 { 1420 void **slot; 1421 unsigned int ret = 0; 1422 struct radix_tree_iter iter; 1423 1424 if (!nr_entries) 1425 return 0; 1426 1427 rcu_read_lock(); 1428 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 1429 struct page *head, *page; 1430 repeat: 1431 page = radix_tree_deref_slot(slot); 1432 if (unlikely(!page)) 1433 continue; 1434 if (radix_tree_exception(page)) { 1435 if (radix_tree_deref_retry(page)) { 1436 slot = radix_tree_iter_retry(&iter); 1437 continue; 1438 } 1439 /* 1440 * A shadow entry of a recently evicted page, a swap 1441 * entry from shmem/tmpfs or a DAX entry. Return it 1442 * without attempting to raise page count. 1443 */ 1444 goto export; 1445 } 1446 1447 head = compound_head(page); 1448 if (!page_cache_get_speculative(head)) 1449 goto repeat; 1450 1451 /* The page was split under us? */ 1452 if (compound_head(page) != head) { 1453 put_page(head); 1454 goto repeat; 1455 } 1456 1457 /* Has the page moved? */ 1458 if (unlikely(page != *slot)) { 1459 put_page(head); 1460 goto repeat; 1461 } 1462 export: 1463 indices[ret] = iter.index; 1464 entries[ret] = page; 1465 if (++ret == nr_entries) 1466 break; 1467 } 1468 rcu_read_unlock(); 1469 return ret; 1470 } 1471 1472 /** 1473 * find_get_pages - gang pagecache lookup 1474 * @mapping: The address_space to search 1475 * @start: The starting page index 1476 * @nr_pages: The maximum number of pages 1477 * @pages: Where the resulting pages are placed 1478 * 1479 * find_get_pages() will search for and return a group of up to 1480 * @nr_pages pages in the mapping. The pages are placed at @pages. 1481 * find_get_pages() takes a reference against the returned pages. 1482 * 1483 * The search returns a group of mapping-contiguous pages with ascending 1484 * indexes. There may be holes in the indices due to not-present pages. 1485 * 1486 * find_get_pages() returns the number of pages which were found. 1487 */ 1488 unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 1489 unsigned int nr_pages, struct page **pages) 1490 { 1491 struct radix_tree_iter iter; 1492 void **slot; 1493 unsigned ret = 0; 1494 1495 if (unlikely(!nr_pages)) 1496 return 0; 1497 1498 rcu_read_lock(); 1499 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 1500 struct page *head, *page; 1501 repeat: 1502 page = radix_tree_deref_slot(slot); 1503 if (unlikely(!page)) 1504 continue; 1505 1506 if (radix_tree_exception(page)) { 1507 if (radix_tree_deref_retry(page)) { 1508 slot = radix_tree_iter_retry(&iter); 1509 continue; 1510 } 1511 /* 1512 * A shadow entry of a recently evicted page, 1513 * or a swap entry from shmem/tmpfs. Skip 1514 * over it. 1515 */ 1516 continue; 1517 } 1518 1519 head = compound_head(page); 1520 if (!page_cache_get_speculative(head)) 1521 goto repeat; 1522 1523 /* The page was split under us? */ 1524 if (compound_head(page) != head) { 1525 put_page(head); 1526 goto repeat; 1527 } 1528 1529 /* Has the page moved? */ 1530 if (unlikely(page != *slot)) { 1531 put_page(head); 1532 goto repeat; 1533 } 1534 1535 pages[ret] = page; 1536 if (++ret == nr_pages) 1537 break; 1538 } 1539 1540 rcu_read_unlock(); 1541 return ret; 1542 } 1543 1544 /** 1545 * find_get_pages_contig - gang contiguous pagecache lookup 1546 * @mapping: The address_space to search 1547 * @index: The starting page index 1548 * @nr_pages: The maximum number of pages 1549 * @pages: Where the resulting pages are placed 1550 * 1551 * find_get_pages_contig() works exactly like find_get_pages(), except 1552 * that the returned number of pages are guaranteed to be contiguous. 1553 * 1554 * find_get_pages_contig() returns the number of pages which were found. 1555 */ 1556 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 1557 unsigned int nr_pages, struct page **pages) 1558 { 1559 struct radix_tree_iter iter; 1560 void **slot; 1561 unsigned int ret = 0; 1562 1563 if (unlikely(!nr_pages)) 1564 return 0; 1565 1566 rcu_read_lock(); 1567 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) { 1568 struct page *head, *page; 1569 repeat: 1570 page = radix_tree_deref_slot(slot); 1571 /* The hole, there no reason to continue */ 1572 if (unlikely(!page)) 1573 break; 1574 1575 if (radix_tree_exception(page)) { 1576 if (radix_tree_deref_retry(page)) { 1577 slot = radix_tree_iter_retry(&iter); 1578 continue; 1579 } 1580 /* 1581 * A shadow entry of a recently evicted page, 1582 * or a swap entry from shmem/tmpfs. Stop 1583 * looking for contiguous pages. 1584 */ 1585 break; 1586 } 1587 1588 head = compound_head(page); 1589 if (!page_cache_get_speculative(head)) 1590 goto repeat; 1591 1592 /* The page was split under us? */ 1593 if (compound_head(page) != head) { 1594 put_page(head); 1595 goto repeat; 1596 } 1597 1598 /* Has the page moved? */ 1599 if (unlikely(page != *slot)) { 1600 put_page(head); 1601 goto repeat; 1602 } 1603 1604 /* 1605 * must check mapping and index after taking the ref. 1606 * otherwise we can get both false positives and false 1607 * negatives, which is just confusing to the caller. 1608 */ 1609 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) { 1610 put_page(page); 1611 break; 1612 } 1613 1614 pages[ret] = page; 1615 if (++ret == nr_pages) 1616 break; 1617 } 1618 rcu_read_unlock(); 1619 return ret; 1620 } 1621 EXPORT_SYMBOL(find_get_pages_contig); 1622 1623 /** 1624 * find_get_pages_tag - find and return pages that match @tag 1625 * @mapping: the address_space to search 1626 * @index: the starting page index 1627 * @tag: the tag index 1628 * @nr_pages: the maximum number of pages 1629 * @pages: where the resulting pages are placed 1630 * 1631 * Like find_get_pages, except we only return pages which are tagged with 1632 * @tag. We update @index to index the next page for the traversal. 