xref: /linux/mm/filemap.c (revision 69fb09f6ccdb2f070557fd1f4c56c4d646694c8e)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/sched/signal.h>
17 #include <linux/uaccess.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/gfp.h>
21 #include <linux/mm.h>
22 #include <linux/swap.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/file.h>
26 #include <linux/uio.h>
27 #include <linux/hash.h>
28 #include <linux/writeback.h>
29 #include <linux/backing-dev.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/security.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/hugetlb.h>
36 #include <linux/memcontrol.h>
37 #include <linux/cleancache.h>
38 #include <linux/rmap.h>
39 #include "internal.h"
40 
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/filemap.h>
43 
44 /*
45  * FIXME: remove all knowledge of the buffer layer from the core VM
46  */
47 #include <linux/buffer_head.h> /* for try_to_free_buffers */
48 
49 #include <asm/mman.h>
50 
51 /*
52  * Shared mappings implemented 30.11.1994. It's not fully working yet,
53  * though.
54  *
55  * Shared mappings now work. 15.8.1995  Bruno.
56  *
57  * finished 'unifying' the page and buffer cache and SMP-threaded the
58  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
59  *
60  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
61  */
62 
63 /*
64  * Lock ordering:
65  *
66  *  ->i_mmap_rwsem		(truncate_pagecache)
67  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
68  *      ->swap_lock		(exclusive_swap_page, others)
69  *        ->mapping->tree_lock
70  *
71  *  ->i_mutex
72  *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
73  *
74  *  ->mmap_sem
75  *    ->i_mmap_rwsem
76  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
77  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
78  *
79  *  ->mmap_sem
80  *    ->lock_page		(access_process_vm)
81  *
82  *  ->i_mutex			(generic_perform_write)
83  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
84  *
85  *  bdi->wb.list_lock
86  *    sb_lock			(fs/fs-writeback.c)
87  *    ->mapping->tree_lock	(__sync_single_inode)
88  *
89  *  ->i_mmap_rwsem
90  *    ->anon_vma.lock		(vma_adjust)
91  *
92  *  ->anon_vma.lock
93  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
94  *
95  *  ->page_table_lock or pte_lock
96  *    ->swap_lock		(try_to_unmap_one)
97  *    ->private_lock		(try_to_unmap_one)
98  *    ->tree_lock		(try_to_unmap_one)
99  *    ->zone_lru_lock(zone)	(follow_page->mark_page_accessed)
100  *    ->zone_lru_lock(zone)	(check_pte_range->isolate_lru_page)
101  *    ->private_lock		(page_remove_rmap->set_page_dirty)
102  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
103  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
104  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
105  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
106  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
107  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
108  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
109  *
110  * ->i_mmap_rwsem
111  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
112  */
113 
114 static int page_cache_tree_insert(struct address_space *mapping,
115 				  struct page *page, void **shadowp)
116 {
117 	struct radix_tree_node *node;
118 	void **slot;
119 	int error;
120 
121 	error = __radix_tree_create(&mapping->page_tree, page->index, 0,
122 				    &node, &slot);
123 	if (error)
124 		return error;
125 	if (*slot) {
126 		void *p;
127 
128 		p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
129 		if (!radix_tree_exceptional_entry(p))
130 			return -EEXIST;
131 
132 		mapping->nrexceptional--;
133 		if (!dax_mapping(mapping)) {
134 			if (shadowp)
135 				*shadowp = p;
136 		} else {
137 			/* DAX can replace empty locked entry with a hole */
138 			WARN_ON_ONCE(p !=
139 				dax_radix_locked_entry(0, RADIX_DAX_EMPTY));
140 			/* Wakeup waiters for exceptional entry lock */
141 			dax_wake_mapping_entry_waiter(mapping, page->index, p,
142 						      true);
143 		}
144 	}
145 	__radix_tree_replace(&mapping->page_tree, node, slot, page,
146 			     workingset_update_node, mapping);
147 	mapping->nrpages++;
148 	return 0;
149 }
150 
151 static void page_cache_tree_delete(struct address_space *mapping,
152 				   struct page *page, void *shadow)
153 {
154 	int i, nr;
155 
156 	/* hugetlb pages are represented by one entry in the radix tree */
157 	nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
158 
159 	VM_BUG_ON_PAGE(!PageLocked(page), page);
160 	VM_BUG_ON_PAGE(PageTail(page), page);
161 	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
162 
163 	for (i = 0; i < nr; i++) {
164 		struct radix_tree_node *node;
165 		void **slot;
166 
167 		__radix_tree_lookup(&mapping->page_tree, page->index + i,
168 				    &node, &slot);
169 
170 		VM_BUG_ON_PAGE(!node && nr != 1, page);
171 
172 		radix_tree_clear_tags(&mapping->page_tree, node, slot);
173 		__radix_tree_replace(&mapping->page_tree, node, slot, shadow,
174 				     workingset_update_node, mapping);
175 	}
176 
177 	if (shadow) {
178 		mapping->nrexceptional += nr;
179 		/*
180 		 * Make sure the nrexceptional update is committed before
181 		 * the nrpages update so that final truncate racing
182 		 * with reclaim does not see both counters 0 at the
183 		 * same time and miss a shadow entry.
184 		 */
185 		smp_wmb();
186 	}
187 	mapping->nrpages -= nr;
188 }
189 
190 /*
191  * Delete a page from the page cache and free it. Caller has to make
192  * sure the page is locked and that nobody else uses it - or that usage
193  * is safe.  The caller must hold the mapping's tree_lock.
194  */
195 void __delete_from_page_cache(struct page *page, void *shadow)
196 {
197 	struct address_space *mapping = page->mapping;
198 	int nr = hpage_nr_pages(page);
199 
200 	trace_mm_filemap_delete_from_page_cache(page);
201 	/*
202 	 * if we're uptodate, flush out into the cleancache, otherwise
203 	 * invalidate any existing cleancache entries.  We can't leave
204 	 * stale data around in the cleancache once our page is gone
205 	 */
206 	if (PageUptodate(page) && PageMappedToDisk(page))
207 		cleancache_put_page(page);
208 	else
209 		cleancache_invalidate_page(mapping, page);
210 
211 	VM_BUG_ON_PAGE(PageTail(page), page);
212 	VM_BUG_ON_PAGE(page_mapped(page), page);
213 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
214 		int mapcount;
215 
216 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
217 			 current->comm, page_to_pfn(page));
218 		dump_page(page, "still mapped when deleted");
219 		dump_stack();
220 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
221 
222 		mapcount = page_mapcount(page);
223 		if (mapping_exiting(mapping) &&
224 		    page_count(page) >= mapcount + 2) {
225 			/*
226 			 * All vmas have already been torn down, so it's
227 			 * a good bet that actually the page is unmapped,
228 			 * and we'd prefer not to leak it: if we're wrong,
229 			 * some other bad page check should catch it later.
230 			 */
231 			page_mapcount_reset(page);
232 			page_ref_sub(page, mapcount);
233 		}
234 	}
235 
236 	page_cache_tree_delete(mapping, page, shadow);
237 
238 	page->mapping = NULL;
239 	/* Leave page->index set: truncation lookup relies upon it */
240 
241 	/* hugetlb pages do not participate in page cache accounting. */
242 	if (!PageHuge(page))
243 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
244 	if (PageSwapBacked(page)) {
245 		__mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
246 		if (PageTransHuge(page))
247 			__dec_node_page_state(page, NR_SHMEM_THPS);
248 	} else {
249 		VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
250 	}
251 
252 	/*
253 	 * At this point page must be either written or cleaned by truncate.
254 	 * Dirty page here signals a bug and loss of unwritten data.
255 	 *
256 	 * This fixes dirty accounting after removing the page entirely but
257 	 * leaves PageDirty set: it has no effect for truncated page and
258 	 * anyway will be cleared before returning page into buddy allocator.
259 	 */
260 	if (WARN_ON_ONCE(PageDirty(page)))
261 		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
262 }
263 
264 /**
265  * delete_from_page_cache - delete page from page cache
266  * @page: the page which the kernel is trying to remove from page cache
267  *
268  * This must be called only on pages that have been verified to be in the page
269  * cache and locked.  It will never put the page into the free list, the caller
270  * has a reference on the page.
271  */
272 void delete_from_page_cache(struct page *page)
273 {
274 	struct address_space *mapping = page_mapping(page);
275 	unsigned long flags;
276 	void (*freepage)(struct page *);
277 
278 	BUG_ON(!PageLocked(page));
279 
280 	freepage = mapping->a_ops->freepage;
281 
282 	spin_lock_irqsave(&mapping->tree_lock, flags);
283 	__delete_from_page_cache(page, NULL);
284 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
285 
286 	if (freepage)
287 		freepage(page);
288 
289 	if (PageTransHuge(page) && !PageHuge(page)) {
290 		page_ref_sub(page, HPAGE_PMD_NR);
291 		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
292 	} else {
293 		put_page(page);
294 	}
295 }
296 EXPORT_SYMBOL(delete_from_page_cache);
297 
298 int filemap_check_errors(struct address_space *mapping)
299 {
300 	int ret = 0;
301 	/* Check for outstanding write errors */
302 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
303 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
304 		ret = -ENOSPC;
305 	if (test_bit(AS_EIO, &mapping->flags) &&
306 	    test_and_clear_bit(AS_EIO, &mapping->flags))
307 		ret = -EIO;
308 	return ret;
309 }
310 EXPORT_SYMBOL(filemap_check_errors);
311 
312 /**
313  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
314  * @mapping:	address space structure to write
315  * @start:	offset in bytes where the range starts
316  * @end:	offset in bytes where the range ends (inclusive)
317  * @sync_mode:	enable synchronous operation
318  *
319  * Start writeback against all of a mapping's dirty pages that lie
320  * within the byte offsets <start, end> inclusive.
321  *
322  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
323  * opposed to a regular memory cleansing writeback.  The difference between
324  * these two operations is that if a dirty page/buffer is encountered, it must
325  * be waited upon, and not just skipped over.
326  */
327 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
328 				loff_t end, int sync_mode)
329 {
330 	int ret;
331 	struct writeback_control wbc = {
332 		.sync_mode = sync_mode,
333 		.nr_to_write = LONG_MAX,
334 		.range_start = start,
335 		.range_end = end,
336 	};
337 
338 	if (!mapping_cap_writeback_dirty(mapping))
339 		return 0;
340 
341 	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
342 	ret = do_writepages(mapping, &wbc);
343 	wbc_detach_inode(&wbc);
344 	return ret;
345 }
346 
347 static inline int __filemap_fdatawrite(struct address_space *mapping,
348 	int sync_mode)
349 {
350 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
351 }
352 
353 int filemap_fdatawrite(struct address_space *mapping)
354 {
355 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
356 }
357 EXPORT_SYMBOL(filemap_fdatawrite);
358 
359 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
360 				loff_t end)
361 {
362 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
363 }
364 EXPORT_SYMBOL(filemap_fdatawrite_range);
365 
366 /**
367  * filemap_flush - mostly a non-blocking flush
368  * @mapping:	target address_space
369  *
370  * This is a mostly non-blocking flush.  Not suitable for data-integrity
371  * purposes - I/O may not be started against all dirty pages.
372  */
373 int filemap_flush(struct address_space *mapping)
374 {
375 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
376 }
377 EXPORT_SYMBOL(filemap_flush);
378 
379 /**
380  * filemap_range_has_page - check if a page exists in range.
381  * @mapping:           address space within which to check
382  * @start_byte:        offset in bytes where the range starts
383  * @end_byte:          offset in bytes where the range ends (inclusive)
384  *
385  * Find at least one page in the range supplied, usually used to check if
386  * direct writing in this range will trigger a writeback.