1633 */ 1634 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 1635 int tag, unsigned int nr_pages, struct page **pages) 1636 { 1637 struct radix_tree_iter iter; 1638 void **slot; 1639 unsigned ret = 0; 1640 1641 if (unlikely(!nr_pages)) 1642 return 0; 1643 1644 rcu_read_lock(); 1645 radix_tree_for_each_tagged(slot, &mapping->page_tree, 1646 &iter, *index, tag) { 1647 struct page *head, *page; 1648 repeat: 1649 page = radix_tree_deref_slot(slot); 1650 if (unlikely(!page)) 1651 continue; 1652 1653 if (radix_tree_exception(page)) { 1654 if (radix_tree_deref_retry(page)) { 1655 slot = radix_tree_iter_retry(&iter); 1656 continue; 1657 } 1658 /* 1659 * A shadow entry of a recently evicted page. 1660 * 1661 * Those entries should never be tagged, but 1662 * this tree walk is lockless and the tags are 1663 * looked up in bulk, one radix tree node at a 1664 * time, so there is a sizable window for page 1665 * reclaim to evict a page we saw tagged. 1666 * 1667 * Skip over it. 1668 */ 1669 continue; 1670 } 1671 1672 head = compound_head(page); 1673 if (!page_cache_get_speculative(head)) 1674 goto repeat; 1675 1676 /* The page was split under us? */ 1677 if (compound_head(page) != head) { 1678 put_page(head); 1679 goto repeat; 1680 } 1681 1682 /* Has the page moved? */ 1683 if (unlikely(page != *slot)) { 1684 put_page(head); 1685 goto repeat; 1686 } 1687 1688 pages[ret] = page; 1689 if (++ret == nr_pages) 1690 break; 1691 } 1692 1693 rcu_read_unlock(); 1694 1695 if (ret) 1696 *index = pages[ret - 1]->index + 1; 1697 1698 return ret; 1699 } 1700 EXPORT_SYMBOL(find_get_pages_tag); 1701 1702 /** 1703 * find_get_entries_tag - find and return entries that match @tag 1704 * @mapping: the address_space to search 1705 * @start: the starting page cache index 1706 * @tag: the tag index 1707 * @nr_entries: the maximum number of entries 1708 * @entries: where the resulting entries are placed 1709 * @indices: the cache indices corresponding to the entries in @entries 1710 * 1711 * Like find_get_entries, except we only return entries which are tagged with 1712 * @tag. 1713 */ 1714 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start, 1715 int tag, unsigned int nr_entries, 1716 struct page **entries, pgoff_t *indices) 1717 { 1718 void **slot; 1719 unsigned int ret = 0; 1720 struct radix_tree_iter iter; 1721 1722 if (!nr_entries) 1723 return 0; 1724 1725 rcu_read_lock(); 1726 radix_tree_for_each_tagged(slot, &mapping->page_tree, 1727 &iter, start, tag) { 1728 struct page *head, *page; 1729 repeat: 1730 page = radix_tree_deref_slot(slot); 1731 if (unlikely(!page)) 1732 continue; 1733 if (radix_tree_exception(page)) { 1734 if (radix_tree_deref_retry(page)) { 1735 slot = radix_tree_iter_retry(&iter); 1736 continue; 1737 } 1738 1739 /* 1740 * A shadow entry of a recently evicted page, a swap 1741 * entry from shmem/tmpfs or a DAX entry. Return it 1742 * without attempting to raise page count. 1743 */ 1744 goto export; 1745 } 1746 1747 head = compound_head(page); 1748 if (!page_cache_get_speculative(head)) 1749 goto repeat; 1750 1751 /* The page was split under us? */ 1752 if (compound_head(page) != head) { 1753 put_page(head); 1754 goto repeat; 1755 } 1756 1757 /* Has the page moved? */ 1758 if (unlikely(page != *slot)) { 1759 put_page(head); 1760 goto repeat; 1761 } 1762 export: 1763 indices[ret] = iter.index; 1764 entries[ret] = page; 1765 if (++ret == nr_entries) 1766 break; 1767 } 1768 rcu_read_unlock(); 1769 return ret; 1770 } 1771 EXPORT_SYMBOL(find_get_entries_tag); 1772 1773 /* 1774 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 1775 * a _large_ part of the i/o request. Imagine the worst scenario: 1776 * 1777 * ---R__________________________________________B__________ 1778 * ^ reading here ^ bad block(assume 4k) 1779 * 1780 * read(R) => miss => readahead(R...B) => media error => frustrating retries 1781 * => failing the whole request => read(R) => read(R+1) => 1782 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 1783 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 1784 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 1785 * 1786 * It is going insane. Fix it by quickly scaling down the readahead size. 1787 */ 1788 static void shrink_readahead_size_eio(struct file *filp, 1789 struct file_ra_state *ra) 1790 { 1791 ra->ra_pages /= 4; 1792 } 1793 1794 /** 1795 * do_generic_file_read - generic file read routine 1796 * @filp: the file to read 1797 * @ppos: current file position 1798 * @iter: data destination 1799 * @written: already copied 1800 * 1801 * This is a generic file read routine, and uses the 1802 * mapping->a_ops->readpage() function for the actual low-level stuff. 1803 * 1804 * This is really ugly. But the goto's actually try to clarify some 1805 * of the logic when it comes to error handling etc. 1806 */ 1807 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos, 1808 struct iov_iter *iter, ssize_t written) 1809 { 1810 struct address_space *mapping = filp->f_mapping; 1811 struct inode *inode = mapping->host; 1812 struct file_ra_state *ra = &filp->f_ra; 1813 pgoff_t index; 1814 pgoff_t last_index; 1815 pgoff_t prev_index; 1816 unsigned long offset; /* offset into pagecache page */ 1817 unsigned int prev_offset; 1818 int error = 0; 1819 1820 if (unlikely(*ppos >= inode->i_sb->s_maxbytes)) 1821 return 0; 1822 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 1823 1824 index = *ppos >> PAGE_SHIFT; 1825 prev_index = ra->prev_pos >> PAGE_SHIFT; 1826 prev_offset = ra->prev_pos & (PAGE_SIZE-1); 1827 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT; 1828 offset = *ppos & ~PAGE_MASK; 1829 1830 for (;;) { 1831 struct page *page; 1832 pgoff_t end_index; 1833 loff_t isize; 1834 unsigned long nr, ret; 1835 1836 cond_resched(); 1837 find_page: 1838 if (fatal_signal_pending(current)) { 1839 error = -EINTR; 1840 goto out; 1841 } 1842 1843 page = find_get_page(mapping, index); 1844 if (!page) { 1845 page_cache_sync_readahead(mapping, 1846 ra, filp, 1847 index, last_index - index); 1848 page = find_get_page(mapping, index); 1849 if (unlikely(page == NULL)) 1850 goto no_cached_page; 1851 } 1852 if (PageReadahead(page)) { 1853 page_cache_async_readahead(mapping, 1854 ra, filp, page, 1855 index, last_index - index); 1856 } 1857 if (!PageUptodate(page)) { 1858 /* 1859 * See comment in do_read_cache_page on why 1860 * wait_on_page_locked is used to avoid unnecessarily 1861 * serialisations and why it's safe. 1862 */ 1863 error = wait_on_page_locked_killable(page); 1864 if (unlikely(error)) 1865 goto readpage_error; 1866 if (PageUptodate(page)) 1867 goto page_ok; 1868 1869 if (inode->i_blkbits == PAGE_SHIFT || 1870 !mapping->a_ops->is_partially_uptodate) 1871 goto page_not_up_to_date; 1872 /* pipes can't handle partially uptodate pages */ 1873 if (unlikely(iter->type & ITER_PIPE)) 1874 goto page_not_up_to_date; 1875 if (!trylock_page(page)) 1876 goto page_not_up_to_date; 1877 /* Did it get truncated before we got the lock? */ 1878 if (!page->mapping) 1879 goto page_not_up_to_date_locked; 1880 if (!mapping->a_ops->is_partially_uptodate(page, 1881 offset, iter->count)) 1882 goto page_not_up_to_date_locked; 1883 unlock_page(page); 1884 } 1885 page_ok: 1886 /* 1887 * i_size must be checked after we know the page is Uptodate. 1888 * 1889 * Checking i_size after the check allows us to calculate 1890 * the correct value for "nr", which means the zero-filled 1891 * part of the page is not copied back to userspace (unless 1892 * another truncate extends the file - this is desired though). 1893 */ 1894 1895 isize = i_size_read(inode); 1896 end_index = (isize - 1) >> PAGE_SHIFT; 1897 if (unlikely(!isize || index > end_index)) { 1898 put_page(page); 1899 goto out; 1900 } 1901 1902 /* nr is the maximum number of bytes to copy from this page */ 1903 nr = PAGE_SIZE; 1904 if (index == end_index) { 1905 nr = ((isize - 1) & ~PAGE_MASK) + 1; 1906 if (nr <= offset) { 1907 put_page(page); 1908 goto out; 1909 } 1910 } 1911 nr = nr - offset; 1912 1913 /* If users can be writing to this page using arbitrary 1914 * virtual addresses, take care about potential aliasing 1915 * before reading the page on the kernel side. 1916 */ 1917 if (mapping_writably_mapped(mapping)) 1918 flush_dcache_page(page); 1919 1920 /* 1921 * When a sequential read accesses a page several times, 1922 * only mark it as accessed the first time. 1923 */ 1924 if (prev_index != index || offset != prev_offset) 1925 mark_page_accessed(page); 1926 prev_index = index; 1927 1928 /* 1929 * Ok, we have the page, and it's up-to-date, so 1930 * now we can copy it to user space... 1931 */ 1932 1933 ret = copy_page_to_iter(page, offset, nr, iter); 1934 offset += ret; 1935 index += offset >> PAGE_SHIFT; 1936 offset &= ~PAGE_MASK; 1937 prev_offset = offset; 1938 1939 put_page(page); 1940 written += ret; 1941 if (!iov_iter_count(iter)) 1942 goto out; 1943 if (ret < nr) { 1944 error = -EFAULT; 1945 goto out; 1946 } 1947 continue; 1948 1949 page_not_up_to_date: 1950 /* Get exclusive access to the page ... */ 1951 error = lock_page_killable(page); 1952 if (unlikely(error)) 1953 goto readpage_error; 1954 1955 page_not_up_to_date_locked: 1956 /* Did it get truncated before we got the lock? */ 1957 if (!page->mapping) { 1958 unlock_page(page); 1959 put_page(page); 1960 continue; 1961 } 1962 1963 /* Did somebody else fill it already? */ 1964 if (PageUptodate(page)) { 1965 unlock_page(page); 1966 goto page_ok; 1967 } 1968 1969 readpage: 1970 /* 1971 * A previous I/O error may have been due to temporary 1972 * failures, eg. multipath errors. 1973 * PG_error will be set again if readpage fails. 1974 */ 1975 ClearPageError(page); 1976 /* Start the actual read. The read will unlock the page. */ 1977 error = mapping->a_ops->readpage(filp, page); 1978 1979 if (unlikely(error)) { 1980 if (error == AOP_TRUNCATED_PAGE) { 1981 put_page(page); 1982 error = 0; 1983 goto find_page; 1984 } 1985 goto readpage_error; 1986 } 1987 1988 if (!PageUptodate(page)) { 1989 error = lock_page_killable(page); 1990 if (unlikely(error)) 1991 goto readpage_error; 1992 if (!PageUptodate(page)) { 1993 if (page->mapping == NULL) { 1994 /* 1995 * invalidate_mapping_pages got it 1996 */ 1997 unlock_page(page); 1998 put_page(page); 1999 goto find_page; 2000 } 2001 unlock_page(page); 2002 shrink_readahead_size_eio(filp, ra); 2003 error = -EIO; 2004 goto readpage_error; 2005 } 2006 unlock_page(page); 2007 } 2008 2009 goto page_ok; 2010 2011 readpage_error: 2012 /* UHHUH! A synchronous read error occurred. Report it */ 2013 put_page(page); 2014 goto out; 2015 2016 no_cached_page: 2017 /* 2018 * Ok, it wasn't cached, so we need to create a new 2019 * page.. 2020 */ 2021 page = page_cache_alloc_cold(mapping); 2022 if (!page) { 2023 error = -ENOMEM; 2024 goto out; 2025 } 2026 error = add_to_page_cache_lru(page, mapping, index, 2027 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2028 if (error) { 2029 put_page(page); 2030 if (error == -EEXIST) { 2031 error = 0; 2032 goto find_page; 2033 } 2034 goto out; 2035 } 2036 goto readpage; 2037 } 2038 2039 out: 2040 ra->prev_pos = prev_index; 2041 ra->prev_pos <<= PAGE_SHIFT; 2042 ra->prev_pos |= prev_offset; 2043 2044 *ppos = ((loff_t)index << PAGE_SHIFT) + offset; 2045 file_accessed(filp); 2046 return written ? written : error; 2047 } 2048 2049 /** 2050 * generic_file_read_iter - generic filesystem read routine 2051 * @iocb: kernel I/O control block 2052 * @iter: destination for the data read 2053 * 2054 * This is the "read_iter()" routine for all filesystems 2055 * that can use the page cache directly. 2056 */ 2057 ssize_t 2058 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2059 { 2060 struct file *file = iocb->ki_filp; 2061 ssize_t retval = 0; 2062 size_t count = iov_iter_count(iter); 2063 2064 if (!count) 2065 goto out; /* skip atime */ 2066 2067 if (iocb->ki_flags & IOCB_DIRECT) { 2068 struct address_space *mapping = file->f_mapping; 2069 struct inode *inode = mapping->host; 2070 loff_t size; 2071 2072 size = i_size_read(inode); 2073 if (iocb->ki_flags & IOCB_NOWAIT) { 2074 if (filemap_range_has_page(mapping, iocb->ki_pos, 2075 iocb->ki_pos + count - 1)) 2076 return -EAGAIN; 2077 } else { 2078 retval = filemap_write_and_wait_range(mapping, 2079 iocb->ki_pos, 2080 iocb->ki_pos + count - 1); 2081 if (retval < 0) 2082 goto out; 2083 } 2084 2085 file_accessed(file); 2086 2087 retval = mapping->a_ops->direct_IO(iocb, iter); 2088 if (retval >= 0) { 2089 iocb->ki_pos += retval; 2090 count -= retval; 2091 } 2092 iov_iter_revert(iter, count - iov_iter_count(iter)); 2093 2094 /* 2095 * Btrfs can have a short DIO read if we encounter 2096 * compressed extents, so if there was an error, or if 2097 * we've already read everything we wanted to, or if 2098 * there was a short read because we hit EOF, go ahead 2099 * and return. Otherwise fallthrough to buffered io for 2100 * the rest of the read. Buffered reads will not work for 2101 * DAX files, so don't bother trying. 