387  */
388 bool filemap_range_has_page(struct address_space *mapping,
389 			   loff_t start_byte, loff_t end_byte)
390 {
391 	pgoff_t index = start_byte >> PAGE_SHIFT;
392 	pgoff_t end = end_byte >> PAGE_SHIFT;
393 	struct pagevec pvec;
394 	bool ret;
395 
396 	if (end_byte < start_byte)
397 		return false;
398 
399 	if (mapping->nrpages == 0)
400 		return false;
401 
402 	pagevec_init(&pvec, 0);
403 	if (!pagevec_lookup(&pvec, mapping, index, 1))
404 		return false;
405 	ret = (pvec.pages[0]->index <= end);
406 	pagevec_release(&pvec);
407 	return ret;
408 }
409 EXPORT_SYMBOL(filemap_range_has_page);
410 
411 static int __filemap_fdatawait_range(struct address_space *mapping,
412 				     loff_t start_byte, loff_t end_byte)
413 {
414 	pgoff_t index = start_byte >> PAGE_SHIFT;
415 	pgoff_t end = end_byte >> PAGE_SHIFT;
416 	struct pagevec pvec;
417 	int nr_pages;
418 	int ret = 0;
419 
420 	if (end_byte < start_byte)
421 		goto out;
422 
423 	pagevec_init(&pvec, 0);
424 	while ((index <= end) &&
425 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
426 			PAGECACHE_TAG_WRITEBACK,
427 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
428 		unsigned i;
429 
430 		for (i = 0; i < nr_pages; i++) {
431 			struct page *page = pvec.pages[i];
432 
433 			/* until radix tree lookup accepts end_index */
434 			if (page->index > end)
435 				continue;
436 
437 			wait_on_page_writeback(page);
438 			if (TestClearPageError(page))
439 				ret = -EIO;
440 		}
441 		pagevec_release(&pvec);
442 		cond_resched();
443 	}
444 out:
445 	return ret;
446 }
447 
448 /**
449  * filemap_fdatawait_range - wait for writeback to complete
450  * @mapping:		address space structure to wait for
451  * @start_byte:		offset in bytes where the range starts
452  * @end_byte:		offset in bytes where the range ends (inclusive)
453  *
454  * Walk the list of under-writeback pages of the given address space
455  * in the given range and wait for all of them.  Check error status of
456  * the address space and return it.
457  *
458  * Since the error status of the address space is cleared by this function,
459  * callers are responsible for checking the return value and handling and/or
460  * reporting the error.
461  */
462 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
463 			    loff_t end_byte)
464 {
465 	int ret, ret2;
466 
467 	ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
468 	ret2 = filemap_check_errors(mapping);
469 	if (!ret)
470 		ret = ret2;
471 
472 	return ret;
473 }
474 EXPORT_SYMBOL(filemap_fdatawait_range);
475 
476 /**
477  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
478  * @mapping: address space structure to wait for
479  *
480  * Walk the list of under-writeback pages of the given address space
481  * and wait for all of them.  Unlike filemap_fdatawait(), this function
482  * does not clear error status of the address space.
483  *
484  * Use this function if callers don't handle errors themselves.  Expected
485  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
486  * fsfreeze(8)
487  */
488 void filemap_fdatawait_keep_errors(struct address_space *mapping)
489 {
490 	loff_t i_size = i_size_read(mapping->host);
491 
492 	if (i_size == 0)
493 		return;
494 
495 	__filemap_fdatawait_range(mapping, 0, i_size - 1);
496 }
497 
498 /**
499  * filemap_fdatawait - wait for all under-writeback pages to complete
500  * @mapping: address space structure to wait for
501  *
502  * Walk the list of under-writeback pages of the given address space
503  * and wait for all of them.  Check error status of the address space
504  * and return it.
505  *
506  * Since the error status of the address space is cleared by this function,
507  * callers are responsible for checking the return value and handling and/or
508  * reporting the error.
509  */
510 int filemap_fdatawait(struct address_space *mapping)
511 {
512 	loff_t i_size = i_size_read(mapping->host);
513 
514 	if (i_size == 0)
515 		return 0;
516 
517 	return filemap_fdatawait_range(mapping, 0, i_size - 1);
518 }
519 EXPORT_SYMBOL(filemap_fdatawait);
520 
521 int filemap_write_and_wait(struct address_space *mapping)
522 {
523 	int err = 0;
524 
525 	if ((!dax_mapping(mapping) && mapping->nrpages) ||
526 	    (dax_mapping(mapping) && mapping->nrexceptional)) {
527 		err = filemap_fdatawrite(mapping);
528 		/*
529 		 * Even if the above returned error, the pages may be
530 		 * written partially (e.g. -ENOSPC), so we wait for it.
531 		 * But the -EIO is special case, it may indicate the worst
532 		 * thing (e.g. bug) happened, so we avoid waiting for it.
533 		 */
534 		if (err != -EIO) {
535 			int err2 = filemap_fdatawait(mapping);
536 			if (!err)
537 				err = err2;
538 		}
539 	} else {
540 		err = filemap_check_errors(mapping);
541 	}
542 	return err;
543 }
544 EXPORT_SYMBOL(filemap_write_and_wait);
545 
546 /**
547  * filemap_write_and_wait_range - write out & wait on a file range
548  * @mapping:	the address_space for the pages
549  * @lstart:	offset in bytes where the range starts
550  * @lend:	offset in bytes where the range ends (inclusive)
551  *
552  * Write out and wait upon file offsets lstart->lend, inclusive.
553  *
554  * Note that @lend is inclusive (describes the last byte to be written) so
555  * that this function can be used to write to the very end-of-file (end = -1).
556  */
557 int filemap_write_and_wait_range(struct address_space *mapping,
558 				 loff_t lstart, loff_t lend)
559 {
560 	int err = 0;
561 
562 	if ((!dax_mapping(mapping) && mapping->nrpages) ||
563 	    (dax_mapping(mapping) && mapping->nrexceptional)) {
564 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
565 						 WB_SYNC_ALL);
566 		/* See comment of filemap_write_and_wait() */
567 		if (err != -EIO) {
568 			int err2 = filemap_fdatawait_range(mapping,
569 						lstart, lend);
570 			if (!err)
571 				err = err2;
572 		}
573 	} else {
574 		err = filemap_check_errors(mapping);
575 	}
576 	return err;
577 }
578 EXPORT_SYMBOL(filemap_write_and_wait_range);
579 
580 /**
581  * replace_page_cache_page - replace a pagecache page with a new one
582  * @old:	page to be replaced
583  * @new:	page to replace with
584  * @gfp_mask:	allocation mode
585  *
586  * This function replaces a page in the pagecache with a new one.  On
587  * success it acquires the pagecache reference for the new page and
588  * drops it for the old page.  Both the old and new pages must be
589  * locked.  This function does not add the new page to the LRU, the
590  * caller must do that.
591  *
592  * The remove + add is atomic.  The only way this function can fail is
593  * memory allocation failure.
594  */
595 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
596 {
597 	int error;
598 
599 	VM_BUG_ON_PAGE(!PageLocked(old), old);
600 	VM_BUG_ON_PAGE(!PageLocked(new), new);
601 	VM_BUG_ON_PAGE(new->mapping, new);
602 
603 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
604 	if (!error) {
605 		struct address_space *mapping = old->mapping;
606 		void (*freepage)(struct page *);
607 		unsigned long flags;
608 
609 		pgoff_t offset = old->index;
610 		freepage = mapping->a_ops->freepage;
611 
612 		get_page(new);
613 		new->mapping = mapping;
614 		new->index = offset;
615 
616 		spin_lock_irqsave(&mapping->tree_lock, flags);
617 		__delete_from_page_cache(old, NULL);
618 		error = page_cache_tree_insert(mapping, new, NULL);
619 		BUG_ON(error);
620 
621 		/*
622 		 * hugetlb pages do not participate in page cache accounting.
623 		 */
624 		if (!PageHuge(new))
625 			__inc_node_page_state(new, NR_FILE_PAGES);
626 		if (PageSwapBacked(new))
627 			__inc_node_page_state(new, NR_SHMEM);
628 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
629 		mem_cgroup_migrate(old, new);
630 		radix_tree_preload_end();
631 		if (freepage)
632 			freepage(old);
633 		put_page(old);
634 	}
635 
636 	return error;
637 }
638 EXPORT_SYMBOL_GPL(replace_page_cache_page);
639 
640 static int __add_to_page_cache_locked(struct page *page,
641 				      struct address_space *mapping,
642 				      pgoff_t offset, gfp_t gfp_mask,
643 				      void **shadowp)
644 {
645 	int huge = PageHuge(page);
646 	struct mem_cgroup *memcg;
647 	int error;
648 
649 	VM_BUG_ON_PAGE(!PageLocked(page), page);
650 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
651 
652 	if (!huge) {
653 		error = mem_cgroup_try_charge(page, current->mm,
654 					      gfp_mask, &memcg, false);
655 		if (error)
656 			return error;
657 	}
658 
659 	error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
660 	if (error) {
661 		if (!huge)
662 			mem_cgroup_cancel_charge(page, memcg, false);
663 		return error;
664 	}
665 
666 	get_page(page);
667 	page->mapping = mapping;
668 	page->index = offset;
669 
670 	spin_lock_irq(&mapping->tree_lock);
671 	error = page_cache_tree_insert(mapping, page, shadowp);
672 	radix_tree_preload_end();
673 	if (unlikely(error))
674 		goto err_insert;
675 
676 	/* hugetlb pages do not participate in page cache accounting. */
677 	if (!huge)
678 		__inc_node_page_state(page, NR_FILE_PAGES);
679 	spin_unlock_irq(&mapping->tree_lock);
680 	if (!huge)
681 		mem_cgroup_commit_charge(page, memcg, false, false);
682 	trace_mm_filemap_add_to_page_cache(page);
683 	return 0;
684 err_insert:
685 	page->mapping = NULL;
686 	/* Leave page->index set: truncation relies upon it */
687 	spin_unlock_irq(&mapping->tree_lock);
688 	if (!huge)
689 		mem_cgroup_cancel_charge(page, memcg, false);
690 	put_page(page);
691 	return error;
692 }
693 
694 /**
695  * add_to_page_cache_locked - add a locked page to the pagecache
696  * @page:	page to add
697  * @mapping:	the page's address_space
698  * @offset:	page index
699  * @gfp_mask:	page allocation mode
700  *
701  * This function is used to add a page to the pagecache. It must be locked.
702  * This function does not add the page to the LRU.  The caller must do that.
703  */
704 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
705 		pgoff_t offset, gfp_t gfp_mask)
706 {
707 	return __add_to_page_cache_locked(page, mapping, offset,
708 					  gfp_mask, NULL);
709 }
710 EXPORT_SYMBOL(add_to_page_cache_locked);
711 
712 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
713 				pgoff_t offset, gfp_t gfp_mask)
714 {
715 	void *shadow = NULL;
716 	int ret;
717 
718 	__SetPageLocked(page);
719 	ret = __add_to_page_cache_locked(page, mapping, offset,
720 					 gfp_mask, &shadow);
721 	if (unlikely(ret))
722 		__ClearPageLocked(page);
723 	else {
724 		/*
725 		 * The page might have been evicted from cache only
726 		 * recently, in which case it should be activated like
727 		 * any other repeatedly accessed page.
728 		 * The exception is pages getting rewritten; evicting other
729 		 * data from the working set, only to cache data that will
730 		 * get overwritten with something else, is a waste of memory.
731 		 */
732 		if (!(gfp_mask & __GFP_WRITE) &&
733 		    shadow && workingset_refault(shadow)) {
734 			SetPageActive(page);
735 			workingset_activation(page);
736 		} else
737 			ClearPageActive(page);
738 		lru_cache_add(page);
739 	}
740 	return ret;
741 }
742 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
743 
744 #ifdef CONFIG_NUMA
745 struct page *__page_cache_alloc(gfp_t gfp)
746 {
747 	int n;
748 	struct page *page;
749 
750 	if (cpuset_do_page_mem_spread()) {
751 		unsigned int cpuset_mems_cookie;
752 		do {
753 			cpuset_mems_cookie = read_mems_allowed_begin();
754 			n = cpuset_mem_spread_node();
755 			page = __alloc_pages_node(n, gfp, 0);
756 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
757 
758 		return page;
759 	}
760 	return alloc_pages(gfp, 0);
761 }
762 EXPORT_SYMBOL(__page_cache_alloc);
763 #endif
764 
765 /*
766  * In order to wait for pages to become available there must be
767  * waitqueues associated with pages. By using a hash table of
768  * waitqueues where the bucket discipline is to maintain all
769  * waiters on the same queue and wake all when any of the pages
770  * become available, and for the woken contexts to check to be
771  * sure the appropriate page became available, this saves space
772  * at a cost of "thundering herd" phenomena during rare hash
773  * collisions.
774  */
775 #define PAGE_WAIT_TABLE_BITS 8
776 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
777 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
778 
779 static wait_queue_head_t *page_waitqueue(struct page *page)
780 {
781 	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
782 }
783 
784 void __init pagecache_init(void)
785 {
786 	int i;
787 
788 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
789 		init_waitqueue_head(&page_wait_table[i]);
790 
791 	page_writeback_init();
792 }
793 
794 struct wait_page_key {
795 	struct page *page;
796 	int bit_nr;
797 	int page_match;
798 };
799 
800 struct wait_page_queue {
801 	struct page *page;
802 	int bit_nr;
803 	wait_queue_entry_t wait;
804 };
805 
806 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
807 {
808 	struct wait_page_key *key = arg;
809 	struct wait_page_queue *wait_page
810 		= container_of(wait, struct wait_page_queue, wait);
811 
812 	if (wait_page->page != key->page)
813 	       return 0;
814 	key->page_match = 1;
815 
816 	if (wait_page->bit_nr != key->bit_nr)
817 		return 0;
818 	if (test_bit(key->bit_nr, &key->page->flags))
819 		return 0;
820 
821 	return autoremove_wake_function(wait, mode, sync, key);
822 }
823 
824 static void wake_up_page_bit(struct page *page, int bit_nr)
825 {
826 	wait_queue_head_t *q = page_waitqueue(page);
827 	struct wait_page_key key;
828 	unsigned long flags;
829 
830 	key.page = page;
831 	key.bit_nr = bit_nr;
832 	key.page_match = 0;
833 
834 	spin_lock_irqsave(&q->lock, flags);
835 	__wake_up_locked_key(q, TASK_NORMAL, &key);
836 	/*
837 	 * It is possible for other pages to have collided on the waitqueue
838 	 * hash, so in that case check for a page match. That prevents a long-
839 	 * term waiter
840 	 *
841 	 * It is still possible to miss a case here, when we woke page waiters
842 	 * and removed them from the waitqueue, but there are still other
843 	 * page waiters.
844 	 */
845 	if (!waitqueue_active(q) || !key.page_match) {
846 		ClearPageWaiters(page);
847 		/*
848 		 * It's possible to miss clearing Waiters here, when we woke
849 		 * our page waiters, but the hashed waitqueue has waiters for
850 		 * other pages on it.
851 		 *
852 		 * That's okay, it's a rare case. The next waker will clear it.
853 		 */
854 	}
855 	spin_unlock_irqrestore(&q->lock, flags);
856 }
857 
858 static void wake_up_page(struct page *page, int bit)
859 {
860 	if (!PageWaiters(page))
861 		return;
862 	wake_up_page_bit(page, bit);
863 }
864 
865 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
866 		struct page *page, int bit_nr, int state, bool lock)
867 {
868 	struct wait_page_queue wait_page;
869 	wait_queue_entry_t *wait = &wait_page.wait;
870 	int ret = 0;
871 
872 	init_wait(wait);
873 	wait->func = wake_page_function;
874 	wait_page.page = page;
875 	wait_page.bit_nr = bit_nr;
876 
877 	for (;;) {
878 		spin_lock_irq(&q->lock);
879 
880 		if (likely(list_empty(&wait->entry))) {
881 			if (lock)
882 				__add_wait_queue_entry_tail_exclusive(q, wait);
883 			else
884 				__add_wait_queue(q, wait);
885 			SetPageWaiters(page);
886 		}
887 
888 		set_current_state(state);
889 
890 		spin_unlock_irq(&q->lock);
891 
892 		if (likely(test_bit(bit_nr, &page->flags))) {
893 			io_schedule();
894 			if (unlikely(signal_pending_state(state, current))) {
895 				ret = -EINTR;
896 				break;
897 			}
898 		}
899 
900 		if (lock) {
901 			if (!test_and_set_bit_lock(bit_nr, &page->flags))
902 				break;
903 		} else {
904 			if (!test_bit(bit_nr, &page->flags))
905 				break;
906 		}
907 	}
908 
909 	finish_wait(q, wait);
910 
911 	/*
912 	 * A signal could leave PageWaiters set. Clearing it here if
913 	 * !waitqueue_active would be possible (by open-coding finish_wait),
914 	 * but still fail to catch it in the case of wait hash collision. We
915 	 * already can fail to clear wait hash collision cases, so don't
916 	 * bother with signals either.
917 	 */
918 
919 	return ret;
920 }
921 
922 void wait_on_page_bit(struct page *page, int bit_nr)
923 {
924 	wait_queue_head_t *q = page_waitqueue(page);
925 	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
926 }
927 EXPORT_SYMBOL(wait_on_page_bit);
928 
929 int wait_on_page_bit_killable(struct page *page, int bit_nr)
930 {
931 	wait_queue_head_t *q = page_waitqueue(page);
932 	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
933 }
934 
935 /**
936  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
937  * @page: Page defining the wait queue of interest
938  * @waiter: Waiter to add to the queue
939  *
940  * Add an arbitrary @waiter to the wait queue for the nominated @page.
941  */
942 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
943 {
944 	wait_queue_head_t *q = page_waitqueue(page);
945 	unsigned long flags;
946 
947 	spin_lock_irqsave(&q->lock, flags);
948 	__add_wait_queue(q, waiter);
949 	SetPageWaiters(page);
950 	spin_unlock_irqrestore(&q->lock, flags);
951 }
952 EXPORT_SYMBOL_GPL(add_page_wait_queue);
953 
954 #ifndef clear_bit_unlock_is_negative_byte
955 
956 /*
957  * PG_waiters is the high bit in the same byte as PG_lock.
958  *
959  * On x86 (and on many other architectures), we can clear PG_lock and
960  * test the sign bit at the same time. But if the architecture does
961  * not support that special operation, we just do this all by hand
962  * instead.
963  *
964  * The read of PG_waiters has to be after (or concurrently with) PG_locked
965  * being cleared, but a memory barrier should be unneccssary since it is
966  * in the same byte as PG_locked.
967  */
968 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
969 {
970 	clear_bit_unlock(nr, mem);
971 	/* smp_mb__after_atomic(); */
972 	return test_bit(PG_waiters, mem);
973 }
974 
975 #endif
976 
977 /**
978  * unlock_page - unlock a locked page
979  * @page: the page
980  *
981  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
982  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
983  * mechanism between PageLocked pages and PageWriteback pages is shared.
984  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
985  *
986  * Note that this depends on PG_waiters being the sign bit in the byte
987  * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
988  * clear the PG_locked bit and test PG_waiters at the same time fairly
989  * portably (architectures that do LL/SC can test any bit, while x86 can
990  * test the sign bit).
991  */
992 void unlock_page(struct page *page)
993 {
994 	BUILD_BUG_ON(PG_waiters != 7);
995 	page = compound_head(page);
996 	VM_BUG_ON_PAGE(!PageLocked(page), page);
997 	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
998 		wake_up_page_bit(page, PG_locked);
999 }
1000 EXPORT_SYMBOL(unlock_page);
1001 
1002 /**
1003  * end_page_writeback - end writeback against a page
1004  * @page: the page
1005  */
1006 void end_page_writeback(struct page *page)
1007 {
1008 	/*
1009 	 * TestClearPageReclaim could be used here but it is an atomic
1010 	 * operation and overkill in this particular case. Failing to
1011 	 * shuffle a page marked for immediate reclaim is too mild to
1012 	 * justify taking an atomic operation penalty at the end of
1013 	 * ever page writeback.
1014 	 */
1015 	if (PageReclaim(page)) {
1016 		ClearPageReclaim(page);
1017 		rotate_reclaimable_page(page);
1018 	}
1019 
1020 	if (!test_clear_page_writeback(page))
1021 		BUG();
1022 
1023 	smp_mb__after_atomic();
1024 	wake_up_page(page, PG_writeback);
1025 }
1026 EXPORT_SYMBOL(end_page_writeback);
1027 
1028 /*
1029  * After completing I/O on a page, call this routine to update the page
1030  * flags appropriately
1031  */
1032 void page_endio(struct page *page, bool is_write, int err)
1033 {
1034 	if (!is_write) {
1035 		if (!err) {
1036 			SetPageUptodate(page);
1037 		} else {
1038 			ClearPageUptodate(page);
1039 			SetPageError(page);
1040 		}
1041 		unlock_page(page);
1042 	} else {
1043 		if (err) {
1044 			struct address_space *mapping;
1045 
1046 			SetPageError(page);
1047 			mapping = page_mapping(page);
1048 			if (mapping)
1049 				mapping_set_error(mapping, err);
1050 		}
1051 		end_page_writeback(page);
1052 	}
1053 }
1054 EXPORT_SYMBOL_GPL(page_endio);
1055 
1056 /**
1057  * __lock_page - get a lock on the page, assuming we need to sleep to get it
1058  * @__page: the page to lock
1059  */
1060 void __lock_page(struct page *__page)
1061 {
1062 	struct page *page = compound_head(__page);
1063 	wait_queue_head_t *q = page_waitqueue(page);
1064 	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1065 }
1066 EXPORT_SYMBOL(__lock_page);
1067 
1068 int __lock_page_killable(struct page *__page)
1069 {
1070 	struct page *page = compound_head(__page);
1071 	wait_queue_head_t *q = page_waitqueue(page);
1072 	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
1073 }
1074 EXPORT_SYMBOL_GPL(__lock_page_killable);
1075 
1076 /*
1077  * Return values:
1078  * 1 - page is locked; mmap_sem is still held.
1079  * 0 - page is not locked.
1080  *     mmap_sem has been released (up_read()), unless flags had both
1081  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1082  *     which case mmap_sem is still held.
1083  *
1084  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1085  * with the page locked and the mmap_sem unperturbed.
1086  */
1087 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1088 			 unsigned int flags)
1089 {
1090 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
1091 		/*
1092 		 * CAUTION! In this case, mmap_sem is not released
1093 		 * even though return 0.
1094 		 */
1095 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1096 			return 0;
1097 
1098 		up_read(&mm->mmap_sem);
1099 		if (flags & FAULT_FLAG_KILLABLE)
1100 			wait_on_page_locked_killable(page);
1101 		else
1102 			wait_on_page_locked(page);
1103 		return 0;
1104 	} else {
1105 		if (flags & FAULT_FLAG_KILLABLE) {
1106 			int ret;
1107 
1108 			ret = __lock_page_killable(page);
1109 			if (ret) {
1110 				up_read(&mm->mmap_sem);
1111 				return 0;
1112 			}
1113 		} else
1114 			__lock_page(page);
1115 		return 1;
1116 	}
1117 }
1118 
1119 /**
1120  * page_cache_next_hole - find the next hole (not-present entry)
1121  * @mapping: mapping
1122  * @index: index
1123  * @max_scan: maximum range to search
1124  *
1125  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1126  * lowest indexed hole.
1127  *
1128  * Returns: the index of the hole if found, otherwise returns an index
1129  * outside of the set specified (in which case 'return - index >=
1130  * max_scan' will be true). In rare cases of index wrap-around, 0 will
1131  * be returned.
1132  *
1133  * page_cache_next_hole may be called under rcu_read_lock. However,
1134  * like radix_tree_gang_lookup, this will not atomically search a
1135  * snapshot of the tree at a single point in time. For example, if a
1136  * hole is created at index 5, then subsequently a hole is created at
1137  * index 10, page_cache_next_hole covering both indexes may return 10
1138  * if called under rcu_read_lock.
1139  */
1140 pgoff_t page_cache_next_hole(struct address_space *mapping,
1141 			     pgoff_t index, unsigned long max_scan)
1142 {
1143 	unsigned long i;
1144 
1145 	for (i = 0; i < max_scan; i++) {
1146 		struct page *page;
1147 
1148 		page = radix_tree_lookup(&mapping->page_tree, index);
1149 		if (!page || radix_tree_exceptional_entry(page))
1150 			break;
1151 		index++;
1152 		if (index == 0)
1153 			break;
1154 	}
1155 
1156 	return index;
1157 }
1158 EXPORT_SYMBOL(page_cache_next_hole);
1159 
1160 /**
1161  * page_cache_prev_hole - find the prev hole (not-present entry)
1162  * @mapping: mapping
1163  * @index: index
1164  * @max_scan: maximum range to search
1165  *
1166  * Search backwards in the range [max(index-max_scan+1, 0), index] for
1167  * the first hole.
1168  *
1169  * Returns: the index of the hole if found, otherwise returns an index
1170  * outside of the set specified (in which case 'index - return >=
1171  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1172  * will be returned.
1173  *
1174  * page_cache_prev_hole may be called under rcu_read_lock. However,
1175  * like radix_tree_gang_lookup, this will not atomically search a
1176  * snapshot of the tree at a single point in time. For example, if a
1177  * hole is created at index 10, then subsequently a hole is created at
1178  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1179  * called under rcu_read_lock.