2102 */ 2103 if (retval < 0 || !count || iocb->ki_pos >= size || 2104 IS_DAX(inode)) 2105 goto out; 2106 } 2107 2108 retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval); 2109 out: 2110 return retval; 2111 } 2112 EXPORT_SYMBOL(generic_file_read_iter); 2113 2114 #ifdef CONFIG_MMU 2115 /** 2116 * page_cache_read - adds requested page to the page cache if not already there 2117 * @file: file to read 2118 * @offset: page index 2119 * @gfp_mask: memory allocation flags 2120 * 2121 * This adds the requested page to the page cache if it isn't already there, 2122 * and schedules an I/O to read in its contents from disk. 2123 */ 2124 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask) 2125 { 2126 struct address_space *mapping = file->f_mapping; 2127 struct page *page; 2128 int ret; 2129 2130 do { 2131 page = __page_cache_alloc(gfp_mask|__GFP_COLD); 2132 if (!page) 2133 return -ENOMEM; 2134 2135 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL); 2136 if (ret == 0) 2137 ret = mapping->a_ops->readpage(file, page); 2138 else if (ret == -EEXIST) 2139 ret = 0; /* losing race to add is OK */ 2140 2141 put_page(page); 2142 2143 } while (ret == AOP_TRUNCATED_PAGE); 2144 2145 return ret; 2146 } 2147 2148 #define MMAP_LOTSAMISS (100) 2149 2150 /* 2151 * Synchronous readahead happens when we don't even find 2152 * a page in the page cache at all. 2153 */ 2154 static void do_sync_mmap_readahead(struct vm_area_struct *vma, 2155 struct file_ra_state *ra, 2156 struct file *file, 2157 pgoff_t offset) 2158 { 2159 struct address_space *mapping = file->f_mapping; 2160 2161 /* If we don't want any read-ahead, don't bother */ 2162 if (vma->vm_flags & VM_RAND_READ) 2163 return; 2164 if (!ra->ra_pages) 2165 return; 2166 2167 if (vma->vm_flags & VM_SEQ_READ) { 2168 page_cache_sync_readahead(mapping, ra, file, offset, 2169 ra->ra_pages); 2170 return; 2171 } 2172 2173 /* Avoid banging the cache line if not needed */ 2174 if (ra->mmap_miss < MMAP_LOTSAMISS * 10) 2175 ra->mmap_miss++; 2176 2177 /* 2178 * Do we miss much more than hit in this file? If so, 2179 * stop bothering with read-ahead. It will only hurt. 2180 */ 2181 if (ra->mmap_miss > MMAP_LOTSAMISS) 2182 return; 2183 2184 /* 2185 * mmap read-around 2186 */ 2187 ra->start = max_t(long, 0, offset - ra->ra_pages / 2); 2188 ra->size = ra->ra_pages; 2189 ra->async_size = ra->ra_pages / 4; 2190 ra_submit(ra, mapping, file); 2191 } 2192 2193 /* 2194 * Asynchronous readahead happens when we find the page and PG_readahead, 2195 * so we want to possibly extend the readahead further.. 2196 */ 2197 static void do_async_mmap_readahead(struct vm_area_struct *vma, 2198 struct file_ra_state *ra, 2199 struct file *file, 2200 struct page *page, 2201 pgoff_t offset) 2202 { 2203 struct address_space *mapping = file->f_mapping; 2204 2205 /* If we don't want any read-ahead, don't bother */ 2206 if (vma->vm_flags & VM_RAND_READ) 2207 return; 2208 if (ra->mmap_miss > 0) 2209 ra->mmap_miss--; 2210 if (PageReadahead(page)) 2211 page_cache_async_readahead(mapping, ra, file, 2212 page, offset, ra->ra_pages); 2213 } 2214 2215 /** 2216 * filemap_fault - read in file data for page fault handling 2217 * @vmf: struct vm_fault containing details of the fault 2218 * 2219 * filemap_fault() is invoked via the vma operations vector for a 2220 * mapped memory region to read in file data during a page fault. 2221 * 2222 * The goto's are kind of ugly, but this streamlines the normal case of having 2223 * it in the page cache, and handles the special cases reasonably without 2224 * having a lot of duplicated code. 2225 * 2226 * vma->vm_mm->mmap_sem must be held on entry. 2227 * 2228 * If our return value has VM_FAULT_RETRY set, it's because 2229 * lock_page_or_retry() returned 0. 2230 * The mmap_sem has usually been released in this case. 2231 * See __lock_page_or_retry() for the exception. 2232 * 2233 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem 2234 * has not been released. 2235 * 2236 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 2237 */ 2238 int filemap_fault(struct vm_fault *vmf) 2239 { 2240 int error; 2241 struct file *file = vmf->vma->vm_file; 2242 struct address_space *mapping = file->f_mapping; 2243 struct file_ra_state *ra = &file->f_ra; 2244 struct inode *inode = mapping->host; 2245 pgoff_t offset = vmf->pgoff; 2246 pgoff_t max_off; 2247 struct page *page; 2248 int ret = 0; 2249 2250 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2251 if (unlikely(offset >= max_off)) 2252 return VM_FAULT_SIGBUS; 2253 2254 /* 2255 * Do we have something in the page cache already? 2256 */ 2257 page = find_get_page(mapping, offset); 2258 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { 2259 /* 2260 * We found the page, so try async readahead before 2261 * waiting for the lock. 2262 */ 2263 do_async_mmap_readahead(vmf->vma, ra, file, page, offset); 2264 } else if (!page) { 2265 /* No page in the page cache at all */ 2266 do_sync_mmap_readahead(vmf->vma, ra, file, offset); 2267 count_vm_event(PGMAJFAULT); 2268 mem_cgroup_count_vm_event(vmf->vma->vm_mm, PGMAJFAULT); 2269 ret = VM_FAULT_MAJOR; 2270 retry_find: 2271 page = find_get_page(mapping, offset); 2272 if (!page) 2273 goto no_cached_page; 2274 } 2275 2276 if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) { 2277 put_page(page); 2278 return ret | VM_FAULT_RETRY; 2279 } 2280 2281 /* Did it get truncated? */ 2282 if (unlikely(page->mapping != mapping)) { 2283 unlock_page(page); 2284 put_page(page); 2285 goto retry_find; 2286 } 2287 VM_BUG_ON_PAGE(page->index != offset, page); 2288 2289 /* 2290 * We have a locked page in the page cache, now we need to check 2291 * that it's up-to-date. If not, it is going to be due to an error. 