1180  */
1181 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1182 			     pgoff_t index, unsigned long max_scan)
1183 {
1184 	unsigned long i;
1185 
1186 	for (i = 0; i < max_scan; i++) {
1187 		struct page *page;
1188 
1189 		page = radix_tree_lookup(&mapping->page_tree, index);
1190 		if (!page || radix_tree_exceptional_entry(page))
1191 			break;
1192 		index--;
1193 		if (index == ULONG_MAX)
1194 			break;
1195 	}
1196 
1197 	return index;
1198 }
1199 EXPORT_SYMBOL(page_cache_prev_hole);
1200 
1201 /**
1202  * find_get_entry - find and get a page cache entry
1203  * @mapping: the address_space to search
1204  * @offset: the page cache index
1205  *
1206  * Looks up the page cache slot at @mapping & @offset.  If there is a
1207  * page cache page, it is returned with an increased refcount.
1208  *
1209  * If the slot holds a shadow entry of a previously evicted page, or a
1210  * swap entry from shmem/tmpfs, it is returned.
1211  *
1212  * Otherwise, %NULL is returned.
1213  */
1214 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1215 {
1216 	void **pagep;
1217 	struct page *head, *page;
1218 
1219 	rcu_read_lock();
1220 repeat:
1221 	page = NULL;
1222 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1223 	if (pagep) {
1224 		page = radix_tree_deref_slot(pagep);
1225 		if (unlikely(!page))
1226 			goto out;
1227 		if (radix_tree_exception(page)) {
1228 			if (radix_tree_deref_retry(page))
1229 				goto repeat;
1230 			/*
1231 			 * A shadow entry of a recently evicted page,
1232 			 * or a swap entry from shmem/tmpfs.  Return
1233 			 * it without attempting to raise page count.
1234 			 */
1235 			goto out;
1236 		}
1237 
1238 		head = compound_head(page);
1239 		if (!page_cache_get_speculative(head))
1240 			goto repeat;
1241 
1242 		/* The page was split under us? */
1243 		if (compound_head(page) != head) {
1244 			put_page(head);
1245 			goto repeat;
1246 		}
1247 
1248 		/*
1249 		 * Has the page moved?
1250 		 * This is part of the lockless pagecache protocol. See
1251 		 * include/linux/pagemap.h for details.
1252 		 */
1253 		if (unlikely(page != *pagep)) {
1254 			put_page(head);
1255 			goto repeat;
1256 		}
1257 	}
1258 out:
1259 	rcu_read_unlock();
1260 
1261 	return page;
1262 }
1263 EXPORT_SYMBOL(find_get_entry);
1264 
1265 /**
1266  * find_lock_entry - locate, pin and lock a page cache entry
1267  * @mapping: the address_space to search
1268  * @offset: the page cache index
1269  *
1270  * Looks up the page cache slot at @mapping & @offset.  If there is a
1271  * page cache page, it is returned locked and with an increased
1272  * refcount.
1273  *
1274  * If the slot holds a shadow entry of a previously evicted page, or a
1275  * swap entry from shmem/tmpfs, it is returned.
1276  *
1277  * Otherwise, %NULL is returned.
1278  *
1279  * find_lock_entry() may sleep.
1280  */
1281 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1282 {
1283 	struct page *page;
1284 
1285 repeat:
1286 	page = find_get_entry(mapping, offset);
1287 	if (page && !radix_tree_exception(page)) {
1288 		lock_page(page);
1289 		/* Has the page been truncated? */
1290 		if (unlikely(page_mapping(page) != mapping)) {
1291 			unlock_page(page);
1292 			put_page(page);
1293 			goto repeat;
1294 		}
1295 		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1296 	}
1297 	return page;
1298 }
1299 EXPORT_SYMBOL(find_lock_entry);
1300 
1301 /**
1302  * pagecache_get_page - find and get a page reference
1303  * @mapping: the address_space to search
1304  * @offset: the page index
1305  * @fgp_flags: PCG flags
1306  * @gfp_mask: gfp mask to use for the page cache data page allocation
1307  *
1308  * Looks up the page cache slot at @mapping & @offset.
1309  *
1310  * PCG flags modify how the page is returned.
1311  *
1312  * @fgp_flags can be:
1313  *
1314  * - FGP_ACCESSED: the page will be marked accessed
1315  * - FGP_LOCK: Page is return locked
1316  * - FGP_CREAT: If page is not present then a new page is allocated using
1317  *   @gfp_mask and added to the page cache and the VM's LRU
1318  *   list. The page is returned locked and with an increased
1319  *   refcount. Otherwise, NULL is returned.
1320  *
1321  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1322  * if the GFP flags specified for FGP_CREAT are atomic.
1323  *
1324  * If there is a page cache page, it is returned with an increased refcount.
1325  */
1326 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1327 	int fgp_flags, gfp_t gfp_mask)
1328 {
1329 	struct page *page;
1330 
1331 repeat:
1332 	page = find_get_entry(mapping, offset);
1333 	if (radix_tree_exceptional_entry(page))
1334 		page = NULL;
1335 	if (!page)
1336 		goto no_page;
1337 
1338 	if (fgp_flags & FGP_LOCK) {
1339 		if (fgp_flags & FGP_NOWAIT) {
1340 			if (!trylock_page(page)) {
1341 				put_page(page);
1342 				return NULL;
1343 			}
1344 		} else {
1345 			lock_page(page);
1346 		}
1347 
1348 		/* Has the page been truncated? */
1349 		if (unlikely(page->mapping != mapping)) {
1350 			unlock_page(page);
1351 			put_page(page);
1352 			goto repeat;
1353 		}
1354 		VM_BUG_ON_PAGE(page->index != offset, page);
1355 	}
1356 
1357 	if (page && (fgp_flags & FGP_ACCESSED))
1358 		mark_page_accessed(page);
1359 
1360 no_page:
1361 	if (!page && (fgp_flags & FGP_CREAT)) {
1362 		int err;
1363 		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1364 			gfp_mask |= __GFP_WRITE;
1365 		if (fgp_flags & FGP_NOFS)
1366 			gfp_mask &= ~__GFP_FS;
1367 
1368 		page = __page_cache_alloc(gfp_mask);
1369 		if (!page)
1370 			return NULL;
1371 
1372 		if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1373 			fgp_flags |= FGP_LOCK;
1374 
1375 		/* Init accessed so avoid atomic mark_page_accessed later */
1376 		if (fgp_flags & FGP_ACCESSED)
1377 			__SetPageReferenced(page);
1378 
1379 		err = add_to_page_cache_lru(page, mapping, offset,
1380 				gfp_mask & GFP_RECLAIM_MASK);
1381 		if (unlikely(err)) {
1382 			put_page(page);
1383 			page = NULL;
1384 			if (err == -EEXIST)
1385 				goto repeat;
1386 		}
1387 	}
1388 
1389 	return page;
1390 }
1391 EXPORT_SYMBOL(pagecache_get_page);
1392 
1393 /**
1394  * find_get_entries - gang pagecache lookup
1395  * @mapping:	The address_space to search
1396  * @start:	The starting page cache index
1397  * @nr_entries:	The maximum number of entries
1398  * @entries:	Where the resulting entries are placed
1399  * @indices:	The cache indices corresponding to the entries in @entries
1400  *
1401  * find_get_entries() will search for and return a group of up to
1402  * @nr_entries entries in the mapping.  The entries are placed at
1403  * @entries.  find_get_entries() takes a reference against any actual
1404  * pages it returns.
1405  *
1406  * The search returns a group of mapping-contiguous page cache entries
1407  * with ascending indexes.  There may be holes in the indices due to
1408  * not-present pages.
1409  *
1410  * Any shadow entries of evicted pages, or swap entries from
1411  * shmem/tmpfs, are included in the returned array.
1412  *
1413  * find_get_entries() returns the number of pages and shadow entries
1414  * which were found.
1415  */
1416 unsigned find_get_entries(struct address_space *mapping,
1417 			  pgoff_t start, unsigned int nr_entries,
1418 			  struct page **entries, pgoff_t *indices)
1419 {
1420 	void **slot;
1421 	unsigned int ret = 0;
1422 	struct radix_tree_iter iter;
1423 
1424 	if (!nr_entries)
1425 		return 0;
1426 
1427 	rcu_read_lock();
1428 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1429 		struct page *head, *page;
1430 repeat:
1431 		page = radix_tree_deref_slot(slot);
1432 		if (unlikely(!page))
1433 			continue;
1434 		if (radix_tree_exception(page)) {
1435 			if (radix_tree_deref_retry(page)) {
1436 				slot = radix_tree_iter_retry(&iter);
1437 				continue;
1438 			}
1439 			/*
1440 			 * A shadow entry of a recently evicted page, a swap
1441 			 * entry from shmem/tmpfs or a DAX entry.  Return it
1442 			 * without attempting to raise page count.
1443 			 */
1444 			goto export;
1445 		}
1446 
1447 		head = compound_head(page);
1448 		if (!page_cache_get_speculative(head))
1449 			goto repeat;
1450 
1451 		/* The page was split under us? */
1452 		if (compound_head(page) != head) {
1453 			put_page(head);
1454 			goto repeat;
1455 		}
1456 
1457 		/* Has the page moved? */
1458 		if (unlikely(page != *slot)) {
1459 			put_page(head);
1460 			goto repeat;
1461 		}
1462 export:
1463 		indices[ret] = iter.index;
1464 		entries[ret] = page;
1465 		if (++ret == nr_entries)
1466 			break;
1467 	}
1468 	rcu_read_unlock();
1469 	return ret;
1470 }
1471 
1472 /**
1473  * find_get_pages - gang pagecache lookup
1474  * @mapping:	The address_space to search
1475  * @start:	The starting page index
1476  * @nr_pages:	The maximum number of pages
1477  * @pages:	Where the resulting pages are placed
1478  *
1479  * find_get_pages() will search for and return a group of up to
1480  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1481  * find_get_pages() takes a reference against the returned pages.
1482  *
1483  * The search returns a group of mapping-contiguous pages with ascending
1484  * indexes.  There may be holes in the indices due to not-present pages.
1485  *
1486  * find_get_pages() returns the number of pages which were found.
1487  */
1488 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1489 			    unsigned int nr_pages, struct page **pages)
1490 {
1491 	struct radix_tree_iter iter;
1492 	void **slot;
1493 	unsigned ret = 0;
1494 
1495 	if (unlikely(!nr_pages))
1496 		return 0;
1497 
1498 	rcu_read_lock();
1499 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1500 		struct page *head, *page;
1501 repeat:
1502 		page = radix_tree_deref_slot(slot);
1503 		if (unlikely(!page))
1504 			continue;
1505 
1506 		if (radix_tree_exception(page)) {
1507 			if (radix_tree_deref_retry(page)) {
1508 				slot = radix_tree_iter_retry(&iter);
1509 				continue;
1510 			}
1511 			/*
1512 			 * A shadow entry of a recently evicted page,
1513 			 * or a swap entry from shmem/tmpfs.  Skip
1514 			 * over it.
1515 			 */
1516 			continue;
1517 		}
1518 
1519 		head = compound_head(page);
1520 		if (!page_cache_get_speculative(head))
1521 			goto repeat;
1522 
1523 		/* The page was split under us? */
1524 		if (compound_head(page) != head) {
1525 			put_page(head);
1526 			goto repeat;
1527 		}
1528 
1529 		/* Has the page moved? */
1530 		if (unlikely(page != *slot)) {
1531 			put_page(head);
1532 			goto repeat;
1533 		}
1534 
1535 		pages[ret] = page;
1536 		if (++ret == nr_pages)
1537 			break;
1538 	}
1539 
1540 	rcu_read_unlock();
1541 	return ret;
1542 }
1543 
1544 /**
1545  * find_get_pages_contig - gang contiguous pagecache lookup
1546  * @mapping:	The address_space to search
1547  * @index:	The starting page index
1548  * @nr_pages:	The maximum number of pages
1549  * @pages:	Where the resulting pages are placed
1550  *
1551  * find_get_pages_contig() works exactly like find_get_pages(), except
1552  * that the returned number of pages are guaranteed to be contiguous.
1553  *
1554  * find_get_pages_contig() returns the number of pages which were found.
1555  */
1556 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1557 			       unsigned int nr_pages, struct page **pages)
1558 {
1559 	struct radix_tree_iter iter;
1560 	void **slot;
1561 	unsigned int ret = 0;
1562 
1563 	if (unlikely(!nr_pages))
1564 		return 0;
1565 
1566 	rcu_read_lock();
1567 	radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1568 		struct page *head, *page;
1569 repeat:
1570 		page = radix_tree_deref_slot(slot);
1571 		/* The hole, there no reason to continue */
1572 		if (unlikely(!page))
1573 			break;
1574 
1575 		if (radix_tree_exception(page)) {
1576 			if (radix_tree_deref_retry(page)) {
1577 				slot = radix_tree_iter_retry(&iter);
1578 				continue;
1579 			}
1580 			/*
1581 			 * A shadow entry of a recently evicted page,
1582 			 * or a swap entry from shmem/tmpfs.  Stop
1583 			 * looking for contiguous pages.
1584 			 */
1585 			break;
1586 		}
1587 
1588 		head = compound_head(page);
1589 		if (!page_cache_get_speculative(head))
1590 			goto repeat;
1591 
1592 		/* The page was split under us? */
1593 		if (compound_head(page) != head) {
1594 			put_page(head);
1595 			goto repeat;
1596 		}
1597 
1598 		/* Has the page moved? */
1599 		if (unlikely(page != *slot)) {
1600 			put_page(head);
1601 			goto repeat;
1602 		}
1603 
1604 		/*
1605 		 * must check mapping and index after taking the ref.
1606 		 * otherwise we can get both false positives and false
1607 		 * negatives, which is just confusing to the caller.
1608 		 */
1609 		if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1610 			put_page(page);
1611 			break;
1612 		}
1613 
1614 		pages[ret] = page;
1615 		if (++ret == nr_pages)
1616 			break;
1617 	}
1618 	rcu_read_unlock();
1619 	return ret;
1620 }
1621 EXPORT_SYMBOL(find_get_pages_contig);
1622 
1623 /**
1624  * find_get_pages_tag - find and return pages that match @tag
1625  * @mapping:	the address_space to search
1626  * @index:	the starting page index
1627  * @tag:	the tag index
1628  * @nr_pages:	the maximum number of pages
1629  * @pages:	where the resulting pages are placed
1630  *
1631  * Like find_get_pages, except we only return pages which are tagged with
1632  * @tag.   We update @index to index the next page for the traversal.
1633  */
1634 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1635 			int tag, unsigned int nr_pages, struct page **pages)
1636 {
1637 	struct radix_tree_iter iter;
1638 	void **slot;
1639 	unsigned ret = 0;
1640 
1641 	if (unlikely(!nr_pages))
1642 		return 0;
1643 
1644 	rcu_read_lock();
1645 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1646 				   &iter, *index, tag) {
1647 		struct page *head, *page;
1648 repeat:
1649 		page = radix_tree_deref_slot(slot);
1650 		if (unlikely(!page))
1651 			continue;
1652 
1653 		if (radix_tree_exception(page)) {
1654 			if (radix_tree_deref_retry(page)) {
1655 				slot = radix_tree_iter_retry(&iter);
1656 				continue;
1657 			}
1658 			/*
1659 			 * A shadow entry of a recently evicted page.
1660 			 *
1661 			 * Those entries should never be tagged, but
1662 			 * this tree walk is lockless and the tags are
1663 			 * looked up in bulk, one radix tree node at a
1664 			 * time, so there is a sizable window for page
1665 			 * reclaim to evict a page we saw tagged.
1666 			 *
1667 			 * Skip over it.
1668 			 */
1669 			continue;
1670 		}
1671 
1672 		head = compound_head(page);
1673 		if (!page_cache_get_speculative(head))
1674 			goto repeat;
1675 
1676 		/* The page was split under us? */
1677 		if (compound_head(page) != head) {
1678 			put_page(head);
1679 			goto repeat;
1680 		}
1681 
1682 		/* Has the page moved? */
1683 		if (unlikely(page != *slot)) {
1684 			put_page(head);
1685 			goto repeat;
1686 		}
1687 
1688 		pages[ret] = page;
1689 		if (++ret == nr_pages)
1690 			break;
1691 	}
1692 
1693 	rcu_read_unlock();
1694 
1695 	if (ret)
1696 		*index = pages[ret - 1]->index + 1;
1697 
1698 	return ret;
1699 }
1700 EXPORT_SYMBOL(find_get_pages_tag);
1701 
1702 /**
1703  * find_get_entries_tag - find and return entries that match @tag
1704  * @mapping:	the address_space to search
1705  * @start:	the starting page cache index
1706  * @tag:	the tag index
1707  * @nr_entries:	the maximum number of entries
1708  * @entries:	where the resulting entries are placed
1709  * @indices:	the cache indices corresponding to the entries in @entries
1710  *
1711  * Like find_get_entries, except we only return entries which are tagged with
1712  * @tag.
1713  */
1714 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1715 			int tag, unsigned int nr_entries,
1716 			struct page **entries, pgoff_t *indices)
1717 {
1718 	void **slot;
1719 	unsigned int ret = 0;
1720 	struct radix_tree_iter iter;
1721 
1722 	if (!nr_entries)
1723 		return 0;
1724 
1725 	rcu_read_lock();
1726 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1727 				   &iter, start, tag) {
1728 		struct page *head, *page;
1729 repeat:
1730 		page = radix_tree_deref_slot(slot);
1731 		if (unlikely(!page))
1732 			continue;
1733 		if (radix_tree_exception(page)) {
1734 			if (radix_tree_deref_retry(page)) {
1735 				slot = radix_tree_iter_retry(&iter);
1736 				continue;
1737 			}
1738 
1739 			/*
1740 			 * A shadow entry of a recently evicted page, a swap
1741 			 * entry from shmem/tmpfs or a DAX entry.  Return it
1742 			 * without attempting to raise page count.
1743 			 */
1744 			goto export;
1745 		}
1746 
1747 		head = compound_head(page);
1748 		if (!page_cache_get_speculative(head))
1749 			goto repeat;
1750 
1751 		/* The page was split under us? */
1752 		if (compound_head(page) != head) {
1753 			put_page(head);
1754 			goto repeat;
1755 		}
1756 
1757 		/* Has the page moved? */
1758 		if (unlikely(page != *slot)) {
1759 			put_page(head);
1760 			goto repeat;
1761 		}
1762 export:
1763 		indices[ret] = iter.index;
1764 		entries[ret] = page;
1765 		if (++ret == nr_entries)
1766 			break;
1767 	}
1768 	rcu_read_unlock();
1769 	return ret;
1770 }
1771 EXPORT_SYMBOL(find_get_entries_tag);
1772 
1773 /*
1774  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1775  * a _large_ part of the i/o request. Imagine the worst scenario:
1776  *
1777  *      ---R__________________________________________B__________
1778  *         ^ reading here                             ^ bad block(assume 4k)
1779  *
1780  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1781  * => failing the whole request => read(R) => read(R+1) =>
1782  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1783  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1784  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1785  *
1786  * It is going insane. Fix it by quickly scaling down the readahead size.
1787  */
1788 static void shrink_readahead_size_eio(struct file *filp,
1789 					struct file_ra_state *ra)
1790 {
1791 	ra->ra_pages /= 4;
1792 }
1793 
1794 /**
1795  * do_generic_file_read - generic file read routine
1796  * @filp:	the file to read
1797  * @ppos:	current file position
1798  * @iter:	data destination
1799  * @written:	already copied
1800  *
1801  * This is a generic file read routine, and uses the
1802  * mapping->a_ops->readpage() function for the actual low-level stuff.
1803  *
1804  * This is really ugly. But the goto's actually try to clarify some
1805  * of the logic when it comes to error handling etc.
1806  */
1807 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1808 		struct iov_iter *iter, ssize_t written)
1809 {
1810 	struct address_space *mapping = filp->f_mapping;
1811 	struct inode *inode = mapping->host;
1812 	struct file_ra_state *ra = &filp->f_ra;
1813 	pgoff_t index;
1814 	pgoff_t last_index;
1815 	pgoff_t prev_index;
1816 	unsigned long offset;      /* offset into pagecache page */
1817 	unsigned int prev_offset;
1818 	int error = 0;
1819 
1820 	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1821 		return 0;
1822 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1823 
1824 	index = *ppos >> PAGE_SHIFT;
1825 	prev_index = ra->prev_pos >> PAGE_SHIFT;
1826 	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1827 	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1828 	offset = *ppos & ~PAGE_MASK;
1829 
1830 	for (;;) {
1831 		struct page *page;
1832 		pgoff_t end_index;
1833 		loff_t isize;
1834 		unsigned long nr, ret;
1835 
1836 		cond_resched();
1837 find_page:
1838 		if (fatal_signal_pending(current)) {
1839 			error = -EINTR;
1840 			goto out;
1841 		}
1842 
1843 		page = find_get_page(mapping, index);
1844 		if (!page) {
1845 			page_cache_sync_readahead(mapping,
1846 					ra, filp,
1847 					index, last_index - index);
1848 			page = find_get_page(mapping, index);
1849 			if (unlikely(page == NULL))
1850 				goto no_cached_page;
1851 		}
1852 		if (PageReadahead(page)) {
1853 			page_cache_async_readahead(mapping,
1854 					ra, filp, page,
1855 					index, last_index - index);
1856 		}
1857 		if (!PageUptodate(page)) {
1858 			/*
1859 			 * See comment in do_read_cache_page on why
1860 			 * wait_on_page_locked is used to avoid unnecessarily
1861 			 * serialisations and why it's safe.
1862 			 */
1863 			error = wait_on_page_locked_killable(page);
1864 			if (unlikely(error))
1865 				goto readpage_error;
1866 			if (PageUptodate(page))
1867 				goto page_ok;
1868 
1869 			if (inode->i_blkbits == PAGE_SHIFT ||
1870 					!mapping->a_ops->is_partially_uptodate)
1871 				goto page_not_up_to_date;
1872 			/* pipes can't handle partially uptodate pages */
1873 			if (unlikely(iter->type & ITER_PIPE))
1874 				goto page_not_up_to_date;
1875 			if (!trylock_page(page))
1876 				goto page_not_up_to_date;
1877 			/* Did it get truncated before we got the lock? */
1878 			if (!page->mapping)
1879 				goto page_not_up_to_date_locked;
1880 			if (!mapping->a_ops->is_partially_uptodate(page,
1881 							offset, iter->count))
1882 				goto page_not_up_to_date_locked;
1883 			unlock_page(page);
1884 		}
1885 page_ok:
1886 		/*
1887 		 * i_size must be checked after we know the page is Uptodate.
1888 		 *
1889 		 * Checking i_size after the check allows us to calculate
1890 		 * the correct value for "nr", which means the zero-filled
1891 		 * part of the page is not copied back to userspace (unless
1892 		 * another truncate extends the file - this is desired though).
1893 		 */
1894 
1895 		isize = i_size_read(inode);
1896 		end_index = (isize - 1) >> PAGE_SHIFT;
1897 		if (unlikely(!isize || index > end_index)) {
1898 			put_page(page);
1899 			goto out;
1900 		}
1901 
1902 		/* nr is the maximum number of bytes to copy from this page */
1903 		nr = PAGE_SIZE;
1904 		if (index == end_index) {
1905 			nr = ((isize - 1) & ~PAGE_MASK) + 1;
1906 			if (nr <= offset) {
1907 				put_page(page);
1908 				goto out;
1909 			}
1910 		}
1911 		nr = nr - offset;
1912 
1913 		/* If users can be writing to this page using arbitrary
1914 		 * virtual addresses, take care about potential aliasing
1915 		 * before reading the page on the kernel side.
1916 		 */
1917 		if (mapping_writably_mapped(mapping))
1918 			flush_dcache_page(page);
1919 
1920 		/*
1921 		 * When a sequential read accesses a page several times,
1922 		 * only mark it as accessed the first time.
1923 		 */
1924 		if (prev_index != index || offset != prev_offset)
1925 			mark_page_accessed(page);
1926 		prev_index = index;
1927 
1928 		/*
1929 		 * Ok, we have the page, and it's up-to-date, so
1930 		 * now we can copy it to user space...
1931 		 */
1932 
1933 		ret = copy_page_to_iter(page, offset, nr, iter);
1934 		offset += ret;
1935 		index += offset >> PAGE_SHIFT;
1936 		offset &= ~PAGE_MASK;
1937 		prev_offset = offset;
1938 
1939 		put_page(page);
1940 		written += ret;
1941 		if (!iov_iter_count(iter))
1942 			goto out;
1943 		if (ret < nr) {
1944 			error = -EFAULT;
1945 			goto out;
1946 		}
1947 		continue;
1948 
1949 page_not_up_to_date:
1950 		/* Get exclusive access to the page ... */
1951 		error = lock_page_killable(page);
1952 		if (unlikely(error))
1953 			goto readpage_error;
1954 
1955 page_not_up_to_date_locked:
1956 		/* Did it get truncated before we got the lock? */
1957 		if (!page->mapping) {
1958 			unlock_page(page);
1959 			put_page(page);
1960 			continue;
1961 		}
1962 
1963 		/* Did somebody else fill it already? */
1964 		if (PageUptodate(page)) {
1965 			unlock_page(page);
1966 			goto page_ok;
1967 		}
1968 
1969 readpage:
1970 		/*
1971 		 * A previous I/O error may have been due to temporary
1972 		 * failures, eg. multipath errors.