2292 */ 2293 if (unlikely(!PageUptodate(page))) 2294 goto page_not_uptodate; 2295 2296 /* 2297 * Found the page and have a reference on it. 2298 * We must recheck i_size under page lock. 2299 */ 2300 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2301 if (unlikely(offset >= max_off)) { 2302 unlock_page(page); 2303 put_page(page); 2304 return VM_FAULT_SIGBUS; 2305 } 2306 2307 vmf->page = page; 2308 return ret | VM_FAULT_LOCKED; 2309 2310 no_cached_page: 2311 /* 2312 * We're only likely to ever get here if MADV_RANDOM is in 2313 * effect. 2314 */ 2315 error = page_cache_read(file, offset, vmf->gfp_mask); 2316 2317 /* 2318 * The page we want has now been added to the page cache. 2319 * In the unlikely event that someone removed it in the 2320 * meantime, we'll just come back here and read it again. 2321 */ 2322 if (error >= 0) 2323 goto retry_find; 2324 2325 /* 2326 * An error return from page_cache_read can result if the 2327 * system is low on memory, or a problem occurs while trying 2328 * to schedule I/O. 2329 */ 2330 if (error == -ENOMEM) 2331 return VM_FAULT_OOM; 2332 return VM_FAULT_SIGBUS; 2333 2334 page_not_uptodate: 2335 /* 2336 * Umm, take care of errors if the page isn't up-to-date. 2337 * Try to re-read it _once_. We do this synchronously, 2338 * because there really aren't any performance issues here 2339 * and we need to check for errors. 2340 */ 2341 ClearPageError(page); 2342 error = mapping->a_ops->readpage(file, page); 2343 if (!error) { 2344 wait_on_page_locked(page); 2345 if (!PageUptodate(page)) 2346 error = -EIO; 2347 } 2348 put_page(page); 2349 2350 if (!error || error == AOP_TRUNCATED_PAGE) 2351 goto retry_find; 2352 2353 /* Things didn't work out. Return zero to tell the mm layer so. */ 2354 shrink_readahead_size_eio(file, ra); 2355 return VM_FAULT_SIGBUS; 2356 } 2357 EXPORT_SYMBOL(filemap_fault); 2358 2359 void filemap_map_pages(struct vm_fault *vmf, 2360 pgoff_t start_pgoff, pgoff_t end_pgoff) 2361 { 2362 struct radix_tree_iter iter; 2363 void **slot; 2364 struct file *file = vmf->vma->vm_file; 2365 struct address_space *mapping = file->f_mapping; 2366 pgoff_t last_pgoff = start_pgoff; 2367 unsigned long max_idx; 2368 struct page *head, *page; 2369 2370 rcu_read_lock(); 2371 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, 2372 start_pgoff) { 2373 if (iter.index > end_pgoff) 2374 break; 2375 repeat: 2376 page = radix_tree_deref_slot(slot); 2377 if (unlikely(!page)) 2378 goto next; 2379 if (radix_tree_exception(page)) { 2380 if (radix_tree_deref_retry(page)) { 2381 slot = radix_tree_iter_retry(&iter); 2382 continue; 2383 } 2384 goto next; 2385 } 2386 2387 head = compound_head(page); 2388 if (!page_cache_get_speculative(head)) 2389 goto repeat; 2390 2391 /* The page was split under us? */ 2392 if (compound_head(page) != head) { 2393 put_page(head); 2394 goto repeat; 2395 } 2396 2397 /* Has the page moved? */ 2398 if (unlikely(page != *slot)) { 2399 put_page(head); 2400 goto repeat; 2401 } 2402 2403 if (!PageUptodate(page) || 2404 PageReadahead(page) || 2405 PageHWPoison(page)) 2406 goto skip; 2407 if (!trylock_page(page)) 2408 goto skip; 2409 2410 if (page->mapping != mapping || !PageUptodate(page)) 2411 goto unlock; 2412 2413 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 2414 if (page->index >= max_idx) 2415 goto unlock; 2416 2417 if (file->f_ra.mmap_miss > 0) 2418 file->f_ra.mmap_miss--; 2419 2420 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT; 2421 if (vmf->pte) 2422 vmf->pte += iter.index - last_pgoff; 2423 last_pgoff = iter.index; 2424 if (alloc_set_pte(vmf, NULL, page)) 2425 goto unlock; 2426 unlock_page(page); 2427 goto next; 2428 unlock: 2429 unlock_page(page); 2430 skip: 2431 put_page(page); 2432 next: 2433 /* Huge page is mapped? No need to proceed. */ 2434 if (pmd_trans_huge(*vmf->pmd)) 2435 break; 2436 if (iter.index == end_pgoff) 2437 break; 2438 } 2439 rcu_read_unlock(); 2440 } 2441 EXPORT_SYMBOL(filemap_map_pages); 2442 2443 int filemap_page_mkwrite(struct vm_fault *vmf) 2444 { 2445 struct page *page = vmf->page; 2446 struct inode *inode = file_inode(vmf->vma->vm_file); 2447 int ret = VM_FAULT_LOCKED; 2448 2449 sb_start_pagefault(inode->i_sb); 2450 file_update_time(vmf->vma->vm_file); 2451 lock_page(page); 2452 if (page->mapping != inode->i_mapping) { 2453 unlock_page(page); 2454 ret = VM_FAULT_NOPAGE; 2455 goto out; 2456 } 2457 /* 2458 * We mark the page dirty already here so that when freeze is in 2459 * progress, we are guaranteed that writeback during freezing will 2460 * see the dirty page and writeprotect it again. 2461 */ 2462 set_page_dirty(page); 2463 wait_for_stable_page(page); 2464 out: 2465 sb_end_pagefault(inode->i_sb); 2466 return ret; 2467 } 2468 EXPORT_SYMBOL(filemap_page_mkwrite); 2469 2470 const struct vm_operations_struct generic_file_vm_ops = { 2471 .fault = filemap_fault, 2472 .map_pages = filemap_map_pages, 2473 .page_mkwrite = filemap_page_mkwrite, 2474 }; 2475 2476 /* This is used for a general mmap of a disk file */ 2477 2478 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2479 { 2480 struct address_space *mapping = file->f_mapping; 2481 2482 if (!mapping->a_ops->readpage) 2483 return -ENOEXEC; 2484 file_accessed(file); 2485 vma->vm_ops = &generic_file_vm_ops; 2486 return 0; 2487 } 2488 2489 /* 2490 * This is for filesystems which do not implement ->writepage. 