1973 		 * PG_error will be set again if readpage fails.
1974 		 */
1975 		ClearPageError(page);
1976 		/* Start the actual read. The read will unlock the page. */
1977 		error = mapping->a_ops->readpage(filp, page);
1978 
1979 		if (unlikely(error)) {
1980 			if (error == AOP_TRUNCATED_PAGE) {
1981 				put_page(page);
1982 				error = 0;
1983 				goto find_page;
1984 			}
1985 			goto readpage_error;
1986 		}
1987 
1988 		if (!PageUptodate(page)) {
1989 			error = lock_page_killable(page);
1990 			if (unlikely(error))
1991 				goto readpage_error;
1992 			if (!PageUptodate(page)) {
1993 				if (page->mapping == NULL) {
1994 					/*
1995 					 * invalidate_mapping_pages got it
1996 					 */
1997 					unlock_page(page);
1998 					put_page(page);
1999 					goto find_page;
2000 				}
2001 				unlock_page(page);
2002 				shrink_readahead_size_eio(filp, ra);
2003 				error = -EIO;
2004 				goto readpage_error;
2005 			}
2006 			unlock_page(page);
2007 		}
2008 
2009 		goto page_ok;
2010 
2011 readpage_error:
2012 		/* UHHUH! A synchronous read error occurred. Report it */
2013 		put_page(page);
2014 		goto out;
2015 
2016 no_cached_page:
2017 		/*
2018 		 * Ok, it wasn't cached, so we need to create a new
2019 		 * page..
2020 		 */
2021 		page = page_cache_alloc_cold(mapping);
2022 		if (!page) {
2023 			error = -ENOMEM;
2024 			goto out;
2025 		}
2026 		error = add_to_page_cache_lru(page, mapping, index,
2027 				mapping_gfp_constraint(mapping, GFP_KERNEL));
2028 		if (error) {
2029 			put_page(page);
2030 			if (error == -EEXIST) {
2031 				error = 0;
2032 				goto find_page;
2033 			}
2034 			goto out;
2035 		}
2036 		goto readpage;
2037 	}
2038 
2039 out:
2040 	ra->prev_pos = prev_index;
2041 	ra->prev_pos <<= PAGE_SHIFT;
2042 	ra->prev_pos |= prev_offset;
2043 
2044 	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2045 	file_accessed(filp);
2046 	return written ? written : error;
2047 }
2048 
2049 /**
2050  * generic_file_read_iter - generic filesystem read routine
2051  * @iocb:	kernel I/O control block
2052  * @iter:	destination for the data read
2053  *
2054  * This is the "read_iter()" routine for all filesystems
2055  * that can use the page cache directly.
2056  */
2057 ssize_t
2058 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2059 {
2060 	struct file *file = iocb->ki_filp;
2061 	ssize_t retval = 0;
2062 	size_t count = iov_iter_count(iter);
2063 
2064 	if (!count)
2065 		goto out; /* skip atime */
2066 
2067 	if (iocb->ki_flags & IOCB_DIRECT) {
2068 		struct address_space *mapping = file->f_mapping;
2069 		struct inode *inode = mapping->host;
2070 		loff_t size;
2071 
2072 		size = i_size_read(inode);
2073 		if (iocb->ki_flags & IOCB_NOWAIT) {
2074 			if (filemap_range_has_page(mapping, iocb->ki_pos,
2075 						   iocb->ki_pos + count - 1))
2076 				return -EAGAIN;
2077 		} else {
2078 			retval = filemap_write_and_wait_range(mapping,
2079 						iocb->ki_pos,
2080 					        iocb->ki_pos + count - 1);
2081 			if (retval < 0)
2082 				goto out;
2083 		}
2084 
2085 		file_accessed(file);
2086 
2087 		retval = mapping->a_ops->direct_IO(iocb, iter);
2088 		if (retval >= 0) {
2089 			iocb->ki_pos += retval;
2090 			count -= retval;
2091 		}
2092 		iov_iter_revert(iter, count - iov_iter_count(iter));
2093 
2094 		/*
2095 		 * Btrfs can have a short DIO read if we encounter
2096 		 * compressed extents, so if there was an error, or if
2097 		 * we've already read everything we wanted to, or if
2098 		 * there was a short read because we hit EOF, go ahead
2099 		 * and return.  Otherwise fallthrough to buffered io for
2100 		 * the rest of the read.  Buffered reads will not work for
2101 		 * DAX files, so don't bother trying.
2102 		 */
2103 		if (retval < 0 || !count || iocb->ki_pos >= size ||
2104 		    IS_DAX(inode))
2105 			goto out;
2106 	}
2107 
2108 	retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
2109 out:
2110 	return retval;
2111 }
2112 EXPORT_SYMBOL(generic_file_read_iter);
2113 
2114 #ifdef CONFIG_MMU
2115 /**
2116  * page_cache_read - adds requested page to the page cache if not already there
2117  * @file:	file to read
2118  * @offset:	page index
2119  * @gfp_mask:	memory allocation flags
2120  *
2121  * This adds the requested page to the page cache if it isn't already there,
2122  * and schedules an I/O to read in its contents from disk.
2123  */
2124 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2125 {
2126 	struct address_space *mapping = file->f_mapping;
2127 	struct page *page;
2128 	int ret;
2129 
2130 	do {
2131 		page = __page_cache_alloc(gfp_mask|__GFP_COLD);
2132 		if (!page)
2133 			return -ENOMEM;
2134 
2135 		ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
2136 		if (ret == 0)
2137 			ret = mapping->a_ops->readpage(file, page);
2138 		else if (ret == -EEXIST)
2139 			ret = 0; /* losing race to add is OK */
2140 
2141 		put_page(page);
2142 
2143 	} while (ret == AOP_TRUNCATED_PAGE);
2144 
2145 	return ret;
2146 }
2147 
2148 #define MMAP_LOTSAMISS  (100)
2149 
2150 /*
2151  * Synchronous readahead happens when we don't even find
2152  * a page in the page cache at all.
2153  */
2154 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2155 				   struct file_ra_state *ra,
2156 				   struct file *file,
2157 				   pgoff_t offset)
2158 {
2159 	struct address_space *mapping = file->f_mapping;
2160 
2161 	/* If we don't want any read-ahead, don't bother */
2162 	if (vma->vm_flags & VM_RAND_READ)
2163 		return;
2164 	if (!ra->ra_pages)
2165 		return;
2166 
2167 	if (vma->vm_flags & VM_SEQ_READ) {
2168 		page_cache_sync_readahead(mapping, ra, file, offset,
2169 					  ra->ra_pages);
2170 		return;
2171 	}
2172 
2173 	/* Avoid banging the cache line if not needed */
2174 	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2175 		ra->mmap_miss++;
2176 
2177 	/*
2178 	 * Do we miss much more than hit in this file? If so,
2179 	 * stop bothering with read-ahead. It will only hurt.
2180 	 */
2181 	if (ra->mmap_miss > MMAP_LOTSAMISS)
2182 		return;
2183 
2184 	/*
2185 	 * mmap read-around
2186 	 */
2187 	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2188 	ra->size = ra->ra_pages;
2189 	ra->async_size = ra->ra_pages / 4;
2190 	ra_submit(ra, mapping, file);
2191 }
2192 
2193 /*
2194  * Asynchronous readahead happens when we find the page and PG_readahead,
2195  * so we want to possibly extend the readahead further..
2196  */
2197 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2198 				    struct file_ra_state *ra,
2199 				    struct file *file,
2200 				    struct page *page,
2201 				    pgoff_t offset)
2202 {
2203 	struct address_space *mapping = file->f_mapping;
2204 
2205 	/* If we don't want any read-ahead, don't bother */
2206 	if (vma->vm_flags & VM_RAND_READ)
2207 		return;
2208 	if (ra->mmap_miss > 0)
2209 		ra->mmap_miss--;
2210 	if (PageReadahead(page))
2211 		page_cache_async_readahead(mapping, ra, file,
2212 					   page, offset, ra->ra_pages);
2213 }
2214 
2215 /**
2216  * filemap_fault - read in file data for page fault handling
2217  * @vmf:	struct vm_fault containing details of the fault
2218  *
2219  * filemap_fault() is invoked via the vma operations vector for a
2220  * mapped memory region to read in file data during a page fault.
2221  *
2222  * The goto's are kind of ugly, but this streamlines the normal case of having
2223  * it in the page cache, and handles the special cases reasonably without
2224  * having a lot of duplicated code.
2225  *
2226  * vma->vm_mm->mmap_sem must be held on entry.
2227  *
2228  * If our return value has VM_FAULT_RETRY set, it's because
2229  * lock_page_or_retry() returned 0.
2230  * The mmap_sem has usually been released in this case.
2231  * See __lock_page_or_retry() for the exception.
2232  *
2233  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2234  * has not been released.
2235  *
2236  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2237  */
2238 int filemap_fault(struct vm_fault *vmf)
2239 {
2240 	int error;
2241 	struct file *file = vmf->vma->vm_file;
2242 	struct address_space *mapping = file->f_mapping;
2243 	struct file_ra_state *ra = &file->f_ra;
2244 	struct inode *inode = mapping->host;
2245 	pgoff_t offset = vmf->pgoff;
2246 	pgoff_t max_off;
2247 	struct page *page;
2248 	int ret = 0;
2249 
2250 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2251 	if (unlikely(offset >= max_off))
2252 		return VM_FAULT_SIGBUS;
2253 
2254 	/*
2255 	 * Do we have something in the page cache already?
2256 	 */
2257 	page = find_get_page(mapping, offset);
2258 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2259 		/*
2260 		 * We found the page, so try async readahead before
2261 		 * waiting for the lock.
2262 		 */
2263 		do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2264 	} else if (!page) {
2265 		/* No page in the page cache at all */
2266 		do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2267 		count_vm_event(PGMAJFAULT);
2268 		mem_cgroup_count_vm_event(vmf->vma->vm_mm, PGMAJFAULT);
2269 		ret = VM_FAULT_MAJOR;
2270 retry_find:
2271 		page = find_get_page(mapping, offset);
2272 		if (!page)
2273 			goto no_cached_page;
2274 	}
2275 
2276 	if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2277 		put_page(page);
2278 		return ret | VM_FAULT_RETRY;
2279 	}
2280 
2281 	/* Did it get truncated? */
2282 	if (unlikely(page->mapping != mapping)) {
2283 		unlock_page(page);
2284 		put_page(page);
2285 		goto retry_find;
2286 	}
2287 	VM_BUG_ON_PAGE(page->index != offset, page);
2288 
2289 	/*
2290 	 * We have a locked page in the page cache, now we need to check
2291 	 * that it's up-to-date. If not, it is going to be due to an error.
2292 	 */
2293 	if (unlikely(!PageUptodate(page)))
2294 		goto page_not_uptodate;
2295 
2296 	/*
2297 	 * Found the page and have a reference on it.
2298 	 * We must recheck i_size under page lock.
2299 	 */
2300 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2301 	if (unlikely(offset >= max_off)) {
2302 		unlock_page(page);
2303 		put_page(page);
2304 		return VM_FAULT_SIGBUS;
2305 	}
2306 
2307 	vmf->page = page;
2308 	return ret | VM_FAULT_LOCKED;
2309 
2310 no_cached_page:
2311 	/*
2312 	 * We're only likely to ever get here if MADV_RANDOM is in
2313 	 * effect.
2314 	 */
2315 	error = page_cache_read(file, offset, vmf->gfp_mask);
2316 
2317 	/*
2318 	 * The page we want has now been added to the page cache.
2319 	 * In the unlikely event that someone removed it in the
2320 	 * meantime, we'll just come back here and read it again.
2321 	 */
2322 	if (error >= 0)
2323 		goto retry_find;
2324 
2325 	/*
2326 	 * An error return from page_cache_read can result if the
2327 	 * system is low on memory, or a problem occurs while trying
2328 	 * to schedule I/O.
2329 	 */
2330 	if (error == -ENOMEM)
2331 		return VM_FAULT_OOM;
2332 	return VM_FAULT_SIGBUS;
2333 
2334 page_not_uptodate:
2335 	/*
2336 	 * Umm, take care of errors if the page isn't up-to-date.
2337 	 * Try to re-read it _once_. We do this synchronously,
2338 	 * because there really aren't any performance issues here
2339 	 * and we need to check for errors.
2340 	 */
2341 	ClearPageError(page);
2342 	error = mapping->a_ops->readpage(file, page);
2343 	if (!error) {
2344 		wait_on_page_locked(page);
2345 		if (!PageUptodate(page))
2346 			error = -EIO;
2347 	}
2348 	put_page(page);
2349 
2350 	if (!error || error == AOP_TRUNCATED_PAGE)
2351 		goto retry_find;
2352 
2353 	/* Things didn't work out. Return zero to tell the mm layer so. */
2354 	shrink_readahead_size_eio(file, ra);
2355 	return VM_FAULT_SIGBUS;
2356 }
2357 EXPORT_SYMBOL(filemap_fault);
2358 
2359 void filemap_map_pages(struct vm_fault *vmf,
2360 		pgoff_t start_pgoff, pgoff_t end_pgoff)
2361 {
2362 	struct radix_tree_iter iter;
2363 	void **slot;
2364 	struct file *file = vmf->vma->vm_file;
2365 	struct address_space *mapping = file->f_mapping;
2366 	pgoff_t last_pgoff = start_pgoff;
2367 	unsigned long max_idx;
2368 	struct page *head, *page;
2369 
2370 	rcu_read_lock();
2371 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2372 			start_pgoff) {
2373 		if (iter.index > end_pgoff)
2374 			break;
2375 repeat:
2376 		page = radix_tree_deref_slot(slot);
2377 		if (unlikely(!page))
2378 			goto next;
2379 		if (radix_tree_exception(page)) {
2380 			if (radix_tree_deref_retry(page)) {
2381 				slot = radix_tree_iter_retry(&iter);
2382 				continue;
2383 			}
2384 			goto next;
2385 		}
2386 
2387 		head = compound_head(page);
2388 		if (!page_cache_get_speculative(head))
2389 			goto repeat;
2390 
2391 		/* The page was split under us? */
2392 		if (compound_head(page) != head) {
2393 			put_page(head);
2394 			goto repeat;
2395 		}
2396 
2397 		/* Has the page moved? */
2398 		if (unlikely(page != *slot)) {
2399 			put_page(head);
2400 			goto repeat;
2401 		}
2402 
2403 		if (!PageUptodate(page) ||
2404 				PageReadahead(page) ||
2405 				PageHWPoison(page))
2406 			goto skip;
2407 		if (!trylock_page(page))
2408 			goto skip;
2409 
2410 		if (page->mapping != mapping || !PageUptodate(page))
2411 			goto unlock;
2412 
2413 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2414 		if (page->index >= max_idx)
2415 			goto unlock;
2416 
2417 		if (file->f_ra.mmap_miss > 0)
2418 			file->f_ra.mmap_miss--;
2419 
2420 		vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2421 		if (vmf->pte)
2422 			vmf->pte += iter.index - last_pgoff;
2423 		last_pgoff = iter.index;
2424 		if (alloc_set_pte(vmf, NULL, page))
2425 			goto unlock;
2426 		unlock_page(page);
2427 		goto next;
2428 unlock:
2429 		unlock_page(page);
2430 skip:
2431 		put_page(page);
2432 next:
2433 		/* Huge page is mapped? No need to proceed. */
2434 		if (pmd_trans_huge(*vmf->pmd))
2435 			break;
2436 		if (iter.index == end_pgoff)
2437 			break;
2438 	}
2439 	rcu_read_unlock();
2440 }
2441 EXPORT_SYMBOL(filemap_map_pages);
2442 
2443 int filemap_page_mkwrite(struct vm_fault *vmf)
2444 {
2445 	struct page *page = vmf->page;
2446 	struct inode *inode = file_inode(vmf->vma->vm_file);
2447 	int ret = VM_FAULT_LOCKED;
2448 
2449 	sb_start_pagefault(inode->i_sb);
2450 	file_update_time(vmf->vma->vm_file);
2451 	lock_page(page);
2452 	if (page->mapping != inode->i_mapping) {
2453 		unlock_page(page);
2454 		ret = VM_FAULT_NOPAGE;
2455 		goto out;
2456 	}
2457 	/*
2458 	 * We mark the page dirty already here so that when freeze is in
2459 	 * progress, we are guaranteed that writeback during freezing will
2460 	 * see the dirty page and writeprotect it again.
2461 	 */
2462 	set_page_dirty(page);
2463 	wait_for_stable_page(page);
2464 out:
2465 	sb_end_pagefault(inode->i_sb);
2466 	return ret;
2467 }
2468 EXPORT_SYMBOL(filemap_page_mkwrite);
2469 
2470 const struct vm_operations_struct generic_file_vm_ops = {
2471 	.fault		= filemap_fault,
2472 	.map_pages	= filemap_map_pages,
2473 	.page_mkwrite	= filemap_page_mkwrite,
2474 };
2475 
2476 /* This is used for a general mmap of a disk file */
2477 
2478 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2479 {
2480 	struct address_space *mapping = file->f_mapping;
2481 
2482 	if (!mapping->a_ops->readpage)
2483 		return -ENOEXEC;
2484 	file_accessed(file);
2485 	vma->vm_ops = &generic_file_vm_ops;
2486 	return 0;
2487 }
2488 
2489 /*
2490  * This is for filesystems which do not implement ->writepage.
2491  */
2492 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2493 {
2494 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2495 		return -EINVAL;
2496 	return generic_file_mmap(file, vma);
2497 }
2498 #else
2499 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2500 {
2501 	return -ENOSYS;
2502 }
2503 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2504 {
2505 	return -ENOSYS;
2506 }
2507 #endif /* CONFIG_MMU */
2508 
2509 EXPORT_SYMBOL(generic_file_mmap);
2510 EXPORT_SYMBOL(generic_file_readonly_mmap);
2511 
2512 static struct page *wait_on_page_read(struct page *page)
2513 {
2514 	if (!IS_ERR(page)) {
2515 		wait_on_page_locked(page);
2516 		if (!PageUptodate(page)) {
2517 			put_page(page);
2518 			page = ERR_PTR(-EIO);
2519 		}
2520 	}
2521 	return page;
2522 }
2523 
2524 static struct page *do_read_cache_page(struct address_space *mapping,
2525 				pgoff_t index,
2526 				int (*filler)(void *, struct page *),
2527 				void *data,
2528 				gfp_t gfp)
2529 {
2530 	struct page *page;
2531 	int err;
2532 repeat:
2533 	page = find_get_page(mapping, index);
2534 	if (!page) {
2535 		page = __page_cache_alloc(gfp | __GFP_COLD);
2536 		if (!page)
2537 			return ERR_PTR(-ENOMEM);
2538 		err = add_to_page_cache_lru(page, mapping, index, gfp);
2539 		if (unlikely(err)) {
2540 			put_page(page);
2541 			if (err == -EEXIST)
2542 				goto repeat;
2543 			/* Presumably ENOMEM for radix tree node */
2544 			return ERR_PTR(err);
2545 		}
2546 
2547 filler:
2548 		err = filler(data, page);
2549 		if (err < 0) {
2550 			put_page(page);
2551 			return ERR_PTR(err);
2552 		}
2553 
2554 		page = wait_on_page_read(page);
2555 		if (IS_ERR(page))
2556 			return page;
2557 		goto out;
2558 	}
2559 	if (PageUptodate(page))
2560 		goto out;
2561 
2562 	/*
2563 	 * Page is not up to date and may be locked due one of the following
2564 	 * case a: Page is being filled and the page lock is held
2565 	 * case b: Read/write error clearing the page uptodate status
2566 	 * case c: Truncation in progress (page locked)
2567 	 * case d: Reclaim in progress
2568 	 *
2569 	 * Case a, the page will be up to date when the page is unlocked.
2570 	 *    There is no need to serialise on the page lock here as the page
2571 	 *    is pinned so the lock gives no additional protection. Even if the
2572 	 *    the page is truncated, the data is still valid if PageUptodate as
2573 	 *    it's a race vs truncate race.
2574 	 * Case b, the page will not be up to date
2575 	 * Case c, the page may be truncated but in itself, the data may still
2576 	 *    be valid after IO completes as it's a read vs truncate race. The
2577 	 *    operation must restart if the page is not uptodate on unlock but
2578 	 *    otherwise serialising on page lock to stabilise the mapping gives
2579 	 *    no additional guarantees to the caller as the page lock is
2580 	 *    released before return.
2581 	 * Case d, similar to truncation. If reclaim holds the page lock, it
2582 	 *    will be a race with remove_mapping that determines if the mapping
2583 	 *    is valid on unlock but otherwise the data is valid and there is
2584 	 *    no need to serialise with page lock.
2585 	 *
2586 	 * As the page lock gives no additional guarantee, we optimistically
2587 	 * wait on the page to be unlocked and check if it's up to date and
2588 	 * use the page if it is. Otherwise, the page lock is required to
2589 	 * distinguish between the different cases. The motivation is that we
2590 	 * avoid spurious serialisations and wakeups when multiple processes
2591 	 * wait on the same page for IO to complete.
2592 	 */
2593 	wait_on_page_locked(page);
2594 	if (PageUptodate(page))
2595 		goto out;
2596 
2597 	/* Distinguish between all the cases under the safety of the lock */
2598 	lock_page(page);
2599 
2600 	/* Case c or d, restart the operation */
2601 	if (!page->mapping) {
2602 		unlock_page(page);
2603 		put_page(page);
2604 		goto repeat;
2605 	}
2606 
2607 	/* Someone else locked and filled the page in a very small window */
2608 	if (PageUptodate(page)) {
2609 		unlock_page(page);
2610 		goto out;
2611 	}
2612 	goto filler;
2613 
2614 out:
2615 	mark_page_accessed(page);
2616 	return page;
2617 }
2618 
2619 /**
2620  * read_cache_page - read into page cache, fill it if needed
2621  * @mapping:	the page's address_space
2622  * @index:	the page index
2623  * @filler:	function to perform the read
2624  * @data:	first arg to filler(data, page) function, often left as NULL
2625  *
2626  * Read into the page cache. If a page already exists, and PageUptodate() is
2627  * not set, try to fill the page and wait for it to become unlocked.
2628  *
2629  * If the page does not get brought uptodate, return -EIO.
2630  */
2631 struct page *read_cache_page(struct address_space *mapping,
2632 				pgoff_t index,
2633 				int (*filler)(void *, struct page *),
2634 				void *data)
2635 {
2636 	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2637 }
2638 EXPORT_SYMBOL(read_cache_page);
2639 
2640 /**
2641  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2642  * @mapping:	the page's address_space
2643  * @index:	the page index
2644  * @gfp:	the page allocator flags to use if allocating
2645  *
2646  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2647  * any new page allocations done using the specified allocation flags.
2648  *
2649  * If the page does not get brought uptodate, return -EIO.
2650  */
2651 struct page *read_cache_page_gfp(struct address_space *mapping,
2652 				pgoff_t index,
2653 				gfp_t gfp)
2654 {
2655 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2656 
2657 	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2658 }
2659 EXPORT_SYMBOL(read_cache_page_gfp);
2660 
2661 /*
2662  * Performs necessary checks before doing a write
2663  *
2664  * Can adjust writing position or amount of bytes to write.
2665  * Returns appropriate error code that caller should return or
2666  * zero in case that write should be allowed.
2667  */
2668 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2669 {
2670 	struct file *file = iocb->ki_filp;
2671 	struct inode *inode = file->f_mapping->host;
2672 	unsigned long limit = rlimit(RLIMIT_FSIZE);
2673 	loff_t pos;
2674 
2675 	if (!iov_iter_count(from))
2676 		return 0;
2677 
2678 	/* FIXME: this is for backwards compatibility with 2.4 */
2679 	if (iocb->ki_flags & IOCB_APPEND)
2680 		iocb->ki_pos = i_size_read(inode);
2681 
2682 	pos = iocb->ki_pos;
2683 
2684 	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2685 		return -EINVAL;
2686 
2687 	if (limit != RLIM_INFINITY) {
2688 		if (iocb->ki_pos >= limit) {
2689 			send_sig(SIGXFSZ, current, 0);
2690 			return -EFBIG;
2691 		}
2692 		iov_iter_truncate(from, limit - (unsigned long)pos);
2693 	}
2694 
2695 	/*
2696 	 * LFS rule
2697 	 */
2698 	if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2699 				!(file->f_flags & O_LARGEFILE))) {
2700 		if (pos >= MAX_NON_LFS)
2701 			return -EFBIG;
2702 		iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2703 	}
2704 
2705 	/*
2706 	 * Are we about to exceed the fs block limit ?