2491 */ 2492 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 2493 { 2494 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 2495 return -EINVAL; 2496 return generic_file_mmap(file, vma); 2497 } 2498 #else 2499 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2500 { 2501 return -ENOSYS; 2502 } 2503 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 2504 { 2505 return -ENOSYS; 2506 } 2507 #endif /* CONFIG_MMU */ 2508 2509 EXPORT_SYMBOL(generic_file_mmap); 2510 EXPORT_SYMBOL(generic_file_readonly_mmap); 2511 2512 static struct page *wait_on_page_read(struct page *page) 2513 { 2514 if (!IS_ERR(page)) { 2515 wait_on_page_locked(page); 2516 if (!PageUptodate(page)) { 2517 put_page(page); 2518 page = ERR_PTR(-EIO); 2519 } 2520 } 2521 return page; 2522 } 2523 2524 static struct page *do_read_cache_page(struct address_space *mapping, 2525 pgoff_t index, 2526 int (*filler)(void *, struct page *), 2527 void *data, 2528 gfp_t gfp) 2529 { 2530 struct page *page; 2531 int err; 2532 repeat: 2533 page = find_get_page(mapping, index); 2534 if (!page) { 2535 page = __page_cache_alloc(gfp | __GFP_COLD); 2536 if (!page) 2537 return ERR_PTR(-ENOMEM); 2538 err = add_to_page_cache_lru(page, mapping, index, gfp); 2539 if (unlikely(err)) { 2540 put_page(page); 2541 if (err == -EEXIST) 2542 goto repeat; 2543 /* Presumably ENOMEM for radix tree node */ 2544 return ERR_PTR(err); 2545 } 2546 2547 filler: 2548 err = filler(data, page); 2549 if (err < 0) { 2550 put_page(page); 2551 return ERR_PTR(err); 2552 } 2553 2554 page = wait_on_page_read(page); 2555 if (IS_ERR(page)) 2556 return page; 2557 goto out; 2558 } 2559 if (PageUptodate(page)) 2560 goto out; 2561 2562 /* 2563 * Page is not up to date and may be locked due one of the following 2564 * case a: Page is being filled and the page lock is held 2565 * case b: Read/write error clearing the page uptodate status 2566 * case c: Truncation in progress (page locked) 2567 * case d: Reclaim in progress 2568 * 2569 * Case a, the page will be up to date when the page is unlocked. 2570 * There is no need to serialise on the page lock here as the page 2571 * is pinned so the lock gives no additional protection. Even if the 2572 * the page is truncated, the data is still valid if PageUptodate as 2573 * it's a race vs truncate race. 2574 * Case b, the page will not be up to date 2575 * Case c, the page may be truncated but in itself, the data may still 2576 * be valid after IO completes as it's a read vs truncate race. The 2577 * operation must restart if the page is not uptodate on unlock but 2578 * otherwise serialising on page lock to stabilise the mapping gives 2579 * no additional guarantees to the caller as the page lock is 2580 * released before return. 2581 * Case d, similar to truncation. If reclaim holds the page lock, it 2582 * will be a race with remove_mapping that determines if the mapping 2583 * is valid on unlock but otherwise the data is valid and there is 2584 * no need to serialise with page lock. 2585 * 2586 * As the page lock gives no additional guarantee, we optimistically 2587 * wait on the page to be unlocked and check if it's up to date and 2588 * use the page if it is. Otherwise, the page lock is required to 2589 * distinguish between the different cases. The motivation is that we 2590 * avoid spurious serialisations and wakeups when multiple processes 2591 * wait on the same page for IO to complete. 2592 */ 2593 wait_on_page_locked(page); 2594 if (PageUptodate(page)) 2595 goto out; 2596 2597 /* Distinguish between all the cases under the safety of the lock */ 2598 lock_page(page); 2599 2600 /* Case c or d, restart the operation */ 2601 if (!page->mapping) { 2602 unlock_page(page); 2603 put_page(page); 2604 goto repeat; 2605 } 2606 2607 /* Someone else locked and filled the page in a very small window */ 2608 if (PageUptodate(page)) { 2609 unlock_page(page); 2610 goto out; 2611 } 2612 goto filler; 2613 2614 out: 2615 mark_page_accessed(page); 2616 return page; 2617 } 2618 2619 /** 2620 * read_cache_page - read into page cache, fill it if needed 2621 * @mapping: the page's address_space 2622 * @index: the page index 2623 * @filler: function to perform the read 2624 * @data: first arg to filler(data, page) function, often left as NULL 2625 * 2626 * Read into the page cache. If a page already exists, and PageUptodate() is 2627 * not set, try to fill the page and wait for it to become unlocked. 2628 * 2629 * If the page does not get brought uptodate, return -EIO. 2630 */ 2631 struct page *read_cache_page(struct address_space *mapping, 2632 pgoff_t index, 2633 int (*filler)(void *, struct page *), 2634 void *data) 2635 { 2636 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping)); 2637 } 2638 EXPORT_SYMBOL(read_cache_page); 2639 2640 /** 2641 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 2642 * @mapping: the page's address_space 2643 * @index: the page index 2644 * @gfp: the page allocator flags to use if allocating 2645 * 2646 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 2647 * any new page allocations done using the specified allocation flags. 2648 * 2649 * If the page does not get brought uptodate, return -EIO. 2650 */ 2651 struct page *read_cache_page_gfp(struct address_space *mapping, 2652 pgoff_t index, 2653 gfp_t gfp) 2654 { 2655 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 2656 2657 return do_read_cache_page(mapping, index, filler, NULL, gfp); 2658 } 2659 EXPORT_SYMBOL(read_cache_page_gfp); 2660 2661 /* 2662 * Performs necessary checks before doing a write 2663 * 2664 * Can adjust writing position or amount of bytes to write. 2665 * Returns appropriate error code that caller should return or 2666 * zero in case that write should be allowed. 2667 */ 2668 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from) 2669 { 2670 struct file *file = iocb->ki_filp; 2671 struct inode *inode = file->f_mapping->host; 2672 unsigned long limit = rlimit(RLIMIT_FSIZE); 2673 loff_t pos; 2674 2675 if (!iov_iter_count(from)) 2676 return 0; 2677 2678 /* FIXME: this is for backwards compatibility with 2.4 */ 2679 if (iocb->ki_flags & IOCB_APPEND) 2680 iocb->ki_pos = i_size_read(inode); 2681 2682 pos = iocb->ki_pos; 2683 2684 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT)) 2685 return -EINVAL; 2686 2687 if (limit != RLIM_INFINITY) { 2688 if (iocb->ki_pos >= limit) { 2689 send_sig(SIGXFSZ, current, 0); 2690 return -EFBIG; 2691 } 2692 iov_iter_truncate(from, limit - (unsigned long)pos); 2693 } 2694 2695 /* 2696 * LFS rule 2697 */ 2698 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS && 2699 !(file->f_flags & O_LARGEFILE))) { 2700 if (pos >= MAX_NON_LFS) 2701 return -EFBIG; 2702 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos); 2703 } 2704 2705 /* 2706 * Are we about to exceed the fs block limit ? 2707 * 2708 * If we have written data it becomes a short write. If we have 2709 * exceeded without writing data we send a signal and return EFBIG. 2710 * Linus frestrict idea will clean these up nicely.. 2711 */ 2712 if (unlikely(pos >= inode->i_sb->s_maxbytes)) 2713 return -EFBIG; 2714 2715 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos); 2716 return iov_iter_count(from); 2717 } 2718 EXPORT_SYMBOL(generic_write_checks); 2719 2720 int pagecache_write_begin(struct file *file, struct address_space *mapping, 2721 loff_t pos, unsigned len, unsigned flags, 2722 struct page **pagep, void **fsdata) 2723 { 2724 const struct address_space_operations *aops = mapping->a_ops; 2725 2726 return aops->write_begin(file, mapping, pos, len, flags, 2727 pagep, fsdata); 2728 } 2729 EXPORT_SYMBOL(pagecache_write_begin); 2730 2731 int pagecache_write_end(struct file *file, struct address_space *mapping, 2732 loff_t pos, unsigned len, unsigned copied, 2733 struct page *page, void *fsdata) 2734 { 2735 const struct address_space_operations *aops = mapping->a_ops; 2736 2737 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 2738 } 2739 EXPORT_SYMBOL(pagecache_write_end); 2740 2741 ssize_t 2742 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 2743 { 2744 struct file *file = iocb->ki_filp; 2745 struct address_space *mapping = file->f_mapping; 2746 struct inode *inode = mapping->host; 2747 loff_t pos = iocb->ki_pos; 2748 ssize_t written; 2749 size_t write_len; 2750 pgoff_t end; 2751 2752 write_len = iov_iter_count(from); 2753 end = (pos + write_len - 1) >> PAGE_SHIFT; 2754 2755 if (iocb->ki_flags & IOCB_NOWAIT) { 2756 /* If there are pages to writeback, return */ 2757 if (filemap_range_has_page(inode->i_mapping, pos, 2758 pos + iov_iter_count(from))) 2759 return -EAGAIN; 2760 } else { 2761 written = filemap_write_and_wait_range(mapping, pos, 2762 pos + write_len - 1); 2763 if (written) 2764 goto out; 2765 } 2766 2767 /* 2768 * After a write we want buffered reads to be sure to go to disk to get 2769 * the new data. We invalidate clean cached page from the region we're 2770 * about to write. We do this *before* the write so that we can return 2771 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2772 */ 2773 written = invalidate_inode_pages2_range(mapping, 2774 pos >> PAGE_SHIFT, end); 2775 /* 2776 * If a page can not be invalidated, return 0 to fall back 2777 * to buffered write. 2778 */ 2779 if (written) { 2780 if (written == -EBUSY) 2781 return 0; 2782 goto out; 2783 } 2784 2785 written = mapping->a_ops->direct_IO(iocb, from); 2786 2787 /* 2788 * Finally, try again to invalidate clean pages which might have been 2789 * cached by non-direct readahead, or faulted in by get_user_pages() 2790 * if the source of the write was an mmap'ed region of the file 2791 * we're writing. Either one is a pretty crazy thing to do, 2792 * so we don't support it 100%. If this invalidation 2793 * fails, tough, the write still worked... 2794 */ 2795 invalidate_inode_pages2_range(mapping, 2796 pos >> PAGE_SHIFT, end); 2797 2798 if (written > 0) { 2799 pos += written; 2800 write_len -= written; 2801 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 2802 i_size_write(inode, pos); 2803 mark_inode_dirty(inode); 2804 } 2805 iocb->ki_pos = pos; 2806 } 2807 iov_iter_revert(from, write_len - iov_iter_count(from)); 2808 out: 2809 return written; 2810 } 2811 EXPORT_SYMBOL(generic_file_direct_write); 2812 2813 /* 2814 * Find or create a page at the given pagecache position. Return the locked 2815 * page. This function is specifically for buffered writes. 2816 */ 2817 struct page *grab_cache_page_write_begin(struct address_space *mapping, 2818 pgoff_t index, unsigned flags) 2819 { 2820 struct page *page; 2821 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT; 2822 2823 if (flags & AOP_FLAG_NOFS) 2824 fgp_flags |= FGP_NOFS; 2825 2826 page = pagecache_get_page(mapping, index, fgp_flags, 2827 mapping_gfp_mask(mapping)); 2828 if (page) 2829 wait_for_stable_page(page); 2830 2831 return page; 2832 } 2833 EXPORT_SYMBOL(grab_cache_page_write_begin); 2834 2835 ssize_t generic_perform_write(struct file *file, 2836 struct iov_iter *i, loff_t pos) 2837 { 2838 struct address_space *mapping = file->f_mapping; 2839 const struct address_space_operations *a_ops = mapping->a_ops; 2840 long status = 0; 2841 ssize_t written = 0; 2842 unsigned int flags = 0; 2843 2844 do { 2845 struct page *page; 2846 unsigned long offset; /* Offset into pagecache page */ 2847 unsigned long bytes; /* Bytes to write to page */ 2848 size_t copied; /* Bytes copied from user */ 2849 void *fsdata; 2850 2851 offset = (pos & (PAGE_SIZE - 1)); 2852 bytes = min_t(unsigned long, PAGE_SIZE - offset, 2853 iov_iter_count(i)); 2854 2855 again: 2856 /* 2857 * Bring in the user page that we will copy from _first_. 2858 * Otherwise there's a nasty deadlock on copying from the 2859 * same page as we're writing to, without it being marked 2860 * up-to-date. 2861 * 2862 * Not only is this an optimisation, but it is also required 2863 * to check that the address is actually valid, when atomic 2864 * usercopies are used, below. 2865 */ 2866 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 2867 status = -EFAULT; 2868 break; 2869 } 2870 2871 if (fatal_signal_pending(current)) { 2872 status = -EINTR; 2873 break; 2874 } 2875 2876 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 2877 &page, &fsdata); 2878 if (unlikely(status < 0)) 2879 break; 2880 2881 if (mapping_writably_mapped(mapping)) 2882 flush_dcache_page(page); 2883 2884 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 2885 flush_dcache_page(page); 2886 2887 status = a_ops->write_end(file, mapping, pos, bytes, copied, 2888 page, fsdata); 2889 if (unlikely(status < 0)) 2890 break; 2891 copied = status; 2892 2893 cond_resched(); 2894 2895 iov_iter_advance(i, copied); 2896 if (unlikely(copied == 0)) { 2897 /* 2898 * If we were unable to copy any data at all, we must 2899 * fall back to a single segment length write. 