2707 	 *
2708 	 * If we have written data it becomes a short write.  If we have
2709 	 * exceeded without writing data we send a signal and return EFBIG.
2710 	 * Linus frestrict idea will clean these up nicely..
2711 	 */
2712 	if (unlikely(pos >= inode->i_sb->s_maxbytes))
2713 		return -EFBIG;
2714 
2715 	iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2716 	return iov_iter_count(from);
2717 }
2718 EXPORT_SYMBOL(generic_write_checks);
2719 
2720 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2721 				loff_t pos, unsigned len, unsigned flags,
2722 				struct page **pagep, void **fsdata)
2723 {
2724 	const struct address_space_operations *aops = mapping->a_ops;
2725 
2726 	return aops->write_begin(file, mapping, pos, len, flags,
2727 							pagep, fsdata);
2728 }
2729 EXPORT_SYMBOL(pagecache_write_begin);
2730 
2731 int pagecache_write_end(struct file *file, struct address_space *mapping,
2732 				loff_t pos, unsigned len, unsigned copied,
2733 				struct page *page, void *fsdata)
2734 {
2735 	const struct address_space_operations *aops = mapping->a_ops;
2736 
2737 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2738 }
2739 EXPORT_SYMBOL(pagecache_write_end);
2740 
2741 ssize_t
2742 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2743 {
2744 	struct file	*file = iocb->ki_filp;
2745 	struct address_space *mapping = file->f_mapping;
2746 	struct inode	*inode = mapping->host;
2747 	loff_t		pos = iocb->ki_pos;
2748 	ssize_t		written;
2749 	size_t		write_len;
2750 	pgoff_t		end;
2751 
2752 	write_len = iov_iter_count(from);
2753 	end = (pos + write_len - 1) >> PAGE_SHIFT;
2754 
2755 	if (iocb->ki_flags & IOCB_NOWAIT) {
2756 		/* If there are pages to writeback, return */
2757 		if (filemap_range_has_page(inode->i_mapping, pos,
2758 					   pos + iov_iter_count(from)))
2759 			return -EAGAIN;
2760 	} else {
2761 		written = filemap_write_and_wait_range(mapping, pos,
2762 							pos + write_len - 1);
2763 		if (written)
2764 			goto out;
2765 	}
2766 
2767 	/*
2768 	 * After a write we want buffered reads to be sure to go to disk to get
2769 	 * the new data.  We invalidate clean cached page from the region we're
2770 	 * about to write.  We do this *before* the write so that we can return
2771 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2772 	 */
2773 	written = invalidate_inode_pages2_range(mapping,
2774 					pos >> PAGE_SHIFT, end);
2775 	/*
2776 	 * If a page can not be invalidated, return 0 to fall back
2777 	 * to buffered write.
2778 	 */
2779 	if (written) {
2780 		if (written == -EBUSY)
2781 			return 0;
2782 		goto out;
2783 	}
2784 
2785 	written = mapping->a_ops->direct_IO(iocb, from);
2786 
2787 	/*
2788 	 * Finally, try again to invalidate clean pages which might have been
2789 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2790 	 * if the source of the write was an mmap'ed region of the file
2791 	 * we're writing.  Either one is a pretty crazy thing to do,
2792 	 * so we don't support it 100%.  If this invalidation
2793 	 * fails, tough, the write still worked...
2794 	 */
2795 	invalidate_inode_pages2_range(mapping,
2796 				pos >> PAGE_SHIFT, end);
2797 
2798 	if (written > 0) {
2799 		pos += written;
2800 		write_len -= written;
2801 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2802 			i_size_write(inode, pos);
2803 			mark_inode_dirty(inode);
2804 		}
2805 		iocb->ki_pos = pos;
2806 	}
2807 	iov_iter_revert(from, write_len - iov_iter_count(from));
2808 out:
2809 	return written;
2810 }
2811 EXPORT_SYMBOL(generic_file_direct_write);
2812 
2813 /*
2814  * Find or create a page at the given pagecache position. Return the locked
2815  * page. This function is specifically for buffered writes.
2816  */
2817 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2818 					pgoff_t index, unsigned flags)
2819 {
2820 	struct page *page;
2821 	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2822 
2823 	if (flags & AOP_FLAG_NOFS)
2824 		fgp_flags |= FGP_NOFS;
2825 
2826 	page = pagecache_get_page(mapping, index, fgp_flags,
2827 			mapping_gfp_mask(mapping));
2828 	if (page)
2829 		wait_for_stable_page(page);
2830 
2831 	return page;
2832 }
2833 EXPORT_SYMBOL(grab_cache_page_write_begin);
2834 
2835 ssize_t generic_perform_write(struct file *file,
2836 				struct iov_iter *i, loff_t pos)
2837 {
2838 	struct address_space *mapping = file->f_mapping;
2839 	const struct address_space_operations *a_ops = mapping->a_ops;
2840 	long status = 0;
2841 	ssize_t written = 0;
2842 	unsigned int flags = 0;
2843 
2844 	do {
2845 		struct page *page;
2846 		unsigned long offset;	/* Offset into pagecache page */
2847 		unsigned long bytes;	/* Bytes to write to page */
2848 		size_t copied;		/* Bytes copied from user */
2849 		void *fsdata;
2850 
2851 		offset = (pos & (PAGE_SIZE - 1));
2852 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
2853 						iov_iter_count(i));
2854 
2855 again:
2856 		/*
2857 		 * Bring in the user page that we will copy from _first_.
2858 		 * Otherwise there's a nasty deadlock on copying from the
2859 		 * same page as we're writing to, without it being marked
2860 		 * up-to-date.
2861 		 *
2862 		 * Not only is this an optimisation, but it is also required
2863 		 * to check that the address is actually valid, when atomic
2864 		 * usercopies are used, below.
2865 		 */
2866 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2867 			status = -EFAULT;
2868 			break;
2869 		}
2870 
2871 		if (fatal_signal_pending(current)) {
2872 			status = -EINTR;
2873 			break;
2874 		}
2875 
2876 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2877 						&page, &fsdata);
2878 		if (unlikely(status < 0))
2879 			break;
2880 
2881 		if (mapping_writably_mapped(mapping))
2882 			flush_dcache_page(page);
2883 
2884 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2885 		flush_dcache_page(page);
2886 
2887 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2888 						page, fsdata);
2889 		if (unlikely(status < 0))
2890 			break;
2891 		copied = status;
2892 
2893 		cond_resched();
2894 
2895 		iov_iter_advance(i, copied);
2896 		if (unlikely(copied == 0)) {
2897 			/*
2898 			 * If we were unable to copy any data at all, we must
2899 			 * fall back to a single segment length write.
2900 			 *
2901 			 * If we didn't fallback here, we could livelock
2902 			 * because not all segments in the iov can be copied at
2903 			 * once without a pagefault.
2904 			 */
2905 			bytes = min_t(unsigned long, PAGE_SIZE - offset,
2906 						iov_iter_single_seg_count(i));
2907 			goto again;
2908 		}
2909 		pos += copied;
2910 		written += copied;
2911 
2912 		balance_dirty_pages_ratelimited(mapping);
2913 	} while (iov_iter_count(i));
2914 
2915 	return written ? written : status;
2916 }
2917 EXPORT_SYMBOL(generic_perform_write);
2918 
2919 /**
2920  * __generic_file_write_iter - write data to a file
2921  * @iocb:	IO state structure (file, offset, etc.)
2922  * @from:	iov_iter with data to write
2923  *
2924  * This function does all the work needed for actually writing data to a
2925  * file. It does all basic checks, removes SUID from the file, updates
2926  * modification times and calls proper subroutines depending on whether we
2927  * do direct IO or a standard buffered write.
2928  *
2929  * It expects i_mutex to be grabbed unless we work on a block device or similar
2930  * object which does not need locking at all.
2931  *
2932  * This function does *not* take care of syncing data in case of O_SYNC write.
2933  * A caller has to handle it. This is mainly due to the fact that we want to
2934  * avoid syncing under i_mutex.
2935  */
2936 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2937 {
2938 	struct file *file = iocb->ki_filp;
2939 	struct address_space * mapping = file->f_mapping;
2940 	struct inode 	*inode = mapping->host;
2941 	ssize_t		written = 0;
2942 	ssize_t		err;
2943 	ssize_t		status;
2944 
2945 	/* We can write back this queue in page reclaim */
2946 	current->backing_dev_info = inode_to_bdi(inode);
2947 	err = file_remove_privs(file);
2948 	if (err)
2949 		goto out;
2950 
2951 	err = file_update_time(file);
2952 	if (err)
2953 		goto out;
2954 
2955 	if (iocb->ki_flags & IOCB_DIRECT) {
2956 		loff_t pos, endbyte;
2957 
2958 		written = generic_file_direct_write(iocb, from);
2959 		/*
2960 		 * If the write stopped short of completing, fall back to
2961 		 * buffered writes.  Some filesystems do this for writes to
2962 		 * holes, for example.  For DAX files, a buffered write will
2963 		 * not succeed (even if it did, DAX does not handle dirty
2964 		 * page-cache pages correctly).
2965 		 */
2966 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2967 			goto out;
2968 
2969 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
2970 		/*
2971 		 * If generic_perform_write() returned a synchronous error
2972 		 * then we want to return the number of bytes which were
2973 		 * direct-written, or the error code if that was zero.  Note
2974 		 * that this differs from normal direct-io semantics, which
2975 		 * will return -EFOO even if some bytes were written.
2976 		 */
2977 		if (unlikely(status < 0)) {
2978 			err = status;
2979 			goto out;
2980 		}
2981 		/*
2982 		 * We need to ensure that the page cache pages are written to
2983 		 * disk and invalidated to preserve the expected O_DIRECT
2984 		 * semantics.
2985 		 */
2986 		endbyte = pos + status - 1;
2987 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
2988 		if (err == 0) {
2989 			iocb->ki_pos = endbyte + 1;
2990 			written += status;
2991 			invalidate_mapping_pages(mapping,
2992 						 pos >> PAGE_SHIFT,
2993 						 endbyte >> PAGE_SHIFT);
2994 		} else {
2995 			/*
2996 			 * We don't know how much we wrote, so just return
2997 			 * the number of bytes which were direct-written
2998 			 */
2999 		}
3000 	} else {
3001 		written = generic_perform_write(file, from, iocb->ki_pos);
3002 		if (likely(written > 0))
3003 			iocb->ki_pos += written;
3004 	}
3005 out:
3006 	current->backing_dev_info = NULL;
3007 	return written ? written : err;
3008 }
3009 EXPORT_SYMBOL(__generic_file_write_iter);
3010 
3011 /**
3012  * generic_file_write_iter - write data to a file
3013  * @iocb:	IO state structure
3014  * @from:	iov_iter with data to write
3015  *
3016  * This is a wrapper around __generic_file_write_iter() to be used by most
3017  * filesystems. It takes care of syncing the file in case of O_SYNC file
3018  * and acquires i_mutex as needed.
3019  */
3020 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3021 {
3022 	struct file *file = iocb->ki_filp;
3023 	struct inode *inode = file->f_mapping->host;
3024 	ssize_t ret;
3025 
3026 	inode_lock(inode);
3027 	ret = generic_write_checks(iocb, from);
3028 	if (ret > 0)
3029 		ret = __generic_file_write_iter(iocb, from);
3030 	inode_unlock(inode);
3031 
3032 	if (ret > 0)
3033 		ret = generic_write_sync(iocb, ret);
3034 	return ret;
3035 }
3036 EXPORT_SYMBOL(generic_file_write_iter);
3037 
3038 /**
3039  * try_to_release_page() - release old fs-specific metadata on a page
3040  *
3041  * @page: the page which the kernel is trying to free
3042  * @gfp_mask: memory allocation flags (and I/O mode)
3043  *
3044  * The address_space is to try to release any data against the page
3045  * (presumably at page->private).  If the release was successful, return '1'.
3046  * Otherwise return zero.
3047  *
3048  * This may also be called if PG_fscache is set on a page, indicating that the
3049  * page is known to the local caching routines.
3050  *
3051  * The @gfp_mask argument specifies whether I/O may be performed to release
3052  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3053  *
3054  */
3055 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3056 {
3057 	struct address_space * const mapping = page->mapping;
3058 
3059 	BUG_ON(!PageLocked(page));
3060 	if (PageWriteback(page))
3061 		return 0;
3062 
3063 	if (mapping && mapping->a_ops->releasepage)
3064 		return mapping->a_ops->releasepage(page, gfp_mask);
3065 	return try_to_free_buffers(page);
3066 }
3067 
3068 EXPORT_SYMBOL(try_to_release_page);
3069