2900 * 2901 * If we didn't fallback here, we could livelock 2902 * because not all segments in the iov can be copied at 2903 * once without a pagefault. 2904 */ 2905 bytes = min_t(unsigned long, PAGE_SIZE - offset, 2906 iov_iter_single_seg_count(i)); 2907 goto again; 2908 } 2909 pos += copied; 2910 written += copied; 2911 2912 balance_dirty_pages_ratelimited(mapping); 2913 } while (iov_iter_count(i)); 2914 2915 return written ? written : status; 2916 } 2917 EXPORT_SYMBOL(generic_perform_write); 2918 2919 /** 2920 * __generic_file_write_iter - write data to a file 2921 * @iocb: IO state structure (file, offset, etc.) 2922 * @from: iov_iter with data to write 2923 * 2924 * This function does all the work needed for actually writing data to a 2925 * file. It does all basic checks, removes SUID from the file, updates 2926 * modification times and calls proper subroutines depending on whether we 2927 * do direct IO or a standard buffered write. 2928 * 2929 * It expects i_mutex to be grabbed unless we work on a block device or similar 2930 * object which does not need locking at all. 2931 * 2932 * This function does *not* take care of syncing data in case of O_SYNC write. 2933 * A caller has to handle it. This is mainly due to the fact that we want to 2934 * avoid syncing under i_mutex. 2935 */ 2936 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 2937 { 2938 struct file *file = iocb->ki_filp; 2939 struct address_space * mapping = file->f_mapping; 2940 struct inode *inode = mapping->host; 2941 ssize_t written = 0; 2942 ssize_t err; 2943 ssize_t status; 2944 2945 /* We can write back this queue in page reclaim */ 2946 current->backing_dev_info = inode_to_bdi(inode); 2947 err = file_remove_privs(file); 2948 if (err) 2949 goto out; 2950 2951 err = file_update_time(file); 2952 if (err) 2953 goto out; 2954 2955 if (iocb->ki_flags & IOCB_DIRECT) { 2956 loff_t pos, endbyte; 2957 2958 written = generic_file_direct_write(iocb, from); 2959 /* 2960 * If the write stopped short of completing, fall back to 2961 * buffered writes. Some filesystems do this for writes to 2962 * holes, for example. For DAX files, a buffered write will 2963 * not succeed (even if it did, DAX does not handle dirty 2964 * page-cache pages correctly). 2965 */ 2966 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) 2967 goto out; 2968 2969 status = generic_perform_write(file, from, pos = iocb->ki_pos); 2970 /* 2971 * If generic_perform_write() returned a synchronous error 2972 * then we want to return the number of bytes which were 2973 * direct-written, or the error code if that was zero. Note 2974 * that this differs from normal direct-io semantics, which 2975 * will return -EFOO even if some bytes were written. 2976 */ 2977 if (unlikely(status < 0)) { 2978 err = status; 2979 goto out; 2980 } 2981 /* 2982 * We need to ensure that the page cache pages are written to 2983 * disk and invalidated to preserve the expected O_DIRECT 2984 * semantics. 2985 */ 2986 endbyte = pos + status - 1; 2987 err = filemap_write_and_wait_range(mapping, pos, endbyte); 2988 if (err == 0) { 2989 iocb->ki_pos = endbyte + 1; 2990 written += status; 2991 invalidate_mapping_pages(mapping, 2992 pos >> PAGE_SHIFT, 2993 endbyte >> PAGE_SHIFT); 2994 } else { 2995 /* 2996 * We don't know how much we wrote, so just return 2997 * the number of bytes which were direct-written 2998 */ 2999 } 3000 } else { 3001 written = generic_perform_write(file, from, iocb->ki_pos); 3002 if (likely(written > 0)) 3003 iocb->ki_pos += written; 3004 } 3005 out: 3006 current->backing_dev_info = NULL; 3007 return written ? written : err; 3008 } 3009 EXPORT_SYMBOL(__generic_file_write_iter); 3010 3011 /** 3012 * generic_file_write_iter - write data to a file 3013 * @iocb: IO state structure 3014 * @from: iov_iter with data to write 3015 * 3016 * This is a wrapper around __generic_file_write_iter() to be used by most 3017 * filesystems. It takes care of syncing the file in case of O_SYNC file 3018 * and acquires i_mutex as needed. 3019 */ 3020 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3021 { 3022 struct file *file = iocb->ki_filp; 3023 struct inode *inode = file->f_mapping->host; 3024 ssize_t ret; 3025 3026 inode_lock(inode); 3027 ret = generic_write_checks(iocb, from); 3028 if (ret > 0) 3029 ret = __generic_file_write_iter(iocb, from); 3030 inode_unlock(inode); 3031 3032 if (ret > 0) 3033 ret = generic_write_sync(iocb, ret); 3034 return ret; 3035 } 3036 EXPORT_SYMBOL(generic_file_write_iter); 3037 3038 /** 3039 * try_to_release_page() - release old fs-specific metadata on a page 3040 * 3041 * @page: the page which the kernel is trying to free 3042 * @gfp_mask: memory allocation flags (and I/O mode) 3043 * 3044 * The address_space is to try to release any data against the page 3045 * (presumably at page->private). If the release was successful, return '1'. 3046 * Otherwise return zero. 3047 * 3048 * This may also be called if PG_fscache is set on a page, indicating that the 3049 * page is known to the local caching routines. 3050 * 3051 * The @gfp_mask argument specifies whether I/O may be performed to release 3052 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS). 3053 * 3054 */ 3055 int try_to_release_page(struct page *page, gfp_t gfp_mask) 3056 { 3057 struct address_space * const mapping = page->mapping; 3058 3059 BUG_ON(!PageLocked(page)); 3060 if (PageWriteback(page)) 3061 return 0; 3062 3063 if (mapping && mapping->a_ops->releasepage) 3064 return mapping->a_ops->releasepage(page, gfp_mask); 3065 return try_to_free_buffers(page); 3066 } 3067 3068 EXPORT_SYMBOL(try_to_release_page); 3069